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Abstract

The study of systems for querying data streams, coined Data Stream Management

Systems (DSMS), has gained in popularity over the last several years. This new area of

research for the database community includes studies in areas such as Sensor Networks,

Network Intrusion, and monitoring data such as Medicine, Stock, or Weather feeds. With

this new popularity comes increased performance expectations, with increased data sizes

and speed and larger more complex query plans as well as high volumes of possibly small

queries. Due to the finite resources on a single query processor, future Data Stream Man-

agement Systems must distribute their workload to multiplequery processors, working

together in a synchronized manner.

This thesis discusses a new Distributed Continuous Query System (D-CAPE) devel-

oped here at WPI that has the ability to distribute query plans over a large cluster of

machines. We describe the architecture of the new system, policies for query plan distri-

bution to improve overall performance, as well as techniques for self-tuning query plan

re-distribution. D-CAPE is designed to be as flexible as possible for future research. We

include a multi-tiered architecture that scales to a large number of query processors. D-

CAPE has also been designed to minimize the cost of the communications network by

bundling synchronization messages, thus minimizing packets sent between query proces-

sors. These messages are also incremental at run-time to aidin minimizing the communi-

cation cost of D-CAPE. The architecture allows for the flexible incorporation of different

distribution algorithms and operator reallocation policies.. D-CAPE provides an operator

reallocation algorithm that is able to seamlessly move an operator(s) across any query

processors in our computing cluster. We do so by creating “pipes” between query proces-

sors to allow the data streams to flow, and then filling these pipes with data streams once



execution begins. Operator redistribution is accomplished by systematically reconnecting

these pipes as to not interrupt the data flow.

Experimental evaluation using our real prototype system (not just simulation) shows

that executing a query plan distributed over multiple machines causes no more overhead

than processing it on a single centralized query processor;even for rather lightly loaded

machines. Further, we find that distributing a query plan among a cluster of query pro-

cessors can boost performance up to twice that of a centralized DSMS. We conclude that

the limitation of each query processor within the distributed network of cooperating pro-

cessors is not primarily in the volume of the data nor the number of query operators, but

rather the number of data connections per processor and the allocation of the stateful and

thus most costly operators. We also find that the overhead of distributing query opera-

tors is very low, allowing for a potentially frequent dynamic redistribution of query plans

during execution.
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Chapter 1

Introduction

Recently, a growing area of research in the database community is the study of persistent

queries over streaming data. This core functionality of data stream monitoring is being

coined asContinuous Query Processing. A new effort is being undertaken by the database

community to derive a new general class of continuous query engines called Data Stream

Management Systems (DSMS). Data Stream Management Systemsexecute queries on

data that is continuously arriving, and then return the result of the query to the end user

in a real-time streaming fashion.

A DSMS may need to operate on several thousand queries at oncegiven streams of

data for applications such as online auctions, web servers,or to monitor stock market

trends. The DSMS typically answers queries about the state of the data over a period of

time, and all queries are based on a partial data set, as new data is always arriving. For

instance the question“What is the highest stock price on the New York Stock Exchange

over the last two hours?”can be answered by the DSMS, with the answer of the question

always changing over time. This concept is different than the traditional database model

where data is already in persistent storage and a query is asked based on this stored data.

Traditional databases have the advantage of knowing how much data there is to query

1



Query Plan 1

  Query Plan 2

Query Plan n

Query
OutputInput Data

Streams

Figure 1.1: Traditional Continuous Query Processor

over, and that the data will not change (in most cases) duringthe query. On the other

hand, a DSMS must be able to consume a partial data set and givea result based on data

seen thus far.

1.1 Motivation

Current Continuous Query Systems such as Stream [6], NiagaraCQ [16], Aurora [1], and

our WPI continuous query system, CAPE [35], operate over streams of data on a single

processor and output results to the best of their ability. Inorder for Continuous Query

Systems to operate in real-time, it is essential that all data is kept in main memory, as

once data is written to persistent storage, the system slowsdown considerably. Current

research that focuses on the issue of minimizing persistentstorage use in a continuous

query system includes Load Shedding [1], Operator Scheduling [7][36] and Operator-

State purging [24].

The potential benefits and applications of data stream processing are becoming more

apparent and popular for many applications in different business areas. These applica-
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tions include monitoring remote sensors [30], and online transaction processing [38].

However, as the popularity of these systems increases, and more queries are registered

and data streams grow larger, it will beessentialto improve the processing power of these

applications.

However, even with the current research, single CPU systemsare not likely to be suf-

ficient at handling future DSMS as 1) streaming data gets larger and faster as network

speed improves, 2) queries get larger, more complicated andplentiful, and 3) more so-

phisticated and complex operators are incorporated into streaming systems (such as data

grouping or statistical summaries).

Given the finite amount of CPU speed and memory on a single system, a distributed

architecture will be better suited to handle the load, variability, and complexity of stream-

ing data. Very recently, research is now under way in determining methods to distribute

these query plans over a cluster of processing nodes [33][20].

1.2 Our Approach

To alleviate this problem, an extension of CAPE called D-CAPE has been developed that

exploits a cluster of processors to aid in the processing of continuous queries. This thesis

discusses the implementation of D-CAPE, that extends our current DSMS, CAPE [35]

to work over a cluster of query processors using a centralized controller. D-CAPE is de-

signed to effectively and efficiently distribute query plans and monitor the performance

of each query processor with minimal communication betweenthe controller and query

processors. We bundle synchronization messages, thus minimizing packets sent between

query processors. These messages are also incremental at run-time to aid in minimizing

the communication cost of D-CAPE. We process data by creating “pipes” between query

processors to allow the data streams to flow, and then filling these pipes with data streams

3



once execution begins. It can also reallocate query operators, or complete sub-plans to

a different query processor at runtime during times of heavyload, or if it is determined

by D-CAPE, using a cost model, that the reallocation will boost the performance of the

DSMS. D-CAPE has a specialized algorithm for reconnecting these pipes during the re-

allocation process, to ensure no data is lost and that data never stops flowing through the

query plans.

1.3 Contributions

This thesis contributes to the advancement of Data Stream Management Systems in the

following ways:

• A well-designed, distributed architecture called D-CAPE has been created for con-

tinuous querying that allows for flexible query allocation and distribution strategies.

• D-CAPE is scalable allowing for distribution of query plansamong any number of

query processors by using a multi-tiered controller architecture.

• D-CAPE allows for any number of distribution algorithms to be easily plugged

into our system. For our current system, we developed two distribution algorithms,

Round Robin Distribution and Grouping Distribution, to analyze the ways different

query plan distributions affect query processor performance.

• D-CAPE allows for any cost model to be created for monitoringeach query pro-

cessor. These cost models can use the statistical data that is recorded by each query

processor about the data, query plan or individual query operator in determining the

workload for a query processor.

• D-CAPE has the ability to actively monitor each query processor to determine its

4



workload at runtime and reallocate any number of query operators toany query

processor in the processing cluster.

• D-CAPE also allows for any operator redistribution policy to be implemented that is

independent from the cost model used to determine workload.This gives D-CAPE

the flexibility to allow any redistribution policy to operate usinganycost model.

• D-CAPE implements anewoperator reallocation algorithm that is able to move op-

erator(s) across any query processors in the computing cluster without interrupting

the data flow or query processing on any of the involved processors.

• The original CAPE DSMS was improved by creating new components to boost

performance, and also by removing and optimizing other components. The im-

provements sparked a 10% jump in query processing performance from the original

CAPE design.

• Our experimental studies confirm that a DDSMS can effectively parallelize the ex-

ecution of query operators even during periods when a processing node is not filled

to capacity, thus improving performance even for small query plans.

• Experimental studies find that our DDSMS allows for large query plans to be pro-

cessed efficiently; up to 100% faster than a typical DSMS. In some cases a central-

ized DSMS fails because of the lack of processing power.

• We show experimentally that the initial distribution algorithm used for distributing

query plan workload plays a significant part in the overall performance of the query

plan.

• Experimental studies also confirm that the overhead for redistributing an operator

is negligible. This allows our D-CAPE architecture to reallocate a query operator

or an entire query sub-plan to any query processor in the cluster.

5



• Experimental studies also show that D-CAPE can effectivelymonitor each query

processor and reallocate query operators to improve the overall performance of

the query plan. We find that operator allocation can improve performance over a

distribution algorithm alone by up to 100%.

1.4 Outline

First, in Chapter 2 we will discuss the current work in DSMS system and also earlier

work in Distributed DBMS systems. Many of these concepts will contribute to our new

D-DSMS design. In Chapter 3 we will briefly discuss the background of Data Stream

Management Systems. We will show an example query for which aDSMS is used, and

outline a DSMS operator, and how it is different from the traditional SQL operator. In

Chapter 4 we will outline the design of our new D-DSMS, D-CAPE. We will experimen-

tally show that the network overhead for our design is low, and illustrate steps that were

taken to minimize the overhead of our design. Chapter 5 discusses the initial distribution

of query operators among a cluster of machines, and the observed costs of distribution

over the query processor cluster. We will experimentally show the performance differ-

ences in the type of distribution algorithms used in D-CAPE.In Chapter 6 we discuss

operator reallocation, and our mechanism for determining the workload of a query pro-

cessor. We discusswhich operator to move andwhereto move it. Using experimental

results, we find that we can effectively monitor query processors and improve query per-

formance by using our operator reallocation strategies. Finally in Chapter 7 we outline

our conclusions and future work.

6



Chapter 2

Related Work

In this chapter we will briefly discuss some areas of related work in both Data Stream

Management Systems and also other areas that utilize distribution techniques, such as op-

erating systems and traditional Database Management Systems. This related work serves

as a starting point for creating our own D-DSMS.

2.1 Current Data Stream Management Systems

Data Stream Management Systems are gaining tremendous popularity in the Database

field as remote data streams become available via sensors andmonitors, and as the type

of query ispersistent. That is, the query is always running in the system and is returned

to the user in real-time. A DSMS also introduces many new and interesting problems

[6][12] in current research such as high volumes of input data [14][26], operator schedul-

ing [7][13] and data filtering [31]. There have been many systems proposed, each of

which contributes differently to this growing field.

Aurora [1] is a Data Stream Management System that most closely resembles our

work. Aurora allows a user to register several continuous queries, and monitor those
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results through their built-in GUI. They treat query operators as “boxes” which process

streams of data. Aurora’s main contribution to this area of research is the ability for

its system to schedule its boxes and manage data between memory and disk using Qos-

based priority information. A user is able to input a graph representing what the ideal QoS

for the query should look like. Aurora is able to adjust its execution (the order of boxes

scheduled and which data is stored persistently) based on this QoS. Aurora also introduces

load sheddingto cope with degradations of QoS in periods of bursty data arrival.

