
ELECTROMAGNETIC SIDE-CHANNEL ANALYSIS

ON INTEL ATOM PROCESSOR

A Major Qualifying Project Report:

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

by

Anh Do

Soe Thet Ko

Aung Thu Htet

Date: April 24, 2013

Approved:

Professor Thomas Eisenbarth, Advisor

Professor Berk Sunar, Co-Advisor

Abstract

Side-channel attacks, in particular, power electromagnetic analysis attacks, have gained significant attention

in recent years because they can be conducted relatively easily, yet are powerful. Two types of attacks are

investigated in this project: Simple Electromagnetic Analysis (SEMA), which is extremely effective against

asymmetric cryptography such as Rivest-Shamir-Adleman Algorithm (RSA) and Differential Electromagnetic

Analysis (DEMA), which is commonly implemented against symmetric cryptography such as Advanced En-

cryption Standard (AES). This project implements SEMA and DEMA attacks based on the electromagnetic

radiation from the Intel Atom Processor during its execution of cryptography algorithms.

Contents

1 Introduction 1

1.1 Project Motivation . 1

1.1.1 Cryptography . 1

1.1.2 Side-channel Attacks . 2

1.1.3 Motivation . 3

1.2 Rivest – Shamir – Adleman (RSA) Algorithm . 3

1.2.1 Encryption and Decryption . 4

1.2.2 Detail Implementation of RSA . 5

1.2.2.1 Key Generation . 5

1.2.2.2 Fast Exponentiation . 5

1.2.2.3 Fast Encryption with Short Public Exponents 5

1.2.2.4 Fast Decryption with the Chinese Remainder Theorem 6

1.2.2.5 Finding Large Primes . 6

1.2.3 RSA in Practice . 7

1.3 Simple Electromagnetic Analysis (SEMA) Attacks on RSA 7

1.4 Advanced Encryption Standard (AES) Algorithm . 8

1.4.1 Overview Structure . 8

1.4.2 Internal Structure of AES . 10

1.4.3 Detail Implementation of each Layer . 11

ii

1.4.4 Key Schedule . 13

1.5 Differential Electromagnetic Analysis (DEMA) Attacks on AES 15

2 Project Setting 17

2.1 Overview . 17

2.2 Writing the C Code . 20

2.2.1 Employing the Libraries . 20

2.2.2 Compiling the Code . 21

2.3 Generating Triggers . 22

2.3.1 From the Serial Port . 22

2.3.2 From the LPT Port . 23

2.4 Capturing the Traces . 25

3 Attacking RSA 28

3.1 General Procedure of Analyzing RSA Electromagnetic Traces 28

3.1.1 Collecting the Traces . 28

3.1.2 Filtering Technique . 29

3.1.3 Filtering the Traces in MATLAB . 30

3.1.4 Finding the Key . 34

3.2 Simple Multiply-and-Square RSA . 35

3.3 Modular Exponentiation (RSA) - GMP Library . 38

3.3.1 Different Key Sizes . 39

3.3.1.1 80-bit key . 39

3.3.1.2 200-bit key . 41

3.3.1.3 400-bit key . 42

3.3.1.4 1024-bit key . 43

3.3.2 Summary . 44

3.4 Modular Exponentiation (RSA) – OpenSSL library . 45

3.4.1 Different Key Sizes . 45

iii

3.4.1.1 80-bit key . 46

3.4.1.2 320-bit key . 47

3.4.1.3 1024-bit key . 48

3.4.2 Summary . 49

3.5 Comparing RSA Methods . 50

4 Attacking AES 51

4.1 Collecting the AES traces . 51

4.2 Filtering the AES traces . 53

4.3 Differential Electromagnetic Analysis on the AES Traces . 57

4.4 Summary . 60

5 Conclusion 61

5.1 Summary . 61

5.2 Future Work . 62

5.3 Contribution . 63

A C Code and MATLAB Code 66

A.1 C Code . 66

A.1.1 RSA simple multiply-and-square . 66

A.1.2 RSA modular exponentiation (GMP library) . 68

A.1.3 RSA modular exponentiation (GMP library) . 69

A.1.4 AES 1-in-1 . 70

A.1.5 AES 100-in-1 . 71

A.2 MATLAB Code . 73

A.2.1 RSA 80-bit key . 73

A.2.2 RSA 1024-bit key . 74

A.2.3 AES Write File . 75

A.2.4 AES DEMA . 77

iv

List of Figures

1.1 Basic AES Algorithm . 9

1.2 Detail Structure of an AES encryption . 10

1.3 Internal Structure of an AES round . 11

1.4 Input 4⇥4 matrix . 11

1.5 Lookup Table used in Byte Substitution Layer . 12

1.6 Input and Output States of the ShiftRows sub-layer . 12

1.7 Matrix Operation in MixColumn sub-layer . 13

1.8 Key schedule for AES-128 . 14

1.9 Function g of Round i . 15

2.1 Project Setting Block Diagram . 18

2.2 General Project Setting . 18

2.3 Atom Board Setup . 19

2.4 Power Supply to the Amplifier . 20

2.5 Probe at the Serial COM Port . 22

2.6 Trigger Produced at the Serial Port . 23

2.7 Probe at the LPT Port . 24

2.8 Trigger Produced at LPT port . 25

2.9 Trigger Channel Setup . 26

2.10 Trace Channel Setup . 26

v

2.11 Oscilloscope sampling setup for RSA (top) and AES (bottom) 27

3.1 Original RSA Trace with 80 bit exponent (sim80_2.5G_2.trc) 29

3.2 Spectrogram of the original trace (sim80_2.5G_2.trc) . 31

3.3 Trace after the 1st filter (sim80_2.5G_2.trc) . 32

3.4 Spectrum of the rectified trace (sim80_2.5G_2.trc) . 33

3.5 Trace after the 2nd filter (sim80_2.5G_2.trc) . 33

3.6 Automatically distinguish between MUL and SQ . 34

3.7 Simple RSA 1024 bit traces: Top - Raw trace. Middle - After the 1st filter. Bottom - After

the 2nd filter (sim1024_250M_2.trc) . 36

3.8 Distinguish between MUL (red) and SQ (blue) . 37

3.9 Reconstructed key vs. Original key(sim256_250M_2.trc) . 38

3.10 80-bit key RSA filtered trace - GMP library . 40

3.11 200-bit key RSA filtered trace - GMP library . 41

3.12 400-bit key RSA filtered trace - GMP library . 42

3.13 1024-bit key RSA filtered trace - GMP library . 43

3.14 80-bit key RSA filtered trace - OpenSSL library . 46

3.15 320-bit key RSA filtered trace - OpenSSL library . 47

3.16 1024-bit key RSA filtered trace - OpenSSL library . 48

4.1 A sample AES trace . 52

4.2 Extracted AES region from the raw trace . 53

4.3 Frequency Spectrum Plot of Raw AES . 54

4.4 Filtered AES . 54

4.5 Extracted AES Operation . 55

4.6 Nine different AES operations . 56

4.7 Downsampled AES written into Text Files . 56

4.8 Intermediate value y after the first S-box . 57

4.9 All electromagnetic traces . 58

vi

4.10 Correlation values for 256 possible keys . 59

vii

List of Tables

1.1 Short Public Exponents for RSA . 6

1.2 Number of Rounds as a function of Key Length . 9

3.1 Window size and Pre-computations - GMP Library . 44

3.2 Window size and Pre-computations - OpenSSL Library . 49

3.3 Comparing RSA execution time for 1024-bit key . 50

viii

Chapter 1

Introduction

1.1 Project Motivation

This section give a brief background of cryptography, side-channel attacks, and how they motivate us to

conduct side-channel analysis on an Intel Atom Processor.

1.1.1 Cryptography

Encryption is the primary cryptographic technique to achieve confidentiality of messages between two com-

municating parties over public networks. Nowadays, most of the cryptographic applications are conducted

over digital media. To cite a few, applications include ATM cards, computer passwords, electronic commerce,

etc. In such applications the encryption process typically involves two parties: encryption at the sender side

and decryption at the receiver side. Encryption is the process of converting the original message (called plain-

text) into a secret coded message (called ciphertext). Decryption achieves the reverse, i.e. reconstructing

the plaintext from the received ciphertext. The encryption algorithm uses a key, i.e. a secret, which when

combined with a mathematically defined algorithm renders the plaintext into an unintelligible ciphertext.

At the receiving end, the key is used to decrypt the code and restore the original message. The greater the

number of bits in the secret key, the more possible key combinations and the harder it would take to break

the code using an exhaustive search strategy.

1

There are two major categories of encryption schemes: symmetric and asymmetric encryption schemes.

In the symmetric key category, both the sender and receiver use the same key to encrypt and decrypt. A

prominent example is the Advanced Encryption Standard (AES) algorithm which will be described later in

Section §1.4. In symmetric ciphers encryption and decryption primitives are much faster than in public key

algorithms. However securely delivering the secret key to the recipient in the first place might be a problem.

In contrast, primitives in the second category use a key pair. Each recipient has a private key that is kept

secret and a public key that is published for everyone. The sender uses the recipient’s public key to encrypt

the message, and the recipient uses the private key to decrypt the message. The RSA public key scheme,

described later in Section §1.2, is a good example of the schemes in this category.

1.1.2 Side-channel Attacks

There are several kinds of attacks on cryptographic devices. They share the same goal, to reveal the secret

keys of the devices, but differ significantly in terms of cost, time, equipment, and expertise needed. These

methods could be categorized as follows:

• Invasive Attacks: The device is depackaged, and different components of the device are accessed directly

using a probing station. These attacks are extremely powerful but require quite expensive equipments

and may be very difficult to perform under some circumstances.

• Semi-invasive Attacks: The device is depackaged, but no direct electrical contact to the surface is made.

These attacks are powerful, and do not require as expensive equipments as invasive ones. However, the

process of locating the right position for an attack requires quite some time and expertise.

• Noninvasive Attacks: Only directly accessible interfaces of the device are exploited, and therefore

no evidence of an attack is left behind. These attacks can be conducted with relatively inexpensive

equipments, and hence, they pose a serious practical threat to the security of cryptographic devices.

Most of the cryptographic schemes in use have been heavily investigated by cryptography experts to withstand

powerful mathematical attacks. In contrast, most of the very same techniques have been shown to be

vulnerable to attacks targeting their implementations through so-called side-channel attacks [4]. Side-channel

2

attacks, in particular, electromagnetic analysis attacks based on the devices’ radiation, have gained quite

attention in recent years because they are very powerful and can be conducted relatively easily. These

attacks exploit the fact that the instantaneous electromagnetic radiation of a device depends on the data

it processes and on the operation it performs [7]. There are two main types of power analysis attack:

Simple Electromagnetic Analysis (SEMA), which is extremely effective against asymmetric cryptography and

Differential Electromagnetic Analysis (DEMA), which is extremely effective against symmetric cryptography.

The detail procedures of these two attacks will be discussed more in Section §1.3 and Section §1.5.

1.1.3 Motivation

Our project involves implementation of side-channel attacks on Intel Atom Processor. In 2008, Intel intro-

duced the processors Silverthorne and Diamondville, which were both released under the name of Atom [1].

Intel targets the Silverthorne for mobile internet devices and Diamondville for personal computers. Intel

Atom processors are high speed, and high performance embedded processors, and they are quite resistant

to side-channel attacks. The fact that it is challenging to implement side-channel attack on Atom board

is one of our project motivations. Another project motivation is the widespread use of Atom processors.

They are used in everyday electronic devices, from net books to various embedded applications. The Pine

Trail Architecture used in Atom Processors brings considerable power saving and improved performance [2].

Therefore, instead of heavy quad core processors, Atoms Processors are used in devices such as Net books,

net-tops, and smartphones, which are used for simple applications such as browsing the internet. With such

a wide field of application, Atom processor is a practical application in real-world that is worth investigating

for side-channel analysis.

1.2 Rivest – Shamir – Adleman (RSA) Algorithm

The RSA algorithm is currently the most widely deployed public key cryptographic scheme. In practice,

RSA is mostly used for encryption of small pieces of data such as key transport, digital signatures and digital

certificates on the Internet. Since it is several times slower than symmetric ciphers due to its computational

complexity, RSA is often used together with a symmetric cipher such as AES, where AES does the actual

3

bulk data encryption. With the use of both public key and private key, RSA has an important role to securely

exchange a key for a symmetric cipher. Moreover, the underlying reason for the RSA algorithm is based on

the integer factorization problem: Multiplying two large primes is computationally easy, while factoring the

resulting product is very hard. In this section, again all the explanation of the AES algorithm is advised

from the book “Understanding cryptography a textbook for students and practitioners” [10].

1.2.1 Encryption and Decryption

Both RSA encryption and decryption are performed in the integer ring Zn with modular arithmetic as the

main computation.

Encryption: Given the plaintext x, and the public key k
pub

= (n, e), the encryption function is

y = e
kpub(x) ⌘ xe

mod n

Decryption: Given the ciphertext y, and the private key k
pr

= (d), the decryption function is

x = d
kpr (y) ⌘ yd mod n

where x, y 2 Z
n

In practice, x, y, n, and d are very large integers, i.e. usually 1024 bits long or more. The value e is

called the public exponent or encryption exponent, while the private key d is called the private exponent

or decryption exponent. Based on the algorithm, here are some essential requirements for the RSA crypto-

system:

• It must be computationally infeasible to determine the private key d given the public key e and n

• The maximum bit length that could be encrypted is the size of the modulus n

• A method for fast exponentiation with long numbers is need

• For a given n, there should be many different key pairs

4

1.2.2 Detail Implementation of RSA

1.2.2.1 Key Generation

During the setup phase, the RSA public key and private key are computed as follows.

• Choose two large primes p and q

• Compute the modulus n = pq

• Compute �(n) = (p� 1)(q � 1)

• Select the public exponent e 2 {1, 2 . . .�(n)� 1} such that gcd(e,�(n)) = 1

• Compute the private key d such that d ⌘ e�1
mod �(n)

1.2.2.2 Fast Exponentiation

As stated above, RSA requires a fast exponentiation method for both encryption and decryption processes.

The square-and-multiply algorithm is the most simple and commonly used for this purpose.

