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Abstract

A Dual-Eulerian graph is a plane multigraph G that contains an edge list which is
simultaneously an Euler tour in G and an Euler tour in the dual of G. Dual-Eulerian
tours play an important role in optimizing CMOS layouts of Boolean functions. When
circuits are represented by undirected multigraphs the layout area of the circuit can
be optimized through finding the minimum number of disjoint dual trails that cover
the graph. This paper presents an implementation of a polynomial time algorithm
for determining whether or not a plane multigraph is Dual-Eulerian and for finding
the Dual-Eulerian trail if it exists.
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Chapter 1

Introduction

Identifying dual trails and tours in plane multi-

graphs is of particular interest to designers of CMOS

VLSI circuits. These circuits are represented as

undirected multigraphs, and a particular problem

in VLSI design is optimizing the layout using only

the proprties of the given multigraph. An optimal

layout exists when one trail simultaneously covers

both the multigraph G and its dual G∗, which oc-

curs when a multigraph is Dual-Eulerian. Creating

efficient algorithms for determining whether or not

a multigraph is Dual-Eulerian and identifying Dual-

Eulerian trails is therefore very important.

A multigraph G contains an Euler tour if there

exists a tour in G that contains every edge of G. A

multigraph is Eulerian if it contains an Euler tour

or an Euler trail. Suppose G is a plane connected

multigraph and G∗ is the geometric dual of G. If

the same sequence of edges form an Euler tour or

an Euler trail in G and simultaneously in G∗, G is

called Dual-Eulerian.
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It is important to note that both G and G∗ may be

Eulerian but this does not guarantee that they are

Dual-Eulerian. As an example consider the plane

graph G and its dual G∗ in Figure 1.1 where G is de-

noted by straight lines and G∗ is represented by dot-

ted lines. G contains the Euler tour {a, b, c, d, e, f, g, h, i, a}
and G∗ contains the Euler tour {a, i, f, e, d, g, h, c, b}
but these are not the same sequences of edges, and

no such sequence can be found. Therefore it is not

sufficient to simply search for Eulerian trails in ei-

ther G or G∗ in order to determine whether or not

G is Dual-Eulerian.

Figure 1.1: Multigraph G and its dual G*

Determining whether or not a multigraph admits

a Dual-Eulerian embedding is non-trivial[1,8,9]. A
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multigraph may have several plane embeddings and

each plane embedding has its own corresponding ge-

ometric dual. One embedding may be Dual-Eulerian

while another may not. Figure 1.2 demonstrates

this idea by showing two different planar represen-

tations of the same multigraph in which the planar

representation in (a) is Dual-Eulerian while the pla-

nar representation in (b) is not because no Euler-

Petrie trail exists. Figure 1.3 displays two different

planar representations of the same graph which are

both Dual-Eulerian. A simpler problem to tackle is

whether or not a plane multigraph admits a Dual-

Eulerian trail and several algorithms have been pre-

sented to solve this problem. I employ an algorithm

introduced in [8] and [9] which searches for Euler-

Petrie trails to determine whether a plane multi-

graph is Dual-Eulerian. A key property of Petrie

trails is that the same sequence of edges in G is

also a sequence of edges in G∗. Finding an Euler-

Petrie trail, or tour, corresponds to finding a Dual-

Eulerian trail, or tour. Therefore if a Euler-Petrie

trail or tour exists, then the plane multigraph is

Dual-Eulerian, and if no such Euler-Petrie trail ex-

ists then the plane multigraph is not Dual-Eulerian.

This paper presents an implementation of a poly-

nomial time algorithm for determining whether or

not a plane multigraph is Dual-Eulerian, and for

finding the Dual-Eulerian trail if it exists. The al-
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Figure 1.2: Two different planar representations of the same multigraph G

gorithm accepts as input the adjacency structure of

a multigraph G and proceeds to partition the multi-

graph into biconnected components and then into

triconnected components forming the 3-BlockTree

of G. The algorithm constructs a planar repre-

sentation of each triconnected component and then

merges the separate planar representations into one

plane multigraph. Once this is accomplished the

final step is to check the specific planar represen-

tation for Euler-Petrie trails using the Euler-Petrie

algorithm presented in [9].
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Figure 1.3: Two different Dual-Eulerian planar representations of the same multi-
graph G
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Chapter 2

Background

Before continuing to discuss the algorithm in de-

tail, let’s first discuss some basic terminology which

will be used throughout the remainder of this paper.

The following definitons are taken from [3,7,11].

A graph G consists of a set V of vertices and a

set E of edges, written G = (V, E). A directed edge,

also called an arc, corresponds to an ordered pair of

distinct vertices (u, v), where u is the tail of the edge

and v is the head of the edge. A graph is directed

if every edge is directed. Directed graphs are also

known as digraphs. A multiedge is a set of at least

two edges, all of which have the same endpoints. A

multigraph is a graph with multiedges.

If (v, w) is an edge of a graph G then vertices u

and v are said to be adjacent. An edge (v, w) is

incident to vertices v and w, and v and w are in-

cident to (v,w). A walk is an alternating sequence

v0,e1,v1,e2,...,ej,vk of vertices and edges where con-

secutive edges are adjacent, so that each edge ei

joins vertices vi−1 and vi. A directed walk is an alter-
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nating sequence of vertices and arcs v0,e1,v1,e2,...,ej,vk

where the arcs align head to tail, so that each ver-

tex is the head of the preceding arc and the tail of

the subsequent arc.

A trail is a walk in which no edge occurs more

than once. A directed trail is a directed walk in

which no arc is repeated. A path p : v → w is a

trail in which all of its vertices are different, ex-

cept that the initial and final vertices may be the

same. A directed path is a directed trail in which

no vertex is repeated. A closed walk (trail or path)

is a walk, trail, or path whose starting and ending

vertex are the same. The length of a walk is the

number of edges in the walk. A cycle is a closed

walk of positive length. Two cycles which are cyclic

permutations of each other are considered the same

cycle.

A graph is connected if it has the property that

each pair of edges is connected by a path. Given

a graph G, a subgraph of G is a graph H whose

vertices and edges are all in G. If G = (V, E) and

G′ = (V ′, E′), and G′ ⊂ G and V ′ ⊂ V , then G′ is a

subgraph of G. A tree is a connected graph without

any cycles as subgraphs. A spanning tree T of a

multigraph G is a tree whose vertex set contains all

the vertices of G. A graph is planar if the graph

has the property that it can be drawn in the plane

without any edge crossings.
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An Euler trail is trail that contains all the edges

of a graph. An Euler tour is a closed Euler trail.

An Eulerian graph is a graph that contains an Eu-

ler tour. An embedding of a graph in a surface is

a drawing of the graph onto some surface so that

there are no edge-crossings. A region R of a graph

imbedded in a surface is a maximal expanse of sur-

face containing no vertex and no part of any edge

of the graph. The boundary of a region R of an

imbedded graph is the subgraph containing all ver-

tices and edges incident on R.

Given an embedding of a graph in a surface, a

face is a region plus its boundary. A dual graph

embedding Gd, is a new graph embedding obtained

by placing a dual vertex in the interior of each exist-

ing (”primal”) region and by drawing a dual edge

through each existing (”primal”) edge connecting

the dual vertices on its opposite sides. The edge

sets of G and Gd are identical, and the vertices of Gd

correspond to the faces of G and vice versa. A trail

in G is a dual trail if there exists a trail in the dual

graph Gd with an identical edge sequence. Both the

trail in G and the trail in Gd are dual trails. A dual

trail is a dual tour if it is a tour in both G and Gd.

G is Dual-Eulerian if and only if it contains a dual

trail that contains every edge of G.

The degree of a vertex v, deg(v), is the number

of proper edges (edges with two distinct endpoints)
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incident on v. A disconnecting set of edges in a

connected graph is a set of edges whose removal

yields a disconnected graph. A bond is a minimal

disconnecting set of edges.
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Chapter 3

Depth First Search

There are several ways of storing vertex and edge

information into a computer. The most common

method is to represent a graph by an adjacency

structure in the form of adjacency lists or an adja-

cency matrix. An adjacency list, or adjacency set,

A[v] of a vertex v ∈ G lists all vertices in G which are

adjacent to v. An adjacency structure A of a graph

G is the set of adjacency lists that corresponds to

all the vertices v ∈ G. An adjacency matrix Aij of

G can be defined as follows. If an edge (i, j) ex-

ists in G, then Aij = Aji = 1, and if no edge exists

between vertices i and j then Aij = Aji = 0. Both

adjacency lists and matrices can also represent mul-

tiedges. One way in which adjacency lists can store

a multiedge (i, j) with n edges is by placing n occur-

rences j in A[i] and similarly placing n occurrences of

i in A[j]. An adjacency matrix can store a multiedge

(i, j) with n edges by setting Aij = Aji = n. In cer-

tain situations all that may be known about a given

multigraph is the multigraph’s adjacency structure.
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In order to determine the connectivity of a multi-

graph, or create a visual representation, efficient

procedures are needed to extract information about

the multigraph from it’s adjacency structure. One

such method which is used extensively to extract

information from a graph solely from the graph’s

adjacency structure is a depth-first search.

The depth-first search presented in this paper was

introduced by Tarjan in [5,10]. A depth-first search

is a recursive procedure that traverses all the edges

of a connected graph G using the information stored

in all the adjacency lists A[v]. This procedure cre-

ates an ordering (NUMBER[v]) on all v ∈ V based

on when each vertex was initially traversed during

the search. A depth-first search is executed as fol-

lows. Initially, all the vertices v are unexplored and

have NUMBER[v] = 0. Starting from any vertex v,

label v explored by setting NUMBER[v] = 1, speci-

fying that v is the first vertex explored. Next find

a vertex w ∈ A[v] that has not been explored. Label

w explored by numbering it according to the order

which it was explored. The process continues until

all the vertices are numbered. Each time a vertex

w ∈ A[v] is identified, the edge (v,w) is traversed.

As this occurs, the procedure checks whether or not

NUMBER[v] < NUMBER[w], i.e. whether or not v

was explored before w in the search. If NUMBER[v] <

NUMBER[w], the edge (v, w) is labeled a tree edge
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and is denoted v → w. If NUMBER[v] > NUMBER[w],

the edge (v, w) is labeled a frond and is denoted

v− → w. The procedure also performs a check to

ensure that the an edge is not traversed and added

in both directions. A depth-first search thus par-

titions the edges of G into two sets, a set of tree

edges T and a set of fronds F . A palm tree P is

a partition of the edges of G into two sets of di-

rected edges: tree edges T and fronds F . The set of

tree edges forms a spanning tree T of G, where each

edge (u,v) has NUMBER[u] < NUMBER[v]. The set

of fronds satisfy the opposite property such that for

each edge (u,v) has NUMBER[u] > NUMBER[v].

To illustrate a depth-first search, consider the fol-

lowing graph G in Figure 3.1.

Figure 3.1: G=(V,E), |V| = 6, |E| = 9

The adjacency structure of G is shown below where

the adjacency lists are ordered in increasing order.
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A[1] = {2, 3}, A[2] = {1, 3, 5}, A[3] = {1, 2, 4, 5}
A[4] = {3, 5, 6}, A[5] = {2, 3, 4, 6}, A[6] = {4, 5}

A depth-first search beginning at vertex 1 will

proceed as follows. Initially all the vertices are un-

explored, thus NUMBER[1...6] = 0. Vertex 1 will be

numbered first, (NUMBER[1] = 1). The next ver-

tex to be explored will be the first vertex in the

adjacency list of vertex 1 which has not been ex-

plored, namely vertex 2. Therefore NUMBER(2) =

2 and since NUMBER[1] < NUMBER[2] the edge

(1, 2) is labeled a tree edge. The first vertex in

the adjacency list of vertex 2 is vertex 1. Since

vertex 1 has already been explored, the algorithm

checks whether or not the edge (1, 2) has been tra-

versed. Since (1, 2) was previously traversed, the

procedure skips to the next vertex in A[2], namely

vertex 3. Since NUMBER[3] = 0, vertex 3 is ex-

plored (NUMBER[3] = 3) and the edge (2, 3) is added.

