
State-Slice: A New Stream Query
Optimization Paradigm for Multi-query and

Distributed Processing

by

Song Wang

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

in

Computer Science

by

March 17, 2008

APPROVED:

Professor Elke A. Rundensteiner
Advisor

Professor Murali Mani
Committee Member

Professor Michael Gennert
Head of Department

Professor George Heineman
Committee Member

Professor Ugur Çetintemel
Brown University
External Committee Member

i

Abstract

Continuous queries process real-time streaming data and output results in

streams for a wide range of applications. Modern stream applications such

as sensor monitoring systems and publish/subscription services necessi-

tate the handling of a large number of continuous queries specified over

high volume data streams. Continuous queries utilize constraints, such

as windows, to unblock stateful and otherwise blocking query operations.

The window constraints impose new challenges for effective query process-

ing. This dissertation proposes novel solutions to continuous query opti-

mization based on state-slicing in three core areas, namely multiple contin-

uous query sharing, ring-based multi-way join query distributed process-

ing and distributed multi-query optimization.

The first part of the dissertation proposes efficient optimization strate-

gies that utilize the novel state-slicing concept to achieve optimal mem-

ory and computation sharing for multiple stream join queries with differ-

ent window constraints. Extensive analytical and experimental evaluations

demonstrate that the proposed strategies can minimize the memory or CPU

consumptions for multiple join queries.

ii

The second part of this dissertation proposes a novel scheme for the

distributed execution of generic multi-way joins with window constraints.

The proposed scheme partitions the states into disjoint slices in the time do-

main, and then distributes the fine-grained states in the cluster, forming a

virtual computation ring. New challenges to support this distributed state-

slicing processing are answered by numerous new techniques, including

synchronized processing on slices without locking in asynchronous cluster,

maintenance and termination logic in ring-based query plan, interleaving

of join runs, cost-based state allocation, and distributed time-slice adap-

tation. The extensive experimental evaluations show that the proposed

strategies achieve significant performance improvements in terms of re-

sponse time and memory usages for a wide range of configurations and

workloads on a real system compared to the state-of-the-art distributed

processing techniques.

Ring-based distributed stream query processing and multi-query shar-

ing both are based on the same state-slice concept. The third part of this

dissertation combines the first two parts of this dissertation work and pro-

poses a novel distributed multi-query optimization technique.

iii

Acknowledgments

This dissertation and the growth in my knowledge over the last few years

owe a great deal to many professors, colleagues, and friends. First, I want

to thank my advisor, Professor Elke A. Rundensteiner, for all her support

during the process of my Ph.D. study. She inspired my interests in database

research and gave me direction on every aspects of research. It has been my

luck to have her as my advisor. Her technical and editorial advice was es-

sential to the completion of this dissertation. I express my sincere thanks

for her support, advice, patience, and encouragement throughout my grad-

uate studies. Her persistence in tackling problems, confidence, and great

teaching will always be an inspiration.

My thank goes to the members of my Ph.D. committee, Prof. Murali

Mani, Prof. George Heineman and Prof. Ugur Çetintemel, who provided

valuable feedback and suggestions to my comprehensive-exam, my disser-

tation proposal talk and dissertation drafts. All these helped to improve the

presentation and contents of this dissertation. I thank Prof. Kathi Fisler for

her time and efforts discussing with me in my research qualifying exam.

I would like to thank the whole CAPE and D-CAPE team members,

iv

previous and current, in DSRG for their hard work on building the system

that we can share together as a team. I would also like to thank the Rainbow

and Raindrop team members for their help in my early Ph.D. study. The

friendship of Yali Zhu, Ling Wang, Bin Liu, Andreas Koeller, Li Chen, Hong

Su, Xin Zhang, Songting Chen, Maged El-Sayed, Luping Ding, Rimma V.

Nehme, Jinghui Jian and all the other previous and current DSRG members

is much appreciated. They have contributed to many interesting and good-

spirited discussions related to this research.

I thank the wonderful professors in the CS department for both their

serious lectures and casual chattings. I thank the system support staff in

our department and from the school for providing a well-maintained com-

puting environment and utilities for our research needs. I am thankful for

the financial supports I have received from my advisor, the department,

the school and NEC Labs America during my study and research in WPI.

My thank also goes to NSF for providing funding for the computing cluster

used in my dissertation.

Finally, I would like to thank my wife Mingyu for her understanding

and love during the past few years. Her support and encouragement was

in the end what made this dissertation possible. My parents receive my

deepest gratitude and love for their dedication and the many years of sup-

port during my studies. Special thanks also go to my little daughter Alli-

sion, her sweet smile comes along with me forever.

v

Contents

1 Introduction 1
1.1 Research Motivation . 1

1.1.1 Continuous Query Optimization in General 1
1.1.2 New Challenges in Continuous Query Processing . . 4
1.1.3 Motivation for Operator Granularity Control 6
1.1.4 Relation with State-of-the-Art Stream Query Process-

ing Techniques . 8
1.2 Research Focus of This Dissertation 11

1.2.1 Multiple Continuous Query Optimization 13
1.2.2 Distributed Multi-way Stream Join Query Optimization 18
1.2.3 Distributed Multiple Query Processing 24
1.2.4 Overview of the CAPE/D-CAPE System 26

1.3 Dissertation Road Map . 28

I State-Slice Multi-query Optimization of Stream Queries 29

2 Introduction 30
2.1 Research Motivation . 30
2.2 Proposed Strategies . 33
2.3 Road Map . 36

3 Background 37
3.1 Stateful Operators in Continuous Queries 37
3.2 Window Constraints and Sliding Window Join 39
3.3 Assumptions and Simplifications 42

4 Review of Existing Strategies for Sharing Continuous Queries 45
4.1 Naive Sharing with Selection Pull-up 47
4.2 Stream Partition with Selection Push-down 49

CONTENTS vi

5 State-Slice Sharing Paradigm 52
5.1 State-Sliced One-Way Window Join 53
5.2 State-Sliced Binary Window Join 59
5.3 Discussion and Analysis . 65

6 Case Study: State-Slice Sharing for Join Tree 70
6.1 Continuous Queries and Terms Used in Cost Model 71
6.2 Strategies of Sharing Queries 74

6.2.1 Selection PullUp Sharing 74
6.2.2 State-Slice Sharing . 76

6.3 Cost Model for State Memory Consumption 77
6.3.1 Isolated Execution without Sharing 77
6.3.2 Selection PullUp Sharing 79
6.3.3 State-Slice Sharing . 80
6.3.4 Comparison and Analysis 81

6.4 Cost Model for CPU Consumption 84
6.4.1 Isolated Execution without Sharing 85
6.4.2 Selection PullUp Sharing 86
6.4.3 State-Slice Sharing . 87
6.4.4 Comparison and Analysis 88

7 State-slice: Building the Chain 92
7.1 Memory-Optimal State-Slicing and its Cost Analysis 93
7.2 CPU-Optimal State-Slicing . 95
7.3 Online Migration of the State-Slicing Chain 98
7.4 Push Selections into Chain . 101

7.4.1 Mem-Opt Chain with Selection Push-down 101
7.4.2 CPU-Opt Chain with Selection Push-down 103

8 Experimental Evaluation 105
8.1 Experimental System Overview 105
8.2 State-Slice vs. Other Sharing Strategies 106
8.3 State-slice: Mem-Opt vs. CPU-Opt 110

9 Related Work 113

II Distributed Multi-way Stream Join Processing 116

10 Introduction 117
10.1 Research Motivation . 117

CONTENTS vii

10.2 Proposed Strategies . 120
10.3 Our Contributions: . 124
10.4 Road Map . 125

11 Background 126
11.1 Semantics of Multi-way Window Join 126
11.2 Distributed Continuous Query Processing in DCAPE 130

12 PSP: State-Slicing for Multi-way Joins 133
12.1 New Challenges in State-slicing for Multi-way Joins 133
12.2 State-Slice Ring with Life Control 137

12.2.1 Coordinated State Maintenance. 140
12.2.2 Intermediate Result Propagation and Processing. . . 143
12.2.3 Life Span Control in the Ring. 145

12.3 Execution Algorithm and Time Line 148
12.4 PSP with Interleaved Processing 151
12.5 PSP with Dynamic Head and Tail 153
12.6 Interleaving Processing with Dynamic Ring Structure 155

13 PSP: Cost Analysis and Tuning 157
13.1 Cost Model . 157
13.2 Cost-based Tuning . 160

13.2.1 Maximize Output Rate. 160
13.2.2 Minimize Average Response Latency. 161

13.3 Initial State Slicing . 162
13.4 Workload Balancing . 163

14 PSP: Adaptive Load Diffusion 164
14.1 Workload Smoothing . 165
14.2 State Relocation . 166

15 Discussion 169
15.1 State Replication Based Distribution 169
15.2 Stream Tuple Processing Order 173

15.2.1 Execution Models . 174
15.2.2 State Sliced Join Processing with Semi-Ordered Exe-

cution . 176

CONTENTS viii

16 Experimental Evaluation 180
16.1 Experiment Settings . 180
16.2 Experiment 1: Sensitivity Analysis for PSP 182
16.3 Experiment 2: PSP with Interleaved Processing 185
16.4 Experiment 3: PSP vs. ATR and CTR 187
16.5 Experiment 4: Runtime Adaptation of PSP 190

17 Related Work 192

III Distributed Multiple Multi-way Join Query Optimization194

18 Introduction 195
18.1 Research Motivation . 195
18.2 Proposed Strategies . 196
18.3 Road Map . 199

19 Selection Pushdown for Multi-way Join 200
19.1 Selection Pull Up and Window based State Slicing 201
19.2 Selection Push Down . 202

20 Routing the Joined Results 207
20.1 Routing Bitmaps for the Logical Window Slices 208
20.2 Bitmaps for Evaluation of the Selections 210

21 Logical Query Plan Deployment in the Cluster 211
21.1 Extended Cost Model . 212
21.2 Minimize Average Response Latency 213
21.3 Workload Balancing . 213

IV Conclusions and Future Work 215

22 Conclusions of This Dissertation 216

23 Future Work 221
23.1 State Slicing Aware Continuous Query Optimization 221
23.2 Computation Sharing for Complex Event Query Processing 222
23.3 Approximate Continuous Query Processing 223

ix

List of Figures

1.1 Continuous Query Plan Network. 4
1.2 Overall Research Focus. 12
1.3 D-CAPE System Architecture. 27

2.1 A Brute Force State Slicing with Incomplete Result 34

3.1 Sliding Window Join Operators and Their States 38
3.2 Execution of Sliding-window join. 41

4.1 Query Plans for Q1 and Q2. 46
4.2 Selection Pull-up. 48
4.3 Selection Push-down. 50

5.1 Sliced One-Way Window Join. 54

5.2 Execution of A[W start,W end]
s
n B. 54

5.3 Chain of 1-way Sliced Window Joins. 55
5.4 Chain of Binary Sliced Window Joins. 60
5.5 Execution of Binary Sliced Window Join. 61
5.6 State-Slice Sharing for Q1 and Q2. 64
5.7 The Processing of the Union Operator. 67
5.8 Memory Consumption Comparison 67
5.9 CPU Cost Comparison: State-Slice vs. Selection PullUp . . . 68
5.10 CPU Cost Comparison: State-Slice vs. Selection PushDown. 68

6.1 Query Plans for Q1 and Q2. 71
6.2 Selection PullUp Sharing Query Plan. 75
6.3 State-Slice Sharing for Q1 and Q2. 76
6.4 Memory Consumption Comparison: State-Slice Sharing vs.

Selection PullUp Sharing. 83

LIST OF FIGURES x

6.5 Memory Consumption Comparison: State-Slice Sharing vs.
Isolated Execution. 83

6.6 CPU Cost Comparison: State-Slice Sharing vs. Selection PullUp
Sharing. 90

6.7 CPU Cost Comparison: State-Slice Sharing vs. Isolated Exe-
cution. 91

7.1 Mem-Opt State-Slice Sharing. 93
7.2 Merging Two Sliced Joins by Introducing Router Operator. . 96
7.3 Directed Graph of State-Slice Sharing. 97
7.4 Online Splitting of the Sliced Join Ji. 98
7.5 Online Merging of the Sliced Join Ji and Ji+1. 100
7.6 Selection Push-down for Mem-Opt State-Slice Sharing. . . . 102
7.7 Merging Sliced Joins with Selections. 104

8.1 Memory Comparison with Various Parameters 108
8.2 Service Rate Comparison with Various Parameters 109
8.3 Service Rate Comparison of Mem-Opt. Chain vs. CPU-Opt.

Chain . 111

11.1 Binary Join Trees . 128
11.2 Multi-way Join Operator for Query A ./ B ./ C ./ D ./ E . . 129
11.3 Pipelined parallelism and Partitioned Parallelism 130
11.4 Example of Data Partitioned Plan Distribution 132

12.1 Ring-based Query Plan with Multi-way State-slice Joins. . . 136
12.2 Snapshot of Runtime State Deployment in the Ring-based

Query Plan. The Current Sliding Window is Composed of
the Colorful/Gray Slots for Each Stream. 139

12.3 Execution Steps of Sliced Join opi 149
12.4 Execution Time Line of the PSP 150
12.5 Purge Steps with StateStart and StateEnd in nodei, 1 ≤ i ≤ n 152
12.6 PSP with Dynamic Head and Tail. 154
12.7 PSP-D with Multiple Heads and Tails. 156

14.1 Aggressive State Relocation. 167

15.1 CPU Consumption Comparison 172

16.1 Cost Breakdown for an Example 3-Way Join Query. 183
16.2 Performance Analysis of the PSP scheme 184

LIST OF FIGURES xi

16.3 Performance Analysis of the PSP-Int scheme 186
16.4 Performance Analysis of the ATR scheme 188
16.5 Performance Analysis of the CTR scheme 189
16.6 Experimental Results of Adaptation 190
16.7 Experiments Results of Adaptation 191

xii

List of Tables

4.1 System Settings Used in Chapter 4. 47

5.1 Execution of the Chain: J1, J2. 56

6.1 Terms Used in Cost Model . 73
6.2 Value of Terms Used in Cost Model 78

8.1 System Settings Used in Chapter 8.2. 107
8.2 Window Distributions Used for 12 Queries. 110

13.1 Terms Used in Cost Model . 158

1

Chapter 1

Introduction

1.1 Research Motivation

1.1.1 Continuous Query Optimization in General

Over the past decades, database systems have emerged as the core tech-

nology for managing data [RG00]. After many years of development, re-

lational database technology has matured and contributed significantly to

the rapid growth of various industries. Relational database management

systems (DBMS) are a proven technology for managing business data [RG00].

Commercial relational database products, such as Oracle, DB2, Microsoft

SQL Server, Sybase, PostgreSQL, MySQL and etc., embody years of re-

search and development in areas as diverse as modeling, storage, retrieval,

update, indexing, transaction processing, and concurrency control, to just

name a few. Work continues to add capabilities to a DBMS to address

new kinds of data in the past decade, such as multimedia [MS96], object-

1.1. RESEARCH MOTIVATION 2

oriented [CA93], spatial-temporal data types [PdBG94, JCE+94], XML and

semistructured data [BPSM97], and most recently stream data types [BW01].

Recently, the development of the web and network techniques also has

necessitated the widely used stream data processing. Recent years have

witnessed a rapidly increasing attention on streaming database systems

[MWA+03, BBMW02, ACC+03, AH00, DTW00, VN02, ILW+00, AAB+05a].

Different from traditional database systems with statically stored data and

one-time queries, in a streaming database, data are streaming in as time

goes by. User queries are generally long-running or even continuous, and

the results of the queries are also in the format of streams. This type of

query is generally referred to as a continuous query. Many applications re-

quire the processing of continuous queries on streaming data, including

sensor networks, online financial tickers and medical monitoring systems.

Hence a database system that specialized in processing streaming data and

continuous queries is likely to be beneficial for a large range of applications.

Efficiency is the key point in all these above data processing systems

because of the tremendous data size. Modern relational databases usu-

ally host several TB data. Query optimization is a core component of any

database system. Query optimization has been intensively studied for decades

for the now mature relational databases [RG00, Cha98, Ioa96]. The well

known optimization techniques include query plan rewriting, answering

queries using materialized views, sharing computation for multi-queries

and others [Cha98]. These optimizations are generally cost-based and algebraic-

based [Cha98]. Query optimization aims to produce an efficient execution

plan.

1.1. RESEARCH MOTIVATION 3

Continuous queries significantly differ from traditional static queries

in several aspects. (1) Data availability. For traditional relational queries,

data is stored a priori on disk; while the stream data arrives at the system

on-the-fly. This means that various data access methods with well-studied

indices existing for relational databases may not be valid for stream data.

(2) Query execution mode. Users of relational databases submit one-time

queries against the data in the tables. A valid relational query should not

run indefinitely on finite data. On the contrary, users register a set of con-

tinuous queries on the incoming streams. These queries will be running

in the query engine until the user explicitly deactivates them. (3) Result

generation. Generation of query results for relational queries are driven by

the execution steps in a pull-based fashion, which is usually defined by the

iterator interfaces of the operators. However, when stream data arrives at

runtime, the query processing will be driven by the data and output the

update of results in a push-based fashion.

Figure 1.1 shows a simplified architecture of a continuous query engine.

As illustrated, the stream data arrives on the fly, while the result is also

streaming out of the system at runtime. A streaming continuous query sys-

tem usually hosts multiple registered continuous queries having the same

input streams. Since all these queries are continuous queries, they have

to be executed simultaneously instead of sequentially. The corresponding

query operators of the registered query form a query network, which is a

directed acyclic graph of operators. All the operators in the query network

will be connected with queues to buffer intermediate results temporarily.

The final result will be sent out as streaming result.

1.1. RESEARCH MOTIVATION 4

Streaming Data
Streaming Result

σ

П

σ

σ

U

Agg

Query Network

w1

w2

w3

Agg

Q1

Q2

Q3…

Figure 1.1: Continuous Query Plan Network.

The stream data model is different from the well-studied relational data

model in the sense of on-the-fly arrival. The corresponding query mod-

els bring new semantics, such as timestamps and window constraints. All

these differences require us to revisit the traditional database processing

techniques in the streaming database scenario, since the former was not

initially designed to deal with on-the-fly real-time data. This calls for a

new set of methodologies and algorithms tailored for streaming database

technologies to process continuous queries.

1.1.2 New Challenges in Continuous Query Processing

The optimization of continuous query processing [MWA+03, MSHR02, CCC+02]

differs from traditional query optimization in several aspects. Below we

list several aspects of the differences and illustrate the new challenges for

continuous query processing.

First, the quality of a continuous query plan is typically judged by its

runtime performance measurements, including output rate [VN02] and re-

sponse time. In a static database, the quality of a query plan is often judged

by its total estimated execution cost measured in terms of CPU process-

1.1. RESEARCH MOTIVATION 5

ing and disk I/O costs [SMK97]. Since ideally the estimated execution cost

might be a “good” indication of actual query execution time in a real sys-

tem, the query optimizer usually picks the query plan that has the minimal

estimated cost. However for a stream query, the query execution time is not

essential because of the long running nature. New performance indicators

are defined then for continuous query processing. As observed in [AN04],

a continuous query plan produces the optimal throughput without shed-

ding as long as the system can process all incoming stream data within the

stream arrival rates. When the continuous query engine faces high-volume

input streams, it is thus critical to devise methods to catch up with the

stream speed.

Second, continuous queries are usually main-memory-resident to sat-

isfy the often rather stringent real-time output requirements [MWA+03,

MSHR02, CCC+02]. Due to the existence of stateful operators, such as join

or group-by, which may store large amount of tuples in operator states, con-

tinuous query processing tends to be CPU-intensive and memory-intensive.

When the system is overloaded, we have to either spill in-memory data to

disk [LZR06, UF00, VNB03], which can further delay the processing, or we

could apply load shedding [TcZ+03] to delete data, which incurs approx-

imate results. Clearly, for applications that demand accurate real-time re-

sults, the query optimizer instead should aim to generate query plans with

minimal memory and CPU costs.

Third, continuous query must be aware of constraints such as the win-

dow constraints, which is new semantics of stream queries. Window con-

straints for stream data can be time-based [BW01], tuple-based [BW01] or

1.1. RESEARCH MOTIVATION 6

punctuation-based [TMSF03]. The window constraints are used to unblock

the stateful operators from infinite waiting time before generation of any

result. The window constraints determine the memory consumption of the

stateful operators, and along with it the CPU resources needed to process

the tuples in the states. Usually the CPU cost is proportional, quadratic or

even higher degree to the window constraints, since the complexity of the

operators are usually not linear.

Lastly, the statistics of the streams are usually unknown before a query

starts. In fact they may continue to change during the query execution.

Thus a query plan that is currently optimal can become sub-optimal at a

later time. Therefore, runtime optimization is critical and inevitable. Thus

the initial generated query plan must be flexible for adaptive continuous

query processing. More importantly, effective runtime query optimization

methods must be developed.

1.1.3 Motivation for Operator Granularity Control

Query optimization is one of the most critical techniques for improving

query performance in any database system. Among these techniques the

optimization of join queries, especially for the multi-way joins with arbi-

trary join graphs, is essential since join operations tend to dominate the

CPU and memory usage in a database system [Gra93, KRB85]. For stream

query optimization, the real-time query response requirement and in-memory

processing of stream operators exacerbate the situation.

In stream processing, the CPU and memory usage is directly related to

the window constraints. The join and group-by operators are stateful opera-

1.1. RESEARCH MOTIVATION 7

tors. A stateful operator must store all tuples that have been processed thus

far from input streams so to be able to join or group them with future in-

coming tuples from the other input streams. For a long-running query as in

the case of continuous queries, the number of tuples stored inside a stateful

operator can potentially be quite large for large window constraints. Such

operators are serious obstacles for stream query optimizations.

• First, a huge operator limits the granularity of query optimization,

since an operator is the basic unit for query rewriting. Window con-

straints for the stateful operators add semantics beyond the relational

query model. Since the operator is the basic unit for the query opti-

mizer to work on, a huge stateful operator limits the scope and effec-

tiveness of the query optimizer in terms of rule based query rewrit-

ing. Localized intra micro operator optimization may be possible but

cannot achieve plan level optimality.

• Second, a huge stateful operator brings new issues for operator schedul-

ing strategies, since an operator is the minimal unit for an execution

thread scheduled in a continuous query engine. In the case when

huge stateful operators exist in the query plan and consume most of

the CPU time at runtime, special care must be taken to avoid starva-

tion of other operators.

• Third, a huge stateful operator is not suitable for distributed query

processing, since an operator is the basic unit for parallelism. Dis-

tributed stream query processing is a natural direction when the in-

put stream arrival rates and stream query processing requirements

1.1. RESEARCH MOTIVATION 8

go beyond the ability of a single processor. However, huge stateful

operators may be too large to fit into any single processor and thus

they must be split.

In summary, the size of the operators determines the granularity of

query processing in almost all aspects. Operators of fine granularity pro-

vide potentially more opportunities for the runtime query optimizer and

query execution engine.

In this dissertation, I propose a novel solution of slicing the states in

the time domain called state slicing, designed to split a huge stateful opera-

tors into a group of smaller stateful operators at the optimizer’s will. Our

proposed method is generic in the sense that the key idea of state slicing

does not rely on the query semantics such as type of predicates, attribute

domain and attribute distribution. Our solution is versatile and generic for

arbitrary join predicates, with minimal extra cost. Based on the state slicing

concept, we show solutions of two important problems, namely, computa-

tion sharing among stream queries with overlapped window constraints

and distributed query processing of generic stateful join queries.

1.1.4 Relation with State-of-the-Art Stream Query Processing Tech-

niques

Many aspects of stream query processing techniques have been proposed

and studied recently. Listed below are the most commonly used techniques

in current continuous query systems [MWA+03, BBD+02, ACC+03, AH00,

DTW00, VN02, ILW+00, AAB+05a].

1.1. RESEARCH MOTIVATION 9

• Adaptive continuous query processing. Since several important param-

eters (such as characteristics of the incoming streams, system work-

load and registered queries) may change during the usually long ex-

ecution of a continuous query, runtime query optimization is nec-

essary for stream query processing. Existing adaptations including:

(1) dynamic tuple routing through operators such as Eddies [AH00,

TD03] and content based routing [BBDW05], (2) dynamic operator

scheduling such as Chain [DBBM03] and [CCea03, L. 00, PSR03], (3)

intra-operator adaptation such as XJoin [UF00] and PJoin [DMRH04],

(4) run-time operator scheduling [WW94, MWA+03, CCea03, SZDR05],

(5) query plan re-optimization and migration [ZRH04], and (6) query

run-time re-distribution [LZJ+05]. These techniques in general work

as follows: (1) collect runtime stream and system statistics, (2) run-

time optimize to minimize or maximize certain performance mea-

surements, and (3) execute the evolved query plan with any neces-

sary compensation. State-slicing based stream query optimization

support runtime adaptation and can be combined with other adap-

tive query processing techniques.

• Distributed stream query processing. A share-nothing cluster has been

used widely for distributed query processing in the contexts of both

relational and continuous query processing. A streaming query en-

gine may take several input streams and execute multiple continuous

queries at the same time. The workload such a system needs to deal

with can be tremendous. The system resources on a single machine

1.1. RESEARCH MOTIVATION 10

such as memory and CPU resources can be consumed quickly. A con-

tinuous query engine that does not have enough system resources to

handle the query execution may have to apply load shedding, which

incurs inexact query results, or push some data to disk for later pro-

cessing, which can further delay the query results. Hence a stream-

ing system needs to scale well in regards to its potentially very large

workload, which cannot be achieved by a centralized system with

a single machine. For distributed stream query processing, several

generic challenges have been tackled: (1) operator deployment in

a distributed network environment, such as [Ac04], (2) distributed

plan migration, such as [ZR07], (3) fault tolerance architecture, such

as [HXcZ07], (4) robust query plan deployment, such as [XHcZ06].

State slicing based operator splitting provides a novel pipeline con-

struction approach for distributed stream query processing. State

slicing is a network-aware query optimization method, which con-

siders both the query plan optimization and operator distribution of

stream join queries in one cost model. The proposed state slicing tech-

nique extends the above techniques in the sense that it provides new

opportunities for dynamic operator deployment.

• Load-shedding and Quality of Service (QoS). In the case of bursty input

streams that exceed the current system resource limitations, some re-

search has proposed to apply load shedding [TcZ+03, BDM04, TcZ07]

in order to decrease the workload that the system needs to handle.

The basic idea is to drop workload that has the minimal possible im-

1.2. RESEARCH FOCUS OF THIS DISSERTATION 11

pact on the quality of the output. As a side effect, this introduces

approximation of the results that the continuous query processing

engine produces, which by itself is another important research area

in the streaming database field. Practically, end users would need

to provide parameters to describe their requirement of the result in

terms of response time, accuracy or other preferences (all these are

QoS parameters). Load-shedding, especially semantic load-shedding,

is usually considered with such QoS specifications [TcZ+03, TcZ07].

However for a streaming database application that needs to get ex-

act results, approximation techniques such as load shedding are not

applicable. The proposed state slicing techniques aim to provide ac-

curate answers assuming the availability of a set of computing re-

sources. However if the total workload goes beyond the computa-

tional resources of the cluster, load-shedding or other approximate

processing approaches have to be involved to avoid system crashes.

1.2 Research Focus of This Dissertation

The overall goal of this dissertation is to build a continuous query process-

ing system that can effectively scale up to tens of registered queries and

large window constraints (¿30 minutes) with high-volume streams (¿300

tuples/second). As depicted in Figure 1.2, the main techniques discussed

in this dissertation are multiple query computation sharing and distributed

multi-way join query processing. The core concept of our proposed so-

lutions is the state slicing method, which enables the split of multi-way

1.2. RESEARCH FOCUS OF THIS DISSERTATION 12

Multiple Query Optimization
(1) Cost analysis
(2) Query rewriting
(3) Runtime adaptation

Multiple Query Optimization
(1) Cost analysis
(2) Query rewriting
(3) Runtime adaptation

Distributed Stream Processing
(1) Ring based query plan
(2) Cost based plan deployment
(3) Runtime workload balancing

Distributed Stream Processing
(1) Ring based query plan
(2) Cost based plan deployment
(3) Runtime workload balancing

Distributed Multiple Query Processing
Multiple query sharing with

Ring-based Distribution

Distributed Multiple Query Processing
Multiple query sharing with

Ring-based Distribution

A B C D E
A Huge Operator

output

A Group of Small Join Operators
A B C D E

output

State Slicing

Figure 1.2: Overall Research Focus.

join operators at the optimizer’s will. As discussed in Section 1.1.3, macro

stream operators may be inefficient for dynamic stream processing. Intu-

itively if the stream query optimizer can split macro-operators into smaller

micro-operators according to an optimization goal, the resulting query plan

tends to be more suitable for fine grained query processing. Additionally,

operator splitting may bring more optimization opportunities to the stream

query. The state slicing method can transform a huge multi-way join op-

erator into a group of small join operators inter-connected, which each im-

poses its own challeges with much smaller and thus more manageable CPU

and memory requirements.

The Multiple Query Optimization shown in Figure 1.2 is an application of

1.2. RESEARCH FOCUS OF THIS DISSERTATION 13

the state slicing method to solve the multiple query optimization problem.

State slicing is applied to achieve fine grained sharing of state memory and

join computation among multiple stream queries that join the same streams

with arbitrary window constraints. As a result, after cost-based query

rewriting with state slicing, multiple stream queries can achieve maximum

computation sharing with minimal extra cost.

The Distributed Stream Processing provides a novel paradigm for pipelined

join processing with partitioning of the states into manageable slices to be

distributed across multiple processing nodes in a shared-nothing cluster

environment. This technique generates a ring shape state sliced join query

plan based on a cost model. We then deploy the query plan in a cluster,

with one state sliced join assigned to a processing node.

Both the above two solutions support runtime query plan optimization

in terms of further slicing of the sliced joins or merging connected sliced

joins. For the distributed state slicing processing, it also includes state relo-

cation with additional or reduced processing nodes at runtime.

Lastly the Distributed Multiple Query Processing combines the multiple

query optimization and distributed query processing techniques to pro-

vide an integrated solution for scalable stream query processing of a set of

queries.

1.2.1 Multiple Continuous Query Optimization

In the first part of this dissertation, we focus on the problem of sharing

of window join operators across multiple continuous queries. The win-

dow constraints may vary according to the semantics of each query. The

1.2. RESEARCH FOCUS OF THIS DISSERTATION 14

sharing solutions employed in existing streaming systems, such as Nia-

garaCQ [CDN02], CACQ [MSHR02] and PSoup [CF02], focus on exploiting

common sub-expressions in queries, that is, they closely follow the tradi-

tional multi-query optimization strategies from relational technology [Sel88,

RSSB00]. Their shared processing of joins ignores window constraints.

That is, their approaches will treat joins with distinct window sizes as dif-

ferent joins and not share them.

New Challenges in Multiple Stream Query Optimization

The problem of sharing the work between multiple queries is not new. For

traditional relational databases, multiple-query optimization [Sel88] seeks

to exhaustively find an optimal shared query plan. Recent work, such

as [RSSB00, MRSR01], provides heuristics for reducing the search space for

the optimally shared query plan for a set of SQL queries. These works dif-

fer from this dissertation work in that we focus on the computation sharing

for window-based continuous queries. The traditional SQL queries do not

have window semantics.

Continuous query based applications involving hundreds of, or even

thousands of, concurrent queries over high volume data streams are emerg-

ing in a large variety of scientific and engineering domains. Examples of

such applications include environmental monitoring systems [AAB+05b]

that allow multiple continuous queries over sensor data streams, with each

query issued for independent monitoring purposes. Another example is

the publish-subscribe service [BBDW05, Pc05] that hosts a large number

of subscriptions monitoring published information from data sources. The

1.2. RESEARCH FOCUS OF THIS DISSERTATION 15

number of input data streams is usually much smaller than the number

of continuous queries issued on them. Thus commonly many continuous

queries are similar in flavor against the same input streams.

Processing each such compute-intensive query separately is inefficient

and certainly not scalable to the huge number of queries encountered in

these applications. One promising approach in the database literature to

support large numbers of queries is computation sharing. Efficient sharing

of computations among multiple continuous queries is equally paramount.

Many previous works [CCC+02, MSHR02, CDN02, HFAE03] have high-

lighted the importance of computation sharing in continuous queries. The

previous work in the early stage, e.g. [CCC+02], has focused primarily on

sharing of filters with overlapping predicates, which are stateless and have

simple semantics.

However in practice, stateful operators such as joins and aggregations

tend to dominate the usage of critical resources such as memory and CPU

in a DSMS. These stateful operators tend to be bounded using window con-

straints on the otherwise infinite input streams. Efficient sharing of these

stateful operators with possibly different window constraints thus becomes

critical, offering the promise of major reductions in resource consumption.

Compared to traditional multi-query optimization, one new challenge

in the sharing of stateful operators comes from the preference of in-memory

processing of stream queries. Frequent access to hard disk will be too slow

when arrival rates are high. Any sharing blind to the window constraints

might keep tuples unnecessarily long in the system. A carefully designed

sharing paradigm beyond traditional sharing of common sub-expressions

1.2. RESEARCH FOCUS OF THIS DISSERTATION 16

is thus needed.

Recent works [AW04, ZKOS05] have focused on sharing computations

of stateful aggregations. The work in [AW04], addressing operator-level

sharing of multiple aggregations, has considered the effect of different slid-

ing windows constraints. The work in [ZKOS05] discusses shared compu-

tation among aggregations with fine-grained phantoms, which is the small-

est unit for sharing the aggregations. However, efficient sharing of window-

based join operators has thus far been ignored in the literature until our

work [WRGB06].

The Proposed Approach

In order to efficiently share computations of window-based join operators,

we propose a new paradigm for sharing join queries with different window

constraints and filters. The two key ideas of the approach are state-slicing

and pipelining.

The window states of the shared join operator are sliced into fine-grained

pieces based on the window constraints of individual queries. Multiple

sliced window join operators, with each joining a distinct pair of sliced

window states, can be formed into a chain. Selections now can be pushed

down between the appropriate sliced window joins to avoid unnecessary

computation and memory usage shown above.

Based on the state-slice sharing paradigm, two algorithms are proposed

for the chain buildup, one that minimizes the memory consumption and

the other that minimizes the CPU usage. The algorithms are guaranteed

to always find the optimal chain with respect to their targeted resource of

1.2. RESEARCH FOCUS OF THIS DISSERTATION 17

either minimizing memory or CPU costs, for a given query workload and

statistic estimations. Chains in the “middle” can also be built consider-

ing tradeoffs between the system memory consumption and CPU usage.

The experimental results show that our strategy achieves respected opti-

mization goals for memory or CPU costs over a diverse range of workload

settings among alternate solutions in the literature.

Dissertation Contributions to Multiple Stream Query Sharing

• We categorize the existing sharing strategies in the literature, high-

lighting their memory and CPU consumptions.

• We introduce the concept of a chain of pipelining sliced window join

operators, and prove its equivalence to the regular window-based

join.

• The memory and CPU costs of the chain of sliced window join oper-

ators are evaluated and analytically compared with the existing solu-

tions.

• Based on the insights gained from this analysis, we propose two al-

gorithms to build the chain that minimizes the CPU or the memory

cost of the shared query plan, respectively. We prove the optimality

of both algorithms.

• We provide methods for the online adaptation of the shared slice join

plan. Such optimization can be done dynamically at run time. Ac-

cording to run time statistics, adjacent state sliced join operators can

1.2. RESEARCH FOCUS OF THIS DISSERTATION 18

be merged by combining the corresponding states and adding neces-

sary routing operators. The online splitting of operator is also sup-

ported by further splitting the states.

• The proposed techniques are implemented in an actual DSMS (CAPE).

Results of performance comparison of our proposed techniques with

state-of-the-art sharing strategies are reported. Our solution has been

shown to be more efficient than other sharing strategies for various

workloads of stream queries.

1.2.2 Distributed Multi-way Stream Join Query Optimization

New Challenges in Distributed Multi-way Join Processing

Stream applications such as scientific sensor network infrastructures re-

quire filtering, aggregation and correlation of high-volume stream data.

The data streams can include text data, multimedia data and other complex

objects such as network packets and sensor data. Multi-way window-based

Join operations (MJ) are commonly used to explore the correlation among

multiple such stream tuples in scientific and engineering domains [AAB+05b,

RRWM07, JAA+06, KDY+06]. For example, environmental monitoring sys-

tems use sensor networks that analyze data streams with possibly complex

pattern matching methodologies [AAB+05b, RRWM07]. Network monitor-

ing systems use deep packet inspection queries to evaluate network traffic

flows with content-based analysis methods [KDY+06]. The multi-way joins

in such applications tend to have complex join conditions on high volume

input stream data.

1.2. RESEARCH FOCUS OF THIS DISSERTATION 19

Stream applications can be time critical, which causes additional chal-

lenges for the processing of stream joins among multiple high-speed streams.

Stateful operators such as MJs tend to dominate the critical resources such

as memory and CPU in a DSMS. When facing high-volume input streams,

the in-memory processing may at times be beyond the capacity of a sin-

gle machine [GYW07]. The resource pressure includes not only CPU pro-

cessing power, but also memory used for the stateful MJ operations, given

that processing tends to be main memory resident to ensure timely re-

sponse. To scale such memory- and CPU-intensive applications without

violating result accuracy nor real-time response requirements, resorting to

a shared-nothing cluster has been recognized as one of the most practical

solutions [ABcea05].

The basic distribution techniques used in the relational database sys-

tems can be classified as pipelined parallelism and partitioned parallelism [Kun00].