• Scanning the bits of the exponent H from the left (MSB) to the right (LSB)

• In every iteration, square (SQ) the current result

• If and only if the current bit is 1, multiply (MUL) the current result by the base x

In general, for an exponent H with a bit length of t+1, the numbers of operations needed are

#SQ = t, #MUL = 0.5t, #Total = 1.5t

1.2.2.3 Fast Encryption with Short Public Exponents

A surprisingly simple yet powerful trick can be used to accelerate the encryption of a message and verification

of an RSA signature is choosing the public key e. For this purpose, the public key is chosen to be a small

value with low Hamming weight. Here are the three most common values are shown in Table 1.1.

5

Table 1.1: Short Public Exponents for RSA
Public key e e(in binary) #MUL + #SQ

3 11 3
17 1 0001 5

216+1 1 0000 0000 0000 0001 17

1.2.2.4 Fast Decryption with the Chinese Remainder Theorem

Unlike the public exponent, the private key d cannot be short since an attacker could simply brute-force all

the possible numbers up to a given bit length. In practice, e is often chosen to be short, while d has full bit

length. Thus, the Chinese Remainder Theorem (CRT) is applied to accelerate RSA decryption and signature

generation. The 2 large primes, p and q, in the key generation phase are used in this transformation.

• In the first step, transformation into the CRT domain proceeds as follows.

y
p

⌘ y mod p, y
q

⌘ y mod q, d
p

⌘ d mod (p� 1), d
q

⌘ d mod (q � 1)

• In the second step, we compute the exponentiation in the CRT domain as follows.

x
p

⌘ ydp
p

mod p, x
q

⌘ ydq
q

mod q

• Finally, the inverse transformation is computed as x ⌘ qc
p

x
p

+ pc
q

x
q

mod n where the coefficients are

computed as c
p

⌘ q�1
mod p, c

q

⌘ p�1
mod q

1.2.2.5 Finding Large Primes

During the key generation process, an important aspect is to find two large primes p and q. The general

approach is to generate integers at random then check for primality. This process depends on two important

questions, “How common are primes?” and “How fast is the primality check?”. It turns out that even for

large value, the density of primes is still sufficiently high. In fact, the probability for a random odd number

to be prime:

P (p is prime) =
2

ln p

6

Moreover, the primality tests are also computationally inexpensive. Examples are the Fermat test, the

Miller – Rabin test, and variants of them.

1.2.3 RSA in Practice

The RSA system described so far has several weaknesses.

• RSA encryption is deterministic, one-to-one mapping for a specific key

• Plaintexts x = 0,�1, 1 produce ciphertexts equal to 0, 1, -1

• Small public exponents and small plaintexts might be subject to attack

• Ciphertexts are malleable. A crypto scheme is said to be malleable if the attacker is capable of trans-

forming the ciphertext into another ciphertext which leads to a known transformation of the plaintext.

In the case of RSA, if the attacker computes a new cipher text sey with s is some integer, then the

receiver decrypts the manipulated ciphertext as (sey)
d ⌘ sedxed ⌘ sx mod n. These manipulations

might do harm since the attacker is able to get s times the plaintext.

A possible solution to all these problems is the use of padding, which embeds a random structure into the

plaintext before encryption. A modern technique, Optimal Asymmetric Encryption Padding (OAEP), for

padding RSA messages is specified and standardized in Public Key Cryptography Standard #1 (PKCS #1)

[12]. On the decryption side, the structure of the decrypted message has to be verified.

1.3 Simple Electromagnetic Analysis (SEMA) Attacks on RSA

Here are the few common attacks on the RSA.

• Protocol attacks: exploit weaknesses in the way RSA is being implemented. Many of them can be

avoided by using standard padding.

• Mathematical attacks: the best method is factoring the modulus. These attacks can be prevented by

choosing a sufficiently large modulus.

7

• Side-channel attacks: exploit information about the private key which is leaked through physical chan-

nels such as power consumption and timing behavior. This now becomes a large and active filed of

research in modern cryptography.

For this project, we apply a side-channel attack called the simple electromagnetic analysis method. The

attacker will be able to find out the private key by observing the decryption process revealed by the devices’

radiation, which is the exponential algorithm that has been demonstrated before. Therefore the attacker can

decipher the encrypted text with both the public key and the private key. The exponential algorithm has

been applied in many RSA cryptographic implementations. As the exponential algorithm has been illustrated

in the previous session, there are only 2 different operations, square and multiply. The sequence of these

limited operations composing the private key can be revealed by visual observation of the electromagnetic

traces.

1.4 Advanced Encryption Standard (AES) Algorithm

The Advanced Encryption Standard Algorithm is the most widely used symmetric cipher today. The AES

block cipher is also mandatory in several industry standards and is used in many commercial systems. In

this section, all the explanation of the AES algorithm is advised from the book “Understanding cryptography

a textbook for students and practitioners” [10]. In addition, all the figures are redrawn from the ones in this

book.

1.4.1 Overview Structure

A general AES round is shown in Figure 1.1. The input x is a 128-bit block of data or plaintext. The key,

denoted by k, can be 128 bits, or 192 bits, or 256 bits. The output y is the 128-bit ciphertext.

8

Figure 1.1: Basic AES Algorithm

An AES algorithm consists of several transformation rounds or cycles which convert the input plaintext

to the output ciphertext. For different key lengths, the number of rounds varies as shown in Table 1.2. For

example, if the key length is 128 bit, there will be 10 AES rounds.

Table 1.2: Number of Rounds as a function of Key Length
Key Length Number of rounds

128 bits 10
192 bits 12
256 bits 14

The complete AES block diagram is shown below in Figure 1.2. The initial round, or round 0, consists

of only one Key Additional Layer. Next, the sequence of AES rounds is consecutively performed, taking the

output of the previous round as the current input. Each AES round consists of three so-called layers that

manipulate the input data, which are

• Byte Substitution Layer: The data is transformed nonlinearly by using a lookup table, called the S-

box, which has special mathematical properties. This nonlinear transformation causes confusion and

randomization to the data; in other words, changes in individual state bits spread quickly across data

path.

• Diffusion Layer: This layer provides diffusion over all state bits. It has two sublayers: ShiftRows

Layer, and MixColumn Layer, both of which are linear transformations. The former performs byte-

wise permutation to the data, and the latter performs matrix operation in order to mix or combine

bytes of data.

9

• Key Addition Layer: the 128-bit round key or sub-key is combined with the current state by XOR

operation. The sub-key is derived from Key Schedule which will be mentioned in details later in 1.4.4.

The output of the last round is also the final output of the AES cipher. However, the last round does not

include MixColumn sublayer in the Diffusion Layer.

Figure 1.2: Detail Structure of an AES encryption

1.4.2 Internal Structure of AES

The internal implementation of a single round of AES is shown in Figure 1.3. First, the 128-bit plaintext is

separated into 16 bytes, from A0 to A15. Each byte is then fed into the S-Box (Byte Substitution Layer).

The 16-byte output from the S-box, from B0 to B15, is permuted byte-wise in the ShiftRows Layer. The

result is mixed and combined in the MixColumn Layer, resulting in the intermediate value, from C0 to C15.

10

The intermediate value is then XORed with the 128-bit round key in the Key Addition Layer before going

to the next round.

Figure 1.3: Internal Structure of an AES round

1.4.3 Detail Implementation of each Layer

For convenience, the bytes of 16-byte input data is arranged in a 4⇥4 matrix, as shown in Figure 1.4.

Figure 1.4: Input 4⇥4 matrix

In Byte Substitution Layer, the bytes are transformed nonlinearly using the S-box, shown in Figure 1.5.

For example, if the input byte is E9 in hexadecimal, the output is the element in row number E and column

number 9, which is 1E in hexadecimal.

11

Figure 1.5: Lookup Table used in Byte Substitution Layer

The detail implementation of the ShiftRows sublayer is shown in Figure 1.6. The input state, a 4⇥4

matrix from B0 to B15, is the output from the Byte Substitution Layer. To achieve the output state, the first

row of the matrix is unchanged, the second row is shifted one position to the left, the third row is shifted

two positions to the left, and the fourth row is shifted three positions to the left.

Figure 1.6: Input and Output States of the ShiftRows sub-layer

The new 4⇥4 matrix is fed into the MixColumn sublayer, and the output is calculated using the special

matrix operation employing Galois Field Properties, as shown in Figure 1.7. Each column of the output

12

matrix is calculated by performing the matrix operation with the corresponding column of the input 4⇥4

matrix.

Figure 1.7: Matrix Operation in MixColumn sub-layer

Finally, the Key Addition Layer takes in two inputs: the current 16-byte state matrix, which is output

from the MixColumn sublayer, and a round key. The output is obtained by performing XOR addition of

these two inputs.

1.4.4 Key Schedule

There are different key schedules for three AES key sizes of 126, 192, and 256 bits. As all of the schedules

are fairly similar, only the schedule for 128-bit key length will be discussed in detail. For the 128-bit key,

there are 10 rounds in the AES encryption operation. However, there is an XOR addition of key before the

first round. This means we need 11 sub-keys or round keys.

The key expansion process of an AES-128 is demonstrated in Figure 1.8. The input is the 128-bit original

key, represented as bytes from K0 through K15.Note that the key schedule is word-oriented, and the 11 sub-

keys are stored in a key expansion array as words from W[0] through W[43]. The first sub-key is obtained

by directly copying the original key from the four elements W[0], W[1], W[2], and W[3] of the array. The

remaining 10 sub-keys are computed recursively, using an XOR addition and a non-linear function g, which

will be discussed later.

13

Figure 1.8: Key schedule for AES-128

As stated, function g plays an important role in sub-key derivation as it adds non-linearity to the key

schedule. It takes four input bytes and produces four-byte output, as shown in Figure 1.9. It first rotates

the input bytes, and then performs a byte-wise S-Box substitution. A round coefficient (RC) is added to the

leftmost S-Box output byte. The RC value is an element of Galois field and varies from round to round.

14

Figure 1.9: Function g of Round i

1.5 Differential Electromagnetic Analysis (DEMA) Attacks on AES

The Differential Electromagnetic Analysis attack exploits the dependence of power consumption on interme-

diate values, which is very similar to the Differential Power Analysis attack [5]. Compared to the SEMA

attack, the DEMA attack has two main advantages. First, a DEMA attack doesn’t require detailed knowl-

edge about the cryptographic device. It is usually sufficient to know the cryptographic algorithm executed by

the device. Second, a DEMA attack works even if the recorded electromagnetic traces are extremely noisy.

Mainly, the DEMA attack analyzes the dependence of electromagnetic radiation on the processed data at

fixed moments of time. The general strategy for a DEMA attack consists of five steps.

• An intermediate result of the executed algorithm is chosen for the attack. It has to be a function of d

(plaintext or ciphertext) and k (a small part of the key).

• D different data blocks are fed to the device for encryption or decryption, and the corresponding

electromagnetic traces are recorded. The input data blocks are denoted as a vector d = {d1, d2 . . . dD}.

The electromagnetic trace for each data block is represented as a vector t
i

= {t
i1, ti2 . . . tiT }. Then, a

15

matrix T of dimension D by T is constructed by using the recorded electromagnetic traces.

• Hypothetical intermediate values are calculated for every possible key. The key hypotheses are repre-

sented as a vector k = {k1, k2 . . . kK}. Then, the data vector d and key vector k are used to compute

intermediate values to get matrix V = [v
ij

], where v
ij

= f(d
i

, k
j

).

• The intermediate values in matrix V are mapped to the electromagnetic radiation values, resulting in

a new matrix H of hypothetical electromagnetic radiation values. Most common methods for doing so

are Hamming Weight Model, Hamming Distance Model and Zero Value Model.

• Hypothetical electromagnetic radiation values in matrix H are compared with the actual electromagnetic

traces. The correlation coefficient between each column hi of matrix H and each column tj of matrix

T are calculated and stored in a new K⇥T correlation coefficient matrix R. The correct key can be

retrieved by looking at the index of the largest correlation coefficient value in the matrix R. The row

number indicates the correct key and the column number indicates the time.

16

Chapter 2

Project Setting

This section discusses the experimental settings of our project, including installing the cryptography libraries,

compiling the C codes, and capturing electromagnetic traces.

2.1 Overview

The block diagram of the project setting is shown in Figure 2.1. In the center, the Intel Atom Board is

operated on UBUNTU 12.04.1 OS, connected to a keyboard and a monitor. These standard I/O devices

assist the process of writing and compiling the code. The board itself also has two USB ports, used for

copying the library installation files as well as the code from other computers. From the board, either the

serial port or the LPT port is connected to a channel of the oscilloscope in order to send the trigger, which

will be discussed later in Section §2.3. During the cryptography execution, the electromagnetic waves are

collected by a 3-loop coil antenna, with a diameter of about 1 centimeter. The antenna plus an amplifier,

which is powered 15V by power supply, can detect electromagnetic leakage traces from Intel Atom Board,

and send them directly to a channel of the oscilloscope. The scope model is WavePro 725Zi from LeCroy with

the bandwidth of 2.5GHz and the maximum sampling rate of 40 GS/sec [6]. Based on the trigger sent from

another channel, the oscilloscope is able to capture the traces from a chosen channel at the right moment,

then write to binary files, and save them to the hard disk. The trace files are then transferred to other

17

computers via a USB drive in order to perform signal analysis in MATLAB.

Figure 2.1: Project Setting Block Diagram

Based on the block diagram, the actual project setting is shown in Figure 2.2. The Intel Atom Board is

in the middle, run on Linux system. To the left is the monitor and the keyboard, which are the standard I/O

connected to the board. The antenna coil with the amplifier is placed above the board in order to capture

the electromagnetic waves, and the probe is connected to the serial port, or LPT port of the board. These

placements can be seen more clearly in the close-up pictures, Figure 2.3, Figure 2.4, and Figure 2.7. Based

on the trigger from a channel, this oscilloscope will collect the electromagnetic traces of the Atom board

from another channel and save them to the hard disk. In the back is the power rail supplying for all devices,

including the monitor, the Atom board, the oscilloscope, and the power supply.

