
Multi-MAV Deployment

A Major Qualifying Project Report

Submitted to the Faculty

Of the

Worcester Polytechnic Institute

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

In Aerospace/Mechanical & Robotics Engineering

Submitted by:

Adam Campisi, Aerospace Eng.

Samuel Daley, Aerospace Eng.

Samantha Hilerio, Aerospace Eng.

Christopher Sanchez, Aerospace Eng.

Alexander Hindley, Mechanical Eng.

Joseph Danner, Robotics Eng.

James Kirk, Robotics Eng.

John Pearsall, Robotics Eng.

Advisors:
Michael A. Demetriou

mdemetri@wpi.edu

Stephen Nestinger

ssnestinger@wpi.edu

“Certain materials are included under the fair use exemption of the U.S. Copyright Law and have been
prepared according to the fair use guidelines and are restricted from further use.”

ii

Abstract

The goal of this project was to develop a system of coordinated micro aerial vehicles along with

an unmanned ground vehicle in order to advance the development of collaborative systems. The design

objectives were to maximize flight time and mobility of a quad-rotor, and to minimize the size of the

system. Analysis, design, construction, and testing of an autonomous quad-rotor and ground vehicle for

collaborative operations were completed. The resulting system was capable of deployment and hover.

iii

Acknowledgements

We would like to acknowledge first our advisors, without whom we would have no project.

Professor Nestinger and Professor Demetriou were helpful in any way possible, and for that we thank

them.

We would also like to acknowledge Tracey Coetzee for all of her assistance with every order we

needed to place. Thank you Tracey.

Finally, we would like to thank Dr. Adriana Hera for all of her help with our Matlab simulation.

When all hope seemed lost in adding noise to our simulation, she saved the day. Thank you, Dr. Hera.

iv

Table of Contents

Abstract .. ii
Acknowledgements... iii
Table of Contents .. iv
List of Figures .. vi
List of Tables ... viii
1 Introduction .. 1
2 Background ... 3

2.1 History of UAV Tech ... 3
2.2 Micro UAVs .. 4
2.3 UGV Overview .. 5

3 Methodology ... 7
3.1 Design of MAV ... 7

3.1.1 Preliminary Design .. 7
3.2 MAV Construction and Iterations .. 14

3.2.1 Prototype 1 ... 19
3.2.2 Prototype 2 ... 20
3.2.3 Prototype 3 ... 21
3.2.4 Prototype 4 ... 21
3.2.5 Lessons Learned .. 22
3.2.6 Propeller Selection .. 23
3.2.7 Propeller Balancing ... 28
3.2.7 Materials ... 29

3.3 MAV Dynamics and Control ... 33
3.3.1 Control Strategy: Stabilizing at a Hover .. 38
3.3.2 Control of Altitude (Vertical Position) ... 39
3.3.3 Control of Yaw Angular Position (ψ) ... 39
3.3.4 Control of Roll Angular Position (φ, y) .. 39
3.3.5 Control of Pitch Angular Position (θ, x) ... 39

3.4 Electrical System .. 40
3.4.1 Environment Sensing .. 42
3.4.2 Motors ... 44
3.4.3 Motor Sensing ... 45
3.4.4 Microcontroller and IMU sensor ... 46
3.4.5 Arduino Pro Mini ... 48
3.4.6 XBee .. 49
3.4.7 Electronics Packaging and Schematic ... 49

3.5 MAV Programming ... 54
3.5.1 Motor Control ... 55
3.5.2 IMU ... 55
3.5.3 Control Equations ... 55

3.6 Sensor Testing and Calibration .. 56
3.7 Quad-rotor Testing... 60
3.8 Design of Unmanned Ground Vehicle ... 61

3.8.1 Overview of Pioneer 3DX .. 61
3.8.2 Deployment Mechanism Design ... 62
3.8.3 Landing Pad Design ... 69

v

3.8.4 MAV Charging System ... 70
3.8.5 UGV Electronics and Software .. 73

4 Final Results .. 74
4.1 Flight Simulation Results .. 74
4.2 Flight Testing Results ... 74
4.3 Testing Challenges ... 75
4.4 Manufacturing, Assembly, and Testing of the UGV ... 75

4.4.1 UGV Electronics and Software .. 77
4.4.2 UGV Testing and Final Modifications .. 78

5 Reflections of Project .. 81
References ... 83
Appendix A: GRANTA Analysis of Current RC Aero Vehicles ... 84
Appendix B: Equation of Motion Derivations .. 87

Altitude .. 87
Yaw Angular Position ... 87
Roll Angular Position .. 88
Pitch Angular Position .. 89

Appendix C: Electronic Information ... 90
Infrared Sensor Data .. 90

Appendix D: MATLAB Simulation Code .. 91
Appendix E: Results of MATLAB Simulation... 96
Appendix F: MAV Electrical Schematic .. 99
Appendix G: CAD Drawings .. 100
MAV Main Body ... 100

MAV Motor Mount .. 103
MAV Leg Spar ... 105
MAV Landing Base ... 106
MAV Arm .. 107

Appendix H: Instructions for MAV Use .. 108
Appendix I: Unmanned Ground Vehicle Code ... 109
Appendix J: Quad-rotor Flight Code... 111

ArduPilot Software ... 111
Arduino Pro Mini Software .. 121

vi

List of Figures

Figure 1: Quad-rotor in flight ... 8
Figure 2: MAV Design #1 .. 9
Figure 3: MAV Design #2 .. 9
Figure 4: MAV Design #3 .. 10
Figure 5: MAV Design Iteration #1 ... 12
Figure 6: Quad-rotor Design Iteration #2 .. 13
Figure 7: Final MAV Design .. 14
Figure 8: Completed MAV .. 14
Figure 9: Motor Mount (left), Upper Body Portion (right) .. 15
Figure 10: Lower Bay area and Landing Pad .. 15
Figure 11: Through Holes on Upper Body and Motor Mounts .. 16
Figure 12: Motor Mount with Motor and IR Sensor Attached .. 16
Figure 13: Underside of Motor Mount with Hall Effect Sensor Attached 17
Figure 14: Attached Arms and Mounted Speed Controllers .. 17
Figure 15: Aluminum Bay with Battery .. 18
Figure 16: Ardupilot Mounted on Underside of Upper Body .. 18
Figure 17: Arduino Pro-mini Mounted on Bay Area .. 19
Figure 18: Ultrasonic Sensor Mounted on Bay and XBee Mounted on Top of MAV 19
Figure 19: MAV Prototype 2 .. 20
Figure 20: MAV Prototype 3 .. 21
Figure 21: MAV Prototype 4 .. 22
Figure 22: Loctite 242 Melting ABS Plastic... 22
Figure 23: Thrust Testing Stand ... 24
Figure 24: Propeller Test Graph ... 26
Figure 25: Thrust vs RPM ... 27
Figure 26: Torque vs RPM .. 27
Figure 27: Thrust vs Torque ... 28
Figure 28: Model of Beam in Bending ... 29
Figure 29: Electrical Diagram Draft 1 ... 40
Figure 30: Electrical Diagram Draft 2 ... 41
Figure 31: Beam Pattern Characteristics of LV-MaxSonar-EZ0 .. 43
Figure 32: Beam Characteristics of LV-MaxSonar-EZ4 ... 44
Figure 33: Electronics Packaging Configuration 1 .. 51
Figure 34: Electronics Packaging Configuration 2 .. 52
Figure 35: Electronics Packaging Configuration 3 .. 53
Figure 37: Raw ADC valudes vs Distance ... 57
Figure 38: Testing Enclosure .. 61
Figure 39: Pioneer Diagram ... 62
Figure 40: UGV Design 1 .. 63
Figure 41: UGV Design 2 .. 63
Figure 42: UGV Design 3 - Stored ... 64
Figure 43: UGV Design 3 - Deployed .. 65
Figure 44: Final UGV Design (deployed) .. 68
Figure 45: Final UGV Design (Stored) .. 69

vii

Figure 46: Charging Schematic ... 72
Figure 47: Pulley and Arm System ... 76
Figure 48: UGV with landing platforms in the deployed position ... 77
Figure 49: MAV-UGV System ... 80
Figure 50: Saturation Function .. 88
Figure 51: Pitch Control ... 96
Figure 52: Roll Control ... 96
Figure 53: Yaw Control ... 97
Figure 54: Altitude Control .. 97
Figure 55: Lateral Control (X Axis).. 98
Figure 56: Lateral Control (Y Axis) .. 98

viii

List of Tables

Table 1: Evaluation Rubric ... 11
Table 2: Propeller Test Chart ... 25
Table 3: Mechanical and General Properties of Aluminum Alloys 6061 & 6063 31
Table 4: Mechanical and General Properties of Select Plastics ... 33
Table 5: Control Strategy ... 38
Table 6: Material Properties .. 66
Table 7: Platform Materials ... 66
Table 8: Arm Materials ... 67
Table 9: MAV Commands... 108

1

1 Introduction

Micro aerial vehicles (MAVs) have risen to the forefront of the technological world in recent

years. Whether gathering vital intelligence or launching a strategic missile attack thousands of miles

away from its operator, the current generation of MAVs has near limitless capabilities, but the majority

of MAVs have gained notoriety through military action. Very few have found their way into the civilian

world, where there exists significant potential for the MAV industry to grow. They would be able to

conduct a wide variety of missions from assisting rescue workers, providing police officers another pair

of eyes, or even surveying surrounding landscape. The ability to provide information from an aerial

vantage point, while avoiding potential risks to individuals, would prove to be a valuable asset to many

areas of society.

The multiple MAV deployment project focused on the design, analysis, and construction of

autonomous micro aerial vehicles that would collaborate with an autonomous ground vehicle (UGV) in

order to relay valuable information regarding the MAV’s surroundings. The final objective was to

construct three MAVs, and to have them receive instruction from a single ground robot that would not

only be the source of their instruction but also their landing and charging pad.

The controls system for each MAV, as well as the UGV, has been developed in order to create a

properly functioning and coordinated system. The UGV would have the ability to command the MAVs to

take-off, fly in formation to another room and then land back on the UGV to charge, all without any

human input. At the same time, the UGV would be able to track the locations of the MAVs such that the

UGV could follow the MAVs so that they could return to the landing pad without having to come back to

the UGV in the initial room.

Another feature the team planned to implement was the ability of the MAVs to pick up small

amounts of cargo. The ability to remain stable in flight while experiencing turbulent conditions was

2

another requirement of the MAVs. The design constraints required the MAV to be able to withstand five

mph wind gusts outside.

This report will outline the details of the design, assembly, and testing that went into

accomplishing the project’s objectives. Extensive background research divulges the inner workings of

MAVs, UGVs, and the systems that will be required for them to work cohesively. Further investigation

into the benefits and disadvantages of the various MAV and UGV designs revealed which is most

advantageous to accomplishing the goals of the project. A wide range of tests involving aeronautics,

mechanics and robotics have been conducted to insure the accuracy of MAV and UGV components, and

determined the functionality of the systems. These topics are covered in detail throughout the report in

order to provide the most complete sense of the scope and outcome of the project.

3

2 Background

Unmanned aerial vehicles (UAVs) are often considered a recent technological development.

However, UAVs have been in production and use since the early 1920s. While newer generations of

UAVs have far surpassed earlier models, there is a lot that can be learned by understand the

development process of the first UAVs.

2.1 History of UAV Tech

Early UAVs were very primitive in both design and function. In 1918, Charles Kettering, an

American engineer, developed an unmanned flying vehicle that was controlled by a gyroscope. It was

designed to carry an explosive that would detonate after the propeller had completed a predetermined

number of rotations. Known as the Kettering Bug flying bomb, it was used by the Army Signal Corps as a

form of long-range artillery in the mid-1920s [4]. The Kettering Bug was the first in a long line of aircraft

designed to fly without an on-board pilot. A large number of unmanned drones were employed by

American military forces sporadically throughout the first and second World. While the United States

military made use of many different unmanned aircraft, the vast majority of these early pilotless aircraft

were actually missiles, designed to deliver an explosive payload and not intended for reuse. These would

actually help to form the foundation for the development of precision guided missile technology [4]. It

would not be for many years after the first pilotless aircraft that a true UAV was developed.

The development of an unmanned surveillance vehicle began during the Cold War to help

facilitate the intelligence gathering efforts of US agencies. A project dubbed “Red Wagon” was intended

to repurpose targeting drones for intelligence gathering missions due to the discrepancy in size between

the UAV and traditional surveillance aircraft. Unfortunately, this project was quickly cancelled so that

funding could be reallocated to the Oxcart Project, which would lead to the production of the SR-71

4

Blackbird [4]. “Red Wagon” was among the first of countless US intelligence funded projects that led to

the development of several different variations of UAV surveillance vehicles. Through each of these

projects, the UAVs became more technologically advanced, employing state of the art sensor packages,

navigation equipment, and communications devices [2]. The Predator drone, perhaps the most

commonly known UAV, is an example of how far UAV technology has come since the Kettering Bug.

With the ability to gather intelligence and launch an attack thousands of miles away from its operator,

the Predator is a prime example of the advanced technology of today’s UAVs.

2.2 Micro UAVs

While the military continues to invest in the development of large, traditionally sized unmanned

aircraft, the development of miniature sized UAVs is becoming more prevalent. Known as micro UAVs

(MAVs), these aircraft are designed to accomplish many of the same goals as their larger counterparts,

although MAVs have one significant advantage over other UAVs: portability. Many UAVs, such as the

Predator drone, require near full sized runways for takeoff and landing, and must require much more

storage space. MAVs provide the user which much more flexibility, as many models are small enough to

be carried around. The ability to execute vertical take-off and landings as well as to be hand-launched,

allow MAVs to operate in more enclosed environments.

Many different MAV designs exist, and more are constantly being developed. The small size of

the aircraft allows for many unconventional designs to be tested and implemented. Each MAV design

has its advantages, and many MAVs are designed for specific mission parameters. The most common

MAV mission is surveillance, as a small and highly maneuverable craft is able to supply important

intelligence without risking the safety of its operators. Due to their small size, MAVs have so far been

limited to gathering intelligence; there is not enough available space to include a weapons payload.

5

While most traditionally sized unmanned aircraft are used exclusively by the military, MAVs

have the potential for civilian use as well. MAVs could serve as aids to search and rescue missions,

communications aids (possibly too create temporary internet/telecommunication access), or hobby use.

MAVs may be able to serve many different functions in the civilian world.

2.3 UGV Overview

Micro UAVs allow for increased precision maneuvering in confined spaces, but their major

limiting factor is flight time. At best, an MAV may experience ten to twenty minutes of flight time,

depending on the power drain of its motors and the size of its battery. Such a small amount of flight

time severely limits the operating radius of the MAV, which in turns limits its potential for gathering

intelligence. While a simple solution would be to add more battery power, this would add significant

weight to the UAV and may in fact actually lower flight time. One solution to this problem may be to

mount the MAV(s) on a UGV platform that would be able to transport the MAVs closer to the desired

location. UGVs are becoming more prevalent, and would make an ideal carrier for a swarm of MAVs.

UGV development began in the late 1960s, and quickly expanded. The majority of the UGV

projects were militarily funded, and thus focused on reconnaissance, surveillance, and target acquisition

missions [3]. UGVs were found to be successful ventures, and several of the projects included combat

oriented UGVs, which acted as mobile ordnance bases. These UVGs utilized a complex array of sensors,

including TV cameras, ultra sonic range finders, and various forms of radar, all to assist in the

autonomous or semi-autonomous navigation of terrain.

In regards to MAVs, a UVG would be able to function as a base of operations, carrying the MAVs

onboard until they were ready to deploy, in which case the MAVs would be able to autonomously take-

off, and then land upon their return. The UGV would serve as the command center of the MAV/UGV

network, receiving data from the MAV and then using that data to plan the MAVs next movements. Not

6

only does this symbiotic relationship between the MAV and UGV allow for the MAV to increase its range

of operation, but it will also allow the MAV to charge and redeploy from the UGV, extending the total

mission time.

7

3 Methodology

The Multi-MAV Deployment project focuses around designing, analyzing, and constructing

autonomous micro aerial vehicles that will collaborate with a ground vehicle in order to relay valuable

information regarding the MAV’s surroundings. The final objective is to construct three MAVs, and to

have them receive instruction from a single ground robot that will not only be the source of their

instruction but also their landing and charging pad as well. The following section outlines the methods

employed to accomplish the project objectives.

3.1 Design of MAV

Size and stability are the main priorities in this project. Therefore, this project included looked

through several types of MAVs, including the Vertical Take-Off and Landing Fixed Wing, the Tri-Rotor,

and the Single Rotor aircrafts. The entire design process is described in further detail below.

3.1.1 Preliminary Design

In order to move forward with the project, a basic design for the MAV needed to be selected.

Several different configurations were put forward for consideration by the group. Many unique designs

were considered, but the four main contenders were a basic quad-rotor, a quad-rotor with collapsible

wings, and two vertical take-off and landing (VTOL) flying wing designs.

3.1.1.1 Quad-rotor

First, the quad-rotor is one of the more basic designs for an MAV. As shown in Figure 1, four

individual motors provide thrust, and variable motor speeds allow the quad-rotor to perform precise

maneuvers. Its small size also enables the quad-rotor to easily operate indoors as well as outdoors. The

8

major drawback presented by a quad-rotor is the power required to operate four high-speed motors

and therefore prevents lengthy flights. Quad-rotors typically have a flight time of only 10-15 minutes.

Figure 1: Quad-rotor in flight

3.1.1.2 Collapsible Quad-rotor

The second design differed from a traditional quad-rotor by having two motors located on

collapsible wings as seen in Figure 2. This configuration would allow for the MAV to be stored in a

confined space, while still being able to operate with the same agility and performance as a

conventional quad-rotor. The wings would remain in a downward position until the MAV lifted off under

power of the two main motors. Once it reached the desired hovering height, the MAV would activate

the two wing-mounted motors and the wings would be lifted into position, with flight continuing under

the power of all four motors. The complexity of designing the wings to function properly would make

this configuration require much more work than a traditional quad-rotor.

9

Figure 2: MAV Design #1

3.1.1.3 Flying Wing

Next, two different VTOL flying wing designs were considered. The first design in Figure 3

required the MAV to takeoff in a vertical orientation, with the airfoil perpendicular to the landing

surface. This design would have rear mounted motors to provide the thrust for takeoff. Once the MAV

had reached a desired height, ailerons located in the wing would be used to guide the MAV onto a

horizontal trajectory. Once the MAV is able to achieve stable flight, the motors would be able to operate

at low power, as the airfoil design would provide an enough lift to keep the MAV airborne. Landing

maneuvers would require the MAV to perform a vertical maneuver to induce a controlled stall in order

to properly return to its landing position.

Figure 3: MAV Design #2

https://student.sharepoint.wpi.edu/mqp/skynet/pictures/Prototype1 Assy.JPG

10

The second VTOL flying wing considered is shown in Figure 4. This design placed two motors

within the surface of the wing, with rear facing motor to provide forward thrust. The motors mounted

within the wing would provide thrust for takeoff, and once a desired hovering height was achieved the

rear motor would activate and provide forward thrust. The airfoil body would also provide lift, reducing

the need for the motors to operate at high speeds for extending periods of time.