By streaming the output of one operator into the next operator, the two op-

erators can work in series, termed pipelined parallelism. By partitioning

the input data among multiple processors, an operator can often be instan-

tiated as many independent instances each working on a part of the data,

termed partitioned parallelism.

Distributed continuous query processing has been considered in recent

years, such as distributed Eddies [TD03], Borealis [Ac04, ABcea05], System

S [JAA+06] and D-CAPE [LZJ+05]. Correspondingly two distribution tech-

niques are usually supported: operator distribution and data distribution.

Using operator distribution, disjoint sub-plans of the query plan are exe-

cuted on different machines with the intermediate results being routed be-

1.2. RESEARCH FOCUS OF THIS DISSERTATION 20

tween the machines. Data distribution instead installs instances of the same

operator into multiple machines, each then processing a different partitions

of the input data on its respective machine. Both methods are orthogonal

and can in fact be combined.

However direct application of these distribution methods is not always

guaranteed to be effective for distributing MJs with arbitrary join condi-

tions. 1) For pipelined parallelism, the macro MJ operator must fit into

one single machine — which is not always feasible when large window

constraints and high volume input streams are encountered. Though we

could translate an MJ operator into a join tree composed of a sequence of

smaller binary join operators, such method would lose the flexibility of join

orderings shown to be extremely useful for MJ processing in dynamic en-

vironments [VNB03]. Moreover such join tree distribution will scale to at

most k − 1 machines for a k-way MJ operator, while the number of ma-

chines available may be much larger than k. 2) On the other hand, par-

titioned parallelism only supports equi-joins, since it requires some hash

function for disjoint partitioning of tuples. For non-equi-joins, value-based

data partitioning cannot be applied without potentially huge data dupli-

cation, as shown in [GYW07]. Data duplication may abuse memory and

cause increased data shipping and processing costs. Moreover, data parti-

tioning [SHea03] assumes that every partition is small enough to be pro-

cessed by one single machine. This assumption may not always be valid or

could rapidly be violated at run-time, especially when processing skewed

data.

In the second part of this dissertation, we focus on distributed process-

1.2. RESEARCH FOCUS OF THIS DISSERTATION 21

ing of generic MJs with arbitrary join predicates, especially of MJs with

large window constraints. Generic stream joins occur in many practical sit-

uations, from simple range (or band) join queries to complicated scientific

queries with equation-based predicates [AAB+05b, RRWM07]. Such join

operators tend to be complex and CPU intensive. Our goal is to minimize

the query response time to meet the real-time response requirement of the

stream applications.

Applying a data-replication based distribution approach [GYW07] for

window-based MJ operators with generic join predicates can be inefficient,

because: 1) the state memory used for the MJ operators dominates the

memory consumption, and thus data replication would further exacerbate

the memory shortage; 2) An extra cost for state management with data

replication arises, including cost for duplication elimination. Such cost can

be rather significant for large window constraints and high volume data

streams.

The Proposed Approach

A novel MJ operator distribution scheme called Pipelined State Partition-

ing (PSP) is proposed in this dissertation. The PSP scheme is a new form

of pipelined parallelism. Our solution is based on the state-slicing concept

introduced for query sharing in Chapter 5. We propose a novel solution to

split a macro MJ operator into a series of smaller state-sliced MJ operators.

Different from value-based partitioning, the PSP scheme is join predicate

agnostic and thus general. It slices the states into disjoint slices in the time

domain, and then distributes these fine-grained state slices among process-

1.2. RESEARCH FOCUS OF THIS DISSERTATION 22

ing nodes in the cluster. Different from traditional plan-based pipelined

parallelism, whose degree of parallelism is bounded by the longest se-

quence of operators in the query plan, PSP instead can split the MJ to any

number of state-sliced MJ operators at the optimizer’s will to achieve max-

imum parallelism.

Beyond this basic PSP scheme, we design two extensions. One, PSP-

I (with I for Interleaving) introduces a delayed purging technique for the

states to enable interleaved processing of multiple stream tuples with asyn-

chronous processor coordination. Such interleaved processing is used to

avoid idle processors which exist in the synchronized basic PSP scheme.

Two, beyond interleaved processing, PSP-D (with D for Dynamic) further

incorporates a dynamic state ring structure to avoid repeated maintenance

cost of sliced states, which comes from the standard tuple insertion and

state purging routines.

A cost model is developed to achieve the optimal state slicing and allo-

cation, in terms of query response latency. The tradeoff between employing

more processing nodes and having more transmission hops is considered.

Runtime adaptive state relocation are also employed for achieving load bal-

ancing and re-optimization in a fluctuating environment by smoothing the

sliced state size and adding/removing processing nodes dynamically.

Compared to existing work on distributed generic MJ processing in [GYW07],

the PSP scheme has the following benefits: 1) no state duplication and thus

no repeated computations during PSP distribution; 2) applicable for any

window constraints; 3) arbitrary number of sliced operators at the opti-

mizer’s will to achieve optimality with given statistics; and 4) controllable

1.2. RESEARCH FOCUS OF THIS DISSERTATION 23

adaptive state partitioning and allocation in the time domain.

To illustrate the benefits of our PSP scheme, we have implemented the

proposed PSP scheme within the D-CAPE DSMS. Since the operator distri-

bution has been supported in D-CAPE, we reuse this part of D-CAPE to dis-

tribute the generated state sliced joins among multiple processing nodes. A

series of experimental studies are conducted to illustrate the performance

of the PSP scheme (in term of response time and state memory usage) un-

der various workloads. Comparisons with other distributed generic MJ

processing approaches in [GYW07] are also discussed. The experimental

results show that our strategy provides significant performance improve-

ments under diverse workload settings.

Dissertation Contributions to Distributed Stream Query Processing

• We introduce the novel ring architecture of sliced window join oper-

ators, and prove its equivalence to the regular window-based join.

• We extend the based PSP model with two key features: interleaved

tuple processing and dynamic ring structure to improve the response

time.

• The memory and CPU costs of PSP ring are analytically evaluated

based on a cost model.

• Based on insights gained from this analysis, a cost-based optimizer

is proposed that achieves optimal state slicing in terms of maximum

output rate and minimal query response latency. The optimality is

proved.

1.2. RESEARCH FOCUS OF THIS DISSERTATION 24

• The runtime state migration algorithms in terms of slice allocation

and relocation is described.

• The proposed techniques are implemented in the D-CAPE DSMS.

Performance of the PSP scheme under various workloads, in term

of response time and state memory usage is reported. The effect of

runtime adaptation is also illustrated in the experimental study.

• Results of performance comparison of our proposed PSP scheme with

state-of-the-art distributed generic MJ processing approached in [GYW07]

are also conducted.

1.2.3 Distributed Multiple Query Processing

Challenges in Distributed Multiple Query Sharing

In the first two parts of the dissertation, we discussed the state slicing based

binary stream join query sharing and distributed multi-way join query pro-

cessing. In the third part of dissertation work, we will integrate these two

solutions to tackle the problem of multiple query optimization in a dis-

tributed system. The common state slicing concept behind these two parts

makes the seamless integration possible. Based on the approaches pro-

posed in the first two parts of dissertation work, we need to solve following

issues.

• Extend the selection pushdown algorithm to multi-way state sliced

join ring.

1.2. RESEARCH FOCUS OF THIS DISSERTATION 25

• Fast routing strategy is needed to send the joined results to the cor-

responding users. Each state sliced join operator can generate joined

result for different queries. A fast routing method is necessary to dis-

patch the joined result to serve multiple queries.

• Deploy the state sliced join ring with selections in a cluster of process-

ing nodes with consideration of workload balancing.

The Proposed Approach

We propose a two phase query plan generation to share the computation

of multi-way stream joins in a cluster. In the first phase, the selections are

pushed into the ring and the state sliced joins based on the selection pred-

icates are formed. In the second phase, the ring of query plan is deployed

in the processing nodes with consideration of balanced workload in each

node. To achieve balanced workload, the state sliced joins generated in the

first phase may be further sliced. Also one processing node may host mul-

tiple state sliced joins together with the selections between them. A cost

based deployment is used to achieve the balanced workload.

To achieve fast routing of the joined result, we propose a bitmap based

routing strategy. Since the number of distinct sub-joins between sliced

states may be huge for multi-way join sharing, we use one routing oper-

ator to dispatch all the joined results instead of using one routing operator

for the joined results from each sub-joins. Based on the bitmap in the joined

result, it can be routed to the corresponding query user.

1.2. RESEARCH FOCUS OF THIS DISSERTATION 26

1.2.4 Overview of the CAPE/D-CAPE System

The techniques in this dissertation have been implemented in a prototype

continuous query system named CAPE/D-CAPE [RDS+04, LZJ+05] devel-

oped at WPI as a team effort to serve as the testbed for our research of

continuous query processing. D-CAPE stands for Distributed Continuous

Adaptive Processing Engine). The D-CAPE system is a prototype stream-

ing database system designed to effectively evaluate continuous queries in

highly dynamic stream environments. The system has been demonstrated

in VLDB 2004 conference [RDS+04] and VLDB 2005 conference [LZJ+05].

D-CAPE adopts a novel architecture that enables adaptive services at all

levels of query processing, including reactive operator execution [RDS+04],

adaptive operator scheduling [SZDR05], runtime query plan re-optimization [ZRH04]

and across-machine plan redistribution [ZR07].

The D-CAPE system architecture is depicted in Figure 1.3. The sys-

tem can be degraded to run on a single machine as well as across multi-

ple machines. Each machine (processor) can run an instance of the CAPE

query engine. If the system is run on multiple machines, a distributed

manager overlooks these multiple CAPE query engines and makes system-

wide adaptation decisions according to runtime statistics collected by the

QoS Inspector. The key adaptive components in D-CAPE are Operator

Configurator, Operator Scheduler, Plan Reoptimizer and Distribution Man-

ager. Once the Execution Engine starts executing the query plan, the QoS

Inspector component, which serves as the statistics monitor, will regularly

collect statistics from the Execution Engine at each sampling point. This

1.2. RESEARCH FOCUS OF THIS DISSERTATION 27

Operator
Configurator

Operator
Scheduler

Plan
Reoptimizer

CAPE Query Engine

QoS Inspector

Execution Engine

Storage
Manager

Stream
Sender

Stream
Feeder

Stream
Receiver

Internet

Control Flow

Data Flow

Legend :

Distribution
Manager

Query Plan
Generator

Stream / Query
Registration

GUI

Query 2 . . Query nQuery 1

Streaming
Data

End User

Figure 1.3: D-CAPE System Architecture.

run time statistics gathering component is critical to continuous query pro-

cessing, as any adaptation technique relies on the statistics gathered at run

time to make informed decisions.

The components in the D-CAPE architecture that are directly related

to this dissertation are Plan Generator, Plan Reoptimizer and Distribution

Manager, which are in charge of the static query plan generation for multi-

ple query optimization and ring based distribution, adaptive re-optimization

of the state sliced query plans, and state relocation in the distributed sys-

tem, respectively.

1.3. DISSERTATION ROAD MAP 28

1.3 Dissertation Road Map

The rest of this dissertation is organized as follows: The research topics are

discussed in detail in Part I, Part II and Part III in this dissertation respec-

tively. The discussions of each of the three research topics include the rele-

vant motivation, problem introduction, background, solution description,

experimental evaluation and discussions of related work. Finally Part IV

concludes this dissertation and discusses possible future work.

29

Part I

State-Slice Multi-query

Optimization of Stream

Queries

30

Chapter 2

Introduction

2.1 Research Motivation

Modern stream applications such as sensor monitoring systems and pub-

lish/subscription services necessitate the handling of large numbers of con-

tinuous queries specified over high volume data streams. Examples of

such applications include environmental monitoring systems [AAB+05b]

that allow multiple continuous queries over sensor data streams, with each

query issued for independent monitoring purposes. Another example is

the publish-subscribe services [BBDW05, Pc05] that host a large number of

subscriptions monitoring published information from data sources. Such

systems often process a variety of continuous queries that are similar in

flavor on the same input streams.

Efficient sharing of computations among multiple continuous queries,

especially for the memory- and CPU-intensive window-based operations,

is critical. Many papers [CCC+02, MSHR02, CDN02, HFAE03] have high-

2.1. RESEARCH MOTIVATION 31

lighted the importance of computation sharing in continuous queries. In

practice, stateful operators such as joins and aggregations tend to domi-

nate the usage of critical resources such as memory and CPU in a DSMS.

These stateful operators tend to be bounded using window constraints on

the otherwise infinite input streams. A novel challenge in this scenario is

to allow resource sharing among similar queries, even if they employ win-

dows of different lengths.

The intuitive sharing method for joins [HFAE03] with different window

sizes employs the join having the largest window among all given joins,

and a routing operator which dispatches the joined result to each output.

Such method suffers from significant shortcomings as shown using the mo-

tivation example below. The reason is two folds, (1) the per-tuple cost of

routing results among multiple queries can be significant; and (2) the selec-

tion pull-up (see [CDN02] for detailed discussions of selection pull-up and

push-down) for matching query plans may waste large amounts of mem-

ory and CPU resources.

Motivation Example: Consider the following two continuous queries in

a sensor network expressed using CQL [AAB+05b], an SQL-like language

with window extension.

Q1: SELECT A.* FROM Temperature A, Humidity B

WHERE A.LocationId=B.LocationId

WINDOW 1 min

Q2: SELECT A.* FROM Temperature A, Humidity B

WHERE A.LocationId=B.LocationId AND

2.1. RESEARCH MOTIVATION 32

A.Value>Threshold

WINDOW 60 min

Q1 and Q2 join the data streams coming from temperature and humidity

sensors by their respective locations. The WINDOW clause indicates the

size of the sliding windows of each query. The join operators in Q1 and Q2

are identical except for the filter condition and window constraints. The

naive shared query plan will join the two streams first with the larger win-

dow constraint (60 min). The routing operator then splits the joined results

and dispatches them to Q1 and Q2 respectively according to the tuples’

timestamps and the filter. The routing step of the joined tuples may take a

significant chunk of CPU time if the fanout of the routing operator is much

greater than one. If the join selectivity is high, the situation may further

escalate since such cost is a per-tuple cost on every joined result tuple. Fur-

ther, the state of the shared join operator requires a huge amount of mem-

ory to hold the tuples in the larger window without any early filtering of

the input tuples. Suppose the selectivity of the filter in Q2 is 1%, a simple

calculation reveals that the naive shared plan requires a state size that is 60

times larger than the state used by Q1, or 100 times larger than the state

used by Q2 each by themselves. In the case of high volume data stream

inputs, such wasteful memory consumption is unaffordable and renders

inefficient computation sharing.

The problem of multiple continuous query optimization with window

constraints contains two sub-problems:

• First, we need rewriting algorithms that efficiently split continuous

2.2. PROPOSED STRATEGIES 33

join query plans into equivalent plans with identical join signatures,

including predicates and window constraints.

• Second, we need cost based optimization algorithms to determine

how to optimize the overall shared query plan, considering other op-

erators such as selection.

2.2 Proposed Strategies

In order to efficiently share computations of window-based join operators,

I propose a new paradigm for sharing join queries with different window

constraints and filters. The two key ideas of my approach are: state-slicing

and pipelining.

We slice the window states of the shared join operator into fine-grained

pieces based on the window constraints of individual queries. Multiple

sliced window join operators, with each joining a distinct pair of sliced

window states, can be formed. Selections now can be pushed down be-

low any of the sliced window joins to avoid unnecessary computation and

memory usage shown above.

State slicing is not trivial. Let’s consider a brute force state slicing as

follows. Figure 2.1 shows a possible state slicing solution for stateful join

operators with window constraints. The original join operator now can be

split to connected J1 and J2 with J2 as the down stream operator. J2 will

accept the up stream tuples from J1. Assume that the queues between J1

and J2 are empty, then at any time, the snapshot of the combined state con-

tent of J1 and J2 is equivalent to that of the original join operator. Also the

2.2. PROPOSED STRATEGIES 34

sliced states are disjoint for J1 and J2. Such state slicing is very straightfor-

ward and seems achieving our goals for operator splitting. However such

naive state slicing can not produce the same result as the original join op-

erator. Apparently, the possible results coming from crossing probings of

both J1 and J2 are lost. Eventually an incomplete joined result is generated.

State of Stream A I

State of Stream B I

Queue(s)

A Tuple

B Tuple

J1

J2

U
Union

Joined-Result

State of Stream B II

State of Stream A II

Figure 2.1: A Brute Force State Slicing with Incomplete Result

It seems that N2 joins appear to be needed to provide a complete an-

swer if each of the window states were to be sliced into N pieces and each

join works on one combination of sliced states. The number of distinct join

operators needed would then be too large for a DSMS to hold for a large N .

We overcome this hurdle by elegantly pipelining the slices. This enables

us to build a chain of only N sliced window joins to compute the complete

join result. This also enables us to selectively share a subsequence of such

a chain of sliced window join operators among queries with different win-

dow constraints.

Based on the state-slice sharing paradigm, two algorithms are proposed

for the chain buildup, one that minimizes the memory consumption and

the other that minimizes the CPU usage. The algorithms are guaranteed to

always find the optimal chain with respect to either memory or CPU cost,

for a given query workload.

2.2. PROPOSED STRATEGIES 35

Those two algorithms are based on the cost model developed for the

state slicing paradigm. The cost model can be used to estimate the CPU

and memory usage of the shared query plans. After comparing with alter-

natives, the optimal state slicing query plan can be achieved.

This part of the dissertation work contributes to research in continuous

multiple query optimization in the following ways:

• First, I review the existing sharing strategies in the literature with

consideration of the new window constraints. By comparing their

memory and CPU consumptions, their drawbacks are illustrated and

motivate my research.

• Second, I propose a novel paradigm for splitting large window join

operators with window constraints. By introduce the state slicing

concept, the CPU and memory consumptions can be split accord-

ingly into small pieces. I also prove its equivalence to the semantics of

regular stream window join operator. To the best of my knowledge,

this work is the first in multiple continuous query optimization to 1)

consider both predicates and window constraints, 2) utilize chain of

pipelining sliced window join operators to rewrite join query plan.

• Third, I develop a set of cost models to analytically compare the mem-

ory and CPU costs of the chain of sliced window join operators with

other existing solutions.

• Fourth, based on the insights gained from the cost base analysis, I

propose two algorithms to build the chain that minimizes the CPU or

2.3. ROAD MAP 36

the memory cost of the shared query plan, respectively. I prove the

optimality of both algorithms.

• Methods for the online adaptation of the shared slice join plan are

provided and discussed. Such optimization can be done dynamically

at running time.

• The proposed techniques are implemented in an actual DSMS (CAPE).

A thorough experimental evaluation is conducted. Results of per-

formance comparison of our proposed techniques with state-of-the-

art sharing strategies are reported. I compare the CPU and memory

consumptions of different sharing strategies with various workload

queries. The experimental results show that the proposed solutions

are the best among them.

2.3 Road Map

The rest of the part I is organized as follows. Chapter 3 presents the back-

ground and preliminaries used in this paper. Chapter 4 shows the mo-

tivation example with detailed analytical performance comparisons of al-

ternative sharing strategies of window-based joins. Chapter 5 describes

the proposed chain of sliced window join operators. Chapter 6 provides

a detailed case study on stream query join trees applying the state slicing

concept. Chapter 7 presents the algorithms to build the chain. Chapter 8

presents the experimental results. Chapter 9 contains related work.

37

Chapter 3

Background

3.1 Stateful Operators in Continuous Queries

Continuous queries generally require real time responses. Query results

need to be sent to the downstream user in a pipelined manner. This re-

quires that all operators in the query plans need to be operated in a un-

blocked fashion: the operator needs to be able to generate results based on

the data that it has received so far. This promotes the usage of stateful op-

erators. A stateful operator, such as join or group-by, must store all tuples

that have been processed and relate to future processing. Operator state is

some data structure inside stateful operators, such as joins and group-bys,

that stores tuples received so far for future processing. An operator may

output partial results based on the already received tuples. To make block-

ing operators, such as joins or group-bys, become non-blocking, we can

store tuples received so far in this state data structure. For a long-running

query as in the case of continuous queries, the number of tuples stored

3.1. STATEFUL OPERATORS IN CONTINUOUS QUERIES 38

inside a stateful operator can potentially be very large and unbounded.

Several strategies have been proposed to limit the number of intermediate

tuples kept in operator states by purging unwanted tuples, including ap-

plying window-based constraints [KNV03, CCC+02, MWA+03, HFAE03]

and punctuation-based constraints [DMRH04, TMSF03]. On the contrary,

a stateless operator, such as Select and Project, does not need to maintain

intermediate data nor other auxiliary state information so to be able to gen-

erate complete and correct results.

Stateful join operator is one of the most important stateful operators in

continuous query processing, and is the focus of the research in this part

of the dissertation. As commonly used by continuous query plans in most

streaming database systems [KNV03, CCC+02, MWA+03], in this disserta-

tion we adopt the symmetric window-based join algorithm [WA93, HH99]

for join processing.

BC

AB

A B C

(a)

Output Joined Result: ABC

(b)

Input Queue QAB Input Queue QC

StateAB

StateC

Output Queue QABC

Figure 3.1: Sliding Window Join Operators and Their States

A sample query plan for the query A ./ B ./ C is depicted in Fig-

ure 3.1(a). The join operator B ./ C in Figure 3.1(b) has two states SAB and

SC , one associated with each input queue. Each state stores the tuples that

3.2. WINDOW CONSTRAINTS AND SLIDING WINDOW JOIN 39

fall within the current window frame from its associated input queue. For

each tuple AB from QAB , the join involves three steps: 1) purge – AB is

used to purge tuples in state SC that are one window or further away from

tuple AB; 2) probe – AB is joined with the tuples left in SC ; and 3) insert

– AB is inserted into state SAB . The same process applies similarly to any

tuple from QC . We call this 3-step process as purge-probe-insert algorithm.

3.2 Window Constraints and Sliding Window Join

An operator state stores tuples received so far for future processing. A con-

tinuous query can theoretically be infinite, that is, without any restriction

the states could grow arbitrarily large. Window constraints can be used to

limit the number of tuples stored in each state. A window constraint can

be either time-based or count-based. A time-based window constraint indicates

that only tuples that arrived within the last window time-frame are useful

and need to be stored in states. A count-based window constraint indicates

that only the most recent certain number of tuples need to be kept in states.

Window constraints are common in user-defined continuous queries.

For example, given three input streams A(a1, a2), B(b1, b2) and C(c1, c2)

where a1 and a2 denote attributes of stream A, b1 and b2 denote attributes

of stream B and etc., a user may submit the following query with window

constraints:

SELECT Count(*)

FROM A [range 30 min], B [range 30 min], C [range 30 min]

WHERE A.a1 = B.b1 and B.b2 = C.c1

3.2. WINDOW CONSTRAINTS AND SLIDING WINDOW JOIN 40

GROUP BY C.c1

The above query is defined using the continuous query language (CQL)

proposed in [ABW06]. The time range after each stream defines the time-

based window constraint on that stream. The query contains two joins and

one group-by with aggregate COUNT. In this example, all operators are

evaluated using the same time window of 30 minutes. One result set is

output for each of the latest 30-minutes window. By using a sliding win-

dow, a result set is output whenever new tuples of the next time unit (one

minute in this example) have arrived.

Without any constraints, the states of a stateful operator can grow in-

finitely, and the system can eventually grow out of memory. To solve this

problem, streaming databases usually adopt sliding window constraints

to limit the size of states. A sliding window-based constraint [KNV03,

CCC+02, MWA+03] can be used to purge unwanted tuples stored in the

state. Usually two kinds of window constraints are posed over an oper-

ator: time-based [KNV03] and count-based [MWA+03]. See [GÖ03b] for

a survey on window-based join operations in the literature. The size of a

window constraint is specified using either a time interval (time-based) or

a count on the number of tuples (count-based). In this part, we present

our sharing paradigm using time-based windows. However, our proposed

techniques can be applied to count-based window constraints in the same

way by using different purging condition. The proposed solution is appli-

cable to generic join operators with arbitrary join conditions.

Formally, the sliding window join of streams A and B, with window

3.2. WINDOW CONSTRAINTS AND SLIDING WINDOW JOIN 41

sizes W1 and W2 respectively having the join condition θ can be denoted

as A[W1] 1θ B[W2]. The semantics [SW04] for such sliding window joins

are that the output of the join consists of all pairs of tuples a ∈ A, b ∈ B,

such that join condition θ(a, b) holds (we omit θ in the future and instead

concentrate on the sliding window only) and at certain time t, both a ∈
A[W1] and b ∈ B[W2]. That is, either 0 < Tb−Ta < W1 or 0 < Ta−Tb < W2.

Ta and Tb denote the timestamps of tuples a and b respectively in this paper.

The timestamp assigned to the joined tuple is max(Ta, Tb). The execution

steps for a newly arriving tuple of A are shown in Fig. 3.2. In this part we

only consider cross-purge, while self-purge is also applicable. Symmetric

steps are followed for a B tuple.

1.Cross-Purge: Discard expired tuples in window B[W2]
2.Probe: Emit a 1 B[W2]
3.Insert: Add a to window A[W1]

Figure 3.2: Execution of Sliding-window join.

The most commonly used window constraint is the global window con-

straint in which a single stream has an unique window constraint with re-

spect to any other stream. For example in the CQL query shown in this

chapter, stream A has a 30 minute window. This window is a global win-

dow on stream A and is not bound to stream B in the join condition. Theo-

retically it is possible that the window constraints are defined on join pairs

and may be inconsistent for the same stream appearing in different join

pairs. These type of window constraints are referred to as local window

constraints. In this dissertation we assume the window constraints in the

3.3. ASSUMPTIONS AND SIMPLIFICATIONS 42

stream queries are valid in semantics, no matter whether global or local.

A time-based window constraint requires that each newly arriving tu-

ple has a timestamp. Only tuples with timestamps that are within the cur-

rent time window can be processed by the operator. A tuple has a single

timestamp when it first arrives in the stream, referred to as a singleton tu-

ple. Within each stream entering the query engine, the singleton tuples

are assumed to be ordered by their timestamps [KNV03, CF02, MWA+03].

When two tuples are joined together, the timestamp for the joined tuple is

an array that concatenates the timestamps from both joining tuples. Both

timestamps are kept because either of them might be used by other join op-

erators in the query plan if local window constraints are used. Such a tuple

with a combined timestamp is referred to as a combined tuple. Usually, the

largest timestamp is enough for the purpose of purging when the global

window constraints are used.

3.3 Assumptions and Simplifications

In this part of dissertation, the following assumptions and simplifications

are used.

• Each join operator processes the input stream tuples in the order of

their timestamps. Applying time-based window constraints requires

that each tuple has a timestamp. Thus we assume that all the stream

tuples have unique timestamps. Tuples are usually assumed to be

ordered by their timestamps [KNV03, CF02, MWA+03]. We follow

this assumption in this dissertation. Thus we assume that the stream

3.3. ASSUMPTIONS AND SIMPLIFICATIONS 43

tuples are ordered. In practice, out-of-order stream processing is nec-

essary since the asynchronous nature of stream collection processes.

A stream data cleaning step can be adopted before continuous query

processing to tackle such timestamp discrepancies.

• Each join operator processes an input tuple to completion before pro-

cessing the next one. That is, the join operator is single-threaded.

However multiple join operators can run concurrently each in its own

thread. Under this assumption, each operator will process stream tu-

ples in a sequential manner. Thus at any time, there is at most only

one thread purging the states of each join operator. This assumption

is commonly used [CCC+02] in the sense that at most one thread is

used for each operator to avoid multi-threading issue in the operator.

• To simplify further discussions in this part, we omit the join condi-

tions from each join expression and instead use the equi-join nota-

tion. Since the stream join algorithm used throughout this part is the

symmetric nested loop join, this assumption can be dropped straight-

forwardly. However our solutions do not require specific join algo-

rithms. Other join algorithms, like symmetric hash joins, also can be

employed for processing equi-joins.

• To simplify further descriptions in this part, we only show our pro-

posed algorithm with cross-purge strategy. However our solution

does not limit us to any specific window-based purge strategies and

can work together with self-purge or combined purge strategies.

3.3. ASSUMPTIONS AND SIMPLIFICATIONS 44

• In this part we only consider global window constraints. Local win-

dow constraints can be handled by using pairwise window constraints

in the purging strategies. This will not change the principle of our

proposed solutions. Our solution is orthogonal to the purging strate-

gies. Further discussion of purging strategies is beyond the scope of

this dissertation.

45

Chapter 4

Review of Existing Strategies

for Sharing Continuous

Queries

Using the example queries Q1 and Q2 from Chapter 2 with window con-

straints, we review the existing strategies in the literature for sharing con-

tinuous queries. Figure 4.1 shows the query plans for Q1 and Q2 without

computation sharing. The states in each join operator hold the tuples in the

window. We use σA to represent the selection operator on stream A. For

easy reference, the queries Q1 and Q2 are listed again below.

Q1: SELECT A.* FROM Temperature A, Humidity B

WHERE A.LocationId=B.LocationId

WINDOW 1 min

Q2: SELECT A.* FROM Temperature A, Humidity B

CHAPTER 4. REVIEW OF EXISTING STRATEGIES FOR SHARING
CONTINUOUS QUERIES 46

WHERE A.LocationId=B.LocationId AND

A.Value>Threshold

WINDOW 60 min

A[w1]

Q1

A

Q2

σA
B

A

B

B[w1]

A[w2] B[w2]

Figure 4.1: Query Plans for Q1 and Q2.

For the following cost analysis, we use the notations of the system set-

tings in Table 4.1. We define the selectivity of σA as: number of outputs
number of inputs . The

number of inputs and number of outputs are defined for the input and

the output streams of σA as the total stream tuple counts from beginning

of the execution time of the query. We define the join selectivity S1 as:

number of outputs
number of outputs from Cartesian Product . For stream join with sliding windows,

the join selectivity equals to the probability of satisfying the join conditions

when one probing of a pair of stream tuples happens.

We focus on state memory when calculating the memory usage. To esti-

mate the CPU cost, we consider the cost for value comparison of two tuples

and the timestamp comparison. We assume that comparisons are equally

expensive and dominate the CPU cost. We thus use the count of compar-

isons per time unit as the metric for estimated CPU costs. In this part, we

calculate the CPU cost assuming the nested-loop join algorithm. Calcula-

tion using the hash-based join algorithm can be done similarly using an

adjusted cost model [KNV03].

4.1. NAIVE SHARING WITH SELECTION PULL-UP 47

Symbol Explanation
λA Arrival Rate of Stream A (Tuples/Sec.)
λB Arrival Rate of Stream B (Tuples/Sec.)
W1 Window Size for Q1 (Sec.)
W2 Window Size for Q2 (Sec.)
Mt Tuple Size (KB)
Sσ Selectivity of σA

S1 Join Selectivity

Table 4.1: System Settings Used in Chapter 4.

Without loss of generality, we assume 0 < W1 < W2. For simplicity, in

the following computation, we set λA = λB , denoted as λ.

4.1 Naive Sharing with Selection Pull-up

The PullUp or Filtered PullUp approaches proposed in [CDN02] for shar-

ing continuous query plans containing joins and selections can be applied

to the sharing of joins with different window sizes. That is, we need to

introduce a router operator to dispatch the joined results to the respective

query outputs. The intuition behind such sharing lies in that the answer

of the join for Q1 (with the smaller window) is contained in the join for Q2

(with the larger window). The shared query plan for Q1 and Q2 is shown

in Figure 4.2.

By performing the sliding window join first with the larger window

size among the queries Q1 and Q2, computation sharing is achieved. The

router then checks the timestamps of each joined tuple with the window

4.1. NAIVE SHARING WITH SELECTION PULL-UP 48

all

Q2 Q1

|Ta-Tb |
<W1

Router

B

σA

A

R

A[w2] B[w2]

Figure 4.2: Selection Pull-up.

constraints of registered CQs and dispatches them correspondingly. The

compare operation happens in the probing step of the join operator, the

checking step of the router and the filtering step of the selection. We can

calculate the state memory consumption Cm (m stands for memory) and

the CPU cost Cp (p stands for processor) as:





Cm = 2λW2Mt

Cp = 2λ2W2 + 2λ + 2λ2W2S1 + 2λ2W2S1

(4.1)

In this part, the CPU cost Cp is defined as the count of primary operation

numbers in one unit time. The primary operations include join probing,

purging tuple routing and filtering. For simple illustration, we assume

each primary operation includes a major cost for one comparison and thus

all primary operations cost the same. Thus the costs of different primary

operations are not weighted in this part.

During each time unit, λ number of tuples arrive from both stream A

and B. The first item of Cp denotes the join probing costs; the second the

4.2. STREAM PARTITION WITH SELECTION PUSH-DOWN 49

cross-purge cost; the third the routing cost; and the fourth the selection

cost. The routing cost is the same as the selection cost since each of them

perform one comparison per result tuple.

As pointed out in [MSHR02], the selection pull-up approach suffers

from unnecessary join probing costs. With strong differences of the win-

dows the situation deteriorates, especially when the selection is used in

continuous queries with large windows. In such cases, the states may hold

tuples unnecessarily long and thus waste huge amounts of memory.

Another shortcoming for the selection pull-up sharing strategy is the

routing cost of each joined result. The routing cost is proportional to the

join selectivity S1. This cost is also related to the fanout of the router oper-

ator, which corresponds to the number of queries the router serves. To ad-

dress this overhead, similarly as in [CDN02], a router having a large fanout

could be implemented as a range join between the joined tuple stream and

a static profile table, with each entry holding a window size. Then the rout-

ing cost is proportional to the fanout of the router, which may still be much

larger than one.

4.2 Stream Partition with Selection Push-down

To avoid unnecessary join computations in the shared query plan using se-

lection pull-up, we employ the selection push-down approach proposed

in [CDN02]. Selection push-down can be achieved using multiple join op-

erators, each processing part of the input data streams. We then need a

split operator to partition the input stream A by the condition in the σA

4.2. STREAM PARTITION WITH SELECTION PUSH-DOWN 50

operator. Thus the two sub-streams of A sent into the different join opera-

tors are disjoint. We also need an order-preserving (on tuple timestamps)

union operator [ACC+03] to merge the joined results coming from the mul-

tiple joins. Such sharing paradigm applied to Q1 and Q2 will result in the

shared query plan as shown in Figure 4.3.

Router

>

all

BA

Threshold

<=

U

A1 B1

Split

1

A2 B2

2

Q2 Q1

|Ta-Tb |Union R

S

A[w1] B[w1] A[w2] B[w2]

<W1

Figure 4.3: Selection Push-down.

The compare operation happens during the splitting of the streams, the

merging of the tuples in the union operator, the routing step of the router

and the probing of the joins. We can calculate the state memory consump-

tion Cm and the CPU costs Cp for the selection push-down paradigm as:





Cm = (2− Sσ)λW1Mt + (1 + Sσ)λW2Mt

Cp = λ + 2(1− Sσ)λ2W1 + 2Sσλ2W2+

3λ + 2Sσλ2W2S1 + 2λ2W1S1

(4.2)

The first item of Cm refers to the state memory in operator 11; the second

to the state memory in operator 12. The first item of Cp corresponds to the

4.2. STREAM PARTITION WITH SELECTION PUSH-DOWN 51

splitting cost; the second to the join probing cost of 11; the third to the join

probing cost of 12; the fourth to the cross-purge cost; the fifth to the routing

cost; the sixth to the union cost. Since the outputs of 11 and 12 are sorted,

the union cost corresponds to a one-time merge sort on timestamps.

Different from the sharing of identical file scans for multiple join op-

erators in [CDN02], the state memory B1 cannot be saved since B2 may

not contain B1 at all times. The reason is that the sliding windows of B1

and B2 may not move forward simultaneously, unless the DSMS employs

a synchronized operator scheduling strategy.

Stream sharing with selection push-down tends to require more joins

(mn, where m and n are the number of sub-streams of A and B respec-

tively) than the naive sharing. With the asynchronous nature of these joins

as discussed above, extra memory is consumed for the state memory. Such

memory waste might be significant.

Obviously, the CPU cost Cp of a shared query plan generated by the

selection push-down sharing is much smaller than the CPU cost of using

the naive sharing with selection pull-up. However this sharing strategy

still suffers from similar routing costs as the selection pull-up approach.

Such cost can be significant, as already discussed for the selection pull-up

case.

52

Chapter 5

State-Slice Sharing Paradigm

In this section, the new sharing paradigm is discussed for sharing sliding

window joins with different window constraints. As discussed in Chap-

ter 4, existing sharing paradigms suffer from one or more of the follow-

ing cost factors: (1) expensive routing step; (2) state memory waste among

asynchronous parallel joins; and (3) unnecessary join probings without se-

lection push-down. Our proposed state-slice sharing successfully avoids

all three types of costs.

We first introduce the proposed concept of state-slice using a one-way

sliding window join. Then we extend this concept to the binary state-sliced

join operator. Lastly we show the state-slice sharing for the running exam-

ple queries in Chapter 4 and compare its performance with other alterna-

tives listed in Chapter 4 analytically.

5.1. STATE-SLICED ONE-WAY WINDOW JOIN 53

5.1 State-Sliced One-Way Window Join

A one-way sliding window join [KNV03] of streams A and B is denoted as

A[W]nB (or B oA[W]), where stream A has a sliding window of size W .

The output of the join consists of all pairs of tuples a ∈ A, b ∈ B, such that

Tb − Ta < W , and tuple pair (a, b) satisfies the join condition. It has been

shown in [KNV03] that:

A[W1] 1 B[W2] = (A[W1]nB) Union (AoB[W2])

Definition 1 (Sliced One-way Sliding Window Join) A sliced one-way win-

dow join on streams A and B is denoted as A[W start,W end]
s
n B (or B

s
o

A[W start,W end]), where stream A has a sliding window of range: W end−W start.