Figure 2.2: General Project Setting

A close-up view on the Intel Atom Board is shown in Figure 2.3. The board uses EMPhase S1 series flash

module for memory. To the left, the oscilloscope probe is connected to the serial port in order to detect the

18

generated trigger. In the middle, the coil antenna is placed above the board and under the heat-sink to capture

the electromagnetic waves. The optimum position is chosen based on trial-and-error in order to maximize the

trace amplitudes while minimize the unexpected noise from other parts. Interestingly, the optimum positions

for the RSA and AES traces are different, which makes sense since these two algorithms require different

operations of the system. For these two algorithms, the coil antenna measures the electromagnetic radiations

from different capacitors in the board.

Figure 2.3: Atom Board Setup

The amplifier of the antenna coil is connected to the power supply as shown in Figure 2.4. The amplifier

with the model number Mini-circuit ZFL-1000LN+, amplifies the signal inside the range 0.1 MHz to 1000

MHz, before it goes to the oscilloscope. This filter range is sufficient since the RSA and AES operations, as

later described, are in the order of 10 MHz to 100 MHz. The amplifier has a minimum gain of 20dB [8]. To

the right, the Atom board is connected to a simple button on a breadboard. This button is used to start up

or reset the whole system when necessary.

19

Figure 2.4: Power Supply to the Amplifier

2.2 Writing the C Code

This section explains how we installed cryptography libraries on Linux System, and how we compiled C codes

to implement RSA and AES algorithms.

2.2.1 Employing the Libraries

In order to quickly perform the RSA and AES algorithms, it is convenient to employ free public libraries

inside the C code. For this project, two popular libraries are chosen: the GNU Multiple Precision Arithmetic

(GMP) library version 5.1.0 [13], and the OpenSSL library version 1.0.1c [9]. The GMP library is well-

known for the speed when dealing with long integers (bignum) using highly optimized assembly language;

thus, it will be used to implement the RSA algorithm, both simple multiply-and-square method and modular

exponentiation method. The OpenSSL library is an open-source implementation of the SSL and TLS protocol,

20

which implements many basic cryptography functions. Hence, the library consists of both RSA and AES

implementations.

These two library packages can be downloaded from their main websites. The installation process is also

simple. Here is an example of installing the OpenSSL library. The first step is to extract files from the

downloaded package. The second step is to enter the directory where the package is extracted, and to run

the configuration file with the default setup. Next step is to compile OpenSSL and to check for any error

messages. The last step is to install the OpenSSL library with root command for privileges on destination

directory.

tar -xvzf OpenSSL-1.0.1c.tar.gz

./config

make

sudo make install

Now, the library is ready to be used by including the library header in the beginning of the C code, for

example:

#include <OpenSSL/aes.h>

2.2.2 Compiling the Code

Since the compiler of the system doesn’t link the library automatically, we have to specify the library directory

manually in each compilation. To compile the code using the GMP library, use the command:

gcc -I/usr/local/include test.c /usr/local/lib/libgmp.a

To compile the C code using the OpenSSL library, use the command:

gcc -I/usr/local/ssl/include test.c /usr/local/ssl/lib/libcrypto.a

21

2.3 Generating Triggers

Generating the trigger is a very important factor in the process of capturing the electromagnetic traces

since the oscilloscope need to be triggered based on one of its channel inputs. For both RSA and AES

implementations, the atom board first generates the trigger at one of its output port. Since there is always a

rising time at the output port when going from low to high, the board is forced to sleep or to perform some

delay to accommodate this latency. Then, the cryptographic algorithm is performed, followed by another

delay period, either sleeping or counting. The procedure ensures that the whole cryptographic algorithm is

captured in the electromagnetic trace, and reduces the interference between two consecutive operations.

2.3.1 From the Serial Port

Since the serial port is quite common in many systems and easy to be written to, we use it as the trigger

when capturing the RSA electromagnetic traces. The oscilloscope probe is connected to the serial port as

shown in Figure 2.5. The ground is connected to the pin 6 while the probe is connected to the pin 3 of the

serial COM port.

Figure 2.5: Probe at the Serial COM Port

22

At the beginning of the code, we perform test I/O for this specific port using the command:

fd = open("/dev/ttyS0", O_RDWR|O_NOCTTY|O_NDELAY);

Next, every time a trigger is needed, we just have to write a single bit 1 to that port:

write(fd,tpstr,1);

After a finite time, the output port is back to 0; thus, we don’t have to manually turn off the port before

the next trigger. The trigger produced at this serial port is shown in Figure 2.6. Since the oscilloscope is set

with 1µs per division, the trigger rising time is about 0.75µs, which is significantly slow. However, since the

RSA algorithm itself is slow as well, in an order of 10 milliseconds, it is still acceptable to use this trigger

when collecting the RSA traces.

Figure 2.6: Trigger Produced at the Serial Port

2.3.2 From the LPT Port

Since a single AES takes about 1.2 µs, the trigger from the serial port, which has a latency of about 0.75µs,

is not sufficient. Instead, we need a very fast trigger to capture the AES on the oscilloscope. We researched

about Intel Atom Board [3] in order to find a port that can produce a trigger with fast rising time. Finally,

we came up with the conclusion of using the LPT (Parallel) port. Although LVDS (low voltage differential

23

signal) port and LPC (low pin count) seem promising as they potentially have lower latencies, producing a

trigger at those ports may be difficult due to involving low-level programming such as changing the kernel,

and bios setting.

The oscilloscope probe is connected to the data pin of the LPT port as shown in Figure 2.7. The ground

is still connected to the pin 6 of the serial COM port while the probe is connected to any pin of the LPT

port.

Figure 2.7: Probe at the LPT Port

To write to the data bits of the LPT port, a general procedure is implemented in C. First, the base port

address is defined as below:

#define BASEPORT 0x378 /*lp1*/

Next, we have to set the permission to access the port:

if (ioperm(BASEPORT, 3, 1)) {perror("ioperm"); exit(1);}

Inside the main function, whenever a trigger is needed, we just have to write a sequence of 1 to the chosen

port:

24

outb(255, BASEPORT);

However, since the LPT port doesn’t go back to 0 after a finite time, we have to manually set it off:

outb(0, BASEPORT);

Finally, for our own safety, we have to take away the permission to access the LPT port at the end of main

function in case other codes use the port for different purposes.

if (ioperm(BASEPORT, 3, 0)) {perror("ioperm"); exit(1);}

The trigger produced at this LPT port is shown in Figure 2.8. The oscilloscope is still set with 1µs per

division, and as seen, the slope now is much steeper. The latency is only about 0.05µs, which is acceptable

to use as the trigger when collecting the AES traces.

Figure 2.8: Trigger Produced at LPT port

2.4 Capturing the Traces

In order to successfully capture the interested electromagnetic trace, the scope setup has to be strictly

followed. First step is to set up the trigger signal, which can be in any channel. In this case, we chose channel

3, with a positive edge trigger. Detail options are shown in Figure 2.9.

25

Figure 2.9: Trigger Channel Setup

Next step is to set up the trace signal, which in this case is chosen to be channel 1. The channel is coupling

with AC1MW, and the bandwidth is set to 200 MHz, which is enough to cover the RSA and AES operations.

Figure 2.10: Trace Channel Setup

The final step is to set up the appropriate sampling rate in order to capture the whole operation in a

single trace. For example, for the RSA 1024-bit key, the sampling rate needs to be 200MS/sec. For shorter or

longer key length, the sampling rate would be modified accordingly to accomodate the new RSA operation.

Sine the AES operations are really fast, the sampling rate can be set to the maximum of 20GS/sec. The

location of the coil attena is chosen to minimize the noises inside each trace. Examples of capturing the RSA

and AES traces are shown in Figure 2.11. Finally, press Save to record the wanted traces into binary files,

and to later use them for the MATLAB analysis.

26

Figure 2.11: Oscilloscope sampling setup for RSA (top) and AES (bottom)

27

Chapter 3

Attacking RSA

3.1 General Procedure of Analyzing RSA Electromagnetic Traces

This section explains the standard procedure of collecting, filtering, and processing traces to clear unwanted

noises and other operations of the system.

3.1.1 Collecting the Traces

As stated, we first set a trigger at the serial port, perform a sleep command, run one RSA operation, and

then another sleep command. As the Atom Board executes this procedure over and over again in a loop,

the oscilloscope records the traces based on the intended trigger. For each trace, general information of the

key, the crypto algorithm, the library, and the scope setting are also recorded. An example trace is shown in

Figure 3.1.

• Trace name: sim80_2.5G_2.trc

• RSA Key: 80 bits (FFFF0000FFFF0000FFFF)

• RSA algorithm: Simple multiply-and-square, GMP library

• Sampling frequency: 2.5 GS/sec

28

Figure 3.1: Original RSA Trace with 80 bit exponent (sim80_2.5G_2.trc)

Despite the noises, we can see the RSA operation in the middle of the trace, represented by the region

with higher amplitude. The two regions with lower amplitude are when the board is performing the sleep

commands. However, we cannot see any pattern of multiply and square operations in this raw trace; thus,

filtering techniques are required in order to clear out unexpected factors from this trace.

3.1.2 Filtering Technique

Our SEMA attack on RSA utilizes two filters, and now we will describe the concept behind these filters in

details. Since there are a lot of noises as well as other system operations running during the cryptography

execution, an appropriate band-pass is employed to amplify only the signal inside the range of the interested

operations, i.e. RSA or AES. This would be the first filter applied to the collected traces.

The electromagnetic radiation of the target device could be given as p(t) = P
const

+ p
dyn

(t) where P
const

is the constant part and p
dyn

(t) is the dynamic part caused by internal operations. Usually, the dynamic

portion is much weaker than the constant part. Thus, the possibility of exploiting leakage heavily depends

29

on the quality of the isolation of p
dyn

(t).

Since the amplitude of the signal is modulated as s(t) = p(t) cos(!
r

t) where !
r

is the carrier frequency,

the extraction of p(t) or the weak dynamic portion p
dyn

(t) could be done using amplitude demodulation.

In this project, a very common incoherent technique is employed, which based on rectification, or often

called envelope detection. Here is a quick explanation of the method. Let first denote the frequency domain

representation of the original signal as A(j!) = F {p(t)}. Now the spectrum of the rectified signal could be

computed [11].

F {|s(t)|} = F {p(t) |cos (!
r

t)|} = F

(
p(t)

2

⇡

1X

⌫=�1

(�1)

⌫

1� 4⌫2
ej2⌫!rt

)

F {|s(t)|} =

2

⇡

1X

⌫=�1

(�1)

⌫

1� 4⌫2
F

�
p(t)ej2⌫!rt

=

2

⇡

1X

⌫=�1

(�1)

⌫

1� 4⌫2
A(j! � j2⌫!

r

)

Thus, the rectified signal is essentially similar to the spectrum of p(t), which however is scaled and repeated

at all even multiples of the carrier frequency. Finally, an appropriate band-pass filter at low frequency is

employed to isolate the desire signal p(t) .

3.1.3 Filtering the Traces in MATLAB

The first step is to plot the spectrogram of the electromagnetic trace, as shown in Figure 3.2, in order to find

which frequency range the RSA operations execute at. The spectrogram function is available in the MATLAB

Signal Processing Toolbox, and the detail script of plotting the spectrogram can be found in the Appendix.

Since we add two sleep commands at the beginning and at the end, the RSA operation is expected to stand

out clearly.

30

Figure 3.2: Spectrogram of the original trace (sim80_2.5G_2.trc)

As seen, the x-axis is the time in second, the y-axis is the frequency in Hz, and the color at each point

represents the amplitude of the specific frequency at the specific time. Based on the spectrogram, we can

observe several basic operations of the system, which can be seen as continuous red stripes from the beginning

until the end. In other hand, since our RSA operation is set between two sleep commands, it would stand out

as a single red stripe but be truncated at the two ends. Applying this concept to the current spectrogram,

the RSA operation is the red stripe ranging from 50 MHz to 80 MHz. Moreover, noise can be seen as red

spots appearing randomly in the spectrogram. Therefore, the first bandpass filter is chosen to be from 50

MHz to 80 MHz. This filter will attenuate the undesired noise as well as other operations performed by the

Atom board during the experiment. The trace after the first filter is shown in Figure 3.3.

31

Figure 3.3: Trace after the 1st filter (sim80_2.5G_2.trc)

As expected, the first filter successfully reduces the noise and other operations of the system. The trace

amplitude during RSA operation is much higher than the amplitude during sleep time. Also, the overall

amplitude is more uniform. However, as mentioned in 3.1.2, the weak dynamic portion pdyn(t) has to be

extracted using amplitude demodulation in order to exploit the information leakage. Therefore, the next

step is the envelope detection based on rectification, which removes the carrier frequency from the current

trace. After that, the multiply and square operations can be seen and differentiated much more easily.

Unfortunately, since the carrier frequency is unknown, we first have to take the absolute value of the trace,

which shifts the spectrum center to DC, and then plot the new spectrum in order to obtain some insights

about the carrier frequency. The new spectrum is shown in Figure 3.4.

32

Figure 3.4: Spectrum of the rectified trace (sim80_2.5G_2.trc)

The spectrum of the rectified trace consists of a huge spike at DC and several smaller spikes around; one

of them would be the carrier frequency we are looking for. By trial-and-error, we find out the closest spikes

to DC, near 40 kHz, is the interested one. Thus, a second bandpass filter is set from 20 kHz to 40 kHz in

order to remove the carrier frequency, and the new trace is shown in Figure 3.5.

Figure 3.5: Trace after the 2nd filter (sim80_2.5G_2.trc)

33

3.1.4 Finding the Key

After the envelope detection process, each operation can be visually identified clearly. In this case, the upper

peaks are different for the multiply and square operations, and will become the distinguisher. A longer peak

represents a multiply operation while a shorter one represents a square operation. It is convenient to do the

differentiation procedure automatically in MATLAB. First, we have to cut out the RSA part, perform the

peak detection, and then use clustering method to separate between multiply and square operations. For

visualization purpose, we draw letter M in red representing a multiply, and letter S in green representing a

square near each peak. The processed trace with M and S displayed is shown in Figure 3.6.

Figure 3.6: Automatically distinguish between MUL and SQ

Finally, the sequence multiply and square can be converted to the RSA key of interest. Since this trace

employs the multiply-and-square method, a square followed by of multiply corresponds to a single bit 1, while

a single square corresponds to a single bit 0. Again, a MATLAB script is deployed to automatically convert

the multiply-and-square sequence to a binary key. The script returns the key FFFF0000FFFF0000FFFF in

hexadecimal. Knowing the original key, we can then evaluate the performance of our method based on the

bit error rate, which is computed by XOR-ing the received key with the original one. In this case, the bit

34

error rate is zero; we successfully retrieve the secret key from the collected electromagnetic trace.