NiagaraCQ [16] is a scalable DSMS that aims to scale the number of queries that a

DSMS can handle by grouping together common parts of a query plan and also using

selection operators to its advantage by reducing the amountof intermediate data in the

system. They show that by using this grouping strategy, theyachieve scalability in the

order of thousands of queries. This work is complementary toours, as we can take ad-

vantage of their query plan grouping strategies to give our system even further processing

power.

STREAM [6] is a DSMS whose focus is on effectively processingdata streams with

bursty arrival rates. If the input rate is high, the system approximates query results after

shedding some data. They have developed the Chain [7] operator scheduling algorithm

that has been shown to be near-optimal in minimizing the memory footprint of the system.

They have also created a Continuous Query Language (CQL) [3]that current DSMS

implementations can use when defining continuous queries, more importantly defining

clear semantics for continuous queries.

TelegraphCQ [14] is a DSMS whose main contribution is the study of continuous

queries with widely varying data rates and sizes. TelegraphCQ brings us the notion that a

DSMS mustreactto data arriving into the system, rather than manage data that is already

contained within the system. Telegraph utilizes an adaptive processing technique called

Eddies [5] that allows a flexible routing technique for tuples between operators. Tele-
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graphCQ also spun off another DSMS called PSoup [15] that hasthe ability to integrate

streaming data with data that has already been captured to disk.

CAPE [35] is being developed here at WPI. Much of our work is very similar to

that of Aurora and Stream. We also model the query plans as a dataflow graph where

operators are connected by data pipelines. However, instead of improving performance

by approximation[6] or load shedding[1], we aim to improve system performance and

minimize resources by adapting at different levels of queryplan execution. At the lowest

level we can adapt within a query operator using punctuations [24]. At the query plan

level, we support query plan migration [40] and adaptive scheduling techniques [36].

2.2 Distributed Data Stream Management Systems

Flux [33] is a new dataflow operator introduced in TelegraphCQ to allow to adaptively

partition an expensive operator such as a Window Join [25][28]. Flux encounters many

of the same problems that our D-CAPE system will encounter when reallocating query

operators. That is, we have to have a mechanism for moving thestateof a query operator

to ensure that no data is lost or miscalculated by the operator. We move our state in a

similar manner to the Flux operator. We first stop the input queue from the operator. We

then marshall the state to send it across the network, and then unmarshall it after it is

received by the second query processor. Once the state is unmarshalled, we allow the

operator to run, which will pick up seamlessly because the state will be the same as the

original operator. The Flux operator can complement our D-CAPE system by adaptively

partitioning our stateful operators.

Aurora* and Medusa [9][20][26] is the first published work increating an architectural

model for a D-DSMS. Several necessary design challenges arediscussed, including such

aspects as the Query Model, Run-Time Operation, Routing Rules, Message Transport

9



Protocol and Load Management. They propose a “push pull” architecture where query

operators may be reallocated to only neighboring processors so as to not interrupt the data

stream. That is, there is no central controller that synchronizes all of the query processors.

Instead, each query processor can communicate with their neighbor when they have a high

workload and push an operator to that neighbor. They also propose anoperator splitting

strategy where a query operator may be replicated among several machines to improve

the performance of the operator, similar to Flux.

By working in this “push pull” architecture, Aurora* limitsthe options that the DSMS

has when there is a very high workload on multiple machines. It is quite possible to have

a cluster of machines where one machine is empty, but since Aurora* only considers

neighboring processors the machine will not get utilized. They also do not provide a

mechanism to move a set of nodes or a query sub-tree at once.

Our system, D-CAPE, is similar in nature to the Aurora* system, however, we do not

place any restriction on the location of where a query operator may be reallocated to. Our

architecture will allow operator reallocation across any two query processors without a

loss in data flow or data contents. Unlike Aurora*, D-CAPE utilizes a centralized con-

troller. The centralized controller allows D-CAPE to monitor eachquery processor and

consider the global ramifications of moving query operators. We also show that while the

controller is centralized, it is still scalable to hundredsor more query processors. We also

allow our controllers to be multi-tiered such that we can have multiple controllers, each

controlling a cluster of machines that may have have similarqueries or clusters that are

all in the same location.

Instead of focusing on operator splitting as Aurora* has done, we aim to first analyze

what effects the network has on query plan distribution and how we can exploit advan-

tages in query plan execution. We then plan, as future work, to alter our query model to

allow for operator replication while still complimentary to our architecture. There is also
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other work in pipelined query execution [39] where non-blocking query operators can be

pipelined to improve performance. In our work, we will be able to pipeline operators be-

cause they are non-blocking, but also process them in parallel across the cluster of query

processors.

2.3 Distributed Database Systems

Also closely related to this area of research is that of distributed database systems. We are

able to use many of the principles [22] used in early researchfor distributed database sys-

tems [22] such as Bubba [2], Gamma [23], and Tandem [37]. There are three main types

of distributed database systems: Shared-Disk, Shared-Nothing and Shared-Memory ar-

chitectures. The main advantage of the Shared-Nothing architecture is scalability. This

architecture can be scaled up to hundreds or even thousands [22] of processors. This is

possible because they do not interfere with one another. TheShared-Nothing architecture

is also most advantageous in environments where the data is partitioned. By having par-

titioned data, multiple resources need not share the same disk to read the data. Also, by

having non-blocking operators we are able to maximize parallelism since operators need

not consume an entire dataset before returning output results.

In D-CAPE, we model the architecture after the Shared-Nothing approach in [22].

DSMS systems will need to be scalable, as the number of queries and the amount of

stream data grows larger. Since the data streams arenaturallypartitioned, it is easy for D-

CAPE to redirect the data to the proper query processor without affecting any other query

processors in the cluster. This Shared-Nothing approach maximizes query execution,

since each query processor only manages data that it needs tocomplete the query. D-

CAPE also makes uses of non-blocking operators which will aid in parallelism if a single

query plan is distributed among several query processors. Parent operators in the query
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plan will be able to consume data that was output from the children, even though it is a

partial answer. This will improve the performance of our DSMS.

2.4 Dynamic Load Balancing

There is also a lot of research in the area of Dynamic Load Balancing from Distributed-

DBMS systems [10][11][32] that discuss issues such as: dataconsistency, reallocation

techniques, and communication costs. We find that these issues are similar in the context

of our DSMS, and our architecture will have to be designed in such a way to minimize

network costs [10][29] and the number of threads our system utilizes [11]. Because of

these observed factors, we will create query operator distributions that will aim at min-

imizing the number of network connections per machine, which will aid in minimizing

the volume of data over the network and also the number of threads in D-CAPE, as each

network connection will require a thread from the OperatingSystem.

There is also work in the area of Dynamic Load Balancing of WebServers [17][18][19][21]

which use a central controller for communicating with each processing node. These sys-

tems typically use a Round-Robin approach [17] for process scheduling or even a QoS-

aware approach [18]. The advantages of the Round-Robin approach is that every machine

is guaranteedto have work to do. The disadvantage of this approach is that each process

may have different sizes and thus Round-Robin may not be optimal in cases where many

large processes are scheduled on one processor. QoS-aware approaches will typically

perform better, however there is more work in determininghow to determine quality of

service and further determinewhichprocessing node is performing up to a certain QoS

level. We use the Round-Robin approach as one of several possible distribution patterns

in our work to understand how even a simplistic approach willfare in our DSMS domain.

Future work will include designing a QoS-aware distribution algorithm.
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The Web Servers in [18][19][21] all use a central controllerthat may be tiered de-

pending on the number of processing nodes. This is similar toour D-CAPE system where

we allow different controllers for a cluster, and using a second-level controller on top

of each cluster controller. These works outline steps that can be taken to minimize the

communication between a controller and its processing nodes, such that the controller

does not become a bottleneck. In D-CAPE we can utilize a similar approach to processor

communication, however the type of communication in a DSMS will be quite different.

Web Server controllers processfixed sizejobs for each processor whereas D-CAPE query

processors have to execute on queries ofvarying sizebecause of data variability.
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Chapter 3

DSMS Background

In this chapter we will discuss the background of Data StreamManagement Systems.

First, we will present a streaming data example. We will thendiscuss the query plan of a

DSMS and how a new class of query operators are necessary for data streams. Finally, we

will discuss the basic non-distributed architecture of ourDSMS, CAPE, the Constraint-

aware Adaptive Processing Engine.

3.1 Example Stream Query

In order to understand the realm of queries that a DSMS is built to answer let us look at

an example. Consider a traffic grid as shown in Figure 3.1. Each sensor, as indicated in

Figure 3.1, collects the data shown in Figure 3.2.

The sensor data collected is just a sampling of the data streams produced by the sensor.

It is important to note that not only may there be many sensors, but there also could be

multiple feeds from each sensor, recording different typesof data. Our query will make

use of the Traffic Flow data. We will use Continuous Query Language (CQL), a query

language similar to SQL, that extends traditional query semantics by allowing for time
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Sensor 2

Sensor 1

Sensor 1

Sensor 5

Sensor 4

Sensor 3

Figure 3.1: Example Traffic Pattern.

Traffic Flow Schema {
Time timestamp,
String carID,
Type type,
int MPH
};

Figure 3.2: Traffic Sensor Schema

based joins and aggregation along with other features [].

Suppose we ask the query: ”Return all cars and their current MPH that have travelled

down Road 2 and taken a LEFT turn onto Road 1 within a 2 minute time period.” Using

CQL we would have the following specification:

SELECT R1.carID, R1.MPH

FROM Sensor2 as R2 [Range 2min], Sensor 1 as R1 [Range 2min]

WHERE R1.carID = R2.carID AND R1.type = "Car";

The corresponding query plan is seen in Figure 3.3. This query plan consists of a Join,
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Figure 3.3: Query Plan Constructed from CQL Statement.

Select, and Project operator, similar to SQL query operators. The functionality of these

operators will be discussed in Section 3.2. In Table 3.1 we see example data that may be

collected by the two sensors. T represents thetimestampassociated with the data.

Sensor 1

T carID type MPH
0 9034 TR Car 55
0 FED 1 Truck 42
1 SOXFAN4 Car 50
1 8325 DL Car 35
1 345 DGE Car 65
1 UMASS1 SUV 45

Sensor 2

T (min) carID type MPH
0 1345 FD Car 34
1 MV 1223 Truck 53
2 SOXFAN4 Car 65
2 1492 CC Car 32
3 UMASS1 SUV 23
4 1353 DW SUV 56

Table 3.1: Example Traffic Data.

Applying the query plan in Figure 3.3 on the input data in Table 3.1 we will process

the data in the following manner.

