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Abstract

The study of systems for querying data streams, coined Dia¢@r8 Management
Systems (DSMS), has gained in popularity over the last skyears. This new area of
research for the database community includes studies @3 awech as Sensor Networks,
Network Intrusion, and monitoring data such as Medicineckstor Weather feeds. With
this new popularity comes increased performance expeogtwith increased data sizes
and speed and larger more complex query plans as well as bigimes of possibly small
gueries. Due to the finite resources on a single query procdature Data Stream Man-
agement Systems must distribute their workload to multiplery processors, working
together in a synchronized manner.

This thesis discusses a new Distributed Continuous QuesteBy(D-CAPE) devel-
oped here at WPI that has the ability to distribute query plaver a large cluster of
machines. We describe the architecture of the new systeiigsofor query plan distri-
bution to improve overall performance, as well as techrsdoe self-tuning query plan
re-distribution. D-CAPE is designed to be as flexible as ipbs$or future research. We
include a multi-tiered architecture that scales to a langmlmer of query processors. D-
CAPE has also been designed to minimize the cost of the comeations network by
bundling synchronization messages, thus minimizing padent between query proces-
sors. These messages are also incremental at run-timeitoraidimizing the communi-
cation cost of D-CAPE. The architecture allows for the fléxibbcorporation of different
distribution algorithms and operator reallocation p@gi D-CAPE provides an operator
reallocation algorithm that is able to seamlessly move agraipr(s) across any query
processors in our computing cluster. We do so by creatingg$jibetween query proces-

sors to allow the data streams to flow, and then filling thepegwith data streams once



execution begins. Operator redistribution is accomptidhesystematically reconnecting
these pipes as to not interrupt the data flow.

Experimental evaluation using our real prototype systent jist simulation) shows
that executing a query plan distributed over multiple maekicauses no more overhead
than processing it on a single centralized query processen for rather lightly loaded
machines. Further, we find that distributing a query plan rgn@ cluster of query pro-
cessors can boost performance up to twice that of a cemdadSEMS. We conclude that
the limitation of each query processor within the distrdzubhetwork of cooperating pro-
cessors is not primarily in the volume of the data nor the nemalb query operators, but
rather the number of data connections per processor andlabateon of the stateful and
thus most costly operators. We also find that the overheadsbtflaiting query opera-
tors is very low, allowing for a potentially frequent dynamnedistribution of query plans

during execution.
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Chapter 1

| ntroduction

Recently, a growing area of research in the database comymsitine study of persistent
gueries over streaming data. This core functionality oaddteam monitoring is being
coined agContinuous Query Processing new effort is being undertaken by the database
community to derive a new general class of continuous quegines called Data Stream
Management Systems (DSMS). Data Stream Management Systeroste queries on
data that is continuously arriving, and then return theltesithe query to the end user

in a real-time streaming fashion.

A DSMS may need to operate on several thousand queries atgorere streams of
data for applications such as online auctions, web sereersy monitor stock market
trends. The DSMS typically answers queries about the stdateealata over a period of
time, and all queries are based on a partial data set, as neviscaways arriving. For
instance the questidiWhat is the highest stock price on the New York Stock Exohang
over the last two hours?tan be answered by the DSMS, with the answer of the question
always changing over time. This concept is different thantthditional database model
where data is already in persistent storage and a queryesl ésised on this stored data.

Traditional databases have the advantage of knowing hovhrdata there is to query
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Figure 1.1: Traditional Continuous Query Processor

over, and that the data will not change (in most cases) duhagjuery. On the other
hand, a DSMS must be able to consume a partial data set and gagellt based on data

seen thus far.

1.1 Motivation

Current Continuous Query Systems such as Stream [6], Ni@§af16], Aurora [1], and
our WPI continuous query system, CAPE [35], operate oveiastis of data on a single
processor and output results to the best of their abilityorbter for Continuous Query
Systems to operate in real-time, it is essential that akh dakept in main memory, as
once data is written to persistent storage, the system slows considerably. Current
research that focuses on the issue of minimizing persistenage use in a continuous
guery system includes Load Shedding [1], Operator Scheglii][36] and Operator-
State purging [24].

The potential benefits and applications of data stream psirtg are becoming more

apparent and popular for many applications in differentrmss areas. These applica-



tions include monitoring remote sensors [30], and onlim@gaction processing [38].
However, as the popularity of these systems increases, anel queries are registered
and data streams grow larger, it will besentiato improve the processing power of these
applications.

However, even with the current research, single CPU sysaeensot likely to be suf-
ficient at handling future DSMS as 1) streaming data getsetaagd faster as network
speed improves, 2) queries get larger, more complicategkamdiful, and 3) more so-
phisticated and complex operators are incorporated indasting systems (such as data
grouping or statistical summaries).

Given the finite amount of CPU speed and memory on a singlemsyst distributed
architecture will be better suited to handle the load, \miity, and complexity of stream-
ing data. Very recently, research is now under way in det@nmgimethods to distribute

these query plans over a cluster of processing nodes [33][20

1.2 Our Approach

To alleviate this problem, an extension of CAPE called D-EARs been developed that
exploits a cluster of processors to aid in the processingwficuous queries. This thesis
discusses the implementation of D-CAPE, that extends ouecuDSMS, CAPE [35]
to work over a cluster of query processors using a centdhlipatroller. D-CAPE is de-
signed to effectively and efficiently distribute query paand monitor the performance
of each query processor with minimal communication betwéercontroller and query
processors. We bundle synchronization messages, thusiiniing packets sent between
guery processors. These messages are also incrementaltaheuto aid in minimizing
the communication cost of D-CAPE. We process data by crgagiipes” between query

processors to allow the data streams to flow, and then filliege pipes with data streams



once execution begins. It can also reallocate query opstato complete sub-plans to
a different query processor at runtime during times of hdaag, or if it is determined

by D-CAPE, using a cost model, that the reallocation will $taihe performance of the
DSMS. D-CAPE has a specialized algorithm for reconnectigge pipes during the re-
allocation process, to ensure no data is lost and that da&a s®ps flowing through the

query plans.

1.3 Contributions

This thesis contributes to the advancement of Data Streamayianent Systems in the

following ways:

¢ A well-designed, distributed architecture called D-CARIS been created for con-

tinuous querying that allows for flexible query allocatiomalistribution strategies.

e D-CAPE is scalable allowing for distribution of query plaar®ong any number of

guery processors by using a multi-tiered controller asdtiire.

e D-CAPE allows for any number of distribution algorithms te basily plugged
into our system. For our current system, we developed twialdligion algorithms,
Round Robin Distribution and Grouping Distribution, to brz& the ways different

guery plan distributions affect query processor perforcean

e D-CAPE allows for any cost model to be created for monitoagh query pro-
cessor. These cost models can use the statistical data teabrded by each query
processor about the data, query plan or individual queryaipein determining the

workload for a query processor.

e D-CAPE has the ability to actively monitor each query preocego determine its



workload at runtime and reallocate any number of query dpesaoany query

processor in the processing cluster.

D-CAPE also allows for any operator redistribution polioye implemented that is
independent from the cost model used to determine worklohais. gives D-CAPE

the flexibility to allow any redistribution policy to opegatisingany cost model.

D-CAPE implements aewoperator reallocation algorithm that is able to move op-
erator(s) across any query processors in the computintechwgthout interrupting

the data flow or query processing on any of the involved pismss

The original CAPE DSMS was improved by creating new comptsém boost
performance, and also by removing and optimizing other comepts. The im-
provements sparked a 10% jump in query processing perfarafaom the original

CAPE design.

Our experimental studies confirm that a DDSMS can effegtiparallelize the ex-
ecution of query operators even during periods when a psaogsode is not filled

to capacity, thus improving performance even for small gydans.

Experimental studies find that our DDSMS allows for largergysans to be pro-
cessed efficiently; up to 100% faster than a typical DSMSomescases a central-

ized DSMS fails because of the lack of processing power.

We show experimentally that the initial distribution alglbom used for distributing
query plan workload plays a significant part in the overalf@enance of the query

plan.

Experimental studies also confirm that the overhead foisteduting an operator
is negligible. This allows our D-CAPE architecture to realite a query operator

or an entire query sub-plan to any query processor in theezlus

5



e Experimental studies also show that D-CAPE can effectivebynitor each query
processor and reallocate query operators to improve thealbyeerformance of
the query plan. We find that operator allocation can imprceegomance over a

distribution algorithm alone by up to 100%.

1.4 Outline

First, in Chapter 2 we will discuss the current work in DSMStsyn and also earlier
work in Distributed DBMS systems. Many of these concepts$ eghtribute to our new
D-DSMS design. In Chapter 3 we will briefly discuss the baokad of Data Stream
Management Systems. We will show an example query for whiblS®S is used, and
outline a DSMS operator, and how it is different from the itiadal SQL operator. In
Chapter 4 we will outline the design of our new D-DSMS, D-CAR¥e will experimen-
tally show that the network overhead for our design is lovd glnstrate steps that were
taken to minimize the overhead of our design. Chapter 5 dgsuthe initial distribution
of query operators among a cluster of machines, and the @ibensts of distribution
over the query processor cluster. We will experimentaligvsithe performance differ-
ences in the type of distribution algorithms used in D-CAREChapter 6 we discuss
operator reallocation, and our mechanism for determinwegvtorkload of a query pro-
cessor. We discusshich operator to move andhereto move it. Using experimental
results, we find that we can effectively monitor query preoes and improve query per-
formance by using our operator reallocation strategiesallyi in Chapter 7 we outline

our conclusions and future work.



Chapter 2

Related Work

In this chapter we will briefly discuss some areas of relatedkvin both Data Stream
Management Systems and also other areas that utilizebditn techniques, such as op-
erating systems and traditional Database Managementr8ysiiéhis related work serves

as a starting point for creating our own D-DSMS.

2.1 Current Data Stream Management Systems

Data Stream Management Systems are gaining tremendousaptpin the Database
field as remote data streams become available via sensora@mitbrs, and as the type
of query ispersistent That is, the query is always running in the system and igmetii
to the user in real-time. A DSMS also introduces many new ahereésting problems
[6][12] in current research such as high volumes of inpuad&4][26], operator schedul-
ing [7][13] and data filtering [31]. There have been many eys proposed, each of
which contributes differently to this growing field.

Aurora [1] is a Data Stream Management System that mostlglossembles our

work. Aurora allows a user to register several continuousrigs, and monitor those



results through their built-in GUI. They treat query operatas “boxes” which process
streams of data. Aurora’s main contribution to this areaesearch is the ability for

its system to schedule its boxes and manage data betweenrynantbdisk using Qos-

based priority information. A user is able to input a gragiresenting what the ideal QoS
for the query should look like. Aurora is able to adjust iteextion (the order of boxes
scheduled and which data is stored persistently) basedo@Q&$. Aurora also introduces
load sheddindo cope with degradations of QoS in periods of bursty dataadrr

NiagaraCQ [16] is a scalable DSMS that aims to scale the nuwftgueries that a
DSMS can handle by grouping together common parts of a guary gnd also using
selection operators to its advantage by reducing the anafuntermediate data in the
system. They show that by using this grouping strategy, Huyeve scalability in the
order of thousands of queries. This work is complementauis, as we can take ad-
vantage of their query plan grouping strategies to give psiresn even further processing
power.