3.2 Simple Multiply-and-Square RSA

In this part, we employ the C code that implements a simple multiply-and-square RSA algorithm using the

GMP library. Basically, the board scans the bits of the exponent from the left (MSB) to the right (LSB).

In every iteration, it squares the current result. If and only if the current bit is 1, it multiplies the current

result by the base. The complete C code can be found under the Appendix. Here we use a 1024 bit key, a

standard key length for RSA. Using the trigger from the serial port, we can collect the electromagnetic traces

and then start the analysis. Below is the general information of the trace, and the trace itself is shown in the

top part of Figure 3.7.

• Trace name: sim1024_250M_2.trc

• RSA Key: 1024 bits {FA0BFC0DFE09F807F60543210 (x10)F (x6)}

• RSA algorithm: Simple multiply-and-square, GMP library

• Sampling frequency: 250 MS/sec

Following the general filtering procedure, we first plot the spectrogram of the received electromagnetic

trace to determine the frequency range of RSA algorithm. As usual, the RSA operation stands out clearly

compared to the sleep time, ranging from 50 MHz to 80 MHz. Thus, we use these parameters as the first

bandpass filter for the received trace. The result trace is shown in the middle part of Figure 3.7.

As seen, the trace is now much clearer and more uniform; the amplitude during RSA operation is much

higher than the amplitude during sleep time. Next step is envelope detection, which removes the carrier

frequency from the electromagnetic trace. We have to rectify the trace and then plot the spectrum to find

the frequency of interest. Similarly, the spikes near 40 kHz is the one we are looking for. Thus, the second

bandpass filter is chosen from 20 kHz to 40 kHz, the result trace after this filter is shown in the bottom part

of Figure 3.7.

35

Figure 3.7: Simple RSA 1024 bit traces: Top - Raw trace. Middle - After the 1st filter. Bottom - After the
2nd filter (sim1024_250M_2.trc)

36

The multiply and square operations are now much clearer. In this case, the lower peaks are different for

the multiply and square operations, and will become the distinguisher. A deeper peak represents a multiply

operation while a shorter one represents a square operation. It is convenient to do the differentiation procedure

automatically in MATLAB. First, we have to cut out the RSA part, perform the peak detection, and then

use clustering method to separate between multiply and square operation. The detail MATLAB script can be

found in the Appendix. The peak heights are shown in the scatter plot, Figure 3.8. With clustering method,

the script automatically separates the multiply operations in red and the square operations in blue.

Figure 3.8: Distinguish between MUL (red) and SQ (blue)

Next, the sequence of multiply and square operations can be converted to the RSA key of interest. Since

this trace employs the multiply-and-square method, a square followed by of multiply corresponds to a single

bit 1, while a single square corresponds to a single bit 0. Again, a MATLAB script is deployed to automatically

convert the multiply-and-square sequence to a binary key. Then, the reconstructed key is plotted with red

37

stars together with the original key, which is plotted in blue lines, as shown in Figure 3.9.

Figure 3.9: Reconstructed key vs. Original key(sim256_250M_2.trc)

As seen, the reconstructed key matches with the original one really well. However, we have to make several

small offset adjustments due to the sliding between 0 and 1 since bit 0 corresponds to a single operation while

bit 1 corresponds to two consecutive operations. The bit error rate is pretty small, only about 4%, which

mostly came from the noise and the unexpected behaviors of the board. Performing the attack several times

and calculating the key based on the majority rule can help us to improve the bit error rate.

3.3 Modular Exponentiation (RSA) - GMP Library

In this part, we perform an attack on the RSA algorithm of the GMP library, in particular, the modular

exponentiation function. Instead of the simple multiply-and-square method, this library employs the sliding

window algorithm. Generally, sliding window exponentiation computes the power by looking at a number

of exponent bits at a time, called the window size. Different from the simple method, the sliding window

method requires pre-computation of several values.

First step is to compute x2 from the plain text x. Next, the system consecutively computes x3, x5, up

until x2k�1 where k is the window size. These values will be used for the multiplications in the next part.

Similar to the simple multiply-and-square method, the exponent bits are scanned from left to right. If the

38

bit is 0, the current value is squared. Otherwise, if the bit is 1, the system finds the longest bit-string whose

length is less than or equal to the window size, and the ending-bit is also 1. This bit-string will equal to

one of the pre-computed values from the previous part; and the current value is multiplied directly with this

bit-string. After scanning all the exponent bits, the final exponentiation is returned.

Despite the extra time at the beginning due to the pre-computations, the sliding window exponentiation

is much faster the simple one. Multiplying with a stored bit-string instead of a base only saves a lot of

computation time. The goal of our attack is still to distinguish between multiply and square operations;

however, we might have to make an additional effort to separate between multiplying of different bit-string

values. Otherwise, there would be several unknown bits inside the reconstructed key. For each multiplication,

only the first bit and the last bit in the window is ensured to equal 1, while the middle bits could either be

0 or 1.

3.3.1 Different Key Sizes

As expected, the GMP library employs different window sizes for different RSA key lengths. In this section,

we explore the window size as well as the number of pre-computations as a function of the key length. For

the convenience, the key is chosen to be consisting of just FFFFF and 00000 in order to quickly identify the

window size on the filtered traces. A sequence of consecutive 1’s makes sure the system to always use the

maximum of its window size; and a sequence of consecutive 0’s helps to distinguish the multiply and square

operations. The same two-stage filtering process is applied for all the collected traces in order to remove the

unwanted factors such as noise, other operations, and carrier frequency. After that, we have to look into the

source code to verify our window size result.

3.3.1.1 80-bit key

We start with a 80-bit key RSA, and the general information of the trace is shown below. Similarly, the

two-stage filter is applied and the result trace is shown in Figure 3.10. Since this is a short key, a small

window size and a few number of pre-computations are expected.

39

• Trace name: gmp80_2.5G_1.trc

• RSA Key: 80 bits {FFFF0000FFFF0000FFFF}

• RSA algorithm: Sliding window, GMP library

• Sampling frequency: 2.5 GS/sec

Figure 3.10: 80-bit key RSA filtered trace - GMP library

Based on the sequence of 0’s, we conclude that the lower peaks are the distinguisher between different

operations. A deeper spike represents a square operation while a shorter one represents a multiply operation.

During the sequence of 1’s, we can see three square operations followed by a multiply operation; thus, the

window size is 3. In the beginning of the traces, there are 3 multiply operations, which is unusual since they

never stand next to each other due to the algorithm. However, these are the 3 pre-computations, calculating

x3, x5, up until x7.

40

3.3.1.2 200-bit key

This part deals with a 200-bit key RSA, with the general trace information shown below. Similarly, the

two-stage filter is employed, and the result trace is shown in Figure 3.11. Since this is a longer key than

before, we expect a larger window size and a more number of pre-computations at the beginning.

• Trace name: gmp200_1G_1.trc

• RSA Key: 200 bits {FFFFF00000FFFFF00000...}

• RSA algorithm: Sliding window, GMP library

• Sampling frequency: 1 GS/sec

Figure 3.11: 200-bit key RSA filtered trace - GMP library

Based on the trace structure, we know that the lower peaks are still the distinguisher between different

operations. A deeper spike represents a square operation while a shorter one represents a multiply operation.

However, the differences are not as clear as in the case of 80-bit key. During the sequence of 1’s, we can see

41

four square operations followed by a multiply operation; thus, the window size is 4. In the beginning of the

traces, there are 7 multiply operations, and these are the 7 pre-computations, calculating x3, x5, up until

x15.

3.3.1.3 400-bit key

This part explores a 400-bit key RSA, with the general trace information shown below. Again, the two-stage

filter is used to remove unwanted factors, and the result trace is shown in Figure 3.12. Since this is an even

longer key than before, a larger window size and a more number of pre-computations at the beginning are a

reasonable assumption.

• Trace name: gmp400_1G_1.trc

• RSA Key: 400 bits {FFFFF00000FFFFF00000...}

• RSA algorithm: Sliding window, GMP library

• Sampling frequency: 1 GS/sec

Figure 3.12: 400-bit key RSA filtered trace - GMP library

42

Exploring the trace structure, we conclude that the lower peaks are still the distinguisher between different

operations. However, a deeper spike now represents a multiply operation while a shorter one represents a

square operation. The difference might be resulted from the parameter of the two filters, or from the different

sampling rate of the oscilloscope. Moreover, the differences are as clear as in the case of 80-bit key. During

the sequence of 1’s, we can see five square operations followed by a multiply operation; thus, the window size

is 5. In the beginning of the traces, there are 15 pre-computations, calculating x3, x5, up until x31.

3.3.1.4 1024-bit key

Finally, we look at a 1024-bit key RSA, which is a very common key length, and the general trace information

is shown below. Again, the two-stage filter is used to remove unwanted factors, and the result trace is shown

in Figure 3.13. Since this is a really long key, a large window size and a big number of pre-computations at

the beginning will be our assumption.

Figure 3.13: 1024-bit key RSA filtered trace - GMP library

43

• Trace name: gmp1024_250M_1.trc

• RSA Key: 1024 bits {FFFFF00000FFFFF00000 . . . }

• RSA algorithm: Sliding window, GMP library

• Sampling frequency: 250 MS/sec

Based on the trace structure, we know that the lower peaks are still the distinguisher between different

operations. Similar to the case of 400-bit key, a deeper spike represents a multiply operation while a shorter

one represents a square operation, and the differences are very clear. During the sequence of 1’s, we can see

six square operations followed by a multiply operation; thus, the window size is 6. Moreover, 6 is also the

maximum window size of the modular exponentiation in the GMP library. In the beginning of the traces,

there are 31 pre-computations, calculating x3, x5, up until x63.

3.3.2 Summary

In conclusion, the window size and the number of pre-calculations vary as a function of the key length. The

longer the key, the larger the window size in order to compute the exponentiation efficiently. The library fixes

the maximum window size of 6; thus, for standard RSA keys, either 1024 bits or 2048 bits, the window size

would always be 6. Moreover, for a window size of n, the number of pre-computations required is 2

n�1 � 1.

Table 3.1 shows the measurements we made to verify the window size of the sliding window method.

Table 3.1: Window size and Pre-computations - GMP Library
Key length Window size # Pre-computations

80 3 (verified) 3
200 4 (verified) 7
400 5 (verified) 15
1024 6 (verified) 31

Right now, we successfully distinguish the multiply and square operations in the electromagnetic traces.

In the cases of 80-bit key and 200-bit, the square operation has higher amplitude than the multiply one,

but in the other cases, the multiply operation has higher amplitude than the square one. The difference

44

might be resulted different sampling rate of the oscilloscope. As the key gets longer, the sampling rate is

reduced appropriately to fit the whole RSA key on the oscilloscope screen, which results to the change in the

parameter of the two filters. These modifications affect the amplitude of the multiply and square operations.

However, the sliding window method has different types of multiplications, which results in several un-

known bits in the middle of the window. As the key gets longer, the number of different types of multipli-

cations, which equals the number of pre-calculations, increases. It means that recovering the full key is even

more challenging and time-consuming. We are still in the process of finding a method that can distinguish

the different multiplications in order to uncover all the unknown bits in the reconstructed key.

3.4 Modular Exponentiation (RSA) – OpenSSL library

In this part, we perform an attack on the modular exponentiation algorithm of the OpenSSL library. For-

tunately, the library also employs the sliding window algorithm, similar to the GMP library; thus, we are

able to differentiate the multiply and square operations using the same procedure. In addition, the OpenSSL

library employs Montgomery reduction to deal with modular arithmetic, which can enhance the execution

time significantly. Therefore, we expect to observe the filtered traces with the same strutter as in the GMP

library but with shorter execution time due to the additional improved algorithm.

3.4.1 Different Key Sizes

Similar to the GMP library, the OpenSSL library employs different window sizes for different RSA key lengths.

In this section, we explore the window size as well as the number of pre-computations as a function of the

key length. For the convenience, the key is chosen to be consisting of just FFFFF and 00000 in order to

quickly identify the window size on the filtered traces. A sequence of consecutive 1’s makes sure the system

to always use the maximum of its window size; and a sequence of consecutive 0’s helps to distinguish the

multiply and square operations. The same two-stage filtering process is applied for all the collected traces in

order to remove the unwanted factors such as noise, other operations, and carrier frequency.

45

3.4.1.1 80-bit key

We start with a 80-bit key RSA, and the general information of the trace is shown below. Similarly, the

two-stage filter is applied and the result trace is shown in Figure 3.14. Since this is a short key, a small

window size and a few number of pre-computations are expected.

• Trace name: open80_2.5G.trc

• RSA Key: 80 bits {FFFF0000FFFF0000FFFF}

• RSA algorithm: Sliding window, OpenSSL library

• Sampling frequency: 2.5 GS/sec

Figure 3.14: 80-bit key RSA filtered trace - OpenSSL library

Based on the sequence of 0’s, we conclude that the upper peaks are the distinguisher between different

operations. A higher and wider spike represents a multiply operation while a shorter one represents a square

operation. However, the filtered trace is not as uniform as the trace of GMP library; thus, it is more difficult

46

to identify each operation. During the sequence of 1’s, we can see four square operations followed by a

multiply operation; thus, the window size is 4. In the beginning of the traces, there are 7 high spikes, which

are the 7 pre-computations when calculating x3, x5, up until x15.

3.4.1.2 320-bit key

This part deals with a 320-bit key RSA, with the general trace information shown below. Similarly, the

two-stage filter is employed, and the result trace is shown in Figure 3.15. Since this is a longer key than

before, we expect a larger window size and a more number of pre-computations at the beginning.

• Trace name: open320_2.5G_1.trc

• RSA Key: 320 bits {FFFFF00000FFFFF00000 . . . }

• RSA algorithm: Sliding window, OpenSSL library

• Sampling frequency: 1 GS/sec

Figure 3.15: 320-bit key RSA filtered trace - OpenSSL library

47

Based on the trace structure, we know that the upper peaks are still the distinguisher between different

operations. A shorter spike represents a square operation while a higher and wider one represents a multiply

operation. However, the differences are clearer than in the case of 80-bit key. During the sequence of 1’s, we

can see five square operations followed by a multiply operation; thus, the window size is 5. In the beginning

of the traces, there are 15 multiply operations, and these are the 15 pre-computations, calculating x3, x5, up

until x31.