Figure 4: MAV Design #3

3.1.1.4 Design Comparison

Each of the four designs was rated against each other and a rubric, as seen in Table 1, was used

to objectively compare each of the designs against the other. On a scale of one to five, with five being

the highest, each design was rated on nine different criteria. The design that received the highest score

was chosen as the final design of the MAV. The ratings were determined as a group, based on the

expected performance of each design. No actual calculations were involved in the determination of the

ratings.

11

Table 1: Evaluation Rubric

This rubric examined the number of motors each MAV would require and the number of servos

required for moving parts. The more motors and servos involved, the more complicated the

manufacturing and controls would become. Stability was also factored in, as native stability would

increase the simplicity of the control scheme. Overall size and power requirements are also important

characteristics, as larger MAVs require more power and larger landing areas. Due to the limited size of

the UGV landing pad, large and cumbersome designs were less favorable.

3.1.1.5 Design Iteration #1

Based on this rubric, the team chose the generic quad-rotor design as the ideal candidate for the

MAV. A basic quad-rotor was constructed using SolidWorks, and work began to further optimize the

design. The original prototype went through several iterations before a main design was reached. First,

the original prototype seen in Figure 5: MAV Design Iteration #1 included a rectangular design, with the

motors located at different distances from each other. This rectangular configuration was chosen to

minimize the overall size of the MAV.

Criteria Quad-rotor Collapsible
Quad-rotor

VTOL Design
1

VTOL Design
2

Number of Motors Required 4 4 2 3

Number of Servos Required 0 0 2 2

Stability Capabilities 5 3 2 2

Footprint (On Landing Pad) 2 3.5 5 3

Control System Complexity 5 2 1 2

Maneuverability 5 4 2 2

Power-to-Weight Ratio
(Takeoff)

4 3 2 3

Power Required (Flying) 4 3 5 3

Manufacturability 4 1 2 1

Totals: 33 23.5 23 21

12

Figure 5: MAV Design Iteration #1

A rectangular motor orientation was found to not be ideal, as the force produced by each motor

would not be equally distributed. For the sake of reducing the control system complexity, the design was

altered to place the motors equidistant to the adjacent motors. The design of the MAV body was also

reconsidered; the original design offered an enclosure for the internal components, and this was

determined to be unnecessary weight as the MAV would not be flying in conditions that would be

hazardous to exposed electronics.

3.1.1.6 Design Iteration #2

These considerations led to the design of the second prototype. As shown in Figure 6: Quad-

rotor Design Iteration #2, this iteration incorporated a much more simple design; the arms were

mounted in shafts to the top of the main MAV body, forming a twelve inch by twelve inch square. This

footprint was chosen as it would fit snugly onto the surface provided by the UGV. Additionally, the

decision was made to use square tubing rather than round and to include a support that held the

motors at the ends of the arms. Square tubing was chosen to provide the motors with a level surface to

be mounted on, insuring that they are producing thrust in the proper direction. The landing gear was

also changed to incorporate an inverted, pyramid shaped guided-landing-pad design. An inverted

13

pyramid landing pad would funnel the MAV into the landing pad, insuring that it is held securely for

transport and charging purposes. Lastly, and to subsequently increase the overall stability of the MAV,

the heavier components were moved below the main body. This resulted in a lower center of gravity,

and thus lowering the moment of inertia, which would improve the MAVs tendency to resist significant

and sudden attitude changes. As such, a space was created below the body for the electronic control

components and battery. A cargo bay was incorporated to provide ample room for the aforementioned

components. This revision also had the added benefit of reducing the overall weight of the MAV.

Figure 6: Quad-rotor Design Iteration #2

3.1.1.7 Design Iteration #3

Because the previously mentioned cargo bay proved to be oversized, it was replaced with strips

of aluminum that will secure the battery and several electronic components. Additional electric

components would be mounted to the bottom of the MAV using adhesive strips. An added benefit of

replacing the cargo bay with aluminum strips was further weight reduction. The final MAV design can be

seen in Figure 7.

14

Figure 7: Final MAV Design

3.2 MAV Construction and Iterations

Figure 8: Completed MAV

This portion of the report discusses the assembly, design considerations, and part selection to

realize the final MAV. There were four prototypes.

To begin assembly, all of the parts were rapid prototyped or purchased. The parts that were

rapid prototyped were the upper body portion, the motor mounts, and the lower bay area (including the

landing portion).

15

Figure 9: Motor Mount (left), Upper Body Portion (right)

Figure 10: Lower Bay area and Landing Pad

These rapid prototyped parts were brought to the lab to utilize the drill press for through holes.

The through holes were drilled through the upper body portion where it was to be connected to the

arms, and where it was to be connected to the legs (which held the landing gear on). Through holes

were drilled through the aluminum arms in addition, for easier attachment to the upper body.

16

Figure 11: Through Holes on Upper Body and Motor Mounts

Through holes were then drilled through the motor mounts; where the screws for the motor

would attach to the mount, and where the IR sensors would be attached to the outward face of the

mount.

Figure 12: Motor Mount with Motor and IR Sensor Attached

The motor mounts were the first to be assembled after all of the through holes were drilled. As

stated before the IR sensors were mounted facing outwards from the motor mount, and the motors

were mounted to the top as in Figure 12: Motor Mount with Motor and IR Sensor Attached. Magnets

were used as RPM readers for the Hall Effect sensors, and mounted on the bottom end of the shaft of

17

the motors. The Hall Effect sensors were hot glued to the underside of the motor mounts, as close as

possible to the magnets such that reading the polar changes would not prove to be an issue.

Figure 13: Underside of Motor Mount with Hall Effect Sensor Attached

Once the arms were attached to the upper portion of the MAV structure (using nuts and bolts,

as well as securing them down with hot glue to decrease the intensity of the vibrations), the speed

controllers were plugged into the motors and mounted on the side of the arms.

Figure 14: Attached Arms and Mounted Speed Controllers

18

An aluminum bay area was created to hold the battery. Two aluminum strips were folded and

attached to the underside of the upper body portion for the bay. Velcro straps were hot-glued to the

bay, to keep the battery from sliding out of the MAV.

Figure 15: Aluminum Bay with Battery

Velcro was used on the underside of the upper portion of the structure to mount the Ardupilot

securely such that it would not move during flight and was capable of being taken out if needed.

Figure 16: Ardupilot Mounted on Underside of Upper Body

The Ardupilot Pro-minis were attached using the aluminum bay area. They were each mounted

on opposite sides with a crossbeam.

19

Figure 17: Arduino Pro-mini Mounted on Bay Area

After everything had been wired and mounted, the base of the MAV was attached and the

ultrasonic was mounted to the underside of the aluminum bay. The Xbee was attached to the top of the

MAV structure pointing forward (where yaw was set to zero) using Velcro.

 Figure 18: Ultrasonic Sensor Mounted on Bay and XBee Mounted on Top of MAV

3.2.1 Prototype 1

The first prototype consisted only of the main upper body portion (where the arms are

attached) and a single motor mount. The purpose of this iteration was to be sure that the ABS plastic

rapid-prototype manufactured parts would be sturdy enough for the design. This iteration was then

20

tested to find how much force was necessary before the part failed. The motor mount was used

primarily to test the sizing compared to the motors available. It was found that the main body portion

needed to be redesigned so it was not easy to pull apart. It was originally rapid prototyped such that it

was manufactured in line with the horizontal axis, which allowed a stress fracture along the base of the

arm attachment to the rest of the main body. The motor mount required some resizing, because the

mount was not wide enough for the motor to have some clearance and to avoid friction with the mount.

3.2.2 Prototype 2

The second MAV was the first to have the aluminum arms attached, as well as the motor

mounts and motors (propellers included). It was this prototype that the initial testing was performed on,

including motor speed controller testing and separate motor testing. This prototype never lifted off- it

was used mainly as a proof of concept for the choice of electronics and to see if the initial code would

work. The parts for the base of the MAV were then rapid prototyped and were mostly for proof of

concept for the bay area.

Figure 19: MAV Prototype 2

21

3.2.3 Prototype 3

Prototype 3 required design resizing. The first alteration was of the arm enclosures; this was to

decrease the opening of the rapid prototyped part so that there were fewer vibrations extending from

the motors to the main body. This made the aluminum arms fit tighter within the upper body portion.

The next change was in the diameter of the hole in the motor mount as well as the actual

diameter of the motor mount. The diameter of the hole was increased so that the magnet used to read

the RPMs from each motor could fit through. This was to avoid the issue of trying to attach the magnets

after the motor had already been attached to the mount.

The diameter of the motor mount was changed in order to accommodate for the new motors,

which were a bit larger than the original motors.

Prototype 3 was to be used for flight tests, however it ended up being more of a proof of

concept (please see 3.2.5 Lessons Learned sections for details).

Figure 20: MAV Prototype 3

3.2.4 Prototype 4

The fourth prototype was assembled and used for flight testing. The only changes this prototype

went through were the motor mounts. There were not resized but motor mounts broke frequently

during testing and were replaced. This was the final prototype.

22

Figure 21: MAV Prototype 4

3.2.5 Lessons Learned

In assembling the third prototype, the last step included adding Loctite 242 to each individual

nut and bolt to be sure that the nuts would not fly off the MAV (due to extreme vibrations). However,

due to insufficient testing prior to adding Loctite 242 to the ABS plastic structure, this chemical reaction

caused the entire structure to melt beneath the harsh adhesive. In building the black MAV, no Loctite

was used.

Figure 22: Loctite 242 Melting ABS Plastic

23

If there had been more time available, the motor mounts would have been rapid prototyped at

a different angle. Motor mounts were broken frequently due to the ease with which they could break

because they were printed in the horizontal axis (which was where the thrust force was acting).

3.2.6 Propeller Selection

From previous MQPs, an array of various propellers was available. The distinguishing factors

between each propeller are the length and pitch of the blade. Since one of the main design

requirements was to minimize size, we chose a maximum propeller length of 10 inches, which would

provide a large amount of surface area, while still maintaining a minimalist design. A maximum prop

length of 10 inches would increase the overall size of the MAV to 20 x 20 inches, from propeller tip to

propeller tip. With these dimensions, the MAV would still be capable of easily landing on the UGV;

however, it would require a larger amount of clearance for take-off. Several different blade pitch values

were chosen to better determine the differences between low and high blade pitch values. Six different

variations of propellers of a length 10 inches or less were available from previous MQPs. Each of the six

propellers were tested to determine with blade would provide the largest amount of thrust.

24

Figure 23: Thrust Testing Stand

To gather data to accurately compare each type of propeller, the team utilized a thrust test

stand built by a previous MQP. The thrust stand, shown in Figure 23, was balanced on a digital scale

which provided a reading of how much force the propeller was generating. The readings on the scale

were multiplied by a factor of

 to account for the different distances to the pivot point due to different

arm lengths. Each propeller was tested at 40%, 70%, and 100% motor power to generate a curve. The

data was recorded and graphed using Microsoft Excel. The resulting data is listed in Table 2, and

graphed in Figure 24.

25

Table 2: Propeller Test Chart

Propeller Percent Power Scale Reading (g) RPM (Hz) Real force (g)

9x6 gray 3 prop 40% 38 2700 42.22

 70% 275 7200 305.56

 100% 335 7740 372.22

9x6 gray 2 prop 40% 62 2760 68.89

 70% 560 7800 622.22

 100% 565 7800 627.78

8x4 black 2 prop 40% 52 3720 57.78

 70% 482 9360 535.56

 100% 505 9600 561.11

10x5 grey 2 prop 40% 75 2640 83.33

 70% 620 7320 688.89

 100% 645 7380 716.67

Large 10” Prop 40% 57 2028 63.33

 70% 600 5760 666.67

 100% 590 5760 655.56

Chosen 10x4.5 40% 75 2300 83.33

 70% 625 6500 694.44

 100% 620 6200 688.89

Based on this experimental data, the 10x4.5 propeller was selected due to a high amount of

thrust. The 10x5 propeller was able to generate an overall larger amount of thrust; however it also

required higher RPM speeds to reach a similar level. At 70% power, each motor equipped with a 10x4.5

propeller would be able to produce approximately 695g of thrust, giving the MAV a total overall thrust

potential of approximately 2.780 kg, or just over 6 pounds.

26

Figure 24: Propeller Test Graph

With a suitable propeller chosen, additional data was collected to determine the thrust and

torque curves for the Alpha 370 1200kv motors. Thrust and torque curves are needed to provide the

control software to determine how much power to give the motors to perform maneuvers. The graphs

are shown in

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

0% 20% 40% 60% 80% 100% 120%

Th
ru

st
 P

ro
d

u
ce

d
 (

gr
am

s)

Motor Top Speed %

Propeller Thrust Testing

9x6 Gray 3 Prop

9x6 Gray 2 Prop

8x2 Black 2 Prop

10x5 Gray 2 Prop

Large 10'' prop

Chosen 10x4.5

27

Figure 25: Thrust vs RPM

Figure 26: Torque vs RPM

y = 51.738x3 - 619.16x2 + 2878.5x
R² = 0.9936

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8

R
P

M

Thrust (N)

Thrust vs RPM

RPM

Poly. (RPM)

y = -5E+06x4 + 3E+06x3 - 762181x2 +
94306x - 8.5203

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 0.1 0.2 0.3

R
P

M

Torque (N*in)

Torque vs RPM

Torque (N)

Poly. (Torque (N))

28

Figure 27: Thrust vs Torque

3.2.7 Propeller Balancing

Due to the high rotational speeds imposed on the blades, improper blade balance could

significantly impact the performance of the MAV. Therefore, the blades were balanced prior to

installation.

Propeller balancing is accomplished by determining that neither blade is heavier than the other.

Two tests were developed to balance the blades. Test 1 had the propellers placed upon a stationary

shaft and spun ten times each to be sure that upon stopping the props never stopped in the exact same

location. If they had, this would mean that one side of the prop was heavier than the other, and the

lighter side of the two would require a weight to equal the heavier side. The weight chosen was simply a

strip of scotch tape. However, the weight was not necessary as the props were all properly balanced in

this regard.

Test 2 placed the propellers at different angles and observed if the props moved at all (for

example, placed at a forty-five degree incline, thirty degree decline, etc). Ideally, the props would be

balanced if they did not move from their assigned positions. If they had, that too would have indicated

that the props were not properly balanced, and would require weights.

y = 0.0347x

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8

To
rq

u
e

 (
N

*i
n

)

Thrust (N)

Thrust v Torque

Tau (Nm)

Linear (Tau (Nm))

29

3.2.7 Materials

One of the most critical components of MAV design is material selection. In determining the

proper materials for the MAV, it is important to keep in mind certain attributes of the materials.

Generally, when looking for a material, some of the most common attributes are weight, strength,

stiffness, and cost. Through discussion and design of the MAV, the arms that hold the motors extend

from the central location of the UAV, extending outwards in equal lengths. In analysis, it can said to

treat the arms as extending beams. To decide on a material type, the group must go further in finding

out how these properties define the materials chosen.

3.2.7.1 Stress

Stress is defined as the force, or load, that is acting on the structure over a given area. This is

expressed in the following equation:

However, for the stress on a beam, like the arms of the MAV supporting the motors, the type of

load must be made clearer. In beams, the transverse load is the load that acts perpendicular to the

longitudinal axis of the arm. When these loads act on a beam, they cause the beam to bend or deflect.

Figure 28: Model of Beam in Bending

30

The distance the arm will bend, also known as the deflection, depends on the load acting on the

beam. If the load is small, then the deflection will also be small. However, at the same time, the radius

of curvature, represented by ρ, will be large. The opposite will result with a high load, meaning the

deflection will be large and the radius of curvature will be small. We can measure the sharpness of the

bend by defining the curvature as κ, and relating it to ρ.

Upon using the following longitudinal strain of the beam:

Where y is the distance from the normal plane to the desired point in the y-direction, and

combining it with Hooke’s Law, which is also defined as:

Where E is the Elastic Modulus. In applying the longitudinal equation into Hooke’s Law, we

arrive to the equation below which gives us the variation of the normal stress with the distance y from

the neutral plane.

From this, we can gather that a material with a high E will have a greater normal stress than a

material with a lower E, meaning it can handle higher loads.

3.2.7.2 Young’s Modulus and other Criteria

In determining the appropriate materials needed for the MAV, the load that would be applied

from the weight of the motors were predetermined using the given weight of the motors as well as the

other components that was being located on the arm. From the materials that were found, they can be

31

grouped into 3 categories: wood, polymers, and metals. The defining criteria were high Young’s

Modulus, relatively low cost, easy machinability, and high stiffness.

3.2.7.3 Wood

The most common material used for model and Remote Control (R/C) aircraft was a selection of

woods, varying from cherry, balsa, basswood, mahogany, and other various wood types. Though the

densities of the materials are comparatively low to metals, the drawback is the low Young’s Modulus

and shear strength. As wood offers ease of machinability, low cost, and low density, it serves as a

perfect material for models and shells for R/C aircraft.

3.2.7.4 Metals

Metals have been the most commonly used material for structures in aircrafts, from R/C

models, to passenger and military planes flying today. In searching for a metal that would have a high

strength but low weight, the team found that aluminum was the best option. As a current material used

in R/C models, aluminum offers high Young’s Modulus with low weight.

Table 3: Mechanical and General Properties of Aluminum Alloys 6061 & 6063

Material Tensile Strength
(ksi)

Young’s Modulus
(*10^6 psi)

Density
(lb/in^3)

Cost
($/lb)

Al 6061 24.9-35. 9.86-10.4 0.0975-0.0985 1.08-1.19

Al 6063 33.8-37.3 10.1-10.6 0.0961-0.0983 1.07-1.17

As displayed in Table 3, the two most common and accessible aluminum alloys, 6061 and 6063,

both display excellent properties of strength, density, and cost. In comparison to other metals such as

steel, iron, and other advanced alloys, though they may offer stronger properties, weight and cost are

what made aluminum a stand-out choice when looking at metals. With their easy machinability, 6061

and 6063 both were top choices.

32

However, the concern about these metals was vibration. Though the metals would be able to

handle the load from the motors well, the vibration from the motors is a cause of concern. Heavy

vibrations from the motors would cause structural problems as well as interference in the motors.

Though high strength is a desirable quality, a material that could absorb vibration is also desired for the

MAV.

3.2.7.5 Polymers/Plastics

The last group of materials researched was polymers and plastics. The advantage that plastics

have over metals is their low density, which results in lighter materials. As well, plastics can absorb

vibrations better than its metal counterparts, and have higher Yield strengths compared to woods,

which means that if bent, it can return to its previous shape better than woods or metals. In completing

a search through certain suppliers, it was observed where the range of products was limited to. Though

a common material found in today’s R/C models, carbon fiber, although with its unique strong

properties and low density, was found to be too expensive for the application the MAV needed. Ranging

from prices higher than $20-$30 for tubing no longer than twelve inches, it was deemed that carbon

fiber might not be the suitable choice. In research and comparison into other plastics, the issue arose of

machinability, since plastics become fragile when damaged and are not easily repaired. In this focus,

one of the purposes for the arms on the MAV was to house the wiring leading from the main central

controls of the MAV to the motors that provided the lift. Thus why hollow squared tubing was

determined to be the best choice, because it would allow a space where the wires could flow through

without being affected by the outside environment, as well as an acting platform for the motor mounts

to sit on.