STREAM [6] is a DSMS whose focus is on effectively procesdiaga streams with
bursty arrival rates. If the input rate is high, the systermpragimates query results after
shedding some data. They have developed the Chain [7] opaeiteduling algorithm
that has been shown to be near-optimal in minimizing the nmgfiootprint of the system.
They have also created a Continuous Query Language (CQLh&]current DSMS
implementations can use when defining continuous queriese importantly defining
clear semantics for continuous queries.

TelegraphCQ [14] is a DSMS whose main contribution is thelstof continuous
gueries with widely varying data rates and sizes. TeledZ§pbrings us the notion that a
DSMS mustreactto data arriving into the system, rather than manage datasthheady
contained within the system. Telegraph utilizes an adegirocessing technique called

Eddies [5] that allows a flexible routing technique for tupleetween operators. Tele-



graphCQ also spun off another DSMS called PSoup [15] thatHeaability to integrate
streaming data with data that has already been capturedko di
CAPE [35] is being developed here at WPI. Much of our work isyv@milar to

that of Aurora and Stream. We also model the query plans asaflala graph where
operators are connected by data pipelines. However, thsteanproving performance
by approximation[6] or load shedding[1], we aim to improystem performance and
minimize resources by adapting at different levels of qusay execution. At the lowest
level we can adapt within a query operator using punctuatj@d]. At the query plan

level, we support query plan migration [40] and adaptiveesicting techniques [36)].

2.2 Distributed Data Stream M anagement Systems

Flux [33] is a new dataflow operator introduced in Telegra@ht@ allow to adaptively
partition an expensive operator such as a Window Join [8p][Elux encounters many
of the same problems that our D-CAPE system will encounteznaeallocating query
operators. That is, we have to have a mechanism for movingt#éiteof a query operator
to ensure that no data is lost or miscalculated by the oper&life move our state in a
similar manner to the Flux operator. We first stop the inp@ugufrom the operator. We
then marshall the state to send it across the network, amduhmarshall it after it is
received by the second query processor. Once the state iarshafied, we allow the
operator to run, which will pick up seamlessly because tageswill be the same as the
original operator. The Flux operator can complement ourARE system by adaptively
partitioning our stateful operators.

Aurora* and Medusa [9][20][26] is the first published worldreating an architectural
model for a D-DSMS. Several necessary design challengefismessed, including such

aspects as the Query Model, Run-Time Operation, RoutingfRWMessage Transport



Protocol and Load Management. They propose a “push pulliiecture where query
operators may be reallocated to only neighboring processmoas to not interrupt the data
stream. That s, there is no central controller that synulzes all of the query processors.
Instead, each query processor can communicate with thighiner when they have a high
workload and push an operator to that neighbor. They alspgs®aroperator splitting
strategy where a query operator may be replicated amongatemachines to improve
the performance of the operator, similar to Flux.

By working in this “push pull” architecture, Aurora* limithe options that the DSMS
has when there is a very high workload on multiple machirtgs.dquite possible to have
a cluster of machines where one machine is empty, but sineer&uonly considers
neighboring processors the machine will not get utilizechey also do not provide a
mechanism to move a set of nodes or a query sub-tree at once.

Our system, D-CAPE, is similar in nature to the Aurora* sgstowever, we do not
place any restriction on the location of where a query operaty be reallocated to. Our
architecture will allow operator reallocation across amg fuery processors without a
loss in data flow or data contents. Unlike Aurora*, D-CAPHizgis a centralized con-
troller. The centralized controller allows D-CAPE to mamieachquery processor and
consider the global ramifications of moving query operat@fs also show that while the
controller is centralized, it is still scalable to hundredsnore query processors. We also
allow our controllers to be multi-tiered such that we canehawltiple controllers, each
controlling a cluster of machines that may have have singjlearies or clusters that are
all in the same location.

Instead of focusing on operator splitting as Aurora* hasejave aim to first analyze
what effects the network has on query plan distribution amd tve can exploit advan-
tages in query plan execution. We then plan, as future worglter our query model to

allow for operator replication while still complimentany our architecture. There is also

10



other work in pipelined query execution [39] where non-Biag query operators can be
pipelined to improve performance. In our work, we will beeald pipeline operators be-
cause they are non-blocking, but also process them in phaaitoss the cluster of query

processaors.

2.3 Distributed Database Systems

Also closely related to this area of research is that of ithsted database systems. We are
able to use many of the principles [22] used in early resefanctiistributed database sys-
tems [22] such as Bubba [2], Gamma [23], and Tandem [37]. & hex three main types
of distributed database systems: Shared-Disk, ShareldiNpand Shared-Memory ar-
chitectures. The main advantage of the Shared-Nothingtactire is scalability. This
architecture can be scaled up to hundreds or even thous2Pdsf[processors. This is
possible because they do not interfere with one anotherShiaeed-Nothing architecture
is also most advantageous in environments where the datatisgned. By having par-
titioned data, multiple resources need not share the saskealread the data. Also, by
having non-blocking operators we are able to maximize peisth since operators need
not consume an entire dataset before returning outputisesul

In D-CAPE, we model the architecture after the Shared-Maottapproach in [22].
DSMS systems will need to be scalable, as the number of quarid the amount of
stream data grows larger. Since the data streamsadineally partitioned, it is easy for D-
CAPE to redirect the data to the proper query processor withibecting any other query
processors in the cluster. This Shared-Nothing approactinmzes query execution,
since each query processor only manages data that it needsngete the query. D-
CAPE also makes uses of non-blocking operators which wdlirmparallelism if a single

guery plan is distributed among several query process@enPoperators in the query

11



plan will be able to consume data that was output from thedo#ril, even though it is a

partial answer. This will improve the performance of our DSM

2.4 Dynamic L oad Balancing

There is also a lot of research in the area of Dynamic Loadri8alg from Distributed-
DBMS systems [10][11][32] that discuss issues such as: dataistency, reallocation
techniques, and communication costs. We find that thesedsae similar in the context
of our DSMS, and our architecture will have to be designedurhsa way to minimize
network costs [10][29] and the number of threads our systeimas [11]. Because of
these observed factors, we will create query operatoriloligions that will aim at min-
imizing the number of network connections per machine, Wwhidl aid in minimizing
the volume of data over the network and also the number oatlsren D-CAPE, as each
network connection will require a thread from the Operatygtem.

There is also work in the area of Dynamic Load Balancing of ®etvers [17][18][19][21]
which use a central controller for communicating with eaobcpssing node. These sys-
tems typically use a Round-Robin approach [17] for procekgduling or even a QoS-
aware approach [18]. The advantages of the Round-Robimagpipis that every machine
is guaranteedo have work to do. The disadvantage of this approach is #wdt process
may have different sizes and thus Round-Robin may not benaptn cases where many
large processes are scheduled on one processor. QoS-gpaoaches will typically
perform better, however there is more work in determirtiogvto determine quality of
service and further determirvéhich processing node is performing up to a certain QoS
level. We use the Round-Robin approach as one of severabpodsstribution patterns
in our work to understand how even a simplistic approachfai# in our DSMS domain.

Future work will include designing a QoS-aware distribatadgorithm.

12



The Web Servers in [18][19][21] all use a central controtlest may be tiered de-
pending on the number of processing nodes. This is similaut®-CAPE system where
we allow different controllers for a cluster, and using acsetlevel controller on top
of each cluster controller. These works outline steps thatle taken to minimize the
communication between a controller and its processing s\cglech that the controller
does not become a bottleneck. In D-CAPE we can utilize a amajpproach to processor
communication, however the type of communication in a DSMiEhe quite different.
Web Server controllers procefised sizgobs for each processor whereas D-CAPE query

processors have to execute on querieganfing sizebecause of data variability.

13



Chapter 3

DSM S Background

In this chapter we will discuss the background of Data Stréémmagement Systems.
First, we will present a streaming data example. We will tescuss the query plan of a
DSMS and how a new class of query operators are necessamgtéostleams. Finally, we
will discuss the basic non-distributed architecture of D&MS, CAPE, the Constraint-

aware Adaptive Processing Engine.

3.1 Example Stream Query

In order to understand the realm of queries that a DSMS is taudnswer let us look at
an example. Consider a traffic grid as shown in Figure 3.1hEaasor, as indicated in
Figure 3.1, collects the data shown in Figure 3.2.

The sensor data collected is just a sampling of the datassrpeoduced by the sensor.
It is important to note that not only may there be many sendumsthere also could be
multiple feeds from each sensor, recording different tygfedata. Our query will make
use of the Traffic Flow data. We will use Continuous Query Lage (CQL), a query

language similar to SQL, that extends traditional queryasios by allowing for time
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Sensor 1
Sensor 2

Sensor 4

Figure 3.1: Example Traffic Pattern.

Traffic Fl ow Schema {
Time tinmestanp,
String carl D,

Type type,
int MPH

s

Figure 3.2: Traffic Sensor Schema

based joins and aggregation along with other features [].
Suppose we ask the query: "Return all cars and their currétti bhat have travelled
down Road 2 and taken a LEFT turn onto Road 1 within a 2 minuate period.” Using

CQL we would have the following specification:

SELECT Rl.carl D, R1. MPH
FROM Sensor2 as R2 [ Range 2nmin], Sensor 1 as Rl [ Range 2m n]
VWHERE Rl.carlD = R2.carl D AND Rl.type = "Car";

The corresponding query plan is seen in Figure 3.3. Thisygquian consists of a Join,
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Data Input Streams

Sensor1 . .-~ ,
A,

7~ Join [Window: 2min]
Road2.carlD =
Road1.carlD

Select Project Query Result
Road1.type = "Car" Road1.carlD,
Road1.MPH

Figure 3.3: Query Plan Constructed from CQL Statement.

Sensor 2

Select, and Project operator, similar to SQL query opesatdhe functionality of these
operators will be discussed in Section 3.2. In Table 3.1 veesxample data that may be

collected by the two sensors. T representditnestampmassociated with the data.

| Sensor 1 |

carlD type | MPH
9034 TR | Car 55
FED1 | Truck| 42
SOXFAN4 | Car 50
8325DL | Car 35
345 DGE | Car 65
UMASS1 | SUV | 45

P rRPrEFRRFROOH

| Sensor 2 |

T (min) carlD type | MPH
0 1345FD | Car 34
MV 1223 | Truck | 53
SOXFAN4 | Car 65
1492 CC | Car 32
UMASS1 | SUV | 23
1353 DW | SUV | 56

A OWNDNPE

Table 3.1: Example Traffic Data.

Applying the query plan in Figure 3.3 on the input data in €&BI1 we will process

the data in the following manner.
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Output of Join Operator

T (min) | Rl.carlD | R1l.type| R1L.MPH| R2.carlD | R2.type| R2.MPH
(1,2) | SOXFAN4 | Car 50 SOXFAN4 | Car 65
1,3) UMASS1 | SUV 45 UMASS1 | SUV 23
Output of Select Operator
T (min) | R1l.carlD | R1l.type| R1L.MPH| R2.carlD | R2.type| R2.MPH
(1,2) | SOXFAN4 | Car 50 SOXFAN4 | Car 65
| Output of Project Operator |
T (min) | Rl.carlID | R1.MPH
(1,2) || SOXFAN4 65

Table 3.2: Output from Query Plan

The Join operator is responsible for joining any two tuphed bccured within 2 min-
utes of each other and also pass the join prediRdtear|D = R2.carlD The output of
the join operator is then fed into the Select operator, whiitdrs out all tuples that do not
pass the predicatel.type = "Car”. Finally, the Project operator projects the columns
R1.carlD, R1.typavhich can then be returned to the user. Data is continuatiggssed

as more data is received from the Sensors, until the queegyisved from the system.