Since NUMBER[2] < NUMBER[3] the edge (2, 3) is

labeled a tree edge. The first vertex in the adja-

cency list of vertex 3 is vertex 1. NUMBER[1] <

NUMBER[3], and the edge (1, 3) has not been tra-

versed. Therefore the edge (3, 1) is added and la-

beled a frond. The procedure then finds the next

unexplored vertex adjacent to vertex 3, namely ver-

tex 4. Vertex 4 has yet to be explored, thus (NUMBER[4] =

4), and the edge (3, 4) is added. Following is a list of

the edges in the order they are explored. (1, 2), (2, 3), (3, 1), (3, 4)

13



The palm tree generated by a depth-first search

of G is shown in Figure 3.2. The tree edges T are

presented by bold lines, and the fronds F are pre-

sented by dashed lines.

Figure 3.2: Palm tree P of G

The following notation is used throughout the

next two sections. If (u, v) is a tree edge in P , then

we denote this relation by v → w. If v → w then v is

the father of w, and w is the son of v. The relation,

”there is a path from v to w in T”, is denoted by

v → ∗w. If v → ∗w then v is an ancestor of w, and

w is a descendant of v. If v is a vertex in a tree

T , Tv is the subtree of T containing all the vertices

that are descendants of v in T . If a path p exists

between vertices u and v in G, then this is denoted

by p : v =⇒ w.

The palm tree P generates a visual representation

14



of G and there are algorithms for determining the

planarity of a multigraph using P . The planarity

algorithm presented in [5] separates a multigraph

into biconnected components, generates a palm tree

for each biconnected component, and then exam-

ines each biconnected component individually for

planarity. The algorithm identifies a cycle in the

palm tree (of the biconnected component), which

consists of a sequence of tree arcs followed by one

frond, and embeds it. The algorithm then deletes

the cycle producing a set of disconnected segments.

The algorithm then recursively embeds each seg-

ment checking at each step that the new embedding

created by adding the disconnected segments is pla-

nar. The number of steps required for this planarity

algorithm is linear with respect to the number of

vertices and edges in the multigraph.
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Chapter 4

Biconnected Components Algorithm

A connected multigraph G is biconnected if for

each triple of distinct vertices v, w, a ∈ V , there ex-

ists a path p : v =⇒ w such that a is not on the

path p. If there is a distinct triple v, w and a in G

such that a is on every path from p : v =⇒ w, then a

is called an articulation point or separation point

of G and G is not biconnected. Figure 4.1 displays

a non-biconnected graph with an articulation point

at vertex 3. From the graph we can see that every

path p : 1 =⇒ 4, p : 1 =⇒ 5, p : 2 =⇒ 4 and p : 2 =⇒ 5

must pass through 3.

The vertex c thus partitions the graph into two bi-

connected graphs. One component is the graph con-

sisting of the edges {(1, 2)(1, 3)(2, 3)} and the other bi-

connected component consists of the edges {(3, 4)(3, 5)(4, 5)}.
Tarjan presents a linear time algorithm for find-

ing the biconnected components of an undirected

graph by identifying the articulation points [10].

The articulation points and corresponding bicon-

nected components are found through applying a

16



depth-first search on G and creating a palm tree. In

addition to ordering the vertices of G, the procedure

creates an array LOWPT [v], which stores the lowest

vertex reachable from every vertex after traversing

0 or more tree arcs followed by one frond.

Figure 4.1: G = (V, E), |V|=5, |E|=6

The following condition is used to find the ar-

ticulation points. Let G be an undirected graph.

Suppose P is a palm tree and T is the spanning tree

contained in P . Suppose a, v, w are distinct vertices

in G such that (a, v) ∈ T , w is not a descendent of v,

and LOWPT [v] ≥ a. Then a is an articulation point

in G, and the removal of a will disconnect G.[10]

It is clear to see that this condition holds. If

(a, v) ∈ T , then a was traversed before v in the

depth-first search, so NUMBER[a] < NUMBER[v].

If LOWPT [v] ≥ a, then every path (sequence of tree

arcs followed by one frond) starting from v will ei-

ther remain in Tv. Since w is not a descendent of

v, w cannot be in Tv. Any path p : w =⇒ v must

pass through a, therefore a is an articulation point.

The biconnected component corresponding to the

17



articulation point a is the subtree Tv.

The biconnected component algorithm stores the

edges in a stack as they are traversed, and when an

articulation point is found the edges on the stack

corresponding to the biconnected component are re-

moved. This set of edges forms a biconnected com-

ponent. The biconnectivity algorithm is efficient as

it requires only one depth-first search procedure to

identify all of the articulation points and the corre-

sponding biconnected components.

To illustrate this algorithm, consider the graph G

in Figure 4.2. The graph G is displayed with its

palm tree P as well as with its biconnected compo-

nents.

As the palm tree P is constructed, the articula-

tion points and biconnected components are found

simultaneously. The edges are partitioned into the

following two sets.

T �
(1, 2)(2, 3)(3, 4)(4, 5)(5, 6)(6, 7)(7, 8)(8, 9)(9, 10)(10, 11)(11, 13)(13, 12).

F � (3, 1)(4, 2)(6, 4)(7, 5)(8, 6)(9, 7)(11, 9)(12, 10).

The algorithm produces the following LOWPT[v]

values:

18



LOWPT [1] = 1, LOWPT [2] = 1, LOWPT [3] = 1, LOWPT [4] = 2,

LOWPT [5] = 4, LOWPT [6] = 4, LOWPT [7] = 5,

LOWPT [8] = 6, LOWPT [9] = 7, LOWPT [10] = 9

LOWPT [11] = 9, LOWPT [12] = 10, LOWPT [13] = 10

Beginning with the starting vertex, (vertex 1),

the procedure identifies vertices adjacent to vertex

1, and if these adjacent vertices are unexplored this

new edge becomes a tree edge. The algorithm then

continues with the adjacent vertex, and finds new

vertices adjacent to it. At some point however, the

procedure will return to vertex 1 and search for

other neighboring vertices. The act of returning to

a vertex after a tree edge has been started from it,

is called backing up along an edge. When the edge

(9, 10) is backed up along, the algorithm detects that

LOWPT [10] ≥ 9. This implies that any path start-

ing from a vertex in T10 must pass through vertex

9 in order to reach the proper ancestors of 9 (an-

cestors of 9	=9). Since NUMBER[9] = 9, (9 is the

ninth vertex explored), the algorithm knows that

there exists vertices that are not descendants of

9 (namely vertices numbered 1,2,3,4,5,6,7 and 8).

Thus the edges in T10, specifically (12, 10), (13, 12),

(11, 13), (11, 9), (10, 11), and (9, 10) are all in the same

biconnected component and 9 is the correspond-

ing articulation point. Similarly, when the edge

(4, 5) is backed up along the algorithm detects that

LOWPT [5] ≥ 4. Vertex 4 has proper ancestors, there-
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fore every path between vertices in T5 and the an-

cestors of 4 must pass through 4. Thus 4 is an

articulation point and the edges (9, 7), (8, 9), (8, 6),

(7, 8), (7, 5), (6, 7), (6, 4), (5, 6) and (4, 5) belong to a

separate biconnected component. The edges that

remain, (4, 2), (3, 4), (3, 1), (2, 3), and (1, 2) belong to

the final biconnected component.

The biconnectivity algorithm finds the biconnected

components of a graph in time linear with respect to

the number of edges and vertices in the graph [10].

The biconnected components are edge-disjoint and

the original multigraph can be restored from the

biconnected components by the process of vertex

identification.

20



Figure 4.2: Graph G, Palm tree P, and Biconnected Components of G
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Chapter 5

Triconnected Components Algorithm

Let {a, b} be a pair of vertices in an undirected

multigraph G. Suppose E can be partitioned into

equivalence classes E1, E2, ..., E n, such that two edges

are in the same equivalence class if both edges lie on

a common path not containing any vertex of {a, b}
except as endpoints. If such a pair of vertices {a, b}
exists, then the equivalence classes E1, E2, ..., E n are

called the separation classes of G with respect to

{a, b}. If there exist at least two separation classes

with respect to {a, b} then {a, b} is a separation pair

of G, unless (i) there are exactly two separation

classes and one consists of a single edge, or (ii)

there are exactly three separation classes, each con-

sisting of a single edge. Consider the graph in Fig-

ure 5.1.The vertex pair {1, 2} partitions E into three

equivalence classes, namely {a, b, i}, {h}, and {c, d, e, f, g}.
Any path containing at least one edge in the set

{a, b, i}, and one of the edges in the set {c, d, e, f, g},
must contain either vertex 1 or vertex 2. Simi-

larly, any path containing edge {h} and any edge
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in {c, d, e, f, g} or {a, b, i}, must also contain either

vertex 1 or vertex 2. The vertex pair {3, 4} is an-

other separation pair which partitions E into two

classes, namely {a, b, c, g, h, i} and {d, e, f}. Note that

a separation pair {a, b} may or may not be an edge

in E.

Figure 5.1: Separation pairs 1,2 and 3,4

If G is a biconnected multigraph such that no pair

of vertices {a, b} is a separation pair, then G is tri-

connected. Suppose {a, b} is a separation pair of G.

Let E1 and E2 be the separation classes with re-

spect to {a, b} such that |E1| ≥ 2 and |E2| ≥ 2. Let

G1 = (V (E1), E1∪{(a, b)}) and G2 = (V (E2), E2∪{(a, b)}).

The graphs G1 and G2 are called the split graphs of

G with respect to {a, b}. Replacing a multigraph

by two split graphs is called splitting G. The new

edges (a, b) added to G1 and G2 are called virtual

edges. Each virtual edge gets labeled according to

the split operation associated with it.

If G is biconnected, any split graph of G is also

biconnected. Suppose a multigraph is split, and the

split graphs are split, and this is repeated until no
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more splits are possible. The resulting multigraphs

are then triconnected and are called the split com-

ponents of G. The split components of a graph are

not necessarily unique.

Let G1 = (V1, E1) and G2 = (V2, E2) be two split

components both containing a virtual edge (a, b, i),

where (a, b, i) was added to G1 and G2 during the

ith split. Let G = (V1 ∪ V2, (E1 − {(a, b, i)}) ∪ (E2 −
{(a, b, i)}))). G is called the merge graph of G1 and

G2. Merging is the inverse operation of splitting

a graph. Performing a sufficient number of merge

operations on the split components of a multigraph

recreates the original multigraph. There are three

types of split components in a multi-graph: trian-

gles {(a, b), (a, c), (b, c)}, triple bonds {(a, b}, (a, b), (a, b)},
and triconnected graphs. Examples of possible split

components are shown in Figure 5.2. The tricon-

nected components of a multigraph are formed by

merging adjacent triangles and combining triple bonds

which share the same pair of vertices. The tricon-

nected components of a multi-graph G are unique[4].

This paper implements an algorithm for finding

the triconnected components of a multigraph intro-

duced by Tarjan and Hopcraft[4]. The algorithm

accepts as input the adjacency structure of a con-

nected multigraph and is divided into the following

steps.

1. Split off multiple edges of G to form a set of
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Figure 5.2: Types of split components

triple bonds and a graph G′.

2. Find the biconnected components C of G′.

3. For each biconnected component C of G′ :

(a) Find the split components of C.

(b) Combine triple bonds with the same pair of

vertices into bonds.

(c) Combine adjacent triangles into polygons.