3.4.1.3 1024-bit key

Finally, we look at a 1024-bit key RSA, which is a very common key length, and the general trace information

is shown below. Again, the two-stage filter is used to remove unwanted factors, and the result trace is shown

in Figure 3.16. Since this is a really long key, a large window size and a big number of pre-computations at

the beginning will be our assumption.

Figure 3.16: 1024-bit key RSA filtered trace - OpenSSL library

48

• Trace name: open1024_250M.trc

• RSA Key: 1024 bits {FFFFF00000FFFFF00000 . . . }

• RSA algorithm: Sliding window, OpenSSL library

• Sampling frequency: 250 MS/sec

Based on the trace structure, we know that the upper peaks are still the distinguisher between different

operations. Similar to the case of 320-bit key, a shorter spike represents a square operation while a higher

and wider one represents a multiply operation, and the differences are very clear. During the sequence of 1’s,

we can see six square operations followed by a multiply operation; thus, the window size is 6. Moreover, 6 is

also the maximum window size of the modular exponentiation in the OpenSSL library. In the beginning of

the traces, there are 31 pre-computations, calculating x3, x5, up until x63.

3.4.2 Summary

In conclusion, the window size and the number of pre-calculations vary as a function of the key length. The

longer the key, the larger the window size in order to compute the exponentiation efficiently. The library fixes

the maximum window size of 6; thus, for standard RSA keys, either 1024 bits or 2048 bits, the window size

would always be 6. Moreover, for a window size of n, the number of pre-computations required is 2

n�1 � 1.

Table 3.2 shows the measurements we made to verify the window size.

Table 3.2: Window size and Pre-computations - OpenSSL Library
Key Length Window size # Pre-computations

80 4 (verified) 7
320 5 (verified) 15
1024 6 (verified) 31

Right now, we successfully distinguish the multiply and square operations in the electromagnetic traces.

However, we are facing the same problem as in using GMP library. Different types of multiplications result

in several unknown bits in the middle of the window, which makes the process of recovering the full key to be

difficult and time-consuming. Our goal is to find a method that can distinguish the different multiplications

49

in order to uncover all the unknown bits in the reconstructed key.

3.5 Comparing RSA Methods

We have introduced and performed attacks on three different implementations of RSA algorithm, from really

simple to more complex. First method is the simple multiply-and-square algorithm using the GMP library.

It scans the exponent bit from left to right and carries out the multiply and square operations accordingly.

This method is faster than the brute-force exponentiation but still really slow. The second method, sliding

window algorithm of the GMP library, is more efficient. It still scans the exponent bit from left to right,

and squares the value if the current bit is 0. However, when the current bit is 1, the system multiplies the

value with a pre-computed values. The second method is quite an improvement, about one and a half time

faster than the first method. The OpenSSL library also employs the sliding window algorithm but with

an additional Montgomery reduction to handle modular arithmetic. Thus, the third method is much more

efficient than the other two, approximately doubling the speed of the second method. Table 3.3 summarizes

the average execution time of three RSA methods performing on the same 1024-bit RSA key.

Table 3.3: Comparing RSA execution time for 1024-bit key
RSA method Average execution time

Simple multiply-and-square 32 ms
Modular Exponentiation (GMP) 22 ms

Modular Exponentiation(OpenSSL) 12 ms

50

Chapter 4

Attacking AES

4.1 Collecting the AES traces

The complete C code to generate AES operations can be found in the Appendix. As stated in 2.3.2, we have

to use LPT port as a trigger source in collecting AES electromagnetic traces due to the fast operation of

AES encryption. We first set the LPTs port to high, which indicates the start of the trigger.

outb(255, BASEPORT);

Then, two AES encryptions are performed with the same plaintext. With this method, it would be easier to

recognize the AES structure inside the collected traces.

AES_encrypt(out, temp, &ke);

AES_encrypt(out, out, &ke);

After these encryptions, we signal the end of the trigger by setting LPT port to low, ready for the next

trigger.

outb(0, BASEPORT);

The system is then start a counter, which is necessary to allow enough delay for the oscilloscope between two

successive triggers.

51

for (j=0; j<1048576; j++);

Next, we employ a while loop to automatically generate a thousand AES traces on the scope. The previous

ciphertext will become plaintext for the next AES operation. Besides, we incorporate print functions to

record the plaintext and ciphertext pair of each trace that we collect in a separate text file, which will be

useful for the Differential Electromagnetic Analysis later. The electromagnetic traces are saved in the binary

file format, with the general information recorded. Figure 4.1 shows a sample AES trace file captured.

• Trace names: from aes_000.trc to aes_999.trc

• AES Key: 128 bits (010000...000001)

• AES algorithm: OpenSSL library

• Sampling frequency: 20 GS/sec

Figure 4.1: A sample AES trace

52

4.2 Filtering the AES traces

Before performing the DEMA attack, we have to filter them in order to clear out unwanted noises and

other operations of the system. The complete MATLAB script for the filtering process can be found in the

Appendix. In the raw traces, we can observe significant noise spikes. However, we can see a distinguishable

pattern between samples of around 2E4 and 8E4, which we assume to be the region of two AES encryptions.

Figure 4.2 shows the processed raw trace after the extraction of the estimated AES region.

Figure 4.2: Extracted AES region from the raw trace

The trace is now much clearer with the AES operation standing out in the middle. However, there are

still a lot of noise spikes in all over the trace. The next step is to plot the spectrum of the electromagnetic

trace, as shown in Figure 4.3, in order to find which frequency range the AES operations execute at. Then

a bandpass filter can be applied to minimize the noise component and other operations in the trace.

53

Figure 4.3: Frequency Spectrum Plot of Raw AES

As seen, there are two very high and narrow spikes in 100 MHz and 170 MHz, which represent the

other system operations. There are also many frequency spikes resulting from noises. The AES spectrum is

estimated to be between 50MHz and 85MHz, represented by a medium clustering spike. These parameters

then become the frequency range for our bandpass filter. Figure 4.4 shows the AES trace after applying this

filter.

Figure 4.4: Filtered AES

54

As expected, the filter successfully reduces the noise and other operations of the system. The trace

amplitude during RSA operation is much higher than the amplitude during counter time. Since we run

two AES encryptions with each trigger, we expect the two similar structures separated by a significant spike

between the two AES operations. Thus, the second AES operation is extracted in order to perform the DEMA

attack. The process is accomplished using MATLAB peak detection function. Since the AES operations is

started and ended with very high peaks, the index of the last peak will be used as a termination point to cut

the second AES. For uniform purpose between the AES traces, the 15,000 samples before the last peak are

extracted to represent the second AES operation, and the new extracted traces are downsampled by a factor

of 16. Figure 4.5 shows the final traces, which has only around 1000 samples.

Figure 4.5: Extracted AES Operation

The same process is repeated for all 1000 traces in MATLAB, and nine different AES operations are

chosen to show in Figure 4.6. As seen, the same structure can be seen in any AES operation, though the

peak locations and heights vary from trace to trace. We managed to make a decent alignment for all collected

traces, and hope to be able to perform a DEMA attack on these traces. Finally, the trace data is saved as

text files, as shown in Figure 4.7. Each text file contains two columns. The first column is the index, and

the second column is the corresponding amplitude of the trace.

55

Figure 4.6: Nine different AES operations

Figure 4.7: Downsampled AES written into Text Files

56

4.3 Differential Electromagnetic Analysis on the AES Traces

The complete MATLAB script for the DEMA attack can be found in the Appendix. First, an intermediate

result of the executed algorithm is chosen for the attack. It has to be a function of d (plaintext or ciphertext)

and k (a small part of the key). In this case, we chose the intermediate value y after the first S-box:

y = f(x, k) = Sbox(x� k).

Figure 4.8: Intermediate value y after the first S-box

Here we have D = 20,000 different data blocks are fed to the device for encryption, and the corresponding

electromagnetic traces are recorded. The input data blocks are denoted as a vector d = {d1, d2 . . . dD}. The

electromagnetic trace for each data block is represented as a vector t
i

= {t
i1, ti2 . . . tiT }, which is stored in

each binary trace file. Then, a matrix T of dimension D by T is constructed by stacking the recorded AES

traces.

T =

2

66664

t1
...

t
D

3

77775
=

2

66664

t11 · · · t1T
...

. . .
...

t
D1 · · · t

DT

3

77775

All AES traces are plotted together, as shown in Figure 4.9.

57

Figure 4.9: All electromagnetic traces

Next, hypothetical intermediate values are calculated for every possible key. The key hypotheses are

represented as a vector k = {k1, k2 . . . kK}. Then, the data vector d and key vector k are used to compute

intermediate values to get the matrix V = [v
ij

], where v
ij

= f(d
i

, k
j

) = Sbox(d
i

� k
j

).

V =

2

66664

v11 · · · v1T
...

. . .
...

v
D1 · · · v

DT

3

77775

After that, the intermediate values in matrix V are mapped to the electromagnetic radiation values,

resulting in a new matrix H of hypothetical electromagnetic radiation values. Most common methods for

doing so are Hamming Weight model, Hamming Distance model and Zero Value model. In this case, we first

apply the Hamming Weight model leading to H = HW(V). Finally, hypothetical power consumption values

in matrix H are compared with the actual power traces. The correlation coefficient between each column hi

of matrix H and each column tj of matrix T are calculated and stored in a new K×T correlation coefficient

58

matrix R, with r
ij

= corr(h
i

, t
j

) .

R =

2

66664

r11 · · · r1T
...

. . .
...

r
D1 · · · r

DT

3

77775

Correlation coefficient values for all 256 possible keys are plotted as shown in Figure 4.10.

Figure 4.10: Correlation values for 256 possible keys

Unfortunately, we cannot find any leakage from the collected traces; thus, the secret key cannot be

identified. After that, we have tried several approaches to improve our differential attack such as increasing

the number of traces to 50,000, or cutting out the first AES operation instead of the second one. Different

models like Hamming distance, or a single bit are employed but with no success.

59

4.4 Summary

We believe that the issues regarding AES analysis are alignment of the AES encryptions in different traces,

and the inaccuracy of the trigger from the Atom Board. To successfully retrieve the correct AES key, the

AES encryptions in electromagnetic traces need to be perfectly aligned. Currently, we use peak detection to

align the AES encryptions. Since the peaks themselves are precarious, we might need to find a more reliable

way to correctly align the encryptions. Another problem is the inaccuracy of the trigger. In this project,

we collected thousands of AES traces automatically using the trigger. In C code implementation of the AES

encryptions, a trigger is produced for each encryption. The oscilloscope is set to collect an electromagnetic

trace at each trigger. We believe that wrong trigger events are caused by noise. These additional triggers

cause a mismatch between the trace and the coresponding input (plaintext). Such a mismatch can render

all subsequent traces useless and thereby hinder a successfull attack. An improved measurement setup could

solve this problem. Nevertheless, we have successfully identified a way to uncover the AES leakage in the

EM trace. Follow-up work should be able to exploit this leakage.

60

Chapter 5

Conclusion

5.1 Summary

In this project, we performed side-channel attacks on an Intel Atom Processor for RSA crypto scheme by

exploiting electromagnetic radiation leakage. The attacks were performed under three implementations:

simple multiply-and-square algorithm, exponentiation function in GMP library, and exponentiation function

in OpenSSL library.

For simple multiply-and-square algorithm, we use a 1024-bit key, which is a standard RSA key length.

The key for simple multiply-and-square algorithm was recovered successfully. However, there is a small error

percentage of about 4% due to signal interferences, and we expect to diminish or even eliminate this error

by performing the same attack several times.

In addition to simple multiply-and-square algorithm, we performed attack on RSA using modular expo-

nentiation function in GMP library. The modular exponentiation function deploys sliding window algorithm,

which performs pre-computations in accordance to the window size, or the number of exponent bits. We

discovered that the number of pre-computations varies with key length. We have tabulated the number

of pre-computations performed for different key lengths. Although multiply and square operations can be

distinguished easily, different number of pre-computations for different key length suggests that recovering

the full key is challenging and requires an additional key reconstruction method that is outside of the scope

61

of this project.

Like GMP library, OpenSSL modular exponentiation function makes use of the sliding window algorithm.

In addition to the sliding window algorithm, OpenSSL library uses Montgomery Reduction algorithm, which

makes it more efficient than GMP library. As in our attack on GMP library, we can recover the squares and

multiplies which can be used for a key recovery attack. However, some entropy of the key remains, since our

attack can not distinguish precomputed values during the multiplications.

Side-channel analysis on AES algorithm proves to be much more complex, and requires more commitment

than the analysis on RSA. Unlike RSA that requires a few electromagnetic traces to perform attack, AES

algorithm demands consideration of thousands of traces. Although the chance of recovering the key rises

with larger the number of traces considered, due to limited time and resources, we only managed to perform

an attack on 20,000 traces. In addition to the large number of traces required, successful AES attack needs a

proper alignment of AES operations among traces. We implemented alignment by the same filter technique

used in RSA attack and peak detection. However, we have not yet achieved a successful side-channel attack

on AES.

Overall, our project is a success as we can recover a standard 1024-bit RSA key for simple multiply

and square algorithm with very little error percentage. Besides, we have promising results with modular

exponentiation functions of GMP and OpenSSL cryptographic libraries. Although a full key recovery is not

possible so far for these implementations, we can recover parts of the key and analyze pre-computations. For

the AES implementation under OpenSSL library, a full key recovery is not possible at the current stage due

to the limited time frame available. However, we can successfully capture AES traces on the oscilloscope

and correctly identity the regions of AES encryptions. Therefore, even high-end embedded platforms are

vulnerable to side-channel attacks like EM attacks, and open source implementation are not protected.

5.2 Future Work

The next steps of this project would be to distinguish the different pre-computations for RSA analysis, and

to resolve the alignment issue in AES analysis. Currently, only parts of the key can be recovered for modular

exponentiation of GMP and OpenSSL libraries. To distinguish among the different pre-computations in

62

electromagnetic traces will require more in-depth research and commitment. The next step regarding side-

channel analysis on AES would be to connect the oscilloscope with the network, and set up the oscilloscope

so that it properly captures each AES encryption trace while recording the corresponding plaintext and

ciphertext pair. This would require proficient manipulation of the oscilloscope using low-level scripts.