16



Output of Join Operator

T (min) R1.carID R1.type R1.MPH R2.carID R2.type R2.MPH
(1,2) SOXFAN4 Car 50 SOXFAN4 Car 65
(1,3) UMASS1 SUV 45 UMASS1 SUV 23

Output of Select Operator

T (min) R1.carID R1.type R1.MPH R2.carID R2.type R2.MPH
(1,2) SOXFAN4 Car 50 SOXFAN4 Car 65

Output of Project Operator

T (min) R1.carID R1.MPH
(1,2) SOXFAN4 65

Table 3.2: Output from Query Plan

The Join operator is responsible for joining any two tuples that occured within 2 min-

utes of each other and also pass the join predicateR1.carID = R2.carID. The output of

the join operator is then fed into the Select operator, whichfilters out all tuples that do not

pass the predicateR1.type = ”Car”. Finally, the Project operator projects the columns

R1.carID, R1.typewhich can then be returned to the user. Data is continually processed

as more data is received from the Sensors, until the query is removed from the system.

3.2 Streaming Query Operators

In our example in Section 3.1 we saw two different types of operators in our query plan.

These can have different characteristics than a traditional SQL-type operator. First, some

streaming operators havestatewhich is maintained by the operator during runtime. This

state is the data that must be remembered by the operator to complete its operation. A join

operator as in Section 3.1 is an excellent example of such an operator. The join operator

is responsible for remembering all tuples that have arrivedwithin the last two minutes.

Secondly, since streaming operators have different characteristics than traditional query

operators, we have to alter the implementation of traditional operators and add other se-
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mantics to allow them to process for real-time continuous data. They must be able to

output incremental results as new data arrives from each stream. We can break stream-

ing query operators down into two categories: stateful and stateless. We must give some

operators the ability to remember what it has done in the pastvia an internal state, while

other operators do not need this ability.

Every operatoro hasNi input queue(s) andOj output queue(s). The amount of the

input can be defined asn =
∑Ni

i=1
ni, whereni is defined as the amount of input at the

ith queue. The quantity of the output can be defined asm =
∑Oj

j=1
mj . Similarly,mj is

defined as the amount of output in thejth queue. The termm/n is known as theselectivity

(σ) of the operator, more simply known as the probability of a tuple passing thepredicate

(ρ) of the operator. The selectivity is an important attributeof a query operator since

it directly controls the number of tuples outputted to its parent. Operators with smaller

selectivities tend to improve query plan performance because the number of tuples are

reduced, thus reducing the total number of tuples to be processed. There is also fixed cost

for reading/writing to queues, which we will define asω.

3.2.1 Stateless Streaming Query Operators

Stateless operators are similar to traditional DBMS operators, since they have the ability

to perform without needing to know what they have done in the past. Typical stateless

operators include: Select, Project or XMLTagger.

In Figure 3.4 we show how a stateless operator processes data. The processing cost

associated is linear in the volume of input data. The larger the input data, the longer it will

take to process the data. For everyn tuples that are dequeued,n tuples are subsequently

evaluated and then them tuples that are evaluated to true are placed in the operatorsoutput

queue.

Project and XMLTagger operators have a selectivity of 1 while the selectivity of a
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Perform a boolean
evaluation on each of

the n tuples

n m

Figure 3.4: Single Stream Operator.

Select operator varies between zero and one depending on theselect predicate. The pro-

cessing costs associated with a stateless operator are shown in Equations 3.1 and 3.2. As

you can see, the only variant in the cost is the number of inputtuples, since the process-

ing cost is fixed, and determined by the type of the operator and the speed of the query

processor doing the work.

cost = (n ∗ ω) + (ρ ∗ n) + (σ(n) ∗ ω) (3.1)

= n ∗ (ω + ρ) + (σ(n) ∗ ω) (3.2)

3.2.2 Stateful Streaming Query Operators

Stateful operators retain all tuples that are still in the query “window” of acceptance by

the user. Using the query in Section 3.1 an example window would be 2 seconds. There

are many semantics for determining how to calculate a windowfor an operator including

Moving Window [8] and Sliding Window [28]. For our purpose, we will assume that our

operators utilize a sliding window. In a sliding window, alltuples occuring withint time

units of each other are in the same window. The window “slides” as new data is read into

the operator that have higher timestamps.
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Perform a boolean evaluation on all
tuples in n1 and n2 that are in the
same time window.  Keep track of

tuples still in window by placing them
in the operators state.

n1

m

n2

Left Queue

Right Queue

Left State

Right State

Figure 3.5: Multi Stream Operator.

Figure 3.5 illustrates the processing of data in a binary window join operator. Execu-

tion proceeds as follows. First we dequeuen1 tuples from the left queue andn2 tuples

from the right queue. We then purge (ψ) the state of the left (s1) and right (s2) states

from the total number of statesS by looking at the first tuple dequeued from both queues,

respectively. If the first tuple in the left queue is out of thewindow of the first tuple in the

right state of the operator, we purge those tuples out of the right state. The tuples can’t

possibly be evaluated to true due to being out of the window. We do the same for the right

queue and the left state. We then perform a join on all of the tuples from the left queue

with the right state. We then move the tuples from the left queue into the left state, since

they have been evaluated. We can now join the tuples on the right queue with the left

state, and once finished move the tuples from the right queue to the right state.

The processing cost is much higher for a stateful operator. Clearly, the size of the

time window has a direct effect on the cost. The larger the window, the larger the cost of
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the operator, as we will spend more time purging tuples out ofthe state and more time

processing the join. The cost of a stateful join operator is shown in Equation 3.3

cost = (n ∗ ω) + (ψ ∗
|S|∑

i=1

si) + ρ ∗ (n1 ∗ s2 + n2 ∗ s1) + (σ(n) ∗ ω) (3.3)

The total cost includes the time it takes to read (ω) then tuples from the input queues,

the time it takes to purge the state, and the cost of evaluating each join predicate and

writing those that pass to the output queue. Most of the processing cost of the stateful

operator is that of purging the two states and the time it takes to evaluate the join predicate.

Many join implementations aim to improve the cost by using hash-based states or hash-

joins. Nonetheless the operator still proves to be far more costly than a stateless operator,

especially as the state size increases.

3.3 The Data Stream Management System: CAPE

Now we introduce our DSMS, CAPE. CAPE is a continuous query system developed at

WPI [35]. It can process any number of user queries on multiple streams and report the

resulting data to the user applications. This core architecture is similar to that of [1][6]

[16].

Each query is translated into an algebraic query plan as shown in Section 3.1 that

then is processed by our runtime engine. The query plan can bethought of as a directed

acyclic graph, where the nodes represent query operators and the edges represent queues.

The operator(s) that connect directly to the end user application(s) are called therootsand

those that connect to an input stream are calledleaves. Each leaf is directly connected to

an external data stream where the source data is generated, typically by a remote computer

or data sensor. All query operators in CAPE operate in a pipelined, non-blocking manner

[39]. That is, every operator is capable of producing results after consuming a partial
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input data set. Figure 3.3 illustrates an example of a query plan. Intra-operator data

results are stored as tuples in main memory queues. Queues serve as the connections

between operators and define the routes that tuples take during execution.

CAPE is made up of four primary components as shown in Figure 3.6. TheStream

Receiveris responsible for receiving data from all Stream Sources and placing the tuples

in the query plan.Stream Senderis responsible for sending the result data to the end user.

The Statistics Gathererstores, calculates, and sorts statistics about any part of aquery

plan, such as operators, queues, and entire query plans. These statistics can be used for

many types of calculations in the system, such as deciding how well a particular query

plan is running given a cost model, or even simply how many tuples are in main memory

at a given time.

Stream
Generator

Stream Data

Execution
Scheduler

CAPE Query Processor

������� �����	�	 ����
���
��
End UserEnd UserEnd User

����	���	�	��� Stream
Receiver

Statistics
Gatherer

Internet

Query Plan
Generator

Execution
Engine
Stream
Sender

Figure 3.6: Architecture of CAPE Continuous Query System.

The Execution Scheduleris responsible for deciding which operator should be exe-
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cuted at a given time. Several different scheduling algorithms, including Round Robin,

First In First Out, and Chain [7] have been incorporated intoCAPE. These algorithms use

statistics that are gathered from the query plan to determine which operator to schedule

next. CAPE has its own novel scheduling strategy, which is referred to as anAdaptive

Scheduler[36]. The Adaptive Scheduler dynamically selects which scheduling algorithm

to run during execution based on how the current scheduling algorithm is performing

with respect to the other scheduling algorithms that are available for use. This is CAPE’s

approach to provide the best possible service on a single machine. The scheduler can im-

prove performance based on various requirements, such as minimizing memory or maxi-

mizing the output rate. TheExecution Enginelies at the heart of CAPE. It is responsible

for overseeing the execution of the query plan. The Execution Engine tells the Statistics

Gatherer to obtain the latest statistics, and asks the scheduler which scheduling algorithm

should be used next. In essence, it is the engine of CAPE that uses information obtained

from the other modules to run the system. Here is a brief walkthrough of the Execution

Engine’s tasks during execution:

1. Ask the current scheduling algorithm to choose the next query operator,Op, to run.

2. If the workload forOp > 0, then update the statistics forOp’s input and output

queues and pass the workload to the operator. If the workload= 0, then there is

starvation and the strategy will pick another operator.

3. Run the operator. When the operator has processed all of its assigned work, control

is returned to the Execution Engine.

4. Ask the Statistics Gatherer to update statistics for various operators and other query

plan information.

5. Repeat steps 1-4 for the duration of the query.
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Chapter 4

Distribution Manager Architecture

Next the design of the new D-CAPE system will be introduced. We will first discuss the

assumptions and restrictions for this version of implementation of the system. Then we

will discuss the general architecture of the system.

4.1 Assumptions and Restrictions

Several assumptions are made in this work so to allow us to focus on the most important

concerns of this new system. First, it is assumed that all processors have 100% up-time,

and the distributed system will not have to worry about an unresponsive processor. If a

query processor is to fail, it is remedied by moving the workload that was on the unre-

sponsive processor to another query processor. Using this assumption, data will be lost,

and future work will be needed to come up with ways to recover this lost data, similar to

[26]. In our experimentation, if a query processor were to fail, we restart the experiment

so the experimental results are not tainted with this loss ofdata. Also, it will be assumed

that the query plan is already optimized using query re-write rules, and that each operator

is scheduled using the same scheduling strategy. That is, itis not the goal of the new
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distributed system to achieve better performance on individual machines, but rather to

improve overall performance based on the distribution techniques.

4.2 Distributed Architecture Overview

The most important aspect to this thesis was to develop a flexible architecture that could

be used in future versions of the system. Without a sound architecture, the shelf-life of

this system will be short lived. Our main goal was to allow this work to be used for a long

period of time as a foundation for improving data stream processing performance.