The previous steps outlines the procedure for find-

ing triconnected components of a graph. The set

of triconnected components forms the vertices of

the 3-Block Tree of G. Step 1 in the triconnectiv-

ity procedure is accomplished through identifying

the multiple edges and immediately splitting them

off. The most difficult part of the algorithm is step

3. The biconnected components are found through

employing the biconnected components algorithm

previously outlined. Once the biconnected compo-
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nents are found, the next step is to find the split

components of each biconnected component.

For the remainder of this section we will assume

that G is biconnected and contains no multiple edges.

Similar to the biconnectivity algorithm, the tricon-

nectivity algorithm uses a depth-first search DFS()

technique to create a palm tree P of G. For each

vertex v ∈ V , the DFS() procedure identifies the val-

ues FATHER[v], ND[v], LOWPT 1[v] and LOWPT 2[v].

FATHER(v) stores the predecessor to v in the span-

ning tree T by keeping track of the vertex lead-

ing to it. The only exception is the first vertex

(vertex numbered 1) of the search whose father

is designated to be itself. ND(v) stores the num-

ber of descendents of v in the spanning tree T .

LOWPT 1(v) stores the lowest vertex reachable from

v after traversing one or more tree arcs followed by

one frond. LOWPT 2(v) stores the second lowest ver-

tex reachable from v after traversing one or more

tree arcs followed by one frond. These values will

be used first to reorder each vertex’s adjacency list

to create a set of paths which cover the graph.

Once the DFS() procedure is performed, we use

the information gathered to reorder the adjacency

list of each vertex. To do this we define a mapping φ

from each edge in P to a number x ∈ {1, 2, ..., |V |+1}.
Initially each new adjacency list is empty. Next we

add edges to each adjacency list based on the φ(u, v).
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The new adjacency lists are reordered so that the

edges appear in increasing value of φ(u, v). In the

new structure, the vertices are ordered such that

the first vertex in A1[v] is the vertex adjacent to v

with the smallest LOWPT 2[] value, i.e. the vertex

adjacent to v which will travel to the lowest num-

bered vertex after traversing a number of tree edges

followed by one frond. If a vertex v has two fronds

starting from v, then the frond which reaches the

lower numbered vertex will be placed at the begin-

ning of the list, and the frond which reaches the

second lowest vertex will be placed next in the list.

Using this new adjacency structure, the PATHFINDER()

procedure generates a set of disjoint paths P0, P1, P2, ..., Pn

that cover the entire graph. The PATHFINDER()

is based on the depth-first search technique but the

main difference from this procedure and DFS() is

that the former uses the reordered adjacency lists.

Each path terminates at the lowest possible vertex

reachable from the vertices on the path. The initial

path P0 is a cycle, and every other path is simple

and has only its initial and terminal vertex in com-

mon with previously generated paths.

Once we have our set of disjoint paths that cover

the graph, the next step is to search for separation

pairs using the PATHSEARCH() procedure. Each

path is traversed in order, and the procedure identi-

fies separation pairs as they are encountered. When
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a separation pair is found, the split component as-

sociated with that separation pair is removed from

the graph. Separation pairs have several key prop-

erties. First, if {a, b} is a separation pair in G with

a < b, then a → ∗b in T (i.e. there exists a path in

T from a to b). Separation pairs are separated into

three types by the following three conditions.

1. If there are distinct vertices r 	= a, b and s 	= a, b

such that b → r, LOWPT 1(r) = a, LOWPT 2(r) >= b,

and s is not a descendent of r.

(The pair {a, b} is called a type 1 sepa-

ration pair).

2. If there is a vertex r such that a → r → ∗b; b is a

first descendent of r; a 	= 1; every frond x → ∗y with

r ≤ b has a ≤ y; and every frond x → ∗y
with a ≤ y ≤ b and b → w → ∗x has LOWPT 1(w) ≥ a.

(The pair {a, b} is called a type 2 sepa-

ration pair).

3. If (a, b) is a multiple edge of G and G contains

at least 4 edges.

Consider the following graph G and its palm tree

P in Figure 5.3 and Figure 5.4. The LOWPT 1() and

LOWPT 2() values are listed in the brackets to the

right of each vertex in P .

The separation pairs (2, 3) and (4, 5) of the graph in

Figure 5.3 are both type 1. (2, 3) is a type 1 separa-

tion pair because (a, b) = (2, 3) and since 3 → 4(r = 4),

LOWPT 1(4) = 2, and LOWPT 2(4) = 4. (4, 5) is a
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Figure 5.3: Type 1 separation pairs 2,3 and 4,5

type 1 separation pair because (a, b) = (4, 5) and since

5 → 6(r = 6), LOWPT 1(6) = 4, and LOWPT 2(6) = 5.

In the graph in Figure 5.4, the separation pairs

are (2, 3) and (4, 7). (4, 7) is a type 2 separation pair

because (a, b) = (4, 7), and every frond with 4 < y < 7

and 7 → 8 has LOWPT 1(8) ≥ 4.The PATHSEARCH()

procedure is a recursive procedure based on the

depth-first search technique.

From each vertex u, the procedure identifies ver-

tices adjacent to u. Suppose vertex v is adjacent

to u. The procedure determines whether the edge

(u, v) is a tree edge or a frond. If (u, v) is a tree edge,

the procedure proceeds to search for vertices adja-

cent to v. Eventually the procedure will return to u
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Figure 5.4: Type 2 separation pairs 4,7

and at this point the edge (u, v) will be added to the

stack of edges. The procedure stores possible type

2 separation pairs, and continually checks whether

or not they satisfy the properties neccessary to be

a separation pair.

If a separation pair {a, b} is identified, then a vir-

tual edge (a, b, i) (i.e. the ith virtual edge) is added

to the stack of edges as well as to the new split com-

ponent. When the separation pair {a, b} is an actual

edge in T , a new split component (a triple bond con-

sisting of the virtual edge (a, b, i), the original edge

(a, b), and another virtual edge (a, b, i+1)) is created.

In this latter case the virtual edge (a, b, i+1) is added

to the edge stack.
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To illustrate the triconnectivity algorithm, con-

sider the biconnected graph G = (V, E) where | V |=
11 and | E |= 13 in the Figure 5.5.

Figure 5.5: G=(V,E), V=11, E=13

The DFS() procedure produces the following set

of tree edges and fronds, and corresponding palm

tree is shown in Figure 5.6.

T � (1, 2)(2, 3)(3, 4)(4, 5)(5, 6)(6, 7)(7, 8)(8, 9)(9, 10)(10, 11).

F � (9, 3)(10, 4)(11, 1).

The PATHFINDER() procedure generates the fol-

lowing set of paths:

{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1}, {10, 3}, {9, 4}}
The PATHSEARCH() procedure then generates

the following split components:
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Figure 5.6: Palm tree of graph in Figure 5.5

{(1, 2)(2, 3)(1, 3)}, {(1, 10)(10, 11)(1, 11)}, {(1, 3)(1, 10)(3, 10)},
{(3, 10)(3, 10)(3, 10)}, {(3, 4)(3, 10)(4, 10)}, {(4, 10)(4, 9)(9, 10)},

{(4, 9)(4, 9)(4, 9)}, {(4, 5)(4, 9)(5, 9)}, {(5, 6)(5, 9)(6, 9)},
{(6, 7)(6, 9)(7, 9)}, {(7, 8)(7, 9)(8, 9)}.

The separation pairs generated by the algorithm

are {1, 3}, {1, 10}, {3, 10}, {4, 10}, {4, 9}, {5, 9}, {6, 9}
and {7, 9}.

Note that these specific separation pairs and cor-

responding split components are not unique. Figure

5.8 displays the triconnected components formed

from merging the adjacent polygons. The split com-
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Figure 5.7: Split components of graph in Figure 5.5

ponents {(3, 4), (3, 10), (4, 10)} and {(4, 10), (4, 9), (9, 10)}
share a virtual edge {4, 10} and are thus merged

to form the biconnected component {(3, 4), (4, 9),

(9, 10), (3, 10)}. The split components {(1, 2), (2, 3),

(1, 3)}, and {(1, 3), (1, 10), (3, 10)} share the virtual

edge (1, 3) and the split components {(1, 3), (1, 10),

(3, 10)} and {(1, 10), (10, 11), (1, 11)} share the virtual

edge (1, 10). The three split components are merged

together to produce the triconnected component,

and {(1, 2)(2, 3)(3, 10)(10, 11)(11, 1)}. The split compo-

nents {(4, 5), (4, 9), (5, 9)}, {(5, 6), (5, 9), (6, 9)}, {(6, 7),

(6, 9), (7, 9)}, { (7, 8), (7, 9), (8, 9)} are also merged to-

gether to form the triconnected component {(4, 5),

(5, 6), (6, 7), (7, 8), (8, 9), (4, 9)}. Note that the tri-

connected components in Figure 5.8 consist only of

polygons and multilinks and the virtual edges are

labeled a,b,c, and d.
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Figure 5.8: Triconnected components of graph in Figure 5.5

Several algorithms exist for drawing triconnected

components. In the following section we will con-

sider the multigraph G to be planar. If G is pla-

nar then all of the triconnected components of G

are planar as well. Given the planar triconnected

components (i.e. 3-BlockTree), the next objective

will be to construct a planar representation of each

triconnected component. The triconnected compo-

nents may be embedded individually and there is a

unique way of embedding them. Following this will

be able to construct a planar representation of the

entire multigraph G.
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Chapter 6

Graph Drawing Algorithm

Before we can search for dual paths in G, we

must first construct a planar embedding of G. The

triconnected components contained within the 3-

Block Tree serve as building blocks for the planar

construction of G. In the following analysis, G is as-

sumed to be planar and therefore each triconnected

components of G is planar as well. Recall that the

triconnected components are of three types: multi-

links, polygons and triconnected graphs. Multilinks

consist of two vertices (u, v) with at least three edges

incident to u and v. Multilinks can be drawn easily

by creating (x, y) coordinates for the two vertices

and then drawing the necessary number of edges

between them. Polygons are also easy to draw be-

cause all that is required is the number of vertices in

the polygon. Triconnected graphs are the compo-

nents of the 3-Block Tree which require the most ef-

fort, and a graph drawing algorithm is thus needed.

A force-directed placement algorithm presented in

[6] and derived from the Fruchterman and Reingold
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spring embedding algorithm is used and discussed

below.

The graph drawing algorithm works specifically

on planar triconnected graphs G, so in the follow-

ing analysis we assume that G is triconnected and

planar. An advantage of this algorithm over oth-

ers of its type is that besides the vertex and edge

set of G, all that is needed to draw G is one face

W = {w1, w2, w3, ..., wk} ⊂ V where W is an ordered

list of vertices arranged on the face. A face can

easily be extracted from the palm tree representa-

tion P of G by traversing a sequence of tree arcs

followed by one frond. A face can also be identified

by running the PATHFINDING() procedure which

produces a set of disjoint paths which cover G.

The vertex set V of G is partitioned into two sets,

W and V − W , where W contains the vertices in

the specified face and V − W contains the remain-

ing vertices in V . The algorithm begins by fixing

the vertices of the given face W = {w1, w2, w3, ..., wk}
into a regular polygon of size k inscribed into the

unit circle, and centered at the origin. The vertices

v ∈ W are fixed and are not moved during the pro-

cedure. The size of the polygon is determined by

the number of vertices in the face, and this polygon

becomes the outer face of the drawing. The remain-

ing vertices v ∈ V −W are placed at the origin. The

drawing algorithm proceeds to use an iterative pro-
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cedure at each step, moving the vertices initially

centered at the origin until the entire embedding

reaches an equilibrium.