5.3 Contribution

Since we could successfully recover a standard 1024-bit RSA key for simple multiply and square algorithm,

the major conclusion from our project is that even high-end embedded systems like Intel Atom Processor

are vulnerable to side channel attacks. This suggests that there is potential threat in the security of current

embedded systems. The results from our project suggest that more extensive improvements are in need

for securing future embedded devices against side-channel attacks. Possible areas of research to eliminate

electromagnetic radiation leakage might include interfering the leakage signals.

63

Bibliography

[1] Amoth, Dough. “Intel details next-generation ’Pine Trail’ Atom platform, intros updated ’Moblin’ UI |

TechCrunch.” TechCrunch. N.p., n.d. Web. 31 Mar. 2013.

http://techcrunch.com/2009/05/19/intel-details-next-generation-pine-trail-atom-platform-intros-

updated-moblin-ui/

[2] Cangelsolo, San. “Intel Silverthorne, Diamondville to hit the streets as Atom | Chips | Geek.com.”

Geek.com. N.p., n.d. Web. 31 Mar. 2013.

http://www.geek.com/articles/chips/intel-silverthorne-diamondville-to-hit-the-streets-as-atom-

2008033/

[3] Intel® Atom™ Processor N400 and N500 Series: Datasheet.

http://www.intel.com/content/www/us/en/processors/atom/atom-n400-n500-vol-1-datasheet.html

[4] John Demme, Robert Martin, Adam Waksman, and Simha Sethumadhavan. 2012. Side-channel vulner-

ability factor: a metric for measuring information leakage. In Proceedings of the 39th Annual Interna-

tional Symposium on Computer Architecture (ISCA ’12). IEEE Computer Society, Washington, DC,

USA, 106-117.

[5] P. Kocher, J. Jaffe, B. Jun, P. Rohatgi: Introduction to differential power analysis. Journal of Crypto-

graphic Engineering (JCEN), Vol. 1, No. 1, Springer, 2011.

[6] LeCroy WavePro 725Zi Oscilloscope

http://teledynelecroy.com/oscilloscope/oscilloscopemodel.aspx?modelid=4717

64

[7] Mangard, Stefan, Elisabeth Oswald, and Thomas Popp. Power analysis attacks revealing the secrets of

smart cards. New York, N.Y.: Springer, 2007. Print.

[8] Mini-Circuits ZFL-1000LN+ Low Noise Amplifier Datasheet

http://www.minicircuits.com/pdfs/ZFL-1000LN+.pdf

[9] OpenSSL library.

http://www.OpenSSL.org

[10] Paar, Christof, and Jan Pelzl. Understanding cryptography a textbook for students and practitioners.

Berlin: Springer, 2009. Print.

[11] Oswald, David, and Christof Paar. “Breaking Mifare DESFire MF3ICD40: Power Analysis and Tem-

plates in the Real World.” Cryptographic hardware and embedded systems–CHES 2011 13th international

workshop, Nara, Japan, September 28-October 1, 2011 : proceedings. Heidelberg: Springer, 2011.

[12] Public Key Cryptography Standard #1

http://www.rsa.com/rsalabs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf

[13] The GNU Multiple Precision Arithmetic Library.

http://gmplib.org

65

Appendix A

C Code and MATLAB Code

A.1 C Code

A.1.1 RSA simple multiply-and-square

1 #include " s t d i o . h"
2 #include "gmp . h"
3 #include <sys / timeb . h>
4 #include <sys / i o . h>
5 #include <unis td . h>
6 #include <termios . h>
7 #include <f c n t l . h>
8 #include <time . h>
9 int main ()

10 {
11 /∗ IO t e s t rou t ine ∗/
12 p r i n t f ("Test�IO\n") ;
13 int fd ;
14 // ge t permiss ion to acces s COM1 por t
15 fd = open ("/dev/ ttyS0 " , O_RDWR|O_NOCTTY|O_NDELAY) ;
16 i f (fd == �1) {
17 p r i n t f (" i o � e r r o r \n") ;
18 }
19 else {
20 f c n t l (fd ,F_SETFL, 0) ;
21 }
22 int r ;
23 char t p s t r [1 0] ;
24 t p s t r [0]=0 x00 ;
25 // t e s t wr i t e to COM1 por t

66

26 r = wr i t e (fd , tps t r , 1) ;
27 i f (r < 0) p r i n t f (" f a i l � to � wr i t e \n") ;
28 /∗ End o f IO t e s t rou t ine ∗/
29 /∗ prepare s l e e p time ∗/
30 t imespec s l e ep t ime ;
31 s l e ep t ime . tv_sec = (time_t) 0 ;
32 s l e ep t ime . tv_nsec = 1000000;
33 /∗ de c l a r e and i n i t i a l i z e v a r i a b l e s r e qu i r ed f o r RSA ∗/
34 mpz_t a , b , c , d ;
35 mpz_init (a) ;
36 mpz_init (b) ;
37 mpz_init (c) ;
38 mpz_init (d) ;
39 /∗ Prepare Pseudo�Random Number Generator ∗/
40 gmp_randstate_t rnd ;
41 gmp_randinit_default (rnd) ;
42 unsigned int seed ;
43 seed = 10000;
44 gmp_randseed_ui (rnd , seed) ;
45 /∗ s e t a , b and c ∗/
46 mpz_urandomb(a , rnd , 2048) ;
47 mpz_urandomb(c , rnd , 2048) ;
48 mpz_nextprime (c , c) ;
49 mpz_set_str (b , " f f f f f f f f f f a a a a a a a a a a 0 0 0 0 0 0 0 0 0 0 bbbbbbbbbb f f f f f f f f f f c c c c c c c c c c
50 �������� 0000000000 dddddddddd f f f f f f f f f f e e e e e e e e e e 0 0 0 0 0 0 0 0 0 0 9 9 9 9 9 9 9 9 9 9 f f f f f f f f f f
51 �������� 888888888800000000007777777777 f f f f f f f f f f 6 6 6666666600000000005555555555
52 �������� 44444444443333333333222222222211111111110000000000 f f f f f f " , 1 6) ;
53 s i ze_t b i t s = mpz_sizeinbase (b , 2) ;
54 /∗ RSA exponen t i a t i on and modular reduc t ion ∗/
55 //d = a^b mod c
56 while (1)
57 {
58 int i = 0 ;
59 mpz_set_ui (d , 1) ;
60 wr i t e (fd , tps t r , 1) ; // send t r i g g e r to COM1
61 nanos leep(&s leept ime ,NULL) ; // de lay
62 mpz_mul(d , d , a) ;
63 mpz_mod(d , d , c) ;
64 for (i = b i t s �1; i >= 0 ; i��) {
65 mpz_mul(d , d , d) ;
66 mpz_mod(d , d , c) ;
67 i f (mpz_tstbit (b , i) == 1) {
68 mpz_mul(d , d , a) ;
69 mpz_mod(d , d , c) ;
70 }
71 }
72 nanos leep(&s leept ime ,NULL) ; // de lay
73 }
74 return 0 ;
75 }

67

A.1.2 RSA modular exponentiation (GMP library)

1 #include <s td i o . h>
2 #include "gmp . h"
3 #include <as s e r t . h>
4 #include <sys / i o . h>
5 #include <unis td . h>
6 #include <termios . h>
7 #include <f c n t l . h>
8 #include " s t d l i b . h"
9 #include <sys / timeb . h>

10 #include <time . h>
11 int main ()
12 {
13 /∗ IO t e s t rou t ine ∗/
14 p r i n t f ("Test�IO\n") ;
15 int fd ;
16 // ge t permiss ion to acces s COM1 por t
17 fd = open ("/dev/ ttyS0 " , O_RDWR|O_NOCTTY|O_NDELAY) ;
18 i f (fd == �1)
19 p r i n t f ("IO� e r r o r \n") ;
20 else

21 f c n t l (fd ,F_SETFL, 0) ;
22 int r ;
23 char t p s t r [1 0] ;
24 t p s t r [0] = 0x00 ;
25 // t e s t wr i t e to COM1 por t
26 r = wr i t e (fd , tps t r , 1) ;
27 i f (r <0) p r i n t f (" f a i l � to � wr i t e \n") ;
28 /∗ End o f IO t e s t rou t ine ∗/
29 /∗ prepare s l e e p time ∗/
30 t imespec s l e ep t ime ;
31 s l e ep t ime . tv_sec = (time_t) 0 ;
32 s l e ep t ime . tv_nsec = 500000;
33 /∗ de c l a r e and i n i t i a l i z e v a r i a b l e s r e qu i r ed f o r RSA ∗/
34 mpz_t r e su l t , b , e , m;
35 mpz_init (r e s u l t) ;
36 mpz_init (b) ;
37 mpz_init (e) ;
38 mpz_init (m) ;
39 /∗ Prepare Pseudo�Random Number Generator ∗/
40 gmp_randstate_t rnd ;
41 gmp_randinit_default (rnd) ;
42 unsigned int seed ;
43 seed = 10000;
44 gmp_randseed_ui (rnd , seed) ;
45 /∗ s e t modulus , base and exponent ∗/
46 mpz_urandomb(m, rnd , 2048) ;
47 mpz_nextprime (m, m) ;
48 mpz_urandomb(b , rnd , 2048) ;
49 mpz_set_str (e , " f f f f f f f f f f 0 0 0 0 0 0 0 0 0 0 f f f f f f f f f f 0 0 0 0 0 0 0 0 0 0 f f f f f f f f f f 0 0 0 0 0 0 0 0 0 0
50 �������� f f f f f f f f f f 0 0 0 0 0 0 0 0 0 0 f f f f f f f f f f 0 0 0 0 0 0 0 0 0 0 f f f f f f f f f f 0 0 0 0 0 0 0 0 0 0 f f f f f f f f f f
51 �������� 0000000000 f f f f f f f f f f 0 0 0 0 0 0 0 0 0 0 f f f f f f f f f f 0 0 0 0 0 0 0 0 0 0 f f f f f f f f f f 0 0 0 0 0 0 0 0 0 0

68

52 �������� f f f f f f f f f f 0 0 0 0 0 0 0 0 0 0 f f f f f f f f f f 0 0 0 0 0 0 0 0 0 0 f f f f f f f f f f 0 0 0 0 0 0 " , 1 6) ;
53 while (1){
54 wr i t e (fd , tps t r , 1) ; // send t r i g g e r to COM1
55 nanos leep(&s leept ime ,NULL) ; // de lay
56 /∗ RSA modular exponen t i a t i on ∗/
57 /∗ r e s u l t = b^e mod m
58 mpz_powm (r e s u l t , b , e , m) ;
59 nanos leep(&s l eep t ime ,NULL) ; // de lay
60 }
61 re turn 0 ;
62 }

A.1.3 RSA modular exponentiation (GMP library)

1 #include <s td i o . h>
2 #include <opens s l /bn . h>
3 #include <as s e r t . h>
4 #include <sys / i o . h>
5 #include <unis td . h>
6 #include <termios . h>
7 #include <f c n t l . h>
8 #include " s t d l i b . h"
9 #include <sys / timeb . h>

10 #include <time . h>
11 int main () {
12 /∗ IO Test ∗/
13 p r i n t f ("Test�IO\n") ;
14 int fd ;
15 // ge t permiss ion to acces s COM1 por t
16 fd = open ("/dev/ ttyS0 " , O_RDWR|O_NOCTTY|O_NDELAY) ;
17 i f (fd == �1)
18 p r i n t f ("IO� e r r o r \n") ;
19 else

20 f c n t l (fd ,F_SETFL, 0) ;
21 int r ;
22 char t p s t r [1 0] ;
23 t p s t r [0] = 0x00 ;
24 // t e s t wr i t e to COM1 por t
25 r = wr i t e (fd , tps t r , 1) ;
26 i f (r <0) p r i n t f (" f a i l � to � wr i t e \n") ;
27 /∗ End o f IO Test ∗/
28 /∗ prepare s l e e p time ∗/
29 t imespec s l e ep t ime ;
30 s l e ep t ime . tv_sec = (time_t) 0 ;
31 s l e ep t ime . tv_nsec = 500000;
32 /∗ RSA par t s t a r t s here ∗/
33 const char base_hex [] = "FFFF1111222233334444555566667777888899990000AAAABBBB
34 ��������CCCCDDDDEEEE" ;
35 /∗
36 cons t char exp_hex [] = "FFFFF00000FFFFF00000" ;
37 ∗/

69

38 /∗
39 cons t char exp_hex [] = "FFFFF00000FFFFF00000FFFFF00000FFFFF00000FFFFF00000
40 FFFFF00000FFFFF00000FFFFF00000" ;
41 ∗/
42 const char exp_hex [] = "FFFFF00000FFFFF00000FFFFF00000FFFFF00000FFFFF00000
43 ��������FFFFF00000FFFFF00000FFFFF00000FFFFF00000FFFFF00000FFFFF00000FFFFF00000FFFFF
44 �������� 00000FFFFF00000FFFFF00000FFFFF00000FFFFF00000FFFFF00000FFFFF00000FFFFF00000
45 ��������FFFFF00000FFFFF00000FFFFF00000FFFFF00000FFFFF00000FFFFF0" ;
46 const char mod_hex [] = "FFFF00005555AAAAFFFF00005555AAAAFFFF00005555AAAAFFFF
47 �������� 00005555AAAAFFFF00005555AAAAFFFF00005555AAAAFFFF00005555AAAAFFFF00005555AAAA
48 ��������FFFF00005555AAAAFFFF00005555AAAAFFFF00005555AAAAFFFF00005555AAAAFFFF00005555
49 ��������AAAAFFFF00005555AAAAFFFF00005555AAAAFFFF00005555AAAB" ;
50 BIGNUM ∗ r e su l t , ∗base , ∗exp , ∗mod ;
51 r e s u l t = BN_new() ;
52 base = BN_new() ;
53 exp = BN_new() ;
54 mod = BN_new() ;
55 BN_hex2bn(&base , base_hex) ;
56 BN_hex2bn(&exp , exp_hex) ;
57 BN_hex2bn(&mod, mod_hex) ;
58 BN_CTX ∗ ctx ;
59 ctx = BN_CTX_new() ;
60 p r i n t f ("Running�modular� exponent ia t i on \n") ;
61 while (1){
62 wr i t e (fd , tps t r , 1) ; // send t r i g g e r to COM1
63 nanos leep(&s leept ime ,NULL) ; // de lay
64 //RSA modular exponen t i a t i on
65 BN_mod_exp(r e su l t , base , exp , mod , ctx) ;
66 nanos leep(&s leept ime ,NULL) ; // de lay
67 }
68 return 0 ;
69 }