The start and end window are W start and W end respectively. The output of the join

consists of all pairs of tuples a ∈ A, b ∈ B, such that W start ≤ Tb − Ta < W end,

and (a, b) satisfies the join condition.

We can consider the sliced one-way sliding window join as a gener-

alized form of the regular one-way window join. That is A[W] n B =

A[0,W]
s
n B. Figure 5.1 shows an example of a sliced one-way window

join. This join has one output queue for the joined results, two output

queues (optional) for purged A tuples and propagated B tuples, respec-

tively. These purged tuples will be used by another down-stream sliced

window join as input streams.

The execution steps to be followed for the sliced window join A[W start,W end]
s
n

B are shown in Figure 5.2.

5.1. STATE-SLICED ONE-WAY WINDOW JOIN 54

State of Stream A: [w1, w2]

Probe

A Tuple

B Tuple

A[w1,w2] B
s Joined-Result

Purged-A-Tuple

Propagated-B-Tuple

Figure 5.1: Sliced One-Way Window Join.

When a new tuple a arrives on A

1. Insert: Add a into sliding window A[W start,W end]

When a new tuple b arrives on B

1. Cross-Purge: Update A[W start, W end] to purge expired A tuples, i.e.,
if a′ ∈ A[W start,W end] and (Tb − Ta′) > W end, move a′ into Purged-A-
Tuple queue (if exists) or discard (if not exists)
2. Probe: Emit result pairs (a, b) according to Def. 1 for b and a ∈
A[W start,W end] to Joined-Result queue
3. Propagate: Add b into Propagated-B-Tuple queue (if exists) or discard
(if not exists)

Figure 5.2: Execution of A[W start,W end]
s
n B.

The semantics of the state-sliced window join require the checking of

both the upper and lower bounds of the time-stamps in every tuple probing

step. In Figure 5.2, the newly arriving tuple b will first purge the state of

stream A with W end, before probing is attempted. Then the probing can be

conducted without checking of the upper bound of the window constraint

W end. The checking of the lower bound of the window W start can also

be omitted in the probing. The reason is that when the stream tuples are

inserted into the corresponding state, their timestamps are stipulated to be

larger than the lower bound of the window by the purging step of the up-

5.1. STATE-SLICED ONE-WAY WINDOW JOIN 55

stream sliced join operator.

Definition 2 (Chain of Sliced One-way Sliding Window Join) A chain of sliced

one-way window joins is a sequence of pipelined N sliced one-way window joins,

denoted as A[0,W1]
s
n B, A[W1,W2]

s
n B, ..., A[WN−1,WN]

s
n B. The start

window of the first join in a chain is 0. For any adjacent two joins, Ji and Ji+1,

the start window of Ji+1 equals the end window of prior Ji (0 ≤ i < N) in the

chain. Ji and Ji+1 are connected by both the Purged-A-Tuple output queue of Ji

as the input A stream of Ji+1, and the Propagated-B-Tuple output queue of Ji as

the input B stream of Ji+1.

Figure 5.3 shows a chain of state-sliced window joins having two one-

way joins J1 and J2. We assume the input stream tuples to J2, no matter

from stream A or from stream B, are processed strictly in the order of their

global time-stamps. Thus we use one logical queue between J1 and J2.

This does not prevent us from using physical queues for individual input

streams.

Queue(s)
State of Stream A: [0, w1]

Probe

A Tuple

B Tuple
J1 J2

State of Stream A: [w1, w2]

Probe

U
Union

Joined-Result

Figure 5.3: Chain of 1-way Sliced Window Joins.

Table 5.1 depicts an example execution of this chain. For this example,

let us assume that one single tuple (an a or a b) will only arrive at the start

of each second, w1 = 2sec, w2 = 4sec and every a tuple will match every

5.1. STATE-SLICED ONE-WAY WINDOW JOIN 56

b tuple (Cartesian Product semantics). During every second, an operator

will be selected to run. Each running of the operator will process one input

tuple. The content of the states in J1 and J2, and the content in the queue

between J1 and J2 after each running of the operator are shown in Table 5.1.

T Arr. OP A :: [0, 2] Queue A :: [2, 4] Output
1 a1 J1 [a1] [] []
2 a2 J1 [a2,a1] [] []
3 a3 J1 [a3,a2,a1] [] []
4 b1 J1 [a3,a2] [b1,a1] [] (a2,b1),(a3,b1)
5 b2 J1 [a3] [b2,a2,b1,a1] [] (a3,b2)
6 J2 [a3] [b2,a2,b1] [a1]
7 J2 [a3] [b2,a2] [a1] (a1,b1)
8 a4 J1 [a4,a3] [b2,a2] [a1]
9 J2 [a4] [a3,b2] [a2,a1]
10 J2 [a4] [a3] [a2,a1] (a1,b2),(a2,b2)

Table 5.1: Execution of the Chain: J1, J2.

Execution in Table 5.1 follows the steps in Figure 5.2. For example at

the 4th second, first a1 will be purged out of J1 and inserted into the queue

by the arriving b1, since Tb1 − Ta1 ≥ 2sec. Then b1 will purge the state of J1

and output the joined result. Lastly, b1 is inserted into the queue.

Note that the union of the join results of J1: A[0, w1]
s
n B and J2:

A[w1, w2]
s
n B is equivalent to the results of a regular sliding window join:

A[w2] n B. The order among the joined results is restored by the merge

union operator.

To prove that the chain of sliced joins provides the complete join answer,

we first introduce the following lemma.

5.1. STATE-SLICED ONE-WAY WINDOW JOIN 57

Lemma 1 For any sliced one-way sliding window join A[Wi−1,Wi]
s
n B in a

chain, at the time that one b tuple finishes the cross-purge step, but has not yet

began the probe step, we have: (1) ∀a ∈ A :: [Wi−1,Wi] ⇒ Wi−1 ≤ Tb − Ta <

Wi; and (2) ∀a tuple in the input steam A, Wi−1 ≤ Tb − Ta < Wi ⇒ a ∈ A ::

[Wi−1,Wi]. Here A :: [Wi−1,Wi] denotes the full state of stream A.

Proof: (1). In the cross-purge step (Figure 5.2), the arriving b will purge any

tuple a with Tb − Ta ≥ Wi. Thus ∀ai ∈ A :: [Wi−1,Wi], Tb − Tai < Wi. For

the first sliced window join in the chain, Wi−1 = 0. We have 0 ≤ Tb − Ta.

For other joins Ji in the chain, at any moment there must exist a tuple ap ∈
A :: [Wi−1,Wi] that has the maximum timestamp among all the a tuples in

A :: [Wi−1,Wi]. Tuple ap must have been purged by b′ of stream B from

the state of the up-stream join operator in the chain. If b′ = b, then we have

Tb − Tap ≥ Wi−1, since Wi−1 is the upper window bound of the up-stream

join operator. If b′ 6= b, then Tb′ − Tap > Wi−1, since Tb > Tb′ . We still

have Tb − Tap > Wi−1. Since Tap ≥ Tak
, for ∀ak ∈ A :: [Wi−1,Wi], we have

Wi−1 ≤ Tb − Tak
, for ∀ak ∈ A :: [Wi−1, Wi]).

(2). We use a proof by contradiction. If a /∈ A :: [Wi−1,Wi], then first

we assume a ∈ A :: [Wj−1,Wj], j < i. Given Wi−1 ≤ Tb − Ta, we know

Wj ≤ Tb − Ta. Then a cannot be inside the state A :: [Wj−1,Wj] since a

would have been purged by b when it is processed by the join operator

A[Wj−1,Wj]
s
n B. We got a contradiction. Similarly a cannot be inside any

state A :: [Wk−1, Wk], k > i.

Theorem 1 The union of the join results of all the sliced one-way window joins

in a chain A[0,W1]
s
n B, ..., A[WN−1, WN]

s
n B is equivalent to the results of a

5.1. STATE-SLICED ONE-WAY WINDOW JOIN 58

regular one-way sliding window join A[W]nB, where W = WN .

Proof: “⇐”. Lemma 1(1) shows that the sliced joins in a chain will not gen-

erate a result tuple (a, b) with Ta−Tb > W . That is, ∀(a, b) ∈ ⋃1≤i≤N A[Wi−1,Wi]
s
n B

⇒ (a, b) ∈ A[W]nB.

“⇒”. We need to show: ∀(a, b) ∈ A[W]nB ⇒ ∃i, s.t.(a, b) ∈ A[Wi−1,Wi]
s
n

B. Without loss of generality, ∀(a, b) ∈ A[W]nB, there exists unique i, such

that Wi−1 ≤ Tb − Ta < Wi, since W0 ≤ Tb − Ta < WN . We want to show

that (a, b) ∈ A[Wi−1,Wi]
s
n B. The execution steps in Figure 5.2 guarantee

that the tuple b will be processed by A[Wi−1,Wi]
s
n B at a certain time.

Lemma 1(2) shows that tuple a would be inside the state of A[Wi−1,Wi] at

that same time. Then (a, b) ∈ A[Wi−1,Wi]
s
n B. Since i is unique, there is

no duplicated probing between tuples a and b.

From Lemma 1, we see that the state of the regular one-way sliding

window join A[W]nB is distributed among different sliced one-way joins

in a chain. These sliced states are disjoint with each other in the chain, since

the tuples in the state are purged from the state of the previous join. This

property is independent from operator scheduling, be it synchronous or

even asynchronous.

Lemma 2 At any time, the sliced states in one-way sliding window join chain

are disjoint with each other, no matter synchronized or unsynchronized operator

scheduling is used.

Proof: Consider two arbitrary distinct states in the chain, A :: [Wi−1,Wi]

and A :: [Wj−1,Wj] (i ≤ j − 1). Let bi be the last B tuple being pro-

cessed by A[Wi−1,Wi]
s
n B and bj be the last B tuple being processed by

5.2. STATE-SLICED BINARY WINDOW JOIN 59

A[Wj−1,Wj]
s
n B.

(1). When synchronized scheduling is used, two situations exist:

(1a). bi = bj if i = j − 1. From Lemma 1, we have ∀ai ∈ A :: [Wi−1,Wi] ⇒
Wi−1 ≤ Tbi − Tai < Wi, and ∀aj ∈ A :: [Wj−1, Wj]⇒ Wj−1 ≤ Tbj − Taj <

Wj . Since i = j − 1 and bi = bj , we have: Tai > Taj . That is: ai 6= aj .

(1b). bi 6= bj if i < j − 1. Then Tbi
> Tbj

since the chain is a pipeline.

Now we have: Wi−1 ≤ Tbi − Tai < Wi < Wj−1 ≤ Tbj − Taj < Wj , i.e.,

Tbi − Tai < Tbj − Taj . Since Tbi > Tbj , then Tai > Taj . That is: ai 6= aj .

(2). When unsynchronized scheduling is used, two situations exist:

(2a). In case i = j − 1, bi = bj if the queue between the two joins are empty.

Then it is proved from (1a). If the queue is not empty, bi 6= bj . It is covered

by (1b).

(2b). In case i < j − 1, bi 6= bj . This case is proved by (1b).

From Lemma 1, we see that the state of the regular one-way sliding

window join A[W]nB is distributed among different sliced one-way joins

in a chain. These sliced states are disjoint with each other in the chain from

Lemma 2.

5.2 State-Sliced Binary Window Join

Similar to Definition 1, we can define the state sliced binary sliding win-

dow join. The definition of the chain of sliced binary joins is similar to

Definition 2 and is thus omitted. Figure 5.4 shows an example of a chain of

5.2. STATE-SLICED BINARY WINDOW JOIN 60

state-sliced binary window joins.

Definition 3 (Sliced Binary Sliding Window Join) A sliced binary window

join of streams A and B is denoted as A[W start
A ,W end

A]
s
1 B[W start

B , W end
B],

where stream A has a sliding window of range: W end
A −W start

A and stream B has

a window of range W end
B −W start

B . The join result consists of all pairs of tuples

a ∈ A, b ∈ B, such that either W start
A ≤ Tb−Ta < W end

A or W start
B ≤ Ta−Tb <

W end
B , and (a, b) satisfies the join condition.

build tuple
State of Stream A: [0, W1]

State of Stream B: [0, W1]

Queue(s)

Stream A

Stream B

J1

J2

Union

Joined-Result

State of Stream B: [W1, W2]

State of Stream A: [W1, W2]

probe tuple

U

probe tuple

build tuple

Figure 5.4: Chain of Binary Sliced Window Joins.

The execution steps for sliced binary window joins can be viewed as a

combination of two one-way sliced window joins. Each input tuple from

stream A or B will be captured as two reference copies. This is done before

the tuple is processed by the first binary sliced window join. The copies are

made by the first binary sliced join in the chain. One reference is annotated

as the probe tuple (denoted as ap) and the other as the build tuple (denoted

as ab).

The execution steps to be followed for the processing of a stream A

tuple by A[W start,W end]
s
1 B[W start,W end] are shown in Figure 5.5. The

execution procedure for the tuples arriving from stream B can be similarly

defined.

5.2. STATE-SLICED BINARY WINDOW JOIN 61

When a new tuple ap arrives
1.Cross-Purge: Update B[W start,W end] to purge expired B tuples, i.e., if
bb ∈ B[W start,W end] and (Tap −Tbb) > W end, move bb into the queue (if
exists) towards next join operator or discard (if not exists)
2.Probe: Emit ap join with bb ∈ B[W start,W end] to Joined-Result queue
3.Propagate: Add ap into the queue (if exists) towards next join operator
or discard (if not exists)

When a new tuple ab arrives
1.Insert: Add ab into the sliding window A[W start, W end]

Figure 5.5: Execution of Binary Sliced Window Join.

Intuitively the probe tuples of stream B and build tuples of stream A are

used to generate join tuples equivalent to a one-way join: A[W start, W end]
s
n

B. The probe tuples of stream A and build tuples of stream B are used to

generate join tuples equivalent to the other one-way join: A
s
o B[W start,W end].

Note that using two copies of a tuple will not require doubled system

resources since: (1) the combined workload (in Figure 5.5) to process a pair

of build and probe tuples equals the processing of one tuple in a regular

join operator, since one tuple takes care of purging/probing and the other

filling up the states; (2) the state of the binary sliced window join will only

hold the build tuple; and (3) assuming a simplified queue (M/M/1), dou-

bled arrival rate (from the two copies) and doubled service rate (from above

(1)) still would not change the average queue size, if the system is stable.

In our implementation, we use a copy-of-reference instead of a copy-of-

object, aiming to reduce the potential extra queue memory during bursts

of arrivals. In this dissertation work, we only count state memory as mem-

5.2. STATE-SLICED BINARY WINDOW JOIN 62

ory usage since in a stable system, the state memory is the major memory

usage for stateful join operators with window constraints. Discussion of

scheduling strategies and their effects on queues is beyond the scope of

this work.

Theorem 2 The union of the join results of the sliced binary window joins in a

chain A[0,W1]
s
1 B[0,W1], ..., A[WN−1, WN]

s
1 B[WN−1, WN] is equivalent

to the results of a regular sliding window join A[W] 1 B[W], where W = WN .

Using Theorem 1, we can prove Theorem 2. Since we can treat a binary

sliced window join as two parallel one-way sliced window joins, the proof

is fairly straightforward.

Theorem 3 At any time, the sliced states in the sliding window join chain are

disjoint with each other, no matter if synchronized or unsynchronized operator

scheduling is used.

Since a binary state slice join chain can be viewed as the combination of

two one-way state slice join chains, Theorem 3 is true for binary state slice

join chain from Lemma 2.

Lemma 3 A select operator, which has predicate on stream attributes except the

timestamps, can be pushed down a state sliced join operator.

Proof: Without loss of generality, let the select operator σA with predi-

cates on the attributes of stream A. We need to show: σA(A[Wi−1,Wi]
s
1

B[Wi−1,Wi]) = σA(A[Wi−1,Wi])
s
1 B[Wi−1,Wi].

5.2. STATE-SLICED BINARY WINDOW JOIN 63

“⇒”. ∀(a, b) ∈ σA(A[Wi−1,Wi]
s
1 B[Wi−1,Wi]) → σA(a) = true. From

Definition 3, (a, b) ∈ σA(A[Wi−1,Wi])
s
1 B[Wi−1,Wi].

“⇐”. ∀(a, b) ∈ σA(A[Wi−1, Wi])
s
1 B[Wi−1,Wi] → σA(a) = true. From

Definition 3, (a, b) ∈ σA(A[Wi−1,Wi]
s
1 B[Wi−1,Wi]).

Theorem 4 The select operator, which has predicate on stream attributes except

the timestamps, can be pushed down into the chain without changing of the query

semantics. That is, when the selection σ is pushed into the chain between sliced join

Ji : A[Wi−1,Wi]
s
1 B[Wi−1,Wi] and Ji+1 : A[Wi,Wi+1]

s
1 B[Wi,Wi+1], the

union of the join results of the sliced binary window joins in a chain σ(A[0,W1]
s
1

B[0,W1]), ..., σ(A[Wi−1,Wi]
s
1 B[Wi−1,Wi]), σ, A[Wi,Wi+1]

s
1 B[Wi,Wi+1],

..., A[WN−1, WN]
s
1 B[WN−1, WN] is equivalent to the results of a regular

sliding window join σ(A[W] 1 B[W]), where W = WN .

Proof: From Theorem 2, we have:

σ(A[W] 1 B[W]) = ∪
1<j≤N

σ(A[Wj−1,Wj]
s
1 B[Wj−1,Wj]).

Assume the select operator σ is pushed down into the chain between sliced

join operator Ji and Ji+1. From Lemma 3, we have:

σ(A[W] 1 B[W]) =

∪
1<j≤i

σ(A[Wj−1,Wj]
s
1 B[Wj−1,Wj])

⋃
∪

i<j≤N
σ(A[Wj−1,Wj])

s
1 B[Wj−1,Wj]

5.2. STATE-SLICED BINARY WINDOW JOIN 64

Since the state sliced operators are connected in a pipeline, the σ operator

between Ji and Ji+1 will suppress down-stream select operators. All the

down-stream select operators thus can be safely removed.

We now show how the proposed state-slice sharing can be applied to

the running example in Chapter 4 to share the computation between the

two queries. The shared plan is depicted in Figure 5.6. This shared query

plan includes a chain of two sliced sliding window join operators
s
11 and

s
12. The purged tuples from the states of

s
11 are sent to

s
12 as input tuples.

The selection operator σA filters the input stream A tuples for
s
12. The se-

lection operator σ′A filters the joined results of
s
11 for Q2. The predicates in

σA and σ′A are both A.value > Threshold.

B1

BA

A1

[0,W1] 1

A2 B2

2

Q2 Q1

U Unionσ’A

s

s

σA

[0,W1]

[W1,W2] [W1,W2]

Figure 5.6: State-Slice Sharing for Q1 and Q2.

5.3. DISCUSSION AND ANALYSIS 65

5.3 Discussion and Analysis

Compared to the alternative sharing approaches discussed in Chapter 4,

the state-slice sharing paradigm offers the following benefits:

• Selection can be pushed down into the middle of the join chain. Thus

unnecessary probings in the join operators are avoided.

• The routing cost is saved. Instead a pre-determined route is embed-

ded inside the query plan.

• States of the sliced window joins in a chain are disjoint with each

other, independent from if synchronized or unsynchronized operator

scheduling is used. Thus no state memory is wasted.

Using the same settings as in Chapter 4, we now calculate the state

memory consumption Cm and the CPU cost Cp for the state-slice sharing

paradigm as follows:





Cm = 2λW1Mt + (1 + Sσ)λ(W2 −W1)Mt

Cp = 2λ2W1 + λ + 2λ2Sσ(W2 −W1)+

4λ + 2λ + 2λ2S1W1

(5.1)

The first item of Cm corresponds to the state memory in
s
11; the second

to the state memory in
s
12. The first item of Cp is the join probing cost of

s
11; the second the filter cost of σA; the third the join probing cost of

s
12; the

fourth the cross-purge cost; while the fifth the union cost; the sixth the filter

cost of σ′A.

5.3. DISCUSSION AND ANALYSIS 66

The union cost in Cp is proportional to the input rates of streams A

and B. The reason is that the probe tuple of the last sliced join
s
12 acts as

punctuation [TMSF03] for the union operator. For example, the probe tuple

ab
1 is sent to the union operator after it finishes probing the state of stream

B in
s
12, indicating that no more joined tuples with timestamps smaller

than ab
1 will be generated in the future. Such punctuations are used by the

union operator for the merge sorting of joined tuples from multiple join

operators [TMSF03].

The detail of using the punctuations in the union operator is shown

in Figure 5.7. Assume there are n sliced join operators connected to the

union operator, then the union operator will have an individual tempo-

rary storage buffer for each sliced join operator. Each buffer is filled with

buckets of joined results coming from the probing of tuples a1, b1, a2,

The timestamps of the tuples in the buckets T 1
a1

, T 2
a1

, ..., Tn
a1

are exactly the

same, which equal to the timestamp of the probe tuple a1. When the probe

tuple a1 arrives at the union operator as a punctuation, this means that all

the buckets of a1 are ready for output. Joined tuples in the buckets for a1

are then sent out in sequence. Here unlike regular merge sorting, no com-

parisons are needed at all. The output of the union operator is guaranteed

to be ordered, since the input tuples are processed in order. The CPU cost of

such sorting then is only related to the number of the punctuations, instead

of the number of result tuples.

Comparing the memory and CPU costs for the different sharing solu-

tions, namely naive sharing with selection pull-up (Equation 4.1), stream

partition with selection push-down (Equation 4.2) and state-slice chain (Equa-

5.3. DISCUSSION AND ANALYSIS 67

T1
a1

U
Union

T1
b1T

1
a2

…

T2
a1T

2
b1

…

…

Tn
a1

U
Union

…

…

…

T1
a1 T2

a1 Tn
a1

a1
p arrives at the Union

as punctuation

T1
b1T

1
a2

T2
b1

…
Buffers Buckets for a1

Figure 5.7: The Processing of the Union Operator.

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 10

 20

 30

 40

 50

Memory Saving(%)

State-Slice over Selection-PullUp
State-Slice over Selection-PushDown

ρ=w1/w2

Selectivity Sσ

Memory Saving(%)

Figure 5.8: Memory Consumption Comparison

tion 5.1), the savings of using the state slicing sharing are:

5.3. DISCUSSION AND ANALYSIS 68

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 20

 40

 60

 80

 100

CPU Saving(%)

Join Selectivity=0.4
Join Selectivity=0.1

Join Selectivity=0.025

ρ=w1/w2

Selectivity Sσ

CPU Saving(%)

Figure 5.9: CPU Cost Comparison: State-Slice vs. Selection PullUp

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 5

 10
 15
 20
 25
 30

CPU Saving(%)

Join Selectivity=0.4
Join Selectivity=0.1

Join Selectivity=0.025

ρ=w1/w2

Selectivity Sσ

CPU Saving(%)

Figure 5.10: CPU Cost Comparison: State-Slice vs. Selection PushDown.

5.3. DISCUSSION AND ANALYSIS 69





C(1)
m −C(3)

m

C
(1)
m

= (1−ρ)(1−Sσ)
2

C(2)
m −C(3)

m

C
(2)
m

= ρ
1+2ρ+(1−ρ)Sσ

C(1)
p −C(3)

p

C
(1)
p

= (1−ρ)(1−Sσ)+(2−ρ)S1

1+2S1

C(2)
p −C(3)

p

C
(2)
p

= SσS1

ρ(1−Sσ)+Sσ+SσS1+ρS1

(5.2)

with C
(i)
m denoting Cm, C

(i)
p denoting Cp in Equation i (i = 1, 2, 3); and

window ratio ρ = W1
W2

, 0 < ρ < 1.

The memory and CPU savings under various settings calculated from

Equation 5.2 are depicted in Figures 5.8, 5.9 and 5.10. Compared to the

sharing alternatives in Chapter 4, state-slice sharing achieves significant

savings. As a base case, when there is no selection in the query plans (i.e.,

Sσ = 1), state-slice sharing will consume the same amount of memory as

the selection PullUp while the CPU saving is proportional to the join selec-

tivity S1. When selection exists, state-slice sharing can save about 20%-30%

memory, 10%-40% CPU over the alternatives on average. For the extreme

settings, the memory savings can reach about 50% and the CPU savings

about 100% (Figure 5.8, 5.9). The actual savings are sensitive to these pa-

rameters. Moreover, from Equation 5.2 we can see that all the savings are

positive. This means that the state-sliced sharing paradigm achieves the

lowest memory and CPU costs under all these settings. Note that we omit

λ in Equation 5.2 for CPU cost comparison, since its effect is small when the

number of queries is only 2. The CPU savings will increase with increasing

λ, especially when the number of queries is large.

70

Chapter 6

Case Study: State-Slice Sharing

for Join Tree

This chapter gives a detailed cost analysis on two queries with join trees

and selections. This case study intends to show the state slicing sharing for

queries with multiple selections and multiple window constraints. With

detailed cost calculation, the benefits of the state sliced sharing is illustrated

for this case. We will first define the variables used in the cost model. Then

we will compare the state memory consumptions of the given queries Q1

and Q2 in the following three cases: no sharing, naive sharing with selec-

tions pull up and the proposed state-slice sharing. Next we will analyze

the CPU cost of the given queries in the same three cases. In the following

discussion, the sharing with selections push down is not included for com-

parisons. The sharing with selection push down will generate exponential

amount of sub-stream partitions in case of multiple selections. The mem-

6.1. CONTINUOUS QUERIES AND TERMS USED IN COST MODEL 71

ory usage will be much larger than the other alternatives. Thus selection

push down is not considered for sharing of join trees with multiple select

operations.

6.1 Continuous Queries and Terms Used in Cost Model

In this chapter, the cost model of state memory usage and CPU cost are

both developed for the following two queries: Q1 and Q2. Each of these

queries includes selections on the input data streams (A, B, C) and a join

tree of A ./ B ./ C. All the join conditions are equi-join. In the cost model,

the join ordering of A, B,C is picked. Other cost models can be developed

similarly for other join orderings. Figure 6.1 shows the query plans for Q1

and Q2.

Q1 : σ1
A(A) ./ σ1

B(B) ./ σ1
C(C)

Q2 : σ2
A(A) ./ σ2

B(B) ./ σ2
C(C)

Q1

σ1
A

A B

A[w1
AB] B[w1

AB]

σ1
B

C

σ1
C

AB[w1
BC] C[w1

BC]

Q2

σ2
A

A B

A[w2
AB] B[w2

AB]

σ2
B

C

σ2
C

AB[w2
BC] C[w2

BC]

Figure 6.1: Query Plans for Q1 and Q2.

6.1. CONTINUOUS QUERIES AND TERMS USED IN COST MODEL 72

In Figure 6.1, only state memory is shown since the state memory is de-

termined by the semantics of the query and the arrival rates of the streams.

The queue memory is not considered in this chapter. To estimate the CPU

cost, we consider the cost for value comparison of two tuples and the times-

tamp comparison. We assume that comparisons are equally expensive and

dominate the CPU cost. We thus use the count of comparisons per time

unit as the metric for estimated CPU costs.

A list of terms and their meanings used in our model are listed in Ta-

ble 6.1. Some of the symbols have the same definitions as in Chapter 5.

For easy reference, we give descriptions of the full list of terms below. We

define the selectivity of σA as:

number of outputs

number of inputs

We define the join selectivity S1 as:

number of outputs

number of outputs from Cartesian Product

In order to estimate the state memory and CPU cost spent on the shared

plan capturing Q1 and Q2, we first develop a general model that can be

applied to each of the queries. Unless necessary, the super scripts in the

terms are omitted in the general cost model.

In the cost model, we have the following assumptions:

• All the tuples from stream A, B or C are of the same size. Mt is used

to represent the size of all the tuples.

6.1. CONTINUOUS QUERIES AND TERMS USED IN COST MODEL 73

Table 6.1: Terms Used in Cost Model
Term Meaning

λA Arrival Rate of Stream A (Tuples/Min.)
λB Arrival Rate of Stream B (Tuples/Min.)
λC Arrival Rate of Stream C (Tuples/Min.)

W 1
AB Window Size of A ./ B for Q1 (Min.)

W 2
AB Window Size of A ./ B for Q2 (Min.)

W 1
BC Window Size of (A ./ B) ./ C for Q1 (Min.)

W 2
BC Window Size of (A ./ B) ./ C for Q2 (Min.)
Mt Tuple Size (KB)
S1

A Selectivity of σ1
A for Q1

S1
B Selectivity of σ1

B for Q1

S1
C Selectivity of σ1

C for Q1

S2
A Selectivity of σ2

A for Q1

S2
B Selectivity of σ2

B for Q1

S2
C Selectivity of σ2

C for Q1

SA./B Join Selectivity of A ./ B

SB./C Join Selectivity of B ./ C

|State| Memory used by tuples in the state (KB)

6.2. STRATEGIES OF SHARING QUERIES 74

• The join result is the combination of the matched input tuples. For

example, the tuple size of join result A ./ B is 2Mt.

• The selection predicates are on different columns with the join columns.

The join selectivities used in different queries can be assumed to be

the same as each other. Also, the predicates are independent with

each other and the selectivity of combined predicates can be calcu-

lated by product of individual selectivities.

• A uniform distribution of the values in the join columns is assumed.

A similar cost model can be developed with all these assumptions dropped.

However with increased complexity, no essential benefit is achieved. All

the assumptions do not change the nature of the cost model.

6.2 Strategies of Sharing Queries

In this chapter, two sharing strategies are compared in the cost model. The

selection PullUp sharing and the State-Slice sharing.

6.2.1 Selection PullUp Sharing

The PullUp or Filtered PullUp approaches proposed in [CDN02] for shar-

ing continuous query plans containing joins and selections can be applied

to the sharing of joins with different window sizes. That is, we need to

introduce a router operator to dispatch the joined results to the respective

query outputs. The intuition behind such sharing lies in that the answer

of the join for query with the smaller window is contained in the join for

6.2. STRATEGIES OF SHARING QUERIES 75

query with the larger window. The shared query plan for Q1 and Q2 is

shown in Figure 6.2.

Without loss of generality, we let 0 < W 1
AB < W 2

AB and 0 < W 2
BC <

W 1
BC . This ordering is picked for the purpose of showing the comparisons

with arbitrary order among windows. For simplicity, in the following com-

putation, we set λA = λB = λC , denoted as λ. The analysis can be extended

similarly for unbalanced input stream rates.

A B

A[w2
AB] B[w2

AB]

C

AB[w1
BC] C[w1

BC]

σ1
A∩B∩C

Q2 Q1

|Ta-Tb |, |Tb-Tc |
Router

R

σ2
A∩B∩C

σ1
A∪

2
A σ

1
B∪

2
B σ1

C∪
2

C

Figure 6.2: Selection PullUp Sharing Query Plan.

By performing the sliding window join first with the larger window

size among the queries Q1 and Q2, computation sharing is achieved. The

router then checks the timestamps of each joined tuple with the window

constraints of registered CQs and dispatches them correspondingly. Finally

the selections filter the joined results according to the predicates for each of

6.2. STRATEGIES OF SHARING QUERIES 76

the queries.

6.2.2 State-Slice Sharing

We now show how the proposed state-slice sharing can be applied to the

running example of Q1 and Q2 to share the computation between the two

queries. The shared plan is depicted in Figure 6.3.

s s

[w1
AB, w2

AB]B

A
1

[0, w1
AB]

2

Q2

σ1
A∪

2
A

σ1
B∪

2
B

σ2
A

σ2
B

U Union

C σ1
C∪

2
C

Q1

s
1

[0, w2
BC]

s

[w2
BC, w1

BC]
2

σ1
C

σ 1
A∩B

s
1

[0, w2
BC]

U Union

σ2
C

σ1
A∩B∩C

σ2
A∩B∩C

State A1

State B1

State A2

State B2

State C1

State AB1

State C2

State AB2

State C3

State AB3

Figure 6.3: State-Slice Sharing for Q1 and Q2.

Given 0 < W 1
AB < W 2

AB and 0 < W 2
BC < W 1

BC , the shared query

plan includes three chain of sliced sliding window join operators. The first

chain computes A ./ B and generates two disjoint join results. One of the

join results are feed to the second chain to join with stream C. Similarly,

the other join results are feed to the third chain1. The gray state sliced join

operators are shared by Q1 and Q2. All the predicates are pushed down as

low as possible.

1This chain has one state slice join only, since 0 < W 2
BC < W 1

BC .

6.3. COST MODEL FOR STATE MEMORY CONSUMPTION 77

6.3 Cost Model for State Memory Consumption

Main memory is used for the states of the join operators (state memory) and

queues between operators (queue memory). State memory is determined by

the window constraints in the continuous queries. The size of the state

memory is independent from the runtime environment. That is, no matter

how fast the machine is, the state memory is unchanged. In this chapter,

we focus on the state memory only.

State memory consumption Cm (m stands for memory) is calculated for

the isolated execution without sharing, selection PullUp sharing and the

proposed state-slice sharing in the following sections.

6.3.1 Isolated Execution without Sharing

As a baseline, we first calculate the memory consumption for Q1 and Q2

without sharing. In Figure 6.1, the query plan of Q1 is exactly the same as

Q2’s, ignoring the parameters. We first develop the cost model for generic

query tree and calculate the memory usage for Q1 and Q2 individually.

For a generic query tree, let |A|, |B|, |C| and |AB| stand for the size of

the states, we have:

|A| = λASAWABMt

|B| = λBSBWABMt

|C| = λCSCWBCMt

|AB| = [λASA(λBSBWAB)SA./B + λBSB(λASAWAB)SA./B]WBC2Mt

6.3. COST MODEL FOR STATE MEMORY CONSUMPTION 78

So let λA = λB = λC be denoted by λ:

Cm = |A|+ |B|+ |C|+ |AB|

= [λ(SA + SB)WAB + λSCWBC + 4λ2SASBSA./BWABWBC]Mt

(6.1)

Assume the values of the parameters in Table 6.2 for Q1 and Q2 are

plugged into, we have:

Q1 : Cm = 75.8MB

Q2 : Cm = 2253.375MB = 2.25GB

Table 6.2: Value of Terms Used in Cost Model
Term Value

λ 1K (Tuples/Min.)
W 1

AB 1 (Min.)
W 2

AB 60 (Min.)
W 1

BC 30 (Min.)
W 2

BC 15 (Min.)
Mt 0.1 (KB)
S1

A 0.25
S1

B 0.25
S1

C 0.25
S2

A 0.25
S2

B 0.25
S2

C 0.25
SA./B 0.1
SB./C 0.1

6.3. COST MODEL FOR STATE MEMORY CONSUMPTION 79

6.3.2 Selection PullUp Sharing

Figure 6.2 shows the selection PullUp sharing query plan. Here we assume

that the predicates of Q1 and Q2 are 80% overlapped. That is, the selectivity

of σ1
A∪2

A (denoted as SA1∪2 , ∪means “or” here) is:

SA1∪2 = S1
A + S2

A − 0.8S1
A = 0.3

Similarly rule is followed for B and C.

Let |A|, |B|, |C| and |AB| stand for the size of the states, we have:

|A| = λASA1∪2W
2
ABMt

|B| = λBSB1∪2W
2
ABMt

|C| = λCSC1∪2W
1
BCMt

|AB| = [λASA1∪2(λBSB1∪2W
2
AB)SA./B + λBSB1∪2(λASA1∪2W

2
AB)SA./B]W 1

BC2Mt

So let λA = λB = λC be denoted by λ, then:

Cm = |A|+ |B|+ |C|+ |AB|

= [2λSA1∪2W
2
AB + λSA1∪2W

1
BC + 4λ2(SA1∪2)

2SA./BW 2
ABW 1

BC]Mt

(6.2)

Note that W 2
AB 6= WABWAB . We will use (W 2

AB)2 to represent W 2
ABW 2

AB .

Assume the parameters in Table 6.2 for Q1 and Q2 are given. Then we

have:

Cm = 6484.5MB ≈ 6.5GB

6.3. COST MODEL FOR STATE MEMORY CONSUMPTION 80

6.3.3 State-Slice Sharing

Figure 6.3 shows the state-slice sharing paradigm for the example queries.

Five state sliced joins are used in our example. The states are A1, A2, B1,

B2, C1, C2, C3, AB1, AB2, and AB3. Same as the previous section, we

have:

SA1∪2 = S1
A + S2

A − 0.8S1
A = 0.3

Similarly, we can calculate the state memory usage as follows:

|A1| = λASA1∪2W
1
ABMt

|A2| = λAS2
A(W 2

AB −W 1
AB)Mt

|B1| = λBSB1∪2W
1
ABMt

|B2| = λBS2
B(W 2

AB −W 1
AB)Mt

|C1| = λCSC1∪2W
2
BCMt

|C2| = λCS1
C(W 1

BC −W 2
BC)Mt

|C3| = λCS2
CW 2

BCMt

|AB1| = [λASA1∪2

|B1|
Mt

SA./B + λBSB1∪2

|A1|
Mt

SA./B]W 2
BC2Mt

|AB2| = [λAS1
A(λBS1

BW 1
AB)SA./B + λBS1

B(λAS1
AW 1

AB)SA./B](W 1
BC −W 2

BC)2Mt

|AB3| = [λAS2
A
|B2|
Mt

SA./B + λBS2
B
|A2|
Mt

SA./B]W 2
BC2Mt

Thus:

Cm = |A1|+ |A2 + |B1|+ |B2|+ |C1|+ |C2|+ |C3|+ |AB1|+ |AB2|+ |AB3|
(6.3)

6.3. COST MODEL FOR STATE MEMORY CONSUMPTION 81

Assume the parameters in Table 6.2 for Q1 and Q2 are given. We have:

Cm = 0.03+1.475+0.03+1.475+0.45+0.375+0.375+54+37.5+2212.5 = 2308.21MB

6.3.4 Comparison and Analysis

From the above calculations, we now can summarize the results as follows:

• Isolated Execution: Cm = 2325.8MB.