33

Table 4: Mechanical and General Properties of Select Plastics

Material Tensile Strength
(psi)

Young’s Modulus
(10^6 psi)

Density
(lb/in^3)

Cost
($/lb)

PTFE 1500-3000 0.2-0.239 0.0795-0.0831 6.3-6.93

Polycarbonate 8000-16000 0.304-0.312 0.043-0.048 2.3-2.53

Structural Fiberglass 7000-40000 2.47-2.61 0.058-0.070 1.3-1.95

Polyethylene 1200-1700 0.0249-0.041 0.033-0.034 0.839-0.923

As shown in Table 4, when comparing the different materials, structural fiberglass displays

certain traits that are favored for the MAV. With a high range of tensile strength, high Young’s Modulus,

and low density and cost, this material showed considerable promise. Next, polycarbonate materials

also displayed high tensile strength, high Young’s Modulus, and low density and cost. As from the

graphs in Appendix A, the green area represents the plastic foams, which are certainly not suitable for

the UAV. However, the plastics such as the polycarbonate and the fiberglass occupy the dark blue

region, revealing high Young’s Modulus in comparison to density, which is lower compared to the

metals. Carbon fiber plastics, occupying the top right section of the plot, though exemplifying high

Modulus and density, come at an expensive cost.

3.3 MAV Dynamics and Control

MAVs require proper control and electrical systems to maintain stability. They commonly use a

bevy of onboard sensors to gather and process data, but in order to convert all of that data into

commands for the MAV, a series of control equations must be developed. [1]

The generalized coordinates of the orientation and location of the MAV (relative to the Inertial

frame) are:

These coordinates may be split up into translational and rotational. The translational

coordinates, ξ= (x, y, z) denote the position of the center of gravity of the quad-rotor in respect to the

34

Inertial frame. The rotational coordinates, η= (ψ, θ, φ) denote the orientation of the quad-rotor as the

Euler angles of yaw, pitch, and roll, respectively.

Using the Lagrangian equation to summarize the system requires the total kinetic energy with

the loss of the potential energy. Translational energy is written as:

where is the mass of the quad-rotor. Similarly, rotational kinetic energy may be written:

J is simply the inertia matrix in terms of the generalized rotational coordinates. Finally, the only

potential energy that needs to be accounted for in the case of a quad-rotor is the standard gravitational

potential energy:

 is again the mass of the craft, g is the acceleration of gravity, and z is the position of the UAV

in the z direction which is point upward. This is also known as the altitude of the craft.

Having acquired the kinetic and potential energies, the summary of the system may be attained

using the Lagrangian:

To complete the dynamic summary of the system, the Euler-Lagrangian is required:

F is a function of and . represents the net translational force on the MAV, and τ

represents the generalized moments realized on the MAV. Writing the force vector:

35

Clearly the force vector is zero in the x and y planes because the only force required to be

accounted for is the upward force from each of the rotors, or the combined thrust.

where:

This represents the force of each motor, . K is a positive constant and ω is the angular

momentum of each respective motor (again, represented by). Using these expressions, it is possible to

define:

 is the translational force on the quad rotor due to the control inputs, and is the upward

thrust (the cumulative force from the rotors in the z-direction). R has not been defined as of yet- “…R is

the transformation matrix representing the orientation of the rotorcraft.”

Defining the generalized moments on the yaw, pitch, and roll angles follows:

Each of these represent the moment on each respect angle (as shown below):

Recall that τ represents the generalized moments on the angles, and so represents the

couple produced by each motor (let be each motor, where as stated above, . is simply

36

the distance from the center of gravity of the quad rotor to each of the motors, which ideally would be

entirely equal, as seen in the above expressions.

Because it is possible to write each the kinetic energy with separate translational and rotational

expressions, it is therefore possible to write out the dynamics separately.

Translational Dynamics:

This expression is the net force of the translational generalized coordinates. The force is the

mass of the UAV times acceleration of each coordinate, summed with downward acceleration of gravity.

Rotational Dynamics:

This expression is the net generalized moment about each of the angles (yaw, pitch, and roll).

This net moment is made up of the acceleration of the rotational coordinates (multiplied by the inertial

matrix and the velocity of the inertial matrix), and the velocity of these generalized rotational

coordinates.

To take into account the Coriolis Effect, we must first define this Coriolis vector:

Again, is the inertial matrix in terms of the generalized rotational coordinates, and is the

velocity of that inertial matrix. Altogether, accounts for the Coriolis Effect, in that it accounts

37

for the gyroscopic and centrifugal terms. Since it is possible to then come to the

conclusion that:

In order to simplify this expression, redefine the generalized moments on the yaw, pitch, and roll:

Substituting this definition into the prior expression:

Thus:

Because of this, it is possible to rewrite the new equations of motion:

where is the mass of the quad rotor, and u is the total thrust (the sum of the upward forces from each

rotor). Each is the generalized moment about the yaw, pitch, and roll angles (the generalized

coordinates of). is the acceleration due to gravity, and , , and represent the

translation acceleration (where x and y make up the plane along a landing surface and z is the altitude of

the UAV).

38

3.3.1 Control Strategy: Stabilizing at a Hover

Following Castillo, Lozano, and Dzul’s suggestion, the order in which to control the quad-rotor at

a hover is to begin with altitude control, then move to control of the yaw, roll angle and y-axis horizontal

translational position, and lastly, pitch angle with x-axis horizontal translational position (as seen in

Table 5). For detailed derivations of the following equations, please refer to Appendix B.

Table 5: Control Strategy

39

3.3.2 Control of Altitude (Vertical Position)

Altogether, the expression for the control of the altitude of the quad rotor is:

3.3.3 Control of Yaw Angular Position (ψ)

The expression for the control of the yaw angular position of the UAV (the generalized rotational

coordinate ψ about the z axis) is as follows:

3.3.4 Control of Roll Angular Position (φ, y)

The expression for the control of roll in a quad rotor is as follows:

As stated prior, see all detailed derivations of the following equations in Appendix B.

3.3.5 Control of Pitch Angular Position (θ, x)

The expression for the control of pitch of the quad rotor is very similar to that of the control of

the roll angular position:

40

3.4 Electrical System

In designing the electrical system for a MAV model there where several diagrams and

schematics that were first created to allow for a more precise choosing of the on-board electronics.

First, a simple electrical diagram was created to gain a better idea of what needed to be sense and what

other components needed to be present on the MAVs. Below is the first draft of the final electrical

diagram that was used to understand how everything would work together.

Figure 29: Electrical Diagram Draft 1

From the above model it is clear that there are several different aspects that are needed to be

measured in the MAV model. It was discovered that sensors were needed for the environment, landing,

motors, and flight dynamics, which included yaw, pitch and roll. In addition, a processor was needed for

41

motor control, antenna feed and a main processor. The final electronics were motors, a camera for the

payload and an antenna to transmit the control signal going to and from the UGV.

Next, a more detailed electrical diagram was created to allow for a better understanding of how

the numerous sensors were going to be used to measure each factor. The diagram in Figure 30 is more

detailed and not only allows for an understanding of the number of sensors and electronics needed, but

it of what the main processor will have to be able to compute.

Figure 30: Electrical Diagram Draft 2

From the more complex electrical diagram, it was understood what the main processor and

motor processor would require. Research was done on different sensors, processors and controllers

that could be used on for the MAV, while making sure to keep weight, power consumption, and

operating speeds in mind.

42

3.4.1 Environment Sensing

To be able to determine the surrounding environment of our MAVs, there were several sensors

that could have been used to accomplish this task. In our research we found different range sensors, of

which two types stood out to accomplishing our task while still being light, small power use and

accurate: Infrared (IR) ranging finding and Ultrasonic sensors.

 An IR range finding sensor works by emitting an infrared beam out and receives the beam at an

angle. Depending on angle, the IR range finding sensor will be able to calculate the distance an object is

away by using triangulation.

An ultrasonic sensor works by emitting a sound pulse, at a specific beam pattern, and then waits

for the return of a given pulse. When a pulse is received, the ultrasonic sensor will calculate a change in

voltage, due to the strength of the signal that can be converted into a specific range.

By understanding how each sensor works, we decided upon using four IR range finding sensors

for detection of possible objects in the way of our MAV. These were chosen over ultrasonic sensors due

to how the beam pattern of ultrasonic sensors. As ultrasonic sensors detect further away, their beam

pattern increases in size, allowing for detection that may not necessarily in front of the MAV itself.

However, an ultrasonic sensor was chosen as the Z-direction sensor to ensure that our MAV will be at

the correct height. The ultrasonic was chosen due to continuous changes on the earth’s surface and the

height that the MAV will be flying. Data sheets for the following sensors can be seen in Appendix C.

Sharp IR Distance Sensor GP2Y0A02YK

The Sharp IR Distance Sensor GP2Y0A02KY was chosen due to its accurate distance

measurement, power consumption, and availability. The Sharp IR sensor can measure from 8 to 60

inches and has a power consumption of approximately 115mW. The sensor also has a very small

43

footprint and a weight of 3.5g. This sensor has all of our requirements that were initially set, as well as

being readily accessible and cheap.

LV-MaxSonar-EZ0

The LV-MaxSonar-EZ0 ultrasonic sensor was chosen due to the distance measurement and the

wide range that is needed for maintaining an accurate height. The MaxSonar can take measurements

from 0 to 254 inches and an approximate power consumption of 15mAW. Due to its small footprint

and lightweight, 4.3g, it falls directly into the requirements initially set.

Figure 31: Beam Pattern Characteristics of LV-MaxSonar-EZ0

The beam pattern characteristics for the EZ0 can be seen in Figure 31. The grids shown on the

figure are 12 inch squares. The beam pattern for the EZ0 shows that at different ranges the width of the

pattern changes. It can be seen that each pattern has a very large width, which could cause much noise

in our Z-direction measurement. To help solve this problem, more than one ultrasonic sensor was

researched and ruled as a possible solution to our project.

44

LV-MaxSonar-EZ4

The LV-MaxSonar-EZ4 ultrasonic sensor has all of the same characteristics as the previously

mention ultrasonic sensor, however there is one crucial difference: the beam pattern. Figure 32 shows

the difference in pattern compared to the EZ0. The same grid formation, twelve inches per block, was

used when referencing the pattern to physical distance.

Figure 32: Beam Characteristics of LV-MaxSonar-EZ4

As it can be seen, Figure 32 shows how there is a much narrower beam pattern for the EZ4

compared the previous EZ0. With a narrower beam pattern, much surrounding objects that cause noise

in the measurements can be resolved. To ensure that either of these sensors will work, test must be run

to decide which will be the best sensor for our project.

3.4.2 Motors

One electrical component that held great importance to our project, were motors. Motors were

important to this project because they were what allowed the MAV to fly. When thinking about

requirements for the motors, there were many aspects that needed to be discussed and looked over.

The motor requirements were the power consumption, weight, price, RPM (revolutions per minute),

and recommended propeller size. These factors were chosen due to the area and size of the MAV itself.

45

Originally only one type of motor was to be used on the MAV. However, two motor types were needed

due to a lack of available resources.

Alpha 370 (1200kv) Motor

The Alpha 370 motor was chosen due to its high RPM output, low power consumption, and

recommended propeller size (9x6). The Alpha 370 uses 133W and can produce 1200 RPM/V, which can

be used to produce sufficient lift. The Alpha 370 is not very expensive and has a small footprint;

however it weighs 50g making it slightly heavier than expected. Even though the Alpha 370 has a higher

weight, it can provide approximately 3.3lbs of lift by only being powered 75% of full capacity, allowing it

to have great lift for less power.

Optima 370 (1360kv) Motor

The Optima 370 brushless motor is a slightly more powerful version of the Alpha 370.

Considering that they are from the same manufacturer, there are some similarities between the two

motors, including footprint. The Optima 370 uses 150W and can produce 1360 RPM/V. This means that

it will take more power than expected, but will also produce more than expected. The Optima 370 can

produce just as much lift as the Alpha 370 and then some.

3.4.3 Motor Sensing

To ensure that the motor of choice will operate at the specific speeds needed for control, there

were two types of sensors used: a speed controller and a Hall Effect sensor. These two electronics were

chosen due to the size and power consumption.

46

US1881 Hall Effects

A Hall Effect sensor is a sensor that detects a change in magnetic field and will return a high or a

low voltage. There were several factors to consider when selecting a Hall Effects sensor: size, power

needed, and sensitivity. Considering that there are many different brands of Hall Effect sensor, our

team chose the US1181 Hall Effect sensor. This sensor can be powered up to 24V, but its minimum

value is 3.5V. It has a rise and fall time of 10 microseconds and a switching frequency of 10Hz. For more

information on the US1881 please refer to Appendix C.

To make the Hall Effects work properly on the MAV, neodymium magnets were added to the

shafts of the motors. These magnets were used so that when the motor would rotate the magnet would

too, allowing the Hall Effect to measure the RPM of the motor. To output the signal from the Hall Effect,

a voltage divider was created to allow for a significant change in power be seen.

Exceed RC Proton 30A Speed Controller

When selecting a speed controller there are many different brands to choose from, just like the

Hall Effects. Based on the criteria of price, maximum amperage, and functioning voltage the Exceed RC

Proton 30A Speed Controller was chosen. The Proton 30A could handle the high amperage that was

needed to power each motor. The Proton was also fairly priced and referred to by several places that

were mainly using motors such as ours. For more information on the Proton 30A please refer to

Appendix C.

3.4.4 Microcontroller and IMU sensor

When choosing a processor or microcontroller for any embedded system project there are

certain attributes needed to be considered. The first thing to consider is about how many I/O devices

the microcontroller will need to handle and how those devices will need to communicate it. From the

electrical diagram (Figure 30: Electrical Diagram Draft 2) the number of I/O devices was now known and

47

therefore the microcontroller could be chosen. From research, the team found out that there is a large

community of people that develop their own remote controlled and autonomous aerial vehicles. A

common microcontroller used by these groups (DIY Drones and AeroQuad) was built using the Arduino

architecture. DIY Drones likes to use the ArduPilot Mega, which is essentially an Arduino Mega 2560.

AeroQuad, although they have other Arduino architecture boards, uses the Arduino Mega 2560. The

reason the team wanted to find if there was a commonly used microcontroller was because there would

be a community of people able to help if there was ever a problem the team could not fix on its own.

After looking through DIY Drones and AeroQuad, it was decided that the ArduPilot Mega microcontroller

would be used, which for all purposes is an Arduino Mega 2560. The difference between the two boards

is that the ArduPilot already has some libraries developed for autonomous flight that could be useful.

The other difference is that the ArduPilot has an IMU sensor board developed for it and these libraries.

An inertial measurement unit (IMU) is what is used primarily by the MAV for attitude control. An

IMU normally consists of a 3-axis accelerometer and gyroscope. The reason this is useful is because the

accelerometer gives the MAV data on its acceleration in all directions. The gyroscope gives the MAV

data on the rate at which the yaw, pitch, and roll of the MAV are changing. If the team had chosen the

generic Arduino Mega 2560 then another selection would have to have been made for the IMU. The

IMU board for the ArduPilot has a connection on it for more sensors that can be integrated right into

any project with the ArduPilot libraries. Some of the additional supported sensors on the IMU board are

an Xbee antenna connection, a GPS connection, and a magnetometer. All of these sensors were

considered for use on the MAV and made the IMU board appealing more attractive option. Another

useful sensor package the IMU shield has is a barometer for sensing pressure which can then be related

to the MAV’s height. Lastly, the gyroscopes on the IMU board are vibration resistant inverted

gyroscopes. This helps when programming the MAV because some of the noise will already be filtered

out.

48

The team decided that the ArduPilot and corresponding IMU shield would be the

microcontroller and IMU sensor for this project. The available sensor packages and connections along

with the libraries and community support make the ArduPilot a clear choice for an MAV project.

3.4.5 Arduino Pro Mini

The Arduino Pro Mini was selected to be the motor processor that would take commands from

the main processor (ArduPilot), run the PD control loops for motor speeds, receive data from the Hall-

effect sensor and compute motor RPM, and communicate to the Exceed-RC speed controllers. The

reason the team wanted these motor processors was to decrease the load on the main processor when

it had to compute the control equations for flight. The team wanted a small processor to play the role of

the motor processor and we wanted to option to use PWM, external interrupts and Analog/Digital

inputs/outputs.

A few Arduino boards were looked at to fill this processor spot, the Arduino Mini, the Arduino

Pro Mini, and the Arduino Nano. Previous iterations used a Picoduino which is an ATMEL 328 on a

breakout board, this was used for motor control. After looking at the specs for the Arduino boards the

choice was to select the Arduino Pro Mini. The Arduino Mini, Arduino Pro Mini and the Ardunio Nano all

use the ATMEL 168 (3.3V) or the ATMEL 328 (5V) processors and the Mini and Pro Mini are practically

the same. The reason the team went with the Pro Mini was because we could program the Pro Mini

with a single FTDI cable (the same cable that programs the ArduPilot) and the Nano uses mini USB. The

Arduino Mini needed a second programming board in order to program the Mini and we di not want to

spend more money for the programmer when we were already buying more FTDI cables to program the

ArduPilot. Both the Mini and Pro Mini are relatively the same price when the programmer board would

double the price of the Mini. Looking back the Nano would be a viable option because it does not need

the extra programming board and mini USB is the same programming cable for the Arduino IMU Shield

49

which is very common. The only downside to the Nano is the board is not made by Sparkfun and was not

on the Sparkfun website where the team ordered most of the electronics from.

3.4.6 XBee

During testing and operation of the MAVs the team needs to be able to communicate with the

MAVs and having a wire dangling from the MAV makes it hard for the MAV to complete its mission.

Instead we need a way of wireless communication. The team’s choice was to use XBee RF modules for

wireless communication. The original decision was to use XBee-Pro modules because they had an

increased range of one mile line of site outside but in finding the parts from previous iterations the team

found normal XBee modules that would fulfill our needs. XBee-Pro has a range of 300’ in indoor and

urban environments where the XBee has a range of 100’ indoor/outside (XBee datasheet). Along with

the decreased range the XBee has lower power requirements and TX/RX max currents than the XBee-

Pro which should increase our battery life. Originally we selected the XBee-Pro because of its inceased

range and the modules can be swapped out without changing the requirements in the microprocessor.

In programming the XBees for communication the team use the program XTCU that is free to

download. XTCU is a program written to provide up to date drivers and firmware for the XBees as long

as signal selection, baud-rate selection, and communication options. This program was very helpful in

paring the XBees for communication and debugging communication problems when we thought that

the XBees were bricked but it was actually a programming error.

3.4.7 Electronics Packaging and Schematic

When the group was nearing the end of motor testing, the next critical step was packaging. One

of the key issues that the group faced was weight, where the determined maximum weight of the MAV

was 3 pounds. To make sure the MAV maintained under that tolerance, reductions in weight in the

MAV structure were made. In one initial concept design, the MAV was fitted with a cargo bay to carry

the electrical components. To help ensure the safety of the ArduPilot and the IMU shield, the cargo bay

50

was to serve as a cage to encase the components and to protect them from any impact. The drawback

came in weight, where the cargo bay made the MAV estimated weight higher than the maximum target

weight. Through this conclusion, a new solution to the electrical mounting had to be made.