In 1992 David DeWitt and Jim Gray outlined the architecture necessary to create

parallel database systems [22]. They found that query planscan be more efficient if

running in a parallel, pipelined manner by using the naturaldata flow tendencies of a

query plan and distributing query operators. Database Management Systems did have a

major flaw when it came to pipelined execution: Most of the existing implementations of

query operators were blocking. However since Data Stream Systems have developed non-

blocking operators [25] that continuously provide output data, we are now in a position

to take advantage of paralelized pipelined query execution.

DeWitt and Gray go on to say that another important requirement is that partitioned

execution needs partitioned data. Partitioned data allowsfor easy data transfer, without

the need to scan incoming data to determine where it belongs.This is an easy require-

ment for our DSMS to meet, since the data streams are already generated over multiple

machines, and can be redirected to any query processor in ournetwork, without affecting

other processors and their execution.

We found that the requirements needed over 10 years ago are still needed today. By

parallelizing execution and directing data streams to individual query processors, we are

able to improve query execution, as will be seen in experiments throughout this chapter.
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We developed a robust, component-based approach to designing this architecture. It is

developed in a shared-nothing manner; that is, the only way data is shared is through

the Interconnection Network. Each CPU and Memory is privateto each query processor.

Figure 4.1 illustrates the basic architecture of the new D-CAPE System.
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Figure 4.1: D-CAPE Architecture

This is an extended version of the original CAPE system introduced in Section 3.3.

Similar to the original system, there is still a Statistics Gatherer, Execution Engine, and

Execution Scheduler and Stream Sender/Receiver. We also added two new components to

the query processor itself, including theConnection Manager, andStream Feeder. These

components will be discussed in detail in Section 4.3.

The Distribution Manager resides on a machine separate fromall the query proces-

sors and is responsible for communicating with each query processor to tell it what data

streams and query plan operators it is responsible to process, and where to send it when
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it is done. This is achieved in four steps and will be discussed in detail in Section 4.3.

1. Send initial configuration information to each query processor

2. Distribute query plans among the query processors using adistribution pattern, a

way to distribute query operators among a cluster of machines based on query plan

properties.

3. Listen to status updates from each query processor by receiving packets of statistical

data needed to calculated the workload of a processor.

4. Determine if any of the query processors has too high of a workload and redistribute

it, if necessary.

Each of these steps will be discussed in detail in sections 5.1 to 6.3.
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Figure 4.2: Example of D-CAPE configured to run in a tiered environment.

To increase the potential scalability of a D-CAPE, we have created the Distribution

Manager such that it can operate in a tiered environment. Figure 4.2 illustrates how the

27



Distribution Manager can operate in such an environment. Inthe future, it may make

sense to have clusters of machines in different locations process different workloads. In

this case, it may not make sense to have a single distributionmanager manage clusters

across the Internet. Instead, we can create one distribution managers for each cluster

location, and then have a distribution manager on a higher tier that is responsible for

allocating query plans to each distribution manager in the lower tier. This way, we have

the flexibility of distributing the query plans on any of the query processors available to

us, yet we can also eliminate network update costs by localizing distribution managers to

work more closely with a particular processing cluster.

4.3 Query Processor

Before discussing the Distribution Manager in detail, we first go into the details of the

query processor, and in particular, the improvements that were made for D-CAPE. At the

end of this section, we will show experimental studies that show the limitations of a query

processor.

As shown in Figure 4.1 there are seven main components in the query processor:

The Execution Engine, Statistics Gatherer, Execution Scheduler, Stream Receiver, Stream

Distributor, Stream Feeder, and Connection Manager. Each of these components are inte-

gral to the execution of the query plan. Furthermore, it is important that these components

are implemented in such a way as to maximize performance. Each of these components

communicates with one another to minimize the cost of context switching between com-

ponents. We will now discuss each component and how they havebeen improved for

D-CAPE.

Execution Engine. The execution engine was improved from Section 3.3. It now

makes fewer calls to the statistics gatherer to maximize processing time. We also imple-
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mented the ability to record the statistics upon completioninto a Microsoft Excel Spread-

sheet for quick analysis by the user upon query completion.

Statistics Gatherer. The statistics gatherer was improved from Section 3.3 by reduc-

ing the number of calls it would take to insert/remove data to/from the statistics gatherer.

Over time this should increase performance to some degree, especially for long running

queries.

Stream Feeder. The stream feeder is responsible for taking tuples received by the

stream Receiver and placing them in the proper input queue ofthe operator. This is a

hash-based implementation. As a tuple is taken from the poolof received tuples, its

corresponding queue is looked up in a hash table to determinewhere the tuple belongs.

Once this tuple is enqueued, the thread will let the Execution Engine know that there is

more data to process. The Stream Feeder is a thread designed to ensure that all queues

in the query plans have data to process. This way if one streamhas a higher data rate,

and thus a queue that is more full, we can wait to put that data in an input queue until the

operator will actually need it.

Stream Receiver. The stream receiver is implemented in a separate thread. Astuples

are received, tells the stream feeder that there is new data waiting to be fed into the input

queues. By implementing the tuple receiver in this manner, the stream feeder is only

running when there is actually data to process, so CPU cyclesare not wasted in doing

empty work.

Stream Distributor. The stream distributor is responsible for sending tuples to the

next query processor or to an end-user application. This toois hash-based; hence lookup

takes a constant time. The distributor waits for a message from the Execution Engine,

indicating that there are tuples to be sent across the network. By waiting for a message

from the Execution Engine, CPU Cycles are not wasted on the Tuple Distributor when

there is no work to do.
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Connection Manager. The Connection Manager is the interface between the query

processor and the distribution manager. It is responsible for handling requests such as

activating operators on the processor, or sending the current status of the machine to the

distribution manager. Table 4.3 lists the different connection requests that can be made to

the Connection Manager.

Type Description

Activate Activate an Operator.
DeActivate Turn off an Operator.
SendData Send data to another QP.

ReceiveData Receive data for processing.
StopSend Stop sending data to another QP.

StopReceive Stop listening for data.
SendStatistics Send one or more statistics to the DM

Shutdown Shut down the query processor
Restart Remove all query plans and data, wait for new plans from the DM.

Table 4.1: Connection Request Types.

The Connection Manager has been designed to allow for an expanded set of com-

mands to be implemented for the future. The most important job of the connection man-

ager is to be available and to respond quickly.

4.3.1 Query Processor Performance

It was very important to understand the limitations of a query processor. In particular,

there were three questions that needed to be answered:

• How often can the Distribution Manager communicate with a Query Processor?

• How do the new components utilize the CPU? Is it better or worse than the old

implementation?

• How many input/output connections can a Query Processor Handle?
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To answer these questions, an experimental test-bed was developed. The test-bed

consists of a cluster of 10 machines, each with dual 2.4 GHz processors, 2 GB of memory,

on a Gigabit Ethernet connection. We utilized two machines to stream data, two machines

to listen to query results, one machine to act as the distribution manager, and 5 machines

to act as query processors. We use two stream generators so wecan send a higher volume

of data across the cluster. The data consists of the server logs from the 1998 World

Cup website [4]. In our 30 minute experiments, approximately 72,000 tuples are sentper

stream. Our query plans connect to a minimum of six streams and a maximum of thirteen.

Our query plans consist of window join operators and single stream operators in different

configurations, ranging from 5 operators to 80. Our join operators have a selectivity of

two, that is it outputs twice as much data that is input. Our single streams operators have

a selectivity of one, to make its cost as high as possible. Thequery plans themselves are

binary trees (representing many joins linked together) with a height of at least five and a

breadth of at least six.

For these experiments, we only utilized one query processorso it could be tested

against the original version of CAPE, and also to find the limitations of a single processor

machine.

4.3.2 Query Processor Communication Cost

First, it is important to analyze how often a query processorcould communicate with the

distribution manager before it had a significant impact on query performance. This will

indicate how often the distribution manager can communicate with each query processor.

A limit needs to be observed, so query operators are not reallocated too often, reducing

performance. To study this, we loaded a moderately sized query plan (20 operators, 5

joins) onto a single query processor. We then sent connection requests to it at increasing

rates, from 0 per second to 1000 per second, to find out how often a connection request
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can be handled without degrading performance.
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Figure 4.3: Throughput of Query Processor with Increasing Connection Requests

Figure 4.3 shows the throughput of the query plans with various connection request

rates. We can observe that the query processor can easily handle 50 connection requests

per second. This is an important number, because it indicates how often the distribution

manager may communicate with the query processor. We will see in Section 6.3 that a

typical query operator takes 6-10 connect requests to properly activate it on a query pro-

cessor. Thus we can conclude that we can easily move one operator on a query processor

per second.

This is a very high rate, in fact, in our experimentation we will only move operators

once per minute, to allow for sufficient time for a distribution to be tested. Thus we see

that moving an operator in this environment will not be a bottleneck, as long as we do

not communicate with a query processor with more than 50 connections messages per

second.
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4.3.3 CPU Utilization of the New Query Processor

Another performance test we run for the new D-CAPE query processor is to monitor how

one individual query processor utilizes the CPU versus the original CAPE system. For

this experiment, we ran the original CAPE DSMS and the new D-CAPE DSMS on a

query plan with 40 operators. This size query plan sends large amounts of data over the

network and really tests both the processing of data as well as the way tuples are sent and

received. In the D-CAPE DSMS, we ran the query plan utilizingonly one query processor

so that it could be more fairly compared to the original CAPE DSMS.
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Figure 4.4: CPU Utilization Before and after Query Processor optimization.

The primary objective for this experiment was to test if the new query processor uti-

lizes the CPU more efficiently than the original CAPE design.Figure 4.4 shows the dif-

ferences in CPU usage between the two query processors. Query execution gets a larger

“slice” of the CPU in the new version of CAPE, which is important. Maximizing the

amount of time processing the data will provide better performance, rather than spending

CPU time performing support operations. Using the hash based functions for the sender

and receiver and by having each thread communicate with eachother, we see improved

CPU utilization over the original CAPE implementation.
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4.3.4 Input/Output Connections of a Query Processor

A query processor has two main goals, to process incoming data as fast as possible and

to send that data to the next query processor as fast as possible. In order to maximize the

performance of these two tasks, it is important to find out what limitation there is (if any)

on the number of input and output connections a query processor could handle. We ran

experiments with an extremely small query plan (a single operator), as this would provide

the best scenario in terms of the number of connections that this one query processor

would be able to handle concurrently. We then replicated that query plan several times on

the same query processor to increase the total number of connections on the machine.
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Figure 4.5: Output Rate of Query Processor with Increasing Connection Requests

Figure 4.5 illustrates how increasing the number of connections to and from a machine

causes a decreased output rate. We find that the cause of this is that the query processor

is spending too much time sending and receiving tuples, and not enough time processing

them. Figure 4.6 shows how adding connections decreases thepercentage of the CPU that

the engine can devote to the actual data processing versus the input/output connection

handling. Using these experiments, our machines can safelyhandle 8-12 input/output

connections without significantly degrading performance.This will have to be taken into

consideration when we considerhowto distribute a query plan.
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4.4 Distribution Manager

The basic job of the Distribution Manager is to synchronize the management of the query

plans and data, and to then respond to situations where a query processor is under heavy

load. The Distribution Manager can be thought of as the “brain” of query execution.