• Selection PullUp Sharing: Cm = 6484.5MB.

• State-slice Sharing: Cm = 2308.21MB.

We can see that the selection PullUp sharing consumes the largest mem-

ory. Obviously, selection PullUp will largely increase the state memory

requirement. In this example, the selection PullUp sharing will consume

about three times of the memory as the other two strategies.

From comparison, the state-slice sharing and isolated execution con-

sumes almost the same amount of memory. We can see that the state AB3

in Figure 6.3 and the state AB for Q2 in Figure 6.2 dominate the mem-

ory consumptions respectively. These two states are almost of the same

size. Intuitively, since W 1
AB << W 2

AB , little sharing is achieved. Otherwise,

huge difference is possible in general, as further shown in this section. In

this section, several important parameters are defined and the performance

comparisons under different system settings are discussed.

6.3. COST MODEL FOR STATE MEMORY CONSUMPTION 82

We noticed that the window constraints are important parameters in

the cost model. For easy illustration, we define following two parameters:

m = W 1
AB

W 2
AB

n = W 2
BC

W 1
BC

Since we assume W 1
AB ≤W 2

AB and W 2
BC ≤W 1

BC , we have:

0 < m ≤ 1, 0 < n ≤ 1

Thus in this example, we can rewrite the windows as:

W 1
AB = m ∗ 60, W 2

AB = 60,W 1
BC = n ∗ 30,W 2

BC = 60

Let C1
m, C2

m and C3
m denote the memory consumption for isolated ex-

ecution, selection PullUp sharing and state slice sharing respectively. As-

sume the values for the other parameters from Table 6.2. Then we compare

the Equation 6.1, 6.2 and 6.3 as follows:

C3
m

C1
m

=
1500(m + n)− 840mn

1500(m + n)
C3

m

C2
m

=
1500(m + n)− 840mn

2160

(6.4)

The memory consumptions under various settings calculated using Equa-

tion 6.4 are depicted in Figures 6.4 and 6.5. Compared to sharing alterna-

tives, state-slice sharing achieves significant savings of memory. State-slice

6.3. COST MODEL FOR STATE MEMORY CONSUMPTION 83

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Memory Comparison

State-Slice over Selection-PullUp

m=W1
AB/W2

AB

n=W2
BC/W1

BC

Memory Comparison

Figure 6.4: Memory Consumption Comparison: State-Slice Sharing vs. Se-
lection PullUp Sharing.

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0.7
 0.75
 0.8

 0.85
 0.9

 0.95
 1

Memory Comparison

State-Slice over Isolated Execution

m=W1
AB/W2

AB

n=W2
BC/W1

BC

Memory Comparison

Figure 6.5: Memory Consumption Comparison: State-Slice Sharing vs. Iso-
lated Execution.

6.4. COST MODEL FOR CPU CONSUMPTION 84

sharing can save about 20%-30% memory over the alternatives on average.

The actual savings are determined by these parameters. Moreover, from

Equation 6.4 we can see that the state-sliced sharing paradigm achieves the

lowest memory consumption under all these settings.

6.4 Cost Model for CPU Consumption

To estimate the CPU cost, we consider the cost for the value comparisons of

two tuples and the timestamp comparisons. We assume that comparisons

are equally expensive and dominate the CPU cost. We thus use the count of

the number of comparisons per time unit as the metric for estimated CPU

costs. In this chapter, we calculate the CPU cost using the nested-loop join

algorithm. Calculation using the hash-based join algorithm can be done

similarly using an adjusted cost model.

In Figures 6.2 and 6.3 there are several selection operators that have

conjunctive predicates. Here I assume that only one comparison is needed

to evaluate such conjunctive predicate. The reason is that the conjunctive

predicates appear only at the last several steps in the query plan and each

component of the predicates have been evaluated somewhere below in the

query plan. That is, to avoid evaluating the same predicates against, each

tuple can have a code indicating the previous evaluation history. Thus later

evaluation of the conjunctive predicates only needs one comparison of the

associated code. For disjunctive predicates, the number of comparisons is

equal to the number of the primary predicates.

CPU cost Cp (p stands for processor) is calculated for the isolated execu-

6.4. COST MODEL FOR CPU CONSUMPTION 85

tion without sharing, selection PullUp sharing and the proposed state-slice

sharing in the following sections.

6.4.1 Isolated Execution without Sharing

As a baseline, we first calculate the CPU costs for Q1 and Q2 without shar-

ing. In Figure 6.1, the query plan shape of Q1 is exactly the same as Q2’s,

ignoring the parameters. We first develop the cost model for the generic

query tree and calculate the CPU costs for Q1 and Q2 individually.

For a generic query tree, let Cfilter, Cpurge and Cprobe denote the filtering,

purge and join probing costs respectively. We have: (where λAB denotes

the arrival rate at B ./ C)

λAB = 2λASA(λBSBWAB)SA./B

Cfilter = λA + λB + λC

Cpurge = λASA + λBSB + λCSC + λAB

Cprobe = λAB
SA./B

+ 2λABλCSCWBC

We have:

Cp = Cfilter + Cpurge + Cprobe (6.5)

Assume the following parameters in Table 6.2 for Q1 and Q2 are given.

We have:

Q1 : Cp = 187.64 ∗ 106

Q2 : Cp = 5633.25 ∗ 106

6.4. COST MODEL FOR CPU CONSUMPTION 86

6.4.2 Selection PullUp Sharing

Let Cfilter, Cpurge, Cprobe and Croute denote the filtering, purge, join prob-

ing and tuple routing cost respectively, we have: (where λAB denotes the

arrival input rate at B ./ C. λABC denotes the output rate at B ./ C)

λAB = 2λASA1∪2(λBSB1∪2W
2
AB)SA./B

λABC = 2λAB(λCSC1∪2W
1
BC)SB./C

Cfilter = λA + λB + λC + 2λABC

Cpurge = λASA1∪2 + λBSB1∪2 + λCSC1∪2 + λAB

Cprobe = λAB
SA./B

+ λABC
SB./C

Croute = 2λABC

We have:

Cp = Cfilter + Cpurge + Cprobe + Croute (6.6)

Assume the parameters in Table 6.2 for Q1 and Q2 is given. We have:

Cp = 27227.88 ∗ 106

6.4. COST MODEL FOR CPU CONSUMPTION 87

6.4.3 State-Slice Sharing

Figure 6.3 shows the state-slice sharing paradigm for the example queries.

Similar to previous section, we have:

SA1∪2 = S1
A + S2

A − 0.8S1
A = 0.3

Let:

λAB1 denotes the output rate at A1 ./ B1

λAB2 denotes the output rate at A2 ./ B2

λABC1 denotes the output rate at AB1 ./ C1

λABC2 denotes the output rate at AB2 ./ C2

λABC3 denotes the output rate at AB3 ./ C3;

Let Cfilter, Cpurge, Cprobe and Cunion denote the filtering cost, purge cost,

6.4. COST MODEL FOR CPU CONSUMPTION 88

join probing cost and union cost respectively, we have:

λAB1 = 2λASA1∪2(λBSB1∪2W
1
AB)SA./B

λAB2 = 2λASA(λBSB(W 2
AB −W 1

AB))SA./B

λABC1 = 2λAB1(λCSC1∪2W
2
BC)SB./C

λABC2 = 2 λAB1
SASB

SA1∪2
SB1∪2

(λCSC(W 1
BC −W 2

BC))SB./C

λABC3 = 2λAB2(λCSCW 2
BC)SB./C

Cfilter = 2λA + 2λB + 3λC + 2λABC1 + λAB1

Cpurge = 2λASA1∪2 + 2λBSB1∪2 + 3λCSC1∪2 + 2λAB1 + λAB2

Cprobe = λAB1
+λAB2

SA./B
+ λABC1

+λABC2
+λABC3

SB./C

Cunion = 2λABC1 + λABC2 + λABC3

We have:

Cp = Cfilter + Cpurge + Cprobe + Cunion (6.7)

Assume the parameters in Table 6.2 for Q1 and Q2 is given. We have:

Cp = 6422.66 ∗ 106

6.4.4 Comparison and Analysis

From the prior calculations, we now have the following results:

• Isolated Execution: Cp = 5820.89 ∗ 106.

6.4. COST MODEL FOR CPU CONSUMPTION 89

• Selection PullUp Sharing: Cp = 27227.88 ∗ 106.

• State-slice Sharing: Cp = 6422.66 ∗ 106.

We can see that the selection PullUp sharing has the largest CPU cost.

Obviously, selection PullUp will largely increase the CPU requirements.

In this example, the selection PullUp sharing will consume about 5 times

more of the CPU power than the other two strategies.

The state-slice sharing strategy uses little more CPU resources than the

isolated execution. We can see that the probe cost at AB3 ./ C3 in Figure 6.3

dominates the CPU consumptions (5531.25 ∗ 106), which is not the sharing

part. Intuitively, since W 1
AB << W 2

AB , little sharing is achieved. However,

the union cost of the state-slice join (595 ∗ 106) now is a more significant

factor, in spite of being linear to the total output.

Further in this section, several important parameters are defined and

the performance comparisons under different system settings are discussed.

Similarly to the memory analysis, we noticed that the window con-

straints are important parameters in the cost model. We define the follow-

ing two parameters:

m = W 1
AB

W 2
AB

n = W 2
BC

W 1
BC

Assume W 1
AB ≤W 2

AB and W 2
BC ≤W 1

BC , we have:

0 < m ≤ 1, 0 < n ≤ 1

6.4. COST MODEL FOR CPU CONSUMPTION 90

Thus in this example, the windows can be rewritten as:

W 1
AB = m ∗ 60, W 2

AB = 60,W 1
BC = n ∗ 30,W 2

BC = 60

Let C1
p , C2

p and C3
p denote the CPU costs for isolated execution, se-

lection PullUp sharing and state slice sharing respectively. Assume the

values plugged in as indicated in Table 6.2. Then we compare the Equa-

tions 6.5, 6.6 and 6.7 as follows:

C3
p

C1
p

=
228.61mn + 206.33m + 18.75n + 0.1375

187.5(m + n) + 0.125m + 0.125

C3
p

C2
p

=
228.61mn + 206.33m + 18.75n + 0.1375

453.798

(6.8)

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

CPU Comparison

State-Slice over Selection-PullUp

m=W1
AB/W2

AB

n=W2
BC/W1

BC

CPU Comparison

Figure 6.6: CPU Cost Comparison: State-Slice Sharing vs. Selection PullUp
Sharing.

6.4. COST MODEL FOR CPU CONSUMPTION 91

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

CPU Comparison

State-Slice over Isolated Execution

m=W1
AB/W2

AB

n=W2
BC/W1

BC

CPU Comparison

Figure 6.7: CPU Cost Comparison: State-Slice Sharing vs. Isolated Execu-
tion.

The CPU cost comparisons under various settings calculated from Equa-

tion 6.8 are depicted in Figures 6.6 and 6.7. Compared to the sharing alter-

natives, state-slice sharing achieves significant savings of CPU resources

for most of the situations. The actual savings are determined by these pa-

rameters.

92

Chapter 7

State-slice: Building the Chain

In this chapter, we discuss how to build an optimal shared query plan with

a chain of sliced window joins. Consider a DSMS with N registered con-

tinuous queries, where each query performs a sliding window join A[wi] 1

B[wi] (1 ≤ i ≤ N) over data streams A and B. The shared query plan is a

DAG with multiple roots, one for each of the queries.

Given a set of continuous queries, the queries are first sorted by their

window lengths in ascending order. We propose two algorithms for build-

ing the state-slicing chain (Chapters 7.1 and 7.2). The choice between them

depends on the availability of CPU versus memory resources in the sys-

tem. The chain can also first be built using one of the two algorithms and

then later migrated towards the other by merging or splitting the slices at

runtime (Chapter 7.3).

7.1. MEMORY-OPTIMAL STATE-SLICING AND ITS COST ANALYSIS 93

7.1 Memory-Optimal State-Slicing and its Cost Anal-

ysis

Without loss of generality, we assume that wi < wi+1 (1 ≤ i < N). Let’s

consider a chain of the N sliced joins: J1, J2, ..., JN , with Ji as A[wi−1, wi]
s
1

B[wi−1, wi] (1 ≤ i ≤ N,w0 = 0). A union operator Ui is added to collect

joined results from J1, ..., Ji for query Qi (1 < i ≤ N), as shown in Fig-

ure 7.1. We call this chain the memory-optimal state-slice sharing (Mem-Opt).

s s

[w1,w2]
B
A

1

Q1

[0,w1]
2

Q2

s

[wN-1,wN]
N

…

U Union

… QN

U Union

s

[w2,w3]
3

Q3

U Union …

Figure 7.1: Mem-Opt State-Slice Sharing.

The correctness of Mem-Opt state-slice sharing is proven in Theorem 5

by using Theorem 2. We have the following equivalence for i (1 ≤ i ≤ N):

Qi : A[wi] 1 B[wi] =
⋃

1≤j≤i

A[Wj−1,Wj]
s
1 B[Wj−1,Wj]

Theorem 5 The total state memory used by a Mem-Opt chain of sliced joins J1,

J2, ..., JN , with Ji as A[wi−1, wi]
s
1 B[wi−1, wi] (1 ≤ i ≤ N,w0 = 0) is equal to

the state memory used by the regular single sliding window join: A[wN] 1 B[wN].

Proof: From Lemma 1, the maximum timestamp difference of tuples (e.g.,

7.1. MEMORY-OPTIMAL STATE-SLICING AND ITS COST ANALYSIS 94

A tuples) in the state of Ji is (wi − wi−1), when continuous tuples from

the other stream (e.g., B tuples) are processed. Assume the arrival rate of

streams A and B is denoted by λA and λB respectively. Then we have:

∑
1≤i≤N

MemJi

= (λA + λB)[(w1 − w0) + (w2 − w1) + ... + (wN − wN−1)]

= (λA + λB)wN

(λA +λB)wN is the minimal amount of state memory that is required to

generate the full joined result for QN . Thus the Mem-Opt chain consumes

the minimal state memory.

Let’s again use the count of comparisons per time unit as the metric

for estimated CPU costs. Comparing the execution (Figure 5.5) of a sliced

window join with the execution (Figure 3.2) of a regular window join, we

notice that the probing cost of the chain of sliced joins: J1, J2, ..., JN is

equivalent to the probing cost of the regular window join: A[wN] 1 B[wN].

Comparing the alternative sharing paradigms in Chapter 4, we notice

that the Mem-Opt chain may not always win since it requires CPU costs

for: (1) (N − 1) more times of purging for each tuple in the streams A and

B; (2) extra system overhead for running more operators; and (3) CPU cost

for (N − 1) union operators. In the case that the selectivity of the join S1

is rather small, the routing cost in the selection pull-up sharing may be less

than the extra cost of the Mem-Opt chain. In short, the Mem-Opt chain may

7.2. CPU-OPTIMAL STATE-SLICING 95

not be the CPU-optimal solution for all settings.

7.2 CPU-Optimal State-Slicing

We hence now discuss how to find the CPU-Optimal state-slice sharing

(CPU-Opt) which will yield minimal CPU costs. We notice that the Mem-

Opt state-slice sharing may result in a large number of sliced joins with very

small window ranges each. In such cases, the extra per tuple purge cost and

the system overhead for holding more operators may not be ignored.

In Figure 7.2(b), the state-sliced joins from Ji to Jj are merged into

a larger sliced join with the window range being the summation of the

window ranges of Ji and Jj . A routing operator then is added to split

the joined results to the associated queries. Such merging of concatenated

sliced joins can be done iteratively until all the sliced joins are merged to-

gether. In the extreme case, the totally merged join results in a shared query

plan, which is equal to that formed by using the selection pull-up sharing

method shown in Chapter 4. The CPU costs may decrease after this merge.

Both the shared query plans in Figure 7.2 have the same join probing

costs and union costs. Using the symbols defined in Chapter 4 and Csys de-

noting the system overhead factor, we can calculate the difference of partial

CPU cost C
(a)
p in Figure 7.2(a) and C

(b)
p in Figure 7.2(b) as:

C
(a)
p − C

(b)
p = (λA + λB)(j − i)− 2λAλB(wj − wi−1)σ1(j − i)+

Csys(j − i + 1)(λA + λB)

7.2. CPU-OPTIMAL STATE-SLICING 96

s
i

Qi

U Union

… s

[wj-1,wj]

Qj

U Union

……

…

…

[wi-1,wi]

j

(a)

Qi

U Union

… s

[wi-1,wj]

Qj

U Union

…

<wi

|Ta-Tb |
R Router

≥wj-1

i

…

…

…

(b)

Figure 7.2: Merging Two Sliced Joins by Introducing Router Operator.

The difference of CPU costs in these scenarios comes from the purge cost

(the first item), the routing cost (the second item) and the system overhead

(the third item). The system overhead mainly includes the cost for mov-

ing tuples in/out of the queues and the context change cost of operator

scheduling. The system overhead is proportional to the data input rates

and number of operators.

Considering a chain of N sliced joins, all possible options for the merg-

ing of different sliced joins can be represented by edges in a directed graph

G = {V, E}, where V is a set of N + 1 nodes and E is a set of N(N+1)
2 edges.

Let ∀vi ∈ V (0 ≤ i ≤ N) represent the window wi of Qi (w0 = 0). Let

the edge from node vi to node vj (i < j) represent a sliced join with start-

window as wi and end-window as wj . Then each path from the node v0 to

node vN represents a variation of the merged state-slice sharing, as shown

in Figure 7.3.

7.2. CPU-OPTIMAL STATE-SLICING 97

v0 v1 v2 vN…v3

Figure 7.3: Directed Graph of State-Slice Sharing.

Similar to the above calculation of C
(a)
p and C

(b)
p , we can calculate the

CPU cost of the merged sliced window joins represented by every edge.

We denote the CPU cost ci,j of the sliced join as the length of the edge li,j .

We have the following lemma.

Lemma 4 The calculations of CPU costs li,j and lm,n are independent if 0 ≤ i <

j ≤ m < n ≤ N .

The proof of Lemma 4 is straightforward since when li,j and lm,n do not

overlap, the CPU costs ci,j and cm,n are unrelated to each other.

Based on Lemma 4, we can apply the principle of optimality [Ata99] here

and transform the optimal state-slice problem to the problem of finding the

shortest path from v0 to vN in an acyclic directed graph. Using the well-

known Dijkstra’s algorithm [Dij59], we can find the CPU-Opt query plan

in O(N2), with N being the number of the distinct window constraints in

the system. Even when we incorporate the calculation of the CPU cost of

the N(N+1)
2 edges, the total time for getting the CPU optimal state-sliced

sharing is still O(N2).

In case the queries do not have selections, the CPU-Opt chain will con-

sume the same amount of memory as the Mem-Opt chain. With selections,

the CPU-Opt chain may consume more memory. See Chapter 7.4 for more

7.3. ONLINE MIGRATION OF THE STATE-SLICING CHAIN 98

discussion of pushing selections into the chain.

7.3 Online Migration of the State-Slicing Chain

Online migration of the shared query plan is important for efficient pro-

cessing of stream queries. The state-slicing chain may need maintenance

when: (1) queries enter or leave the system, (2) queries update predicates

or window constraints, and (3) fluctuations in the runtime stream statistic

may arise.

The chain migration can be achieved by two primitive operations: merg-

ing and splitting of the sliced join. For example when query Qi (i < N)

leaves the system, the corresponding sliced join A[wi−1, wi]
s
1 B[wi−1, wi]

could be merged with the next sliced join in the chain. Or on the contrary

when a new query arrives, certain sliced join may need to be split.

The execution steps to be followed for the online splitting of the sliced

join Ji are shown in Figure 7.4.

1. Stopping the system execution for Ji.
2. Updating the end window of Ji to w′i, where wi−1 < w′i < wi.
3. inserting a new sliced join J ′i with window [w′i, wi] to the right of Ji

in the query plan.
4. Connecting the output queues of Ji to the corresponding input
queues of J ′i .
5. Resuming the execution.

Figure 7.4: Online Splitting of the Sliced Join Ji.

Intuitively since the queue between Ji and J ′i is empty right after the

insertion, then after resuming the execution, the execution of Ji will purge

7.3. ONLINE MIGRATION OF THE STATE-SLICING CHAIN 99

tuples, due to its new smaller window, into the queue between Ji and J ′i

and eventually fill up the states of J ′i .

Lemma 5 The online splitting steps shown in Figure 7.4 will generate correct

joined results without missing or duplicate tuples.

Proof: (1). No missing result. Without loss of generality, we only consider

the case of arrival of a new b tuple. After resume the execution, in the

cross-purge step (Figure 5.2) of the sliced join Ji, the arriving b will purge

any tuple a with Tb − Ta ≥ w′i. Thus ∀ai ∈ A :: [wi−1, w
′
i], Tb − Tai < w′i.

Thus any joined result (a, b) with Tb− Ta < w′i will be generated in the first

sliced join Ji.

The state tuple ai with w′i ≤ Tb− Tai < wi+1 will be purged from Ji and

inserted into the states of down-stream sliced join J ′i . When the b tuple is

processed by J ′i , the ai tuple will stay in the states since w′i ≤ Tb − Tai <

wi+1. Thus any joined result (a, b) with w′i ≤ Tb − Ta < wi+1 will be gener-

ated in the new inserted sliced join J ′i .

(2). No duplicate result. According to the probing step (Figure 5.2) of the

sliced join Ji, and J ′i , each joined result will only be generated once. The

reason is that the states of Ji, and J ′i are disjoint at any time.

Online merging of two adjacent sliced joins Ji and Ji+1 requires the

queues between these two joins to be empty. This can be achieved by

scheduling the execution of Ji+1 but stopping the scheduling of Ji. Thus

Ji will stop put any new tuples into the queues and Ji+1 will continuously

consume the tuples from the queue. Eventually the queues between them

7.3. ONLINE MIGRATION OF THE STATE-SLICING CHAIN 100

will be empty.

Once the queue between Ji and Ji+1 is empty, we can follow the steps

of online merging shown in Figure 7.5.

1. Attaching the states Ji+1 to the corresponding states of Ji.
2. Updating the end window of Ji to wi+1, which is the end window of
Ji+1.
3. Removing Ji+1 from the chain and connect the corresponding queues
of Ji and Ji+2. Here Ji+2 is the down-stream sliced join of Ji+1.
4. Resuming the execution.

Figure 7.5: Online Merging of the Sliced Join Ji and Ji+1.

Intuitively since the queue between Ji and Ji+1 is empty right before

the merging, the states of Ji+1 can be attached to the corresponding states

of Ji without loss of any state tuples in between of Ji and Ji+1.

Lemma 6 The online merging steps shown in Figure 7.5 will generate correct

joined results without missing or duplicate tuples.

Proof: (1). No missing result. Without loss of generality, we only consider

the case that the last tuple processed by Ji before merging is a tuple from

stream B. Let us assume this tuple as b. After the queues between Ji and

Ji+1 are empty, b must also be processed by Ji+1 and it is also the last tuple

being processed by Ji+1 before merging. At this time, ∀ai ∈ A :: [wi−1, wi],

wi−1 ≤ Tb−Tai < wi and ∀ai ∈ A :: [wi, wi+1], wi ≤ Tb−Tai < wi+1. That is,

the states of Ji and Ji+1 are synchronized at this time in the sense that they

are purged by the same tuple b. Thus after attaching the states of Ji+1 to the

corresponding states of Ji, no state tuple is lost in between of Ji and Ji+1.

7.4. PUSH SELECTIONS INTO CHAIN 101

When the execution is resumed, complete joined result will be produced.

(2). No duplicate result. According to the online merging steps shown

in Figure 7.5, no state tuples will be duplicated in the steps and thus no

duplication will be generated after the execution is resumed.

The overhead for chain migration corresponds to a constant system cost

for operator insertion/deletion. The system suspending time during join

splitting is neglectable, while during join merging it is bound by the execu-

tion time needed to empty the queues in-between of the sliced joins. Extra

processing costs may also arise for attaching the states of corresponding

sliced join operators.

7.4 Push Selections into Chain

When the N continuous queries each have selections on the input streams,

we aim to push the selections down into the chain of sliced joins. For clarity

of discussion, we focus on the selection push-down for predicates on one

input stream. Predicates on multiple streams can be pushed down simi-

larly. Here we will denote the selection predicate on the input stream A of

query Qi as σi and the condition of σi as condi.

7.4.1 Mem-Opt Chain with Selection Push-down

According to Theorem 4, the selections can be pushed down into the chain

of sliced joins as shown in Figure 7.6. The predicate of the selection σ′i

corresponds to the disjunction of the selection predicates from σi to σN .

That is:

7.4. PUSH SELECTIONS INTO CHAIN 102

cond′i = condi ∨ condi+1 ∨ · · · ∨ condN

s s

[w1,w2]
B
A

1

Q1

[0,w1]
2

Q2

s

[wN-1,wN]
N

…

U Union

… QN

U Union

s

[w2,w3]
3

Q3

U Union …

σ’1

σ1

σ’2

σ’2

σ2 σ3

σ’3

σ’3

σN

σN

Figure 7.6: Selection Push-down for Mem-Opt State-Slice Sharing.

Logically each tuple may be evaluated for multiple times against the

same selection predicate. In the actual execution, we can evaluate the pred-

icates (condi, 1 ≤ i ≤ N) in the decreasing order of i for each tuple. As soon

as a predicate (e.g., condk) is satisfied, we can stop the further evaluation

and attach the value k to the tuple. Thus this tuple can survive until the

kth slice join and will be removed away after that sliced join. Such idea is

similar to the tuple lineage proposed in [MSHR02]. The detailed discussion

of this idea and implementation can be found in [MSHR02].

Similar to Theorem 5, we have the following theorem.

Theorem 6 The Mem-Opt state-slice sharing with selection push-down consumes

the minimal state memory for a given workload.

Proof: (1) No duplication in the states. At any time, the contents in the state

memory of all sliced joins are pairwise disjoint with each other.

(2) No unnecessary state tuples. Since the predicate of the selection σ′i

corresponds to the disjunction of the selection predicates from σi to σN , no

7.4. PUSH SELECTIONS INTO CHAIN 103

unnecessary state tuples exist after push-down of selections. The reason is

that the predicates have the most tight conditions.

Intuitively each join probing performed by 1i in Figure 7.6 is a joined

result at least for one of the queries: Qi, Qi+1, ..., QN . The state tuples in

the Mem-Opt state-slice sharing are all required to produce the complete

set of joined results.

7.4.2 CPU-Opt Chain with Selection Push-down

The merging of adjacent sliced joins with selection push-down can be achieved

following the scheme shown in Figure 7.7. Merging sliced joins having se-

lection between them will cost extra state memory usage due to selection

pull-up. The tuples, which have been filtered out by the selection before,

will now stay unnecessarily long in the state memory. Also, the consequent

join probing cost would thus increase accordingly. Repeated merging of the

sliced joins will result in the selection pull-up sharing approach discussed

in Chapter 4.

Similarly to the CPU optimization in Chapter 7.2, the Dijkstra’s algo-

rithm can be used to find the CPU-Opt sharing plan with minimized CPU

costs in O(N2) time. Such CPU-Opt sharing plan may not be Mem-Opt.

7.4. PUSH SELECTIONS INTO CHAIN 104

s

[wi-2,wi-1]

i-1

Qi-1

U Union

… s

[wi-1,wi]
i

Qi

U Union

…σ’i

σ’i

σi-1 σi

(a)

… s

[wi-2,wi]
i

…

<wi-1

|Ta-Tb |
R Router

>=wi-1

Qi-1

U Union

Qi

U Union

σ’i

σ’i

σi-1 σi

(b)

Figure 7.7: Merging Sliced Joins with Selections.

105

Chapter 8

Experimental Evaluation

We have implemented the proposed state-slice sharing paradigm in a DSMS

system (CAPE) [RDS+04]. Experiments have been conducted to thoroughly

test the ability of the sharing paradigm under various system resource set-

tings. We compare the CPU and memory usages for the same set of contin-

uous queries using different sharing approaches.

8.1 Experimental System Overview

The CAPE is implemented in Java. All experiments are conducted on a ma-

chine running windows XP with a 2.8GHz processor and 1GB main mem-

ory. The DSMS includes a synthetic data stream generator, a query proces-

sor and several result receivers. The query processor employs round-robin

scheduling for executing the operators. The query processor has a moni-

toring thread that collects the runtime statistics of each operator. In all the

experiments, the stream generator will run for 90 seconds. All the experi-

8.2. STATE-SLICE VS. OTHER SHARING STRATEGIES 106

ments start with empty states for all operators.

We measure the runtime memory usage in terms of the number of tu-

ples staying in the states of the joins. We measure the CPU cost of the query

plans in terms of the average service rate (Total Throughput
Running T ime).

The tuples in the data streams are generated according to the Poisson

arrival pattern, which is usually used to model events that occur with a

known average rate and independently of the time since the last event. The

stream input rate is changed by setting the mean inter-arrival time between

two tuples. To control the join selectivity on the chain of sliced window

joins, we simulate the evaluation of the join predicates using a probabilistic

model. The selectivity is changed in the experiments. The queries used in

the experiments are similar to the example queries Q1 and Q2 in Chapter 4

with different window constraints.

8.2 State-Slice vs. Other Sharing Strategies

Equation 5.2 analytically compares the performance of state-slice sharing

with other sharing alternatives. The experiments in this section aim to ver-

ify these benefits empirically.

We use three queries and the Mem-Opt chain buildup in these exper-

iments. The queries are: Q1 (A[W1] 1 B[W1]), Q2 (σ(A[W2]) 1 B[W2])

and Q3 (σ(A[W3]) 1 B[W3]). Apparently these three queries can share

partial computations among each other. Using the Mem-Opt state-slice

sharing, the shared query plan has a chain of three sliced joins with win-

dow constraints as [0,W1], [W1,W2] and [W2, W3]. The joined results are

8.2. STATE-SLICE VS. OTHER SHARING STRATEGIES 107

unioned and sent to each data receiver respectively. We compare the state-

slice sharing with the naive sharing with selection pull-up and the stream

partition with selection push-down (see Chapter 4). Using the naive shar-

ing approach with selection pull-up, the shared plan will have one regu-

lar sliding window join: A[W3] 1 B[W3]. Using the sub-stream partition

with selection push-down, the shared plan will have two regular joins:

A[W1] 1 B[W1] and A[W3] 1 B[W3]. The input stream A is partitioned

by σ and sent to these two joins.

We vary the parameters as shown in Table 8.1. All the settings are mod-

erate instead of extreme cases such as selectivities being close to 0 or 1.

Experiments with all the combination of these settings are conducted. The

input rates of the streams vary from 20 tuples/sec. to 80 tuples/sec in all

the experiments.

Window Mostly-Small: Uniform: Mostly-Large:
Distribution(Sec.) 5, 10, 30 10, 20, 30 20, 25, 30

Sσ Low(0.2) Middle(0.5) High(0.8)
S1 Low(0.025) Middle(0.1) High(0.4)

Table 8.1: System Settings Used in Chapter 8.2.

The results showing memory consumption comparisons are depicted

in Figure 8.1. Figures 8.1(a), 8.1(b) and 8.1(c) show that the memory usage

is sensitive to the window distributions. Figures 8.1(d), 8.1(e) and 8.1(f) il-

lustrate the effect of Sσ on the memory usage. Comparing Figures 8.1(b)

and 8.1(e), we can see that S1 does not affect the memory usage since the

number of joined tuples is unrelated to the state memory of the join. Over-

8.2. STATE-SLICE VS. OTHER SHARING STRATEGIES 108

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

 20 40 60 80

S
ta

te
 M

em
or

y
U

sa
ge

 (
T

up
le

s)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(a) Mostly-Small, S1 = 0.1, Sσ = 0.5

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

 20 40 60 80

S
ta

te
 M

em
or

y
U

sa
ge

 (
T

up
le

s)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(b) Uniform, S1 = 0.1, Sσ = 0.5

 500

 1000

 1500

 2000

 2500

 3000

 20 40 60 80

S
ta

te
 M

em
or

y
U

sa
ge

 (
T

up
le

s)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(c) Mostly-Large, S1 = 0.1, Sσ = 0.5

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

 20 40 60 80
S

ta
te

 M
em

or
y

U
sa

ge
 (

T
up

le
s)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(d) Uniform, S1 = 0.025, Sσ = 0.2

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

 20 40 60 80

S
ta

te
 M

em
or

y
U

sa
ge

 (
T

up
le

s)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(e) Uniform, S1 = 0.025, Sσ = 0.5

 500

 1000

 1500

 2000

 2500

 3000

 20 40 60 80

S
ta

te
 M

em
or

y
U

sa
ge

 (
T

up
le

s)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(f) Uniform, S1 = 0.025, Sσ = 0.8

Figure 8.1: Memory Comparison with Various Parameters

all, the state-slice sharing always achieves the minimal memory consump-

tion, with the memory savings ranging from 20% to 30%, depending on the

overlap ratio of the corresponding windows.

Figure 8.2 shows the comparison of the service rate under various set-

tings. Figures 8.2(a), 8.2(b) and 8.2(c) show the change of service rate under

different window distributions. Figures 8.2(d), 8.2(e) and 8.2(f) illustrate

the effect of S1 on the service rate. Overall, the state-slice sharing always

8.2. STATE-SLICE VS. OTHER SHARING STRATEGIES 109

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(a) Mostly-Small, S1 = 0.1, Sσ = 0.5

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(b) Uniform, S1 = 0.1, Sσ = 0.5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(c) Mostly-Large, S1 = 0.1, Sσ = 0.5

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20 40 60 80
S

er
vi

ce
 R

at
e

(T
up

le
s/

se
c)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(d) Uniform, S1 = 0.025, Sσ = 0.8

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(e) Uniform, S1 = 0.1, Sσ = 0.8

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(f) Uniform, S1 = 0.4, Sσ = 0.8

Figure 8.2: Service Rate Comparison with Various Parameters

achieves the maximum service rate.

From Figure 8.2 we can see that with increasing data input rate, more

performance improvements can be expected from the state-slice sharing.

One reason is that the number of joined tuples is proportional to λA ∗ λB .

Thus the routing cost increases quadratically. On the contrary, the extra

purging cost in the state-slice sharing is proportional to λA + λB . Thus the

purging cost only increases linearly. Then the state-slice sharing is more

8.3. STATE-SLICE: MEM-OPT VS. CPU-OPT 110

scalable in the data input rates. Under the scenario of large join selectivities

and high-volume input streams, the performance improvement of using

state-slice sharing can reach 40%, as shown in Figure 8.2(f).

8.3 State-slice: Mem-Opt vs. CPU-Opt

In this second set of experiments, we focus on the performance comparison

between the Mem-Opt and the CPU-Opt chains under different system set-

tings. We use similar queries as in Chapter 8.2 with the selections removed.

We also use the service rate to measure the CPU consumptions. The CPU-

Opt chain is built from the Mem-Opt chain by merging some of the slice

joins according to the algorithm discussed in Chapter 7.2. To control the

selectivities, we use a probabilistic probing algorithm that will match the

predicates according to the settings of the selectivities. The experiments are

conducted using different numbers of queries (12, 24, 36) and various win-

dow distributions. The window distributions for the 12 queries are shown

in Table 8.2. The window distributions for other number of queries are set

accordingly. We set the join selectivity to be 0.025. The input rates of the

streams vary from 20 tuples/sec to 80 tuples/sec in all experiments. The

service rate comparisons are shown in Figure 8.3.

Uniform(Sec.) 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30
Mostly-Small(Sec.) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30
Small-Large(Sec.) 1, 2, 3, 4, 5, 6, 25, 26, 27, 28, 29, 30

Table 8.2: Window Distributions Used for 12 Queries.

8.3. STATE-SLICE: MEM-OPT VS. CPU-OPT 111

 0

 5000

 10000

 15000

 20000

 25000

 30000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Mem-Opt.
CPU-Opt.

(a) Uniform, 12 Queries

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Mem-Opt.
CPU-Opt.

(b) Mostly-Small, 12 Queries

 0

 5000

 10000

 15000

 20000

 25000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Mem-Opt.
CPU-Opt.

(c) Small-Large, 12 Queries

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 20 40 60 80
S

er
vi

ce
 R

at
e

(T
up

le
s/

se
c)

Stream Data Rate (Tuples/sec)

Mem-Opt.
CPU-Opt.

(d) Small-Large, 24 Queries

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000
 55000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Mem-Opt.
CPU-Opt.

(e) Small-Large, 36 Queries

Figure 8.3: Service Rate Comparison of Mem-Opt. Chain vs. CPU-Opt.
Chain

In Figure 8.3(a), the CPU-Opt chain is actually the same as the Mem-Opt

chain. However, for skewed window distributions, the CPU-Opt chain has

fewer operators than the Mem-Opt chain. In Figure 8.3(b), all the small

windows are merged together in the CPU-Opt chain. In Figure 8.3(c), the

CPU-Opt chain actually will have only 2 sliced joins, after merging all the

small windows and all the large windows by the optimization algorithm.

The benefit of CPU-Opt over Mem-Opt chain increases as the number of

8.3. STATE-SLICE: MEM-OPT VS. CPU-OPT 112

queries increases, as shown in Figures 8.3(d) and Figure 8.3(e).

113

Chapter 9

Related Work

There has been considerable work recently on data stream processing. [GÖ03b]

is a survey of stream and continuous query processing. We discuss only the

body of work related to sharing of multiple queries in stream processing.

The problem of sharing the work between multiple queries is not new.