3.2 Streaming Query Operators

In our example in Section 3.1 we saw two different types ofrafmes in our query plan.
These can have different characteristics than a tradit®@Qé.-type operator. First, some
streaming operators hagéatewhich is maintained by the operator during runtime. This
state is the data that must be remembered by the operatanfgeie its operation. A join
operator as in Section 3.1 is an excellent example of suclparator. The join operator
is responsible for remembering all tuples that have arrivilin the last two minutes.
Secondly, since streaming operators have different cteisiics than traditional query

operators, we have to alter the implementation of tradai@perators and add other se-
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mantics to allow them to process for real-time continuous.dd hey must be able to

output incremental results as new data arrives from eaelrstr We can break stream-
ing query operators down into two categories: stateful aatbkess. We must give some
operators the ability to remember what it has done in thepasin internal state, while

other operators do not need this ability.

Every operatop hasN; input queue(s) and; output queue(s). The amount of the
input can be defined as = Zf\ﬁl n;, wheren; is defined as the amount of input at the
i'" queue. The quantity of the output can be definechas Z]-Oil m;. Similarly, m; is
defined as the amount of output in tf{& queue. The termm /n is known as theelectivity
(o) of the operator, more simply known as the probability of@éipassing theredicate
(p) of the operator. The selectivity is an important attribafea query operator since
it directly controls the number of tuples outputted to itsqrd. Operators with smaller
selectivities tend to improve query plan performance bgedbe number of tuples are
reduced, thus reducing the total number of tuples to be pseck There is also fixed cost

for reading/writing to queues, which we will defineas

3.21 Stateless Streaming Query Operators

Stateless operators are similar to traditional DBMS opesatsince they have the ability
to perform without needing to know what they have done in thstpTypical stateless
operators include: Select, Project or XMLTagger.

In Figure 3.4 we show how a stateless operator processes Tagaprocessing cost
associated is linear in the volume of input data. The latgerput data, the longer it will
take to process the data. For everyuples that are dequeuedtuples are subsequently
evaluated and then the tuples that are evaluated to true are placed in the operaitpsat
queue.

Project and XMLTagger operators have a selectivity of 1 avliile selectivity of a
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<« n ——> <« m—

Perform a boolean
evaluation on each of
the n tuples

Figure 3.4: Single Stream Operator.

Select operator varies between zero and one depending eeltdwt predicate. The pro-
cessing costs associated with a stateless operator are sh&guations 3.1 and 3.2. As
you can see, the only variant in the cost is the number of ityplés, since the process-
ing cost is fixed, and determined by the type of the operatdrthe speed of the query

processor doing the work.

cost = (n*w)+ (pxn)+ (c(n) *w) (3.1)

=nx*(w+p)+ (o(n)*w) (3.2)

3.2.2 Stateful Streaming Query Operators

Stateful operators retain all tuples that are still in thergu'window” of acceptance by
the user. Using the query in Section 3.1 an example windowadmvo@ 2 seconds. There
are many semantics for determining how to calculate a winfdown operator including
Moving Window [8] and Sliding Window [28]. For our purposeewill assume that our
operators utilize a sliding window. In a sliding window, alples occuring withirt time
units of each other are in the same window. The window “sfidesiew data is read into

the operator that have higher timestamps.

19



‘<7nl—>

Left Queue
<«—— m —
Left State
Perform a boolean evaluation on all
tuples in nl and n2 that are in the
same time window. Keep track of
tuples still in window by placing them
Right Queue in the operators state.
N
Right State

«— 2 —»‘

Figure 3.5: Multi Stream Operator.

Figure 3.5 illustrates the processing of data in a binarydamjoin operator. Execu-
tion proceeds as follows. First we dequetetuples from the left queue and, tuples
from the right queue. We then purge)(the state of the lefts{) and right ,) states
from the total number of statesby looking at the first tuple dequeued from both queues,
respectively. If the first tuple in the left queue is out of ti@dow of the first tuple in the
right state of the operator, we purge those tuples out ofitie state. The tuples can'’t
possibly be evaluated to true due to being out of the windoerdd/the same for the right
gueue and the left state. We then perform a join on all of thpéetufrom the left queue
with the right state. We then move the tuples from the leftugui@to the left state, since
they have been evaluated. We can now join the tuples on thé gigeue with the left
state, and once finished move the tuples from the right quetretright state.

The processing cost is much higher for a stateful operattgary, the size of the

time window has a direct effect on the cost. The larger thedaiv) the larger the cost of
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the operator, as we will spend more time purging tuples ouhefstate and more time
processing the join. The cost of a stateful join operatoh@s in Equation 3.3
S|
cost = (nxw)+ (x> _ ;) + p* (ng * s2+ng * s1) + (0(n) *w) (3.3)
=1
The total cost includes the time it takes to reajithen tuples from the input queues,
the time it takes to purge the state, and the cost of evaly&ach join predicate and
writing those that pass to the output queue. Most of the ing cost of the stateful
operator is that of purging the two states and the time ittéevaluate the join predicate.
Many join implementations aim to improve the cost by usingibased states or hash-
joins. Nonetheless the operator still proves to be far mostly than a stateless operator,

especially as the state size increases.

3.3 TheData Stream Management System: CAPE

Now we introduce our DSMS, CAPE. CAPE is a continuous quesfesy developed at
WPI [35]. It can process any number of user queries on malgfileams and report the
resulting data to the user applications. This core architeds similar to that of [1][6]
[16].

Each query is translated into an algebraic query plan as shioection 3.1 that
then is processed by our runtime engine. The query plan camooght of as a directed
acyclic graph, where the nodes represent query operatdriharedges represent queues.
The operator(s) that connect directly to the end user agujdic(s) are called th@otsand
those that connect to an input stream are cdbades Each leaf is directly connected to
an external data stream where the source data is genesgied]lly by a remote computer
or data sensor. All query operators in CAPE operate in a ipipe) non-blocking manner

[39]. That is, every operator is capable of producing resafter consuming a partial
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input data set. Figure 3.3 illustrates an example of a quy. pintra-operator data
results are stored as tuples in main memory queues. Quenesasethe connections
between operators and define the routes that tuples takegdexecution.

CAPE is made up of four primary components as shown in Figuge BheStream
Receivelis responsible for receiving data from all Stream Sourcelsphacing the tuples
in the query planStream Sendes responsible for sending the result data to the end user.
The Statistics Gatherestores, calculates, and sorts statistics about any pargaeey
plan, such as operators, queues, and entire query planse Bletistics can be used for
many types of calculations in the system, such as decidimgvisgll a particular query

plan is running given a cost model, or even simply how manietipre in main memory

at a given time.

CAPE Query Processor <« Query Plan
Generator
Execution | | Statistics
Scheduler Gatherer Tg Tg Tg
4 3 S (2 |2
- N 35
A 4
Execution 2@4_ Stream
Engine Receiver
I Storage
Stream Manager
Sender
End User Legend:
r Stream Data Control Flow ——p
Data Flow smlyy-

Figure 3.6: Architecture of CAPE Continuous Query System.

The Execution Schedulés responsible for deciding which operator should be exe-
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cuted at a given time. Several different scheduling algord, including Round Robin,
First In First Out, and Chain [7] have been incorporated @®A¢°E. These algorithms use
statistics that are gathered from the query plan to determinich operator to schedule
next. CAPE has its own novel scheduling strategy, whichfisrred to as arAdaptive
Schedulef36]. The Adaptive Scheduler dynamically selects whichesithing algorithm
to run during execution based on how the current scheduliggrithm is performing
with respect to the other scheduling algorithms that ardabla for use. This is CAPE’s
approach to provide the best possible service on a singlaimacThe scheduler can im-
prove performance based on various requirements, suchr®izing memory or maxi-
mizing the output rate. ThExecution Engindies at the heart of CAPE. It is responsible
for overseeing the execution of the query plan. The ExenuHiogine tells the Statistics
Gatherer to obtain the latest statistics, and asks the stdreghich scheduling algorithm
should be used next. In essence, it is the engine of CAPE seatinformation obtained
from the other modules to run the system. Here is a brief Wwadkigh of the Execution

Engine’s tasks during execution:
1. Ask the current scheduling algorithm to choose the negtyjaperatorQp, to run.

2. If the workload forOp > 0, then update the statistics fop’s input and output
gueues and pass the workload to the operator. If the worlkde@dthen there is

starvation and the strategy will pick another operator.

3. Run the operator. When the operator has processed aladstgned work, control

is returned to the Execution Engine.

4. Ask the Statistics Gatherer to update statistics folouarbperators and other query

plan information.

5. Repeat steps 1-4 for the duration of the query.
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Chapter 4

Distribution Manager Architecture

Next the design of the new D-CAPE system will be introducee. Will first discuss the
assumptions and restrictions for this version of impleragon of the system. Then we

will discuss the general architecture of the system.

4.1 Assumptionsand Restrictions

Several assumptions are made in this work so to allow us tesfoa the most important
concerns of this new system. First, it is assumed that atlgs®ors have 100% up-time,
and the distributed system will not have to worry about aresponsive processor. If a
guery processor is to fail, it is remedied by moving the woakl that was on the unre-
sponsive processor to another query processor. Usingghisrgtion, data will be lost,
and future work will be needed to come up with ways to reconisrlbst data, similar to
[26]. In our experimentation, if a query processor were th ¥ee restart the experiment
so the experimental results are not tainted with this loskatd. Also, it will be assumed
that the query plan is already optimized using query reentites, and that each operator

is scheduled using the same scheduling strategy. Thatisnit the goal of the new
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distributed system to achieve better performance on iddalimachines, but rather to

improve overall performance based on the distributionregpkes.

4.2 Distributed Architecture Overview

The most important aspect to this thesis was to develop @féearchitecture that could
be used in future versions of the system. Without a soundtacnthre, the shelf-life of
this system will be short lived. Our main goal was to allovsthiork to be used for a long
period of time as a foundation for improving data stream @ssing performance.

In 1992 David DeWitt and Jim Gray outlined the architectuezessary to create
parallel database systems [22]. They found that query ptansbe more efficient if
running in a parallel, pipelined manner by using the natdedh flow tendencies of a
guery plan and distributing query operators. Database FeEmant Systems did have a
major flaw when it came to pipelined execution: Most of thesexrg implementations of
guery operators were blocking. However since Data Streaste8)s have developed non-
blocking operators [25] that continuously provide outpata] we are now in a position
to take advantage of paralelized pipelined query execution

DeWitt and Gray go on to say that another important requirgnsethat partitioned
execution needs partitioned data. Partitioned data alfowsasy data transfer, without
the need to scan incoming data to determine where it beloflys. is an easy require-
ment for our DSMS to meet, since the data streams are alrezrated over multiple
machines, and can be redirected to any query processor metwork, without affecting
other processors and their execution.

We found that the requirements needed over 10 years agoilareestled today. By
parallelizing execution and directing data streams toviddial query processors, we are

able to improve query execution, as will be seen in experimtimoughout this chapter.
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We developed a robust, component-based approach to degitms architecture. It is
developed in a shared-nothing manner; that is, the only veas & shared is through
the Interconnection Network. Each CPU and Memory is prit@atach query processor.

Figure 4.1 illustrates the basic architecture of the newARE System.