The Distribution Manager knows about all queries in the system and all available query

processors. It is then responsible fordistributing these operators among the available

query processors and for telling each query processor how towork together to process

each query plan. It is also responsible for receiving statistical data from each processor to

determine theworkload(how “full” the processor is), and determiningif operator reallo-

cation is necessary, and then deciding onhowto reallocate the query operators to improve

overall performance.

Figure 4.7 illustrates the architecture of the Distribution Manager. It is made up of

four primary components and three repositories. The four main components are theRun-

time Monitor, Connection Manager, Query Plan Manager, and theDistribution Decision

Maker. Each of these components interact in the following way:

Runtime Monitor. This is the monitor that listens for statistical updates from each

query processor. These updates are statistics that are already collected in the query pro-

cessor, such as the number of tuples in memory or the average output rate. It receives this
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information, places it into aStatistics Tableand then gives it to the Distribution Decision

Maker.

Connection Manager. The connection manager is responsible for taking the decided

distribution, and physically sending a sequence of appropriate connection messages using

our redistribution algorithm to establish the distributedplan on its respective query pro-

cessor. Each of these connection messages derives from a Connection class, guaranteeing

a certain packet size and a consistent interface for the query processors and distribution

manager to follow. The connection manager typically only sends messages to a query

processor, but it can also communicate with the end-user application or the data stream

source as well.

Query Plan Manager. The query plan manager is responsible for managing the

query plans in the system, and also determining if the query plan distribution is valid.

Validity means that all query nodes are represented exactlyonce on the cluster of query

processors, and all of the query processors are up and running.

Distribution Decision Maker. The decision maker is responsible for decidinghow

to distribute the query plans. There are two phases to this decision. First, an initial

distribution is created at startup (Chapter 5). Second, it reallocates query operators to

other query processors depending on how well the query processors are perceived to be

performing (Chapter 6).

Algorithm 1 describes how the Distribution Manager operates upon initialization. In

the following chapters we will discuss this algorithm in more depth, including how we

distribute, calculate cost and redistribute query processors.

Before processing any data, the Distribution Manager is responsible for configuring

each one of the query processors by giving it all query plans that it could potentially

process, and other data, such as where streams are located, and statistics that need to

be collected. This is done upon initialization to minimize communication cost and only
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Figure 4.7: Distribution Manager Architecture

incremental communication messages are sent at run-time such as new query processors

or query plans. By doing this before execution, we limit the amount of communications

that will need to occur during execution. TheDistribution Decision Makerthen creates

an initial distribution of the query operators and then usesthe Connection Managerto

take care of physicallyactivating the distribution on the remote query processors. A

distribution is activated when the query processor that is to run the operator is connected

to all data streams and is prepared to process the data. This is discussed in detail in Section

5.1.

During execution, each query processor reports to theRuntime Monitorthe current

statistics of the machine’s local state. The Runtime Monitor can use this information,

along with its available cost model, to determine the load oneach machine. Note that

the system can use any one of its available cost models to determine the workload. The

specific model is determined by an administrator during the startup of the distribution

manager. TheDistribution Decision Makerthen gets the associated costs for each pro-
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Algorithm 1 Distribution Algorithm at a glance.
1: Retrieve configuration information from user.
2: Retrieve query plans from the query plan generator.
3: while are more query processorsdo
4: Send all configuration information to query processor
5: if Query Processor does not respondthen
6: Remove query processor from list of active machines.
7: end if
8: end while
9: if No query processors availablethen

10: EXIT
11: end if
12: Load the distribution pattern from Strategy Repository.
13: Distribute the queries using the pattern.
14: Load the cost model.
15: Load the redistribution policy.
16: Send the statistics to monitor to each query processor.
17: while still processingdo
18: Retrieve statistical updates from query processors
19: Calculate the workload on each machine
20: Redistribute the operators using Algorithm 5.
21: end while

cessor from the Runtime Monitor in the form of acost tableand uses the table to redis-

tribute query operators. The type of redistribution policycan be any policy found in the

Distributed Strategy Repository. After deciding what operators are to be reallocated, the

Distribution Decision Maker can then pass this new distribution plan to theQuery Plan

Manager. It is the Query Plan Manager’s job to ensure the validity of this new distribution

plan. If it is not valid, the Query Plan Manager informs the Distribution Decision Maker

to create a new distribution until it is valid. The Query PlanManager can then tell the

Connection Managerto make the proper connections between the streams, machines and

end user applications. It is the Connection Manager’s job toensure that no data is lost or

corrupted.
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4.4.1 Distribution Manager Performance

Initial Configuration Sent Creating a new distribution

Figure 4.8: CPU Usage of Distribution Manager

A challenge in implementing the Distribution Manager was ensuring that it was suf-

ficiently lightweight to not render ineffective when redistributing a query plan. Our goal

was to make it lightweight enough to process in real time, butalso to have the ability

to process complex cost models if necessary. Only incremental changes of the set of

query plans are sent to the query processors to reduce the amount of time the Distribution

Manager spends communicating with each processor at run-time.

Figures 4.8 to 4.10 show the Distribution Manager’s resources while running a query

plan distributed over five query processors. We can see in Figure 4.8 that the CPU is

rarely used. It is primarily used only when calculating new distributions. In Figure 4.9

we determine that the network traffic the DM creates is minimal. The DM received only

an average of 400 bytes per second, and never sends out more than 1kb in a second. We
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also use memory very sparingly, using less than 20mb of main memory, as shown in

Figure 4.10. In fact, the main cost that we incur is in the verybeginning of execution,

where the query plans and configuration are sent to all of the query processors. The DM

is able to reduce the amount of resources it needs by only providing incremental changes

to each query processor, when necessary.

These experimental results indeed now confirm that the overhead of using a single

Distribution Manager is minimal. By designing the Distribution Manager carefully, we

were able to minimize the system resources used by the DM by limiting the number of
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Figure 4.10: Memory Usage of Distribution Manager

communications with the query processors.
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Chapter 5

Query Operator Distribution: Methods,

Algorithms and Evaluation

5.1 Initial Distribution

We have found that the initial distribution of a query plan directly influences its perfor-

mance. Distribution is defined as the physical layout of query operators across a set of

query processors. We will later show that we can have performance gains of 100% over

a naive distribution algorithm by distributing our query operators using a “connection-

aware” approach. We will also show that algorithms that are not carefully designed will

not always increase performance beyond that of a single query processor.

The initial distribution depends on the knowledge of two pieces of information: The

queries to be processed and the machines that have the potential to do the work. First we

will go into detail about query plans and query processors, and how they are composed in

our D-CAPE System. We will then discuss how we can take this information to create an

initial distribution to begin execution.
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5.1.1 Query Processor Description

A query processor is the fundamental component of the DSMS that performs the actual

query processing. The query processor can have many properties, and further, each query

processors may be heterogeneous. Because of this, we maintain detailed knowledge as

shown by Table 5.1.1.

Query Processor Object

Property Value
IP Address davis.wpi.edu
CPU Speed 3.0

Memory 1024MB
OS Linux

Network Speed 1.5MB/Sec
Location Worcester, MA

Number of processes11
Any Property Any Value

Table 5.1: Query Processor Object

Notice that the processor’s description is simply defined bya Property/Value pair.

This way, as new properties of a query processor may arise, wecan easily add them to the

description without changing our implementation. We can also maintain other properties

that change over time, as we will see in Section 6.3. This description is maintained by the

Distribution Manager.

5.1.2 Query Plan Description

As discussed in Chapter 3, a query plan is a directed acyclic graph with the query op-

erators as the nodes and the queues of data as the edges. The query plan description

holds both initial properties of the query plan and also properties that change during ex-

ecution. D-CAPE represents this query plan as a set of query operators, each containing

many properties. These query operators are then connected together using a parent/child
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relationship, which in turn represents the query plan.

Because of our internal query plan structure, it is easy to capture any property about

a query operator or query plan. This is an integral feature ofthe D-CAPE system; the

ability to add properties for future research without modifying the existing data structure.

Here are some examples of properties that we may want to capture about a query object.

• Query Plan: Overall priority relative to other operators, number of operators, depth,

number of inputs, number of outputs, etc.

• Query Operator: Operator type (Join, Select, etc), number of children, number of

parents, etc.

We can also store other properties of the query plans and query operators, just like we

could with the query processors. These properties can be dynamic, capturing properties

such as Output Rate, Selectivity, Processing Time, and other easily added properties. By

combining the properties of each query operator along with its location in the query plan,

given the parent/child relationships, we are able to view the query plan in its entirety. We

now show how we may use the knowledge about query plans and query processors to

come up with an initial distribution of the query plans.

5.1.3 Calculation of Initial Distribution

With knowledge of the processors, plans, and their meta-information, we can create an

initial distribution across the cluster of query processors based on the configuration of the

query processors and query plans. We create our distribution using aDistribution Pattern,

which is a specific pattern that an algorithm follows to decide how to distribute the query

plans. The distribution pattern accepts both the descriptions of the query processors and

query plans as inputs and returns a table known as aDistribution Tablethat captures the
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location of each query plan operator with respect to the query processor that it will be

executing on.

QP 5Operator 8

QP 4Operator 7

QP 4Operator 6

QP 4Operator 5

QP 3Operator 4

QP 2Operator 3

QP 1Operator 2

QP 1Operator 1

QPOperator1 2 3 4
5

6
7 8

Query Plans:

Query Processors:
QP1 QP2 QP3
QP4 QP5

Distribution Table

Figure 5.1: Distribution Table

The methodology behind how the table is created depends on the Distribution Pattern.

This is important because it allows us the flexibility to implement any Distribution Pattern,

and plug it into the system if needed.

Algorithm 2 Round Robin Distribution Pattern.
1: for qp in queryP lans do
2: for Operatoro in qp do
3: Machinem← getMachineWithMinWorkload()
4: ASSIGN o tom
5: end for
6: end for

In our implementation we introduce two distribution patterns, commonly used in dis-

tributed systems in other disciplines [27][32][34]. Thesealgorithms were chosen because

of their effectiveness in other disciplines. Round Robin (Algorithm 2) is a common al-

gorithm used in distributed systems such as [23] and Grouping Distribution (Algorithm

3) and various other algorithms are common in distributed database systems such as [29].
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Grouping distribution was selected to help reduce the associated network costs [29] of the

distribution. We will now define these two algorithms:

• Round Robin Distribution. Iteratively take each query operator and place it on the

query processor with the fewest number of operators. This will ensure each proces-

sor has an equivalent number of operators (i.e, an equal workload). In Algorithm 2

we define workload as the number of operators on the query processor.