For traditional relational databases, multiple-query optimization [Sel88]

seeks to exhaustively find an optimal shared query plan. Recent work, such

as [RSSB00, MRSR01], provides heuristics for reducing the search space for

the optimally shared query plan for a set of SQL queries. These works dif-

fer from our work since we focus on the computation sharing for window-

based continuous queries. The traditional SQL queries do not have win-

dow semantics.

Sharing the computation of multiple continuous queries has been con-

sidered recently. Many papers [CCC+02, MSHR02, CDN02, HFAE03, KFHJ04]

in the literature have highlighted the importance of computation sharing in

continuous queries. The sharing solutions employed in existing systems,

CHAPTER 9. RELATED WORK 114

such as NiagaraCQ [CDN02], CACQ [MSHR02] and PSoup [CF02], focus

on exploiting common subexpressions in queries. Their shared processing

of joins simply ignores window constraints which are critical for most con-

tinuous queries, given that memory becomes unbounded when no window

constraints are employed.

Recent papers in [AW04, ZKOS05, KWF06] have focused on sharing

computations for stateful aggregations. The work in [AW04], addressing

operator-level sharing of multiple aggregations, has considered the effect

of different windows constraints on a single stream. The basic idea is to

explore the overlapping relations of the states for aggregations in multi-

ple stream queries. By split the aggregation states into several small parti-

tions, the calculation of the aggregations over partitions then can be shared

among multiple queries. The original aggregations can be achieved by

combining aggregation values over small window partitions.

The work in [ZKOS05] discusses shared computations among aggrega-

tions with fine-grained phantoms, which is the smallest unit for sharing the

aggregations. The work in [KWF06] discusses runtime aggregation shar-

ing with different periodic windows and arbitrary predicates. However,

efficient sharing of window-based join operators has thus far been ignored

in the literature.

In [HFAE03] the authors propose various strategies for intra-operator

scheduling for shared sliding window joins with different window sizes.

Using a cost analysis, the strategies are compared in terms of average re-

sponse time and query throughput. Our focus instead is on how we can

minimize the memory and CPU cost for shared sliding window joins. The

CHAPTER 9. RELATED WORK 115

intra-operator scheduling strategies proposed in [HFAE03] can naturally

be applied for inter-operator scheduling of our sliced joins.

Load-shedding [TZ+03] and spilling data to disk [UF00, LZR06] are al-

ternate solutions for tackling continuous query processing with insufficient

memory resources. Approximated query processing [SW04] is another gen-

eral direction for handling memory overflow. Different from these, we

minimize the actual resources required by multiple queries for accurate

processing. These works are orthogonal to our work and can be applied

together with our state-slice sharing.

Ideas from some previously proposed techniques are implemented in

our sharing paradigm. The lineage of the tuples proposed in [MSHR02]

can be used to avoid repeated evaluation of the same selections on a tuple

in a chain of sliced joins. The precision sharing in the TULIP [KFHJ04]

can be used in our paradigm for selections on multiple input streams. The

grouping of similar queries with same window constraints in [CDN02] can

be used for discovering shared join expressions among multiple continuous

queries. These ideas are complementary to our state-slice concept, and can

be applied to our sharing paradigm.

116

Part II

Distributed Multi-way Stream

Join Processing

117

Chapter 10

Introduction

10.1 Research Motivation

Modern stream applications are usually time critical in scientific and engi-

neering domains [AAB+05b, RRWM07, JAA+06, KDY+06], which is a chal-

lenge goal when the processing of stream joins among multiple high-speed

streams are involved. The multi-way joins in such applications usually

have complex join conditions on high volume input stream data [AAB+05b,

RRWM07]. Given the memory- and CPU-intensive nature of stream queries,

distributed query processing on cluster must be employed for tackling this

challenge [GYW07].

Distributed continuous query processing has been considered in recent

years, such as distributed Eddies [TD03], Borealis [Ac04, ABcea05], Sys-

tem S [JAA+06] and D-CAPE [LZJ+05]. Two distribution techniques are

usually supported: operator distribution and data distribution. Using op-

erator distribution, disjoint sub-plans of the query plan are executed on

10.1. RESEARCH MOTIVATION 118

different machines with the intermediate results being routed between the

machines. Data distribution instead installs instances of the same operator

into multiple machines, each then processing a different partitions of the

input data on its respective machine. Both methods are orthogonal and can

in fact be combined.

Hash-based data partitioning has been proved effective for distributing

equi-joins [Kun00], both for relational and stream queries. Beyond equi-

join stream queries, which can be distributed with hash-based partitioning,

generic joins with arbitrarily join conditions are used widely in non-trivial

stream applications such as image matching and biometric recognizing.

Hash-based partitioning invokes potentially huge duplications when dis-

tributing generic joins. A more efficient scheme for the distributed execu-

tion of generic multi-way joins with window constraints is thus critical.

Moreover, for operator distribution, the macro Multi-way window-based

Join operations (MJ) operator must fit into one single machine — which is

not always feasible when large window constraints and high volume input

streams are encountered. Though we could translate an MJ operator into

a join tree composed of a sequence of smaller binary join operators, such

method would lose the flexibility of join orderings shown to be extremely

useful for MJ processing in dynamic environments [VNB03]. Also, such

join tree distribution will scale to at most k − 1 machines for a k-way MJ

operator, while the number of machines available may be much larger than

k.

In this part, we focus on distributed processing of generic MJs with ar-

bitrary join predicates, especially for MJs with large window constraints.

10.1. RESEARCH MOTIVATION 119

Generic stream joins occur in many practical situations, from simple range

(or band) join queries to complicated scientific queries with equation-based

predicates. Such join operators tend to be complex and CPU intensive,

as further motivated below. Our goal is to minimize the memory con-

sumptions and the query response time to meet the time requirement of

the stream applications.

Motivation Example:

In a fire spread monitoring system [RRWM07] , sensor(s) deployed at

diverse physical locations provide real-time environmental measurements

of the space, including temperature, humidity, images, or video. The sys-

tem will recognize the fire pattern and predict fire spreading in order to for

instance provide safe escape routes. The information collected from sen-

sor(s) per location correspond to a stream source with tuples having mul-

tiple columns, each column for a measurement. To predicate the trend of

fire spread, a window-based MJ operator is used to employ phenomenon

matching functions among data streams from multiple locations, to deter-

mine if it is an isolated incident or a wide-spread fire affected area. The

join predicates are based on mathematical models from the fire protection

domain, and possibly matching against comparative simulation snippets

of classified fire patterns. The join predicates are far more complex than

the simple equi-join predicates, and can be expensive to evaluate. Such

computation may include Discrete Fourier Transform, pattern recognition

and etc. The sliding windows can be large, such as from minutes to tens

of minutes, since for some fire patterns the spreading can be very slow at

beginning but change rapidly. Without knowledge of which fire patterns

10.2. PROPOSED STRATEGIES 120

may arise a priori, the largest window size must be set to cover all possible

patterns with various fire pattern characteristics. Also, clearly these time-

consuming join evaluations must be finished in real-time to alert personnel

around the fire.

10.2 Proposed Strategies

A novel MJ operator distribution scheme called Pipelined State Partition-

ing (PSP) is proposed in this part of the dissertation. The PSP scheme is

a new form of pipelined parallelism. Our solution is based on the state-

slicing [WRGB06] concept introduced in Chapter 5 for query sharing. We

propose a novel solution to separate a macro MJ operator into a series of

smaller state-sliced MJ operators. The sliced MJ operators are connected in

a virtual ring architecture. Different from value-based partitioning, the PSP

scheme is join predicate agnostic and thus general. It slices the states into

disjoint slices in the time domain, and then distributes these fine-grained

state slices among processing nodes in the cluster. Different from tradi-

tional plan-based pipelined parallelism, whose length of pipeline is bounded

by the longest sequence of operators in the query plan, PSP instead can split

the MJ to any number of state-sliced MJ operators at the optimizer’s will to

achieve maximum parallelism.

We design two critical extensions of the basic PSP scheme. PSP-I (with

I for Interleaving) and PSP-D (with D for Dynamic).

PSP-I introduces a delayed purging technique for the states to enable in-

terleaved processing of multiple stream tuples. Without interleaving, only

10.2. PROPOSED STRATEGIES 121

one input stream tuple and the intermediate results generated in the prob-

ing steps triggered by this tuple can be processed in the ring of nodes. That

is, all input stream tuples must be processed in a sequence manner in order

to avoid any state tuple being purged too early. This will happen when

a stream tuple with larger timestamp purges the state tuple but another

stream tuple with smaller timestamp still should probe this state tuple. The

reason for this mess-up is the possible out-of-order process of the multiple

stream tuples and corresponding intermediate results at each node. This

limitation is removed by separating the purging steps into two sub-tasks:

propagation of purged tuple and deletion from the state. The state deletion

is postponed until the state tuple is out of the sliced windows of all the cur-

rently being processed tuples. Such interleaved processing is used to avoid

idle processors which exist in the synchronized basic PSP scheme.

Beyond interleaved processing, PSP-D (with D for Dynamic) further

incorporates a dynamic state ring structure to avoid repeated maintenance

costs of sliced states along the ring of nodes. In the basic PSP scheme,

any state tuples must be purged multiple times and propagated step-by-

step along the ring. To avoid this extra cost caused by a tuple’s repeated

insertion into and purging from of a state-slice in the basic PSP scheme, we

extent the PSP scheme by introducing dynamic head and tail abstraction.

Instead of moving all the state tuples through all the nodes, we move the

start and end location of the windows along the ring. Thus this portion

of costs for state maintenance, which can be significant for fast incoming

streams, can be saved.

The key principles of the basic PSP scheme and its varieties are listed as

10.2. PROPOSED STRATEGIES 122

follows.

• Ring-based query plan. Instead of a chain architecture used in Chap-

ter 7 for state sliced binary join processing, a ring-based query plan

with loop back of the intermediate results is proposed for for han-

dling multi-way join operators. Recall that a binary join is treated

as the combination of two one-way joins in Chapter 6, which implic-

itly enforces the binding of state slicing approach with the join or-

derings. The ring-based query plan instead enables the state slicing

approach to work with any optimizer choice of join orderings. Thus

ring-based query plan makes the state slicing and join ordering or-

thogonal, which largely simplifies the optimization process.

• Synchronized processing on slices without locking. The pipelined pro-

cessing of state sliced joins requires synchronized state maintenance

to avoid incomplete or duplicated join results. In a homogeneous

but asynchronous cluster, synchronized processing usually requires

special support of locking mechanism. Instead in our proposed PSP

schemes, the specially designed execution strategies stipulate the syn-

chronized processing on slices without using locks. Thus no extra

locking support is required from the cluster and makes our PSP schemes

applicable to any homogeneous computation environments.

• Cost-based state allocation, and distributed time-slice adaptation. Since the

fluctuate nature of the streaming data, runtime adaptive state alloca-

tion and relocation of the sliced states is essential for fine-grained load

10.2. PROPOSED STRATEGIES 123

balancing. Our proposed PSP schemes support online state adapta-

tion with low extra cost.

We develop a cost model for the basic PSP scheme and use it to tune the

parameters for different performance objectives. Our cost model provides

the necessary analytical equations to model the relationships between the

following key parameters of the PSP model: (1) stream data characteris-

tics, including stream arrival rates; (2) query parameters, including win-

dow sizes; (3) join selectivities, which is related to both query and stream

data; (4) PSP ring parameters, such as the number of nodes in the ring; (5)

performance measurements, such as the system throughput and average

response latency of joined results. A cost-based optimizer is also devel-

oped to achieve the optimal state slicing and allocation.

Runtime adaptive state relocation are also employed for achieving load

balancing and re-optimization in a fluctuating environment. Adaptive work-

load diffusion is critical for realistic long running query processing, when

stream arrival rates, join selectivities and load of processing nodes change

at runtime. In the PSP schemes, adaptive workload diffusion is achieved

by state relocation among the nodes by setting the corresponding window

ranges. We tackle two major load re-balancing scenarios: workload smooth-

ing among same amount of nodes and state relocation with more/less nodes.

Compared to existing work on distributed generic MJ processing in [GYW07],

the PSP scheme has the following benefits: 1) there is no state duplication

and thus no repeated computations during PSP distribution; 2) the PSP

scheme is applicable for large window constraints; 3) the PSP scheme can

10.3. OUR CONTRIBUTIONS: 124

slice the MJ operator into a ring with optimal number of sliced joins, which

is orthogonal to other optimizations such as join ordering optimization;

and 4) controllable adaptive state partitioning and allocation in the time

domain.

The proposed PSP schemes have been implemented within the D-CAPE [SLJR05],

which is the distributed version of the CAPE DSMS. We use multi-way

stream joins comparing the similarity of the synthetic image streams in

the experiments. The experiments have been conducted to thoroughly test

the ability of the proposed solution under various system resource set-

tings. The experimental results show that our strategy provides signifi-

cant performance improvements over the state replication based solutions

in [GYW07] under a diverse workload settings.

10.3 Our Contributions:

• We introduce the novel ring architecture of sliced window join oper-

ators, and prove its equivalence to the regular window-based join.

• We extend the based PSP model with two key features: interleaved

tuple processing and dynamic ring structure to improve the system

performance.

• The memory and CPU costs of PSP-D ring are analytically evaluated

based on a cost model.

• Based on insights gained from this analysis, a cost-based optimizer

is proposed that achieves optimal state slicing in terms of maximum

10.4. ROAD MAP 125

output rate or minimal query response latency, respectively.

• The runtime state migration in terms of slice allocation and reloca-

tion is discussed. Based on the cost model of the PSP scheme, al-

gorithms for state migration are developed for workload smoothing

among same amount of nodes and state relocation with more/less

nodes.

• The proposed techniques are implemented in the D-CAPE DSMS. Re-

sults of performance comparison of our proposed techniques with

state-of-the-art state replication based strategies in [GYW07] are re-

ported, confirming the superiority of our PSP schemes.

10.4 Road Map

The rest of this part is organized as follows. Chapter 11 presents the prelim-

inaries used in this part, briefly reviewing the state-slice concept in Chap-

ter 5. Chapter 12 defines the problem tackled and introduces the PSP distri-

bution scheme. Chapter 13 present the cost based analysis. Chapter 14 dis-

cusses the cost based runtime adaptive optimization. Chapter 15 compares

the PSP with other generic join distribution schemes. Chapter 16 reports

the experimental results while Chapter 17 contains related work.

126

Chapter 11

Background

11.1 Semantics of Multi-way Window Join

In this part, we consider a multi-way join operator (MJ) on input streams

with unbounded sequences of tuples. Each stream input tuple has an asso-

ciated timestamp identifying its arrival time at the system. Similar to [BMWM05],

we assume that the timestamps of stream tuples are globally ordered. Slid-

ing windows [BBMW02] define the scope of the otherwise infinite streams

for stateful operators.

A multi-way join operator on data streams S1, S2, ..., Sn with window

constraints W1,W2, ..., Wn respectively is denoted as Jn : S1[W1] 1 S2[W2] 1

... 1 Sn[Wn] with join conditions θ(S1, S2, ..., Sn). In this part of disserta-

tion, the input stream tuples are assumed to be processed in the order of

their timestamps. We extend the semantics of the window constraints de-

fined previously in Chapter 3.2 for multi-way joins. That is, the output of

the MJ consists of all joined tuples (s1, s2, ..., sn), such that T − Tsi < Wi

11.1. SEMANTICS OF MULTI-WAY WINDOW JOIN 127

(∀i ∈ [1, n]) and θ(s1,s2, ...,sn) hold. Here Tsi denotes the timestamp of tu-

ple si and T denotes max(Tsi), i ∈ [1, n]. The timestamp assigned to the

joined tuple is T .

In [VNB03, BMM+04], the efficient execution algorithms for multi-way

stream joins, in particular the non-blocking multi-way symmetric join algo-

rithms with flexible join orderings, are introduced. Compared to the tradi-

tional evaluation of multi-way joins using fixed binary join trees [Kun00],

such adaptive execution results in less blocking and a distinct optimized

join ordering for each input stream. Also different from Eddies [AH00],

join orderings are selected per stream instead of per tuple, in order to avoid

per tuple routing cost. Our proposed approach inherits this flexibility of

customized join orderings per stream to assure high performance. Clearly,

selection of efficient join orderings is orthogonal to our focus, and any al-

gorithms in [VNB03, BMM+04] could be used for this purpose. We briefly

review the two execution methods of multi-way joins below.

There are two common methods for executing multi-way continuous

joins, namely binary join trees [VN02] as shown in Figure 11.1 and multi-

way join operators [GO03a, VNB03, BMM+04, HAE03] as shown in Fig-

ure 11.2.

A binary join tree, as shown in Figure 11.1 in two of many possible dif-

ferent shapes, is a query plan composed of binary join operators. It is a

direct extension of the typical query plans used in static query process-

ing [SAC+79, IK84, KBZ86]. Figure 11.1 shows two sample binary join

trees. The one on the left is a linear tree, in which one of the two inputs

for each join operator is a stream input, except for the leaf, which has two

11.1. SEMANTICS OF MULTI-WAY WINDOW JOIN 128

stream inputs. The one on the right is a bushy tree, in which both inputs

of a join operator can be intermediate results produced by some join op-

erators below it. Each binary join operator applies a symmetric join algo-

rithm [WA93, HH99], such as symmetric hash join or symmetric nested-

loop join. To implement the window constraints, each binary join operator

keeps two states that stores tuples that the operator has received so far and

in the current window. Some states, such as state SA in Figure 11.1, keep

the stream input tuples. Other states, such as SAB and SABC , keep inter-

mediate join results.

BC

AB

A B

C
SA SB

SAB SC

BC

CDAB

A B

SA SB

SCD

SC

SAB

SD

CDSABC SD

C D

D

(a) A left-deep binary join tree (b) A bushy binary join tree

Figure 11.1: Binary Join Trees

Different from a binary join tree, a single multi-way join operator that

takes in all joining stream inputs and outputs the joined results can be used.

Figure 11.2(a) shows the basic data structure of a multi-way join operator in

a continuous query that implements a five-way join A ./ B ./ C ./ D ./ E.

The operator takes in five input streams and outputs joined tuple of the

form ABCDE. Five states are kept in the operator, each associated with

one of the input streams. Suppose now the multi-way join operator takes

one tuple a from input stream A. It would first insert this tuple a into the

11.1. SEMANTICS OF MULTI-WAY WINDOW JOIN 129

state SA, then it uses this tuple a to purge and join with all other remaining

states in a certain order, which is selected to minimize the size of inter-

mediate results and thus the join cost. The processing of new tuples from

other input streams follows the same procedure, except that they may join

with remaining states in a different order. Figure 11.2(b) shows possible

join orders for tuples from input steam A and input stream B.

ABCDE

A B C D E

A

SB

Probe Probe Probe

SA SB SC
SD

SE

SC SD SE

Probe

SAInsert

B

SC

Probe Probe Probe
SE SA SD

Probe

SBInsert

(a) A 5-way Mjoin Operator (b) Sample join orderings for input A and B

output

output

output

Figure 11.2: Multi-way Join Operator for Query A ./ B ./ C ./ D ./ E

As we can see a binary join tree keeps all intermediate results in oper-

ator states, thus saves CPU cost on recomputing these intermediate results

but requires high memory costs. On the contrary, a multi-way join opera-

tor does not keep any intermediate results, thus saves memory but requires

extra CPU for re-computation. Because of not maintaining any history of

partially computed join results, multi-way join operator is more flexible in

terms of enabling different join orderings for each input stream and also in

terms of being able to quickly switch between different join orderings even

for the same input stream.

11.2. DISTRIBUTED CONTINUOUS QUERY PROCESSING IN DCAPE 130

11.2 Distributed Continuous Query Processing in DCAPE

The basic distribution techniques can be classified as pipelined parallelism

and partitioned parallelism [Kun00]. By streaming the output of one opera-

tor into the next operator through network connections, the two operators

which located on different processing nodes can work in series, termed

pipelined parallelism1. By partitioning the input data among multiple pro-

cessors, an operator can be instantiated as many independent copies of the

operator (called operator instances), each working on a subset of the data,

termed partitioned parallelism2. Figure 11.3 illustrates the pipelined par-

allelism and partitioned parallelism in two processing nodes using an ex-

ample of three-way join query. The DCAPE system support both of these

modes of parallelism.

Distributing the query workload across multiple machines can greatly

improve the system performance due to the availability of aggregated re-

sources, including both CPU and memory.

(a) Original Binary Join Tree Plan

Join1

Join2

A B

C

(c) Partitioned Parallelism

A B C

Join2

Join1

SplitA SplitB SplitC

Join2

Join1

Union

Join1

Join2

A B

C

(b) Pipelined Parallelism

Figure 11.3: Pipelined parallelism and Partitioned Parallelism

1Blocking operator, such as sorting, may not be allowed for pipelined processing.
2This may not work for all operators (e.g. calculation of the standard derivation) or

special treatment of combining the result is needed (e.g. getting the max value).

11.2. DISTRIBUTED CONTINUOUS QUERY PROCESSING IN DCAPE 131

For example, the continuous query plan with two joins in Figure 11.4(a)

can be assigned to two machines as in Figure 11.4(b). Each machine runs

instances of both join operators. To partition the data, we add three split

operators (one for each input stream) and one union operator (for collecting

together all outputs) to the query plan. The split operators operate as routers.

They apply partition mapping functions, such as a value-based mapping,

to divide the streams of input tuples into partitions and direct these parti-

tions to the corresponding machines. The darker shading indicates that the

operator is active on that machine.

The number of split operators in the same as the number of inputs to

the query plan. The union operator combines the outputs from all involved

(in this example, two) machines to produce the final outputs. This can be

viewed as making a copy of the query plan (with added split and union

operators) and putting one copy of the plan on each machine. The darker

operator indicates that the operator is active on that machine. As we can

see, the two joins are executed on both machines. One copy of the split is

activate in the system since the input streams may be connected to different

nodes, as shown in Figure 11.4. Also one union is needed to be active, being

the single collecting operator.

11.2. DISTRIBUTED CONTINUOUS QUERY PROCESSING IN DCAPE 132

M2

Join2

Join1

Union

SplitA SplitB SplitC

M1

B

M1

Join2

Join1

SplitA SplitB SplitC

Union

M2

M2

M2

A C
(a) Original Binary Join Tree Plan

Join1

Join2

A B

C

(b) Distribution of the Data Partitioned Plan.

Figure 11.4: Example of Data Partitioned Plan Distribution

133

Chapter 12

PSP: State-Slicing for

Multi-way Joins

12.1 New Challenges in State-slicing for Multi-way Joins

Applying the state-slicing concept to MJ operators faces new challenges

beyond the binary state-slicing discussed in Chapter 5 and also published

in [WRGB06]. In this chapter, we present our proposed solution to apply

state slicing concept to multi-way join operators.

If we were to first convert an MJ operator into a binary join tree, then

thereafter we would reuse the binary state-slice method in a naive way

to process MJs. However a binary join tree implies a fixed join ordering

for all input stream tuples, which may be sub-optimal compared to hav-

ing individual join orderings for each input streams in a holistic MJ opera-

tor [BMM+04]. More over since it is a fixed tree, most certainly it is rather

12.1. NEW CHALLENGES IN STATE-SLICING FOR MULTI-WAY JOINS 134

rigid for runtime join re-ordering when the stream characteristics change.

Extra effort is needed for migration of a binary join tree at runtime [ZRH04].

Alternatively, directly applying the binary state-slicing method to MJ

operators faces several problems, as explained below with an example. As-

sume the MJ to be processed is a four-way join A ./ B ./ C ./ D and

n state-sliced join operators, J1 to Jn, are connected in a chain structure.

The state for each stream in the MJ is partitioned into n parts, denoted as

(A1, ...An), (B1, ..., Bn) and so on. Thus sliced join Ji (1 ≤ i ≤ n) will hold

the sliced states Ai, Bi, Ci and Di. For one incoming tuple a from stream A,

all the sub-join tasks a ./ Bi ./ Cj ./ Dk, (1 ≤ i, j, k ≤ n) must be conducted

to generate the complete joined results. Without loss of generalization, con-

sider one sub-join task with k ≤ j ≤ i, then first a ./ Dk must be conducted

at Jk, since the sliced state Dk is held only at Jk, which is ahead of Ji and

Jj in the chain. Similarly, (a ./ Dk) ./ Cj then is conducted at Jj and so

on. That is, the join ordering (A→ D → C → B) is imposed automatically

by the monotonous increasing order of the i, j, k in each sub-join task, but

not by the plan optimizer. All the sub-join tasks are required to produce

the complete joined results in the state slicing approach. That is, sub-join

tasks with all the possible orders of i, j, k, which imposes all join orderings,

are processed in every nodes. From the optimizer’s point of view, most of

these join orderings certainly may not be optimal and there is no freedom

for the optimizer to pick a better join ordering other than the imposed one.

Thus not even a single best join ordering can be picked as in a binary join

tree. This strategy is the worst one in all the design choices in terms of

options of optimal ordering for max filtering of intermediate joined results.

12.1. NEW CHALLENGES IN STATE-SLICING FOR MULTI-WAY JOINS 135

The benefit of holistic MJ processing is totally lost and the join performance

may be significantly decreased.

More concretely, assume two state sliced joins are employed and the

states of A,B, C are each partitioned into two parts as A1, A2, B1, B2 and

C1, C2. Then a ./ B1 ./ C1 and a ./ B2 ./ C2 are performed at J1 and

J2 respectively. However to ensure the correctness, a ./ C1 must be also

performed in J1 and then join with B2 in J2. Moreover, the intermediate

result of a ./ B1 needs to be send to J2 to join with C2. That is,

a ./ B ./ C = (a ./ B1) ./ C1 + (a ./ B2) ./ C2

+(a ./ B1) ./ C2 + (a ./ C1) ./ B2

We can see that in J1, the a tuple needs to probe both B and C states. Thus

in fact all possible orderings (A→ B → C and A→ C → B in this example)

are used and no freedom exists to pick different join orderings. This may

decrease the performance when the selectivity of A ./ C is much larger

than that of A ./ B.

As a consequence of having to use all possible sub-optimal join order-

ings, large system cost may exist for processing all the intermediate results.

There are exponential kinds of intermediate results for an n-way join, since

every subset of the n input streams can be mapped to a kind of intermediate

result.

In a summary, both of the approaches of extending binary state slicing

concept to MJ operators may interfere the optimizer’s choice of the optimal

join orderings, no matter if a binary join tree or a brute force extension is

12.1. NEW CHALLENGES IN STATE-SLICING FOR MULTI-WAY JOINS 136

used. Thus a new state slicing approach is required to avoid the interfer-

ence of join ordering optimization.

ssss

Node1 Node2 Nodei Noden

……
1 2 i

……
n

S Data Source

BA C

…… ……

State A: [wi-1,wi]

State B: [wi-1,wi]

State C: [wi-1,wi]

A[wn] B[wn] C[wn]

The Ring

U Data Sink

Figure 12.1: Ring-based Query Plan with Multi-way State-slice Joins.

To inherit the merit of holistic MJ processing with optimal join order-

ings, in this part we propose a ring-based query plan execution framework

for multi-way state sliced join processing. Figure 12.1 shows the logical

ring-based query plan with an example 3-way state sliced joins. The ring-

based query plan redirects the output of the last sliced join (Jn) back to the

input of the first sliced join (J1). In this way, the selection of the join or-

derings is now made independent from the locations of the corresponding

sliced states for a sub-join task, since the ring structure can bring tuples to

any corresponding sliced states to be joined with next, according to the se-

lected join orderings. The ring-based query plan and its control logic will

be discussed in detail in this chapter.

In this part of dissertation, we allocate one state sliced join operator to

each processing node. Thus we will use the term Node i interchangeably

with the term state-sliced join Ji.

12.2. STATE-SLICE RING WITH LIFE CONTROL 137

Naturally the PSP scheme provides a novel scheme for distributed pro-

cessing of expensive join operators. The cost-based deployment of the PSP

scheme in a cluster is discussed in Chapter 13.

PSP is designed to distribute the potentially huge state of the MJ opera-

tor to all the processing nodes and consequently render balanced CPU load

diffusion. The adaptive workload balance is achieved by dynamic setting

the window ranges of the sliced joins at runtime. The runtime ring plan

adaptation will be discussed in Chapter 14.

[GYW07] proposed two state replication based distributions for generic

MJ operators. Detailed comparisons between our state partitioning based

PSP and state replication based approaches will be discussed in Chapter 15.

12.2 State-Slice Ring with Life Control

The logic ring model of PSP in Figure 12.1 corresponds to a series of multi-

way state-sliced join operators connected in a ring structure. Besides the

raw stream inputs and the final output of complete join results, each state-

sliced join also has special input and output for pipelined propagation of

intermediate join results.

Similar to binary state sliced join operator, we first define multi-way

state-slice join as follows.

Definition 4 (Multi-way State-Slice Join) A multi-way state-slice join opera-

tor J on data streams S1, S2, ..., Sn is denoted as S1[W s
1 ,W e

1]
m
./ S2[W s

2 , W e
2]

m
./

...
m
./ Sn[W s

n,W e
n], where the superscripts s and e denote the start and end of the

window constraints. The state for input stream Si in J , denoted as Si[W s
i , W e

i]),

12.2. STATE-SLICE RING WITH LIFE CONTROL 138

holds tuples within a window of [W s
i ,W e

i] with respect to the current timestamp.

The joined results of J for arrival tuple si consist of all tuples in the form of

(s1, s2, ..., si, ..., sn), such that W s
j ≤ Tsi − Tsj < W e

j , where j ∈ [1, n], j 6= i

and sj is a state tuple from stream Sj .

A pipelined state-slice join ring is composed of multiple state-slice join

operators on the same data streams. The states of the connected joins have

abutting window ranges for each input stream (except for head and tail

joins as explained next), that can be concatenated together conceptually

into the full stream window. The slice join containing the W s = 0 in the

ring is called the head of the ring and the one containing the largest end

window the tail of the ring. Similar to its binary counterpart, each state

of the multi-way state-slice join is defined by a window range with upper

and lower timestamp bounds. Since the window ranges of sliced joins in

the ring are non-overlapping, all states of the join operators are partitioned

disjointly among all the state sliced join operators.

Figure 12.2 shows a snapshot of the state partitioning and physical de-

ployment for an example 3-way join on streams A, B and C in a 5-node

cluster. Each stream has unique window size and the current sliding win-

dows are illustrated with colorful/gray slots. The state of each stream is

partitioned into five disjoint pieces which are deployed to Nodes 1 to 5

respectively. In order to achieve balanced state sizes and consequently bal-

anced memory consumptions at runtime, the sliced state deployment can

be flexible in terms of using different window sizes and different ring con-

nections for each stream. For example, the Node 2 can hold sliced states

12.2. STATE-SLICE RING WITH LIFE CONTROL 139

INB INB
OUTB INB

OUTB INB
OUTB INB

OUTBOUTB

INA

INC

OUTA

OUTC

INA

INC

OUTA

OUTC

INA

INC

OUTA

OUTC

INA

INC

OUTA

OUTC

INA

INC

OUTA

OUTC

Stream A
Window =18

Stream B
Window = 12

Stream C
Window = 20

…

…

…

Current Timestamp Window Sliding Direction

Node 1 Node 2 Node 3 Node 4 Node 5

Figure 12.2: Snapshot of Runtime State Deployment in the Ring-based
Query Plan. The Current Sliding Window is Composed of the Color-
ful/Gray Slots for Each Stream.

from streams A and B with 1 unit window size, while from stream C with

8 units window size. Also the ring connection of the sliced states for stream

A is a loop as 1 → 2 → 3 → 4 → 5 → 1..., while for stream B is another

loop as 1→ 2→ 4→ 3→ 1.... We can see that the ring connection for each

stream state may not be identical and the ring length can also be different

for each stream.

The PSP execution model includes three closely coupled components

that stipulate that it produces complete yet no redundant join results, ac-

cording to the semantics of the multi-way sliding window join. They are:

(1) coordinated state maintenance among the sliced join operators in the

ring to ensure state consistency; (2) propagation and processing of the in-

termediate results for generation of correct and complete join results; (3)

execution control to avoid infinite looping of tuples in the ring.

The join processing among multiple nodes need coordination to ensure

data consistency. However synchronization in a large cluster is expensive,

12.2. STATE-SLICE RING WITH LIFE CONTROL 140

especially when the synchronization protocol needs to be invoked for every

single input stream tuple in our case. In our PSP model, we instead design

an implicit synchronization scheme based on the FIFO network transmis-

sion model. The execution process of each node then is synchronized by

the tuples in the input network connections of this node. This achieves that

each node can run synchronously with not extra cost since no synchroniza-

tion mechanism from the cluster is needed.

We first discuss the coordination among multiple nodes for processing

a single input stream tuple in Chapter 12.2.1. Then we will show how the

head node “knows” the end of processing cycle for current input tuple in

Chapter 12.2.3. Based on these two techniques, the execution algorithm of

sequential processing of the input tuples in the ring is discussed in Chap-

ter 12.3. The PSP with interleaved processing and dynamic ring structure

are discussed later in Chapter 12.4 and Chapter 12.5 respectively.

12.2.1 Coordinated State Maintenance.

Recall that in Chapter 5 two representatives for each input tuple, called

build tuple and probe tuple, are used, each with distinct assigned responsi-

bilities. Build tuples will be inserted into the states of the join operators

and stay there until being purged. The probe tuples instead will be prop-

agated throughout the ring structure for probing corresponding states of

other streams to identically matching the join predicates and then perform

the actual result construction. Note that all the states are composed of the

build tuples from corresponding streams. In the ring structure, the build

tuples will “move” from the head node towards the tail node steadily, as

12.2. STATE-SLICE RING WITH LIFE CONTROL 141

we will further explain this in Chapter 12.3, until finally it can be surly

purged after it has been probed at the tail of the join pipeline. The follow-

ing example routine shows how each node processes state insertion and

purging.

Example: Suppose at time t, a tuple at arrives from stream A at the entry state-

sliced join operator J1 in the ring. Then two copies ab
t (build) and ap

t (probe) are

made. Tuple ab
t is inserted into the current state (ab

t , ab
j , ..., ab

i+1, ab
i ,ab

i−1), ordered

in decreasing order of their timestamps. Suppose ab
i and ab

i−1 are the only tuples

which are now fall outside of the current window range due to the arrival of ap
t

at the sliced state. Then the state will be (ab
t , ab

j , ..., ab
i+1) after purging triggered

by ap
t and the output queue then is augmented by pushing (ap

t ,ab
i ,ab

i−1) into the

queue. Later when ab
i−1 and ab

i are processed by the next join operator J2, they

will be inserted into the state of J2. Thereafter when ap
t is processed by J2, it will

be used to purge and probe the corresponding state in J2.

From the above example, we have following lemma.

Lemma 7 For any node holding Ji with a state sliced window S :: [W s
i ,W e

i]

on certain input stream S, at the time that a probe tuple sp with timestamp Tsp

finishes the purge step, but has not yet began the probe step, we have: (1) ∀s′b ∈
S :: [W s

i , W e
i]⇒W s

i ≤ Tsp−Ts′b < W e
i ; and (2) ∀s′b tuple in the input steam S

that W s
i ≤ Tsp −Ts′b < W e

i ⇒ s′b ∈ S :: [W s
i ,W e

i]. Here S :: [W s
i ,W e

i] denotes

the sliced state of stream S at Ji.

Proof: (1). In the purge step, the processing of sp will purge any tuple s′b

with Tsp − Ts′b ≥ W e
i . Thus ∀s′b ∈ S :: [W s

i ,W e
i], Tsp − Ts′b < W e

i . For

the first sliced window join in the ring, W s
i = 0. We have 0 ≤ Tsp − Ts′b .

12.2. STATE-SLICE RING WITH LIFE CONTROL 142

For other joins Ji in the ring, at any moment let tuple s′′b denote the tuple

in S :: [W s
i ,W e

i] that has the maximum timestamp. Tuple s′′b must have

been purged by sp (or another probe tuple with smaller timestamp) from

the state of the up-stream join operator in the ring. Thus we have W s
i ≤

Tsp − Ts′b , for ∀s′b ∈ S :: [W s
i ,W e

i].

(2). We use a proof by contradiction. (a) If s′b /∈ S :: [W s
i ,W e

i], then

we assume s′b ∈ S :: [W s
j ,W e

j], j < i. Given W e
i ≤ Tsp − Ts′b , we know

W e
j ≤ Tsp − Ts′b . Then s′b cannot be inside the state S :: [W s

j ,W e
j] since

s′b would have been purged by sp when it is processed by the up-stream

join operator Jj . A[Wj−1,Wj]
s
n B. (b) Let us assume s′b in the input

queue of Ji. Since s′b is purged by sp and is inserted into the queue before

sp, s′b cannot be in the input queue when sp is being processed by Ji. (c)

Let us assume s′b in the output queue of Ji or down-stream joins. Since

Tsp − Ts′b < W e
i , no probe tuple will purge s′b from Ji. In a summary, we

got contradictions in all the possible cases.

Lemma 7 indicates the implicit synchronization of the sliced states in

the ring of nodes by using the probe tuples, since the probing tuple is

placed behind all purged tuples in the output queue. Lemma 7 is guar-

anteed due to the FIFO property of the network connections between pro-

cessing nodes. The state maintenance at each node is coordinated by every

probe tuple. Thus even though the state maintenance processes will not

happen at the same time at all the nodes, the states are guaranteed to be

consistent in terms of join probing process.

Coordinated state maintenance achieves implicit synchronization in the

cluster. That is, the state synchronization is postponed as long as possible

12.2. STATE-SLICE RING WITH LIFE CONTROL 143

until right before the join probing process commences. Also this coordi-

nation involves no extra network messages since the probing tuples have

to be propagated for join probing purposes anyway. Along with the join

progress, the probe tuples are propagated step-by-step along the ring.