The concept of Line Removable Unit (LRU) became crucial for the electrical components of the

MAV, especially during testing. The group knew that in case any of the components had to be replaced,

the electrical components had to be easily accessible as well as removable. However, the main problem

that came with the mounting of the components was vibration form the motors. Heavy vibration from

the four motors would cause any loose mounting of components to become undone, potentially

damaging the components critical to the MAV.

Using SolidWorks, the group was able to design different configurations to decide upon which

packaging formation would allow for easy removal of the components, as well as the simplest wiring

configuration. The first configuration as seen in Figure 33 explored the idea of mounting the

components underneath the top portion of the MAV. This revealed that the electrical components had

enough space for the wiring as well as proving that the cargo bay was no longer necessary. The problem

that was faced with this configuration was the IMU shield. With the blue IMU shield mounted to the

MAV, this did not leave any room for the wiring to the XBee antenna. The next issue came from the

mounting. Since the IMU mounts on top of the ArduPilot through connections, the only component

between the two that had mounting holes was the ArduPilot.

51

Figure 33: Electronics Packaging Configuration 1

Without the Speed controllers in the assembly, the first configuration was already deemed

obsolete due to the problems faced. This led to the second configuration. From what can be seen from

Figure 34, the Speed controllers were located underneath the Arduino Pro Minis in a sideways stacked

formation. The blue wires on one end of the Speed controllers connected to the motors, while the red

and black wires connected to the battery source, providing power to the MAV. Each Arduino Pro Mini

controlled a group of two motors, and the speed controllers were oriented to their respective groups.

The ArduPilot and IMU shield was placed underneath the Arduino Pro Minis, keeping the orientation the

same from the previous configuration. By having space dedicated to the wiring above the IMU, this

allowed for easy connection to the XBee. On the other hand, this configuration would have required

separate brackets or mounts for the ArduPilot, as well as the two Arduino Pro Minis. As well, the Speed

controllers would also need to be mounted in a certain manner that would not have allowed them to

move or fall from the MAV.

52

Figure 34: Electronics Packaging Configuration 2

The next configuration that was discussed can be seen in Figure 35. In the third configuration,

the components were arranged perpendicular to the sides where the walls of the cargo bay used to be.

The wires from the Speed controller had less room to route from the MAV body to the motors.

However, this configuration allotted for the components to be mounted horizontally, which meant more

room for the wiring as well as for the battery. The ArduPilot was located in the position that allowed for

it to be mounted underneath the top structure of the MAV. The intent of the third configuration had

the wires follow through the inside of the hollow arms of the MAV to the components mounted on the

arm. It was not realized until later that the Speed controllers needed to be moved outside of the main

body of the MAV. The reason for this was due to the extreme heat generated from the Speed

controllers, it was placing the other components around it in jeopardy of damage. As well, after

numerous times of changing wires and components, it was determined that routing the wires through

the arms of the MAV would have made the build process much more complicated.

53

Figure 35: Electronics Packaging Configuration 3

Through these different configurations and lessons, the group arrived to a final configuration

that can be seen in Appendix F: MAV Electrical Schematic. As can be seen in the CAD drawing of the

electrical schematic, the components of the MAV are all placed, as well as the wiring required. The

drawing was divided into sections of the MAV body, arms, top and bottom, that organized the

components and wiring bundles. By having the Speed controllers mounted on the arms of the MAV, this

allowed for the heat to be dissipated through the arms, preventing any of the other electrical

components from overheating. The drawing also illustrated the complexity of the wiring configuration.

With the four electrical components mounted on each of the arms of the MAV, the MAV body was

dedicated for the IMU, ArduPilot, Arduino Pro Minis, as well as the battery.

The purpose of the schematic was to display the packaging of the MAV, the placement of the

components, as well as to display the communication between each of the components. With the

54

schematic, the group could follow the wiring configuration, analyze how the system communicated, and

use the schematic for future construction of the MAV.

3.5 MAV Programming

To program the MAV, several requirements had to be researched to better understand how the

on-board sensors and flight equations could be used. These requirements may range from low-level to

high-level programming. This means that there would be lower-level code that will handle the actual

hardware and electronics. There will also be higher-level code that will help with path planning and

control of the actual MAV.

To begin, the higher-level programs must be thought of first. The highest-level command will be

the control commands that the MAV will receive to react to a situation appropriately. These commands

will be relevant to the MAV’s overall objective and will receive these commands from the UGV. The

preceding level will be path planning for the MAV. This level is where the MAV must use information

from calculated from the onboard sensors and overall objectives to learn where it must fly and how to

avoid obstacles that are present.

The next level is where the MAV will take in the onboard sensor readings to better calculate

where it is, relevant to the UGV, and any obstacles that are present. Using this information the MAV is

able to plan a better path in the next higher level. The lowest level of the MAV program will be the code

to control all of the sensors. Here is where all of the sensor values are received and processed and used

in the level above.

With the understanding of the above levels, it is known that the two higher levels are related

with both the UGV and MAV. The two lower-levels are strictly related to the MAV only and all of the

hardware that it incorporates. The following UML (Universal Modeling Language) demonstrates how

the two lower-level programs are related.

55

3.5.1 Motor Control

To control the motors there are several smaller functions and hardware that must be written

together in such a way that they will operate each motor individually for better control. This

functionality mainly includes hardware level programming to control the specific RPM of each motor.

To achieve this control, the Hall Effect sensors are incorporate as a digital signal to generate a PWM

(high and low) signal. The RPMCalc() then uses these signals to generate the approximate error the

motor is off. Then the PIDUpdate() will receive this error and use it to recalculate the specific PD control

that is required to obtain the specific RPM required.

3.5.2 IMU

To effectively judge the forces and the angular rotation of each MAV an IMU (Internal

Measuring Unit) was attached to return the specific degrees per second of rotation and the amount of

force in each of the three axes. To obtain these readings, the IMU has a three-axis accelerometer, a

two-axis gyro (for the X-axis and Y-axis), and a one-axis gyro (for the Z-axis). Therefore this lower-level

program will return the change of force and rotation for each of the three-axes.

3.5.3 Control Equations

This is the most important aspect of the MAV code, and it is where everything will be put

together to better understand where the MAV is locally, the MAV’s local environment and how to better

correct itself within the local environment. In this second level program, the MAV will pull all of its

readings from the three previously stated programs. By doing this the control equations program will be

able to maneuver in a local environment and will allow the MAV to control the motors accurately after

receiving commands from the higher-level programs.

56

3.5.3.1 Flight Simulation

Matlab was utilized to simulate the control environment by using the control equations

specified above (derived in Appendix B). This simulation was used to find and adjust the gains for pitch,

roll, yaw, altitude, and lateral location. The gains were tuned in this order and a stable system was

created with noise in each variable to simulate actual readings from the sensors. These noisy values

were passed through a filter and then used in the control equations to produce a realistic simulation

(please see Matlab code and results in Appendix D).

3.6 Sensor Testing and Calibration

Before any of the sensors are operational, each sensor must run through several tests to ensure

that all of the data being received is calibrated, accurate and meets the standards that we require. Each

sensor type has its own method for testing that is described in the following section. These sensors

were test through the ArduinoMega 1280 to ensure that the readings will be compatible with the main

processor on the MAV.

3.6.1 IR Sensors

When first programming IR sensor, they returned a raw Analog-to-Digital Converter (ADC) value.

This value seems random, however it returned a constant change when measuring items at different

distances. The goal of IR sensor testing and calibration was to find the specific equation that can be

used to generate a correlating distance in centimeters.

To effectively test these sensors, code was first written to return the raw values for any given IR

sensor. Next several distances were measured out in centimeters to allow for correlations between the

raw value and outputted distance. For our testing, we had measured out 150cm in increments of 5cm

to allow for accurate data, knowing that the smallest distance the IR sensor can measure is 6 inches or

57

roughly 15.24 centimeters. Then an object with a fairly large flat surface facing the sensor was placed, in

front of the sensor, beginning at fifteen centimeters (due to the minimum range labeled in the

datasheet, and a value was recorded for each distance leading up to the 150cm mark, creating our

sensor to automatically produce centimeters to match the units of our project.

The data was then inputted into Excel and graphed using a scatter plot. Each data point was

analyzed to achieve the best-fit line, which would accurately return the desired equation needed to

convert the raw ADC values into usable distance values. The following chart and graph demonstrate

how this data was interpolated can be seen in Figure 36.

Figure 36: Raw ADC valudes vs Distance

This figure shows that as the distance increase, there was a negative exponential trend. From

this, a best-fit exponential line was generated. This equation was then added into the IR sensing code to

allow for each sensor to return distance instead of raw ADC values. Each IR sensor has a different

equation to be used; therefore the rest of the sensor calibration graphs can be seen in Appendix E.

y = 8727.4x-0.93

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140 160

R
aw

 A
D

C
 V

al
u

e
s

Distance (cm)

58

3.6.2 Ultrasonic

To test and calibrate the ultrasonic, there is an equation involving information from the data

sheet must be used. When converting the analog signal first there is an equation to discover the scaling

that should be used:

where Vi = inch per volts scale and Vcc = supply voltage. For both of the ultrasonic sensors on which we

were testing turned out to be the same at 0.0098 inches per volt.

Next this value was used in another equation to produce the range. The equation is as follows:

Where: Ri = the range measured in inches

 Vm = the measured voltage from the sensor

Vi = the scaling factor

By using these equations, a specific range can be seen in inches, which for us, was then

converted into centimeters to match the rest of our units.

Even though these sensors were run through these series of equations, there was still noise in

the system creating our measurements to be very askew. After some research through the

manufacturer, it was discovered that for UAV and robotic applications, each sensor must be run through

a circuit to eliminate the electronic noise. The website for this specific information is as follows:

http://www.maxbotix.com/tutorials.htm.

After applying all of the filtering need for each sensor, they could finally be tested to determine

which one would be the proper fit for our project. To test this, each sensor was used to measure

specific distances, much like the IR sensors, and the values were then compared. After comparing the

values, it was determined that the EZ4 had much more accurate data due to its beam pattern.

59

3.6.3 IMU

Two separate test and calibrations had to be run on the IMU: one for the accelerometer and the

other for the two gyros. The accelerometer test involved the force of gravity, represented in g-force,

while the gyros entailed more complex testing.

The accelerometer began with code that would return raw values associated with the specific

axis in testing. Starting with the Z-axis, these values were recorded for when gravity was acting in both

the positive and negative directions, with negative value being the lowest reading. Then a zero value

was recorded for when the accelerometer was positioned in such a way that gravity no longer acted

upon that axis, but rather on one of the other two. These values were applied in such a way that the

raw values from the accelerometer for that access was subtracted by the zero value and then divided by

the difference from the positive and negative values. An example of this equation can be seen as

follows:

The remaining two axes were calibrated in a similar manor

As mentioned before, to calibrate the two gyros on board the IMU was more difficult than the

accelerometer. First there are two common equations that were used to better calibrate each gyro

using specifications mentioned in the data sheets in Appendix E. The first equation which will convert

the raw ADC values to voltages is as followed:

where 4096 is the integer related to the number of bits for the ADC.

After this conversion there is a second equation that calibrates the gyro to read degrees per

second for the change about the rotation of an axis. The equation is as follows:

60

From here the gyro was calibrated to read zero while not in motion. However these values may not be

accurate.

To ensure that the calibration was correct, a test stand was created. This involved a window

motor (the motor that was used for our UGV), a 9V battery, an external power source, an Xbee and in

our case an empty shoebox. The shoebox was then convert to be placed on the motor in such a way

that when the motor rotates so will the box. Next the 9V battery was connected to the Arduino

Mega1280 and the IMU shield so that it will power the Arduino, IMU shield and Xbee. Finally the motor

was given a low power from the power supply to turn the box. When this happened it rotated the box

at a constant rate to allow us to accurately measure rotations per minute, allowing us to calibrate our

gyros.

3.7 Quad-rotor Testing

Once the quad-rotor was fully assembled, a controlled environment was built in the lab to

ensure the safety of the team as well as the MAV. As shown below in Figure 37, the frame was built out

of wood, and plastic netting formed the walls. If the quad-rotor was to accelerate unexpectedly, the

strong but flexible netting would protect it from damage. A sheet formed the far wall that allowed for

easy access to the inside if changes needed to be made. During testing, the sheet was fastened to the

wood frame and therefore fully enclosing the quad-rotor.

61

Figure 37: Testing Enclosure

In order to further ensure the main structure and components of the quad-rotor did not sustain

damage during testing, the team cut pool noodles (polyethylene foam) in have and placed them around

the base and bottom of each motor.

3.8 Design of Unmanned Ground Vehicle

The ground vehicle represents an important part of the overall MAV deployment system

developed for this MQP. The UGV consists of several key parts each serving a specific function related to

deployment, control, and storage of the MAV systems.

3.8.1 Overview of Pioneer 3DX

The base ground vehicle used in this project is the Pioneer 3DX manufactured by Adept

Technology Inc. This is a 3-wheeled robotics platform with a built-in computer system and set of heavy-

duty batteries used for powering the UGV as well as charging MAVs when in the field.

62

The pioneer is about 23cm tall, 38cm wide, and 45cm long. Its maximum forward speed is

approximately 1.2 m/s. Unloaded, the pioneer has a weight of 9kg, and can hold up to 17kg (38 lbs) of

payload. Each of the three onboard 12V batteries has a capacity of 7.2 Ah, which can power the pioneer

(without accessories) for about 8 to 10 hours.

Figure 38: Pioneer Diagram

3.8.2 Deployment Mechanism Design

The Landing pad deployment system consists of a pair of kinematic mechanisms which provide

the physical support structure for the MAVs during takeoff, landing, and storage. The purpose of the

mechanism is to reduce the overall UGV footprint when the system is not in operation or while the UGV

is transporting and/or charging the MAVs.

The first design iteration of the Landing pad deployment system consisted of 3 flat platforms on

which the MAVs could land, each supported by 4 arms that could be lifted from a level position up to a

stacked position. The resulting mechanism was therefore capable of providing both a level area where

the MAVs could land and a stacked configuration for storing the MAVs in a vertical tower to reduce the

UGV footprint.

63

Figure 39: UGV Design 1

Two of the major alternative designs that were considered but rejected early on were a simple

sheet platform for all 3 MAVs and a "shelf"-type platform deployment mechanism. The sheet platform

design was rejected because of its large size and limited expandability in the case of additional MAVs.

The second design consisted of 3 shelves which could be opened laterally. This design was both simple

and reduced the UGV footprint, but was ultimately rejected because of the danger varying height

platforms posed to the MAVs as they were landing or taking off.

Figure 40: UGV Design 2

Upon analyzing the design of the first iteration of our deployment mechanism two problems

became apparent that needed to be resolved before continuing with the design. The first was a simple

balance problem relating to the UGVs overall center of gravity during deployment of the MAVs. To stack

all of the landing platforms, one platform necessarily had to have longer support arms than the other.

When deployed, this creates a difference in weight distribution which shifts the center of gravity

towards the longer arm. This could potentially tip the UGV and cause damage to the MAVs or

immobilize the UGV. Additionally, and regardless of if the UGV is stable, the extra length on the support

arms will increase both the stress on those arms and the needed torque to rotate the mechanism. This is

64

because the torque is related directly to the length of the arms, thus an arm that is twice as long will

generate twice as much torque with the same force load.

To resolve both of these problems a new design was created in which both platforms were

identical. In this third iteration of the UGV design, the two stacking platforms are each held at the same

distance from either side of the pioneer when deployed. The one trade-off that was made to achieve

this more stable configuration was growing the overall UGV footprint when the platforms are in the

storage position. This is because the two platforms are now unable to stack on top of each other and

instead are positioned side-by-side. This was determined to be an appropriate trade of as it made the

task of manufacturing the mechanism much easier.

Figure 41: UGV Design 3 - Stored

65

Figure 42: UGV Design 3 - Deployed

Once the general layout of the mechanism had been decided, the next steps were choosing

dimensions and physical building materials. At this point in the design of the UGV, some basic

dimensions for the MAV had already been chosen and could be used to calculate the needed amounts

of each material to support the weight of the MAVs while not physically interfering with the MAV during

the deployment motion.

The MAV parameters assumed during the 3nd design iteration of the UGV were as follows. The

maximum length and width were each 20 inches, spanning from each end of the outer blade tips of the

rotors. The height of the MAV was set at 5 inches and the weight was assumed to be 3lb with a safety

factor of 2, meaning that the platforms would be designed to handle up to twice the weight of the

assumed MAV. Using these parameters, a platform width of 24 inches was chosen to safely

accommodate the MAV. Several materials were then examined as possible candidates for the platform

material. Their properties, including modulus of elasticity, rigidity, and average density are listed in

Table 6.

66

Table 6: Material Properties

Materials: Elasticity (E) Density (p) Rigidity (R)

Aluminum 10 10^6 psi 0.09754 lb/in^3 3.9 10^6 psi

Mild Steel 30 10^6 psi 0.2836 lb/in^3 11.5 10^6 psi

Acrylic 0.3771 10^6 psi 0.03974 lb/in^3

Polystyrene (EPS) 0.0015 10^6 psi 0.00361 lb/in^3

Pine Wood 1.3 10^6 psi 0.0177 lb/in^3

To determine the thickness (h) and overall weight of the platforms for given materials an

acceptable deflection was chosen from which the desired measurements could be calculated using

beam deflection equations. For this particular case the platform is assumed to be a rigidly supported

very wide beam with a point load in the center representing the weight of the MAV. The amount of

deflection chosen for making the calculations was 1/10th of an inch. From these equations for moment

of inertia (I) and deflection (D), an equation for thickness (h) can be derived. In the equations below, mg

represents the weight of the MAVs, W and L represents the width and length of the platform, and E is

the elasticity (young's modulus) of the chosen platform material, given in the preceding table.

Four materials (Aluminum, Steel, Styrofoam, and Acrylic) were chosen to be analyzed as

platform materials. Wood was not chosen, as it has poor characteristics such as variable, and thus

unreliable, elasticity and general tensile strength, and may expand or quickly erode in moist conditions

or when exposed to water. The masses, volumes, and thicknesses of each material are tabulated below.

Length and width are fixed at 8 in and 24 in, respectively.

Table 7: Platform Materials

Platform Materials Thickness Mass Volume

Aluminum 0.16384 in 3.068344 lb 31.45729 in^3

Steel 0.1136 in 6.185675 lb 21.81127 in^3

Acrylic 0.491053 in 3.746773 lb 94.28216 in^3

EPS 3.134147 in 2.17234 lb 601.7563 in^3

67

Looking at these results, the best two options for a platform material appeared to be aluminum

and acrylic. The steel platform was the best in terms of size but was substantially heavier than the other

materials. The Styrofoam platform suffered from the opposite and was too large despite its favorably

low weight.

The next structural calculation to be made was determining the width of the support arms for

each platform. This is similar to calculating the thickness of the platforms, but requires a slight

modification of the deflection equation. This is because the arms are modeled as cantilevered beams

while the platform has supports on either side. For these equations, "b" is the thickness of the arm,

"Mg" is the weight of the MAV and platform, and all other variables have the same meaning but in

relation to the arm instead of the platform.