Statistics
CAPE Query ProcessorA//' Gatherer
Execution | ExeCL_ltion . Connection | ¢——— Distribution
Scheduler/ Engine \Managef Manager
Stream Stream N
Sender Feeder il Y
Stream
Tuple Storage Receiver
Manager A
Query Plan
— 4 Generator

— |

Query 1 Query2.. Queryn

Internet

Legend:

Stream Data Control Flow——»

Data Flow sl

End User

Figure 4.1: D-CAPE Architecture

This is an extended version of the original CAPE system ¢hioed in Section 3.3.
Similar to the original system, there is still a Statisticati&rer, Execution Engine, and
Execution Scheduler and Stream Sender/Receiver. We algol&do new components to
the query processor itself, including tB®nnection ManagemandStream Feederfmhese
components will be discussed in detail in Section 4.3.

The Distribution Manager resides on a machine separate &lbthe query proces-
sors and is responsible for communicating with each quesggssor to tell it what data

streams and query plan operators it is responsible to pgpaesl where to send it when
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it is done. This is achieved in four steps and will be discdssaletail in Section 4.3.

1. Send initial configuration information to each query @ssor

2. Distribute query plans among the query processors usdigtabution pattern a

way to distribute query operators among a cluster of mashiased on query plan

properties.

3. Listento status updates from each query processor biyimgeackets of statistical

data needed to calculated the workload of a processor.

4. Determine if any of the query processors has too high ofr&lead and redistribute

it, if necessary.

Each of these steps will be discussed in detail in sectidht3%.3.

Tier 1

Query Processor

Query Processor

Query Processor

Distribution
Manager

Query Processor

Tier 2

Query Processor

Distribution
Manager

Query Processor

Query Processor

Distribution
Manager

Figure 4.2: Example of D-CAPE configured to run in a tierediemment.

To increase the potential scalability of a D-CAPE, we hawated the Distribution

Manager such that it can operate in a tiered environmenur€ig.2 illustrates how the
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Distribution Manager can operate in such an environmentthénfuture, it may make
sense to have clusters of machines in different locatioosgss different workloads. In
this case, it may not make sense to have a single distributemager manage clusters
across the Internet. Instead, we can create one distnmbut@nagers for each cluster
location, and then have a distribution manager on a higkeerthiat is responsible for
allocating query plans to each distribution manager in ¢ieeel tier. This way, we have
the flexibility of distributing the query plans on any of theeyy processors available to
us, yet we can also eliminate network update costs by langldistribution managers to

work more closely with a particular processing cluster.

4.3 Query Processor

Before discussing the Distribution Manager in detail, wetfgo into the details of the
guery processor, and in particular, the improvements tlea¢\made for D-CAPE. At the
end of this section, we will show experimental studies thatsthe limitations of a query
processor.

As shown in Figure 4.1 there are seven main components inubgeygrocessor:
The Execution Engine, Statistics Gatherer, Execution @dlee, Stream Receiver, Stream
Distributor, Stream Feeder, and Connection Manager. Egttiese components are inte-
gral to the execution of the query plan. Furthermore, it igamant that these components
are implemented in such a way as to maximize performanceh &ahese components
communicates with one another to minimize the cost of carse@xching between com-
ponents. We will now discuss each component and how they Ibese improved for
D-CAPE.

Execution Engine. The execution engine was improved from Section 3.3. It now

makes fewer calls to the statistics gatherer to maximizegssing time. We also imple-
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mented the ability to record the statistics upon completibtma Microsoft Excel Spread-
sheet for quick analysis by the user upon query completion.

Statistics Gatherer. The statistics gatherer was improved from Section 3.3 Oyae
ing the number of calls it would take to insert/remove dathdm the statistics gatherer.
Over time this should increase performance to some degspecwlly for long running
queries.

Stream Feeder. The stream feeder is responsible for taking tuples reddmyethe
stream Receiver and placing them in the proper input queukeobperator. This is a
hash-based implementation. As a tuple is taken from the pboéceived tuples, its
corresponding queue is looked up in a hash table to detemwtieee the tuple belongs.
Once this tuple is enqueued, the thread will let the Exeaufingine know that there is
more data to process. The Stream Feeder is a thread desmpeadure that all queues
in the query plans have data to process. This way if one sthesra higher data rate,
and thus a queue that is more full, we can wait to put that deda input queue until the
operator will actually need it.

Stream Recelver. The stream receiver is implemented in a separate threatliphes
are received, tells the stream feeder that there is new datagvto be fed into the input
gueues. By implementing the tuple receiver in this manrer,stream feeder is only
running when there is actually data to process, so CPU cyrkesiot wasted in doing
empty work.

Stream Distributor. The stream distributor is responsible for sending tupbethé
next query processor or to an end-user application. Thisstbhash-based; hence lookup
takes a constant time. The distributor waits for a messaga the Execution Engine,
indicating that there are tuples to be sent across the nketvBy waiting for a message
from the Execution Engine, CPU Cycles are not wasted on thpdeTDistributor when

there is no work to do.
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Connection Manager. The Connection Manager is the interface between the query
processor and the distribution manager. It is responstidéndling requests such as
activating operators on the processor, or sending themustatus of the machine to the
distribution manager. Table 4.3 lists the different cotimecrequests that can be made to

the Connection Manager.

| Type | Description |
Activate Activate an Operator.
DeActivate | Turn off an Operator.
SendData | Send data to another QP.
ReceiveData| Receive data for processing.
StopSend | Stop sending data to another QP.
StopReceive| Stop listening for data.
SendStatistics Send one or more statistics to the DM
Shutdown | Shut down the query processor
Restart Remove all query plans and data, wait for new plans from the PM

Table 4.1: Connection Request Types.

The Connection Manager has been designed to allow for ameepaset of com-
mands to be implemented for the future. The most importdanbjdhe connection man-

ager is to be available and to respond quickly.

4.3.1 Query Processor Performance

It was very important to understand the limitations of a guamocessor. In particular,

there were three questions that needed to be answered:

e How often can the Distribution Manager communicate with @@QuProcessor?

e How do the new components utilize the CPU? Is it better or edhsn the old

implementation?

e How many input/output connections can a Query Processodldan
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To answer these questions, an experimental test-bed watogded. The test-bed
consists of a cluster of 10 machines, each with dual 2.4 Gblzgssors, 2 GB of memory,
on a Gigabit Ethernet connection. We utilized two machinesrieam data, two machines
to listen to query results, one machine to act as the disibibimanager, and 5 machines
to act as query processors. We use two stream generatorscsmwsend a higher volume
of data across the cluster. The data consists of the sergsrflom the 1998 World
Cup website [4]. In our 30 minute experiments, approxinyai@,000 tuples are seper
stream. Our query plans connect to a minimum of six streamsamaximum of thirteen.
Our query plans consist of window join operators and sintgksmasn operators in different
configurations, ranging from 5 operators to 80. Our join ap@s have a selectivity of
two, that is it outputs twice as much data that is input. Ongle streams operators have
a selectivity of one, to make its cost as high as possible.qlieey plans themselves are
binary trees (representing many joins linked togetheraiteight of at least five and a
breadth of at least six.

For these experiments, we only utilized one query processdt could be tested
against the original version of CAPE, and also to find thetltnons of a single processor

machine.

4.3.2 Query Processor Communication Cost

First, it is important to analyze how often a query processald communicate with the
distribution manager before it had a significant impact oargyerformance. This will
indicate how often the distribution manager can commuaieath each query processor.
A limit needs to be observed, so query operators are nobdéd too often, reducing
performance. To study this, we loaded a moderately sizedyquian (20 operators, 5
joins) onto a single query processor. We then sent conmeriguests to it at increasing

rates, from O per second to 1000 per second, to find out how aftonnection request
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can be handled without degrading performance.

25000

Total Throughput

15000

20000

10000

Tuples Outputted

5000 -

—=— 0 Connects per sec
—e— 1 Connect per sec
10 Connects per sec
50 Connects per sec
—x— 100 Connects per sec
—e— 1000 Connects per sec

Figure 4.3: Throughput of Query Processor with Increasiogr@ction Requests

Figure 4.3 shows the throughput of the query plans with w&riconnection request
rates. We can observe that the query processor can easdieHzth connection requests
per second. This is an important number, because it indideder often the distribution
manager may communicate with the query processor. We vélirs&ection 6.3 that a
typical query operator takes 6-10 connect requests to dyopetivate it on a query pro-

cessor. Thus we can conclude that we can easily move onetopensa query processor

per second.

This is a very high rate, in fact, in our experimentation wé amly move operators
once per minute, to allow for sufficient time for a distritmtito be tested. Thus we see
that moving an operator in this environment will not be a lleogck, as long as we do

not communicate with a query processor with more than 50 eciions messages per

second.
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4.3.3 CPU Utilization of the New Query Processor

Another performance test we run for the new D-CAPE querygssar is to monitor how
one individual query processor utilizes the CPU versus tiggral CAPE system. For
this experiment, we ran the original CAPE DSMS and the newARE DSMS on a
guery plan with 40 operators. This size query plan sende langounts of data over the
network and really tests both the processing of data as wéleaway tuples are sent and
received. Inthe D-CAPE DSMS, we ran the query plan utilizinty one query processor

so that it could be more fairly compared to the original CAPENIS.

Tuple Tuple

Connection
Sender

Manager
1%

Query
Processor
74%

Query
Processor
e 2%
Statistics
Gathering
7%

Before After

Figure 4.4: CPU Utilization Before and after Query Procesguimization.

The primary objective for this experiment was to test if tle@rquery processor uti-
lizes the CPU more efficiently than the original CAPE desigigure 4.4 shows the dif-
ferences in CPU usage between the two query processorsy €xezmution gets a larger
“slice” of the CPU in the new version of CAPE, which is imparta Maximizing the
amount of time processing the data will provide better pentnce, rather than spending
CPU time performing support operations. Using the hashdasetions for the sender
and receiver and by having each thread communicate with eheln, we see improved

CPU utilization over the original CAPE implementation.
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4.3.4 Input/Output Connections of a Query Processor

A query processor has two main goals, to process incomirgatafast as possible and
to send that data to the next query processor as fast as jgodsibrder to maximize the
performance of these two tasks, it is important to find outtinatation there is (if any)
on the number of input and output connections a query processild handle. We ran
experiments with an extremely small query plan (a singleatoe), as this would provide
the best scenario in terms of the number of connections kbiigtohe query processor
would be able to handle concurrently. We then replicatetighary plan several times on

the same query processor to increase the total number oéctians on the machine.

35 —e—1qp
< 30 —a—20qp
8 XX\‘ —a—4qp
& 25 \»@\ ——8qp
20 | —*—164p|

RRex

Tuples Outputted per

A N A A

Time (m)

Figure 4.5: Output Rate of Query Processor with Increasimgn@ction Requests

Figure 4.5 illustrates how increasing the number of conaestto and from a machine
causes a decreased output rate. We find that the cause «f the the query processor
is spending too much time sending and receiving tuples, ahdmough time processing
them. Figure 4.6 shows how adding connections decreaspstbentage of the CPU that
the engine can devote to the actual data processing versusght/output connection
handling. Using these experiments, our machines can shéigle 8-12 input/output
connections without significantly degrading performanidas will have to be taken into

consideration when we considaeowto distribute a query plan.
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Figure 4.6: CPU Utilization with a Varying Number of Netwo@lonnections

4.4 Distribution Manager

The basic job of the Distribution Manager is to synchronimermanagement of the query
plans and data, and to then respond to situations where @ graressor is under heavy
load. The Distribution Manager can be thought of as the fijraf query execution.
The Distribution Manager knows about all queries in theeaysand all available query
processors. It is then responsible fiistributing these operators among the available
qguery processors and for telling each query processor homotk together to process
each query plan. It is also responsible for receiving dtatisdata from each processor to
determine thevorkload(how “full” the processor is), and determinimfgoperator reallo-
cation is necessary, and then decidindghomwto reallocate the query operators to improve
overall performance.