To generate an embedding that reaches an equi-

librium, two forces, the attractive force f (u, v) and

the resultant force fr are used. The attractive force

is calculated between each pair of adjacent vertices

in the graph using a third order law which states

that the force exerted by two adjacent vertices u

and v on each other is Fuv = Cd3. C is a constant

and d is the distance between vertices u and v. For

each vertex v ∈ V − W , the attractive forces on v

are calculated and combined to produce the resul-

tant force of v. At the end of each iteration the

vertex v is then moved in the direction of the resul-

tant force. The resultant and attractive forces, and

the distance calculated between adjacent vertices all

contain two components (x, y) corresponding to the

horizontal and vertical directions.

The procedure is executed as follows. At the be-

ginning of each iteration the resultant forces frx(v)

and fry(v) of each vertex v ∈ V − W are set to 0.

For each edge e = (u, v) ∈ E, the attractive forces

f (u, v)x and f (u, v)y between vertices v and w are de-

termined. Once the forces f (u, v)x and f (u, v)y are

calculated, they are used to update the resultant

forces of vertices u and v, namely frx(u), fry(u),

frx(v) and fry(v). The attractive force f (u, v)x (in
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the x-direction) is added or subtracted to frx(u) and

frx(v) depending on the relative positions of u and

v. For example, if ux < vx, (the x-ordinate of u is

less than the x-ordinate of v), then the attractive

force f (u, v)x is added to frx(u) (s.t. ux is increased

i.e. moves horizontally to the right), and the attrac-

tive force f (u, v)x is subtracted from frx(v) (s.t. vx is

decreased i.e. moves horizontally to the left). The

resultant forces in the y-direction are also updated

in the same manner. If uy > vy, then the attractive

force f (u, v)y is subtracted from fry(u) and added to

fry(v). Once the resultant forces are updated cor-

responding to each edge e = (u, v) ∈ E, the vertices

v ∈ V − W are moved in the appropriate directions

at the end of each iteration.

The movements are limited, however, by a cool-

ing function cool(i), where i represents the iteration

number. The cooling function approaches a limit

of 0 as i increases. The cooling function is applied

to the procedure due to the fact that if the dis-

placements at each step are too large then the al-

gorithm may require a large number of iterations

to reach an equilibrium. Thus to ensure that the

drawing reaches an equilibrium, and thus a planar

embedding in a relatively small number of steps,

the vertices are allowed to move in the directions

proscribed by the resultant force, but only in an

amount proportional to the iteration number dic-
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tated by the cooling function.

The graph drawing algorithm runs for a number

of iterations specified initially. Recommended val-

ues for the constant C, used to calculate the attrac-

tive forces, and the cooling function cool(i) are spec-

ified in [6] below where n is the number of vertices

in V and i is the iteration number:

C =
√

n
π

cool(i) =

√
π
n

1+π
n i3/2

An illustration of the graph drawing algorithm is

presented below. Consider the following palm tree

P of the triconnected graph G with |V | = 10 and

|E| = 21 in Figure 6.1.

Figure 6.1: Palm tree P of G
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Suppose we choose the face W = {1, 4, 6, 10, 9, 2}
to be the outer face. This face has 6 vertices so we

must inscribe these 6 vertices in a hexagon. The in-

terior angle formed by adjacent edges in the polygon

is found by the formula (2π/k) where k is the num-

ber of vertices in the outer face, and in this example

equals 60◦.
The radius is always set to 1 as to to inscribe the

face vertices into the unit circle. The coordinates

of the vertex wn ∈ W are calculated by wn(x, y) =

(cos(angle∗n), sin(angle∗n)) where n is the index num-

ber of the vertex in W = {w0, w1, w2, ...wk−1}.
The following figures display four separate itera-

tions of the algorithm. Figure 6.2 displays the initial

positions of all the vertices in G. The vertices of W

are inscribed in the hexagon and the remaining ver-

tices are positioned at the origin. Figure 6.3 shows

the embedding after 1 iteration, and Figures 6.4 and

6.5 display the embeddings of G after 2 and 5 itera-

tions respectively. The algorithm produces a planar

embedding after 1 iteration, and the remaining it-

erations only improve upon the initial embedding

slightly.

Once each triconnected component has its planar

representation, the next step is to combine them

into one planar representation. Polygons and mul-

tilinks as discussed previously are trivial to draw.

The separation pairs of a biconnected graph are
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Figure 6.2: Iterations = 0

used as a guide to merging the individual planar

representations of the triconnected components. A

recursive algorithm is used to merge the planar rep-

resentations of the triconnected components into

one planar biconnected component.

During the construction of the 3-Block Tree, each

triconnected component is numbered, and following

the construction the algorithm determines which

triconnected components are adjacent by identify-

ing triconnected components which share a virtual

edge. The drawing algorithm creates a final embed-

ding, Final[], which combines all the embeddings of

the triconnected components. The algorithm uses

a depth-first search type procedure to combine the

individual embeddings, beginning with the tricon-

nected component numbered 0. The embedding of
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Figure 6.3: Iterations = 1

component 0 is initially stored into Final[]. The

algorithm then identifies the triconnected compo-

nent adjacent to triconnected component number 0

and merges their planar representations. The em-

beddings are merged such that the components are

drawn on opposite sides of the separation pair. The

merge is accomplished through updating Final[] to

include the coordinates of the vertices from the ad-

jacent triconnected component.

Consider the example in Figure 6.6. There are 3

triconnected components numbered 1, 2, and 3, and

each component has its own planar embedding. The

coordinates of the vertices in component 1 are ini-

tially stored into Final[]. Components 1 and 2 share

the virtual edge (b, e, 1). Since components 1 and 2

are adjacent, the embedding of component 2 must
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Figure 6.4: Iterations = 2

be merged with Final[], since Final now contains the

embedding of component 1.

The embeddings of Final and component 1 are

merged using the following procedure. Final[] is first

rotated such that the virtual edge (b, e, 1) is parallel

to the horizontal axis, and such that all other ver-

tices in Final[], specifically a and f , are positioned

below the shared virtual edge (b, e, 1). Component

2 is rotated s.t. (b, e, 1) is parallel to the horizontal

axis and all other vertices are positioned above the

shared virtual edge (b, e, 1). The distance between b

and e of component 2 is set to the same distance be-

tween b and e of Final[]. A check is then performed

to determine whether or not the vertices b and e of

component 1 are positioned in the same order (i.e.

b is to the left or right of e) as b and e in Final[]. If
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Figure 6.5: Iterations = 5

Figure 6.6: Triconnected components of G

positions of b and e of the component to be merged

are in a different order, the positions are reflected

about the x-axis such that their resulting order cor-

responds to the order of b and e in Final. Finally,

the positions of all the vertices in component 2 are

translated such that the coordinates of a and b in

component 2 are equal to the coordinates of a and

b in Final[]. Now Final[] contains the embeddings
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of components 1 and 2, and the algorithm proceeds

to merge the remaining triconnected components in

the same manner. After all the triconnected com-

ponents are merged into Final[], the algorithm then

draws edges between adjacent vertices. The final re-

sult is a planar embedding of the entire biconnected

graph. The planar embedding generated from the

triconnected components in Figure 6.6 is shown in

Figure 6.7.

Figure 6.7: Final planar embedding of G

The algorithm uses several procedures to manip-

ulate the positions of the embeddings. These pro-

cedures include rotating a set of vertices by a given

angle, translating a set of vertices a certain distance

in the horizontal and vertical directions, reflecting

a set of vertices about the vertical axis (x = 0), and

determining the interior angle formed between an

edge and the horizontal axis (y = 0). A set of ver-
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tices are rotated a certain angle using a rotation

matrix as follows. In order to rotate each vertex θ

degrees, each pair of coordinates is set

vx = vx · cos(θ) + vy · sin(θ)

vy = −vx · sin(θ) + vy · cos(θ)

Vertices are translated x units in the horizontal

direction and y units in the vertical directions by

simply increasing the x-ordinate of each vertex by

x units and increasing the y-ordinate of each vertex

by y units. Vertices are reflected about the vertical

axis (x = 0) by multiplying the x-ordinate of each

vertex by −1. The Dual-Eulerian section will discuss

additional procedures which are used to calculate

the angle between an edge and the horizontal axis,

and the angle between two edges in G.

The procedure presented in this section creates

from the 3-Block Tree of a graph G a planar em-

bedding of G. The procedure assumes that G is

planar. The graph drawing algorithm for tricon-

nected graphs has previously been implemented in

a Mathematica-based system called Vega[6]. There

are no other implementations of the procedure for

merging individual embeddings of triconnected com-

ponents into a single planar biconnected multigraph.

The following section presents the algorithm for find-

ing dual paths of a plane multigraph.
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Chapter 7

Dual-Eulerian Algorithm

Several algorithms exist for determining whether

or not a biconnected plane multigraph is Dual-Eulerian.

This section presents an algorithm presented in [9]

for identifying Dual-Eulerian trails in biconnected

plane multigraphs and consequently for determin-

ing whether or not a plane multigraph is Dual-Eulerian.

Before presenting the algorithm lets first discuss the

related mathematical concepts.

A Petrie tour (walk) in a plane multigraph is a

tour (walk) which turns alternatingly left and right.

Often Petrie walks are indicated by representing

the turns made at each vertex by small arcs. Fig-

ure 7.1 displays a right turn, a left turn, and a

Petrie walk. The reverse of a Petrie walk is also

a Petrie walk. Petrie walks have the interesting

property that the same Petrie walk in G is also a

Petrie walk in G∗. Euler-Petrie tours are simply

Eulerian Petrie tours which by the definition of Eu-

lerian tours contain every edge e in G. Therefore,

since Petrie tours (walks) correspond to dual tours
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(walks), an Euler-Petrie tour (walk) is also a dual

Eulerian tour (walk).

Figure 7.1: Turns and walks

Key ideas regarding Petrie trails in plane graphs

which are used as the basis for this algorithm are

presented in [9]. If a plane multigraph G has a Dual-

Eulerian tour t, then G also has a Dual-Eulerian

Petrie tour t′ which is also Petrie. We are primar-

ily concerned with identifying Dual-Eulerian tours

and walks in biconnected plane multigraphs, and for

these multigraphs an even more interesting prop-

erty is identified. Namely, if a biconnected plane

multigraph G has a dual Eulerian tour t, then t is

a petrie trail. The problem of finding dual paths in

biconnected plane multigraphs can be simplified to

finding Petrie trails in either G or G∗.
Previous algorithms exist for determining whether

or not a biconnected plane multigraph is Dual-Eulerian

through identifying maximum size dual trails. The

algorithm in [1] requires as input the planar embed-

ding of both G and G∗. Each edge e in G and G∗ is

ordered and the edge successors (edges which follow
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(u, v)) are identified. A dual successor of an edge e

in G and G∗ is an edge successor of e in both G and

G∗. Dual trails are then constructed from these dual

successors. Given an embedding of a plane multi-

graph, the algorithm implemented in this study re-

quires considerably less work than the algorithms

which use the methods just described.

Given the biconnected planar embedding of G,

which can be constructed from the 3-Block Tree of

G, we are ready employ our algorithm to search

for dual trails. The objective is to find the max-

imum size Petrie walk in a biconnected graph G.

The algorithm discussed here terminates once the

maximum size Petrie walk is found. If the generated

Petrie walk is Eulerian then the Petrie walk is Dual-

Eulerian and G is therefore Dual-Eulerian. We can

search for dual trails by starting from any edge (u, v)

and proceed to alternate turning left and right until

an edge is traversed twice. If this proves unsuccess-

ful, i.e. we don’t construct an Euler-Petrie trail, we

start from the same edge and begin turning right-

left, right-left. Note that starting from any edge

(u, v), there are two directions we may move. Ei-

ther from u → v, in which case the turn is made at

vertex v, or from from v → u, in which case the turn

is made at vertex u. We also have two options for

the starting turn (right or left). Once the direction

of the starting edge and the initial turn is specified,
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we are ready to begin.