In choosing the arm material to support the platforms, Styrofoam was immediately ruled out as

it was very likely an unreasonable size would be calculated to achieve the required strength. This left

steel, aluminum, and acrylic to be analyzed using the preceding equations. Once again, a deflection of

1/10th was used, the center-center length of the arm was fixed at 22 inches, and an arbitrary arm

thickness of 1/4 inch was selected.

Table 8: Arm Materials

AL Platform Width Mass Volume

Aluminum 1.31018 in 0.702872 lb 7.205991 in3

Steel 0.908428 in 1.416966 lb 4.996355 in3

Acrylic 3.926805 in 0.858282 lb 21.59742 in3

Acrylic Platform Width Mass Volume

Aluminum 1.331906 in 0.714528 lb 7.325485 in3

Steel 0.923492 in 1.440463 lb 5.079207 in3

Acrylic 3.991921 in 0.872514 lb 21.95556 in3

From the results given, aluminum and steel appeared to be the best materials to use for the

support arms based on a combination of size and weight considerations. Assuming the heaviest

68

materials are chosen (in this case, an acrylic platform with steel support arms) the total mass of the

mechanism plus the weight of the MAVs comes out to approximately 35 lbs. This total mass is just below

the payload capacity of the pioneer and is therefore fairly safe considering twice the expected weight of

the MAVs was assumed during the calculations.

After looking over all of the calculations and giving consideration to how each of the

components might be obtained or manufactured, the final design iteration was developed based on a

few modifications to the previous design (iteration 3). The most substantial change was the reduction of

the 8 arms holding each platform into 4 arms. This was accomplished by building the deployment

mechanism in the center, below the platforms, rather than having redundant symmetrical systems on

either side of each platform.

Figure 43: Final UGV Design (deployed)

69

Figure 44: Final UGV Design (Stored)

3.8.3 Landing Pad Design

In addition to physically supporting the MAVs an important function of the landing pads is also

the charging of the MAVs. With this in mind, as well as the ability to protect the rotor tips from the arms

of the deployment mechanism, it is crucial that the MAVs are able to center themselves on the landing

pad. This is necessary for charging because with conductive charging at least, the contacts on the MAV

must light up with those of the charging mechanism on the landing pad to make a proper connection.

The two straightforward ways of achieving self-centering, or alignment in general, are active

aerial maneuvering and passive geometric alignment. Active maneuvering is generally unfavorable

because it requires very accurate real-time sensing on the MAV coupled with a series of controlled

maneuvers which must be either pre-programmed or executed manually. The second and much more

favorable option is geometric passive alignment. This is most easily accomplished by constructing a

tapered inward landing platform and a complimentary tapered landing gear on the MAV.

70

One issue presented by a conical landing dock, our first design idea, is the fact that there is no

rotational control during landing. This was resolved by instead using a pyramid shaped dock (4 sides)

which like the cone directs the MAV to the center but also rotates the MAV so that it is aligned with the

orientation of the landing pad. Once the MAV has been aligned it will come to a rest at exactly the same

point every time, thus making conductive charging possible.

In the latest iterations of the landing pad designs holes were also built into the middle area of

the pads to accommodate electrical wiring necessary for MAV charging contacts. Having these access

holes as close to the center as possible ensures that the angled sides of the landing dock are

unobstructed and therefore smooth enough to slide the MAV landing gear toward the center as they

were designed to do rather than having the MAV get caught on a wire or wires going up and over edges.

3.8.4 MAV Charging System

To charge the MAVs, a reliable, efficient, and safe charging system needed to be developed and

integrated into the ground vehicle platform. Each MAV was fitted with a single 3-cell lithium battery

package which requires a specialized load balancing controller in addition to 12 volt DC lines.

After researching the benefits and drawbacks of inductive and conductive charging systems, it

was determined that inductive charging would be both too complex and very inefficient in transferring

electricity to the MAV. The chosen method of conductive charging presented a separate difficulty in that

there were 6 contacts that needed to be aligned for the charging system to properly interface with the

multi-cell battery. Our general approach to this part of the project was to arrange metal contacts along

the base of the landing platform which would correspond to other contacts on the underside of the

MAV landing gear.

The particular arrangement of the contacts needed to be such that there would be a safe

clearance between each contact and also that they would be arranged in a pattern that would fit on the

limited area available underneath the MAV. Although the bottom of the MAV is a square there is a

71

hollow section in the center for the Ultrasonic sensor meaning that the contacts could only be placed

around the edges of the base.

The next challenge that was foreseen in developing this charging contact layout was the fact

that if the MAV were to land in the incorrect orientation it would not make contact and would therefore

be unable to charge. Because of the square shape of the landing dock and tapered edges of the MAV

landing gear, the numbers of orientations that can possibly occur during landing are substantially

reduced. Practically speaking, there are only four possible orientations of the MAV and so there only

needs to be accommodation for those four rotations of the charging contacts built into the system.

The simplest solution to this problem of having four possible orientations of the MAV was to

layout the charging contacts in groupings of six along all four edges of the landing platform in a

rotationally symmetrical fashion. The MAV would still only need the six contacts; however they could be

arranged in a way that would maximize space between the contacts while still corresponding to the

distance from any given corner equal to the same distance on one of the four sides of the charging

platform. The charging platform, having twenty-four contacts, would be able to accommodate the six

MAV contacts in any of the four orientations without the need of any software control or complex

electronics. To increase contact area, as well as improve likelihood of solid contact, a redundant set of

charging leads is positioned at 180 degrees from the first six leads, bringing the total on the MAV to

twelve as seen in Figure 45: Charging Schematic.

72

Figure 45: Charging Schematic

Once the MAV has successfully made contact with the charging platform, the physical charge

controller is responsible for delivering a balanced load of power to the three cells of the MAV battery

while drawing charge from one or more of the much larger pioneer batteries. The charge controller we

have used for this project had two input sockets for drawing power at twelve volts from the twelve volt

battery or other external power supply and then six outputs for evenly charging the battery cells of the

MAV.

During testing of the MAV, this charge controller was powered directly from a power outlet and

power supply system rather than through the batteries of the pioneer. This was done to simplify the

testing process and to conserve the energy stored in the pioneer’s batteries during lengthy testing

procedures. In a real-world situation the charging system would be fully independent of external power

and would be handled completely onboard the UGV and only need external power for charging the

pioneer batteries at the end of a mission.

73

3.8.5 UGV Electronics and Software

Even though the UGV is an already existing robotic platform, more electronics were needed for

the arms and software was written to control them. In order to control the arms there has to be a way

for the system to know where the arms are and there has to be a motor to drive the arms. There were

many different ways to solve the problem of how to know where the arms are but the solution used was

to put limit switches on the UGV in the maximum up position for the arms and the maximum down

position for the arms. Since the arms are connected to the same drive motor and both arms travel the

same distance only one set of limit switches was used to detect the arms. As for the motor, it would

have to be controlled and again there are a number of solutions. A VEX Victor 884 speed controller was

used to control the speed of the drive motor for the arms. All together there needs to be a

microcontroller that senses the system and reacts accordingly. Because the Pioneer was designed to

work with a specific set of electronic peripherals it was chosen not to use the on board microprocessor

to control the arm system on top of the Pioneer but instead another microcontroller would be used and

would be sent commands from the Pioneer’s on board computer. Since the Arduino family has been

primarily used on the MAV it was decided to use an Arduino Mega 2560 as the microcontroller for the

arm system. The limit switches were connected to two of the Arduino Mega 2560 digital I/O pins with

the open switch being LOW and the closed switch being HIGH. This would tell the controller when the

arms were up and down. The next step was to use a PWM port on the Arduino Mega 2560 to send a

PWM signal to the Victor 884 speed controller to turn the drive motor. Power for the drive motor would

be taken from the Pioneer and the Arduino would be powered and talked to over USB also connected to

the Pioneer.

74

4 Final Results

Following prototyping, testing was performed on both the MAV and UGV and their ability to

complete the prescribed tasks were evaluated. Tests were run in a number of different environments

presenting various results.

4.1 Flight Simulation Results

The simulation resulted in a stable hover with a reasonable response time. Graphical results are

shown in Appendix E: Results of MATLAB Simulation. When the pitch and roll positions were set at ten

degrees it took about five seconds for the oscillations to calm to a steady location around zero degrees,

and the angular velocities took even less time depending on the noise generated during that simulation.

When yaw was set to ten degrees only two to three seconds later the system had turned the yaw to

zero, and with minimal oscillation at all. The yaw angular velocity returns to zero after three or fewer

seconds.

For altitude testing, the desired altitude was set to five meters and when the system started at

zero meters it reached stable hover after four seconds. The velocity shown in the results for the Z

position is noisy, but again that is due to the noise generated at that time. With this desired altitude set

to the starting altitude, the lateral position was found to move about one meter in the X and Y directions

when the pitch and roll were started at ten degrees each. The velocities for lateral movement settle out

at five seconds.

4.2 Flight Testing Results

Flight control testing was performed both in the tethered testing enclosure as well as in a free

open environment. In the testing enclosure, control gains were adjusted until flight control was

75

perceived to be stable. The tuned quad-rotor was then tested in an open un-tethered environment to

verify the controller. The controller was able to maintain stable flight when wind was not a factor. The

main control systems for the MAV are dependent on a P-D-DD (Proportional, Derivative, Double

Derivate) controller, where behavior often starts with oscillation that slowly decreases to a steady state.

4.3 Testing Challenges

Performing flight testing on the MAV presented many challenges. Among those were

complications with motors. The originally chosen Alpha 370 1200kv brushless motors, which had been

used by MQP groups in previous year, were seemingly discontinued by manufacturers. Due to a crash

during flight testing, several of the Alpha 370 motors became damaged and needed to be replaced. With

no replacements, additional motors were needed. As previously mentioned, Optima 370 brushless

motors were chosen to replace the Alpha 370 motors.

The fragility of the sensor packages made it necessary to replace certain sensors after periods of

use. The hall effects sensors, which are used to determine a motors current RPM, required repeated

maintenance. The fragile nature of these sensors meant that any type of collision the MAV experienced

during flight testing had the potential to knock a sensor out of alignment. While relatively simple to

maintain, several Hall Effect sensors required repairs, causing long delays between tests.

4.4 Manufacturing, Assembly, and Testing of the UGV

The first step in building the UGV systems was cutting the aluminum pieces that would make up

the central components of the UGV structures and mechanisms. The materials used in this process were

about 10 feet of aluminum tubing, and about 1 square foot of 1/32 inch aluminum sheet. Specifically,

the aluminum parts included the central support beam, the lever arms for each of the two pad

deployment mechanisms, stabilizers to connect the central beam to the pioneer, and a motor mount.

76

These pieces were cut in the machine shop using a belt saw and had appropriate fastener holes drilled

into them using a drill press.

Once the aluminum components were manufactured, a series of pulleys and spacers were

needed to transfer force from the motor to the deployment mechanism arms. Acrylic was chosen as the

most cost effective material and could be easily cut into the appropriate shapes on a laser cutter. Most

of the pulleys consisted of 3 or 4 glued together layers of 1/8 inch acrylic comprising the two larger

guide circles on the outside and smaller track circle(s) on the inside. These pulleys were fastened to the

aluminum components using ¼ inch bolts at pre-determined locations that had been drilled when the

aluminum components were made. In total there are 7 major pulleys consisting of 3 unique shapes. Four

of the pulleys were simple circular pulleys about 1.5 inches in diameter used for guiding the cable. One

drive-spool pulley was made with a non-circular axel hole to be mounted on the drive motor and also

had secondary holes for securing the wire. The 2 remaining pulleys were semi-circular and direct the

cable around the pivot point of the pull arm at a radial distance of 2.5 inches to create a larger moment

on the pull arms, thus requiring less motor torque.

Figure 46: Pulley and Arm System

For the landing platforms, material selection was based on earlier calculations that showed

acrylic to be the best material both in weight and ease of manufacturability. To manufacture the

platforms acrylic sheets were laser cut into pieces that could then be assembled into the three

77

dimensional platforms. Semi-flexible silicon adhesive was used to glue the pieced together. This

particular adhesive was selected as the bonding with acrylic is strong enough to withstand the pressure

that a landing MAV would exert, while the flexibility gives the platforms more impact resistance by way

of elastically giving instead of shattering or cracking the glue.

Figure 47: UGV with landing platforms in the deployed position

The electrical components of the UGV were mounted on a series of aluminum sheets or spacers

which were bolted to the main cross beam and plate mounting brackets. These electronics include the

drive motor for the two lift pulley systems, a Vex speed controller for powering the drive motor, and

charge controller for distributing energy to the MAV charging docks at the end of each arm and in the

center. Because the landing pads are all raised above the deployment mechanisms, the topside of the

pioneer robot was largely open and provided an ideal location for mounting all of the necessary

electronic systems that are not already built into the inside of the Pioneer body.

4.4.1 UGV Electronics and Software

The only changed that occurred with the electrical and software system was that the drive

motor and Victor 884 speed controller were powered by a spare battery instead of the Pioneer because

of connection problems with the Pioneer. While testing the system the speed at which the drive motor

was run was increased when bringing the arms up because when tested the arms would struggled under

the load but increasing the speed was a solution. The arms performed as expected under a load of 4 lbs.

78

on each arm, this was roughly estimated to be 16 ft-lbs of torque needed by the drive motor to lift the

arms.

Communication protocol for the UGV system was to connect over AD-Hoc Wi-Fi set-up by the

Pioneer via an SSH client and control the movement of the Pioneer. Once connect to the Pioneer, a

serial connection was made from the Pioneer to the Arduino Mega 2560 and simple commands were

transmitted to raise the arms and lower them (“u” for up, “d” for down). The movement of the Pioneer

was controlled through the ARIA program loaded onto the platform by the manufacturer. ARIA used the

arrow keys to turn and increase speed in the forward and reverse directions to a capped limit as to not

have the Pioneer drive away unsecured. Overall the system performed as expected.

4.4.2 UGV Testing and Final Modifications

Once the electronics were working, the first series of tests we performed on the UGV were

focused on arm deployment. In the very first test we performed, the speed of the deployment system

drive motor was much too slow. In response, we increased what the speed controller was giving the

motor and ran more tests, this time with gradually increased payloads placed on one or both of the

arms. When the payload approached 3 pounds, we noticed considerable strain in the pulley wires, which

eventually led to them breaking.

To alleviate the problem of drive cables breaking, two solutions were explored. The first solution

was to add a counterweight to the deployment arms which would serve to dramatically reduce the

loading on the cable by counter-acting the moment arm created by the payload. To attach the

counterweight, a hook was mounted to the arm on the opposite side of the pivot point from where the

payload was. A weight of between 2 or 3 pounds at 3 inches from the center of rotation seemed to work

fairly well however it added that much more weight to the pioneer. The second solution was to increase

the tensile strength of the cable. To increase the cable’s strength we replaced the copper wire that we

79

had been using with special high-tension string. This solution was ultimately the one we chose to use in

the final iteration of the UGV.

Another major issue that became apparent during deployment testing was the fact that some

parts on the UGV were bending under the forces exerted by the tension cable on the pulleys while the

UGV was trying to lift a payload. Specifically, the center beam on which most of the mechanism was

built began to tilt towards the motor and vice-versa as the motor pulled the cable. To resolve this

bending, C-clamps were used to hold down the center beam and drive motor plate and keep them level

with the pioneer. Eventually we replaced these clamps with smaller, more permanent fixtures that

accomplished the same clamping task.

After all of the final components were mounted onto the pioneer, it was taken into the field and

tested under real world conditions including on pavement, dirt, grass, and uneven surfaces. While the

top speed was not very fast, the handling of the pioneer on inclines up to around 20 degrees and

traveling over rough terrain was very good. It never tipped or caused any damage to the payload during

this field test and seemed to have no problems with holding the payload during motion. Other things

tested during driving of the UGV were the opening and closing of the arms. This was successful as well

and demonstrated that the UGV could deploy while still in motion.

80

Figure 48: MAV-UGV System

Some of the problems encountered during field testing of the UGV were either related to

electrical components not being fully secured or connection problems via wifi. It was discovered that the

battery connectors especially were prone to disconnecting under the vibrations experienced by the UGV

during movement. This was solved by strengthening the connector linking the control board and the

battery cable. The wireless connection problems could have been due to several factors, but were of

particular impediment by making it difficult to quickly and reliably connect to the pioneer to engage

drive or deployment functions.

81

5 Reflections of Project

At the start of the project, the team was confident in its ability to meet its goal of having three

MAVs and one UGV working in tandem by the end of three terms. With a team of eight members, there

are inherent challenges that need to be overcome, such as organization, group dynamics, and

productivity. Throughout the project, the team had an easier time with some aspects over others.

Arranging weekly meetings proved to be unproblematic as each member’s schedule fit well with the rest

and everyone was willing to alter their schedule if needed. During the initial stages of the project, the

team met almost every day to discuss and plan what needed to get done. As the project progressed, the

team continued to meet many times a week in the lab to continue constructing and then later testing.

Group dynamics and staying motivated was also not a problem as all the members got along and were

fully committed to the project. In retrospect, the team felt that the main problems that were the cause

of many setbacks were productivity, monetary and time restrictions, and project goals.

During the first term, the team researched, proposed, and selected the most appropriate MAV

design for the project. Once completed, the quad-rotor went through three design iterations and a few

material ordering setbacks before the construction actually began a few weeks of the second term.

From this, the team learned that the time spent researching various MAV designs was inefficient and the

majority could have been better suited to focusing on the quad-rotor and possibly designs used in

previous projects, therefore beginning the initial design and construction sooner in A-term. In addition,

during the initial research stage, with a team of eight, it could be divided into subgroups with each

focusing on a specific task such as optimizing structural design for the MAV and UGV, establishing

control equations, or running Matlab simulations. Therefore, different aspects of the project could be

worked on initially thereby maintaining productivity as the project continues. A difficulty the team faced

82

involved not setting specific milestones aside from major objectives. In the long run, this caused

productivity to slow as members were unclear on what to do next.

Lastly, the team felt the project and project goals needed to be reevaluated. Looking back, the

goal of building three autonomous MAVs and one UGV to work in tandem was unrealistic for the time

frame and funding given. Therefore, the team suggests that the project become multi-year and possibly

span both the Aerospace and Robotics Engineering departments. The benefit of doing so would allow

aerospace students to design and analyze certain aspects of the quad-rotor and which would then be

passed to the robotics engineering students who would focus on programming and implementing the

autonomous system. Then, the team the following year would further refine and optimize the system

from the previous. This proposal by the team was in light of the fact that it felt there was not enough

work that the aerospace students could help with as they did not have a strong theoretical or practical

controls engineering background.

83

References

[1] Castillo, Pedro, R. Lozano, and Alejandro E. Dzul. Modelling and Control of Mini-flying

Machines. London: Springer, 2005. Print.

[2] Ehrhard, Thomas P. Air Force UAVs: The Secret History. Ft. Belvoir: Defense Technical

Information Center, 2010. Print.

[3] Gage, Douglas W. UGV History 101: A Brief History of Unmanned Ground Vehicle (UGV)

Development Efforts. San Diego: Naval Ocean Systems Center, 1995. Print.

[4] Sullivan, J.M. "Evolution or Revolution? the Rise of UAVs." IEEE Technology and Society

Magazine 25.3 (2006): 43-49. Print.