Figure 4.7 illustrates the architecture of the DistribntManager. It is made up of
four primary components and three repositories. The founm@mponents are tHeun-
time Monitor, Connection ManageQuery Plan Managerand theDistribution Decision
Maker. Each of these components interact in the following way:

Runtime Monitor. This is the monitor that listens for statistical updatesrfreach
guery processor. These updates are statistics that aegllcellected in the query pro-

cessor, such as the number of tuples in memory or the avetdigetoate. It receives this
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information, places it into &tatistics Tableand then gives it to the Distribution Decision
Maker.

Connection Manager. The connection manager is responsible for taking the decid
distribution, and physically sending a sequence of apjaitgconnection messages using
our redistribution algorithm to establish the distribup#dn on its respective query pro-
cessor. Each of these connection messages derives frormaimm class, guaranteeing
a certain packet size and a consistent interface for theyquecessors and distribution
manager to follow. The connection manager typically onlgdsemessages to a query
processor, but it can also communicate with the end-usdicaipn or the data stream
source as well.

Query Plan Manager. The query plan manager is responsible for managing the
guery plans in the system, and also determining if the quiy distribution is valid.
Validity means that all query nodes are represented exanttg on the cluster of query
processors, and all of the query processors are up and gunnin

Distribution Decision Maker. The decision maker is responsible for decidimay
to distribute the query plans. There are two phases to thiside. First, an initial
distribution is created at startup (Chapter 5). Seconckatlocates query operators to
other query processors depending on how well the query psoce are perceived to be

performing (Chapter 6).

Algorithm 1 describes how the Distribution Manager opesatgon initialization. In
the following chapters we will discuss this algorithm in raatepth, including how we
distribute, calculate cost and redistribute query promess

Before processing any data, the Distribution Manager ipaesible for configuring
each one of the query processors by giving it all query plaas it could potentially
process, and other data, such as where streams are locatedtaéistics that need to

be collected. This is done upon initialization to minimizeranunication cost and only
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Figure 4.7: Distribution Manager Architecture

incremental communication messages are sent at run-tioleasunew query processors
or query plans. By doing this before execution, we limit theoant of communications
that will need to occur during execution. TBestribution Decision Makethen creates
an initial distribution of the query operators and then utesConnection Manageto
take care of physicallwyctivating the distribution on the remote query processors. A
distribution is activated when the query processor thai rsih the operator is connected
to all data streams and is prepared to process the data.skhssussed in detail in Section
5.1.

During execution, each query processor reports toRtietime Monitorthe current
statistics of the machine’s local state. The Runtime Monign use this information,
along with its available cost model, to determine the loaccaoch machine. Note that
the system can use any one of its available cost models tongietethe workload. The
specific model is determined by an administrator during thetigp of the distribution

manager. Th®istribution Decision Makethen gets the associated costs for each pro-
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Algorithm 1 Distribution Algorithm at a glance.

1

NRNREPRRRRRRRR R
P O ©O©®o~NOUN~WNERO

eI RN

Retrieve configuration information from user.
Retrieve query plans from the query plan generator.
while are more query processate
Send all configuration information to query processor
if Query Processor does not respthen
Remove query processor from list of active machines.
end if
end while
if No query processors availatikeen
EXIT

end if

. Load the distribution pattern from Strategy Repository.
. Distribute the queries using the pattern.

: Load the cost model.

. Load the redistribution policy.

. Send the statistics to monitor to each query processor.
: while still processinglo

Retrieve statistical updates from query processors
Calculate the workload on each machine
Redistribute the operators using Algorithm 5.

end while

cessor from the Runtime Monitor in the form otast tableand uses the table to redis-

tribute query operators. The type of redistribution polieyn be any policy found in the

Distributed Strategy Repository. After deciding what @ters are to be reallocated, the

Distribution Decision Maker can then pass this new distrdsuplan to theQuery Plan

Manager Itis the Query Plan Manager’s job to ensure the validityhad hew distribution

plan. If it is not valid, the Query Plan Manager informs thetfibution Decision Maker

to create a new distribution until it is valid. The Query PManager can then tell the

Connection Manageto make the proper connections between the streams, macmde

end user applications. It is the Connection Manager’s jodnture that no data is lost or

corrupted.
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4.4.1 Distribution Manager Performance
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Figure 4.8: CPU Usage of Distribution Manager

A challenge in implementing the Distribution Manager wasuweing that it was suf-
ficiently lightweight to not render ineffective when redibtting a query plan. Our goal
was to make it lightweight enough to process in real time,aisib to have the ability
to process complex cost models if necessary. Only increshehtinges of the set of
guery plans are sent to the query processors to reduce thenaofdime the Distribution

Manager spends communicating with each processor atmm-ti

Figures 4.8 to 4.10 show the Distribution Manager’s resesikghile running a query
plan distributed over five query processors. We can see iar&ig.8 that the CPU is
rarely used. It is primarily used only when calculating nagtributions. In Figure 4.9
we determine that the network traffic the DM creates is mithinrhhe DM received only

an average of 400 bytes per second, and never sends out raorékinin a second. We
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Figure 4.9: Network Usage of Distribution Manager

also use memory very sparingly, using less than 20mb of m@&maony, as shown in
Figure 4.10. In fact, the main cost that we incur is in the veeginning of execution,
where the query plans and configuration are sent to all of tieeygprocessors. The DM

is able to reduce the amount of resources it needs by onlygingvincremental changes

to each query processor, when necessary.

These experimental results indeed now confirm that the eaerlof using a single
Distribution Manager is minimal. By designing the Distrilmn Manager carefully, we

were able to minimize the system resources used by the DMhuting the number of
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communications with the query processors.
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Chapter 5

Query Operator Distribution: Methods,

Algorithms and Evaluation

5.1 Initial Distribution

We have found that the initial distribution of a query planedily influences its perfor-
mance. Distribution is defined as the physical layout of gugrerators across a set of
qguery processors. We will later show that we can have pedooma gains of 100% over
a naive distribution algorithm by distributing our queryeoators using a “connection-
aware” approach. We will also show that algorithms that artecarefully designed will
not always increase performance beyond that of a single/quecessor.

The initial distribution depends on the knowledge of twocete of information: The
gueries to be processed and the machines that have theighteo the work. First we
will go into detail about query plans and query processard, feow they are composed in
our D-CAPE System. We will then discuss how we can take tti@nation to create an

initial distribution to begin execution.
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5.1.1 Query Processor Description

A query processor is the fundamental component of the DSMSp#rforms the actual
guery processing. The query processor can have many pespentd further, each query
processors may be heterogeneous. Because of this, we maletailed knowledge as

shown by Table 5.1.1.

| Query Processor Object |

Property Value
IP Address davis.wpi.edu
CPU Speed 3.0
Memory 1024MB
O Linux
Network Speed | 1.5MB/Sec
Location Worcester, MA
Number of processesll
Any Property Any Value

Table 5.1: Query Processor Object

Notice that the processor’s description is simply definedalbiyroperty/Value pair.
This way, as new properties of a query processor may ariseaweasily add them to the
description without changing our implementation. We cao ahaintain other properties
that change over time, as we will see in Section 6.3. Thisrgagm is maintained by the

Distribution Manager.

5.1.2 Query Plan Description

As discussed in Chapter 3, a query plan is a directed acydighgwith the query op-
erators as the nodes and the queues of data as the edges. erfaglgun description
holds both initial properties of the query plan and also prtps that change during ex-
ecution. D-CAPE represents this query plan as a set of queators, each containing

many properties. These query operators are then connegethéer using a parent/child
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relationship, which in turn represents the query plan.

Because of our internal query plan structure, it is easy pdura any property about
a query operator or query plan. This is an integral featurthefD-CAPE system; the
ability to add properties for future research without myitify the existing data structure.

Here are some examples of properties that we may want toreagitout a query object.

e Query Plan: Overall priority relative to other operatonsmber of operators, depth,

number of inputs, number of outputs, etc.

e Query Operator: Operator type (Join, Select, etc), numbehitdren, number of

parents, etc.

We can also store other properties of the query plans ang gperators, just like we
could with the query processors. These properties can banaign capturing properties
such as Output Rate, Selectivity, Processing Time, and etsly added properties. By
combining the properties of each query operator along wstlocation in the query plan,
given the parent/child relationships, we are able to vieswifhery plan in its entirety. We
now show how we may use the knowledge about query plans ang gquacessors to

come up with an initial distribution of the query plans.

5.1.3 Calculation of Initial Distribution

With knowledge of the processors, plans, and their metaimdtion, we can create an
initial distribution across the cluster of query procesdmased on the configuration of the
guery processors and query plans. We create our distribusimg aDistribution Pattern
which is a specific pattern that an algorithm follows to dedmw to distribute the query
plans. The distribution pattern accepts both the desoriptof the query processors and

guery plans as inputs and returns a table known Rstibution Tablethat captures the
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location of each query plan operator with respect to theygpescessor that it will be

executing on.

Query Plans: Distribution Table

Q- @-0-@ Operator QP

Operator 1 QP 1
9®\ Operator2 |QP 1

@/ Operator 3 QP 2

Operator 4 QP 3

Query Processors: Operator5 | QP 4
Operator6 |QP 4
QP1|QP2| |QP3 Operator 7| QP 4

Operator 8 QPS5

Figure 5.1: Distribution Table

The methodology behind how the table is created dependseddigiribution Pattern.
This is important because it allows us the flexibility to implent any Distribution Pattern,

and plug it into the system if needed.

Algorithm 2 Round Robin Distribution Pattern.

1: for gp in queryPlans do

2. for Operatoro in gp do
3 Machinem «— getMachineW ithMinW orkload()
4: ASSIGN otom
5
6:

end for
end for

In our implementation we introduce two distribution pattercommonly used in dis-
tributed systems in other disciplines [27][32][34]. Thedgorithms were chosen because
of their effectiveness in other disciplines. Round Robitg@ithm 2) is a common al-
gorithm used in distributed systems such as [23] and Graupistribution (Algorithm

3) and various other algorithms are common in distributedizise systems such as [29].
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Grouping distribution was selected to help reduce the @ssatnetwork costs [29] of the

distribution. We will now define these two algorithms:

e Round Robin Distribution. Iteratively take each query operator and place it on the
guery processor with the fewest number of operators. THiEnsure each proces-
sor has an equivalent number of operators (i.e, an equal@ak In Algorithm 2

we define workload as the number of operators on the quergpsoc.

e Grouping Distribution. Take each query plan and create sub-plans for each query
where neighbor operators are grouped together. Then diliek® groups among
the available query processors. This distribution enstivasfew network connec-
tions are made, since adjacent operators are for the maskeyatr on the same

processor.

Figure 5.2 shows how a query plan, in this case Query Plan ¢ padistributed with
the Round Robin Pattern. Figure 5.3 shows how the same plabendistributed using
the Grouping Distribution algorithm. We can see that witls tuery plan, Grouping

Distribution minimizes the number of network connections.