The Petrie walk p is constructed until an attempt

is made to add an edge of G already in the Petrie

walk p. If p is constructed such that no edge is re-

peated and every edge of G is in p then the algorithm

terminates successfully, and G is Dual-Eulerian. If

the construction attempts to add an edge e to p,

where e is already contained in p and there exists

edges in G that have not been added, then the pro-

cedure pauses. In this scenario the Petrie walk p

cannot be extended any farther from edge e. The

Petrie walk may, however, be able to extend from

the starting edge e going in the opposite initial di-

rection making the same initial turn. Any edges

that are added in this manner will increase the size

of the Petrie walk p. Once an edge is approached

which has already been added, the algorithm then

terminates. If the generated Petrie walk is not Eu-

lerian then we repeat the entire procedure starting

from the same starting edge e but with the opposite

initial turn.

Consider the following biconnected plane graph

G where the vertices are numbered 1 through 6 and

the edges are labeled a through h. Our aim is to

construct the largest size Petrie walk starting from

edge a. Starting from edge a we can either turn left

or right at vertex 1, or we can turn left or right

at vertex 2. Turning from edge a at vertex 2, a

50



right turn will lead to edge g, and a left turn will

lead to edge b. Suppose we turn right onto edge

g. Our Petrie walk is now a → g. We must now

alternate turns, so we will turn left from edge g.

Turning left from edge g leads to edge f , resulting

in the Petrie walk of a → g → f . At edge f we

must now turn right onto edge d, resulting in the

Petrie walk of a → g → f → d. At edge d we must

now turn left onto edge c, resulting in the Petrie

walk a → g → f → d → c. From edge c we must

now turn right onto edge b, resulting in the Petrie

walk a → g → f → d → c → b. Now from edge b we

must turn left onto edge g. This creates a problem

because edge g is already in our Petrie walk. Figure

7.2 displays this construction where the Petrie walk

is indicated by dotted lines.

Figure 7.2: Petrie walk {a,g,f,d,c,b}

We therefore save our construction and go back

to the starting edge a. Initially we traversed a from
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1 → 2, turning right at vertex 2. So now we switch

directions and turn right at vertex 1. Turning right

from edge a at vertex 1 leads to edge h. We must

turn left from edge h, but doing so leads to edge g

which is already in our Petrie walk. We now can

conclude than our particular Petrie walk h → a →
g → f → d → c → b is maximal. Figure 7.3 shows the

last step of the construction of adding on edge h.

Figure 7.3: Petrie walk {h,a,g,f,d,c,b}

The Petrie walk is not Eulerian, however, there-

fore we must repeat the procedure turning left ini-

tially from edge a in the same initial direction 1 → 2.

The Petrie walk constructed from turning left at

edge a is a → b → e → d → c. At edge c we proceed

to turn left but doing so leads to edge e which has

already been added to the Petrie walk. This Petrie

walk is displayed in Figure 7.4.

We again save our construction and go back to the

starting edge a. Initially we traversed a from 1 → 2
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Figure 7.4: Petrie walk {a,b,e,d,c}

turning left at vertex 2, so now we switch directions

and turn left at vertex 1. Turning left from edge a

at vertex 1 leads to edge h. We must now turn

right from edge h at vertex 6, which leads to edge

f . Now we must turn left from edge f at vertex 5,

but doing so leads to edge e which is already in our

Petrie walk. We can thus conclude than our new

Petrie walk f → h → a → b → e → d → c is maximal.

Figure 7.5 shows this final construction.

Figure 7.5: Petrie walk {f,h,a,b,e,d,c}
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In the previous example both Petrie walks were

not Eulerian and they both contained 7 edges. Based

on this fact we can conclude that the given bicon-

nected graph G is not Dual-Eulerian. This method

for finding Dual-Eulerian paths can be extended to

finding the minimum number of dual paths which

cover a biconnected graph. Once a maximal size

Petrie walk is created, the next step is to search

for Petrie walks in the set of edges not contained in

the initial Petrie walk This general method is used

in conjunction with the 3-Block Tree of a given bi-

connected graph to solve the more difficult problem

of determining whether a planar multigraph is dual

Eulerian. The algorithm in [8] analyzes the topolo-

gies of Euler-Petrie paths as they cross back and

forth between the separation pairs of a multigraph

without considering specific planar embeddings.

The implementation of the Dual-Eulerian algo-

rithm presented above uses some of the same pro-

cedures as the graph drawing algorithm. The graph

is rotated at each step of the construction in order

to determine which edges correspond to right and

left turns. From any edge e = (a, b), the right and

left turns made at vertex b are determined by calcu-

lating the interior angles formed by e and all edges

adjacent to e which have an endpoint at vertex b.

To accomplish this the graph is shifted such that

vertex a is positioned at the origin. The angle θ
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between vertex b and the horizontal axis is then de-

termined, and then the graph is rotated by θ such

that edge e is parallel to the horizontal axis. The

interior angles formed by the edges adjacent to e

having b as an endpoint are then calculated using

the law of cosines.

Consider the graph in Figure 7.6. Suppose the

edge e = (a, b) is under consideration. To determine

the interior angle α formed between edge (a, b) and

edge (b, c), we first calculate the three distances ab,

bc, and ac using the distance formula d =
√

(x2 − x1) + (y2 − y1).

The angle α is then calculated using the law of

cosines by the following formula:

α = arccos(ac2−ab2−bc2

−2(ab)(bc) ).

Once the interior angle of each edge f = (b, c) adja-

cent to e = (a, b) is determined, the algorithm checks

to see whether or not the y-coordinate of c is less

than the y-coordinate of b. If it is, then the an-

gle α calculated from the previous formula must be

subtracted from 360. Once all the angles formed

by edge e and each edge adjacent to e are deter-

mined, the adjacent edge that forms the minimum

angle corresponds to a left turn and the adjacent

edge that forms the maximum angle corresponds to

a right turn. This procedure is capable of deter-

mining the left and right turns of any edge in the

graph in either direction.
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Figure 7.6: Calculating the angle α between two edges

The Dual-Eulerian algorithm constructs Petrie trails

by keeping track of each turn and each edge which

is added to the Petrie trail. A check is performed

at each step to verify that the edge being added

is not already in the Petrie trail. The number of

steps required to translate the graph, rotate the

graph, and calculate angles between adjacent edges

is quadratic with respect to the number of vertices

and edges in the multigraph. There are no other

working implementations of the Dual-Eulerian al-

gorithm presented in [9].
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Chapter 8

Conclusions and Further Work

The implementation of the triconnectivity, graph

drawing and Dual-Eulerian algorithm presented in

this paper successfully determines in polynomial time

whether or not a plane multigraph is Dual-Eulerian.

The implementation presented in this paper was

tested on several multigraphs ranging from 10 to

100 vertices. The entire algorithm was implemented

in Borland C++, and the computer code is dis-

played in the Appendix.

Further work can be done on the implementation

by adding a few key procedures. The planarity al-

gorithm discussed in the depth-first search section

is a natural fit because this implementation uses

the same data structures. The implementation pre-

sented in this paper assumes the multigraph is pla-

nar, but for the implementation to be complete,

a planarity check is necessary. The implementa-

tion presented in this paper identifies whether or

not a plane multigraph is Dual-Eulerian and finds

the Dual-Eulerian trail if it exits, but it doesn’t

57



find the minimum number of dual trails that cover

the multigraph. Again, the implementation pos-

sesses the necessary data structures and functions

to tackle this problem.

Lastly, the implementation can be extended to

answer the more difficult question of whether or not

a multigraph admits an embedding which is Dual-

Eulerian, or can be extended to find the embedding

for which the minimum number of dual trails exist.

Either one of these latter problems would be of the

most interest to designers of VLSI circuits.
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Chapter 9

Implementation

/* Triconnectivity Procedure

Input: Biconnected planar graph

Output: Planar representation and determination

of whether or not G is Dual-Eulerian

This program contains the triconnected components algori

the procedure for drawing the triconnected components, t

for merging the individual planar embeddings, and the pr

finding Petrie trails in the planar embedding of G. The

components algorithm is from [4], the graph drawing algo

and the Dual-Eulerian algorithm is from [9].

*/

/* The implemenatation accepts graphs in the form of adja

used in main(). The implementation accepts adjacency s

each list is in increasing order.

*/

#include <vcl.h>
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#include <iostream.h>

#include <fstream.h>

#include <stdio.h>

#include <math.h>

#include <conio.h>

#include "structures.h"

#define START 1000

#define EOS 100

#define TRUE 1

#define FALSE 0

#define PI 3.141592654

#define TOL .00001

#define TOL2 .001

#define LEFT 0

#define RIGHT 1

int E=0,V=0,nodes=0,m=0; // Variables for the number of

int num_comp=0; // Number of split components

double radius = 2.0; // Radius of polygons to be in

int iterations = 15; // Iterations for graph drawin

Pair Fr[15]; // Resultant Force ..

Pair Fa; // Force between adjacent vertices ...

EDGE SepPair[50]; // Separation Pairs
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Component C[50], Final; // Split Components ..

Bucket BUCKET[50]; // 2V + 1 buckets ..

Triple TSTACK[50]; // Possible Type 2 separation

EDGES ESTACK[50]; // Stack of edges

Triple Last_Deleted; // Last type 2 separation pair

Adj_List A[14], A_1[14]; // Adjacency Lists

PATH Paths[14]; // Store paths from PATHFINDER

EDGES Comp_A[15][15]; // Split Components adjacency stru

int Comp_D[15]; // Degree of Split Components (Use

int v_cnt = 0; int v_one = 0; int c = 0;

int theta[13][13]; // theta(e) - used to create new adj

int MARK[20][20];

int curr_a=0, curr_h=0, curr_b= 0, curr_x=0, curr_y=0, cu

int v1, w1, n, NUMBER[14], FLAG[14], Edge[14][14];

int T_number[30];

int LOWPT1[14], LOWPT2[14], ND[14], FATHER[14], FLAG1, j=

int DEGREE[14], A1[14];

int NEWNUM[14], HIGHPT[14], s, path=0, path_cnt;

int tstack = 0, estack=0, numcomp=0, seppair=0, vedges=0;

int global_check,r=0;

int m_edge; // Multiple edge # ....

int SPECIAL[30], STAY=0;

int DUAL=0;

double dx=0.0,dy=0.0,hyp=0.0;
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int turn=0,stack_cnt=0,START_dir=0;

int W[30][30];

Pair C1[30],C2[30],Temp[30],Tr[30];

Direction DIR;

EDGE STACK[30],Strt,Prev;

VIRT Vrt[30];

void DFS(int v, int u);

void PATHFINDER(int v);

void PATHSEARCH(int v);

int PATHCHECK(int v, int x);

void DELETEA(int h, int a, int b);

void ADD(int h, int a, int b);

void DELETE_E(int u, int v, int z);

void ADD_E(int u, int v, int z);

void Draw_T(int i);

double cool(int i);

double rounder(double r);

void Translate_C(int t, double shiftx,double shifty);

void Rotate_C(int t, double theta);

double Get_Angle_X_Axis_C(int t,int u, int v);

void Fix(int t,double d);

void Flip(int t);
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void Translate_F(double shiftx,double shifty);

void Rotate_F(double theta);

double Get_Angle_X_Axis_F(int u, int v);

void Mult_Edge(int comp, int u, int v, int direction);

void Merge_3_Block_Tree(int cnt);

void Merge_Pos_E(int s);

void DFS_T(int v);

void Create_Adj(void);

void Merge_Poly(void);

void Print_C2(void);

void TURN(int a,int b,int c);

int STACK_CHECK(int b,int next);

void Translate(double shiftx,double shifty);

void Rotate(double theta);

void RESET(void);

double Get_Angle_X_Axis(int u, int v);

void Acc_Adj(void); // Create new adjacency atructure

void Translate(double shiftx,double shifty){

// Translate shiftx in x-direction and shifty in y-dire
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for(int i=1;i<(nodes+1);i++){

C2[i].x = C1[i].x + shiftx;

C2[i].y = C1[i].y + shifty;

}

}

void RESET(void){ // Reset coordinates in C2[] to C[].

for(int i=1;i<(nodes+1);i++){

C2[i].x = C1[i].x;

C2[i].y = C1[i].y;

}

}

void Rotate(double theta){ // Rotate coordinates in C2[]

for(int i=1;i<(nodes+1);i++){

// Change angle in degrees to radians ..