12.2.2 Intermediate Result Propagation and Processing.

Intermediate results are propagated along the ring to probe the next state

in the join ordering. Since the intermediate results are only used to probe

other states, we treat them as the probe tuples. There is no state holding

intermediate result in the ring.

For an M -way sliding join, the number of types of possible intermediate

results is O(2M). One way to distinguish the intermediate results of differ-

ent schemas is to use distinct network connection between each nodes in

the ring for each type of intermediate result. However when M is large, the

number network connections is too huge to afford. Instead, all intermedi-

ate results are transmitted in one network connection along the ring and the

intermediate result schema is piggy-backed to identify the schemas. Also

at runtime the schema of the intermediate result is used to determine the

next state to join with.

An intermediate join result schema is denoted as (I1, I2, ..., In), where Ii

can be a stream “Si” or null “−”. We assume that only one state exists for

each type of intermediate result to probe next. That is, two join orderings

that share the same prefix will join with the same sequence of states next.

This assumption is hold when the given set of join orderings are optimal

and each join ordering has distinct cost. Otherwise the two different join

12.2. STATE-SLICE RING WITH LIFE CONTROL 144

orderings cannot be both optimal. Next we describe how the intermediate

results are propagated and how the joined results are generated using an

example below.

Given a set of optimal join orderings, the prefixes of join orderings de-

fine all possible intermediate join result schemas. For ease of illustration,

below the intermediate result schema is also used to describe input stream

tuples, e.g., the schema of tuples from stream A’s in a 4-way join is denoted

as (A,−,−,−).

For input steam tuples and also intermediate result tuples, the state that

holds the tuples to be joined with the incoming tuples is called the active

state. The active state denotes the state of the state-slice join operator to be

probed next by the incoming stream (or intermediate) tuples.

Example: Consider a four-way join A ./ B ./ C ./ D with the join ordering

C → B → A → D for the tuples from stream C. The join result (ai,bj ,c,dk),

where i, j, and k (without loss of generality, assume i < j < k) denotes the

serial number of nodes (i, j, k ∈ [1, N]) in the ring holding the corresponding

state, is formed as follow. Tuple c is propagated to Jj first to probe the B state,

and it generates intermediate result (−,bj ,c,−). Then the intermediate result is

propagated along the ring looping back to Ji to generate (ai,bj ,c,−), since j > i

and thus looping back is necessary. Then the newly generated intermediate result

will be propagated further along to Jk to finish the join probing. No looping back

is needed since i < k.

In the worst case, (M−1)N hops of intermediate propagation are needed

for an M -way join evaluation using a sliced join ring of length N . The av-

erage hops of intermediate propagation is then (M − 1)N/2 since for each

12.2. STATE-SLICE RING WITH LIFE CONTROL 145

probing step in the join orderings, N/2 hops is needed in average. This,

potentially causing long response times, motivates the cost-based PSP op-

timization discussed in Chapter 13. However this does not necessarily im-

ply that any node would have long idle times waiting for the propagation

of the intermediate results, since pipelined execution is employed.

Clearly the selection of join orderings is independent of the state de-

ployment in the ring. Further the PSP scheme allows each node to pick

distinct join orderings to optimal join costs of different state slices.

12.2.3 Life Span Control in the Ring.

The purpose of life span control is: (1) dropping the input stream tuples

and intermediate result tuples out of the ring at the right time to avoid

generating incomplete or redundant join results; and (2) identifying the end

of the processing cycle of a current input stream tuple at the head node.

In Figure 12.2, we observe that at any time, the build tuples of cur-

rent sliding window are disjunctively sliced and deployed in a logical ring

among the processing nodes. Thus each probing tuple, either input stream

tuple or intermediate result tuple, is propagated along the ring exactly one

and only one round. To achieve this, every sliced join operator assigns its

unique node ID to the intermediate result tuples it generates. When the

tuple reached the same operator again after one round propagation along

the ring, the tuple is dropped from the system.

Since the processing of next stream tuple at the head node will cause

state shifting along the ring, to ensure the correctness, the head node need

to know the time when the processing of current input stream tuple is fin-

12.2. STATE-SLICE RING WITH LIFE CONTROL 146

ished at all nodes. We design a special scheme to indicate the end of pro-

cessing of current input stream tuple in the ring as follows.

A special END flag is used to mark the last intermediate result tuple

with a certain intermediate result schema generated at the head node. A

tuple with the END flag set is called the END tuple. First the END flag

is set for the last intermediate result tuple that has been generated by the

probing of the input stream tuple against the state in the head node. Future

in the next probing step in the join orderings, the END flag is set for the last

intermediate result tuple generated by the probing of the previous END

tuple. The previous END tuple is dropped according to life span control.

That is the “death” of the previous END tuple occurs together with the

“birth” of the new END tuple. Thus at any time, there is one and only one

END tuple in the ring for the current being processed stream tuple. Refer

to Figure 12.3 for detailed steps.

Lemma 8 The END tuple of certain schema Schi is the last intermediate result

tuple processed at the head node having the schema Schi.

Proof: Proof by induction.

(1)Base Case: Without loss of generality, assume that the state of the

stream S is the first one in the join ordering for input tuple t. The state of

S is sliced and distributed in the PSP ring as S1, S2, ..., Sn. The first END

tuple e1 is the last tuple of the t ./ S1. At any node i (1 < i ≤ n) in the ring,

tuple t is processed before e1, since propagation of t is taken care of before

any probing with t will commerce at any of the nodes. Thus t ./ Si (if any)

will appear before e1 in the input queue of the head node.

12.2. STATE-SLICE RING WITH LIFE CONTROL 147

(2) Induction: Since ej is the last tuple processed by the head node hav-

ing a certain schema, thus the next END tuple ej+1 will be generated as the

last tuple of probing with ej against corresponding state. According to the

FIFO processing sequence along the ring, ej is the last one to be processed

among the intermediate result tuples of the same schema as ej+1 at any

nodes, including the head node.

According to Lemma 8, when the head node see an END tuple, it knows

all the intermediate results with this schema have been processed by all the

nodes. Thus we have the completion criteria.

Theorem 7 For each input stream tuple, the processing cycle is ended by the pro-

cessing of its (m− 1)th END tuple at the head node for an m-way join.

Proof: From Lemma 8, the ith END tuple is the last one that processed at

the head node for any intermediate result having the same schema as the

ith END tuple. For an m-way join, there will be totally m− 1 probing steps

in the join ordering and thus m− 1 END tuples. When the (m− 1)th END

tuple is processed at the head node, all intermediate result tuples have been

processed by all the nodes.

Comparing the brute force method of broadcasting the intermediate re-

sults to all the nodes at the same time, our pipelined propagation of the

intermediate result guarantees the completion of each probing steps by us-

ing the END tuples without extra message between the processing nodes.

12.3. EXECUTION ALGORITHM AND TIME LINE 148

12.3 Execution Algorithm and Time Line

The sliced join execution algorithm is composed of four primitive rou-

tines: insert, cross-purge, propagation and probe, denoted as insert(state),

purge(state), prop(op) and probe(state) respectively. In an m-way sliced

join of streams S1, S2, ..., Sm, the execution steps for a newly arriving tuple

t in the sliced join number opi are shown in Figure 12.3. We define the ID

of the intermediate result generated by opi as the number i and the sliced

state of Sj in node i as Sj
i .

The head sliced join generates an END tuple to denote the finishing of

the current round of the propagation. The execution period for the m-way

join includes m − 1 rounds of propagation. After collecting m − 1 END

tuples, the head sliced join initializes a new execution period for the next

incoming stream tuple.

Figure 12.4 illustrates the execution time line in a four node cluster (each

node holding one sliced join operator) for a 3-way join operator processing

arrived a tuple from stream A. The accumulated input queue content is also

shown for node M2 and M3. Assume the optimal join ordering for A tuples

is A→ B → C. When tuple a arrives at node M1 at time 0, first a build tuple

ab is made and ab.insert(SA
1) is called. Then the probe tuple ap is used to

purge and probe state B, i.e. ap.purge(SB
1), (ap.purge(SB

1)).prop(M2) and

ap.probe(SB
1) (done at time t2). The intermediate result is send to M2 to join

with the states of C and eventually sent back to M1 to join with SC
1 . M2

will receive the probe tuple of a at time t1 and follow the same execution

steps as M1. The intermediate result I1 will arrive at M2 following tuple

12.3. EXECUTION ALGORITHM AND TIME LINE 149

If the tuple t is a build tuple from stream Sj ,
1-1. Insert: t.insert(Sj

i).

If the tuple t is a probe tuple from stream Sj ,
2-1. Purge: t.purge(Sl

i), 1 ≤ l ≤ m. If opi is the tail op, drop purged tuples;
otherwise propagate purged tuples to opi+1.
2-2. Propagate: If opi is the tail op, drop t; otherwise t.prop(opi+1).
2-3. Probe: Ii = t.probe(Sl

i), Sl
i is the state of the next stream in the given

join ordering. Ii is the intermediate result with ID i. For head node, mark
the last tuple in the intermediate result as the END tuple (If the probing
has no output, a Null END tuple is generated).
2-4. Propagate: Send Ii with Ii.prop(opi+1).

If the tuple t is an intermediate result tuple,
3-1. Propagate: If ID 6= i, t.prop(opi+1), otherwise drop t.
3-2. Probe: Ii = t.probe(Sl

i), Sl
i is the state of the next stream in the given

join ordering. Ii is the intermediate result with ID i. For head node, if
tuple t is marked as the END tuple and ID = i, mark the last output
tuple as the new END tuple (If the probing has no output, a Null END
tuple is generated).
3-3. Propagate: If Ii is final joined result, send out. Otherwise send Ii with
Ii.prop(opi+1).

Figure 12.3: Execution Steps of Sliced Join opi

a and will be processed next by M2. Then same steps are followed by M3

and M4. At time t4, one period of execution is finished. All the probe tuples

and intermediate results are dropped after going through the ring. The next

input stream tuple can be processed after t4.

The correctness of the sliced join algorithm relies on the FIFO nature of

the queue connections between operators in the ring. We have the follow-

ing theorem.

12.3. EXECUTION ALGORITHM AND TIME LINE 150

Drop (a B4)

(a B4) C1

(a B1) C2

M1

M2

M3

M4

0

a B1

a B2

a B3 (a B1) C3

a B4 (a B2) C4

(a B4) C3

(a B1) C4 (a B4) C4

Drop a

(a B3) C1 (a B2) C1 (a B1) C1

(a B4) C2 (a B3) C2 (a B2) C2

Drop (a B1)

(a B3) C3(a B2) C3

Drop (a B2)

Drop (a B3)

(a B3) C4

t1 t2 t3 t4

Input Queue of M2

Input Queue of M3

a
a B1

a B4

a B3

a B2

Figure 12.4: Execution Time Line of the PSP

Theorem 8 The union of the join results of the sliced joins in the PSP ring is

equivalent to the results of a regular multi-way sliding window join.

Proof:

No missing results. From Lemma 7, the state slices is maintained consistently

before any join probing. From Theorem 7, all state slices are probed before

the end of processing cycle. The pipelined probings after a full round is

guaranteed to cover all the corresponding states that need to be probed.

12.4. PSP WITH INTERLEAVED PROCESSING 151

No extra results. Before any join probing, all the windows boundaries of the

states are maintained consistently. All the probings are thus valid.

No redundant results. Lemma 7 guarantees that the window boundaries of

the states are satisfied before probing. Thus the states are maintained dis-

junctively in terms of probing. No redundant probing is conducted.

12.4 PSP with Interleaved Processing

The execution steps of the PSP scheme shown in Figure 12.3, does not al-

low interleaved stream tuple processing to assure consistent maintenance

of the states in the basic PSP model. That is, only when the current stream

tuple is “fully” processed before another stream tuple is admitted into the

ring. When deploying the basic PSP scheme to the processing nodes of a

cluster, a given processing node might be idle for some time waiting for

other nodes to send them tuples to work on. Since the performance of the

ring is determined by its slowest processing node, this may cause long idle

periods. We thus extend PSP by means of a delayed purge strategy, called

PSP-I, which enables the interleaved processing.

The processing of the next stream input tuple will cause insertion and

purging of the states. To avoid state being purged too early by the new ad-

mitted tuple before being probed by the previous stream tuple (or the in-

termediate result tuples generated), every processing node maintains a list

of active StateStarts and StateEnds pairs. Each pair marks the correspond-

ing states for one of the currently being processed tuples in the system.

12.4. PSP WITH INTERLEAVED PROCESSING 152

Instead of purging the states and removing purged tuples before probing,

the StateEnds are used to mark the ends of states. The real state purging is

postponed until no further probing requires the state anymore.

Although the purged state tuples are not physically deleted from the

current node (they are just virtually marked as expired in some sense for a

given tuple), they are propagated to the next processing node. During the

join probing, only the part of the state within the appropriate StateStarts

and StateEnds range relevant to the given tuple is used to join with the

incoming tuple. The StateStart and StateEnd pair is expired and removed

from the state when the corresponding END tuple is processed, because

the later indicates that the tuple has successfully already visited all its join

partners.

The purge step 2-1 in Figure 12.3 is now changed as shown in Fig-

ure 12.5.

2-1. Purge:
2-1-1. Init: Init a pair of StateStart and StateEnd.
2-1-2. Mark: Mark the states by setting the StateStart and StateEnd accord-
ing to the input probe tuple.
2-1-3. Propagate: Propagate purged tuples to opi+1 (in case of not tail node)
or drop them (in case of tail node).
2-1-4. Delete: After processing the END tuple, remove the corresponding
StateStart and StateEnd and if this StateEnd has the smallest timestamp
among all the StateEnd in the state, remove tuples older than this Sta-
teEnd.

Figure 12.5: Purge Steps with StateStart and StateEnd in nodei, 1 ≤ i ≤ n

The interleaved processing of stream tuples induces duplicated states

12.5. PSP WITH DYNAMIC HEAD AND TAIL 153

among neighboring sliced operators due to the postponed deletion. In our

implementation, we set a threshold to limit the number of concurrently

processed stream tuples in the ring.

12.5 PSP with Dynamic Head and Tail

To avoid the extra cost caused by a tuple’s repeated insertion into and purg-

ing from of a state-slice in the basic PSP scheme (namely, once for each of

the n slices), we propose an extension of the PSP scheme in the form of a

dynamic head and tail abstraction. Intuitively, we call the head and tail in the

basic PSP model static, emphasizing that these two operators in the ring do

not “move” during the evaluation of the sliding window join. On the other

hand, the tuples in the states move from the head operator toward the tail

operator along the ring and eventually leave the system after being purged

in the tail operator. We now propose that instead of moving all the tuples

through all the states to logically move the location of the logical head and

the tail of the ring from operator to operator. Conceptually, this implies that

the input stream tuples over time enter the system at a different operator,

namely, at the current tail operator. We refer to this as PSP-D for dynamic

head and tail PSP scheme. The PSP-D framework for a 3-way MJ is shown

in Figure 12.6.

Instead of the window range, we now use window length to denote the

window constraints of the states in each join operator. The window length

of the state is the maximum possible difference of the timestamps of the

tuples in the state, denoted as ∆W .

12.5. PSP WITH DYNAMIC HEAD AND TAIL 154

s

OP2

2 ……

s

OPn

n

1
s

OP1

i
s

OPi

……s

OPn-1

n-1
The Ring

s

OPi-1

i-1

S

Stream Splitter

BA C

Head

Tail

25OPn

15OPn-1

…………

20OP2

10OP1

∆WOperator

State Slice Table

Head

Tail

Figure 12.6: PSP with Dynamic Head and Tail.

In Figure 12.6, the current head and tail operator of the ring are OPn

and OPn−1 respectively. The stream splitter S maintains the state slice ta-

ble. Each entry in the table describes the window length ∆W for an oper-

ator. The total window length of all the entries equals the sliding window

constraints. The splitter also maintains the position and window slices of

the all the operators in the ring. At runtime the stream splitter feeds the

input tuples to the current head operator according to the state slice table.

The insertion of tuples to the states happens only at the head and the purg-

ing of state tuples only happens at the tail. This mechanism now avoids the

repeated tuple insertions and consequent purging. When the timestamp of

the input tuple to be inserted is too large and is out of the window of the

current head operator, it will be inserted in the current tail operator. That

is, when the window of the current head operator is “full”, the head of the

12.6. INTERLEAVING PROCESSING WITH DYNAMIC RING STRUCTURE155

ring conceptually moves to the next operator in the reverse ring direction,

i.e., to the tail operator. As time passes by, the state of the tail is eventually

purged empty and then the tail also moves to the next operator along the

reverse ring direction. During this transition, the logical head and tail may

reside on the same operator. The stream tuples are inserted into the states

of the head operator and stay there until being purged out of the system

when this operator becomes the tail operator.

Intuitively the dynamic head and tail approach turns multiple state

sliced sliding windows into one insertion only window at the head oper-

ator and one deletion only window at the tail operator with several fixed

windows in the operators between the head and the tail operators. Thus

only the states in the head and tail operators need to be maintained. This

approach only affect the insertion and purging process since the head and

tail will not change before processing next stream tuple. The execution

steps of probing and propagation of intermediate results are exactly the

same as that in the basic PSP model shown in Figure 12.3.

12.6 Interleaving Processing with Dynamic Ring Struc-

ture

During the execution, we may prefer to interleave the processing of multi-

ple input tuples to avoid any operator waiting idly for the input. Since the

execution period of one input tuple may be rather long for a join operator

with a large number of input streams, the processing of the next input tuple

should be started as soon as possible, instead of waiting until completion

12.6. INTERLEAVING PROCESSING WITH DYNAMIC RING STRUCTURE156

of the previous processing period.

In the dynamic head and tail approach, the head and tail are determined

by the current being processed stream tuple and may move when the next

stream tuple is processed. Thus multiple heads and tails are necessary to

allow the interleaved execution of stream tuples. Figure 12.7 shows the

multiple heads and tails as the vertical dotted lines. The multiple heads

and tails may distributed among multiple processing nodes. Also the state

slice table need to be extended to keep track of all the heads and tails in the

ring.

Timestamp Decrease

n

State A

State B

State C

s

Noden

s

Noden-1

n-1

Head Tail

…… ……

H1H2H3H4……Hm

State A

State B

State C

T1T2T3T4……Tm

Timestamp Decrease

Figure 12.7: PSP-D with Multiple Heads and Tails.

The purging of the states in the tail node must be postponed until they

are guaranteed not to be needed by any of the current being processed tu-

ples and intermediate results. The delayed purge is the same as that in the

PSP-I scheme using the corresponding head and tail as the StateStart and

StateEnd marks.

157

Chapter 13

PSP: Cost Analysis and Tuning

In this chapter, we develop a cost model for PSP and use it to tune the pa-

rameters for different performance objectivities. Our cost model provides

the necessary analytical equations to model the relationships between the

following key parameters of the PSP model: (1) stream and query param-

eters, including stream arrival rates, window sizes and join selectivities;

(2) PSP ring parameters, such as the number of nodes in the ring; (3) per-

formance measurements, such as the average response latency (average

time difference between sending out the joined result and reading in corre-

sponding stream tuple) and output rate.

13.1 Cost Model

For an M -way join operation S1 ./ S2 .// SM , the parameters for the

cost model are given in Table 13.1.

We assume that the network bandwidth is sufficient for our workload.

13.1. COST MODEL 158

Table 13.1: Terms Used in Cost Model
Term Meaning

λi Arrival Rate of Stream i

Wi Window Size of the Sliding Window on Stream i

S./i Join Selectivity for ith probing step
Tj Time spent to join a pair of tuples
Tp Time spent to purge one tuple from a state
Ti Time spent to insert one tuple into a state
Ts Processing latency to send & receive one tuple
Tn One hop network transmission latency
N Number of processing nodes in the ring
M Number of incoming streams
µ Service rate of the PSP ring

The network latency then is proportional to the number of hops of trans-

mission. We estimate the sending and receiving latency between process-

ing nodes to be proportional to the number of tuples transmitted. The out-

put rate is estimated with the assumption that all the processing nodes are

100% busy during the execution. That is, the input queues of the head

operator are never empty. The output rate under such assumption is the

maximum output rate possible.

We first calculate the processing workload LC for the centralized join

processing of one input tuple and the workload LPSP for the processing of

the same input tuple in the PSP scheme. The workload indicates the total

time needed to process one input tuple. The workload can be calculated

by summing up the CPU join time, the state maintenance time, and the

network transmission time. We assume an in-memory nested loop join al-

13.1. COST MODEL 159

gorithm is employed. We also assume that the optimal join ordering for the

input tuple from stream S1 is: S1− > S2. > ...− > SM and the processing

nodes and the network connections between them are homogeneous.

LC = Ti + Tp + Tj

∑

2≤k≤M

(
∏

1≤i≤k−1

λiWiS./i)

LPSP = LC + TsN(1 +
∑

2≤k≤M−1

(
∏

1≤i≤k−1

λiWiS./i))
(13.1)

The third item for LC is the total join probing cost. The second item for

LPSP is the total transmission cost for the input tuple and the intermediate

results.

For succinctness of the analysis, we simplify the cost model by assum-

ing λi = λj , S./i = S./j and Wi = Wj . These assumptions can be relaxed

without changing the principles of the cost analysis. Thus:

LPSP ≈ LC(1 +
TsN

λWTj
) (13.2)

Every LPSP seconds, PSP processes one input stream tuple. Thus the

service rate µ (i.e. the number of tuples processed per second) is given as:

µ =
1

LPSP
(13.3)

13.2. COST-BASED TUNING 160

13.2 Cost-based Tuning

Based on the cost model, we perform PSP optimization for the following

two important objectives: (1) given a fixed stream arrival rate, maximize

the system output rate by tuning the length of the ring; and (2) given a

fixed stream arrival rate, minimize the average response latency by tuning

the length of the ring. In the following discussion, we assume that we have

knowledge of the stream parameters and query parameters (i.e., all terms

in Table 13.1 except µ). All these parameters are straightforward to measure

in an actual implementation of PSP.

13.2.1 Maximize Output Rate.

In a homogeneous cluster, all processing nodes have identical CPU power.

Assume the output rate for one single processing node with workload LC is

OS . Then the output rate OPSP in the PSP model with N processing nodes

is:

OPSP =
OSN

1 + TsN
λWTj

=
OS

1
N + Ts

λWTj

(13.4)

From Equation 13.4, as more processing nodes are deployed in the PSP

ring, the output rate increases monotonically. That is, using more process-

ing nodes will result in a higher output rate.

13.2. COST-BASED TUNING 161

13.2.2 Minimize Average Response Latency.

To estimate the processing latency of the PSP model, we consider the aver-

age latency for join results from one input tuple. We estimate the latency

assuming perfect load balancing among all processing nodes. That is there

is no bottleneck processing node slowing down the flow along the ring.

Such latency is the minimal latency achievable. The latency has mainly

two parts: join probing and network latencies. These two latencies overlap

in time during execution. For each processing node, the balanced workload

is LPSP /N on average. The final join results are generated after a total of

M rounds of transmission of the intermediate results along the ring. Thus

processing latency τi for node i, 1 ≤ i ≤ N is:

τi = (i− 1)Tn + max{LPSP

N
,MNTn}

Thus the average processing latency τ is:

τ =
N − 1

2
Tn + max{LC

N
+

TsLC

λWTj
, MNTn} (13.5)

For clarity, we omit state insertion and deletion delay since each of them

is one time cost for each input tuple. Such delay is independent of the

number of join results generated.

From Equations 13.5, we see the response latency is sensitive to the

number of the processing nodes N in the PSP ring. Intuitively, adding more

processing nodes increases the CPU power. On the other hand, the longer

13.3. INITIAL STATE SLICING 162

the length of the ring the higher the network transmission costs. Using

standard calculus methodology, we can find exactly the value of N that

minimizes the average response latency. We have following theorem:

Theorem 9 The PSP ring has the minimal processing latency when N = min{N1, N2},
where

LC

N1
+

TsLC

λWTj
= MN1Tn, and

N2 − 1
2

Tn =
LC

N2

The processing latency for each node is decreasing with larger N , while

the network latency is increasing. Both facts need to be considered for the

optimal ring length with minimal processing latency.

13.3 Initial State Slicing

When the arrival rates and sliding window sizes are different for each in-

put streams, naturally the optimal ring lengths would be different for indi-

vidual streams. The problem of achieving global optimal lengths of rings

is much harder than the simplified case discussed previously. In fact the

search space is exponential since the optimal lengths of the PSP rings are

correlated with each other. Thus searching for the optimal initial state slic-

ing is expensive and may not be worthwhile, especially for stream pro-

cessing in a highly dynamic environment. Instead we use the following

heuristic to achieve a sub-optimal state slicing.

We first sort the streams by λiWiS./i in ascending order. Here the S./i

denotes the average join selectivity between stream i and other streams in

the join graph. Then the optimal lengths of rings is calculated in the order

13.4. WORKLOAD BALANCING 163

of the sorted list of streams. In the calculation, if the length of the ring for

certain stream is unknown, then current length is assigned. For example

when calculating the length for stream i and the length for stream j is not

available (i.e., stream j is behind stream i in the sorted list), then the ring

length for stream j is assigned the same as stream i. The intuition behind

this heuristic is that the streams with large λiWiS./i in the sorted list have

larger impact on the total cost, such that should be processed later when

more information about other streams is available.

13.4 Workload Balancing

In Figure 12.2 we indicate that the deployment of state sliced windows may

not be even among all the nodes. Since PSP is a pipelined execution model,

the performance of the PSP ring is determined by the busiest node in the

ring. To avoid any bottleneck node, a workload re-balancing must thus be

achieved for optimal performance.

From Equation 13.1, the dominant CPU cost for each node is the join

probing cost, which is proportional to the total size of the sliced states in

the node. To balance the workload of each node, we thus suggest as a

heuristic to keep the number of state tuples balanced in every node. Since

the state slicing boundaries between adjacent join nodes can be performed

arbitrarily at the optimizer’s will, the balanced state distribution can be

achieved.

164

Chapter 14

PSP: Adaptive Load Diffusion

Adaptive workload diffusion is critical for realistic long running query pro-

cessing, when stream arrival rates, join selectivities, and load of nodes

change at runtime. In Chapter 13 the discussion is based on static statis-

tics, however runtime statistics may change dramatically making runtime

adaption critical. In PSP, adaptive workload diffusion is achieved by state

relocation among the nodes by setting the corresponding window ranges.

We tackle two major load re-balancing scenarios: workload smoothing among

the same set of nodes and state relocation with more/less nodes. Both adap-

tations are rather straightforward and inexpensive to implement.

Two factors determine the performance of the state-slice ring, namely

the length of the ring and the load balancing among the processing nodes

in the ring. Both factors can be controlled through the state assignment

among the nodes by the data sender.

We assume the runtime statistics are collected periodically by sampling

the input streams. Runtime statistics collection is an orthogonal topic and

14.1. WORKLOAD SMOOTHING 165

we assume given statistics in this dissertation. The runtime adaptation in-

cludes statistic collection, conducted periodically by sampling the input

streams and system measurements that triggers the adaptation.

We will consider two major scenarios to be tackled by our adaptive op-

timization: namely, short term load burst with workload smoothing and

long term load fluctuation with state relocation. The workload smoothing

is suitable for the case when the system is not overloaded, while state relo-

cation is conducted when system overloading is observed.

14.1 Workload Smoothing

The runtime stream arrival rates may always fluctuate, while the overall

system is not overloaded. In a homogeneous cluster, we initially slice the

time-based window ranges evenly among all the nodes, aiming for bal-

anced workload. However such time-based state slicing may suffer from

the short term load burst, since the state size, which determines the work-

load of each node, may vary significantly at runtime. The reason is that the

fluctuating arrival rates will make the state size on each node unbalanced

given fixed window ranges. System performance is slowed-down by the

overloaded node in the ring.

Here we propose that instead of a time-based state slicing, a count-

based state slicing can be employed to smooth the workload. Each sliced

join, except the last one held by the tail node, has an upper bound on the

state size and a count-based state purging is employed when the state size

grows over the threshold. The upper bound is set periodically according

14.2. STATE RELOCATION 166

to the given statistics. When the average stream arrival rates and the total

window sizes are given, the upper bound can be set to ensure even dis-

tribution of the tuples in the states. Since the upper bound is calculated

using the average arrival rates, it can “smooth” the workload during short

term load burst. The correct time-based semantics of the sliding window

join continue to be ensured by the tail node since it still uses the time-based

state purging.

With count-based workload smoothing, the state slice table in Figure 12.6

has one more column C, denoting the pre-determined count based upper

bound for each processing node. Accordingly, the ∆W column is updated

at runtime.

Such count-based workload smoothing is effective when the window

constraint is large. For a small window to be close to the statistic sampling

intervals, the statistics may be imprecise.

14.2 State Relocation

Adding/removing of nodes is needed when system is overloaded or the

ring length is not optimal for response time. Two approaches for adaptive

optimization are proposed: passive adjustment of the window range and

aggressive adjustment by state relocation.

Passive State Adjustment. When long term load burst happens, pas-

sive adjustment aims to relocate the state by setting the window ranges.

Consider an example of adding one node to a ring composed of 3 nodes.

We assume the states are sliced equally among the processing nodes N1 to

14.2. STATE RELOCATION 167

N3 (N4 finally). That is, the states in each processing node will be changed

from W/3 to W/4, with W denoting the window constraint. The state slices

in the original processing nodes N1 to N3 are step-by-step replaced and

shrunk. Finally the new state allocation with one additional processing

node is achieved. Similarly, node removal can be conducted.

The graceful state adjustment induces no extra migration cost. How-

ever a long adjustment latency may occur for large window size.

Head 2nd Node

W/(N+M)

W/N

…

3rd Node ≥W/(N+M)

New Inserted Node 1

<W/(N+M)

…

Tail

New Inserted Node M

…

Figure 14.1: Aggressive State Relocation.

Aggressive State Relocation. To reduce the adaptation latency, aggres-

sive state slice adjustment migrates some part of the states along the PSP-D

ring. Such state relocation needs to suspend the execution and resume af-

terward.

To maintain the ring structure, the state slice movement happens only

between adjacent processing nodes. Intuitively, a new processing node

should be inserted into the ring at the appropriate position so that the

shifted state slice can fill directly the new node. That is, let us assume

that the ring has N nodes originally and that another M nodes need to be

added into the ring, the i−th processing node from the head node need to

move ∆Si = M
N i − bM

N ic state tuples to the next nodes in the direction of

the ring towards the tail node, as illustrated below.

14.2. STATE RELOCATION 168

∆Si = (
W

N
− W

N + M
)

i
W

N+M

− b(W
N
− W

N + M
)

i
W

N+M

c

=
M

N
i− bM

N
ic

(14.1)

The new processing node Nj , 1 ≤ j ≤ M , needs to be inserted after

the processing node Nk, such that k is the minimal number with M
N k > j.

Figure 14.1 illustrates the addition of a new processing nodes. Similarly,

the removal of processing node can be conducted.

The aggressive state relocation involves execution breaks and state mi-

gration during the adjustment. Frequent aggressive adjustment should be

avoided.

169

Chapter 15

Discussion

15.1 State Replication Based Distribution

To the best of our knowledge, the only work on distributed processing of

generic multi-way stream joins is [GYW07]. [GYW07] proposed two state

replication based distributions for generic MJ operators: aligned tuple rout-

ing (ATR) and coordinated tuple routing (CTR). We briefly review these

two approaches and then compare them with PSP below.

ATR picks one input stream as the master stream and partitions the

master stream among the processing nodes. All the other slave input streams

are distributed to the processing nodes with some overlaps of the states, to

ensure the semantics of the window constraints. CTR is a multi-hop seman-

tics preserving tuple routing where intermediate join results are transferred

among nodes during each hop. A weighted minimum set covering is uti-

lized to identify the best routing for each tuple to “find” all relevant states.

Details of these two approaches can be refereed from [GYW07].

15.1. STATE REPLICATION BASED DISTRIBUTION 170

Memory Cost.

The distribution strategies of both ATR and CTR are based on state (par-

tial) duplication among the processing nodes. Compared to them, our pro-

posed PSP approach does not have any duplicated states at any time.

In ATR the segment length T is an important parameter for the load

diffusion. However, the ATR approach works under the condition that the

window constraint W � T . When W is comparable with T , the memory

waste and redundant computation can be significant, as illustrated below.

ATR duplicates the states of the slave input streams thus it may use

extra memory and CPU to process them. For ease of illustration, we now

assume that all input streams have the same arrival rate, and the master

stream is not switched during the cost estimation. Besides the notations in

Table 13.1, we now introduce T to denote the stream segment length.

For the M − 1 slave streams, each segment is set to be of size T + 2W

length, with W as the window size. Assume each segment is assigned to

one processing node. Then the total memory consumption of the ATR ap-

proach is:

MEMATR = λTN + λ(T + 2W)(M − 1)N

In other words, the duplicated (wasted) state memory is:

MEMATR − λTNM

λTNM
= 2

W

T

M − 1
M

From above equation, we can see that the memory waste is proportional to

W/T . When W � T is not the case, the memory waste can be significant.

In CTR the number of redundant states is determined by the minimum

15.1. STATE REPLICATION BASED DISTRIBUTION 171

set covering at runtime. CTR faces the following dilemma. The more re-

dundant states, the smaller set covering of less nodes may exist. Then the

incoming tuples will be stored in fewer states, which may make future set

covering large. A more serious concern is that the states in CTR may con-

verge to one (or a small subset of) node if sometimes only one copy of the

input tuples is stored in a certain node, since future set covering will di-

rect all later tuples to that node. Then no distribution is achieved. Unless

an optimal insertion algorithm is employed (missing in [GYW07]), which

predicts future workload diffusion, the CTR is incontrollable and ad hoc.

The CTR scheme makes L copies (L = 2 in [GYW07]) of the input tuples

and allocates them to multiple processing nodes. Thus L copies of each in-

put tuple are stored in L different states of the processing nodes. Obviously

the memory consumption is also L times of the input stream size.

Synchronization.

ATR results in a set of independent join operators that no synchroniza-

tion is needed. However, CTR does need synchronization among nodes in

different hops for maintenance of the states and processing of intermediate

results. The synchronization is missed in [GYW07].

CPU Cost.

CPU cost comparison is summarized in Figure 15.1. Here we list only

the main factors affecting CPU cost.

CTR employs a complex routing algorithm to determine the optimal

routes for each segment of input streams. Such routing cost is per segment

cost and may be significant with fine-grained segments. On the contrary,

ATR and PSP do not require routing by employing one hop computation

15.1. STATE REPLICATION BASED DISTRIBUTION 172

Item ATR CTR PSP
Routing Cost Low High Low
Per Segment Metadata No Yes No
Duplication Removal No Yes No
Load Balancing Granularity Large Small Small
State Management Cost High High Low
Adaptation Cost Unknown Unknown Low
Network Transmission Low Middle High

Figure 15.1: CPU Consumption Comparison

and fixed routing respectively. The routing information and other meta-

data must be attached to each segment to ensure the correctness in CTR,

while no such requirement exists for ATR and PSP-D. Further CTR needs

extra work to avoid generating duplicated results while the other two will

not generate duplication in the first place. The ATR and CTR approaches

both duplicate states and thus the state management costs are much higher

than for PSP. At runtime, each segment of the input stream is processed by

only one processing node for ATR, several nodes for CTR and the optimal

number of processing nodes for PSP. Thus the processing latency using PSP

is expected to be the lowest.

The disadvantage of PSP is that the network transmission cost may be

larger than that for ATR and CTR, since all input tuples and intermediate

results need to be send along the ring. We limit the usage of the PSP scheme

to a cluster with local high speed network only.

15.2. STREAM TUPLE PROCESSING ORDER 173

15.2 Stream Tuple Processing Order

As described in Chapter 11, continuous query systems may adopt various

execution models to determine the stream tuple processing order. The execu-

tion model affects the tuple order in each intermediate queue in the query

plan. It also affects correct tuple processing and purging given a window

constraint.

The state slicing strategies described in previous chapters are based on

the assumption that the totally ordered execution model is being used, where

all the stream tuples are processed in a global order according to their

timestamps. This model is the most strict execution model that guaran-

tees that the timestamps are monotonously increasing in every operator.

This simplifies the state purging process in the state slicing approach and

avoids potential missing joined results that may otherwise arise if other less

restricted models were being used.

In this section, we generalize the state slicing strategies proposed in

previous chapters by relaxing the assumption about strict execution model.

First we categorize the execution models and then discuss their correspond-

ing tuple purging algorithms. These execution models include the totally

ordered model, the semi-ordered model and the unordered model. We identify

the necessity of applying at least semi-ordered processing model for correct

state slicing. We then describe the changes that need to be made to the

state slicing strategies when used in systems that employ the semi-ordered

model.

15.2. STREAM TUPLE PROCESSING ORDER 174

15.2.1 Execution Models

For continuous query processing, tuples arrive at run time and need to be

processed in certain orders. For a multi-way join operator (state sliced or

not) that have multiple input streams, the operator determines that which

tuple is processed next. Such execution orders can directly affect the purg-

ing and probing processes of the operator.

Totally Ordered Execution Model

This is the most strict execution model for continuous query process-

ing. When using this model, tuples are being processed in exactly the order

as their timestamp, independent of their stream source names. By apply-

ing the complete synchronized execution model, all probe tuples (or build

tuples) in any queues in the state sliced query plan are ordered by their

timestamp.