The Round Robin Distribution in contrast distributes in anpdetely different man-
ner, fragmenting the query plan into 12 pieces, and caustotpbof seventeen network
connections, nine more connections than the groupinghlisiton! We also observe that
data that flows through a query processor assigned by thedReahin algorithm may
flow back through it for a second (or even third) time for pssiag. Finally, Round
Robin put 3 of the join operators onto one machine! This wilate a bottleneck for this
query processor due to the expensive join cost.

Our first goal is to create a general framework for managiregatpr allocation. Sec-

ond our goal is to then implement a few distribution pattdmsompare the trade-off
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Algorithm 3 Grouping Distribution Pattern.

1: numMachines «— machines.getCount()

2: totalOperators «— queryplans.get All().getSize()

3: avgNumOpsPerMachine < totalOperators/numMachines
4: count — 0

5. UsedOperatorsTable < null

6: Operatofo «— null

7: Machinem «— get NextQueryProcessor|()

8: for gp in queryPlans do

9: if count < avgNumOpsPerMachine then

10: if o = null then

11: 0 «— qp.getNextLeaf()

12: else

13: 0 < o.getNextOperatorInTree()

14: end if

15: UsedOperatorTable.add(o)

16: ASSIGN otom

17: count < count + 1

18: while o.hasMoreParents() do

19: if count < avgNumOpsPerMachine then
20: Operatomp < o.nextParent()

21: UsedOperatorTable.add(p)

22: ASSIGN ptom

23: count < count + 1

24: end if

25: if p.get DescendantCount() + count < avgNumOpsPerMachine then
26: while p.hasMoreDescendants() do
27: Operatore «— o.nextDescendant()
28: UsedOperatorTable.add(c)

29: ASSIGN ctom

30: count < count + 1

31 end while

32: end if

33: end while

34: dse

35: count < 0

36: Machinem « get NextQueryProcessor()
37 endif

38: o0+« null

39: end for
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Figure 5.2: Example of the Round Robin Distribution Pattesing Query Plan 2.

between different properties of distribution. Future wéok this project will be in de-
signing novel distribution patterns to maximally boost iyygerformance.
After the distribution table is created, it is then validht®y our Query Plan manager

for two conditions:

e Every query operator is represented in the table.

e Every machine that is represented responds when askedsif‘dtill alive”. A

processor that is alive is one who has active threads, aeadtyto process data.

When a distribution table passes validation, the Conneddlanager distributes the
guery plan among the query processors. The Connection Mamagapable to take any
Distribution Table, analyze it and connect the machinesmalegly. The Connection Al-
gorithm (Algorithm 4) steps through the process of distiigithe query plans according

to the distribution table. This algorithm is linear in thenmoer of operators in the table.
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Figure 5.3: Example of the Grouping Distribution PattermgQuery Plan 2.

Once the Connection Algorithm 4 has completed, query exataan begin on the query

processaors.

5.1.4 BaseDistribution Experiments

Given the different distributions generated by the disttiiin algorithms, there were four

guestions that needed to be answered:

1. What happens when we try to distribute a plan that is smalligh to perform well

on a single query processor?

2. How much of an improvement can we see over the “traditiosiable query pro-

cessor solution (i.e, a centralized query engine)?

3. Does the type of distribution pattern play a significant pathe performance of

the query plan?
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Algorithm 4 Connection Algorithm.
1: while Operators left in Distribution Tabléo
2:  Operatoro < DistributionT able.nextOperator()

3:  Machinem « DistributionT able.get M achine(o)

4:  OperatorArrayparent < o.get Parents()

5. OperatorArraychildren < o.getChildren()

6: SendACTIV ATFE Connection tan for o

7. for pin parent Array do

8: Machinem; < Table.get M achine(p)

9: SendSENDDAT A Connection ton to send fronv to m;
10: SendRECFEIV EDAT A connection ton; to receive fronp
11:  end for
12:  for cin childArray do
13: Machinemsy «— Table.get M achine(c)

14: SendSEN DD AT A Connection tgy to send fromy to ms
15: SendRECFEIV EDAT A connection ton to receive fronr
16:  end for

17:  if o connects to a streathen

18: SendRECEIV EDAT A connection ton to receive Stream

19: SendSTARTSTREAM connection to theource(s) to start sending
20: endif

21: end while

4. Based on these experiments, what observable systenrcesaue affected by dis-

tributing query plans?

To perform these experiments, we used the same testbed astinrg4.3.1 with a

variety of query plans, with varying window sizes for 10 sed® to 60 seconds:

e Query Plan 1: 5 operators with a depth of 5 and a breadth of 1.
e Query Plan 2: 20 operators with a depth of 9 and a breadth of 6.
e Query Plan 3: 40 operators with a depth of 14 and a breadth of 8.

e Query Plan 4: 80 operators with a depth of 14 and a breadth of 16.
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5.1.5 Centralized Processing Versus Distributed Processing

First we want to observe what happens if we distribute a qpkny among a cluster of
machines, even if the processing could easily be performea single machine. Figure
5.4 shows the throughput of a very small query plan (5 singéam operators) with one
single input stream and one output stream for differentyydistributions from 1 to 5 ma-
chines. We can see that even when the query plan is disttilover five machines it still
has the same throughput as a centralized (1 machine) poscessfirst this may seem
surprising because one would assume that the added netastrivould slow down the
overall query processing and thus throughput, especialth@number of query proces-
sors grows larger. We note that each operator runs in phratiee distributed processing
environment, helping to compensate for the cost of sendipig$ across the network.

70000
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60000 +— _a— 2 machines
—a— 3 machines
50000 +— —%— 4 machines
—%— 5 machines

40000

30000

20000

10000
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S A R TR S JR S L S

Time (m)

Figure 5.4: Throughput of Query Plan 1 with a Window of 0 setsonRound-Robin
Distribution.

We observe in Figures 5.5 and 5.6 that query plan distribusqust as effective in
multi-stream query plans with small windows. We can seeweaget similar behavior,
that is more query processors will exhibitleastthe same throughput as a single query
processor. This is an important point to make, because wearariude that it is beneficial

to distribute small query plans over the processing cludthbrs illustrates that even the
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Figure 5.5: Throughput of Query Plan 1 with a Window of 2 setsonRound-Robin
Distribution.

smallest plans can be distributed without decreasing peghnce.

5.1.6 Distribution of Query Plans

In this section we will show experimental studies performmadhe query plans described
in Section 5.1.4 to show how a distributed processing enumi@nt can improve the per-
formance of the DSMS. We use as a performance measure tsahghputof the query
plan, or thetotal number of tuples outputted over a period of tire use this criteria as
it indicates how fast we can process the data coming intoytbies, and producing the
result to the user in a more efficient manner. By distributimgy query workload over a
cluster of machines we are able to improve query executidioqmeance by parallelizing

guery operators, also giving each operator more time dlacbe processing data.

In Figures 5.7 and 5.8 we use the Round Robin and Groupingilisbn Patterns,
respectively. In both cases, we can see that the total thpuigs improved by using
multiple query processors. In both cases we can see a 25% parice increase over that

of a single query processor. We also observe that the pesftzenincreases as we increase
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Figure 5.6: Throughput of Query Plan 1 with a Window of 10 s@t0 Round-Robin
Distribution.
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Figure 5.7: Throughput of Query Plan 2 with a Window of 10 @0 Round-Robin
Distribution.

the number of machines. This is a logical conclusion sincé gaery operator will have
a larger CPU timeslice to run if there are more query proasssthis is especially true
with operators that tend to take longer amounts of time togse for each incoming tuple.
This is especially apparent in a window join operator, whteelarger the window and
arrival rates of data streams the more the processing tiriénatiease (Equation 3.3).

We find that as more operators (especially join operatoesspdded to a query plan, the
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Figure 5.8: Throughput of Query Plan 2 with a Window of 10 s&t Grouping Distri-
bution.

usage of multiple query processors allows for a linear thhput, as shown in Figures

5.9 and 5.10.
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Figure 5.9: Throughput of Query Plan 3 with a Window of 10 s&t Grouping Distri-
bution.

In Figure 5.9 we observe the throughput of Query Plan 3. Thelteare similar to
that of the Query Plan 1 (Figure 5.6), except in this case, avesee the single query
processor is leveling off in execution, while the multipl®pessors continue to linearly

process data. After 30 minutes we find a 33 percent incregseriarmance by using five
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guery processors. This is the first example we see where ke girgcessor cannot handle
the load of the query plan. It will continue to get worse as wetimue to run the query

plan over an even longer time period.
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—¥%— 5 machines

1000000 -

800000

600000

400000
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Figure 5.10: Throughput of Query Plan 4 with a Window of 10os&ts. Grouping Dis-
tribution.

Next in Figure 5.10 we now observe the performance of a latggygplan (Query
Plan 4). Here we see that the single query processor rund cugrmory after executing
for 20 minutes. The large amounts of data flowing through trstesn and the large
states of the join operators are filling up memory too quicgklyhe single CPU system.
Figure 5.11 shows how the single processor memory usagesjumponsiderably after
approximately 10 minutes of execution as the machine resdarger amounts of data
from the children join operators. After a while, the querggessor cannot keep up with
the large amounts of data flowing into the query processatal&e of the large number
of operators per machine, the joins are not getting as mudh @@Re as they would if

there were more machines.

We also note that Query Plan 4 has 16 streams flowing into tieeepsor and 2 streams
flowing out for 18 total network connections. As shown in 8att.3.4, our query pro-

cessors can effectively handle 12 connections. The larggeuof connections into this
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Figure 5.11: Tuples in memory during execution of Figured5.1

single query processor would be taking away from the CPUttleatuery processor can
devote to actually query processing tasks. By splitting¢hE8 connections among more

machines, we are able to keep the number of connections primessmall.

5.1.7 Comparison of Distribution Patterns

We observe in this section that different distribution eats allocate space very differ-
ently, sometimes causing many more network connections ¢kfzers. In this section
we compare and contrast the two distribution algorithmsaitipular: Round Robin (Al-

gorithm 2) and Grouping Distribution (Algorithm 3). We wghow in our experimenta-
tion that the distribution algorithm that we choose can hadeastic effect on our query
processor performance. First, recall that the Round Rolstriloution algorithm will

distribute query operators in a cyclic fashion, alwaysadtong the next operator to be
distributed to the machine with the fewest operators. Thiarces the total number of
operators assigned to each query processor. The Grougtrdpdtion attempts to make
large chunks of operators that are adjacent to each othermistof data flow connections.
Then we split those up among the query processors as evepbsagle, such that each

processor has a similar number of query operators.
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Figure 5.12: Round Robin vs. Grouping Distribution acrosgidry processors.