• Grouping Distribution. Take each query plan and create sub-plans for each query

where neighbor operators are grouped together. Then dividethese groups among

the available query processors. This distribution ensuresthat few network connec-

tions are made, since adjacent operators are for the most part kept on the same

processor.

Figure 5.2 shows how a query plan, in this case Query Plan 2, may be distributed with

the Round Robin Pattern. Figure 5.3 shows how the same plan will be distributed using

the Grouping Distribution algorithm. We can see that with this query plan, Grouping

Distribution minimizes the number of network connections.

The Round Robin Distribution in contrast distributes in a completely different man-

ner, fragmenting the query plan into 12 pieces, and causing atotal of seventeen network

connections, nine more connections than the grouping distribution! We also observe that

data that flows through a query processor assigned by the Round Robin algorithm may

flow back through it for a second (or even third) time for processing. Finally, Round

Robin put 3 of the join operators onto one machine! This will create a bottleneck for this

query processor due to the expensive join cost.

Our first goal is to create a general framework for managing operator allocation. Sec-

ond our goal is to then implement a few distribution patternsto compare the trade-off
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Algorithm 3 Grouping Distribution Pattern.
1: numMachines ← machines.getCount()
2: totalOperators← queryplans.getAll().getSize()
3: avgNumOpsPerMachine← totalOperators/numMachines
4: count← 0
5: UsedOperatorsTable← null
6: Operatoro← null
7: Machinem← getNextQueryProcessor()
8: for qp in queryP lans do
9: if count < avgNumOpsPerMachine then

10: if o = null then
11: o← qp.getNextLeaf()
12: else
13: o← o.getNextOperatorInTree()
14: end if
15: UsedOperatorTable.add(o)
16: ASSIGN o tom
17: count← count+ 1
18: while o.hasMoreParents() do
19: if count < avgNumOpsPerMachine then
20: Operatorp← o.nextParent()
21: UsedOperatorTable.add(p)
22: ASSIGN p tom
23: count← count+ 1
24: end if
25: if p.getDescendantCount() + count < avgNumOpsPerMachine then
26: while p.hasMoreDescendants() do
27: Operatorc← o.nextDescendant()
28: UsedOperatorTable.add(c)
29: ASSIGN c tom
30: count← count+ 1
31: end while
32: end if
33: end while
34: else
35: count← 0
36: Machinem← getNextQueryProcessor()
37: end if
38: o← null
39: end for
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M1 M2 M3Legend:

Figure 5.2: Example of the Round Robin Distribution Patternusing Query Plan 2.

between different properties of distribution. Future workfor this project will be in de-

signing novel distribution patterns to maximally boost query performance.

After the distribution table is created, it is then validated by our Query Plan manager

for two conditions:

• Every query operator is represented in the table.

• Every machine that is represented responds when asked if it is “still alive”. A

processor that is alive is one who has active threads, and is ready to process data.

When a distribution table passes validation, the Connection Manager distributes the

query plan among the query processors. The Connection Manager is capable to take any

Distribution Table, analyze it and connect the machines accordingly. The Connection Al-

gorithm (Algorithm 4) steps through the process of distributing the query plans according

to the distribution table. This algorithm is linear in the number of operators in the table.
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Figure 5.3: Example of the Grouping Distribution Pattern using Query Plan 2.

Once the Connection Algorithm 4 has completed, query execution can begin on the query

processors.

5.1.4 Base Distribution Experiments

Given the different distributions generated by the distribution algorithms, there were four

questions that needed to be answered:

1. What happens when we try to distribute a plan that is small enough to perform well

on a single query processor?

2. How much of an improvement can we see over the “traditional” single query pro-

cessor solution (i.e, a centralized query engine)?

3. Does the type of distribution pattern play a significant part in the performance of

the query plan?
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Algorithm 4 Connection Algorithm.
1: while Operators left in Distribution Tabledo
2: Operatoro← DistributionTable.nextOperator()
3: Machinem← DistributionTable.getMachine(o)
4: OperatorArrayparent← o.getParents()
5: OperatorArraychildren← o.getChildren()
6: SendACTIV ATE Connection tom for o
7: for p in parentArray do
8: Machinem1 ← Table.getMachine(p)
9: SendSENDDATA Connection tom to send fromo tom1

10: SendRECEIV EDATA connection tom1 to receive fromo
11: end for
12: for c in childArray do
13: Machinem2 ← Table.getMachine(c)
14: SendSENDDATA Connection toy to send fromy tom2

15: SendRECEIV EDATA connection tom to receive fromc
16: end for
17: if o connects to a streamthen
18: SendRECEIV EDATA connection tom to receive Streams
19: SendSTARTSTREAM connection to theSource(s) to start sending
20: end if
21: end while

4. Based on these experiments, what observable system resources are affected by dis-

tributing query plans?

To perform these experiments, we used the same testbed as in Section 4.3.1 with a

variety of query plans, with varying window sizes for 10 seconds to 60 seconds:

• Query Plan 1: 5 operators with a depth of 5 and a breadth of 1.

• Query Plan 2: 20 operators with a depth of 9 and a breadth of 6.

• Query Plan 3: 40 operators with a depth of 14 and a breadth of 8.

• Query Plan 4: 80 operators with a depth of 14 and a breadth of 16.
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5.1.5 Centralized Processing Versus Distributed Processing

First we want to observe what happens if we distribute a queryplan among a cluster of

machines, even if the processing could easily be performed on a single machine. Figure

5.4 shows the throughput of a very small query plan (5 single stream operators) with one

single input stream and one output stream for different query distributions from 1 to 5 ma-

chines. We can see that even when the query plan is distributed over five machines it still

has the same throughput as a centralized (1 machine) processor. At first this may seem

surprising because one would assume that the added network cost would slow down the

overall query processing and thus throughput, especially as the number of query proces-

sors grows larger. We note that each operator runs in parallel in the distributed processing

environment, helping to compensate for the cost of sending tuples across the network.
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Figure 5.4: Throughput of Query Plan 1 with a Window of 0 seconds. Round-Robin
Distribution.

We observe in Figures 5.5 and 5.6 that query plan distribution is just as effective in

multi-stream query plans with small windows. We can see thatwe get similar behavior,

that is more query processors will exhibitat leastthe same throughput as a single query

processor. This is an important point to make, because we canconclude that it is beneficial

to distribute small query plans over the processing cluster. This illustrates that even the
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smallest plans can be distributed without decreasing performance.

5.1.6 Distribution of Query Plans

In this section we will show experimental studies performedon the query plans described

in Section 5.1.4 to show how a distributed processing environment can improve the per-

formance of the DSMS. We use as a performance measure as thethroughputof the query

plan, or thetotal number of tuples outputted over a period of time. We use this criteria as

it indicates how fast we can process the data coming into the system, and producing the

result to the user in a more efficient manner. By distributingthe query workload over a

cluster of machines we are able to improve query execution performance by parallelizing

query operators, also giving each operator more time slicesto be processing data.

In Figures 5.7 and 5.8 we use the Round Robin and Grouping Distribution Patterns,

respectively. In both cases, we can see that the total throughput is improved by using

multiple query processors. In both cases we can see a 25% performance increase over that

of a single query processor. We also observe that the performance increases as we increase
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Distribution.
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Figure 5.7: Throughput of Query Plan 2 with a Window of 10 seconds. Round-Robin
Distribution.

the number of machines. This is a logical conclusion since each query operator will have

a larger CPU timeslice to run if there are more query processors. This is especially true

with operators that tend to take longer amounts of time to process for each incoming tuple.

This is especially apparent in a window join operator, wherethe larger the window and

arrival rates of data streams the more the processing time will increase (Equation 3.3).

We find that as more operators (especially join operators) are added to a query plan, the
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bution.

usage of multiple query processors allows for a linear throughput, as shown in Figures

5.9 and 5.10.
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Figure 5.9: Throughput of Query Plan 3 with a Window of 10 seconds. Grouping Distri-
bution.

In Figure 5.9 we observe the throughput of Query Plan 3. The results are similar to

that of the Query Plan 1 (Figure 5.6), except in this case, we can see the single query

processor is leveling off in execution, while the multiple processors continue to linearly

process data. After 30 minutes we find a 33 percent increase inperformance by using five
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query processors. This is the first example we see where a single processor cannot handle

the load of the query plan. It will continue to get worse as we continue to run the query

plan over an even longer time period.
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Figure 5.10: Throughput of Query Plan 4 with a Window of 10 seconds. Grouping Dis-
tribution.

Next in Figure 5.10 we now observe the performance of a large query plan (Query

Plan 4). Here we see that the single query processor runs out of memory after executing

for 20 minutes. The large amounts of data flowing through the system and the large

states of the join operators are filling up memory too quicklyin the single CPU system.

Figure 5.11 shows how the single processor memory usage jumps up considerably after

approximately 10 minutes of execution as the machine receives larger amounts of data

from the children join operators. After a while, the query processor cannot keep up with

the large amounts of data flowing into the query processor. Because of the large number

of operators per machine, the joins are not getting as much CPU time as they would if

there were more machines.

We also note that Query Plan 4 has 16 streams flowing into the processor and 2 streams

flowing out for 18 total network connections. As shown in Section 4.3.4, our query pro-

cessors can effectively handle 12 connections. The large number of connections into this
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Figure 5.11: Tuples in memory during execution of Figure 5.10

single query processor would be taking away from the CPU thatthe query processor can

devote to actually query processing tasks. By splitting these 18 connections among more

machines, we are able to keep the number of connections per machine small.

5.1.7 Comparison of Distribution Patterns

We observe in this section that different distribution patterns allocate space very differ-

ently, sometimes causing many more network connections than others. In this section

we compare and contrast the two distribution algorithms in particular: Round Robin (Al-

gorithm 2) and Grouping Distribution (Algorithm 3). We willshow in our experimenta-

tion that the distribution algorithm that we choose can havea drastic effect on our query

processor performance. First, recall that the Round Robin distribution algorithm will

distribute query operators in a cyclic fashion, always allocating the next operator to be

distributed to the machine with the fewest operators. This balances the total number of

operators assigned to each query processor. The Grouping distribution attempts to make

large chunks of operators that are adjacent to each other in terms of data flow connections.

Then we split those up among the query processors as evenly aspossible, such that each

processor has a similar number of query operators.
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Figure 5.12: Round Robin vs. Grouping Distribution across 4query processors.

We will now compare the two algorithms to assess their effectiveness. Our first exper-

iment distributes a query plan of 5 expensive Join Operators(Query Plan 1). The window

size for each operator is 60 seconds, and each operator will output twice the data that came

in. In Figure 5.12 we observe that the Round Robin algorithm has a better throughput at

first as the query plan begins, but slows down considerably asthe query plan executes

for longer periods of time. In contrast, we see that the Grouping Distribution algorithm

achieves linear throughput, and over time has a better throughput.