By using this model, a tuple t1 that has a smaller timestamp than a tuple

t2 is guaranteed to be processed before t2, even if t1 and t2 are in different

input queues. Conceptually, we can consider the system as having a single

stream input queue. Whenever a stream tuple arrives, it is placed in this

stream queue. All leaf operators in the query plan obtain tuples from this

single input queue.

Semi-Ordered Execution Model

The semi-ordered execution model is a bit more relaxed than the previous

model. This model only enforces that a operator processes tuples in each of

its input queues in increasing order of their timestamps. Thus tuples from

different input queues can be processed interactively. Such an execution

15.2. STREAM TUPLE PROCESSING ORDER 175

model is necessary for batch processing of the input stream tuples.

Different from the totally synchronized model, this model only enforces

the tuple execution order to be the same as the tuple arrival order locally

for each input queue. It does not enforce the tuple execution order across

all input streams. Although this model is more relaxed in execution order,

the tuples in each queue are still ordered by their timestamp because each

operator processes tuples in its input queues in the right order.

Un-Ordered Execution Model

The un-ordered execution model does not pose any constraints on the tuple

execution order. Inside each operator, the tuples do not need to be executed

in order. The benefit of such a model is that the scheduling algorithm does

not have any restrictions and can be optimized to achieve the best perfor-

mance. However, an obvious drawback is that the joined result tuples are

ordered neither by max nor by min timestamp of sub-tuples.

The execution model can determine the state purging and thus may

affect the state sliced join processing. Worst yet, when tuples are not be-

ing executed in the same order as they arrive (as would be the case in the

semi-synchronized or un-synchronized models), out-of-order execution is

possible. This means that some tuples that arrived earlier (with smaller

timestamps) may be executed later than some other tuples that arrived later

(with larger timestamps). To ensure the correctness of the state sliced join,

as we will show below, the out-of-order execution creates a problem during

the state sliced join process. Thus at least semi-ordered execution must be

adopted.

15.2. STREAM TUPLE PROCESSING ORDER 176

15.2.2 State Sliced Join Processing with Semi-Ordered Execution

In previous chapters, all discussions are based on the total-ordered execu-

tion model. In this section, we first show that the un-ordered execution

model cannot guarantee the completeness of the joined result. Then a lazy

purge is proposed for state sliced join process in semi-ordered execution

model.

Consider join A[w] ./ B[w] of streams A and B, no purge based state

slicing can be achieved with un-ordered execution model. The reason is

that without any other information, any build tuple must stay in the first

state sliced join operator to wait for possible future probing of out-of-order

tuples.

Following is an example (A[w] ./ B[w]) of the purging and probing used

with semi-ordered execution model. Assume tuples a1, a2 and tuples b1, b2

arrive at the system with timestamps Ta1 , Ta2 , Tb1 , Tb2 respectively, where

Tb1 < Ta1 = Ta2 < Tb2 . One possible semi-ordered execution sequence is:

b1,a1,a2 and b2. To generate the complete joined result, the processed tuple

m need not only probe the state tuple n that satisfies Tn > Tm −w, but also

Tn < Tm +w. Similar to the interleaved PSP scheme, the lazy purge is used

to keep the state tuple until no other stream tuples will purge this tuple. To

achieve this, each state maintain a mark for each crossing purge from other

input streams. Only the part of the state that out of the sliced windows of

all the other streams will be really removed from the current state.

For correctness, we have:

Lemma 15.1 (Complete Joined Result) State sliced join processing with lazy

15.2. STREAM TUPLE PROCESSING ORDER 177

purge will generate complete joined result in semi-ordered execution model.

Proof:

• No duplication. Proof by contradiction. Assume two joined tuples

are exactly the same, in the form of t1, t1, ...tn, where ti is the tuple

from stream I . Then these two tuples must be generated when pro-

cessing different input probing tuples. Let them be tm and tn. Then it

means tuple tm is processed before tn since tn is already in the state.

Similarly tn is processed before tm, which contradicts to the previous

claim.

• No missing result. Assume tuple t1, t1, ...tn is a valid joined result and

input tuple ti is the last one begin processed among t1, .., tn. Then

from lazy purging, we know this joined result will be generated.

The timestamps of the output of state sliced join with semi-ordered ex-

ecution model is not ordered by the max of the timestamps of the input

tuples. However we have:

Lemma 15.2 (Output Timestamp Order Lemma) Let t and t’ be two tuples in

the output queue of a state sliced window join operator. Both tuples have times-

tamps of size n, represented as [TS1, ..., TSn] and [TS′1, ..., TS′n] respectively. If

tuple t appears earlier than tuple t’ in the queue, then there must exist at least one

i (1 <= i <= n), such that TSi < TS′i .

Proof: Proof by induction on the size of timestamp array n.

15.2. STREAM TUPLE PROCESSING ORDER 178

Basic: n = 2. Let [TS1, TS2] and [TS′1, TS′2] be the timestamps of the in-

termediate result tuples t and t′ respectively. When intermediate result t is

generated before t′, there are only two possible cases. (1) If t and t′ are both

generated by the same probing tuple, then TS1 = TS′1 (or TS2 = TS′2).

Thus TS2 < TS′2 (or TS1 < TS′1) since the state is ordered by the times-

tamps and the probing is in the same order. (2) If t and t′ are not generated

by same probing tuple, then the timestamps of the two corresponding prob-

ing tuples have: TS1 < TS′1 or TS2 < TS′2, according to the semi-ordered

execution model.

Inductive Hypothesis: Assume that the timestamp order lemma holds

for any tuple sequence with size n <= k.

Inductive Step: We now show that the timestamp order lemma also

holds for sequences with size n = k + 1.

The timestamp array for t with size n = k + 1 can be treated as a combi-

nation of two sub-tuples t1 and t2 with timestamp arrays as [TS1, ..., TSi−1,

TSi+1, ..., TSk+1] and [TSi], respectively. Similarly, t’ can also be treated

as the combination of two sub-tuples t1’ and t2’ with timestamp array as

[TS′1, ..., TS′i−1, TS′i+1, ..., TS′k] and [TS′i] respectively, where tuple with TSi

is the probing tuple. Using the same reasoning as in the base case, we have

two cases possible: (1) TSi = TS′i , then from induction hypothesis, there

must be one TSi < TS′i . Or (2) TSi < TS′i .

Above lemma is used to limit the memory of the union operator to sort

the joined result. Any tuple that has the maximum timestamp of the times-

tamp array is smaller then the minimum timestamp of the timestamp array

15.2. STREAM TUPLE PROCESSING ORDER 179

of the incoming tuple can be safely removed from the union operator.

180

Chapter 16

Experimental Evaluation

In this chapter, we present an experimental study that showing the per-

formance of the PSP model and comparing it with other state-of-the-art

approaches.

16.1 Experiment Settings

Distributed Join Algorithms. We have implemented the proposed PSP in

a real distributed DSMS system, the D-CAPE [SLJR05]. Experiments have

been conducted to thoroughly test the ability of the proposed solution un-

der various system resource settings.

D-CAPE is implemented in Java and the PSP model is implemented as a

regular operator inside. The PSP ring-based query plan is formed first and

then deployed in the cluster using the regular pipelined parallelism of the

DSMS.

To compare the performance of PSP with other approaches, we also im-

16.1. EXPERIMENT SETTINGS 181

plement the ATR and CTR proposed in [GYW07]. For ATR, a special stream

data diffusion operator is implemented, who is in charge of centralized con-

trol of the segments from all input streams. The data diffusion operator in

the ATR model has one important parameter, namely the segment length,

for performance tuning. For CTR, the data diffusion operator has a rout-

ing table and can calculate the routing path for each input stream tuple. To

avoid uncertainty of the minimum set cover algorithm, we add one param-

eter for CTR, enforcing the number of copies of the state tuples among all

the processing nodes (this number is set to 2 in [GYW07]). We also enforce

random deployment of the states, such that the minimum set cover algo-

rithm will return a consistent number of coverings for each probing step.

We also enforce the synchronization of the multi-hop execution in CTR.

That is, no interleaved processing of multiple input segments is applied to

avoid state overlap. To avoid bottleneck for the data diffusion operator, it

is deployed separately in one node without other join operators.

To measure the system performance under different join selectivities,

we using a probabilistic join probing that the join selectivities can be con-

trolled.

Query Sets. The MJ operator is used by a clustering algorithm to identify

similar images captured by different sensors for object movement detec-

tion. The similarity of images is defined based on their distances calculated

from the RGB values for all image pixels. A symmetric nested loop join

algorithm is used in the experiments. The tuples in the data streams are

generated according to the Poisson arrival pattern. The stream input rate is

changed by setting different mean inter-arrival times between two tuples.

16.2. EXPERIMENT 1: SENSITIVITY ANALYSIS FOR PSP 182

Our experiments use three different join costs: small, middle, large corre-

sponding to images with 5k, 10k and 20k pixels, respectively.

Evaluation Metrics. We use two measurements in this experimental study.

We measure the runtime memory usage in terms of the number of tuples

in the states of the joins. We also measure the output of the query plan in

terms of the average response latency for the join results.

Experimental Platform. All experiments are conducted on a cluster that

consists of 20 processing nodes and one master node. Each host has two

AMD 2.6GHz Dual Core Opteron CPUs and 1GB memory. All the hosts

are connected by gigabyte private networks. Each processing node runs an

instance of our DSMS query processing engine executing one multi-way

join operator. The master node acts as the synthetic stream data sender,

which runs a stream generator and diffuses generated tuples to the pro-

cessing node holding the head operator in the ring. The master node also

collects the join results from each sliced join as the data sink. Each query

processor has a monitor thread that collects the runtime statistics of each

operator. All the experiments start with empty states in all operators.

16.2 Experiment 1: Sensitivity Analysis for PSP

In Chapter 13, we have presented an analytical cost model on the parame-

ters of the PSP model. In the cost model, the most critical part is the optimal

length of the ring for stream state slicing. In this experiment, we validate

the cost model by varying the system parameters, including (1) the num-

ber of joins as: 3-way, 5-way, 7-way and 9-way; (2) the join cost as: small,

16.2. EXPERIMENT 1: SENSITIVITY ANALYSIS FOR PSP 183

middle and large; (3) the join selectivities as: 0.05, 0.1 and 0.5; and (4) the

number of processing nodes: 4-19.

The sliding window size is set to be 10k ms for all the streams. The

input rate is set to 50 tuples/sec per stream. In all the experiments, the

system will run for 600 seconds.

We first show the cost breakdown of the network cost and different join

probing costs using a 3-way join as an example in Figure 16.1. The experi-

ments are conducted using 4 nodes in the cluster and the join selectivity is

set to be 0.1. Figure 16.1 shows the average cost, and the error bars of one

standard derivation. All the tuple probings and transmissions are counted

in, even no final joined results being generated. Since the three runs only

differ with each other for the join cost and the network cost is the same,

then only one network cost is shown. Figure 16.1 gives us a brief idea of

the cost breakdown of the total response time.

0

20

40

60

80

100

120

Network Probe-Small Probe-Middle Probe-Large

C
os

t (
m

s)

Figure 16.1: Cost Breakdown for an Example 3-Way Join Query.

Figures 16.2(a) to 16.2(f) show several of the experimental results for

the 3-way join with different join selectivities and number of nodes. The

16.2. EXPERIMENT 1: SENSITIVITY ANALYSIS FOR PSP 184

 0

 10

 20

 30

 40

 50

 60

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

(m
s)

Number of Nodes

3Way-PSP-0.05-Small
3Way-PSP-0.1-Small
3Way-PSP-0.5-Small

(a) PSP, Small Join, Response Time

 0

 200

 400

 600

 800

 1000

 1200

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ta

te
 S

iz
e

Number of Nodes

3Way-PSP-0.05-Small
3Way-PSP-0.1-Small
3Way-PSP-0.5-Small

(b) PSP, Small Join, State Size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

(m
s)

Number of Nodes

3Way-PSP-0.05-Middle
3Way-PSP-0.1-Middle
3Way-PSP-0.5-Middle

(c) PSP, Middle Join, Response Time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ta

te
 S

iz
e

Number of Nodes

3Way-PSP-0.05-Middle
3Way-PSP-0.1-Middle
3Way-PSP-0.5-Middle

(d) PSP, Middle Join, State Size

 0

 20

 40

 60

 80

 100

 120

 140

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

(m
s)

Number of Nodes

3Way-PSP-0.05-Large
3Way-PSP-0.1-Large
3Way-PSP-0.5-Large

(e) PSP, Large Join, Response Time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ta

te
 S

iz
e

Number of Nodes

3Way-PSP-0.05-Large
3Way-PSP-0.1-Large
3Way-PSP-0.5-Large

(f) PSP, Large Join, State Size

Figure 16.2: Performance Analysis of the PSP scheme

legend reads as: Number of way-Join scheme-Join selectivity-Join cost.

The PSP scheme does not have any duplicated states, thus the mem-

16.3. EXPERIMENT 2: PSP WITH INTERLEAVED PROCESSING 185

ory consumptions are pretty stable among all the experiments. The query

response latency is sensitive to the join selectivities and the cluster size,

which affect the number of intermediate join results and join probing re-

spectively. We observe that the average response time increases for larger

join selectivities, since the workload is increased accordingly. When the

cluster size increases, the response time will not decrease all the time. In-

stead, it will increase when the size of cluster is too large. In Figure 16.2(a),

the response time increases after having 14 nodes in the ring when join se-

lectivity is 0.5. Also this number is sensitive to the join selectivities since

different number of intermediate result will be generated and transmitted

along the ring. For smaller join selectivities, we expect large optimal num-

ber of nodes in the ring. This is consistent with the cost based ring length

optimization discussed in Chapter 13.

16.3 Experiment 2: PSP with Interleaved Processing

The PSP-Int scheme allows multiple input stream tuples to be processed

concurrently in the PSP ring. The delayed purging is used to maintain

correct sliced states in the corresponding operators.

In this experiment, we compare the performance of PSP-Int with the

PSP model under different workloads by varying the system parameters,

including (1) number of ways of joins as: 3-way, 5-way, 7-way and 9-way;

(2) join cost as: small, middle and large; (3) join selectivity as: 0.05, 0.1

and 0.5; (4) number of processing nodes: 4-19; (5) Number of concurrent

processed tuples.

16.3. EXPERIMENT 2: PSP WITH INTERLEAVED PROCESSING 186

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

(m
s)

Number of Nodes

3Way-PSP_Int-0.1-Small-5
3Way-PSP_Int-0.1-Small-10
3Way-PSP_Int-0.1-Small-20

(a) PSP-Int, Small Join, Response
Time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ta

te
 S

iz
e

Number of Nodes

3Way-PSP_Int-0.1-Small-5
3Way-PSP_Int-0.1-Small-10
3Way-PSP_Int-0.1-Small-20

(b) PSP-Int, Small Join, State Size

 0

 50

 100

 150

 200

 250

 300

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

(m
s)

Number of Nodes

3Way-PSP_Int-0.1-Middle-5
3Way-PSP_Int-0.1-Middle-10
3Way-PSP_Int-0.1-Middle-20

(c) PSP-Int, Middle Join, Re-
sponse Time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ta

te
 S

iz
e

Number of Nodes

3Way-PSP_Int-0.1-Middle-5
3Way-PSP_Int-0.1-Middle-10
3Way-PSP_Int-0.1-Middle-20

(d) PSP-Int, Middle Join, State
Size

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

(m
s)

Number of Nodes

3Way-PSP_Int-0.1-Large-5
3Way-PSP_Int-0.1-Large-10
3Way-PSP_Int-0.1-Large-20

(e) PSP-Int, Large Join, Response
Time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ta

te
 S

iz
e

Number of Nodes

3Way-PSP_Int-0.1-Large-5
3Way-PSP_Int-0.1-Large-10
3Way-PSP_Int-0.1-Large-20

(f) PSP-Int, Large Join, State Size

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

(m
s)

Number of Nodes

5Way-PSP_Int-0.1-Small-5
5Way-PSP_Int-0.1-Small-10
5Way-PSP_Int-0.1-Small-20

(g) PSP-Int, Small Join, Response
Time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ta

te
 S

iz
e

Number of Nodes

5Way-PSP_Int-0.1-Small-5
5Way-PSP_Int-0.1-Small-10
5Way-PSP_Int-0.1-Small-20

(h) PSP-Int, Small Join, State Size

Figure 16.3: Performance Analysis of the PSP-Int scheme

16.4. EXPERIMENT 3: PSP VS. ATR AND CTR 187

The sliding window size is set to be 10k ms for all the streams. The

input rate is set to 50 tuples/sec per stream. In all the experiments, the

system will run for 600 seconds.

Figure 16.3(a) to 16.3(h) show several of the experiment results for 3-

way and 5-way join with different join selectivities and number of nodes.

The legend reads as: Number of way-Join scheme-Join selectivity-Join cost-

Concurrent Tuple Num.

The PSP-Int scheme does have some duplicated states, thus the memory

consumptions are more than the PSP corresponding among all the experi-

ments. The query response latency is pretty stable since the PSP-Int allows

more input tuples to be processed at the same time. Thus increasing the

processing nodes will increase the currently processed tuples instead of re-

ducing the response time of the joined results.

16.4 Experiment 3: PSP vs. ATR and CTR

The next set of experiments compare the PSP scheme with the ATR and

CTR solutions.

Figures 16.4(a) to 16.4(d) show several experimental results running

the ATR approach. The legend reads as: Number of way-Join scheme-

Join selectivity-Join cost-Segment length(ms).

We vary the segment size for ATR from 10k ms, which is equal to the

window size, to 50k ms. In ATR, the corresponding segments of the stream

tuples are processed at each node. Thus all the workload to process single

input stream tuple is done by single node. The result is that the average

16.4. EXPERIMENT 3: PSP VS. ATR AND CTR 188

 0

 100

 200

 300

 400

 500

 600

 700

 800

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

(m
s)

Number of Nodes

3Way-ATR-0.1-Small-10000
3Way-ATR-0.1-Small-20000
3Way-ATR-0.1-Small-30000
3Way-ATR-0.1-Small-40000
3Way-ATR-0.1-Small-50000

(a) ATR, Small Join, Response Time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ta

te
 S

iz
e

Number of Nodes

3Way-ATR-0.1-Small-10000
3Way-ATR-0.1-Small-20000
3Way-ATR-0.1-Small-30000
3Way-ATR-0.1-Small-40000
3Way-ATR-0.1-Small-50000

(b) ATR, Small Join, State Size

 0

 20

 40

 60

 80

 100

 120

 140

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

(m
s)

Number of Nodes

3Way-ATR-0.1-Middle-10000
3Way-ATR-0.1-Middle-20000
3Way-ATR-0.1-Middle-30000
3Way-ATR-0.1-Middle-40000
3Way-ATR-0.1-Middle-50000

(c) ATR, Middle Join, Response Time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ta

te
 S

iz
e

Number of Nodes

3Way-ATR-0.1-Middle-10000
3Way-ATR-0.1-Middle-20000
3Way-ATR-0.1-Middle-30000
3Way-ATR-0.1-Middle-40000
3Way-ATR-0.1-Middle-50000

(d) ATR, Middle Join, State Size

Figure 16.4: Performance Analysis of the ATR scheme

response time will not decrease by adding more nodes into the system. The

state memory consumption for ATR is increasing steadily with the number

of nodes in the system, since more duplicated segments are generated and

stored in the states.

Figures 16.5(a) to 16.5(d) show several experimental results running

the CTR approach. The legend reads as: Number of way-Join scheme-

Join selectivity-Join cost-Number Copy. We enforce the number of copies

in the CTR approach to stabilize the output of the minimal set cover algo-

rithm. We limit the number of copies to at most 50% of the number of the

16.4. EXPERIMENT 3: PSP VS. ATR AND CTR 189

 0

 100

 200

 300

 400

 500

 600

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

(m
s)

Number of Nodes

3Way-CTR-0.1-Small-2
3Way-CTR-0.1-Small-3
3Way-CTR-0.1-Small-4
3Way-CTR-0.1-Small-5
3Way-CTR-0.1-Small-6
3Way-CTR-0.1-Small-7
3Way-CTR-0.1-Small-8
3Way-CTR-0.1-Small-9

(a) CTR, Small Join, Response Time

 0

 500

 1000

 1500

 2000

 2500

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ta

te
 S

iz
e

Number of Nodes

3Way-CTR-0.1-Small-2
3Way-CTR-0.1-Small-3
3Way-CTR-0.1-Small-4
3Way-CTR-0.1-Small-5
3Way-CTR-0.1-Small-6
3Way-CTR-0.1-Small-7
3Way-CTR-0.1-Small-8
3Way-CTR-0.1-Small-9

(b) CTR, Small Join, State Size

 0

 100

 200

 300

 400

 500

 600

 700

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

po
ns

e
T

im
e

(m
s)

Number of Nodes

3Way-CTR-0.1-Middle-2
3Way-CTR-0.1-Middle-3
3Way-CTR-0.1-Middle-4
3Way-CTR-0.1-Middle-5
3Way-CTR-0.1-Middle-6
3Way-CTR-0.1-Middle-7
3Way-CTR-0.1-Middle-8
3Way-CTR-0.1-Middle-9

(c) CTR, Middle Join, Response Time

 0

 500

 1000

 1500

 2000

 2500

 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S
ta

te
 S

iz
e

Number of Nodes

3Way-CTR-0.1-Middle-2
3Way-CTR-0.1-Middle-3
3Way-CTR-0.1-Middle-4
3Way-CTR-0.1-Middle-5
3Way-CTR-0.1-Middle-6
3Way-CTR-0.1-Middle-7
3Way-CTR-0.1-Middle-8
3Way-CTR-0.1-Middle-9

(d) CTR, Middle Join, State Size

Figure 16.5: Performance Analysis of the CTR scheme

nodes running.

The response time is decreasing with the large number of nodes in the

system. This result is consistent with the analysis in [GYW07] since the CTR

is also a multi-hop join scheme. More nodes in the system will increase

the CPU power and decrease the processing time. We also observe that

for a fixed number of nodes, more copies of the states result in a larger

response time. This can be explained by the minimal set cover algorithm.

When more copies exist, less nodes will participate in processing this input

stream tuple and the average response time increases accordingly. The state

16.5. EXPERIMENT 4: RUNTIME ADAPTATION OF PSP 190

memory usage remains rather stable when increasing the processing nodes.

But it will increase when more copies is used.

Overall, the PSP model with optimal settings performs better than ATR

and CTR schemes.

16.5 Experiment 4: Runtime Adaptation of PSP

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000

R
es

po
ns

e
T

im
e

(m
s)

Number of Output

(a) PSP with Adaptation

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000

R
es

po
ns

e
T

im
e

(m
s)

Number of Output

(b) PSP without Adaptation

Figure 16.6: Experimental Results of Adaptation

In the following experiments, we compare the response time when run-

time adaptation is turned on and off in the PSP scheme. In the middle

of processing, we set the arrival rate to increase from 50 tuples/sec to 100

tuples/sec. Figures 16.6(a) and 16.6(b) compare the performance of PSP

under this change. The query used is a 3-way join, with the middle join

cost and the join selectivity being 0.05. Clearly the runtime adaptation can

make the system more stable and robust to environmental changes.

Figures 16.7(a) and 16.7(b) show the performance of a 3-way join, with

small join cost, join selectivity 0.2 and the arrival rate increase from 50 tu-

16.5. EXPERIMENT 4: RUNTIME ADAPTATION OF PSP 191

ples/sec to 100 tuples/sec. Figures 16.7(c) and 16.7(d) show the perfor-

mance of the same query with similar parameters except that the arrival

rate increases from 50 tuples/sec to 150 tuples/sec.

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

R
es

po
ns

e
T

im
e

(m
s)

Number of Output

(a) PSP with Adaptation

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000
R

es
po

ns
e

T
im

e
(m

s)
Number of Output

(b) PSP without Adaptation

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

R
es

po
ns

e
T

im
e

(m
s)

Number of Output

(c) PSP with Adaptation

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

R
es

po
ns

e
T

im
e

(m
s)

Number of Output

(d) PSP without Adaptation

Figure 16.7: Experiments Results of Adaptation

192

Chapter 17

Related Work

Parallel and distributed query processing has been the focus of both academia

and industry for a long time [DG92, GHK92, Kun00, Val93]. Two main cate-

gories of parallelism are employed in the literature: pipelined parallelism and

partitioned parallelism. The proposed PSP scheme belongs to the pipelined

parallelism. Superior to the traditional query plan based pipelining, the

PSP scheme has the advantage of being able to employ an optimal length

pipelining at the optimizer’s will.

Distributed stream processing has been considered in recent years for

distributed Eddies [TD03], Borealis [Ac04, ABcea05] and System S [JAA+06]

and DCAPE [LZJ+05]. For distributed processing of stateful stream queries,

state partitioning [SHea03] has been proposed. State partitioning has the

major limitation of only supporting equi-joins, while our target is generic

joins. For generic joins, duplicated data partitions in multiple machines are

required for hash-based solution.

For distributed processing of generic joins with arbitrary join predi-

CHAPTER 17. RELATED WORK 193

cates, a recent project [GYW07] has proposed two state replication based

approaches. As indicated in Section 15, such state duplication may abuse

large amounts of memory resources, possibly also causing increased data

shipping and processing costs. Section 15 provides a detailed comparison

between our PSP scheme and their solutions.

There are several existing works for finding optimal join orderings for

multi-way join operators [VNB03, BMM+04]. Our PSP scheme is clearly

orthogonal to this issue. The optimal join orderings identified by such al-

gorithms can thus be directly utilized for processing in our proposed PSP

distribution schemes.

Load-shedding [TZ+03] and approximated query processing [SW04]

and spilling data to disk [UF00] are alternate solutions for tackling con-

tinuous query processing with insufficient resources. Approximated query

processing [SW04] is another general direction for handling such situations.

Different from these, we aim to guarantee accurate high-performance pro-

cessing and thus focus on distributed processing in a cluster. Those works

are clearly orthogonal to our work, and can be applied on our solution if

the total computation resources of the cluster are found to be insufficient.

194

Part III

Distributed Multiple

Multi-way Join Query

Optimization

195

Chapter 18

Introduction

In Parts I and II, we have discussed the sharing among different queries

and distributed multi-way join query processing. In the third part of the

dissertation work, we will integrate these two solutions to tackle the prob-

lem of multiple query optimization in a distributed system. The common

state slicing concept behind these two parts makes the seamless integration

possible.

18.1 Research Motivation

Stream applications may issue queries on the same set of input streams,

with various window constraints and selection predicates on the streams.

Sharing the computation of multiple multi-way stream joins can potentially

save huge memory and CPU resources.

Although the shared multi-way join query plan reduces the memory

and CPU consumption to answer all the stream queries in the given query

18.2. PROPOSED STRATEGIES 196

set, the requirements may still beyond the resource limitations in a single

processing node. Distributed processing of the shared query plan then is

necessary. It can improve the scalability of the stream engine, in terms of

stream arrival rates, number of input streams and size of the given query

workload.

18.2 Proposed Strategies

To share the multi-way join operators in a distributed system, we propose

to use a two-phase approach. We first form a logical shared query plan

for a given query workload and then deploy it in the cluster of processing

nodes.

Given a set of continuous queries over the same set of input streams, a

logical shared query plan is formed in the first phase. To form the shared

query plan, the selections on the streams in each individual query plan are

pulled up first to make the multi-way joins “sharable” in the sense that all

the join operators share exactly the same join input streams and join con-

ditions, but may have distinct window constraints. Then the states of each

input stream are sliced according to the window constraints of the stream

queries in the workload. Next the selections are pushed into the ring of

sliced joins to stipulate that every joined result generated is used to answer

at least one query in the query workload. Lastly, one routing operator is

employed to dispatch the joined results to each individual stream query

application.

After forming the logical shared query plan, it can be deployed phys-

18.2. PROPOSED STRATEGIES 197

ically in the cluster. Workload balancing at each processing node is the

optimization goal of the deployment. To achieve this, further state slicing

may be needed to break the state sliced joins that have large states into

smaller ones such that each can be hosted in one processing node. Also, a

physical node may host multiple small state sliced joins of the logical query

plan. Each processing node also has a copy of the routing operator in the

logical plan to dispatch the joined results generated in this processing node

to each application.

The logical and physical state slicing in the two-phase approach are

orthogonal since the optimization goals of each phase are independent.

When the logical query plan is built, the state slicing is conducted accord-

ing to the query semantics, including the window constraints and the se-

lections on the input streams. After pushing selections into the state sliced

join ring, the query plan is to ensure that no unnecessary join probing will

happen. In the physical state slicing phase, the logical plan is deployed in

the cluster with consideration of workload balance and tradeoff between

number of nodes and the transmission costs. The state slicing during plan

deployment in the second phase does not affect the optimization goal of the

first phase in the sense that the deployment does not change the join prob-

ing cost. Also the state slicing in the second phase is independent from the

logical state slicing in the first phase in the sense that a processing node can

hold multiple logical state sliced joins, determined by the second phase.

In part III, we tackle the following issues related to the distributed pro-

cessing of multiple stream joins.

18.2. PROPOSED STRATEGIES 198

• Pushing Selections into State Sliced Join Ring. Pushing selection into the

chain has been discussed in Chapter 7 for state sliced binary joins.

For the same optimization reason, namely to minimize the join cost,

we now want to push the selections into the ring for multi-way state

sliced joins. Compared to the selection push down in Chapter 7, the

new challenge is that we need to ensure all the intermediate results

generated are necessary. That is, no extra join cost arises.

• Adding Router to Dispatch the Joined Results. Unlike in the binary state

sliced join chain, the joined results generated by every processing

node may serve multiple stream queries. Thus the joins down the

chain will serve less and less queries and the last one only serves one

query. The reason is that in the ring the intermediate results will be

propagated along the ring and probe the corresponding states in all

the operators. The routing of the joined result will be much more

complex than the binary counterpart in the sense of routing logic. A

fast routing strategy is thus critical.

• Deploying the Logical Query Plan. A new cost model, considering the

selections, needs to be developed in a cluster to optimally deploy the

logical plan, in terms of response time and workload balancing.

In this part, we assume that the joined queries share the same join or-

derings among the input streams. Otherwise no sharing is possible since

the multi-way join does not reserve intermediate results in the states. Mul-

tiple query sharing aware join order optimization, as a promising future

work, is beyond the scope of this dissertation. We also assume the queries

18.3. ROAD MAP 199

share the same join conditions, since otherwise no join probing costs can be

shared even when the states memory may.

18.3 Road Map

The rest of this part is organized as follows. Chapter 19 presents the selec-

tion push down approach in the multi-way state sliced join ring. Chapter 20

illustrates the routing strategy using bitmaps to dispatch the joined results.

Chapter 21 presents the cost based logical plan allocation for deployment

in the cluster.

200

Chapter 19

Selection Pushdown for

Multi-way Join

In this chapter, we discuss how to push the selections into the ring to build

logical shared query plan with a ring of state sliced joins. For ease of il-

lustration, we limit our discussion to the case that all the stream queries

join the same set of input streams on the same join conditions. They can

have different selection predicates on the input streams and may use dif-

ferent window constraints. We also assume the same join orderings are

employed. In this chapter, we discuss how to push selections into the ring,

while in the next chapter the routing strategy is described to dispatch the

joined results to each query.

19.1. SELECTION PULL UP AND WINDOW BASED STATE SLICING 201

19.1 Selection Pull Up and Window based State Slic-

ing

Consider a workload of N stream queries registered in the DSMS, where

each query performs a sliding window join on data streams S1, S2, ..., Sm

with possibly different window constraints on each input stream. Each

stream query may also have selections on each input stream.

Without loss of generality, we focus on one of the input streams, Sj , and

the selections on stream Sj . Given a set of continuous queries, the queries

are sorted by their window lengths on stream Sj in ascending order, de-

noted as q1, q2, ..., qn. That is, Wi−1 < Wi holds where Wi−1 denotes the

window size of qi−1 on stream Sj and Wi denotes the window size of qi on

Sj . Here we only discuss the cases that all the windows are distinct from

one another, since the case of same window constraints is trivial. Note that

for input streams other than Sj , the order may be different. We also denote

the corresponding selection of qi on Stream Sj as σi.

To share the join computation involving the stream Sj , we first pull the

selections up in the query plan for each query qi, according to the following

equation.

... 1 σi(Sj) 1 ... = σi(... 1 Sj 1 ...)

The next step is to slice the state of stream Sj according to the window

constraints, with increasing window lengths. Thus, we have a sequence of

sliced states Sj [W0,W1], Sj [W1,W2], ..., Sj [Wn−1, Wn], where W0 = 0 and

19.2. SELECTION PUSH DOWN 202

Wi denotes the window size of query qi over stream Sj .

The same process can be conducted for the other input streams. Even-

tually we will have a set of sequences of sliced states for each input stream.

Since the logical window-based state-slicing for multi-way join without

the selections corresponds to actually a PSP query plan deployed on one

single node, so the correctness of this slicing is stipulated by Theorem 8.

Following Theorem 5, we have below theorem:

Theorem 10 The total state memory used in the states Sj [W0,W1], Sj [W1,W2],

..., Sj [Wn−1,Wn] is equal to the state memory used for stream Sj in the multi-

way join S1 1 S2 1 ... 1 Sj 1 ... 1 Sm, where W0 = 0 and Wi denotes the

window size of query qi over stream Sj .

The proof is similar to the one for Theorem 5 and is not repeated here,

since after selection pullup, the window-based multi-way join state-slicing

is in fact an extended “Mem-Opt” state slicing.

19.2 Selection Push Down

Similar with selection push down into the chain discussed in Chapter 7,

we can also push down the selections into the ring of sliced joins. We now

propose the following theorem, which is an extended version of Theorem 4

for multi-way joins.

Theorem 11 The select operator, which has predicates on stream attributes except

the timestamps, can be pushed down into the ring without affecting the query

semantics. That is, when the selection σ is pushed into the ring between adjacent

19.2. SELECTION PUSH DOWN 203

sliced join Ji and Ji+1, the union of the join results of the m-way sliced window

joins in a ring σ(S1[0,W1]
s
1 ...

s
1 Sm[0,W1]), ..., σ(S1[Wi−1,Wi]

s
1 ...

s
1

Sm[Wi−1,Wi]), σ, S1[Wi,Wi+1]
s
1 ...

s
1 Sm[Wi,Wi+1], ..., S1[WN−1, WN]

s
1

...
s
1 Sm[WN−1, WN] is equivalent to the results of a regular sliding window join

σ(S1[W] 1 ... 1 Sm[W]), where W = WN .

The proof of Theorem 11 is similar to the proof of Theorem 4, since the σ

operator between Ji and Ji+1 will suppress down-stream select operators.

All the down-stream select operators thus can be safely removed.

Consider the input stream Sj , let us assume the queries in the work-

load are sorted by their window lengths on stream Sj in ascending order,

denoted as q1, q2, ..., qn. Let us also denote the corresponding selections of

qi over stream Sj as σj
i . Reusing the techniques discussed in Chapter 7, the

selections can be pushed down into the ring between adjacent state sliced

joins. We denote the selection on stream Sj before sliced join Ji as σ̂j
i . The

predicate of the selection σ̂j
i corresponding to the disjunction of the selec-

tion predicates from σj
i to σj

n is denoted as:

σ̂j
i = σj

i ∨ σj
i+1 ∨ · · · ∨ σj

n

Obviously the predicates of σ̂j
i overlap partially with σ̂j

i+1 and so on.

In implementation, each stream tuple is marked to show which σj
i has al-

ready been evaluated to avoid re-evaluation of the same predicates multi-

ple times.

Similar to Theorem 6, we have the following theorem.

Theorem 12 The state slicing sharing with selection push-down consumes the

19.2. SELECTION PUSH DOWN 204

minimal state memory for the multi-way joins in a given workload.

The proof is straightforward since: (1) at any time, the contents in the

state memory of all sliced joins are pairwise disjoint with each other. Thus

no duplication exists in the states; and (2) any state tuple is needed to an-

swer at least one query in the workload.

We have only discussed the selections of the input stream tuples above.

Next, we now show that the intermediate results are also subject to selec-

tions to avoid unnecessary join costs.

To illustrate the necessity of filtering the intermediate results, we use the

following example 3-way join. Assume query q1 is A[wA
1] 1 B[wB

1] 1 C[wC
1]

and q2 is A[wA
2] 1 B[wB

2] 1 C[wC
2]. We also assume wB

1 < wB
2 but wC

1 > wC
2 .

That is, the window size comparisons of q1 and q2 are just opposite on

streams B and C. According to the state slicing for multi-way joins, the

state of stream B will be sliced into two parts, denoted as B[0, wB
1] and

B[wB
1 , wB

2]. Similarly the C state is sliced as C[0, wC
2] and C[wC

2 , wC
1]. As-

sume the incoming a tuple from stream A will probe B states first and

then C states. We can see that the intermediate result a 1 B[wB
1 , wB

2] only

needs to join with the first sliced state of C: C[0, wC
2]. The join probing of

a 1 B[wB
1 , wB

2] 1 C[wC
2 , wC

1] should be avoided since it will not serve any

of the queries. This situation also exists in case of selection push down for

the input streams.

Without loss of generality, consider the input stream Sj . Let us assume

the queries in the workload are sorted by their window lengths on stream

Sj in ascending order, denoted as q1, q2, ..., qn. Assuming the correspond-

19.2. SELECTION PUSH DOWN 205

ing sliced states of Sj are denoted as Sj [0, wj
1], Sj [wj

1, w
j
2], ..., Sj [wj

n−1, w
j
n].

After the selection push down into the ring, we have:

Lemma 9 The intermediate results (or final results) generated from the probing

of the sliced state Sj [wj
i−1, w

j
i] is used to serve the queries qi, qi+1, ..., qn.