Temp[i].x = C2[i].x*cos(theta*PI/180)

+ C2[i].y*sin(theta*PI/180);

Temp[i].y = -C2[i].x*sin(theta*PI/180)

+ C2[i].y*cos(theta*PI/180);

// Round coordinates to nearest integer ..
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if(fabs(Temp[i].x) < TOL) Temp[i].x = 0;

if(fabs(Temp[i].y) < TOL) Temp[i].y = 0;

if(fabs(Temp[i].x - ceil(Temp[i].x)) < TOL2 )

Temp[i].x = ceil(Temp[i].x);

if(fabs(Temp[i].y - ceil(Temp[i].y)) < TOL2 )

Temp[i].y = ceil(Temp[i].y);

}

// Store in Coordinate lists ...

for(int i=1;i<(nodes+1);i++){

C2[i].x = Temp[i].x;

C2[i].y = Temp[i].y;

}

}

int STACK_CHECK(int b,int next){

// Check if (b,next) is on stack in the Dual-Eulerian alg

// Procedure checks if edge is already in Petrie trail

int check=0,next_turn=0;

for(int i=0;i<stack_cnt;i++)

if( ((STACK[i].u==b) && (STACK[i].v==next)) ||

((STACK[i].u==next) && (STACK[i].v==b)) ) {
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if(stack_cnt < E){

check = 1;

cout << "(" << b << "," << next << ")" << endl;

cout << "stack_count = " << stack_cnt << endl;

cout << "Problem - (" << b << "," << next

<< ") already on stack ..." << endl;

}

else {

check = 1;

cout << "(" << b << "," << next << ")" << endl;

cout << "stack_count = " << stack_cnt << endl;

cout << "(" << b << "," << next

<< ") is the next edge" << endl;

cout << "(" << turn

<< ") is the previous direction ... (L=0,R=1

if(turn==LEFT) next_turn=RIGHT;

else next_turn=LEFT;

cout << "(" << next_turn

<< ") is the next direction ... (L=0,R=1)" <

cout << " .... (" << Strt.u << "," << Strt.v

<< ") is the START edge" << endl;
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cout << " .... (" << START_dir

<< ") is the START direction ... (L=0,R=1)"

if( (Strt.u==b) && (Strt.v==next) && (START_dir==next_tur

cout << "DUAL-EULERIAN" << endl;

DUAL = 1;

}

}

return(check);

}

double Get_Angle_X_Axis(int a, int b){

double theta = 0.0;

// Calculate angle from pos. x-axis to b ..

// Distances are created from b(x,y) - a(x,y) ...

dx = C2[b].x - C2[a].x; if(fabs(dx) < TOL) dx = 0;

dy = C2[b].y - C2[a].y; if(fabs(dy) < TOL) dy = 0;

if((dx>0)&&(dy==0)) // In position, don’t rotate

theta = 0;
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if((dx != 0)&&(dy > 0)){ // Quadrant I & Qua

theta = (180.0/double(PI))*acos(dx/sqrt(pow(dx,2)+

}

else if((dx != 0)&&(dy < 0)){ // Quadrant III & Q

theta = 360 - (180.0/double(PI))*acos(dx/sqrt(pow(

}

else if((dx==0)&&(dy > 0)){ // Vertical Line b_y > a

theta = 90;

}

else if((dx==0)&&(dy < 0)){ // Vertical Line a_y > b

theta = 270;

}

else if((dx < 0)&&(dy==0)){ // Horizontal Line b_x <

theta = 180;

}

// cout << "theta = " << theta << endl;

return(theta);

}

void TURN(int a,int b, int turn){

// Input: Edge (a,b)

// Output: The right and left turns from edge (a,b) at

double temp=0,min=0,max=0;

double tx=0,ty=0,t11=0,slope=0;
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int right=0,left=0,c=0,j=0;

double angle=0,theta=0,theta1=0;

DIR.left=0;

DIR.right=0;

// cout << " ...... (" << a << "," << b << "," << turn

if(A[b].deg == 2) { // if A[b].deg ==

for(j=0;j<A[b].deg;j++) // For each neighb

if(A[b].neigh[j] != a) // if c != a ...

right = left = A[b].neigh[j];

// cout << " ... right = left = " << right << end

}

else { // A[b].deg > 2 ...

RESET();

// Shift a to origin ...

Translate(-C2[a].x,-C2[a].y);

// Calculate angle between b and x-axis .. (theta)

theta = Get_Angle_X_Axis(a,b);
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// Rotate s.t. (a,b) || to x-axis ...

Rotate(theta);

// Find angle between a-b and all it’s neighbors c .

min = 400;

max = 0;

for(j=0;j<A[b].deg;j++) { // For each neigh

c = A[b].neigh[j];

if(c!=a) { // if c != a ...

// Calculate |ab|, |bc|, |ac| and b_y - c_y ....

double ab = sqrt( pow(C2[a].x-C2[b].x,2) + pow(C2[

double bc = sqrt( pow(C2[b].x-C2[c].x,2) + pow(C2[

double ac = sqrt( pow(C2[a].x-C2[c].x,2) + pow(C2[

double d_bc_y = C2[b].y - C2[c].y;

temp = ( pow(ac,2) - pow(bc,2) - pow(ab,2) ) / (-

theta = 0; // Reset theta ...

if( (abs(temp) < 1) || (abs(temp) == 1) ) {

angle = acos(temp);

theta = (180.0/double(PI))*angle;
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} else cout << "Problem in calculation ...." << en

if(d_bc_y > 0) theta = 360 - theta;

// cout << a << "-" << b << "-" << c << " ... thet

// getchar();

if(theta < min) {

min = theta;

left = c;

// cout << "min= " << min << endl;

}

if(theta > max) {

max = theta;

right = c;

// cout << "max= " << max << endl;

}

} // end if()

} // end for()

} // end else()

// cout << "LEFT-" << left << " ... RIGHT-" << right <<

DIR.left = left;

DIR.right = right;

71



}

void Print_C2(void){ // Print coordinates in C2[] ..

cout << "----------- Coordinates -------------" << endl

for(int i=1;i<(nodes+1);i++)

cout << i << ": {" << C2[i].x << "," << C2[i].y << "}

}

void Flip(int t){

// Flip entire component about line (x=0) ..

for(j=0;j<C[t].face_v;j++){

C[t].Pos[ C[t].F[j] ].x = -1 * C[t].Pos[ C[t].F[j] ].

// Round coordinates to nearest integer ..

if(fabs( C[t].Pos[C[t].F[j] ].x ) < TOL) C[t].Pos[C[t

if(fabs( C[t].Pos[C[t].F[j] ].y ) < TOL) C[t].Pos[C[t

if(fabs( C[t].Pos[C[t].F[j] ].x - ceil(C[t].Pos[C[t].

C[t].Pos[C[t].F[j]].x = ceil(C[t].Pos[C[t].F[j]].x)

if(fabs( C[t].Pos[C[t].F[j] ].y - ceil(C[t].Pos[C[t].

C[t].Pos[C[t].F[j]].y = ceil(C[t].Pos[C[t].F[j]].y)

}

for(j=0;j<C[t].inner_v;j++){
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C[t].Pos[ C[t].I[j] ].x = -1 * C[t].Pos[ C[t].I[j] ].

if(fabs( C[t].Pos[C[t].I[j] ].x ) < TOL) C[t].Pos[C[t

if(fabs( C[t].Pos[C[t].I[j] ].y ) < TOL) C[t].Pos[C[t

if(fabs( C[t].Pos[C[t].I[j] ].x - ceil(C[t].Pos[C[t].

C[t].Pos[C[t].I[j]].x = ceil(C[t].Pos[C[t].I[j]].x)

if(fabs( C[t].Pos[C[t].I[j] ].y - ceil(C[t].Pos[C[t].

C[t].Pos[C[t].I[j]].y = ceil(C[t].Pos[C[t].I[j]].y)

}

}

void Fix(int t,double d){

// Make positions of vertices of the separation pair

// identical to the positions in Final().

// Move each vertex in d/2 units either left or right .

// d = df - ds ....

// cout << "FIX " << (d/2.0) << endl;

for(int j=0;j<C[t].face_v;j++){

if(C[t].Pos[ C[t].F[j] ].x <= 0)

C[t].Pos[ C[t].F[j] ].x = C[t].Pos[ C[t].F[j] ].x -

else

C[t].Pos[ C[t].F[j] ].x = C[t].Pos[ C[t].F[j] ].x +
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// Round coordinates to nearest integer ..

if(fabs( C[t].Pos[C[t].F[j] ].x ) < TOL) C[t].Pos[C[t

if(fabs( C[t].Pos[C[t].F[j] ].y ) < TOL) C[t].Pos[C[t

if(fabs( C[t].Pos[C[t].F[j] ].x - ceil(C[t].Pos[C[t].

C[t].Pos[C[t].F[j]].x = ceil(C[t].Pos[C[t].F[j]].x)

if(fabs( C[t].Pos[C[t].F[j] ].y - ceil(C[t].Pos[C[t].

C[t].Pos[C[t].F[j]].y = ceil(C[t].Pos[C[t].F[j]].y)

}

for(j=0;j<C[t].inner_v;j++){

if(C[t].Pos[ C[t].I[j] ].x <= 0)

C[t].Pos[ C[t].I[j] ].x = C[t].Pos[ C[t].I[j] ].x -

else

C[t].Pos[ C[t].I[j] ].x = C[t].Pos[ C[t].I[j] ].x +

if(fabs( C[t].Pos[C[t].I[j] ].x ) < TOL) C[t].Pos[C[t

if(fabs( C[t].Pos[C[t].I[j] ].y ) < TOL) C[t].Pos[C[t

if(fabs( C[t].Pos[C[t].I[j] ].x - ceil(C[t].Pos[C[t].

C[t].Pos[C[t].I[j]].x = ceil(C[t].Pos[C[t].I[j]].x)

if(fabs( C[t].Pos[C[t].I[j] ].y - ceil(C[t].Pos[C[t].

C[t].Pos[C[t].I[j]].y = ceil(C[t].Pos[C[t].I[j]].y)

}

}

void Merge_Pos_E(int s){
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int k=0,j=0,fpos=0,spos=0;

// Check for bond type ....

if( (strcmp(Type[C[s].type],"BONDS") != 0) ){

// Merge positions of C[s] and Final[] into Final[] ...

// Position Final[] s.t (a,b,i) is on top ...

// Position C[s] s.t. (a,b,i) is on bottom ...

// Then store results in Final[] .....

// Shared edge (a,b,i) ........

// cout << "Merge Positions of C[" << s << "] w/ Final[

// Find shared virtual edge of Final[] and C[s] ..

for(k=0;k<Final.e;k++)

for(j=0;j<C[s].e;j++)

if( (Final.E[k].u == C[s].E[j].u) && (Final.E[k].

// share a virtual edge ..

fpos = k; spos = j;

}

// Get Angle between (y=0) and v from shared edge (u,v)

double theta = Get_Angle_X_Axis_F(Final.E[ fpos ].u, Fi

// Rotate s.t. (a,b) is || to x-axis ...