We will now compare the two algorithms to assess their gffeness. Our first exper-
iment distributes a query plan of 5 expensive Join Operg@uery Plan 1). The window
size for each operator is 60 seconds, and each operatouplittwice the data that came
in. In Figure 5.12 we observe that the Round Robin algoritlasidnbetter throughput at
first as the query plan begins, but slows down considerabthe@gjuery plan executes
for longer periods of time. In contrast, we see that the Graypistribution algorithm

achieves linear throughput, and over time has a better djimfmut.
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Figure 5.13: Distributions for Figure 5.12
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Looking at the algorithms and the query plan, this outcomebmexplained as fol-
lows. The Round Robin algorithm may often allocate two ofmesaonto one machine
that are not adjacent. Normally this is not a problem. Howévehis particular case,
the data flows first into the query processor from the streaummcecand then is output to
another machine. That very same data that left the machtherssent back in at a down
stream location of this query plan to operate on the top Jjoot operator. This is bad for
two reasons: First, the most expensive join operator is tieeab the top of the query plan,
as it has to process the largest volume of data. Secondlyrevep@nding time sending
data out of the first machine that will later be processed byysame machine again! This
distribution exhibits a slower behavior after some time xéaution as more and more
data is created by the operators over time. The root opestias down, thus reducing
the speed of throughput over time. The Grouping Distributileviates this problem by
grouping the children joins onto one machine and thus muimgithe total amount of
data sent across the network (and number of connections).

We now examine Query Plan 2 in Figure 5.14 which has a totaDajgrators, 5 of
which are joins. Similar to the last experiment, each joisasfigured to output twice
the data that is input, and all of the single stream operat@sonfigured to output 100%
of its input, to maximize the cost of the operator. We now wraldifferent distributions
among 1 to 5 query processors (Figure 5.14)

The first (and most obvious) observation is that the Grouplggrithm always wins.
There are two problems that Round Robin introduces thatribome to this outcome.
First, in all 3 cases, 3 of the 5 joins were put on one querygssar using the Round
Robin Strategy. We observe that the join is far more expertbian the single stream op-
erator (Section 3.2), and ideally should be evenly distatuacross all query processors.
Our Grouping Distribution helped in this situation, paaotiting the join operators to all

machines. The second problem that we see is that the Round Rdribution creates
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many more network connections than the Grouping DistrilutAs discussed in Section
4.3.4 a single query processor has a limitation in termsehtimber of network connec-
tions it can handle simultaneously. Grouping distributierrer went above 5 connections
per query processor in our examples, where Round Robin vgdrigh as 15 connections
per machine!

To further illustrate the limitations of the Distributiora®erns we observed execution
with even larger query plans: Query Plans 3 and 4. Figure $hbss the throughput of
each algorithm for Query Plan 3, and Figure 5.16 shows tletiirput of Query Plan 4.

Here we observe that as the number of query operators irgeBeund Robin and
Grouping Distribution tend to drift apart even further imfj@@mance. This is for the same
reasons stated for the previous experiments. Round Robkesn# guarantee of what
operator appears on a query processor, and also tends t® igraay network connections
because of its even-handed nature. We also see a “stephigesn the graph for Round
Robin. Upon looking on the execution, the query processatrdhtputs the query result
to the end user spends much of its CPU time receiving the Ergrunts of data from the
many connections that Round Robin introduces, and thensohigdules the root operator
periodically, because of the large number of operators emjtiery processor. In the case
of Figure 5.15 there are 10 operators per machine, 3 of whiglagoin, leaving little
time for the root operator to be scheduled to output resplegs We thus see a "step” in

throughput, corresponding to each time the root join opeiatexecuted.

We conclude that Grouping Distribution tends to do bettanth simple Round Robin
algorithm. When we first distribute a query plan, we only knstatic query plan in-
formation: The type of operators, number of machines, nurabguery plans, window
size, etc. We know nothing about the data rate, selectivigaoh operator or many other
factors that could prove important to execution. Becausthisfwe have to listen for

statistical feedback from each query processor to imprgea wur initial distribution if
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need be.
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Figure 5.14: Round Robin vs. Grouping Distribution
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Chapter 6

Self-Adaptive Redistribution Strategies.

Algorithms & Evaluation

This chapter discusses and outlines the steps necessargriove performance by redis-
tributing query operators amongst the cluster of nodegicStestribution plans can only
take into account query and system properties such as shdmeza of tree, number of
processing nodes, number of input streams, and other ddtegth be obtained by looking
at the layout of the processing cluster and structure ofygolan(s). We cannot however
count on properties such as state size, selectivity, ingta cate, or the expected output
rate of the query plan, since this not known until executivvorse yet is the fact that
these runtime properties can change over time dependingaog external factors. Even
with fluctuating conditions, we can monitor these condgiam D-CAPE to redistribute
qguery operators during runtime. Unlike Aurora* [20], we Mallow for redistribution
among any of the query processors in our computing clustez. Wil also show that
the cost of redistribution using our redistribution algiom is not very costly, even for
stateful operators. We will illustrate through experinatiun that we are able to monitor

the query processing nodes and adaptively redistributapodve the performance of the
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query processors over ti

me.

6.1 Cost Models

Before deciding how to redistribute operators to improvdgrenance, we first have to
definequery processor workloadlhat is, we have to define a cost associated with each
guery processor that tells us how “full” the processor isefBrare many potential ways to
model cost. Hence, we have built a generic cost model catmuilaD-CAPE that allows

us to plug in any cost model calculation that we wish. In tleist®n | will first discuss

the generic framework for defining a cost model. | will theraliss a specific algorithm

that was used for experimentation in this thesis.

Statistics Table

Machine 1 (cap:4500)

4100 tuples

Machine 2 (cap:4500)

2500 tuples

Machine 3 (cap:3500)

0 tuples

Machine 4 (cap:5000)

5000 tuples

Machine 5 (cap:4500)

3000 tuples

Distribut

ion Table

Operator

Machine

Operator 1

Machine 1

Operator 2

Machine 1

Operator 3

Machine 2

Operator 4

Machine 3

Operator 5

Machine 4

Operator 6

Machine 4

Operator 7

Machine 4

Operator 8

Machine 5

In order to determine the cost of each query processor, we todenow three pieces
of information. First we must know the current distributiohquery operators. The
Distribution Table provides this information. We also mkisobw the current statistics on

each machine. In D-CAPE, each cost model is based on a saitistiss that each query

Cost Table

Machine

Cost

Op Cost

Machine 1

91

Opl:5
Op2:.5

Machine 2

.55

Op3:1

Machine 3

Op4:0

Machine 4

1.00

Op 5:33
Op 6: 33
Op7:34

Machine 5

.66

Op8:1

Figure 6.1: Cost Model Creation
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processor must send back periodically so cost can be ctdul&inally, we must know
about every query processor in the cluster so we can retaieyestatic properties about
the processor that are needed.

Figure 6.1 illustrates one example of a cost table using aarsodel. In this example,
we are considering the workload of a query processor to b@éheentage of memory
filled by tuples. In our implementation, we can wumgy cost model based on statistics
collected in the system. This example has been chosen leeokiis simplicity. In this
scenario, we receive the number of tuples each query pracchas in its memory at a
given time. We can get the capacity of the query processar fte properties. We then
create acost tableas illustrated on the right side of the arrow that shows eaaryq
processor, its related cost, and the cost for every opemaoing on the processor.

This type of abstraction was chosen for several reasors. iFis easy to break down
the workload by operator if necessary. That is, we can detera fixed cost for every
operator on a machine, with respect to how much it is “fillinaj & query processor. We
also calculate the cost of a machine as a normalized nunylpératly between zero and
one. This is done for generality. In this manner, we are ablgite our redistribution
policy a table showing costs, but the policy need not knowtwhese costs are. This
way we can use any combination of cost models and redisibpblicies, as they are

orthogonal.

6.2 Experimental Cost Modé€l

In this experimental work, we will measure the cost (workipaf a query processor as the
rate at which it is sending tuples across the network. Thidehwas chosen because of
the earlier experiments discussed in this thesis. By haailagge number of input/output

connections, performance can degrade significantly. Byitmng how fast a query
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processor can send tuples across the network, and reailpcgterators, we may be able
to improve overall performance. By observing the outpug i@Eteach query processor,
we can move query operators off of the machine so the outpribfdahe query processor
can improve (it will spend more time processing fewer opegabn that processor). The
algorithm for determining the cost is shown in Equation 6.1.
10|
NetworkOutputRate; = > OutputRate, (6.1)
j=1
For each processor, we determine its total output rate byrsagiup the output rates
of each of the query operators on the processor that prodateetal be sent across the
network (Equation 6.1). The output rate for a Query Proaessothesumof the output
rate of each Operatgron Query Processar The relative cost (in terms of output rate)
of each operatok: is relative its share of network traffic that it creates verthat of the
guery processarit is on (Equation 6.2). Cost is then input into our redisitibn policy

to determine how we can re-arrange the query operators to ingrease the output rate.

OperatorCosty, = Output Ratey, /N etworkOutput Rate; (6.2)

Based on our empirical evidence in Chapters 4 and 5 we inteditiwo examples
of cost models based on the number of tuples in memory andetveork output rate.
Each can be used to determine the workload of a query pracéd&owill use the net-
work output rate cost model in our Redistribution Policesbserve how query operator
reallocation improves performance. There are many altercast models that could be
created and compared to see which factors most directlyeindel query processor per-

formance.
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6.3 Redistribution Policies

The redistribution policy in D-CAPE is responsible for leahting query operators across
the cluster of query processors based on statistical fekdbam each query processor.
As discussed in the previous section, this feedback is oagtoy our Cost Model. Our
redistribution policy uses this to determine the re-altmsaof operators. In fact, the
redistribution is more powerful than the initial distriburt by allowing special parameters
to be taken into consideration when deciding betienandhow to redistribute. Table

6.3 shows the parameters that our redistribution policippasrt.

| Parameter | Description |
Cost Table A table representing the costs of each query processor
Percent Difference Redistribute if the cost difference exceeds a particulacgreage)
Eligible Operators | A list of operators that we are allowed to move

Eligible Processors A list of processors that can get operators to work on

State Size Operators under a certain size may be moved.

Table 6.1: Redistribution Parameters.

Besides the absolute cost, we can also specialize redigtmoy providing &Percent
Differenceparameter that tells us how far apart the best and worst shetdd be before
we even consider redistributing. 0% means distribute ifehe any cost difference at all
and 100% means never distribute. We also pass in a ligligible Operatorsthat are
only considered for reallocation. Along the same lines we gass in a list oEligible
Processorghat are available to do work. Finally, we can tell the radsition policy to
only consider operators with a particular state size raageed at reducing the time it
takes to move an operator. For any particular RedistribuRolicy, it may use one or all
of these parameters in making its decision. In D-CAPE, werdahe these parameters,
other than the cost table, by an initial configuration. Udimgse parameters we are able

to use Algorithm 5 to determine how to reallocate the opesgiibat all).
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Algorithm 5 Redistribution Algorithm
1: costTable «— costModel.getTable()
maxCost «— costTable.get M axCost()
minCost < costTable.get MinCost()
if max — min > redistributionPercent then
while lvalid(new Distribution) do
new Distribution < RedistributionPolicy.redistribute()
end while
dif ferenceTable < new Distribution — currentT able
connect New Distribution(dif ferenceT able) (Algorithm 4)
currentTable < new Distribution
:end if

XN RN

ol
B o

Here, we use the Redistribution Policy to decide on a newcalion of operators.
We then have to reconnect the query processors based orthidistribution. This step
is critical, as it has to be fast enough so as not to interrugtyyexecution, and also
correct, in that the data order does not change and no daistiduring the reallocation
process. In Figure 6.2 and Algorithm 6 show how we move a quopsgrator from one
guery processor to another on the cluster. This is similéneavork in [32], however we
have other requirements such as moving the state of thetoparad ensuring that the
data arrival order is unchanged.