Proof: According to the way that the ring is formed, we know the win-

dow sizes of the queries q1, q2, ..., qn are increasing monotonously. Thus

Lemma 9 holds since the tuples in state Sj [wj
i−1, w

j
i] are inside the windows

of the queries qi, qi+1, ..., qn.

Since the intermediate results can be generated in any of the state sliced

joins in the ring and only are propagated forward along the ring, we can

not filter the intermediate results out before they have been propagated

for one complete round along the ring. That is, all the intermediate re-

sults are going to be transmitted along the ring for one round, just like in

the basic PSP scheme. For this, we change the step 3-2 in Figure 12.3 to

check the timestamps before doing the join probing. For state sliced join Ji,

if the timestamps of the incoming intermediate result satisfies any of the

queries from qi to qn, then the intermediate result is used to probe the state

Sj [wj
i−1, w

j
i] in Ji. Otherwise the probing is omitted.

Theorem 13 The state-slicing sharing with selection push-down and filtering of

intermediate results before probing consumes the minimal join probing cost for the

multi-way joins in a given workload.

Proof: Proof by induction. Assume the join ordering is S1 → S2 → ... →
Sm. Let’s consider the processing of the arrival tuple s1 from stream S1.

19.2. SELECTION PUSH DOWN 206

Basis: With the selection push-down into the ring for the input stream

tuples, all the intermediate results generated by s1 probing the states of S2

at Ji satisfy at least one of the queries qi, qi+1, ..., qn. No extra unnecessary

intermediate result is generated.

Induction: Assume the intermediate results probing states of Sj satisfy

at least one of the queries in the workload. Then with the filtering of inter-

mediate results before probing, the new generated intermediate results (or

final joined results) at Ji′ satisfy at least one of the queries qi′ , qi′+1, ..., qn.

No extra unnecessary intermediate result is generated.

207

Chapter 20

Routing the Joined Results

In this chapter, we discuss how to route the joined results to output them

to serve the different queries. From the previous chapter, we already know

that each state-sliced multi-way join operator can produce joined results for

possibly many queries in the workload. The reason is that in the ring the

intermediate result will be propagated along the ring and will probe the

corresponding states in all the operators. The routing of the joined results

will be much more complex than the binary counterpart. A fast routing

strategy is thus critical.

In this chapter, we assume that the joined queries share the same join

orderings among the same set of input streams. Without loss of generality,

we also assume each query in the workload has distinct selection predicates

and window constraints on the input streams.

20.1. ROUTING BITMAPS FOR THE LOGICAL WINDOW SLICES 208

20.1 Routing Bitmaps for the Logical Window Slices

Instead of using a large query plan to dispatch the joined results to each of

the queries, we use a routing operator to achieve fast dispatch of the joined

results.

We use the following state sliced 3-way joins with ring length equals to

3 for serving a workload of three queries as the example to illustrate our

bitmap routing approach. Note that the ring length here is equal to the

number of queries in the workload since all the window constraints are

distinct.

For ease of illustration, we ignore the selections in this section and will

discuss the selections in the next section.

Example: Assume the 3-way join is A 1 B 1 C and the join ordering for the

arrival tuple from stream A is A → B → C. We assume that the states of

the input streams are sliced into three slices each and denote them as: A1,

A2, A3, and so on for input streams B and C. Accordingly, we define the

state IDs for each of the input streams. For example, the three sliced states

of stream A are assigned IDs as: 001 for A1, 010 for A2, and 100 for A3.

Similar as Chapter 19, given a set of continuous queries q1, q2, q3, the

queries are first sorted by their window lengths on streams A,B,C individ-

ually in ascending order. Without loss of generality, we assume the order

is: q2, q3, q1 for stream A, q1, q2, q3 for stream B, and q3, q1, q2 for stream C.

We also define IDs for each of the queries in the workload as 001 for q1, 010

for q2, and 100 for q3. In the state sliced operator, it holds a matrix O to

record the query orders on each of the input streams. In this example, we

20.1. ROUTING BITMAPS FOR THE LOGICAL WINDOW SLICES 209

have:

O =




010 001 100

100 010 001

001 100 010




The first column denotes the ordering of queries on the window sizes of

stream A, the second column for stream B, and the third column for stream

C.

We attach a bitmap onto each of the joined results to identify the state

slices generating it. To do this, each sliced join operator needs to incorpo-

rate the state IDs to the joined intermediate result or final result during join

probings. For example, we have a joined result generated by the probing

of an incoming tuple from stream A against one tuple in B2 and another

one in C3. Then the bitmap for this joined tuple is set to be a vector T as

defined by:

T = (111, 110, 010)

The first item T1 for stream A is set to be 111 since the joined result is

generated from an incoming tuple from stream A instead of a state tuple.

The second item for stream B is set to be 110 since according to Lemma 9,

the B2 state slice is used to serve q2, q3 for our assumed order of window

sizes on stream B. That is T2 = O2,2 ∨ O3,2 = 010 ∨ 100. The third item for

stream C is set to be 010 since the C3 is used to serve q2 only.

The routing operator now can use the vector T to identify the queries to

20.2. BITMAPS FOR EVALUATION OF THE SELECTIONS 210

send the joined results by using bitwise boolean multiplication as follows:

T1 · T2 · T3 = 111 · 110 · 010 = 010

The multiplication result 010 means only q2 is the target query to send

this joined tuple to. Note the multiple queries may be the targets. For

example if the result is 101 then this means both q1 and q3 are the target

queries.

The correctness of the routing strategy is stipulated by Lemma 9.

20.2 Bitmaps for Evaluation of the Selections

From Chapter 19, we see that every joined result tuple is guaranteed to

serve at least one query in the workload after the pushdown of the selec-

tions on the input streams and intermediate results. If the routing strategy

discussed in the above section ends up with one target query to send the

result to, then no more check of the selection predicates is necessary.

However if multiple queries are targets from the routing strategy, then

the extra check of the selection predicates is needed to guarantee the cor-

rectness. To do this, we reuse the bitmap for the evaluation of selection σ̂j
i .

That is, check the vector that recording the evaluation of σj
i of stream Sj

to see if the selection predicate of the target query on stream Sj has been

evaluated. If not, the tuple is subject to evaluation of this predicate before

being sent out to the target query.

211

Chapter 21

Logical Query Plan

Deployment in the Cluster

After we have the logical shared query plan for multi-way joins with se-

lections pushdown and addition of the routing operator, the logical query

can be deployed in a cluster reusing the PSP scheme discussed in Part II of

this dissertation. During the deployment, each processing node will have

a copy of the routing operator to dispatch the joined results generated in

this node to the target queries. The routing operators are identical in logic

across all processing nodes. After deployment, each processing node may

hold multiple logical state sliced join operators or slice of the logical state

sliced join according to the cost model discussed here.

In Chapter 13, we have developed a cost model for the PSP scheme for

the distributed processing of multi-way joins in a cluster. Here we extend

the cost model to incorporate the case of deployment of the logical state

21.1. EXTENDED COST MODEL 212

sliced query plan.

21.1 Extended Cost Model

We here reuse the parameters in Table 13.1 for the cost model with the addi-

tion of parameters representing the selectivities of the pushdown selections

σ̂i, denoted as Sσ̂i
.

We again assume that the network bandwidth is sufficient for our work-

load. The network latency then is proportional to the number of hops of the

transmission. We assume the sending and receiving latency between pro-

cessing nodes to be proportional to the number of tuples transmitted.

We first calculate the processing workload Lshare
C for the join processing

of one input tuple in the logical query plan and the workload Lshare
PSP for

the processing of the same input tuple in the PSP scheme deployment of

the logical plan. Same as in Chapter 13, we assume that an in-memory

nested loop join algorithm is employed. We also assume the optimal join

ordering for the input tuple from stream S1 is: S1− > S2. > ...− > Sm

and the processing nodes and the network connections between them are

homogeneous.

Lshare
C = Ti + Tp + Tj

∑

2≤k≤M

∏

1≤i≤k−1

λiWiS./iSσ̂i

Lshare
PSP = LC + TsN(1 +

∑

2≤k≤M−1

∏

1≤i≤k−1

λiWiS./iSσ̂i
)

(21.1)

21.3. WORKLOAD BALANCING 213

21.2 Minimize Average Response Latency

To estimate the processing latency of the deployment, we consider the av-

erage latency for join results from one input tuple. The discussion in Chap-

ter 13 is still valid for the deployment of the shared query plan. We repeat

the formula below. The processing latency τi for node i, 1 ≤ i ≤ N is:

τi = (i− 1)Tn + max{L
share
PSP

N
,MNTn} (21.2)

There is no closed form for the average processing latency τ .

From Equation 21.2, we see the response latency is sensitive to the num-

ber of the processing nodes N . Intuitively, adding more processing nodes

increases the CPU power. On the other hand, the longer the length of the

ring the higher the network transmission cost.

Same as in Chapter 13, we have that the processing latency for each

node is decreasing with larger N , while the network latency is increasing.

Both facts need to be considered for the optimal ring length with minimal

processing latency.

21.3 Workload Balancing

Since the PSP deployment is a pipelined execution model, workload bal-

ance must be achieved for optimal performance to avoid bottleneck node.

From Equation 21.1, the dominant CPU cost for each node is the join

probing cost, which is proportional to the total size of the sliced states in

the node. To balance the workload of each node, we keep the number of

21.3. WORKLOAD BALANCING 214

state tuples balanced in every node, with consideration of the selectivities

of the pushdown selections in the ring.

215

Part IV

Conclusions and Future Work

216

Chapter 22

Conclusions of This

Dissertation

Query optimization is one of the most critical techniques for improving

query performance in any database system. Among these techniques the

optimization of continuous join queries, especially for the multi-way joins

with arbitrary join graphs, is essential since stateful join operations tend

to dominate the CPU and memory usage in a database system. For stream

query optimization, the real-time query response requirement and in-memory

processing of stream operators exacerbate the situation.

In this dissertation, I propose a novel solution of slicing the states in the

time domain called state slicing, designed to split a huge stateful operators

into a group of smaller stateful operators at the optimizer’s will. Our pro-

posed method is generic in the sense that the key idea of state slicing does

not rely on the query semantics such as the type of predicates, attribute do-

CHAPTER 22. CONCLUSIONS OF THIS DISSERTATION 217

main and attribute distribution. Our solution is versatile and generic for

arbitrary join predicates with minimal extra cost. Based on the state slic-

ing concept, we show solutions of two important problems, namely, com-

putation sharing among multiple stream queries with overlapping win-

dow constraints and distributed query processing of generic stateful join

queries.

In the first part of this dissertation, we focus on the problem of sharing

window join operators across multiple continuous queries. The window

constraints may vary according to the semantics of each query. In order

to efficiently share computations of window-based join operators, we pro-

pose a new paradigm for sharing join queries with different window con-

straints and filters. The two key ideas of the approach are state-slicing and

pipelining. The window states of the shared join operator are sliced into

fine-grained pieces based on the window constraints of individual queries.

Multiple sliced window join operators, with each joining a distinct pair of

sliced window states, can be formed. Selections now can be pushed down

between the appropriate sliced window joins to avoid unnecessary com-

putation and memory usage. Based on the state-slice sharing paradigm,

two algorithms are proposed for the chain buildup, one that minimizes the

memory consumption and the other that minimizes the CPU usage. The

algorithms are guaranteed to always find the optimal chain with respect

to their targeted resource of either minimizing memory or CPU costs, for

a given query workload. Chains in the “middle” can also be built consid-

ering tradeoffs between the system memory consumption and CPU usage.

The experimental results show that our strategy achieves respected opti-

CHAPTER 22. CONCLUSIONS OF THIS DISSERTATION 218

mization goals for memory or CPU costs over a diverse range of workload

settings among alternate solutions in the literature. The proposed tech-

niques are implemented in an actual DSMS (CAPE). Results of performance

comparison of our proposed techniques with state-of-the-art sharing strate-

gies are reported. Our solution has been shown to be more efficient than

other sharing strategies for various workloads of stream queries.

In the second part of this dissertation, we focus on distributed process-

ing of generic MJs with arbitrary join predicates, especially of multi-way

joins with large window constraints. Generic stream joins occur in many

practical situations, from simple range (or band) join queries to compli-

cated scientific queries with equation-based predicates. Such join operators

tend to be complex and CPU intensive. Our goal is to minimize the query

response time to meet the real-time response requirement of the stream ap-

plications. A novel MJ operator distribution scheme called Pipelined State

Partitioning (PSP) is proposed in this part of the dissertation. We propose

a novel solution to separate a macro MJ operator into a series of smaller

state-sliced MJ operators. Different from value-based partitioning, the PSP

scheme is join predicate agnostic and thus general. Beyond this basic PSP

scheme, we design two extensions. One, PSP-I (with I for Interleaving) in-

troduces a delayed purging technique for the states to enable interleaved

processing of multiple stream tuples with asynchronous processor coordi-

nation. Such interleaved processing is used to avoid idle processors which

exist in the synchronized basic PSP scheme. Two, beyond interleaved pro-

cessing, PSP-D (with D for Dynamic) further incorporates a dynamic state

ring structure to avoid repeated maintenance cost of sliced states, which

CHAPTER 22. CONCLUSIONS OF THIS DISSERTATION 219

comes from the standard tuple insertion and state purging routines. A cost

model is developed to achieve the optimal state slicing and allocation, in

terms of query response latency. The tradeoff between employing more

processing nodes and having more transmission hops is considered. Run-

time adaptive state relocation are also employed for achieving load bal-

ancing and re-optimization in a fluctuating environment by smoothing the

sliced state size and adding/removing processing nodes dynamically. We

have implemented the proposed PSP scheme within the D-CAPE DSMS. A

series of experimental studies are conducted to illustrate the performance

of the PSP scheme (in term of response time and state memory usage) un-

der various workloads. The experimental results show that our strategy

provides significant performance improvements under diverse workload

settings.

In Part I and Part II we have discussed the state slicing based binary

stream join query sharing and distributed multi-way join query processing.

In the third part of dissertation work, we integrate these two solutions to

tackle the problem of multiple query optimization in a distributed system.

The common state slicing concept behind these two parts makes the seam-

less integration possible. We propose a two-phase query plan generation

to share the computation of multiple multi-way stream joins in a cluster. In

the first phase, the selections are pushed into the ring and the state sliced

joins based on the selection predicates are formed. In the second phase,

the ring query plan is deployed in the processing nodes with consideration

of balanced workload in each node. To achieve a balanced workload, the

state sliced joins generated in the first phase may be further sliced. Also

CHAPTER 22. CONCLUSIONS OF THIS DISSERTATION 220

one processing node may host multiple state sliced joins together with the

selections between them. A cost based deployment is used to achieve the

balanced workload. To achieve fast routing of the joined results, we pro-

pose a bitmap based routing strategy. Since the number of distinct sub-joins

between sliced states may be huge for multi-way join sharing, we use one

routing operator to dispatch all the joined results instead of using one rout-

ing operator for the joined results from each sub-joins. Based on the bitmap

in the joined result, it can be routed to the corresponding query user.

221

Chapter 23

Future Work

23.1 State Slicing Aware Continuous Query Optimiza-

tion

So far all our discussions in this dissertation separate continuous query

plan optimization and state slicing techniques. That is, we assume these

two kinds of optimizations are independent of each other. For example, we

assume throughout this work that the join ordering optimization has been

finished before considering the state slicing optimization.

Intuitively, these two kinds of optimizations may relate to each other in

some cases. For example, when we consider the sharing of the multi-way

join queries, the optimizer for join ordering may pick different candidate

join orderings in case of the sharing.

However, considering both kinds of optimizations together will greatly

enlarge the search space for the optimal solutions in general. Thus it will be

23.2. COMPUTATION SHARING FOR COMPLEX EVENT QUERY
PROCESSING 222

a challenging optimization task. New heuristics may be needed to obtain a

sub-optimal solution in practice.

Beyond the join orderings, in the case of multi-way join query sharing,

we also need to consider all the possible tree shapes with consideration of

state sliced sharing. This is also a hard optimization task.

23.2 Computation Sharing for Complex Event Query

Processing

Recently the emergence of stream data processing has been extended to

complex event processing on event streams. The early work in this direc-

tion includes the Berkeley HiFi project [RJK+05, WDR06], Siemens RFID

middle-ware [WL05, WLLB06] and Cornell expressive publish/subscribe

system (Cayuga) [DGH+06]. This research is generally called Complex Event

Processing(CEP) on event streams.

A CEP system may need to process multiple sequential event patterns

with different window constraints. To reduce the memory and CPU con-

sumptions, it is natural to extend the State Slice concept to the NFA-based

PathStack evaluation [WDR06]. The purpose here is to push down the se-

lections as deep as possible into the automaton.

Similar to the state slice join in Part I, the selection operator can be

pushed down between the PathStacks. The execution of the selection op-

erator and the processing of new incoming events from the streams can be

scheduled arbitrarily. That is, it is not necessary that the input queue of the

select operator must be empty all the time. However, before the sequence

23.3. APPROXIMATE CONTINUOUS QUERY PROCESSING 223

construction the selection operator between the PathStacks must be sched-

uled until the input queue is consumed. That is, for lazy evaluation, the

sequence construction is the only time that the automaton and the selec-

tion operator need to be synchronized.

In multiple event patterns, common sub-sequential patterns often exist.

How to share the computations among the common sub-sequences is a new

issue for multiple event query optimization. The sharing of common sub-

event sequences can be divided into two categories, the sharing of prefix

sub sequences and sharing of suffix sub sequences.

Sharing of the computation of the common prefix can be achieved using

a cache, assuming that the memory is sufficient. The content of the cache

is the enumeration of the event sequences according to the common prefix

pattern. The cache is inserted when a new enumeration is invoked and is

deleted when the event instances expire.

Since the nature of the lazy evaluation, the multiple event patterns with

a common suffix can be constructed at the same time and no catch is neces-

sary for the sharing of the computation. In order to achieve simultaneously

sequence construction, a mix typed stack is employed in PathStack.

23.3 Approximate Continuous Query Processing

Providing query answers to the end user with low latency is always de-

sired, even with approximated answers. For complex continuous queries,

a fast response time might be more important than a precise answer, given

that the continuous query results are always changing. To catch up with

23.3. APPROXIMATE CONTINUOUS QUERY PROCESSING 224

the stream speed, approximate processing must be light weighted and can

be improved for accuracy with extra work during off-peak time.

Load-shedding [TZ+03] and approximated query processing [SW04]

are both general directions for handling system overflow. These ideas can

be applied to our solution as well whenever the available memory and

CPU resources are insufficient even after applying our state-slice sharing

optimization for multi-queries.

Overload Detection. The system overload can happen when (1) the main

memory is not large enough to hold the state of the operators; or (2) the

processing requirements for the operators exceed the capacity of the CPU

power. The detection of these two kinds of overload is different.

To detect the state memory overload, we need to monitor the average

input rate of the streams over the duration of the maximum window con-

straint. When the CPU is overloaded in a DSMS, the tuples waiting for the

processor will accumulate in the queues and the total memory used for the

queues will increase indefinitely.

To detect CPU overload, we generally set an upper bound for the total

queue memory in the system. Whenever the total queue size is beyond the

threshold, we say the DSMS is CPU overloaded.

Selective Dropping of the Workload. As pointed out in [TZ+03], inser-

tion of drop boxes into the query plan is an effective solution to shrink the

workload and thus solve the problem of overload. For using drop boxes in

a shared query plan for multi-queries, we need to consider the following

23.3. APPROXIMATE CONTINUOUS QUERY PROCESSING 225

additional issues beyond those in [TZ+03]:

• Combined Loss/Gain Ratios for Multi-queries. In a shared state-

sliced query plan, the insertion of drop boxes needs to minimize the

total loss for all the concurrently running queries in the DSMS.

• Interaction between State Split/Merge and Insertion of Drop Boxes.

State split and merge may change the state memory and CPU con-

sumption. How to achieve the optimal location for the insertion of

drop boxes with the consideration of state split and merge is a chal-

lenging problem.

Semantic Load Shedding. Different queries may be interested more in

one part of the query result than the other parts. One possible example

is that a query may be more interested in the joined result of streams A

and B when the difference of the timestamps is small. We call such a user-

specified interest over window constraints I-QoS. By utilizing the I-QoS of

each query, we can semantically shrink the workload in a DSMS.

The basic idea of such semantic load shedding depends on the amount

of probing skip in the sliced chain of join operators. The probing step in the

victim sliced join operator will be shortcut. Thus the processing time of the

victim join operator is largely reduced, since the probing cost is the main

cost for a join operator.

Note that the semantic load shedding cannot reduce the state memory

usage, unless the victim sliced join operator is the last one in the chain.

226

Bibliography

[AAB+05a] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur
Çetintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang
Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina, Nesime
Tatbul, Ying Xing, and Stanley B. Zdonik. The design of the
borealis stream processing engine. In CIDR, pages 277–289,
2005.

[AAB+05b] Mohamed H. Ali, Walid G. Aref, Raja Bose, Ahmed K. Elma-
garmid, Abdelsalam Helal, Ibrahim Kamel, and Mohamed F.
Mokbel. NILE-PDT: A phenomenon detection and tracking
framework for data stream management systems. In VLDB,
pages 1295–1298, 2005.

[ABcea05] Yanif Ahmad, Bradley Berg, Ugur Çetintemel, and et. al. Dis-
tributed operation in the borealis stream processing engine. In
SIGMOD, pages 882–884, 2005.

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The cql
continuous query language: semantic foundations and query
execution. The VLDB Journal, 15(2):121–142, 2006.

[Ac04] Yanif Ahmad and Ugur Çetintemel. Networked query pro-
cessing for distributed stream-based applications. In VLDB,
pages 456–467, 2004.

[ACC+03] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Con-
vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora:
A new model and architecture for data stream management.
VLDB Journal, 12(2):120–139, August 2003.

[AH00] Ron Avnur and Joseph M. Hellerstein. Eddies: continuously
adaptive query processing. In Proceedings of the 2000 ACM SIG-

BIBLIOGRAPHY 227

MOD international conference on Management of data, pages 261–
272. ACM Press, 2000.

[AN04] Ahmed Ayad and Jeffrey F. Naughton. Static optimization
of conjunctive queries with sliding windows over infinite
streams. In ACM SIGMOD, pages 419–430, June 2004.

[Ata99] Mikhail J. Atallah. Algorithms and theory of computation
handbook, 1999.

[AW04] A. Arasu and J. Widom. Resource sharing in continu-
ous sliding-window aggregates. In VLDB, pages 336–347,
Aug/Sep 2004.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani,
and Jennifer Widom. Models and issues in data stream sys-
tems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 1–16.
ACM Press, 2002.

[BBDW05] Pedro Bizarro, Shivnath Babu, David DeWitt, and Jennifer
Widom. Content-based routing: Different plans for different
data. In VLDB, pages 757–768, 2005.

[BBMW02] B. Babcock, S. Babu, R. Motwani, and J. Widom. Models and
issues in data streams. In PODS, pages 1–16, June 2002.

[BDM04] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shed-
ding for aggregation queries over data streams. In Proceeding
of ICDE, pages 350–361, 2004.

[BMM+04] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru
Nishizawa, and Jennifer Widom. Adaptive ordering of
pipelined stream filters. In SIGMOD, pages 407–418, 2004.

[BMWM05] Shivnath Babu, Kamesh Munagala, Jennifer Widom, and Ra-
jeev Motwani. Adaptive caching for continuous queries. In
ICDE, pages 118–129, 2005.

[BPSM97] Editors: T. Bray, J. Paoli, and C.M. Sperberg-
McQueen. Extensible Markup Language (XML), 1997.
http://www.w3.org/TR/PR-xml-971208.

BIBLIOGRAPHY 228

[BW01] S. Babu and J. Widom. Continuous queries over data streams.
In ACM SIGMOD, Sep 2001.

[CA93] R. G. G. Cattell and T. Atwood, editors. The Object Database
Standard, ODMG-93. M. Kaufmann, 1993.

[CCC+02] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. Moni-
toring streams - a new class of data management applications.
In VLDB, pages 215–226, August 2002.

[CCea03] D. Carney, U. Cetintemel, and A. Rasin et al. Operator
scheduling in a data stream manager. In VLDB, pages 838–
849, 2003.

[CDN02] Jianjun Chen, David J. DeWitt, and Jeffrey F. Naughton. De-
sign and evaluation of alternative selection placement strate-
gies in optimizing continuous queries. In ICDE, pages 345–
356, 2002.

[CF02] S. Chandrasekaran and M. Franklin. Streaming queries over
streaming data. In VLDB, pages 203–214, August 2002.

[Cha98] Surajit Chaudhuri. An overview of query optimization in re-
lational systems. In PODS, pages 34–43, 1998.

[DBBM03] M. Dalar, B. Babcock, S. Babu, and R. Motwani. Chain: Oper-
ator scheduling for memory minimization in stream systems.
In Proceedings of ACM-SIGMOD, pages 253–264, 2003.

[DG92] David DeWitt and Jim Gray. Parallel database systems: the
future of high performance database systems. Communications
of the ACM, 35(6):85–98, 1992.

[DGH+06] Alan J. Demers, Johannes Gehrke, Mingsheng Hong, Mirek
Riedewald, and Walker M. White. Towards expressive pub-
lish/subscribe systems. In EDBT, pages 627–644, 2006.

[Dij59] Edsger. W. Dijkstra. A note on two problems in connexion
with graphs. In Numerische Mathematik, volume 1, pages 269–
271. 1959.

[DMRH04] L. Ding, N. Mehta, E. A. Rundensteiner, and G. T. Heineman.
Joining punctuated streams. In EDBT Conference, pages 587–
604, March 2004.

BIBLIOGRAPHY 229

[DTW00] David J. DeWitt, Feng Tian, and Yuan Wang. Niagaracq: a
scalable continuous query system for internet databases. In
Proceedings of the 2000 ACM SIGMOD international conference
on Management of data, pages 379–390. ACM Press, 2000.

[GHK92] Sumit Ganguly, Waqar Hasan, and Ravi Krishnamurthy.
Query optimization for parallel execution. In Proceedings of
ACM SIGMOD, pages 9–18. ACM Press, 1992.

[GO03a] L. Golab and M. Tamer Ozsu. Processing sliding window
multi-joins in continuous queries over data streams. In VLDB,
pages 500–511, September 2003.

[GÖ03b] Lukasz Golab and M. Tamer Özsu. Issues in data stream man-
agement. SIGMOD Rec., 32(2):5–14, 2003.

[Gra93] Goetz Graefe. Query evaluation techniques for large
databases. ACM Comput. Surv., 25(2):73–170, 1993.

[GYW07] Xiaohui Gu, Philip S. Yu, and Haixun Wang. Adaptive load
diffusion for multiway windowed stream joins. In ICDE,
pages 146–155, 2007.

[HAE03] Moustafa A. Hammad, Walid G. Aref, and Ahmed K. Elma-
garmid. Stream window join: Tracking moving objects in
sensor-network dbs. In SSDBM, pages 75–84, 2003.

[HFAE03] M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K. El-
magarmid. Scheduling for shared window joins over data
streams. In Proceedings of VLDB Conference, 2003.

[HH99] P. J. Hass and J. M. Hellerstein. Ripple joins for online ag-
gregation. In Proceedings of ACM-SIGMOD Conference, pages
287–298, 1999.

[HXcZ07] Jeong-Hyon Hwang, Ying Xing, Ugur Çetintemel, and
Stanley B. Zdonik. A cooperative, self-configuring high-
availability solution for stream processing. In ICDE, pages
176–185, 2007.

[IK84] T. Ibaraki and T. Kameda. On the optimal nesting order for
computing n-relational joins. In ACM Transaction on Database
Systems, pages 9(3):482–502, 1984.

BIBLIOGRAPHY 230

[ILW+00] Zachary G. Ives, Alon Y. Levy, Daniel S. Weld, Daniela Flo-
rescu, and Marc Friedman. Adaptive query processing for in-
ternet applications. IEEE Data Engineering Bulletin, 23(2):19–
26, 2000.

[Ioa96] Yannis E. Ioannidis. Query optimization. ACM Comput. Surv.,
28(1):121–123, 1996.

[JAA+06] Navendu Jain, Lisa Amini, Henrique Andrade, Richard King,
Yoonho Park, Philippe Selo, and Chitra Venkatramani. De-
sign, implementation, and evaluation of the linear road bnch-
mark on the stream processing core. In SIGMOD, pages 431–
442, 2006.

[JCE+94] Christian S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia,
P. Hayes, S. Jajodia, C. Dyreson, F. Grandi, W. Kafer, N. Kline,
N. Lorentzos, Y. Mitsopoulos, A. Montanari, D. Nonen, E. Per-
essi, B. Pernici, J. F. Roddick, N. L. Sarda, M. R. Scalas,
A. Segev, R. T. Snodgrass, M. D. Soo, A. Tansel, P. Tiberio, and
G. Wiederhold. A consensus glossary of temporal database
concepts. SIGMOD Record (ACM Special Interest Group on Man-
agement of Data), 23(1):52–64, 1994.

[KBZ86] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of
non-recursive queries. In Proceeding of VLDB, pages 128–137,
1986.

[KDY+06] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick
Crowley, and Jonathan Turner. Algorithms to accelerate mul-
tiple regular expressions matching for deep packet inspection.
In SIGCOMM, pages 339–350, 2006.

[KFHJ04] Sailesh Krishnamurthy, Michael J. Franklin, Joseph M. Heller-
stein, and Garrett Jacobson. The case for precision sharing. In
VLDB, pages 972–986, 2004.

[KNV03] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window
joins over unbounded streams. In Proceedings of ICDE Confer-
ence, pages 341–352, 2003.

[KRB85] Won Kim, David S. Reiner, and Don S. Batory, editors. Query
Processing in Database Systems. Springer, 1985.

BIBLIOGRAPHY 231

[Kun00] H. Kuno. Surveying the E-Services Technical Landscape. In In-
ternational Workshop on Advance Issues of E-Commerce and Web-
Based Information Systems (WECWIS), pages 94 – 101, 2000.

[KWF06] Sailesh Krishnamurthy, Chung Wu, and Michael J. Franklin.
On-the-fly sharing for streamed aggregation. In SIGMOD,
pages 623–634, 2006.

[L. 00] L. Bouganim and F. Fabret et al. Dynamic query scheduling in
data integration systems. In ICDE, pages 425–434, 2000.

[LZJ+05] Bin Liu, Yali Zhu, Mariana Jbantova, Bradley Momberger, and
Elke A. Rundensteiner. A dynamically adaptive distributed
system for processing complex continuous queries. In VLDB,
pages 1338–1341, 2005.

[LZR06] Bin Liu, Yali Zhu, and Elke A. Rundensteiner. Run-time oper-
ator state spilling for memory intensive long-running queries.
In SIGMOD, pages 347–358, 2006.

[MRSR01] Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi Ramam-
ritham. Materialized view selection and maintenance using
multi-query optimization. In SIGMOD, pages 307–318, 2001.

[MS96] Sherry Marcus and V. S. Subrahmanian. Foundations of Mul-
timedia Database Systems. Journal of ACM, 1996.

[MSHR02] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Con-
tinuously adaptive continuous queries over streams. In ACM
SIGMOD, pages 49–60, June 2002.

[MWA+03] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and R. Varma.
Query processing, resource management, and approximation
in a data stream management system. In Proceedings of the First
Biennial Conference on Innovative Data Systems Research (CIDR
2003), pages 245–256, 2003.

[Pc05] Olga Papaemmanouil and Ugur Çetintemel. Semcast: Seman-
tic multicast for content-based data dissemination. In ICDE,
pages 242–253, 2005.

BIBLIOGRAPHY 232

[PdBG94] Jan Paredaens, Jan Van den Bussche, and Dirk Van Gucht. To-
wards a theory of spatial database queries. In Symposium on
Principles of Database Systems, pages 279–288, 1994.

[PSR03] B. Pielech, T. Sutherland, and E. A. Rundensteiner. Adaptive
scheduling framework for a continuous query system. In Sub-
mission, 2003.

[RDS+04] E. A. Rundensteiner, L. Ding, T. Sutherland, Y. Zhu, B. Pi-
elech, and N. Mehta. Cape: Continuous query engine with
heterogeneous-grained adaptivity. In VLDB Demo, pages
1353–1356, 2004.

[RG00] Raghu Ramakrishnan and Johannes Gehrke. Database Manage-
ment Systems. McGraw-Hill Higher Education, 2000.

[RJK+05] Shariq Rizvi, Shawn R. Jeffery, Sailesh Krishnamurthy,
Michael J. Franklin, Nathan Burkhart, Anil Edakkunni, and
Linus Liang. Events on the edge. In SIGMOD, pages 885–887,
2005.

[RRWM07] Venkatesh Raghavan, Elke A. Rundensteiner, John P. Woy-
cheese, and Abhishek Mukherji. Firestream: Sensor stream
processing for monitoring fire. In ICDE, 2007.

[RSSB00] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe.
Efficient and extensible algorithms for multi query optimiza-
tion. In SIGMOD, pages 249–260, 2000.

[SAC+79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. In Proceeding of ACM SIGMOD, pages
23–34, Boston, USA, May 1979.

[Sel88] Timos K. Sellis. Multiple-query optimization. ACM Trans.
Database Syst., 13(1):23–52, 1988.

[SHea03] Mehul A. Shah, Joseph M. Hellerstein, and et. al. Flux: An
adaptive partitioning operator for continuous query systmes.
In ICDE, pages 25–36, 2003.

[SLJR05] Timothy M. Sutherland, Bin Liu, Mariana Jbantova, and
Elke A. Rundensteiner. D-cape: distributed and self-tuned
continuous query processing. In CIKM, pages 217–218, 2005.

BIBLIOGRAPHY 233

[SMK97] Machael Steinbrunn, Guido Moerkotte, and Alfons Kemper.
Heuristic and randomized optimization for the join ordering
problem. In The VLDB Journal, pages 6(3):191–208, 1997.

[SW04] Utkarsh Srivastava and Jennifer Widom. Memory-limited ex-
ecution of windowed stream joins. In VLDB, pages 324–335,
2004.

[SZDR05] Timothy M. Sutherland, Yali Zhu, Luping Ding, and Elke A.
Rundensteiner. An Adaptive Multi-Objective Scheduling Se-
lection Framework for Continuous Query Processing. In
IDEAS, pages 445–454, 2005.

[TcZ+03] Nesime Tatbul, Ugur Çetintemel, Stanley B. Zdonik, Mitch
Cherniack, and Michael Stonebraker. Load shedding in a data
stream manager. In VLDB, pages 309–320, 2003.

[TcZ07] Nesime Tatbul, Ugur Çetintemel, and Stanley B. Zdonik. Stay-
ing fit: Efficient load shedding techniques for distributed
stream processing. In VLDB, pages 159–170, 2007.

[TD03] Feng Tian and David J. DeWitt. Tuple routing strategies for
distributed eddies. In VLDB, pages 333–344, 2003.

[TMSF03] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploit-
ing punctuation semantics in continuous data streams. TKDE,
15(3):555–568, May/June 2003.

[TZ+03] Nesime Tatbul, Ugur etintemel, Stanley B. Zdonik, Mitch
Cherniack, and Michael Stonebraker. Load shedding in a data
stream manager. In VLDB, pages 309–320, 2003.

[UF00] T. Urhan and M. Franklin. XJoin: A reactively sched-
uled pipelined join operator. IEEE Data Engineering Bulletin,
23(2):27–33, 2000.

[Val93] Patrick Valduriez. Parallel database systems: Open problems
and new issues. Distributed and Parallel Databases, 1(2):137–165,
1993.

[VN02] S. D. Viglas and J. F. Naughton. Rate-based query optimiza-
tion for streaming information sources. In Proceedings of ACM-
SIGMOD, pages 37–48, 2002.

BIBLIOGRAPHY 234

[VNB03] S. Viglas, J. Naughton, and J. Burger. Maximizing the output
rate of multi-way join queries over streaming information. In
VLDB, pages 285–296, Sep 2003.

[WA93] Annita N. Wilschut and Peter M. G. Apers. Dataflow query
execution in a parallel main-memory environment. Distributed
and Parallel Databases, 1(1):103–128, 1993.

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance
complex event processing over streams. In SIGMOD, pages
407–418, 2006.

[WL05] Fusheng Wang and Peiya Liu. Temporal management of rfid
data. In VLDB, pages 1128–1139, 2005.

[WLLB06] Fusheng Wang, Shaorong Liu, Peiya Liu, and Yijian Bai. Bridg-
ing physical and virtual worlds: Complex event processing for
rfid data streams. In EDBT, pages 588–607, 2006.

[WRGB06] Song Wang, Elke A. Rundensteiner, Samrat Ganguly, and
Sudeept Bhatnagar. State-slice: New paradigm of multi-query
optimization of window-based stream queries. In VLDB,
pages 619–630, 2006.

[WW94] Carl A. Waldspurger and William E. Weihl. Lottery schedul-
ing: Flexible proportional-share resource management. In Op-
erating Systems Design and Implementation, pages 1–11, 1994.

[XHcZ06] Ying Xing, Jeong-Hyon Hwang, Ugur Çetintemel, and Stan-
ley B. Zdonik. Providing resiliency to load variations in dis-
tributed stream processing. In VLDB, pages 775–786, 2006.

[ZKOS05] Rui Zhang, Nick Koudas, Beng Chin Ooi, and Divesh Srivas-
tava. Multiple aggregations over data streams. In SIGMOD,
pages 299–310, 2005.

[ZR07] Yali Zhu and Elke A. Rundensteiner. Adapting partitioned
continuous query processing in distributed systems. In ICDE
Workshops, pages 594–603, 2007.

[ZRH04] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman.
Dynamic plan migration for continuous queries over data
streams. In ACM SIGMOD, pages 431–442, Paris, France, June
2004.