Rotate_F(theta);
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// Check if (a,b) on top using any other vertex from th

int check=0;

for(k=0;k<Final.e;k++)

if( ( Final.Pos[ Final.E[k].u ].y > Final.Pos[ Final

( Final.Pos[ Final.E[k].v ].y > Final.Pos[ Final

check=1;

if(check == 1) Rotate_F(180.0); // rotate s.t (a,b)

// Now set the positions of the component to be merged

// corresponding positions of Final()

theta = Get_Angle_X_Axis_C(s,C[s].E[spos].u,C[s].E[spos

// Rotate s.t. (a,b) is || to x-axis ..

Rotate_C(s,theta);

// Check if (a,b) on top using face vertices ...

check=0;

for(k=0;k<C[s].face_v;k++)

if( (C[s].F[k] != C[s].E[ spos ].u) && (C[s].F[k] !

if( ( C[s].Pos[ C[s].F[k] ].y < C[s].Pos[ C[s].E[

( C[s].Pos[ C[s].F[k] ].y < C[s].Pos[ C[s].E[ sp

{

check=1;

}

// getchar();
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if(check == 1) Rotate_C(s,180.0); // rotate s.t (a,b

// Check if edge size is equal, if not Fix --- --------

double ds = fabs( C[s].Pos[ C[s].E[ spos ].u ].x - C[s]

double df = fabs( Final.Pos[ Final.E[ fpos ].u ].x - Fi

if( rounder(df-ds) != 0.0) Fix(s,df-ds);

// Check alignment, if the order of (u,v) is opposite

// to Final(), Flip .......

if( ( ((Final.Pos[ Final.E[ fpos ].u ].x - Final.Pos[ F

((C[s].Pos[ C[s].E[ spos ].u ].x - C[s].Pos[ C[s].E

( ((Final.Pos[ Final.E[ fpos ].u ].x - Final.Pos[ F

((C[s].Pos[ C[s].E[ spos ].u ].x - C[s].Pos[ C[s].E

Flip(s);

// Translate C[s] s.t C[s]{a,b} = F[]{a,b} ........

// Calculate differences between C[s](a) and F[](a) ...

double d_x = rounder( Final.Pos[ Final.E[ fpos ].u ].x

double d_y = rounder( Final.Pos[ Final.E[ fpos ].u ].y

Translate_C(s,d_x,d_y);

// ------------- --------------- ---------- ------- ---

// Place all vertex positions of C[s] into Final[] ..

for(k=0;k<C[s].face_v;k++) {

Final.Pos[ C[s].F[k] ].x = C[s].Pos[ C[s].F[k] ].x;

Final.Pos[ C[s].F[k] ].y = C[s].Pos[ C[s].F[k] ].y;
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}

for(k=0;k<C[s].inner_v;k++) {

Final.Pos[ C[s].I[k] ].x = C[s].Pos[ C[s].I[k] ].x;

Final.Pos[ C[s].I[k] ].y = C[s].Pos[ C[s].I[k] ].y

}

// Merge edges of Final[] and C[s] into Final[] ...

// Check if edge in C[s] is in Final[], if its not Add

for(k=0;k<C[s].e;k++){ // for each edge in C[s]

check = 0;

for(j=0;j<Final.e;j++) // for each edge in Final

if( (C[s].E[k].u == Final.E[j].u) && (C[s].E[k].

&& (C[s].E[k].z == Final.E[j].z) ){

check=1;

}

if(check==0) {

// Add edge to Final[] ...

Final.E[ Final.e ].u = C[s].E[k].u;

Final.E[ Final.e ].v = C[s].E[k].v;

Final.E[ Final.e ].z = C[s].E[k].z;

Final.e++;

}

}

} // end if(not bond) ...

}
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void DFS_T(int v){ // Procedure to merge triconnected em

int i=0,j=0;

n = T_number[v] = n + 1;

for(i=0;i<num_comp;i++) // for each component i

if( (Comp_A[v][i].u != 0) || (Comp_A[i][v].u != 0) )

if(T_number[i]==0){ // i is a new component -> i

// Merge .......

Merge_Pos_E(i);

DFS_T(i);

}

}

void Merge_3_Block_Tree(int cnt){

int i=0,j=0,k=0,comp=0;

double theta=0;

Pair SAVE[30];
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for(i=0;i<30;i++) { SAVE[i].x = SAVE[i].y = 0.0; }

cout << endl << " ----- --- --- Store C[0] in Final[] -

// ------------------------------ Store C[0] in Final[

int first = 0, next=0;

// Store all edges in C[0] ...

Final.e = 0;

for(i=0;i<C[ first ].e;i++){

Final.E[ Final.e ].u = C[ first ].E[i].u;

Final.E[ Final.e ].v = C[ first ].E[i].v;

Final.E[ Final.e ].z = C[ first ].E[i].z;

Final.e++;

}

// Store Inner and Face vertices ...

Final.face_v=0;

for(j=0;j<C[ first ].face_v;j++){

Final.F[ Final.face_v ] = C[ first ].F[j];

Final.face_v++;

}

Final.inner_v=0;

for(j=0;j<C[ first ].inner_v;j++){

Final.I[ Final.inner_v ] = C[ first ].I[j];

Final.inner_v++;

}
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// Store all the vertex positions ...

for(i=0;i<C[ first ].face_v;i++) {

Final.Pos[ C[ first ].F[i] ].x = C[ first ].Pos[ C[ f

Final.Pos[ C[ first ].F[i] ].y = C[ first ].Pos[ C[ f

}

for(i=0;i<C[ first ].inner_v;i++) {

Final.Pos[ C[ first ].I[i] ].x = C[ first ].Pos[ C[ f

Final.Pos[ C[ first ].I[i] ].y = C[ first ].Pos[ C[ f

}

n=0;

DFS_T(first);

cout << " -------- -- FINAL COORDINATES ----- ---- " <<

for(j=1;j<nodes+1;j++){

cout << "[" << j << "](" << Final.Pos[ j ].x << ","

<< Final.Pos[ j ].y << ")" << endl;

}

cout << endl << endl;

getchar();

}

void Mult_Edge(int t, int u, int v, int num){

// Input: Component #, Edge(u,v), Number of edges to a
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// ... m_edge starts at |V| + 1 ..

for(int i=0;i<num;i++) { // for each pair of vir

// Multilink (a,b) .. Create virtual edges (u,m_edge

cout << "New Vertex = " << m_edge << endl;

C[t].E[ C[t].e ].u = u; C[t].E[ C[t].e ].v = m_edge;

C[t].e++;

C[t].E[ C[t].e ].u = m_edge; C[t].E[ C[t].e ].v = v;

C[t].e++;

// Mark vertex m_edge as special ...

C[t].V[m_edge] = 1;

/* Draw virtual edges above ...

cout << "ABOVE" << endl;

C[t].Pos[m_edge].x = (C[t].Pos[u].x + C[t].Pos[v].x)

C[t].Pos[m_edge].y = C[t].Pos[u].x + 1.0;

*/

// Draw virtual edges below ...

cout << "BELOW" << endl;

C[t].Pos[m_edge].x = (C[t].Pos[u].x + C[t].Pos[v].x)

C[t].Pos[m_edge].y = C[t].Pos[u].x - (1.0 + num );

// Print out new vertex positions ...
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cout << "Pos[" << m_edge << "]={" << C[t].Pos[m_edge

<< "," << C[t].Pos[m_edge].y << ")" << endl;

m_edge++;

}

}

double Get_Angle_X_Axis_F(int a, int b){

// Calculate angle from pos. x-axis to b ..

// Distances are created from b(x,y) - a(x,y) ...

double dx = Final.Pos[b].x - Final.Pos[a].x; if(fabs(

double dy = Final.Pos[b].y - Final.Pos[a].y; if(fabs(

double theta = 0;

// cout << "{dx,dy} = {" << dx << "," << dy << "}" <<

if((dx>0)&&(dy==0)) // In position, don’t rotate

theta = 0;

if((dx != 0)&&(dy > 0)){ // Quadrant I & Qua

theta = (180.0/double(PI))*acos(dx/sqrt(pow(dx,2)+

}

else if((dx != 0)&&(dy < 0)){ // Quadrant III & Q

theta = 360 - (180.0/double(PI))*acos(dx/sqrt(pow(
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}

else if((dx==0)&&(dy > 0)){ // Vertical Line b_y > a

theta = 90;

}

else if((dx==0)&&(dy < 0)){ // Vertical Line a_y > b

theta = 270;

}

else if((dx < 0)&&(dy==0)){ // Horizontal Line b_x <

theta = 180;

}

// cout << "theta = " << theta << endl;

return(theta);

}

void Translate_F(double shiftx,double shifty){

// Translate Final[] shiftx in x-direction and shifty i

// cout << "SHIFT (" << shiftx << "," << shifty << ")"

for(j=0;j<Final.face_v;j++){

Final.Pos[ Final.F[j] ].x = Final.Pos[ Final.F[j] ].x

Final.Pos[ Final.F[j] ].y = Final.Pos[ Final.F[j] ].y

}

for(j=0;j<Final.inner_v;j++){

Final.Pos[ Final.I[j] ].x = Final.Pos[ Final.I[j] ].x

Final.Pos[ Final.I[j] ].y = Final.Pos[ Final.I[j] ].y
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}

}

void Rotate_F(double theta){ // Rotate Final[] theta

Pair Temp[30]; // Temporary storage ...

for(int j=0;j<30;j++) Temp[j].x = Temp[j].y = 0.0;

for(j=1;j<nodes+1;j++){

// Change angle in degrees to radians ..

Temp[j].x = Final.Pos[ j ].x*cos(theta*PI/180) + Fina

Temp[j].y = -Final.Pos[ j ].x*sin(theta*PI/180) + Fin

// Round coordinates to nearest integer ..

if(fabs(Temp[j].x) < TOL) Temp[j].x = 0;

if(fabs(Temp[j].y) < TOL) Temp[j].y = 0;

if(fabs(Temp[j].x - ceil(Temp[j].x)) < TOL2 ) Temp[j]

if(fabs(Temp[j].y - ceil(Temp[j].y)) < TOL2 ) Temp[j]

}

// Store in Coordinate lists ...

for(j=1;j<nodes+1;j++){

Final.Pos[ j ].x = Temp[j].x;

Final.Pos[ j ].y = Temp[j].y;

}

}
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double Get_Angle_X_Axis_C(int t,int a, int b){

// Calculate angle from pos. x-axis to b ..

// Distances are created from b(x,y) - a(x,y) ...

double dx = C[t].Pos[b].x - C[t].Pos[a].x; if(fabs(dx

double dy = C[t].Pos[b].y - C[t].Pos[a].y; if(fabs(dy

double theta = 0;

if((dx>0)&&(dy==0)) // In position, don’t rotate

theta = 0;

if((dx != 0)&&(dy > 0)){ // Quadrant I & Qua

theta = (180.0/double(PI))*acos(dx/sqrt(pow(dx,2)+

}

else if((dx != 0)&&(dy < 0)){ // Quadrant III & Q

theta = 360 - (180.0/double(PI))*acos(dx/sqrt(pow(

}

else if((dx==0)&&(dy > 0)){ // Vertical Line b_y > a

theta = 90;

}

else if((dx==0)&&(dy < 0)){ // Vertical Line a_y > b

theta = 270;

}

else if((dx < 0)&&(dy==0)){ // Horizontal Line b_x <

theta = 180;

}
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// cout << "theta = " << theta << endl;

return(theta);

}

void Translate_C(int t, double shiftx,double shifty){

// Translate component t shiftx in x-direction and shif

for(j=0;j<C[t].face_v;j++){

C[t].Pos[ C[t].F[j] ].x = C[t].Pos[ C[t].F[j] ].x + s

C[t].Pos[ C[t].F[j] ].y = C[t].Pos[ C[t].F[j] ].y + s

// Round coordinates to nearest integer ..

if(fabs( C[t].Pos[C[t].F[j] ].x ) < TOL) C[t].Pos[C[t

if(fabs( C[t].Pos[C[t].F[j] ].y ) < TOL) C[t].Pos[C[t

if(fabs( C[t].Pos[C[t].F[j] ].x - ceil(C[t].Pos[C[t].