A.1.4 AES 1-in-1

1 #include <opens s l / aes . h>
2 #include <sys / timeb . h>
3 #include <termios . h>
4 #include <time . h>
5 #include <s td i o . h>
6 #include <s t d l i b . h>
7 #include <unis td . h>
8 #include <sys / i o . h>
9 #include <sys / types . h>

10 #include <f c n t l . h>
11 #define BASEPORT 0x378 /∗ LPT1 ∗/
12 void pr in tdata (unsigned char∗ ptr , int number) ;
13 // g l o b a l v a r i a b l e s
14 FILE ∗ f i l e ;
15 int main ()
16 {

70

17 int i , tem ;
18 unsigned int j ;
19 /∗ s e t permiss ions to acces s LPT1 ∗/
20 i f (ioperm (BASEPORT, 3 , 1)) { pe r ro r (" ioperm") ; e x i t (1) ; }
21 /∗ prepare a t e x t f i l e to record p l a i n t e x t & c i p h e r t e x t pa i r s ∗/
22 f i l e = fopen (" f i l e . txt " , "w") ;
23 f p r i n t f (f i l e , " P la in t ex t �&� Ciphertext � Pai r s � f o r �AES�Encryption \n") ;
24 /∗ AES par t s t a r t s here ∗/
25 unsigned char key [] = {0x00 , 0x00 , 0 x f f , 0 x f f , 0x55 , 0x55 , 0xaa , 0xaa , 0x00 ,
26 0x00 , 0 x f f , 0 x f f , 0x55 , 0x55 , 0xaa , 0xaa } ;
27 unsigned char in [] = {0x05 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
28 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x01 } ;
29 unsigned char out [2 0] ;
30 unsigned char temp [2 0] ;
31 AES_KEY ke ;
32 AES_set_encrypt_key (key ,128 ,& ke) ;
33 p r i n t f (" running �AES\n") ;
34 AES_encrypt (in , out , &ke) ;
35 for (i =0; i< 5000 ; i++) {
36 pr in tdata (out , i +1); // p r i n t p l a i n t e x t
37 outb (255 , BASEPORT) ; // s e t LPT1 por t to h igh (s t a r t o f t r i g g e r)
38 /∗ do 2 AES encryp t i ons wi th the same p l a i n t e x t ∗/
39 AES_encrypt (out , temp , &ke) ;
40 AES_encrypt (out , out , &ke) ;
41 outb (0 , BASEPORT) ; // s e t LPT1 por t to low (end o f t r i g g e r)
42 pr in tdata (out , i +1); // p r i n t c i p h e r t e x t
43 for (j =0; j <1048576; j ++); // de lay
44 }
45 f c l o s e (f i l e) ;
46 // take away permiss ions to acces s LPT1
47 i f (ioperm (BASEPORT, 3 , 0)) { pe r ro r (" ioperm") ; e x i t (1) ; }
48 p r i n t f ("end\n") ;
49 return 0 ;
50 }
51 void pr in tdata (unsigned char∗ ptr , int number) {
52 int i ;
53 f p r i n t f (f i l e , "%4d . �0x" , number) ;
54 for (i =0; i <16; i++) {
55 f p r i n t f (f i l e , "%x" , (∗ ptr)>>4);
56 f p r i n t f (f i l e , "%x" , (∗ ptr)&0x0f) ;
57 ptr++;
58 }
59 f p r i n t f (f i l e , "\n") ;
60 }

A.1.5 AES 100-in-1

1 #include <opens s l / aes . h>
2 #include <sys / timeb . h>
3 #include <termios . h>
4 #include <time . h>

71

5 #include <s td i o . h>
6 #include <s t d l i b . h>
7 #include <unis td . h>
8 #include <sys / i o . h>
9 #include <sys / types . h>

10 #include <f c n t l . h>
11 #define BASEPORT 0x378 /∗ LPT1 ∗/
12 void pr in tdata (unsigned char∗ ptr , int number) ;
13 // g l o b a l v a r i a b l e s
14 FILE ∗ f i l e ;
15 int main ()
16 {
17 int i , k , l , number , temp ;
18 unsigned int j ;
19 number = 1 ;
20 /∗ s e t permiss ions to acces s LPT1 ∗/
21 i f (ioperm (BASEPORT, 3 , 1)) { pe r ro r (" ioperm") ; e x i t (1) ; }
22 /∗ prepare a t e x t f i l e to record p l a i n t e x t & c i p h e r t e x t pa i r s ∗/
23 f i l e = fopen (" f i l e . txt " , "w") ;
24 f p r i n t f (f i l e , " P la in t ex t �&� Ciphertext � Pai r s � f o r �AES�Encryption \n") ;
25 /∗ AES par t s t a r t s here ∗/
26 unsigned char key [] = {0x00 , 0x00 , 0 x f f , 0 x f f , 0x55 , 0x55 , 0xaa , 0xaa , 0x00 ,
27 0x00 , 0 x f f , 0 x f f , 0x55 , 0x55 , 0xaa , 0xaa } ;
28 unsigned char in [] = {0x01 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 ,
29 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x00 , 0x01 } ;
30 unsigned char out [2 0] ;
31 unsigned char temp [2 0] ;
32 AES_KEY ke ;
33 AES_set_encrypt_key (key ,128 ,& ke) ;
34 p r i n t f (" running �AES\n") ;
35 AES_encrypt (in , out , &ke) ;
36 for (i =0; i< 500 ; i++) {
37 for (k=0; k<100; k++) {
38 pr in tdata (out , number) ; // p r i n t p l a i n t e x t
39 outb (255 , BASEPORT) ; // s e t LPT1 por t to h igh (s t a r t t r i g g e r)
40 /∗ do 2 AES encryp t i ons wi th the same p l a i n t e x t ∗/
41 AES_encrypt (out , temp , &ke) ;
42 AES_encrypt (out , out , &ke) ;
43 outb (0 , BASEPORT) ; // s e t LPT1 por t to low (end o f t r i g g e r)
44 pr in tdata (out , number) ; // p r i n t c i p h e r t e x t
45 number++;
46 for (l =0; l <4000; l ++); // de lay
47 }
48 for (j =0; j <1048576; j ++); // de lay
49 }
50 f c l o s e (f i l e) ;
51 // take away permiss ions to acces s LPT1
52 i f (ioperm (BASEPORT, 3 , 0)) { pe r ro r (" ioperm") ; e x i t (1) ; }
53 p r i n t f ("end\n") ;
54 return 0 ;
55 }
56 void pr in tdata (unsigned char∗ ptr , int number) {
57 int i ;

72

58 f p r i n t f (f i l e , "%5d . �0x" , number) ;
59 for (i =0; i <16; i++) {
60 f p r i n t f (f i l e , "%x" , (∗ ptr)>>4);
61 f p r i n t f (f i l e , "%x" , (∗ ptr)&0x0f) ;
62 ptr++;
63 }
64 f p r i n t f (f i l e , "\n") ;
65 }

A.2 MATLAB Code

A.2.1 RSA 80-bit key

1 %% Raw Data
2 clear a l l

3 Fs = 2 .5 e9 ; % sampling f r e q
4 x = read_binary_trace f i l e (’ sim80_2 . 5G_2. t r c ’ , 8) ;
5 plot (x) ; xlabel (’ Amplitude ’) ; ylabel (’ Sample ’) ;
6 %% Spectrogram
7 %Compute spectrogram
8 WINDOW = 1500 ;
9 NOVERLAP = 0 ;

10 NFFT = 2^nextpow2(WINDOW) ;
11 [S ,F ,T,P]= spectrogram (x ,WINDOW,NOVERLAP,NFFT, Fs) ;
12 %Change the ax i s and p l o t
13 surf (T,F,10∗ log10 (abs (P)) , ’ EdgeColor ’ , ’ none ’) ; grid on ;
14 axis xy ; axis t i g h t ; colormap (jet) ; view (0 , 9 0) ;
15 xlabel (’Time� (s ec) ’) ; ylabel (’ Frequency� (Hz) ’) ;
16 ylim ([0 4e8]) ;
17 %% Fi s r t F i l t e r (Bandpass)
18 b1 = f i r 1 (2000 ,2/Fs ∗ [50 e6 80 e6]) ;
19 x1 = f f t f i l t (b1 , x) ;
20 plot (x1) ; xlabel (’ Amplitude ’) ; ylabel (’ Sample ’) ;
21 %% Rec t i f i e d Spectrum
22 p l o t spe c (abs (x1) ,1/ Fs) ;
23 %% Second F i l t e r (Rec t i f y and Bandpass)
24 b2 = f i r 1 (50001 ,2/Fs ∗ [2 e4 6e4]) ;
25 x2 = f f t f i l t (b2 , abs (x1)) ;
26 plot (x2) ; xlabel (’ Amplitude ’) ; ylabel (’ Sample ’) ;
27 %% Extrac t the RSA par t
28 y = x2 (1 . 8 e6 : 5 . 5 e6) ;
29 y = downsample (y , 1 0 0 0) ;
30 plot (y) ;
31 t = 1 : length (y) ;
32 %% Find Va l l e y s
33 [VALS,LOCS] = f indpeaks (y , ’MINPEAKHEIGHT’ , 1 5) ;
34 plot (t , y ,LOCS,VALS, ’ o ’) ; xlabel (’ Amplitude ’) ; ylabel (’ Sample ’) ;
35 %% Decide MUL and SQ
36 [IDX,C] = kmeans (VALS, 2) ;

73

37 for i = 1 : length (LOCS)�1
38 i f IDX(i)==find (C==max(C))
39 text (LOCS(i) , 17 , ’M’ , ’ Color ’ , ’ r ’) ;
40 else

41 text (LOCS(i) , 17 , ’S ’ , ’ Color ’ , ’ g ’) ;
42 end

43 end

A.2.2 RSA 1024-bit key

1 %% Raw Data
2 clear a l l

3 Fs = 250 e6 ; % sampling f r e q
4 x = read_binary_trace f i l e (’ sim1024_250M_2 . t r c ’ , 8) ;
5 plot (x) ; xlabel (’ Sample ’) ; ylabel (’ Amplitude ’) ;
6 %% Spectrogram
7 % Compute spectrogram
8 WINDOW = 1500 ;
9 NOVERLAP = 0 ;

10 NFFT = 2^nextpow2(WINDOW) ;
11 [S ,F ,T,P]= spectrogram (x ,WINDOW,NOVERLAP,NFFT, Fs) ;
12 %Change the ax i s and p l o t
13 surf (T,F,10∗ log10 (abs (P)) , ’ EdgeColor ’ , ’ none ’) ; grid on ;
14 axis xy ; axis t i g h t ; colormap (jet) ; view (0 , 9 0) ;
15 xlabel (’Time� (s ec) ’) ; ylabel (’ Frequency� (Hz) ’) ;
16 %% Fi s r t F i l t e r (Bandpass)
17 b1 = f i r 1 (2000 ,2/Fs ∗ [70 e6 80 e6]) ;
18 x1 = f f t f i l t (b1 , x) ;
19 plot (x1) ; xlabel (’ Sample ’) ; ylabel (’ Amplitude ’) ;
20 %% Second F i l t e r (Rec t i f y and Bandpass)
21 b2 = f i r 1 (50000 ,2/Fs ∗ [2 e4 6e4]) ;
22 x2 = f f t f i l t (b2 , abs (x1)) ;
23 plot (x2) ; xlabel (’ Sample ’) ; ylabel (’ Amplitude ’) ;
24 %% Extrac t the RSA par t
25 y = x2 (. 695 e6 : 8 . 6 9 e6) ;
26 plot (y) ;
27 t = 1 : length (y) ;
28 xlabel (’ Sample ’) ; ylabel (’ Amplitude ’) ;
29 %% Find Va l l e y s
30 [VALS,LOCS] = f indpeaks (�y , ’MINPEAKHEIGHT’ , 0 . 5) ;
31 VALS = �VALS;
32 plot (t , y ,LOCS,VALS, ’ o ’) ;
33 %% Plot Va l l e y s
34 [IDX,C] = kmeans (VALS, 2) ;
35 plot (LOCS,VALS, ’ ∗ ’) ; hold on ;
36 plot (LOCS(IDX==1),VALS(IDX==1), ’ ∗ r ’) ;
37 xlabel (’ Sample ’) ; ylabel (’ Amplitude ’) ;
38 ylim ([�2.5 � . 5]) ;
39 %% Decide MUL and SQ
40 [IDX,C] = kmeans (VALS, 2) ;
41 % 0 i s SQ, 2 i s MUL

74

42 ms = zeros (1 , length (VALS)) ;
43 for i = 1 : length (VALS)
44 i f IDX(i)==find (C==max(C))
45 ms(i) = 0 ;
46 e l s e i f IDX(i)==find (C==min(C))
47 ms(i) = 3 ;
48 end

49 end

50 % Remove consecu t i v e MULs
51 for i = 1 : length (ms)�1
52 i f ms(i)==3 && ms(i+1)==3
53 ms(i +1) = 0 ;
54 end

55 end

56 % Convert to b inary key
57 ms = ms ;
58 ms(find (ms==3)�1) = 1 ;
59 ms(ms==3) = [] ;
60 %% Orig ina l key (1024 b i t)
61 % f a 0 b f c 0 d f e 0 9 f 8 0 7 f 6 0 5 4 3 2 1 0 (10 t imes each) f (x6)
62 b = [0 0 0 0 ;0 0 0 1 ;0 0 1 0 ;0 0 1 1 ;0 1 0 0 ;0 1 0 1 ;0 1 1 0 ;0 1 1 1 ; . . .
63 1 0 0 0 ;1 0 0 1 ;1 0 1 0 ;1 0 1 1 ;1 1 0 0 ;1 1 0 1 ;1 1 1 0 ;1 1 1 1] ;
64 c = [15 10 0 11 15 12 0 13 15 14 0 9 15 8 0 7 15 6 0 5 4 3 2 1 0] ;
65 % Generate key
66 k0 = [] ;
67 for i =1: length (c)
68 k0 = [k0 repmat (b(c (i)+1 , :) , 1 , 1 0)] ;
69 end