84

D
en

si
ty

 (
lb

/i
n̂

3)
0.

00
2

0.
00

5
0.

01
0.

02
0.

05

Young's modulus (106̂ psi) 0.
00

1

0.
010.
1110

Appendix A: GRANTA Analysis of Current RC Aero Vehicles

Graph of Young’s Modulus vs. Density of Woods

85

Y
ie

ld
 s

tr
en

g
th

 (
el

as
ti
c

lim
it
)
(k

si
)

0
.0

0
1

0
.0

1
0
.1

1
1
0

1
0
0

Young's modulus (106̂ psi)

1
e
-6

1
e
-5

1
e
-4

0
.0

0
1

0
.0

1

0
.11

1
0

Graph of Young’s Modulus vs. Yield Strength of Polymers

r

86

D
en

si
ty

 (
lb

/i
n̂

3
)

5
e
-4

0
.0

0
1

0
.0

0
2

0
.0

0
5

0
.0

1
0
.0

2
0
.0

5

Young's modulus (106̂ psi)

1
e
-6

1
e
-5

1
e
-4

0
.0

0
1

0
.0

1

0
.11

1
0

Graph of Young’s Modulus vs. Density of Polymers

87

Appendix B: Equation of Motion Derivations

Altitude

The expression for the control the altitude of the UAV (the generalized translational coordinate z

for the vertical position of the quad rotor) is as follows:

The only unknown variable within this expression is :

In this expression, and are positive constants and is the desired altitude (the desired position

on the z-axis).

 Altogether, the expression for the control of the altitude of the quad rotor is:

Yaw Angular Position

The expression for the control of the yaw angular position of the UAV (the generalized rotational

coordinate ψ about the z axis) is as follows:

Within this expression, and are positive constants and is the desired yaw angle

(about the z axis).

Also, as long as , then it is possible to write:

88

 , , and are control inputs that must be carefully considered in order to have a

perfectly damped and stable system.

Roll Angular Position

The expression for the control of roll in a quad rotor (the control of the generalized rotational

coordinate angle φ about the horizontal y-axis), is as follows:

The only unknown variable within this expression is (. is defined as the

saturation function used to derive this expression. It accounts for each of the motors, , (again,

 .

Figure 49: Saturation Function

89

Pitch Angular Position

The expression for the control of pitch of the quad rotor (the generalized rotational coordinate

angle θ about the horizontal x axis) is very similar to that of the control of the roll angular position:

This is found in the same way as the expression for the control of roll angular position. Both

derivations utilize the saturation function, and here it is represented by .

90

y = 8727.4x-0.93

0

200

400

600

800

0 50 100 150 200

Appendix C: Electronic Information

Infrared Sensor Data

Distance Old IR Sensor

15 544

20 500

25 443

30 390

35 342

40 300

45 269

50 255

55 219

60 204

65 188

70 176

75 166

80 153

85 145

90 137

95 130

100 122

105 118

110 110

115 102

120 97

125 93

130 89

135 85

140 80

145 81

150 77

91

Appendix D: MATLAB Simulation Code

quad_flight_sim.m

%Multi-MAV MQP Team
%2011-2012
%Quadrotor flight simulation

close all;
clear all;
clc;

disp('Running Quadrotor Simulation....')

global t1 t2 noise1 noise2 filter1 u m sat sat1 g Zd PSId PHId THETAd xDOTd yDOTd aX1 aX2 aY1 aY2 aZ1
aZ2 aPSI1 aPSI2 aPSI3 aPHI1 aPHI2 aPHI3 aTHETA1 aTHETA2 aTHETA3 test test2 incr end_step old_PHI
old_THETA old_PSI old_t;
rng(10);

% Gains and constants for simulation

m = 1.6; %kg
g = 9.81; %m/s^2
sat = 140; %DEG/s^2
sat1 = 1;
Zd = 0; %desired altitude
PSId = 0; %DEG
PHId = 0; %DEG
THETAd = 0; %DEG
aX1 = 2.95;
aX2 = 5;
xDOTd = 0; %m/s (always 0)
aY1 = 2.5;
aY2 = 2.5;
yDOTd = 0; %m/s (always 0)
aZ1 = 3.25;
aZ2 = 2.5;
aPSI1 = 3;
aPSI2 = 5;
aPSI3 = 0;
aPHI1 = 3;
aPHI2 = 5;
aPHI3 = 0;
aTHETA1 = 3;
aTHETA2 = 5;
aTHETA3 = 0;

92

incr = [1];
end_step = 6000000; %duration of simulation
filter1 = .8; %must be 0<filter1<1
old_PHI = 0; %always 0
old_THETA = 0; %always 0
old_PSI = 0; %always 0
old_t = 0; %always 0
noise = 0.15; %magnitude of noise in signal

 %time step for simulation
dt = .01; ti = 0; tf = 15;
t = ti:dt:tf;

%noise generation for the simulation. to remove noise, set noise = 0
Dnoise = noise/dt;
sigmaNoise = sqrt(Dnoise);
noiseDamping = sigmaNoise * randn(1,length(t));

 %initial coniditons for simulation
%X = [x y z phi theta psi x_dot y_dot z_dot phi_dot theta_dot psi_dot phi_double_dot theta_double_dot
psi_double_dot]

p0 = [0;0;0; 10; 10; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0];
psol = zeros(length(t),length(p0));
psol(1,:) = p0;
nip = 2;

%runs the simulation
for i = 1:(length(t)-1)
 t1 = t(i); t2 = t(i+1);
 tspan = t1:(t2-t1)/nip:t2;
 noise1 = noiseDamping(i);
 noise2 = noiseDamping(i+1);
 [time,p] = ode45('quadrotor_controls',tspan,p0);

 p0 = p(end,:);
 psol(i+1,:) = p0';

end

disp('Simulation Complelte.')

%store data from simulation for graphing
x = psol(:,1);
Xdot = psol(:,7);
y = psol(:,2);
Ydot = psol(:,8);

93

z = psol(:,3);
Zdot = psol(:,9);
PHI = psol(:,4);
PHIdot = psol(:,10);
THETA = psol(:,5);
THETAdot = psol(:,11);
PSI = psol(:,6);
PSIdot = psol(:,12);

 %graph each response from the simulation
figure(1);
subplot(2,1,1),plot(t,THETA);
xlabel ('Time(s)');
ylabel ('THETA (DEG)');

figure(1);
subplot(2,1,2),plot(t,THETAdot);
xlabel ('Time(s)');
ylabel ('THETA Angular Velocity (DEG/s)');

figure(2);
subplot(2,1,1),plot(t,PHI);
xlabel ('Time(s)');
ylabel ('PHI (DEG)');

figure (2);
subplot(2,1,2),plot(t,PHIdot);
xlabel ('Time (s)');
ylabel ('PHI Angular Velocity (DEG/s)');

figure(3);
subplot(2,1,1),plot(t,PSI);
xlabel ('Time (s)');
ylabel ('PSI (DEG)');

figure(3);
subplot(2,1,2),plot(t,PSIdot);
xlabel ('Time (s)');
ylabel ('PSI Angular Velocity (DEG/s)');

figure(4);
subplot(2,1,1),plot(t,z);
xlabel ('Time(s)');
ylabel ('Altitude (m)');

figure(4);
subplot(2,1,2),plot(t,Zdot);

94

xlabel ('Time(s)');
ylabel ('Z Velocity (m/s)');

figure(5);
subplot(2,1,1),plot(t,x);
xlabel ('Time(s)');
ylabel ('X-Axis Location (m)');

figure(5);
subplot(2,1,2),plot(t,Xdot);
xlabel ('Time(s)');
ylabel ('X Velocity (m/s)');

figure(6);
subplot(2,1,1),plot(t,y);
xlabel ('Time(s)');
ylabel ('Y-Axis Location (m)');

figure(6);
subplot(2,1,2),plot(t,Ydot);
xlabel('Time(s)');
ylabel('Y Velocity (m/s)');

for i=1:length(test);
 r(i,1) = i;
end

figure(7);
plot(i,test);
xlabel(‘THETA acceleration (deg/s^2)’);
ylabel(‘increment’);

%%
quadrotor_controls.m

function pdot = quadrotor_controls(t,p)

 global noise1 noise2 t1 t2 filter1 u m sat sat1 g Zd PSId PHId THETAd xDOTd yDOTd aX1 aX2 aY1 aY2
aZ1 aZ2 aPSI1 aPSI2 aPSI3 aPHI1 aPHI2 aPHI3 aTHETA1 aTHETA2 aTHETA3 test test2 incr old_PHI
old_THETA old_PSI old_t;

 %initial conditions, received from main sim program
 %X = [x y z phi theta psi x_dot y_dot z_dot phi_dot theta_dot psi_dot]

 u = (-aZ1*p(9)-aZ2*(p(3)-Zd)+m*g)/(cosd(p(4))*cosd(p(5)));

 %update theta and phi desired based on previous sim results
 THETAd = asind(((aX1*(-g*(tand(p(5))/cosd(p(4)))))+(aX2*(p(7)-xDOTd)))/u);

95

 PHId = asind(sat_func((-aY1*(g*tand(p(4)))-aY2*(p(8)-
yDOTd))/(u*cosd(sat_func(THETAd,sat1))),sat1));

 %generate noise for sim
 f = noise1+(noise2-noise1)/(t2-t1)*(t-t1);

 %apply noise to signals received from initial conditions
 smooth_x = ((p(1)+f)*(1-filter1))+(p(1)*filter1);
 smooth_Xdot = ((p(7)+f)*(1-filter1))+(p(7)*filter1);
 smooth_y = ((p(2)+f)*(1-filter1))+(p(2)*filter1);
 smooth_Ydot = ((p(8)+f)*(1-filter1))+(p(8)*filter1);
 smooth_z = ((p(3)+f)*(1-filter1))+(p(3)*filter1);
 smooth_Zdot = ((p(9)+(f))*(1-filter1))+(p(9)*filter1);
 smooth_PHI = ((p(4)+f)*(1-filter1))+(p(4)*filter1);
 smooth_PHIdot = ((p(10)+f)*(1-filter1))+(p(10)*filter1);
 smooth_THETA = ((p(5)+f)*(1-filter1))+(p(5)*filter1);
 smooth_THETAdot = ((p(11)+f)*(1-filter1))+(p(11)*filter1);
 smooth_PSI = ((p(6)+f)*(1-filter1))+(p(6)*filter1);
 smooth_PSIdot = ((p(12)+f)*(1-filter1))+(p(12)*filter1);

 %store functions to be integrated
 pdot(1) = smooth_Xdot;
 pdot(2) = smooth_Ydot;
 pdot(3) = smooth_Zdot;
 pdot(4) = smooth_PHIdot;
 pdot(5) = smooth_THETAdot;
 pdot(6) = smooth_PSIdot;
 pdot(7) = -g*(tand(smooth_THETA)/cosd(smooth_PHI));
 pdot(8) = g*tand(smooth_PHI);
 pdot(9) = (1/m)*((-aZ1)*(smooth_Zdot)-(aZ2*((smooth_z)-Zd)));
 pdot(10) = (sat_func((-aPHI1*(smooth_PHIdot))-(sat_func((aPHI2*((smooth_PHI)-PHId))-
(sat_func((aPHI3*p(13)),.25*sat)),.5*sat)),sat));
 pdot(11) = (sat_func((-aTHETA1*(smooth_THETAdot))-(sat_func((aTHETA2*((smooth_THETA)-
THETAd))-(sat_func((aTHETA3*p(14)),.25*sat)),.5*sat)),sat));
 pdot(12) = (sat_func(((-aPSI1)*(smooth_PSIdot))-(sat_func((aPSI2*((smooth_PSI)-PSId))-
(sat_func((aPSI3*p(15)),.25*sat)),.5*sat)),sat));
 pdot(13) = 0;
 pdot(14) = 0;
 pdot(15) = 0;

 pdot = pdot';

 %store data for acceleration plots
 test(incr,1) = pdot(10) + f;
 test2(incr,1) = pdot(11) + f;
 incr = incr +1;

 end

96

 Appendix E: Results of MATLAB Simulation

Figure 50: Pitch Control

Figure 51: Roll Control

97

Figure 52: Yaw Control

Figure 53: Altitude Control

98

Figure 54: Lateral Control (X Axis)

Figure 55: Lateral Control (Y Axis)

99

Appendix F: MAV Electrical Schematic

100

Appendix G: CAD Drawings

MAV Main Body

101

102

103

MAV Motor Mount

104

105

MAV Leg Spar

106

MAV Landing Base

107

MAV Arm

108

Appendix H: Instructions for MAV Use

To control the MAV, commands can be sent over serial. After connecting to a paired XBee at a

baud rate of 52600, commands are sent line by line using a standard format. Every command begins

with one character designating the command followed by up to four digits for the commands numerical

value if applicable. A list of commands can be found in Table 9.

Table 9: MAV Commands

Command Value? Description

f Begins full flight control

r Sets MAV to "ready" mode for flight

k Kills all motors

m Enables testing of individual motors

s Spins all four motors to 3000 RPM

S Spins all four motors to 3500 RPM

l Lands the MAV

a X Sets the desired altitude in CM

R X Sets the desired roll in degrees

P X Sets the desired pitch in degrees

Y X Sets the desired yaw in degrees

g X Sets the implied "weight" of the quadrotor

F Resets the motor controller Arduinos

1 X Spins motor 1 to the desired RPM

2 X Spins motor 2 to the desired RPM

3 X Spins motor 3 to the desired RPM

4 X Spins motor 4 to the desired RPM

109

Appendix I: Unmanned Ground Vehicle Code

/*

John Pearsall

Used to test the speed controller or

calibrate the controller.

Main loop used for UGV.

*/

const int lowestPin = 2;

const int highestPin = 13;

const int switchUp = 22;

const int switchDown = 23;

const int UP = 150;

const int DOWN = 200;

const int STOP = 185;

String commandString, command;

int pin;

String getCommand() {

Serial.println("getCommand");

commandString = " ";

if(Serial.available() > 0){

commandString[0] = Serial.read();

}

Serial.println(commandString);

return commandString;

}

void setup() {

Serial.begin(115200);

pinMode(lowestPin,OUTPUT);

pinMode(switchUp,INPUT);

pinMode(switchDown,INPUT);

}

void loop() {

analogWrite(lowestPin, STOP);

command = getCommand();

if (command == "u"){

Serial.println("Recieved Up");

pin = digitalRead(switchUp);

while (pin == LOW){

analogWrite(lowestPin, UP);

pin = digitalRead(switchUp);

delay(10);

}

analogWrite(lowestPin, STOP);

Serial.println("Stopped");

}

if (command == "d"){

Serial.println("Recieved Down");

pin = digitalRead(switchDown);

while (pin == LOW){

analogWrite(lowestPin, DOWN);

pin = digitalRead(switchDown);

delay(10);

}

analogWrite(lowestPin, STOP);

Serial.println("Stopped");

}

}

111

Appendix J: Quad-rotor Flight Code

ArduPilot Software

#include <AP_ADC.h>

#include <Wire.h>

#define CALIBRATE_IMU 0 //If activated,

calibrates IMU zeros on startup

#define ACCELERATION_COMPENSATION 1

//Compensates for acceleration in DCM

correction

#define USE_GYRO_CONTROL 1 //If activated,

uses gyro output in attitude control

#define TALKOVERUSB 0 //Selects which

serial channels to transmit over

#define TALKOVERXBEE 1

#define PRINT_BREAK 1 //Selects which

values to print each cycle

#define PRINT_IMUZEROS 0

#define PRINT_IMUSTATE 0

#define PRINT_EULERANGLES 1

#define PRINT_OMEGA 0

#define PRINT_DCM 0

#define PRINT_NORMERROR 0

#define PRINT_ACCELCOMP 0

#define PRINT_GRAVITYREFERENCE 0

#define PRINT_OMEGACORRECTION 0

#define PRINT_ATTITUDEDESIRED 0

#define PRINT_PIDERRORS 0

#define PRINT_PIDOUTPUT 0

#define PRINT_LOCALERROR 0

#define PRINT_ULTRASONICALTITUDE 0

#define PRINT_POSITIONVECTOR 1

#define PRINT_AT 0

#define PRINT_AM 0

#define PRINT_ACCELEROMETEROFFSETS 0

#define PRINT_MEASUREDACCELERATION 0

#define PRINT_LOCALACCELERATION 0

#define PRINT_MOTORSPEEDS 1

#define TODEG(r) ((r) *

57.2957795131)/* convert radians to degrees

*/

#define TORAD(d) ((d) / 57.2957795131)

/* convert to radians */

#define GYROMAX 2000 //Gyro input

parameters

#define GYROMIN .05

#define GYROSMOOTHVAL .1

#define MAXHZ 100 //Maximum ArduPilot

refresh rate

#define RPMLIMIT 6000 //Maximum rotor RPM

#define MGMASTER 14.7 //Quadrotor mass in

newtons

#define MGSTART 14.7

#define MGMIN 12

AP_ADC_ADS7844 adc;

float MG; //Current weight of quadrotor in

newtons

unsigned long time = 0, lastTime = 0,

startTime = 0;

unsigned long lastSonarUpdate = 0;

unsigned long lastOmegaCorrection = 0;

unsigned long lastDCMNormalization = 0;

float dt = 0;

String stateString;

String lastStateString;

int channels[6] = {

2,1,0,5,4,6}; //omegaX, omegaY, omegaZ, X,

Y, Z

char signs[6] = {

1,-1,1,1,-1,-1};

float IMUzeros[6];

float raws[6];

float gravityReference[3];

float gravityReferenceNorm[3];

float gyroVoltage = 3.3;

float gyroSensitivity = .002; //Our gyro is

7mV/deg/sec

float ultrasonicAltitude;

float ultrasonicMinimum = 0.22; //Ultrasonic

kicks in at .22m

float IMUstate[6];

float filterVal = .5;

float omega[3] = {

0,0,0};

float omegaCorrection[3] = {

0,0,0};

float omegaICorrection[3] = {

0,0,0};

float omegaCorrectionWeight = .1;

float omegaKi = .05, omegaKp = 15;

float DCM[3][3] = {

{

1,0,0 }

,

{

0,1,0 }

,

{

0,0,1 }

};

float At[3] = {

0,0,0};

float At_1[3] = {

0,0,0};

float At_desired[3] = {

0,0,0};

float Am[3] = {

0,0,0};

float Au[3] = {

0,0,0};

float ea[3] = {

0,0,0};

float St[3] = {

0,0,0};

float Vt[3] = {

112

0,0,0};

float Vt_1[3] = {

0,0,0};

float Vt_desired[3] = {

0,0,0};

float Va[3] = {

0,0,0};

float Pt[3] = {

0,0,0};

float Pt_1[3] = {

0,0,0};

float Pt_desired[3] = {

0,0,0};

float Za = 0;

float Vu = 0;

float ez = 0;

float ev = 0;

float Cz = 0;

float Cv = 0;

float error[3] = {

0,0,0

};

float localError[3] = {

0,0,0

};

float lastError[3] = {

0,0,0

};

float intError[3] = {

0,0,0

};

float lastdError[3] = {

0,0,0

};

float dError[3] = {

0,0,0

};

float ddError[3] = {

0,0,0

};

float localLateralAcceleration[2] = {

0,0};

float lastLocalLateralAcceleration[2] = {

0,0};

float lateralAccelerationError[2] = {

0,0};

float dLateralAcceleration[2] = {

0,0};

float lateralAccelerationUpdate[2] = {

0,0};

float intLateralAccelerationError[2] = {

0,0};

float altitude = 0;

float lastAltitude = 0;

float dAltitude = 0;

float desiredAltitude = 0;

int motorSpeeds[4] = {

0,0,0,0

};

float attitude[3] = { //Psi, Theta, Phi

0,0,0

};

float attitudeDesired[3] = {

0,0,0

};

float u[4];

float forces[4] = {

0,0,0,0

};

void setup()