We first find out the new query processor that will be proceg#ire operator, and
notify it that it will be doing work on this operator (Step )Ve then create a data flow
connection on the new query processor to the query procesairthe operator will send
its data to (Step 2). We make this connection first so when fleeador is activated on
the new machine, the data will be able to seamlessly flow fltemew machine, causing
little to no disruption in data flow. We then create a data flanreection to the output of
the children operators to the new machine, so the data vapgnty flow to the operator
on the new processor (Step 3). This also effectively endsiateygoing into the operator
on the old processor, allowing us to terminate its execui8tap 4) after its input queues

have “dried up”. Since the operator on the old processor naae Istate information
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Algorithm 6 Operator Reallocation.

1: for operator in dif ferenceT able do

2:  oldProcessor «— currentTable.get Processor(operator)
3. newProcessor < newDistribution.get Processor(operator)
4:  tell newProcessor thatoperator will be activated
5. for all parents of operator do
6: if new Processor! = new Distribution.get Processor(parent) then
7 CONNECT operator to parent onnew Distribution.get Processor(parent)
8: end if
9: end for
10:  for all children of operator do
11: if newProcessor! = new Distribution.get Processor(children) then
12: CONNECT child on newDistribution.get Processor(children) to
operator
13: end if
14:  end for
15 for all children of operator do
16: DISCONNECT child onoldDistribution.get Processor(children)
17:  end for
18: DFEACTIV AT EoperatoronoldProcessor
19: SENDSTATE fromoperatoronoldProcessortooperatoronnew Processor
20:  for all parents of operator do
21: DISCONNECT operator onoldProcessor to parent
22:  end for
23:  ACTIV ATFE operator onnewProcessor for processing
24: end for

that will be needed, we then send the state from the old psocés the new processor.

Execution will then continue as it would if it had never mo\&dep 5).

Finally (Step 6), we need to ensure that the data order hashamiged. Before al-

lowing the operator to run on the new machine, we will enshag the data from the old

machine is sent to the parent operator and then the connastterminated [40]. Once

all parent connections are terminated on the old machinayeable to activate the oper-

ator on the new machine. As you can see, there is quite a barofrminication involved

in moving an operator to ensure correctness. We packagbéahsshake into 6 distinct

steps to only communicate between the Distribution Managédrthe Query Processors
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Figure 6.2: The Six Steps of Redistribution

when absolutely needed. This will minimize the cost of mguine operator to the new

machine. Our experimental study confirms our hypothestdtiescost of moving a query

operator using this algorithm is negligible.
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6.3.1 Cost of Redistribution

In our experimental evaluation, we found the cost of movingperator to be negligible.
We ran an experiment using Query Plan 2 with a 20 second wind@moved a stateful
window join operator between two machines back and fortaryeminute, to see how it
would degrade performance (if at all). We were careful toareate more connections
when necessary when moving the operator, because this wiardduce extra work for
the query operators. It was important to isolate the moveémsenve could measure the
cost of moving the data stream connections and sending dibe atross the network.
Figure 6.3 shows the performance of the query plan when weotlcedistribute versus

when we move one operator back and forth, across machirery, nnute.

450000
400000 4| —*— No Redistribution

350000 1| —®— Redistribution Every Minute f
300000 »

250000

200000
150000

100000

Total Tuples Outputted

50000

0 1

Figure 6.3: Throughput of Query Plan with RedistributioreBv60 seconds

We see that the cost of moving the operator is negligibleabse the throughput of the
guery plan does not change over the 30 minute runtime. Thidtreas expected because
of the way that the operator is moved across machines. Be@aisreate the connections
for the data to flonbeforewe start sending the data, we are able to “flip a switch” and
in the eyes of the query processor, turn off one operator @amdit on another machine.

This is especially true for larger query plans such as our &&ator plan because the
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probability of the operator being scheduled for executiorit® old processor is only 5%
(1 in 20). Thus, it is highly unlikely that the query scheduMuld even notice that the

operator was moved. Instead the scheduler would simplydsdtd@ther operators to run.

6.3.2 Redistribution Policies

Now that we have discussed our redistribution algorithmlaswl we can obtain the infor-
mation necessary to determine the cost for a query progegsdrave to determine how
we will interpret these costs to reallocate the query opesatThere are many possible
ways to decide how to perform reallocation. In our currerstasyn, we focus on two of
these methods.

Balance. The balance redistribution policy tries to evenly balatifee query load
across all machines. This strategy is effective when syséswurces such as memory or
CPU usage are at a premium. The policy looks at all query gems in the cost table and
aims to balance the table by moving operators from the heldaded processor to the
lightest loaded processor. It then continues this proceskall machines are as evenly
balanced as possible. This policy however will not take afmes away from machines
that are only moderately loaded, as it may disrupt a set afadpes on the processors that
were performing well.

Degradation. The degradation redistribution policy does its best éfforalleviate
load on machines that have shown a degradation in cost $iadadt time operators were
allocated on the machine. If the cost has degraded beyontbanggercentage we attempt
to stop the degradation by moving the most costly operatorgher query processors,
giving highest preference to those operators that will neereonetwork connection from

the overall distribution of operators.
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6.3.3 Redistribution Experiments

Our goal in redistribution is tamprovethe performance of execution during runtime.
Hence, we need to monitor each query processor, and notiea thiere is an overload
and try to correct it. As we saw in Chapter 5, there is no stiigin for a good original
distribution pattern. However, we can tune the procesdirayi initial distribution is
bad, or turns bad over time. In fact, we can find a speedup ofrivéome cases, as our

experimental studies illustrate.

800000

—&— Round Robin Distribution
700000

—a— Round Robin with ,r‘/‘/‘—‘
600000 + Redistribution l(‘/‘/r'
500000 /
400000

300000 .

200000 / M,

100000
OW

S R I R R S

Total Tuples Outputted

Time (m)

Figure 6.4: Redistribution of Query Plan 2, with a 10 Secondddwv over 3 Query
Processors.

In this set of experiments, we use the same cluster for otitbtabas in Section 4.3.1
using our Output Rate cost model explained in Section 6.2camdegrading Perfor-
mance redistribution policy, explained in Section 6.3.2e Mge Query Plans 2 and 3 in
this section.

In Figure 6.4 we observe that our redistribution policy iseato improve the per-
formance of the initial Round Robin Distribution by 100%. eTtedistribution is able to
detect the declining output rate for each query procesedreallocate the operators such

that there are fewer network connections per machine. Thare time to process each
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operator would be available on the prior overloaded machiather than spending time
sending the data across the network. By observing the otdftwe were able to easily
identify bottlenecks in query plan and adjust the outpug kafore it had degraded too

far.

800000

700000 || —#— Round Robin Distribution M(’x
—&— Grouping Distribution ﬂ
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500000 {{ —»— Grouping + Redist

400000
300000

200000

Total Tuples Outputted

100000

0 A ey
S I T T GRS S S S QS

Time (m)

Figure 6.5: Redistribution with 2 Machines and a 40 Oper@uoery Plan

In Figures 6.5 and 6.6 we record how redistribution affectgad” initial distribu-
tion pattern such as our Grouping distribution explaine&attion 5.1.3. Even though
the Grouping Distribution does a great job at grouping ojpesasuch that network con-
nections are minimized, we can still see a performance bwdsto 10% when moving
operators to other query operators by our redistributidicypoln fact during execution
with the Grouping Distribution, operators only needed tonb@ved 4 times in the 30
minute span using our policy, as compared to 17 reallocafiornthe Round Robin distri-
bution. Regardless, we are able to improve performance bytorong the performance
of each query processor, and then reacting to the costsiateswith each processor using

our redistribution policy.

Figures 6.5 and 6.6 also show us that there is no substittdioa good initial dis-

tribution. In both of these experiments we see that the Gngugistribution gives us a
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Figure 6.6: Redistribution with 3 Machines and a 40 Oper@uoery Plan

big advantage with regard to the throughput regardlesseofadistribution policy. How-
ever, initial distributions still lack the knowledge of ime information such as data
rates, which can impact the performance as well. Here, a 1@#édsip will increase the
throughput by almost 800,000 tuples over a 30 minute spaalnoost 30,000 tuples per
minute.

In this section | have described a framework for reallocatjoery operators among a
cluster of query processors, with the flexibility of addireywreallocation schemes to the
system without knowledge of the entire distribution franekv | also show experimen-
tally that reallocation of query operators over a clustanathines not only increases the
performance of the query processors but is also done witl 1@ no overhead, assum-
ing we intelligently move the query operators using our kizalge from Chapter 5, and

learned characteristics from a cost model.
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Chapter 7

Conclusions and Future Wor k

7.1 Conclusions

This thesis was able to uncover many of the issues in deggmia implementing a
D-DSMS. Because of the nature of streaming data and the ené&gs of streaming data
operators, new algorithms had to be developed to distranudeeallocate query operators.
In addition, we were able to observe the costs associatddquiéry plan distribution
and write cost models and redistribution policies that wadske to improve query plan
performance based on statistical feedback from the clo$tguery processors.

This work is a starting point in the area of Distributed Datiee&mn Management Sys-
tems. Because this field is very new, it was fessentiato come up with an architecture
that is bothflexibleandscalable D-CAPE achieves this goal by allowing for individual
cost models and distribution algorithms to be “plugged m'the system, without any
special knowledge of the inner workings of the system. Bwting a Distribution Man-
ager that was tiered in nature, it allows in the future fostdus of machines to have their
own Distribution Manager which is controlled by a higherdemanager, thus allowing

for a greater number of query plans and the ability to efetyi distribute these plans to
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a cluster of machines that will be effective in processiregdbery.

Our experimental evidence shows that Query Plan distobus effective even for
small query plans, and becomes very effective as query flaneme large. In many
cases, we were able to achieve a 100% performance increasa single query proces-
sor, by using a distributed environment. We also find thdtttlemain costs in query plan
performance include the number of connections per machimgthe total memory used
by the machine. Query processors have better performanee ivhas to manage fewer
connections. We were also able to show that the type of irdtgribution algorithm
used is essential in how well the query processors will perfoverall. Algorithms that
tend to create extra network connections, such as RoundRlolot perform as well as
algorithms that take network connections into account ¢@neg Algorithm).

Redistribution experiments show that we are able to effelstireallocate query op-
erators over time if we observe a degradation in performancentime. Reallocating a
guery operator requires virtually zero overhead as we destalnaintain the flow of data

through the cluster using our specialized redistributimtgrol.

7.2 FutureWork

This thesis has opened the door for many potential areastwfefuvork in Distributed
Data Stream Management Systems. The flexible architecttine aew D-CAPE system
allows for the study of stream processing in many areas.

First this work can be expanded by experimenting with oth&ridution algorithms
and query plans, and studying how they affect overall quéay performance, and what
other factors influence performance. Using this knowledge cost models can be cre-
ated that can determine the workload of a query processadffereht ways using these

observed factors.
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Redistribution is another key area of future research. d heg potentially many other
costs associated with query processor performance. Fwtonlecan include determin-
ing more of these costs and writing redistribution polidiest take these costs, or any
combination of costs in consideration when deciding howettistribute a set of query
plans.

Research can also be done in using different schedulingitdges such as Chain
[7] or Train [13] scheduling to observe to what degree schedualgorithms on a single
guery processor influence performance, and also if paati@dheduling algorithms work
well with specific query operator distributions.

Finally, work can be done with other data sets of varying r@yusuch as motion data,
traffic data [30] or other forms of streaming data that willused in future Data Stream

Management Systems.
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