M1 M2 M3 M4

Round Robin Distribution
M1 M2 M3 M4

Grouping Distribution

Figure 5.13: Distributions for Figure 5.12
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Looking at the algorithms and the query plan, this outcome can be explained as fol-

lows. The Round Robin algorithm may often allocate two operators onto one machine

that are not adjacent. Normally this is not a problem. However in this particular case,

the data flows first into the query processor from the stream source and then is output to

another machine. That very same data that left the machine isthen sent back in at a down

stream location of this query plan to operate on the top (root) join operator. This is bad for

two reasons: First, the most expensive join operator is the one at the top of the query plan,

as it has to process the largest volume of data. Secondly, we are spending time sending

data out of the first machine that will later be processed by that same machine again! This

distribution exhibits a slower behavior after some time of execution as more and more

data is created by the operators over time. The root operatorslows down, thus reducing

the speed of throughput over time. The Grouping Distribution alleviates this problem by

grouping the children joins onto one machine and thus minimizing the total amount of

data sent across the network (and number of connections).

We now examine Query Plan 2 in Figure 5.14 which has a total of 20 operators, 5 of

which are joins. Similar to the last experiment, each join isconfigured to output twice

the data that is input, and all of the single stream operatorsare configured to output 100%

of its input, to maximize the cost of the operator. We now analyze different distributions

among 1 to 5 query processors (Figure 5.14)

The first (and most obvious) observation is that the Groupingalgorithm always wins.

There are two problems that Round Robin introduces that contribute to this outcome.

First, in all 3 cases, 3 of the 5 joins were put on one query processor using the Round

Robin Strategy. We observe that the join is far more expensive than the single stream op-

erator (Section 3.2), and ideally should be evenly distributed across all query processors.

Our Grouping Distribution helped in this situation, partitioning the join operators to all

machines. The second problem that we see is that the Round Robin Distribution creates
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many more network connections than the Grouping Distribution. As discussed in Section

4.3.4 a single query processor has a limitation in terms of the number of network connec-

tions it can handle simultaneously. Grouping distributionnever went above 5 connections

per query processor in our examples, where Round Robin went as high as 15 connections

per machine!

To further illustrate the limitations of the Distribution Patterns we observed execution

with even larger query plans: Query Plans 3 and 4. Figure 5.15shows the throughput of

each algorithm for Query Plan 3, and Figure 5.16 shows the throughput of Query Plan 4.

Here we observe that as the number of query operators increases, Round Robin and

Grouping Distribution tend to drift apart even further in performance. This is for the same

reasons stated for the previous experiments. Round Robin makes no guarantee of what

operator appears on a query processor, and also tends to create many network connections

because of its even-handed nature. We also see a “step” like shape in the graph for Round

Robin. Upon looking on the execution, the query processor that outputs the query result

to the end user spends much of its CPU time receiving the largeamounts of data from the

many connections that Round Robin introduces, and then onlyschedules the root operator

periodically, because of the large number of operators on the query processor. In the case

of Figure 5.15 there are 10 operators per machine, 3 of which are a join, leaving little

time for the root operator to be scheduled to output result tuples. We thus see a ”step” in

throughput, corresponding to each time the root join operator is executed.

We conclude that Grouping Distribution tends to do better than a simple Round Robin

algorithm. When we first distribute a query plan, we only knowstatic query plan in-

formation: The type of operators, number of machines, number of query plans, window

size, etc. We know nothing about the data rate, selectivity of each operator or many other

factors that could prove important to execution. Because ofthis we have to listen for

statistical feedback from each query processor to improve upon our initial distribution if
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need be.
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(b) 4 Query Processors
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Figure 5.14: Round Robin vs. Grouping Distribution
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Figure 5.15: Round Robin vs. Grouping Distribution. Query Plan 3 over 4 Machines.
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Chapter 6

Self-Adaptive Redistribution Strategies:

Algorithms & Evaluation

This chapter discusses and outlines the steps necessary to improve performance by redis-

tributing query operators amongst the cluster of nodes. Static distribution plans can only

take into account query and system properties such as shape and size of tree, number of

processing nodes, number of input streams, and other data that can be obtained by looking

at the layout of the processing cluster and structure of query plan(s). We cannot however

count on properties such as state size, selectivity, input data rate, or the expected output

rate of the query plan, since this not known until execution.Worse yet is the fact that

these runtime properties can change over time depending on many external factors. Even

with fluctuating conditions, we can monitor these conditions in D-CAPE to redistribute

query operators during runtime. Unlike Aurora* [20], we will allow for redistribution

among any of the query processors in our computing cluster. We will also show that

the cost of redistribution using our redistribution algorithm is not very costly, even for

stateful operators. We will illustrate through experimentation that we are able to monitor

the query processing nodes and adaptively redistribute to improve the performance of the
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query processors over time.

6.1 Cost Models

Before deciding how to redistribute operators to improve performance, we first have to

definequery processor workload. That is, we have to define a cost associated with each

query processor that tells us how “full” the processor is. There are many potential ways to

model cost. Hence, we have built a generic cost model calculator in D-CAPE that allows

us to plug in any cost model calculation that we wish. In this section I will first discuss

the generic framework for defining a cost model. I will then discuss a specific algorithm

that was used for experimentation in this thesis.
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Machine 4Operator 7

Machine 4Operator 6

Machine 4Operator 5

Machine 3Operator 4

Machine 2Operator 3
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Op CostCostMachine

Cost Table

Statistics Table

Distribution Table

Figure 6.1: Cost Model Creation

In order to determine the cost of each query processor, we need to know three pieces

of information. First we must know the current distributionof query operators. The

Distribution Table provides this information. We also mustknow the current statistics on

each machine. In D-CAPE, each cost model is based on a set of statistics that each query
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processor must send back periodically so cost can be calculated. Finally, we must know

about every query processor in the cluster so we can retrieveany static properties about

the processor that are needed.

Figure 6.1 illustrates one example of a cost table using a cost model. In this example,

we are considering the workload of a query processor to be thepercentage of memory

filled by tuples. In our implementation, we can useany cost model based on statistics

collected in the system. This example has been chosen because of its simplicity. In this

scenario, we receive the number of tuples each query processor has in its memory at a

given time. We can get the capacity of the query processor from its properties. We then

create acost tableas illustrated on the right side of the arrow that shows each query

processor, its related cost, and the cost for every operatorrunning on the processor.

This type of abstraction was chosen for several reasons. First it is easy to break down

the workload by operator if necessary. That is, we can determine a fixed cost for every

operator on a machine, with respect to how much it is “filling up” a query processor. We

also calculate the cost of a machine as a normalized number, typically between zero and

one. This is done for generality. In this manner, we are able to give our redistribution

policy a table showing costs, but the policy need not know what these costs are. This

way we can use any combination of cost models and redistribution policies, as they are

orthogonal.

6.2 Experimental Cost Model

In this experimental work, we will measure the cost (workload) of a query processor as the

rate at which it is sending tuples across the network. This model was chosen because of

the earlier experiments discussed in this thesis. By havinga large number of input/output

connections, performance can degrade significantly. By monitoring how fast a query
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processor can send tuples across the network, and reallocating operators, we may be able

to improve overall performance. By observing the output rate of each query processor,

we can move query operators off of the machine so the output rate of the query processor

can improve (it will spend more time processing fewer operators on that processor). The

algorithm for determining the cost is shown in Equation 6.1.

NetworkOutputRatei =
|O|∑

j=1

OutputRatej (6.1)

For each processor, we determine its total output rate by summing up the output rates

of each of the query operators on the processor that produce data to be sent across the

network (Equation 6.1). The output rate for a Query Processor i is thesumof the output

rate of each Operatorj on Query Processori. The relative cost (in terms of output rate)

of each operatork is relative its share of network traffic that it creates versus that of the

query processori it is on (Equation 6.2). Cost is then input into our redistribution policy

to determine how we can re-arrange the query operators to tryto increase the output rate.

OperatorCostk = OutputRatek/NetworkOutputRatei (6.2)

Based on our empirical evidence in Chapters 4 and 5 we introduced two examples

of cost models based on the number of tuples in memory and the network output rate.

Each can be used to determine the workload of a query processor. We will use the net-

work output rate cost model in our Redistribution Policies to observe how query operator

reallocation improves performance. There are many alternate cost models that could be

created and compared to see which factors most directly influence query processor per-

formance.
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6.3 Redistribution Policies

The redistribution policy in D-CAPE is responsible for reallocating query operators across

the cluster of query processors based on statistical feedback from each query processor.

As discussed in the previous section, this feedback is captured by our Cost Model. Our

redistribution policy uses this to determine the re-allocation of operators. In fact, the

redistribution is more powerful than the initial distribution by allowing special parameters

to be taken into consideration when deciding bothwhenandhow to redistribute. Table

6.3 shows the parameters that our redistribution policies support.

Parameter Description
Cost Table A table representing the costs of each query processor
Percent Difference Redistribute if the cost difference exceeds a particular percentage
Eligible Operators A list of operators that we are allowed to move
Eligible Processors A list of processors that can get operators to work on
State Size Operators under a certain size may be moved.

Table 6.1: Redistribution Parameters.

Besides the absolute cost, we can also specialize redistribution by providing aPercent

Differenceparameter that tells us how far apart the best and worst costsshould be before

we even consider redistributing. 0% means distribute if there is any cost difference at all

and 100% means never distribute. We also pass in a list ofEligible Operatorsthat are

only considered for reallocation. Along the same lines we can pass in a list ofEligible

Processorsthat are available to do work. Finally, we can tell the redistribution policy to

only consider operators with a particular state size range,aimed at reducing the time it

takes to move an operator. For any particular Redistribution Policy, it may use one or all

of these parameters in making its decision. In D-CAPE, we determine these parameters,

other than the cost table, by an initial configuration. Usingthese parameters we are able

to use Algorithm 5 to determine how to reallocate the operators (if at all).
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Algorithm 5 Redistribution Algorithm
1: costTable← costModel.getTable()
2: maxCost← costTable.getMaxCost()
3: minCost← costTable.getMinCost()
4: if max−min > redistributionPercent then
5: while !valid(newDistribution) do
6: newDistribution← RedistributionPolicy.redistribute()
7: end while
8: differenceTable← newDistribution− currentTable
9: connectNewDistribution(differenceTable) (Algorithm 4)

10: currentTable← newDistribution
11: end if

Here, we use the Redistribution Policy to decide on a new allocation of operators.