{

stateString = "STARTING";

beginWireless();

adc.Init();

Wire.begin();

zeroIMU();

startTime = millis();

}

void loop()

{

lastStateString = stateString;

commandCheck(); //Check serial for new input

if(time < (millis() - (1000 / MAXHZ))){

timeUpdate();

pollIMU();

DCMupdate();

positionUpdate();

wirelessPrint("Time = ");

wirelessPrint((long)millis());

wirelessPrint(", State = ");

wirelessPrintln(stateString);

//The following IF statements function as a

state machine

if(stateString.equals("STARTING"))

stateString = "READYING";

else if(stateString.equals("READYING")){

//Start state READYING

onGroundReset();

if(((time - startTime) > 2500)){

reinitialize();

stateString = "READY";

}

} //End state READYING

else if(stateString.equals("READY")){

//Start state READY

for(char a = 0; a < 4; a++){ //READY mode

performs state estimation

motorSpeeds[a] = 0; //without performing

flight control

}

writeSpeeds();

onGroundReset();

resetMotorControllers();

MG = MGSTART;

} //End state READY

else if(stateString.equals("KILL")){

//Start state KILL

for(char a = 0; a < 4; a++){ //KILL mode

turns off all motors

motorSpeeds[a] = 0;

}

writeSpeeds();

zeroIMU();

reinitialize();

onGroundReset();

} //End state KILL

else if(stateString.equals("SPINUP1")){

//Start state SPINUP1

for(char a = 0; a < 4; a++){ //The SPINUP

modes spin the motors to

113

motorSpeeds[a] = 3000; //prepare for flight

}

writeSpeeds();

attitudeDesired[2] = attitude[2];

}

else if(stateString.equals("SPINUP2")){

//Start state SPINUP2

for(char a = 0; a < 4; a++){

motorSpeeds[a] = 3500;

}

writeSpeeds();

attitudeDesired[2] = attitude[2];

}

else if(stateString.equals("FLYING")){

//Start state FLYING

if(MG < MGMASTER) MG += (MGMASTER - MGSTART)

/ 30;

Pt_desired[2] = -1.5; //FLYING mode

performs all flight control calculations

accelerationControl();

attitudeControl();

rpmCalculator();

writeSpeeds();

if(abs(attitude[0]) > 45 || abs(attitude[1])

> 45) stateString = "KILL";

} //End state FLYING

Else if(stateString.equals("DROP")){

//Start state DROP

MG = MGMIN; //DROP mode lands the quadrotor

Pt_desired[2] = 0;

Pt[2] = 0;

accelerationControl();

attitudeControl();

rpmCalculator();

writeSpeeds();

if(abs(attitude[0]) > 45 || abs(attitude[1])

> 45) stateString = "KILL";

} //End state FLYING

else if (stateString.equals("MOTORTEST")){

//Start state MOTORTEST

writeSpeeds();

} //End state MOTORTEST

//delay(20);

#if PRINT_BREAK

for (char i = 0; i < 5; i++)

wirelessPrintln();

#endif

}

}

void timeUpdate() //Updates the time

variables for other functions

{

lastTime = time;

time = millis();

dt = (float)(time - lastTime) / 1000;

}

void reinitialize() //Resets all flight

control and attitude variables

{

for(char a = 0; a < 4; a++){

omega[a] = 0;

omegaCorrection[a] = 0;

omegaICorrection[a] = 0;

At[a] = 0;

At_1[a] = 0;

Vt[a] = 0;

Vt_1[a] = 0;

Pt[a] = 0;

Pt_1[a] = 0;

St[a] = 0;

error[a] = 0;

localError[a] = 0;

lastError[a] = 0;

intError[a] = 0;

lastdError[a] = 0;

dError[a] = 0;

ddError[a] = 0;

}

for(char a = 0; a < 4; a++){

forces[a] = 0;

}

altitude = 0;

lastAltitude = 0;

dAltitude = 0;

desiredAltitude = 0;

for(char a = 0; a < 3; a++) for(char b = 0;

b < 3; b++) DCM[a][b] = 0;

DCM[0][0] = 1;

DCM[1][1] = 1;

DCM[2][2] = 1;

}

float az1 = 4; //3.25

float az2 = 2.5;

float ax1 = 0;

float ax2 = 0;

float ay1 = 0;

float ay2 = 0;

float zsat = 2;

float lateralAcceleration[2] = {

0,0};

float lateralVelocity[2] = {

0,0};

void accelerationControl() //Performs

altitude and lateral acceleration control

{ //Later acceleration control never fully

implemented

lastAltitude = altitude; //Updates state

variables for control

altitude = Pt[2];

dAltitude = (altitude - lastAltitude) / dt;

desiredAltitude = Pt_desired[2];

lateralAcceleration[0] = Am[0] *

cos(TORAD(attitude[2])) - Am[1] *

sin(TORAD(attitude[2]));

lateralAcceleration[1] = Am[0] *

sin(TORAD(attitude[2])) + Am[1] *

cos(TORAD(attitude[2]));

lateralVelocity[0] = Vt[0] *

cos(TORAD(attitude[2])) - Vt[1] *

sin(TORAD(attitude[2]));

lateralVelocity[1] = Vt[0] *

sin(TORAD(attitude[2])) + Vt[1] *

cos(TORAD(attitude[2]));

float mzdd = az2 * dAltitude + az2 *

(altitude - desiredAltitude);

mzdd = constrain(mzdd, -zsat, zsat);

114

u[3] = (mzdd + MG) /

(cos(TORAD(attitude[0])) *

cos(TORAD(attitude[1])));

attitudeDesired[1] =

TODEG(asin(constrain((ax1 *

lateralAcceleration[0] + ax2 *

(lateralVelocity[0] - Vt_desired[0]))/u[3],

-1, 1)));

attitudeDesired[0] = TODEG(asin(constrain((-

ay1 * lateralAcceleration[1] - ay2 *

(lateralVelocity[1] -

Vt_desired[1]))/(u[3]*cos(TORAD(attitudeDesi

red[1]))), -1, 1)));

}

float a1attitude[3] = { //Kd

.15,.15,0//.15

};

float a2attitude[3] = { //Kp

1.4,1.4,0 //1

};

float a3attitude[3] = { //Kdd

.14,.14,0//.12

};

void attitudeControl() //Performs attitude

P-D-DD control routine

{

errorUpdate();

attitudePIDController();

}

void errorUpdate() //Updates error terms

for attitude control

{

#if PRINT_ATTITUDEDESIRED

wirelessPrintln("Attitude Desired = ");

printVec4(attitudeDesired);

#endif

#if PRINT_PIDERRORS

wirelessPrintln("Errors = ");

#endif

for(char i = 0; i < 3; i++){

lastError[i] = localError[i];

error[i] = attitudeDesired[i] - attitude[i];

}

if(error[2] > 180) error[2] -= 360; //Yaw

+-180 degree wrap-around

if(error[2] < -180) error[2] += 360;

int directionRoll, directionPitch;

if(error[0] > 0) directionRoll = 1;

else directionRoll = -1;

if(error[1] > 0) directionPitch = 1;

else directionPitch = -1;

localError[0] = error[0];

localError[1] = error[1];

localError[2] = error[2];

 for(char i = 0; i < 3; i++)

lastdError[i] = dError[i];

#if USE_GYRO_CONTROL

dError[0] = TODEG(IMUstate[0]) * -1;

dError[1] = TODEG(IMUstate[1]) * -1;

dError[2] = TODEG(IMUstate[2]) * -1;

#endif

for(char i = 0; i < 3; i++){

#if !USE_GYRO_CONTROL

dError[i] = (localError[i] - lastError[i]) /

dt;

#endif

ddError[i] = (dError[i] - lastdError[i]) /

dt;

intError[i] += localError[i] * dt;

#if PRINT_PIDERRORS

wirelessPrint(localError[i]);

wirelessPrint(" ");

wirelessPrint(intError[i]);

wirelessPrint(" ");

wirelessPrint(dError[i]);

wirelessPrint(" ");

wirelessPrint(ddError[i]);

wirelessPrintln(" ");

#endif

}

#if PRINT_LOCALERROR

wirelessPrint("Local error = ");

printVec4(localError);

#endif

}

void attitudePIDController() //Calculates

P-D-DD control output

{

float m1 = 80; //Saturation level variables

float m2 = .5 * m1;

float m3 = .5 * m2;

//u[0] = constrain(a1attitude[0] * dError[0]

+ constrain(a2attitude[0] * localError[0] +

constrain(a3attitude[0] * ddError[0], -m3,

m3), -m2, m2), -m1, m1);

//u[1] = constrain(a1attitude[1] * dError[1]

+ constrain(a2attitude[1] * localError[1] +

constrain(a3attitude[1] * ddError[1], -m3,

m3), -m2, m2), -m1, m1);

//u[2] = constrain(a1attitude[2] * dError[2]

+ constrain(a2attitude[2] * localError[2] +

constrain(a3attitude[2] * ddError[2], -m3,

m3), -m2, m2), -m1, m1);

u[0] = constrain(a3attitude[0] * ddError[0]

+ constrain(a1attitude[0] * dError[0] +

constrain(a2attitude[0] * localError[0], -

m3, m3), -m2, m2), -m1, m1);

u[1] = constrain(a3attitude[1] * ddError[1]

+ constrain(a1attitude[1] * dError[1] +

constrain(a2attitude[1] * localError[1], -

m3, m3), -m2, m2), -m1, m1);

u[2] = constrain(a3attitude[2] * ddError[2]

+ constrain(a1attitude[2] * dError[2] +

constrain(a2attitude[2] * localError[2], -

m3, m3), -m2, m2), -m1, m1);

#if PRINT_PIDOUTPUT

wirelessPrint("PID Output = ");

printVec4(u);

#endif

}

#define NORMTHRESHOLD .01

float DCMX[3];

float DCMY[3];

float DCMZ[3];

115

float normError = 0;

void DCMupdate() //Updates the Direction

Cosine Matrix

{ //For details, see DCM IMU Theory by

Premerlani and Bizard

omegaUpdate();

float omegadtDCM[3][3] = { //Builds update

DCM from gyro data

{

1, -omega[2] * dt, omega[1] * dt

}

,

{

omega[2] * dt, 1, -omega[0] * dt

}

,

{

-omega[1] * dt, omega[0] * dt, 1

}

};

float temp[3][3];

for (char i = 0; i < 3; i++)

for (char j = 0; j < 3; j++){

temp[i][j] = 0;

for (char k = 0; k < 3; k++){

temp[i][j] += (DCM[i][k] *

omegadtDCM[k][j]);

}

};

for (char i = 0; i < 3; i++)

for (char j = 0; j < 3; j++) DCM[i][j] =

temp[i][j];

DCMvecUpdate();

normError = dotProduct(DCMX, DCMZ);

normalizeDCM();

omegaCorrectionUpdate();

#if PRINT_DCM

print3x3(DCM);

#endif

updateEuler();

#if PRINT_EULERANGLES

wirelessPrint("Euler angles = ");

printVec(attitude);

#endif

}

void omegaUpdate()

{

for(char i = 0; i < 3; i++){

omega[i] = IMUstate[i] + omegaCorrection[i];

}

#if PRINT_OMEGA

wirelessPrint("Omega = ");

printVec(omega);

#endif

}

void DCMvecUpdate()

{

for (char i = 0; i < 3; i++){

DCMX[i] = DCM[i][0];

DCMY[i] = DCM[i][1];

DCMZ[i] = DCM[i][2];

}

}

void normalizeDCM() //Normalizes DCM vectors

to ensure orthogonality

{

#if PRINT_NORMERROR

wirelessPrint("Normalization Error = ");

wirelessPrintln(normError);

#endif

float Xorth[3] = {

DCMX[0] - ((normError/2)*DCMZ[0]),

DCMX[1] - ((normError/2)*DCMZ[1]),

DCMX[2] - ((normError/2)*DCMZ[2])

};

//printVec(Xorth);

float Zorth[3] = {

DCMZ[0] - ((normError/2)*DCMX[0]),

DCMZ[1] - ((normError/2)*DCMX[1]),

DCMZ[2] - ((normError/2)*DCMX[2])

};

float Yorth[3] = {

(Zorth[1] * Xorth[2]) - (Zorth[2] *

Xorth[1]),

(Zorth[2] * Xorth[0]) - (Zorth[0] *

Xorth[2]),

(Zorth[0] * Xorth[1]) - (Zorth[1] *

Xorth[0])

};

float mag[3] = {

1/sqrt(Xorth[0] * Xorth[0] + Xorth[1] *

Xorth[1] + Xorth[2] * Xorth[2]),

1/sqrt(Yorth[0] * Yorth[0] + Yorth[1] *

Yorth[1] + Yorth[2] * Yorth[2]),

1/sqrt(Zorth[0] * Zorth[0] + Zorth[1] *

Zorth[1] + Zorth[2] * Zorth[2])

};

float Xnorm[3] = {

mag[0] * Xorth[0],

mag[0] * Xorth[1],

mag[0] * Xorth[2]

};

float Ynorm[3] = {

mag[1] * Yorth[0],

mag[1] * Yorth[1],

mag[1] * Yorth[2]

};

float Znorm[3] = {

mag[2] * Zorth[0],

mag[2] * Zorth[1],

mag[2] * Zorth[2]

};

for (char i = 0; i < 3; i++){

DCM[i][0] = Xnorm[i];

DCM[i][1] = Ynorm[i];

DCM[i][2] = Znorm[i];

};

DCMvecUpdate();

}

void omegaCorrectionUpdate() //Uses

accelerometer data to correct DCM drift

{

#if PRINT_GRAVITYREFERENCE

116

wirelessPrint("Gravity Reference = ");

printVec(gravityReference);

#endif

float gravityReferenceMag =

(sqrt(gravityReference[0] *

gravityReference[0]

+ gravityReference[1] * gravityReference[1]

+ gravityReference[2] *

gravityReference[2]));

gravityReferenceNorm[0] =

gravityReference[0] *

cos(TORAD(attitude[2])) -

gravityReference[1] *

sin(TORAD(attitude[2]));

gravityReferenceNorm[1] =

gravityReference[0] *

sin(TORAD(attitude[2])) +

gravityReference[1] *

cos(TORAD(attitude[2]));

gravityReferenceNorm[2] =

gravityReference[2];

for (char i = 0; i < 3; i++)

gravityReferenceNorm[i] =

gravityReferenceNorm[i] /

gravityReferenceMag;

//for (char i = 0; i < 3; i++)

gravityReferenceNorm[i] =

gravityReferenceNorm[i] * (DCM[i][0] +

DCM[i][0] + DCM[i][2]);

float RPCorrectionPlane[] = {

(DCMZ[1] * gravityReferenceNorm[2]) -

(DCMZ[2] * gravityReferenceNorm[1]),

(DCMZ[2] * gravityReferenceNorm[0]) -

(DCMZ[0] * gravityReferenceNorm[2]),

(DCMZ[0] * gravityReferenceNorm[1]) -

(DCMZ[1] * gravityReferenceNorm[0]) };

if(attitude[2] > 90 || attitude[2] < -90){

RPCorrectionPlane[0] = -

RPCorrectionPlane[0];

RPCorrectionPlane[1] = -

RPCorrectionPlane[1];

RPCorrectionPlane[2] = -

RPCorrectionPlane[2];

}

float accelerationCompensation = 1;

#if ACCELERATION_COMPENSATION

if (gravityReferenceMag > 1)

accelerationCompensation =

pow(1/gravityReferenceMag, 4);

else accelerationCompensation =

pow(gravityReferenceMag, 4);

#endif

#if PRINT_ACCELCOMP

wirelessPrint("AccelComp = ");

wirelessPrintln(accelerationCompensation);

#endif

for (char i = 0; i < 3; i++){

RPCorrectionPlane[i] = RPCorrectionPlane[i]

* omegaCorrectionWeight *

accelerationCompensation; //Converts

RPCorrectionPlane into TotalCorrection

omegaICorrection[i] = omegaICorrection[i] +

omegaKi * dt * RPCorrectionPlane[i];

omegaCorrection[i] = omegaKp *

RPCorrectionPlane[i] + omegaICorrection[i];

}

#if PRINT_OMEGACORRECTION

wirelessPrint("OmegaCorrection = ");

printVec(omegaCorrection);

#endif

}

void updateEuler() //Updates euler angles

based off DCM

{

attitude[0] = TODEG(asin(DCM[2][1]));

attitude[1] = TODEG(-asin(DCM[2][0]));

attitude[2] =

TODEG(atan2(DCM[1][0],DCM[0][0]));

}

float dotProduct (float v1[3], float v2[3])

//Calculates vector dot product

{

float temp = 0;

for(char i = 0; i < 3; i++) temp += (v1[i] *

v2[i]);

return temp;

}

void print3x3 (float m[3][3])

{

wirelessPrint(m[0][0]);

wirelessPrint(" ");

wirelessPrint(m[0][1]);

wirelessPrint(" ");

wirelessPrint(m[0][2]);

wirelessPrintln(" ");

wirelessPrint(m[1][0]);

wirelessPrint(" ");

wirelessPrint(m[1][1]);

wirelessPrint(" ");

wirelessPrint(m[1][2]);

wirelessPrintln(" ");

wirelessPrint(m[2][0]);

wirelessPrint(" ");

wirelessPrint(m[2][1]);

wirelessPrint(" ");

wirelessPrint(m[2][2]);

wirelessPrintln(" ");

}

void printVec (float v[3]){

wirelessPrint(v[0]);

wirelessPrint(" ");

wirelessPrint(v[1]);

wirelessPrint(" ");

wirelessPrint(v[2]);

wirelessPrintln(" ");

}

void printVec4 (float v[4]){

wirelessPrint(v[0]);

wirelessPrint(" ");

wirelessPrint(v[1]);

wirelessPrint(" ");

wirelessPrint(v[2]);

wirelessPrint(" ");

wirelessPrint(v[3]);

wirelessPrintln(" ");

}

117

void zeroIMU() //Sets IMU zero values

{

#if CALIBRATE_IMU

for (char i = 0; i < 6; i++){

adc.Ch(channels[i]);

} //Throwaway first values

delay(500);

for (char i = 0; i < 6; i++){

IMUzeros[i] = adc.Ch(channels[i]);

}

delay(100);

for (char i = 0; i < 3; i++){

IMUzeros[i] += adc.Ch(channels[i]);

IMUzeros[i] = IMUzeros[i] / 2;

}

delay(100);

for (char i = 0; i < 3; i++){

IMUzeros[i] = (2*IMUzeros[i]/3)