70 k0 = [k0 repmat (b (1 6 , :) , 1 , 6)] ;
71 % p l o t (k0 , ’∗ � ’) ;
72 %% Adjustment
73 key = ms ;
74 key (1 : 2) = [] ;
75 key = [key (1 : 1 00) 0 0 key (101 :end)] ;
76 key = [key (1 : 2 70) 0 0 key (271 :end)] ;
77 key (400) = [] ;
78 key (650) = [] ;
79 key = [key (1 : 7 75) 0 key (776 :end)] ;
80 key (868) = [] ;
81 key = [key (1 : 9 45) 0 key (946 :end)] ;
82 %% Compare key
83 plot (key , ’ ∗ r ’) ; hold on ;
84 plot (k0 , ’�b ’) ; hold o f f ;
85 ylim ([� .1 1 . 1]) ; xl im ([0 1 0 2 4]) ;
86 xlabel (’ Index ’) ; ylabel (’ Bit �Value ’) ;
87 % Percentage Error
88 error = sum(xor (key , k0))/ length (k0)

A.2.3 AES Write File

75

1 %% Extrac t AES
2 clear a l l

3 Fs = 20 .0 e9 ;
4 b = 0 ;
5 remov = [] ;
6 t ic

7 for a = 10:20
8 %f i l e names%%
9 i f (a<10)

10 f i l ename = [’ C1Test1114120000 ’ num2str(a) ’ . t r c ’] ;
11 else i f (a<100)
12 f i l ename = [’ C1Test111412000 ’ num2str(a) ’ . t r c ’] ;
13 else

14 f i l ename = [’ C1Test11141200 ’ num2str(a) ’ . t r c ’] ;
15 end

16 end

17 %read f i l e%%%
18 x = read_binary_trace f i l e (f i l ename , 8) ;
19 x = x(2 e4 : 8 e4) ;
20 %f i l t e r%%%
21 b1 = f i r 1 (2000 ,2/Fs ∗ [50 e6 85 e6]) ;
22 x1 = f f t f i l t (b1 , x) ;
23 %f ind peaks%%%
24 [PKGS, LOCS] = f indpeaks (x1 , ’MINPEAKHEIGHT’ , 40 , ’MINPEAKDISTANCE’ , . 02 e4) ;
25 t1 = 1 : length (x1) ;
26 f igure ;
27 plot (t1 , x1 , LOCS, PKGS , ’ o ’) ;
28 ylim ([�60 8 0]) ;
29 %cut t race us ing f i r s t and l a s t peaks%%%
30 x2 = x1 (LOCS(end)�1.5 e4 :LOCS(end)) ;
31 % f i g u r e ;
32 % p l o t (x2) ;
33 %downsample%%
34 x2 = downsample (x2 , 1 6) ;
35 % f i g u r e ;
36 % p l o t (x2) ;
37 i f (length (LOCS) >= 14)
38 x2 = temp ;
39 remov = [remov , a] ;
40 end

41 %wr i t e f i l e f o r top peaks%%%
42 f i l e I D = fopen ([’ 1_’ , num2str(a)] , ’w ’) ;
43 for m = 1 : length (x2)
44 fpr intf (f i l e ID , ’%9.5 s �%9.5 s \n ’ ,num2str(m) , num2str(x2 (m))) ;
45 end

46 fc lose (f i l e ID) ;
47 %s to r e prev ious t race
48 temp = x2 ;
49 %loop count
50 d i sp l ay ([’ count� i s � ’ , num2str(a)]) ;
51 % % peak check
52 % b = b + 1;
53 % d i s p l a y ([num2str (b) , ’ peak count i s ’ , num2str (l e n g t h (LOCS))]) ;

76

54 end

55 toc

56 %% %wr i t e f i l e f o r removed t r a c e s%%%
57 f i l e I D = fopen (’ 1_removed ’ , ’w ’) ;
58 for m = 1 : length (remov)
59 fpr intf (f i l e ID , ’%9.5 s �%9.5 s \n ’ ,num2str(m) , num2str(remov (m))) ;
60 end

61 fc lose (f i l e ID) ;

A.2.4 AES DEMA

1 %% Hypothes i s
2 % Get 8� b i t in each p l a i n t e x t
3 clear ; clc ;
4 num_trace = 1000 ; % num of t r a c e s used
5 num_time = 938 ; % num of time data po in t s
6 pt = zeros (1 , num_trace) ;
7
8 f i d = fopen (’ f i l e 1 . txt ’) ;
9 fgets (f i d) ; % sk i p the 1 s t l i n e

10 for i =1:num_trace
11 temp = fgets (f i d) ; % read the p l a i n t t e x t
12 pt (i) = hex2dec (temp (1 6 : 1 7)) ; % ge t the 8� b i t (CHANGEABLE)
13 fgets (f i d) ; % sk i p the c ipher t e x t
14 end

15 fc lose (f i d) ;
16
17 % Sbox look up t a b l e
18 S c e l l = {
19 ’ 63 ’ , ’ 7 c ’ , ’ 77 ’ , ’ 7b ’ , ’ f 2 ’ , ’ 6b ’ , ’ 6 f ’ , ’ c5 ’ , . . .
20 ’ 30 ’ , ’ 01 ’ , ’ 67 ’ , ’ 2b ’ , ’ f e ’ , ’ d7 ’ , ’ ab ’ , ’ 76 ’ , . . .
21 ’ ca ’ , ’ 82 ’ , ’ c9 ’ , ’ 7d ’ , ’ f a ’ , ’ 59 ’ , ’ 47 ’ , ’ f 0 ’ , . . .
22 ’ ad ’ , ’ d4 ’ , ’ a2 ’ , ’ a f ’ , ’ 9 c ’ , ’ a4 ’ , ’ 72 ’ , ’ c0 ’ , . . .
23 ’ b7 ’ , ’ fd ’ , ’ 93 ’ , ’ 26 ’ , ’ 36 ’ , ’ 3 f ’ , ’ f 7 ’ , ’ cc ’ , . . .
24 ’ 34 ’ , ’ a5 ’ , ’ e5 ’ , ’ f 1 ’ , ’ 71 ’ , ’ d8 ’ , ’ 31 ’ , ’ 15 ’ , . . .
25 ’ 04 ’ , ’ c7 ’ , ’ 23 ’ , ’ c3 ’ , ’ 18 ’ , ’ 96 ’ , ’ 05 ’ , ’ 9a ’ , . . .
26 ’ 07 ’ , ’ 12 ’ , ’ 80 ’ , ’ e2 ’ , ’ eb ’ , ’ 27 ’ , ’ b2 ’ , ’ 75 ’ , . . .
27 ’ 09 ’ , ’ 83 ’ , ’ 2 c ’ , ’ 1a ’ , ’ 1b ’ , ’ 6 e ’ , ’ 5a ’ , ’ a0 ’ , . . .
28 ’ 52 ’ , ’ 3b ’ , ’ d6 ’ , ’ b3 ’ , ’ 29 ’ , ’ e3 ’ , ’ 2 f ’ , ’ 84 ’ , . . .
29 ’ 53 ’ , ’ d1 ’ , ’ 00 ’ , ’ ed ’ , ’ 20 ’ , ’ f c ’ , ’ b1 ’ , ’ 5b ’ , . . .
30 ’ 6a ’ , ’ cb ’ , ’ be ’ , ’ 39 ’ , ’ 4a ’ , ’ 4 c ’ , ’ 58 ’ , ’ c f ’ , . . .
31 ’ d0 ’ , ’ e f ’ , ’ aa ’ , ’ fb ’ , ’ 43 ’ , ’ 4d ’ , ’ 33 ’ , ’ 85 ’ , . . .
32 ’ 45 ’ , ’ f 9 ’ , ’ 02 ’ , ’ 7 f ’ , ’ 50 ’ , ’ 3 c ’ , ’ 9 f ’ , ’ a8 ’ , . . .
33 ’ 51 ’ , ’ a3 ’ , ’ 40 ’ , ’ 8 f ’ , ’ 92 ’ , ’ 9d ’ , ’ 38 ’ , ’ f 5 ’ , . . .
34 ’ bc ’ , ’ b6 ’ , ’ da ’ , ’ 21 ’ , ’ 10 ’ , ’ f f ’ , ’ f 3 ’ , ’ d2 ’ , . . .
35 ’ cd ’ , ’ 0 c ’ , ’ 13 ’ , ’ ec ’ , ’ 5 f ’ , ’ 97 ’ , ’ 44 ’ , ’ 17 ’ , . . .
36 ’ c4 ’ , ’ a7 ’ , ’ 7 e ’ , ’ 3d ’ , ’ 64 ’ , ’ 5d ’ , ’ 19 ’ , ’ 73 ’ , . . .
37 ’ 60 ’ , ’ 81 ’ , ’ 4 f ’ , ’ dc ’ , ’ 22 ’ , ’ 2a ’ , ’ 90 ’ , ’ 88 ’ , . . .
38 ’ 46 ’ , ’ ee ’ , ’ b8 ’ , ’ 14 ’ , ’ de ’ , ’ 5 e ’ , ’ 0b ’ , ’ db ’ , . . .
39 ’ e0 ’ , ’ 32 ’ , ’ 3a ’ , ’ 0a ’ , ’ 49 ’ , ’ 06 ’ , ’ 24 ’ , ’ 5 c ’ , . . .
40 ’ c2 ’ , ’ d3 ’ , ’ ac ’ , ’ 62 ’ , ’ 91 ’ , ’ 95 ’ , ’ e4 ’ , ’ 79 ’ , . . .

77

41 ’ e7 ’ , ’ c8 ’ , ’ 37 ’ , ’ 6d ’ , ’ 8d ’ , ’ d5 ’ , ’ 4 e ’ , ’ a9 ’ , . . .
42 ’ 6c ’ , ’ 56 ’ , ’ f 4 ’ , ’ ea ’ , ’ 65 ’ , ’ 7a ’ , ’ ae ’ , ’ 08 ’ , . . .
43 ’ ba ’ , ’ 78 ’ , ’ 25 ’ , ’ 2 e ’ , ’ 1 c ’ , ’ a6 ’ , ’ b4 ’ , ’ c6 ’ , . . .
44 ’ e8 ’ , ’ dd ’ , ’ 74 ’ , ’ 1 f ’ , ’ 4b ’ , ’ bd ’ , ’ 8b ’ , ’ 8a ’ , . . .
45 ’ 70 ’ , ’ 3 e ’ , ’ b5 ’ , ’ 66 ’ , ’ 48 ’ , ’ 03 ’ , ’ f 6 ’ , ’ 0 e ’ , . . .
46 ’ 61 ’ , ’ 35 ’ , ’ 57 ’ , ’ b9 ’ , ’ 86 ’ , ’ c1 ’ , ’ 1d ’ , ’ 9 e ’ , . . .
47 ’ e1 ’ , ’ f 8 ’ , ’ 98 ’ , ’ 11 ’ , ’ 69 ’ , ’ d9 ’ , ’ 8 e ’ , ’ 94 ’ , . . .
48 ’ 9b ’ , ’ 1 e ’ , ’ 87 ’ , ’ e9 ’ , ’ ce ’ , ’ 55 ’ , ’ 28 ’ , ’ d f ’ , . . .
49 ’ 8c ’ , ’ a1 ’ , ’ 89 ’ , ’ 0d ’ , ’ b f ’ , ’ e6 ’ , ’ 42 ’ , ’ 68 ’ , . . .
50 ’ 41 ’ , ’ 99 ’ , ’ 2d ’ , ’ 0 f ’ , ’ b0 ’ , ’ 54 ’ , ’ bb ’ , ’ 16 ’
51 } ;
52
53 % Al l p o s s i b l e 8� b i t key
54 ke = 0 : 2 5 5 ;
55
56 % Compute the V matrix (a l l p l a i n t e x t & a l l keys)
57 V = zeros (num_trace , length (ke)) ;
58
59 for i =1:num_trace
60 for j =1: length (ke)
61 V(i , j) = b i txo r (pt (i) , ke (j)) ; % XorKey ()
62 V(i , j) = hex2dec (S c e l l (V(i , j)+1)) ; % SubBytes ()
63 end

64 end

65
66 % Compute the H matrix (hamming we igh t o f V)
67 H = zeros (num_trace , length (ke)) ;
68 for i =1:num_trace
69 for j =1: length (ke)
70 H(i , j) = sum(dec2bin (V(i , j))== ’ 1 ’) ; % Hamming weigh t
71 % H(i , j) = b i t g e t (V(i , j) , 1) ;
72 end

73 end

74
75 %% Measurement
76 % Compute the T matrix (power vs . time data t r a c e s)
77 T = zeros (num_trace , num_time) ;
78 for i =1:num_trace
79 f i d = fopen ([’ 1_’ num2str(i �1)]) ;
80 temp = fscanf (f i d , ’%g�%g ’ , [2 i n f]) ; % read the t r a c e s
81 T(i , :) = temp (2 , :) ; % ge t the power data on ly
82 fc lose (f i d) ;
83 end

84
85 % Compute the R matrix (c o r r e l a t i o n o f H and T)
86 R = zeros (length (ke) , num_time) ;
87 for i =1: length (ke)
88 for j =1:num_time
89 R(i , j) = cor r (H(: , i) ,T(: , j)) ; % co r r e l a t i o n
90 i f (isnan (R(i , j)))
91 R(i , j) = 0 ; % remove NaN
92 end

93 end

78

94 end

95 %%
96 [val , pos] = max(R’) ;
97 [val2 , pos2] = max(va l) ;
98
99 dec2hex (pos2)

100
101 hold a l l ;
102 plot (R’) ;
103 xlabel (’ Sample ’) ;
104 ylabel (’ Co r r e l a t i on ’) ;
105 %%
106 f igure ;
107 plot (R’ , ’ k ’) ;
108 hold on ;
109 plot (R(pos2 , :) , ’ r ’) ;
110 hold on ;
111 plot (R(1 , :) , ’ g ’) ;

79