We then have to reconnect the query processors based on this new distribution. This step

is critical, as it has to be fast enough so as not to interrupt query execution, and also

correct, in that the data order does not change and no data is lost during the reallocation

process. In Figure 6.2 and Algorithm 6 show how we move a queryoperator from one

query processor to another on the cluster. This is similar tothe work in [32], however we

have other requirements such as moving the state of the operator and ensuring that the

data arrival order is unchanged.

We first find out the new query processor that will be processing the operator, and

notify it that it will be doing work on this operator (Step 1).We then create a data flow

connection on the new query processor to the query processors that the operator will send

its data to (Step 2). We make this connection first so when the operator is activated on

the new machine, the data will be able to seamlessly flow from the new machine, causing

little to no disruption in data flow. We then create a data flow connection to the output of

the children operators to the new machine, so the data will properly flow to the operator

on the new processor (Step 3). This also effectively ends anydata going into the operator

on the old processor, allowing us to terminate its execution(Step 4) after its input queues

have “dried up”. Since the operator on the old processor may have state information
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Algorithm 6 Operator Reallocation.
1: for operator in differenceTable do
2: oldProcessor← currentTable.getProcessor(operator)
3: newProcessor← newDistribution.getProcessor(operator)
4: tell newProcessor thatoperator will be activated
5: for all parents of operator do
6: if newProcessor! = newDistribution.getProcessor(parent) then
7: CONNECT operator toparent onnewDistribution.getProcessor(parent)
8: end if
9: end for

10: for all children of operator do
11: if newProcessor! = newDistribution.getProcessor(children) then
12: CONNECT child on newDistribution.getProcessor(children) to

operator
13: end if
14: end for
15: for all children of operator do
16: DISCONNECT child onoldDistribution.getProcessor(children)
17: end for
18: DEACTIV ATEoperatoronoldProcessor
19: SENDSTATEfromoperatoronoldProcessortooperatoronnewProcessor
20: for all parents of operator do
21: DISCONNECT operator onoldProcessor to parent
22: end for
23: ACTIV ATE operator onnewProcessor for processing
24: end for

that will be needed, we then send the state from the old processor to the new processor.

Execution will then continue as it would if it had never moved(Step 5).

Finally (Step 6), we need to ensure that the data order has notchanged. Before al-

lowing the operator to run on the new machine, we will ensure that the data from the old

machine is sent to the parent operator and then the connection is terminated [40]. Once

all parent connections are terminated on the old machine, weare able to activate the oper-

ator on the new machine. As you can see, there is quite a bit of communication involved

in moving an operator to ensure correctness. We package thishandshake into 6 distinct

steps to only communicate between the Distribution Managerand the Query Processors
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Figure 6.2: The Six Steps of Redistribution

when absolutely needed. This will minimize the cost of moving the operator to the new

machine. Our experimental study confirms our hypothesis that the cost of moving a query

operator using this algorithm is negligible.
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6.3.1 Cost of Redistribution

In our experimental evaluation, we found the cost of moving an operator to be negligible.

We ran an experiment using Query Plan 2 with a 20 second window. We moved a stateful

window join operator between two machines back and forth, every minute, to see how it

would degrade performance (if at all). We were careful to notcreate more connections

when necessary when moving the operator, because this wouldintroduce extra work for

the query operators. It was important to isolate the movement so we could measure the

cost of moving the data stream connections and sending the state across the network.

Figure 6.3 shows the performance of the query plan when we do not redistribute versus

when we move one operator back and forth, across machines, every minute.
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Figure 6.3: Throughput of Query Plan with Redistribution Every 60 seconds

We see that the cost of moving the operator is negligible, because the throughput of the

query plan does not change over the 30 minute runtime. This result was expected because

of the way that the operator is moved across machines. Because we create the connections

for the data to flowbeforewe start sending the data, we are able to “flip a switch” and

in the eyes of the query processor, turn off one operator and turn it on another machine.

This is especially true for larger query plans such as our 20 operator plan because the
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probability of the operator being scheduled for execution on its old processor is only 5%

(1 in 20). Thus, it is highly unlikely that the query scheduler would even notice that the

operator was moved. Instead the scheduler would simply schedule other operators to run.

6.3.2 Redistribution Policies

Now that we have discussed our redistribution algorithm andhow we can obtain the infor-

mation necessary to determine the cost for a query processor, we have to determine how

we will interpret these costs to reallocate the query operators. There are many possible

ways to decide how to perform reallocation. In our current system, we focus on two of

these methods.

Balance. The balance redistribution policy tries to evenly balancethe query load

across all machines. This strategy is effective when systemresources such as memory or

CPU usage are at a premium. The policy looks at all query processors in the cost table and

aims to balance the table by moving operators from the heaviest loaded processor to the

lightest loaded processor. It then continues this process until all machines are as evenly

balanced as possible. This policy however will not take operators away from machines

that are only moderately loaded, as it may disrupt a set of operators on the processors that

were performing well.

Degradation. The degradation redistribution policy does its best effort to alleviate

load on machines that have shown a degradation in cost since the last time operators were

allocated on the machine. If the cost has degraded beyond a certain percentage we attempt

to stop the degradation by moving the most costly operators to other query processors,

giving highest preference to those operators that will remove a network connection from

the overall distribution of operators.
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6.3.3 Redistribution Experiments

Our goal in redistribution is toimprove the performance of execution during runtime.

Hence, we need to monitor each query processor, and notice when there is an overload

and try to correct it. As we saw in Chapter 5, there is no substitution for a good original

distribution pattern. However, we can tune the processing if our initial distribution is

bad, or turns bad over time. In fact, we can find a speedup of twoin some cases, as our

experimental studies illustrate.
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Figure 6.4: Redistribution of Query Plan 2, with a 10 Second Window over 3 Query
Processors.

In this set of experiments, we use the same cluster for our test-bed as in Section 4.3.1

using our Output Rate cost model explained in Section 6.2 andour Degrading Perfor-

mance redistribution policy, explained in Section 6.3.2. We use Query Plans 2 and 3 in

this section.

In Figure 6.4 we observe that our redistribution policy is able to improve the per-

formance of the initial Round Robin Distribution by 100%. The redistribution is able to

detect the declining output rate for each query processor, and reallocate the operators such

that there are fewer network connections per machine. Thus more time to process each
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operator would be available on the prior overloaded machines rather than spending time

sending the data across the network. By observing the outputrate, we were able to easily

identify bottlenecks in query plan and adjust the output rate before it had degraded too

far.
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Figure 6.5: Redistribution with 2 Machines and a 40 OperatorQuery Plan

In Figures 6.5 and 6.6 we record how redistribution affects a“good” initial distribu-

tion pattern such as our Grouping distribution explained inSection 5.1.3. Even though

the Grouping Distribution does a great job at grouping operators such that network con-

nections are minimized, we can still see a performance boostof 5 to 10% when moving

operators to other query operators by our redistribution policy. In fact during execution

with the Grouping Distribution, operators only needed to bemoved 4 times in the 30

minute span using our policy, as compared to 17 reallocations for the Round Robin distri-

bution. Regardless, we are able to improve performance by monitoring the performance

of each query processor, and then reacting to the costs associate with each processor using

our redistribution policy.

Figures 6.5 and 6.6 also show us that there is no substitutionfor a good initial dis-

tribution. In both of these experiments we see that the Grouping distribution gives us a
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Figure 6.6: Redistribution with 3 Machines and a 40 OperatorQuery Plan

big advantage with regard to the throughput regardless of the redistribution policy. How-

ever, initial distributions still lack the knowledge of runtime information such as data

rates, which can impact the performance as well. Here, a 10% speedup will increase the

throughput by almost 800,000 tuples over a 30 minute span, oralmost 30,000 tuples per

minute.

In this section I have described a framework for reallocating query operators among a

cluster of query processors, with the flexibility of adding new reallocation schemes to the

system without knowledge of the entire distribution framework. I also show experimen-

tally that reallocation of query operators over a cluster ofmachines not only increases the

performance of the query processors but is also done with little to no overhead, assum-

ing we intelligently move the query operators using our knowledge from Chapter 5, and

learned characteristics from a cost model.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis was able to uncover many of the issues in designing and implementing a

D-DSMS. Because of the nature of streaming data and the uniqueness of streaming data

operators, new algorithms had to be developed to distributeand reallocate query operators.

In addition, we were able to observe the costs associated with query plan distribution

and write cost models and redistribution policies that wereable to improve query plan

performance based on statistical feedback from the clusterof query processors.

This work is a starting point in the area of Distributed Data Stream Management Sys-

tems. Because this field is very new, it was firstessentialto come up with an architecture

that is bothflexibleandscalable. D-CAPE achieves this goal by allowing for individual

cost models and distribution algorithms to be “plugged in” to the system, without any

special knowledge of the inner workings of the system. By creating a Distribution Man-

ager that was tiered in nature, it allows in the future for clusters of machines to have their

own Distribution Manager which is controlled by a higher level manager, thus allowing

for a greater number of query plans and the ability to effectively distribute these plans to
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a cluster of machines that will be effective in processing the query.

Our experimental evidence shows that Query Plan distribution is effective even for

small query plans, and becomes very effective as query plansbecome large. In many

cases, we were able to achieve a 100% performance increase over a single query proces-

sor, by using a distributed environment. We also find that that the main costs in query plan

performance include the number of connections per machine,and the total memory used

by the machine. Query processors have better performance when it has to manage fewer

connections. We were also able to show that the type of initial distribution algorithm

used is essential in how well the query processors will perform overall. Algorithms that

tend to create extra network connections, such as Round Robin do not perform as well as

algorithms that take network connections into account (Grouping Algorithm).

Redistribution experiments show that we are able to effectively reallocate query op-

erators over time if we observe a degradation in performanceat runtime. Reallocating a

query operator requires virtually zero overhead as we are able to maintain the flow of data

through the cluster using our specialized redistribution protocol.

7.2 Future Work

This thesis has opened the door for many potential areas of future work in Distributed

Data Stream Management Systems. The flexible architecture of the new D-CAPE system

allows for the study of stream processing in many areas.

First this work can be expanded by experimenting with other distribution algorithms

and query plans, and studying how they affect overall query plan performance, and what

other factors influence performance. Using this knowledge new cost models can be cre-

ated that can determine the workload of a query processor in different ways using these

observed factors.
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Redistribution is another key area of future research. There are potentially many other

costs associated with query processor performance. Futurework can include determin-

ing more of these costs and writing redistribution policiesthat take these costs, or any

combination of costs in consideration when deciding how to redistribute a set of query

plans.

Research can also be done in using different scheduling algorithms such as Chain

[7] or Train [13] scheduling to observe to what degree scheduling algorithms on a single

query processor influence performance, and also if particular scheduling algorithms work

well with specific query operator distributions.

Finally, work can be done with other data sets of varying volume, such as motion data,

traffic data [30] or other forms of streaming data that will beused in future Data Stream

Management Systems.
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