+ (adc.Ch(channels[i]) / 3);

}

#endif

#if !CALIBRATE_IMU

IMUzeros[0] = 1644;

IMUzeros[1] = 1600;

IMUzeros[2] = 1662;

IMUzeros[3] = 2021;

IMUzeros[4] = 2037;

IMUzeros[5] = 1687;

#endif

#if PRINT_IMUZEROS

wirelessPrint("IMU Zeros = ");

for(char i = 0; i < 6; i++){

wirelessPrint(IMUzeros[i]);

wirelessPrint(" ");

}

wirelessPrintln();

#endif

}

void pollIMU() //Polls data from 6-axis IMU

{

for (char i = 0; i < 6; i++){

raws[i] = adc.Ch(channels[i]);

raws[i] -= IMUzeros[i];

}

// IMUstate[0] = smooth(((raws[0] *

gyroVoltage / (4095 * gyroSensitivity)) *

signs[0] / 90), filterVal, IMUstate[0]);

// IMUstate[1] = smooth(((raws[1] *

gyroVoltage / (4095 * gyroSensitivity)) *

signs[1] / 90), filterVal, IMUstate[1]);

// IMUstate[2] = smooth(((raws[2] *

gyroVoltage / (4095 * gyroSensitivity)) *

signs[2] / 90), filterVal, IMUstate[2]);

IMUstate[0] = smooth(TORAD((raws[0] *

gyroVoltage / (4095 * gyroSensitivity)) *

signs[0]), GYROSMOOTHVAL, IMUstate[0]);

IMUstate[1] = smooth(TORAD((raws[1] *

gyroVoltage / (4095 * gyroSensitivity)) *

signs[1]), GYROSMOOTHVAL, IMUstate[0]);

IMUstate[2] = smooth(TORAD((raws[2] *

gyroVoltage / (4095 * gyroSensitivity)) *

signs[2]), GYROSMOOTHVAL, IMUstate[0]);

IMUstate[3] = ((raws[3]) / 418) * signs[3];

IMUstate[4] = ((raws[4]) / 418) * signs[4];

IMUstate[5] = ((raws[5]) / 418) * signs[5] +

1;

for (char i = 0; i < 3; i++)

{

if(abs(IMUstate[i]) > GYROMAX)

IMUstate[i] = 0;

if(abs(IMUstate[i]) < GYROMIN)

IMUstate[i] = 0;

}

gravityReference[0] = IMUstate[3];

gravityReference[1] = IMUstate[4];

gravityReference[2] = IMUstate[5];

#if PRINT_IMUSTATE

printIMUstate();

#endif

}

void printIMUstate() //Prints current IMU

values

{

wirelessPrint("IMU state = ");

for (char i = 0; i < 6; i++){

wirelessPrint(IMUstate[i]);

wirelessPrint(" ");

}

wirelessPrintln();

}

void pollUltrasonic(){ //Reads and scales

data from ultrasonic rangefinder

float conversion = 0.0117219;

float offset = .0812063;

int sensorValue = analogRead(A7);

ultrasonicAltitude =

smooth((conversion*(float)sensorValue) +

offset, .7, ultrasonicAltitude);

}

void positionUpdate()

{

updateT_1();

estimateStep(); //Estimates position based

on accelerometer data

if(time > (lastSonarUpdate + 20)){ //Sets

alitude from ultrasonic data

pollUltrasonic();

if (ultrasonicAltitude > ultrasonicMinimum)

Pt[2] = -ultrasonicAltitude;

else Pt[2] = -ultrasonicMinimum;

if (ultrasonicAltitude > 3) Pt[2] = -3;

lastSonarUpdate = time;

Pt[2] = Pt[2] * cos(TORAD(attitude[0])) *

cos(TORAD(attitude[1]));

}

#if PRINT_ULTRASONICALTITUDE

wirelessPrint("Ultrasonic Altitude = ");

wirelessPrintln(ultrasonicAltitude);

#endif

//AscalingStep();

#if PRINT_POSITIONVECTOR

wirelessPrint("Position = ");

printVec(Pt);

#endif

118

#if PRINT_ACCELEROMETEROFFSETS

wirelessPrint("Accelerometer Offsets = ");

printVec(St);

#endif

}

void ultrasonicPositionUpdate()

{

float Kz = 1.02329;

float Kv = 1.02329;

//ultrasound outputs upward Z while global Z

is downward

ez = abs((Pt[2] + ultrasonicAltitude));

//Cz = pow(Kz, -1 * 100 * ez);

Cz = .5;

Pt[2] = (Cz * -1 * ultrasonicAltitude) + ((1

- Cz) * Pt[2]);

Vu = (Pt[2] - Pt_1[2]) / dt;

ev = abs(Vt[2] - Vu);

//Cv = pow(Kv, -1 * 100 * ev);

Cv = .7;

Vt[2] = (Cv * Vu) + ((1-Cv) * Vt[2]);

}

void updateT_1()

{

for(char i = 0; i < 3; i++){

Vt_1[i] = Vt[i];

At_1[i] = At[i];

Pt_1[i] = Pt[i];

}

}

void onGroundReset()

{

for(char a = 0; a < 3; a++){

Vt[a] = 0;

At[a] = 0;

}

Pt[2] = 0;

}

void estimateStep()

{

measuredAccelerationUpdate();

for (char i = 0; i < 3; i++){

At[i] = Am[i] + St[i];

Vt[i] = (At_1[i] + At[i])*dt/2 + Vt_1[i];

Pt[i] = (Vt_1[i] + Vt[i])*dt/2 + Pt_1[i];

}

#if PRINT_AT

wirelessPrint("A(t) = ");

printVec(At);

#endif

#if PRINT_AM

wirelessPrint("A(m) = ");

printVec(Am);

#endif

}

void AscalingStep()

{

float Ks[3] = {

0,0,0 };

for(char i = 0; i < 3; i++){

Au[i] = (Vt[i] - Vt_1[i]) / dt;

ea[i] = ((Am[i] + St[i]) - Au[i]);

St[i] = St[i] - (Ks[i] * ea[i]);

}

}

void measuredAccelerationUpdate() //Rotates

accelerometer data into global frame

{

Am[0] = (gravityReference[0] * DCM[0][0]

+ gravityReference[1] * DCM[1][0]

+ gravityReference[2] * DCM[2][0])*9.8;

Am[1] = (gravityReference[0] * DCM[0][1]

+ gravityReference[1] * DCM[1][1]

+ gravityReference[2] * DCM[2][1])*9.8;

Am[2] = (gravityReference[0] * DCM[0][2]

+ gravityReference[1] * DCM[1][2]

+ gravityReference[2] * DCM[2][2] - 1)*9.8;

#if PRINT_MEASUREDACCELERATION

wirelessPrint("Measured Acceleration = ");

printVec(Am);

#endif

}

void rpmCalculator() //Calculates desired

motor speeds from control outputs

{

float L = 15.56, Ctau = .0209;

forces[0] = -u[0]/(4*L) + u[1]/(4*L) +

u[2]/(4*Ctau) + u[3]/4; // F = C^-1 * U

forces[1] = u[0]/(4*L) + u[1]/(4*L) -

u[2]/(4*Ctau) + u[3]/4;

forces[2] = u[0]/(4*L) - u[1]/(4*L) +

u[2]/(4*Ctau) + u[3]/4;

forces[3] = -u[0]/(4*L) - u[1]/(4*L) -

u[2]/(4*Ctau) + u[3]/4;

for (char i = 0; i < 4; i++){

motorSpeeds[i] = (54.988 * pow(forces[i],3)

- 662.66 * pow(forces[i],2)

+ 2963.7 * forces[i]); //Equation to convert

from thrust to RPM

motorSpeeds[i] = constrain(motorSpeeds[i],

0, RPMLIMIT); //Limits to top speed

}

}

float smooth(float data, float filterVal,

float smoothedVal){

if (filterVal > 1){ // check to make

sure param's are within range

filterVal = .99;

}

else if (filterVal <= 0){

filterVal = 0;

}

smoothedVal = (data * (1 - filterVal)) +

(smoothedVal * filterVal);

return smoothedVal;

}

119

String commandString;

int commandLength = 0;

void beginWireless()

{

#if TALKOVERUSB

Serial.begin(57600);

#endif

#if TALKOVERXBEE

Serial3.begin(57600);

#endif

}

void commandCheck()

{

commandString = " ";

commandLength = 0;

#if TALKOVERUSB

while(Serial.available()>0){

commandString[commandLength] =

(char)Serial.read();

commandLength++;

}

#endif

#if TALKOVERXBEE

while(Serial3.available()>0){

commandString[commandLength] =

(char)Serial3.read();

commandLength++;

}

#endif

if (commandLength > 0){

wirelessPrint("Command received! = ");

wirelessPrintln(commandString);

if (commandString[0] == 'f') stateString =

"FLYING";

if (commandString[0] == 'r') stateString =

"READY";

if (commandString[0] == 'k') stateString =

"KILL";

if (commandString[0] == 'm') stateString =

"MOTORTEST";

if (commandString[0] == 's') stateString =

"SPINUP1";

if (commandString[0] == 'S') stateString =

"SPINUP2";

if (commandString[0] == 'l') stateString =

"DROP";

if (commandString[0] == 'a') Pt_desired[2] =

(commandNumber() / 100);

if (commandString[0] == 'R')

attitudeDesired[0] = commandNumber();

if (commandString[0] == 'P')

attitudeDesired[1] = commandNumber();

if (commandString[0] == 'Y')

attitudeDesired[2] = commandNumber();

if (commandString[0] == 'g') MG =

commandNumber();

if (commandString[0] == 'F')

resetMotorControllers();

if (stateString.equals("MOTORTEST")){

//Begin commands for MOTORTEST

if(commandString[0] == '1') motorSpeeds[0] =

commandNumber();

if(commandString[0] == '2') motorSpeeds[1] =

commandNumber();

if(commandString[0] == '3') motorSpeeds[2] =

commandNumber();

if(commandString[0] == '4') motorSpeeds[3] =

commandNumber();

}

}

}

int commandNumber()

{

int result = 0;

for (char i = 1; i < commandLength; i++){

char *l;

*l = commandString[i];

result = (result * 10) + atoi(l);

}

wirelessPrint("commandNumber = ");

wirelessPrintln(result);

return result;

}

void wirelessPrint(float val)

{

#if TALKOVERUSB

Serial.print(val);

#endif

#if TALKOVERXBEE

Serial3.print(val);

#endif

}

void wirelessPrint(int val)

{

#if TALKOVERUSB

Serial.print(val);

#endif

#if TALKOVERXBEE

Serial3.print(val);

#endif

}

void wirelessPrint(long val)

{

#if TALKOVERUSB

Serial.print(val);

#endif

#if TALKOVERXBEE

Serial3.print(val);

#endif

}

void wirelessPrint(double val)

{

#if TALKOVERUSB

Serial.print(val);

#endif

#if TALKOVERXBEE

Serial3.print(val);

#endif

}

void wirelessPrint(String val)

{

#if TALKOVERUSB

Serial.print(val);

#endif

#if TALKOVERXBEE

Serial3.print(val);

#endif

}

120

void wirelessPrintln(float val)

{

#if TALKOVERUSB

Serial.println(val);

#endif

#if TALKOVERXBEE

Serial3.println(val);

#endif

}

void wirelessPrintln(int val)

{

#if TALKOVERUSB

Serial.println(val);

#endif

#if TALKOVERXBEE

Serial3.println(val);

#endif

}

void wirelessPrintln(long val)

{

#if TALKOVERUSB

Serial.println(val);

#endif

#if TALKOVERXBEE

Serial3.println(val);

#endif

}

void wirelessPrintln(double val)

{

#if TALKOVERUSB

Serial.println(val);

#endif

#if TALKOVERXBEE

Serial3.println(val);

#endif

}

void wirelessPrintln(String val)

{

#if TALKOVERUSB

Serial.println(val);

#endif

#if TALKOVERXBEE

Serial3.println(val);

#endif

}

void wirelessPrintln()

{

#if TALKOVERUSB

Serial.println();

#endif

#if TALKOVERXBEE

Serial3.println();

#endif

}

void writeSpeeds(){ //Sends motor speeds to

Arduino Minis

#if PRINT_MOTORSPEEDS

wirelessPrint("Speeds = ");

for(char i = 0; i < 4; i++){

wirelessPrint(motorSpeeds[i]);

wirelessPrint(", ");

}

wirelessPrintln();

#endif

//wirelessPrint("Sending speeds");

Wire.beginTransmission(2);

String valString = String(motorSpeeds[0]);

Wire.send((int)valString.length());

for(char i = 0; i < valString.length(); i++)

Wire.send(valString[i]);

valString = String(motorSpeeds[1]);

Wire.send((int)valString.length());

for(char i = 0; i < valString.length(); i++)

Wire.send(valString[i]);

Wire.endTransmission();

Wire.beginTransmission(3);

valString = String(motorSpeeds[2]);

Wire.send((int)valString.length());

for(char i = 0; i < valString.length(); i++)

Wire.send(valString[i]);

valString = String(motorSpeeds[3]);

Wire.send((int)valString.length());

for(char i = 0; i < valString.length(); i++)

Wire.send(valString[i]);

Wire.endTransmission();

wirelessPrintln("Sent speeds");

}

void resetMotorControllers(){ //Sends

signal to reset the motor speed controllers

Wire.beginTransmission(2);

Wire.send('f');

Wire.endTransmission();

Wire.beginTransmission(3);

Wire.send('f');

Wire.endTransmission();

}

121

Arduino Pro Mini Software

#include <avr/interrupt.h>

#include <Servo.h>

#include <Wire.h>

#define COMMANDSFROMPILOT 1

#define I2CDEVICEID 2 //Controllor 1 = 2,

Controller 2 = 3

#define RPMCALCSTEPS 20 //The length of

time over which RPM is averaged

#define TIMESTEP 15 //is approximately

RPMCALCSTEPS * TIMESTEP

int motorPins[2] = {

10,11

};

int hallEffectPorts[2] = {

0,1

};

int pwmOffsets[2] = {

140,140

};

double a1offset = .0003; //.00015

double a1slope = .00000007; //.0000000566

double a1[2] = {

a1offset, a1offset

};

double a2offset = .24;

double a2slope = -.00003; //3

double a2[2] = {

a2offset, a2offset

};

volatile unsigned long counter[2] = {

0,0};

unsigned long countertime = 1;

unsigned long oldcountertime = 0;

unsigned long receiveTime = 0;

double rpm[2] = {

0,0};

double oldrpm[2] = {

0,0};

int rpmData[2][RPMCALCSTEPS];

char rpmCalcIndex = 0;

float motorVals[2];

int x;

char p, *l;

boolean fault = false;

int desiredRPM[2];

long error[2], oldError[2];

float dt = 1;

void setup() {

for(char i = 0; i < 2; i++){

pinMode(hallEffectPorts[i], INPUT);

pinMode(motorPins[i], OUTPUT);

for(char j = 0; j < RPMCALCSTEPS; j++)

rpmData[i][j] = 0;

motorVals[i] = pwmOffsets[i];

volatile unsigned long counter[] = {

0,0 };

}

attachInterrupt(hallEffectPorts[0],

counter0Inc, CHANGE);

attachInterrupt(hallEffectPorts[1],

counter1Inc, CHANGE);

Serial.begin(57600);

Wire.begin(I2CDEVICEID);

Wire.onReceive(received);

float motorVals[] = {

pwmOffsets[0], pwmOffsets[1] };

}

void loop() {

countertime = millis();

if (countertime > oldcountertime +

TIMESTEP){

if(Serial.available()>0){

desiredRPM[0] = 0;

while(Serial.available()>0)

{

p = Serial.read();

*l = p;

desiredRPM[0] = desiredRPM[0] * 10 +

atoi(l);

}

if(desiredRPM[0] > 7000) desiredRPM[0] =

7000;

desiredRPM[1] = desiredRPM[0];

}

if(desiredRPM[0] == 0){

motorVals[0] = pwmOffsets[0];

motorVals[1] = pwmOffsets[1];

}

#if COMMANDSFROMPILOT

if (countertime > receiveTime + 250){

fault = true;

Serial.println("Communication fault!");

}

#endif

rpmCalc();

for(char i = 0; i < 2; i++){

//if((oldrpm[i] > 0) && (rpm[i] == 0) &&

(desiredRPM[i] != 0)) fault = true;

}

errorUpdate();

gainUpdate();

pidUpdate();

if(fault) int motorVals[] = {

0,0 };

analogWrite(motorPins[0],

(int)motorVals[0]);

analogWrite(motorPins[1],

(int)motorVals[1]);

Serial.print("RPM0 = ");

Serial.print(rpm[0]);

Serial.print(", RPM1 = ");

Serial.print(rpm[1]);

// Serial.print(", Motor0Val = ");

// Serial.print(motorVals[0]);

// Serial.print(", Motor1Val = ");

// Serial.print(motorVals[1]);

Serial.print(", desiredRPM0 = ");

122

Serial.print(desiredRPM[0]);

Serial.print(", desiredRPM1 = ");

Serial.println(desiredRPM[1]);

oldcountertime = countertime;

}

}

void pidUpdate()

{

dt = (countertime - oldcountertime);

for(char i = 0; i < 2; i++){

float increment = a1[i] * error[i] - a2[i] *

(rpm[i] - oldrpm[i]) / dt;

motorVals[i] += increment;

motorVals[i] = constrain(motorVals[i],

pwmOffsets[i], 254);

}

}

void counter0Inc()

{

counter[0]++;

}

void counter1Inc()

{

counter[1]++;

}

void errorUpdate()

{

for (char i = 0; i < 2; i++){

oldError[i] = error[i];

error[i] = desiredRPM[i] - rpm[i];

}

}

void gainUpdate()

{

for(char i = 0; i < 2; i++){

a1[i] = a1offset + a1slope * rpm[i];

a2[i] = a2offset + a2slope * rpm[i];

if(a2[i] < 0) a2[i] = 0;

if(abs(error[i]) < 100){

a1[i] = 0;

//a2[i] = 0;

}

}

}

void received(int numBytes){

desiredRPM[0] = 0;

desiredRPM[1] = 0;

char nextByte = Wire.read();

byte valSize = nextByte;

if (nextByte == 'f') fault = false;

else{

for(char i = 0; i < valSize; i++){

nextByte = (char) Wire.read();

desiredRPM[0] = desiredRPM[0] * 10;

desiredRPM[0] += atoi(&nextByte);

}

nextByte = Wire.read();

valSize = nextByte;

for(char i = 0; i < valSize; i++){

char nextByte = (char) Wire.read();

desiredRPM[1] = desiredRPM[1] * 10;

desiredRPM[1] += atoi(&nextByte);

}

}

receiveTime = millis();

}

void rpmCalc()

{

float dt = (countertime - oldcountertime);

for(char j = 0; j < 2; j++){

oldrpm[j] = rpm[j];

float newrpm = ((60000 * counter[j] / dt) /

2);

rpm[j] = newrpm / RPMCALCSTEPS +

(RPMCALCSTEPS - 1) * oldrpm[j] /

RPMCALCSTEPS;

counter[j] = 0;

}

rpmCalcIndex++;

if(rpmCalcIndex == RPMCALCSTEPS)

rpmCalcIndex = 0;

}