C[t].Pos[C[t].F[j]].x = ceil(C[t].Pos[C[t].F[j]].x)

if(fabs( C[t].Pos[C[t].F[j] ].y - ceil(C[t].Pos[C[t].

C[t].Pos[C[t].F[j]].y = ceil(C[t].Pos[C[t].F[j]].y)

}

for(j=0;j<C[t].inner_v;j++){

C[t].Pos[ C[t].I[j] ].x = C[t].Pos[ C[t].I[j] ].x + s

C[t].Pos[ C[t].I[j] ].y = C[t].Pos[ C[t].I[j] ].y + s

if(fabs( C[t].Pos[C[t].I[j] ].x ) < TOL) C[t].Pos[C[t

if(fabs( C[t].Pos[C[t].I[j] ].y ) < TOL) C[t].Pos[C[t

if(fabs( C[t].Pos[C[t].I[j] ].x - ceil(C[t].Pos[C[t].
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C[t].Pos[C[t].I[j]].x = ceil(C[t].Pos[C[t].I[j]].x)

if(fabs( C[t].Pos[C[t].I[j] ].y - ceil(C[t].Pos[C[t].

C[t].Pos[C[t].I[j]].y = ceil(C[t].Pos[C[t].I[j]].y)

}

}

void Rotate_C(int t, double theta){ // Rotate component

Pair Temp[30]; // Temporary storage ...

for(int j=0;j<30;j++) Temp[j].x = Temp[j].y = 0.0;

for(j=0;j<C[t].face_v;j++){

// Change angle in degrees to radians ..

Temp[j].x = C[t].Pos[ C[t].F[j] ].x*cos(theta*PI/180)

+ C[t].Pos[ C[t].F[j] ].y*sin(theta*PI/180);

Temp[j].y = -C[t].Pos[ C[t].F[j] ].x*sin(theta*PI/180

+ C[t].Pos[ C[t].F[j] ].y*cos(theta*PI/180);

// Round coordinates to nearest integer ..

if(fabs(Temp[j].x) < TOL) Temp[j].x = 0;

if(fabs(Temp[j].y) < TOL) Temp[j].y = 0;

if(fabs(Temp[j].x - ceil(Temp[j].x)) < TOL2 )

Temp[j].x = ceil(Temp[j].x);

if(fabs(Temp[j].y - ceil(Temp[j].y)) < TOL2 )

Temp[j].y = ceil(Temp[j].y);

}

// Store in Coordinate lists ...
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for(j=0;j<C[t].face_v;j++){

C[t].Pos[ C[t].F[j] ].x = Temp[j].x;

C[t].Pos[ C[t].F[j] ].y = Temp[j].y;

}

for(j=0;j<C[t].inner_v;j++){

// Change angle in degrees to radians ..

Temp[j].x = C[t].Pos[ C[t].I[j] ].x*cos(theta*PI/180)

+ C[t].Pos[ C[t].I[j] ].y*sin(theta*PI/180);

Temp[j].y = -C[t].Pos[ C[t].I[j] ].x*sin(theta*PI/180

+ C[t].Pos[ C[t].I[j] ].y*cos(theta*PI/180);

// Round coordinates to nearest integer ..

if(fabs(Temp[j].x) < TOL) Temp[j].x = 0;

if(fabs(Temp[j].y) < TOL) Temp[j].y = 0;

if(fabs(Temp[j].x - ceil(Temp[j].x)) < TOL2 ) Temp[j]

if(fabs(Temp[j].y - ceil(Temp[j].y)) < TOL2 ) Temp[j]

}

// Store in Coordinate lists ...

for(j=0;j<C[t].face_v;j++){

C[t].Pos[ C[t].I[j] ].x = Temp[j].x;

C[t].Pos[ C[t].I[j] ].y = Temp[j].y;

}

}
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double rounder(double r){

if( (fabs(r) - 0.0) < .001 )

r = 0.0;

return(r);

}

double cool(int i){

double val=0;

val = ( sqrt(nodes/PI) / ( 1 + (PI/nodes)*pow(i,1.5) )

return(val);

}

void Draw_T(int t){ // Draw triconnected comp i s.t. vi

int i=0,j=0,cnt=0,min_v=0,nextv=0,tmp_st=0,tmp_end=0;

int st=0,end=0,newst=0,vi=0,stop=0,mn=0,mx=0;

// cout << endl << "Drawing Component #" << t << " |E|

// getchar();

// Reorder s.t u < v for all (u,v) ..

for(i=0;i<C[t].e;i++) {

mn = min(C[t].E[i].u,C[t].E[i].v);

mx = max(C[t].E[i].u,C[t].E[i].v);

C[t].E[i].u = mn;

C[t].E[i].v = mx;

}
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// Print edges

for(i=0;i<C[t].e;i++)

cout << "(" << C[t].E[i].u << "," << C[t].E[i].v <<

cout << endl;

// getchar();

if( (strcmp(Type[C[t].type],"POLYGONS")==0) ){

cout << " ------- POLYGON ----------- " << endl;

st = C[t].F[0] = C[t].E[0].u; // Store vertic

end = C[t].F[1] = C[t].E[0].v;

// cout << "Face = {" << st << "," << end << ", ...

// getchar();

stop==0; cnt=2;

while(stop == 0){ // Loop until entire face is

int stop2=0; i=0;

while((stop2==0) && (i<C[t].e) ){ // Se

if( (C[t].E[i].u == end) && (C[t].E[i].v != st

// cout << "Start 1 .. st= " << st << " en

// cout << "1 .. (" << C[t].E[i].u << ","
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C[t].F[cnt] = C[t].E[i].v;

tmp_st = end; tmp_end = C[t].E[i].v;

// cout << "End 1 .. st= " << tmp_st << "

stop2 = 1;

}

else if( (C[t].E[i].v == end) && (C[t].E[i].u

// cout << "Start 2 .. st= " << st << " en

// cout << "2 .. (" << C[t].E[i].u << ","

C[t].F[cnt] = C[t].E[i].u;

tmp_st = end; tmp_end = C[t].E[i].u;

// cout << "End 2 .. st= " << tmp_st << "

stop2 = 1;

}

i++;

}

st = tmp_st; end = tmp_end; // Save new start

// cout << endl << "Count = " << cnt << " .....

// << C[t].F[cnt] << endl;

// getchar();

if(cnt == (C[t].e - 1) ) {

stop = 1;

C[t].face_v = cnt + 1;

// cout << "C[" << t << "].face_v = " << C[t].

}
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cnt++;

} // end of while()

}

else if( (strcmp(Type[C[t].type],"BONDS")==0) ){

cout << " ------ BOND -------- " << endl;

int virt = 0; // Count the number of

for(i=0;i<C[t].e;i++)

if(C[t].E[i].z != 0) virt++;

// Position vertices (u,v) ....

C[t].Pos[ C[t].E[0].u ].x = 0.0;

C[t].Pos[ C[t].E[0].u ].y = 0.0;

C[t].Pos[ C[t].E[0].v ].x = radius;

C[t].Pos[ C[t].E[0].v ].y = 0.0;

// Print out new vertex positions ...

cout << "Pos[" << C[t].E[0].u << "]={" << C[t].Pos[

<< "," << C[t].Pos[ C[t].E[0].u ].y << ")" <<

cout << "Pos[" << C[t].E[0].v << "]={" << C[t].Pos[

<< "," << C[t].Pos[ C[t].E[0].v ].y << ")" <<

if( (C[t].e - virt - 1) > 0){
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// Mult_Edge(t,C[t].E[0].u,C[t].E[0].v,C[t].e -

C[t].d_bond = 1;

}

}

else if( (strcmp(Type[C[t].type],"TRI")==0) ){

cout << " ------- TRICONNECTED G ------ " << endl;

// Find the virtual edge ...

for(i=0;i<C[t].e;i++)

if (C[t].E[i].z != 0){

vi = i;

// cout << "Virtual Edge (" << C[t].E[i].u << "

// << "," << C[t].E[i].z << ")" << endl;

st = min(C[t].E[i].u,C[t].E[i].v); // s

// cout << "Start= " << min(C[t].E[i].u,C[t].E[

end = max(C[t].E[i].u,C[t].E[i].v); // e

// cout << "End= " << max(C[t].E[i].u,C[t].E[i]

}

// getchar();

cnt = 0;
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C[t].F[cnt] = st;

cnt++;

min_v = 100;

for(i=0;i<C[t].e;i++) // for each edge

if(C[t].E[i].u == st){ // starting at s

if( C[t].E[i].v < min_v ) {

nextv = C[t].E[i].v;

min_v = C[t].E[i].v;

}

}

C[t].F[cnt] = min_v;

cnt++;

newst = min_v;

// Generate outer face F of C[] ...

stop = 0; // Stopping condi

while( stop == 0 ) {

min_v = 100;

for(i=0;i<C[t].e;i++) // for each ed

if(C[t].E[i].u == newst){ // starting at
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if( C[t].E[i].v < min_v ) {

nextv = C[t].E[i].v;

min_v = C[t].E[i].v;

}

// check for end ...

if(C[t].E[i].v == end) {

nextv = C[t].E[i].v;

}

}

// Store outer face ...

C[t].F[cnt] = nextv;

cnt++;

// getchar();

// Case 1 ............. nextv = end ...

if(nextv == end){

// cout << "CASE 1 ---- STOP ---- " << endl;

C[t].face_v = cnt;

stop = 1;

}

else { // Case 2 ... (nextv - -> st) && (next,e

// Check if (next,end) in F[]

// Check (F[0],F[1]), (F[1],F[2]), ... , (F[cnt
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for(i=0;i<(cnt-1);i++)

if( (C[t].F[i]==st) && (C[t].F[i+1]==end) )

// Check if (nextv - -> st)

for(i=0;i<C[t].e;i++) // for

if( (C[t].E[i].u == st) && (C[t].E[i].v

// cout << "CASE 2 ---- STOP ---- "

C[t].face_v = cnt;

stop = 1;

}

}

newst = nextv;

} // end while()

} // end if(TRI)

if( (strcmp(Type[C[t].type],"BONDS")!= 0) ){

// Continue .................. Print out outer face o

// -------------------------------------------------

int STR[30],chck=0;

for(i=0;i<30;i++) STR[i]=0;

97



STR[0] = C[t].E[0].u; cnt=1;

for(i=1;i<C[t].e;i++){ // Search E[].u

chck = 0;

for(j=0;j<cnt;j++)

if( C[t].E[i].u == STR[j] ) chck = 1;

if(chck == 0) { STR[cnt] = C[t].E[i].u; cnt++; }

}

for(i=0;i<C[t].e;i++){ // Search E[].v

chck = 0;

for(j=0;j<cnt;j++)

if(C[t].E[i].v == STR[j]) chck = 1;

if(chck == 0) { STR[cnt] = C[t].E[i].v; cnt++; }

}

// Find and Store Inner vertices ...

C[t].inner_v = 0;

for(i=0;i<cnt;i++){

chck = 0;

for(j=0;j<C[t].face_v;j++)

if(STR[i]==C[t].F[j]) chck=1;

if(chck==0) { C[t].I[ C[t].inner_v ] = STR[i]; C[t

}

// Initialize force and position data structures ...

for(i=0;i<15;i++){

98



Fr[i].x = Fr[i].y = 0;

Fa.x = Fa.y = 0;

C[t].Pos[i].x = C[t].Pos[i].y = 0.0;

}

// cout << endl << "---- -------- -- START ---- -----

// Position all vertices of an outer face W in vertice

// of a regular polygon of size k inscribed into the u

// and place all other vertices in the origin ...

double angle = (double(2*PI)/C[t].face_v);

// Central angle between each outer face vertices

cnt=0;

for(i=0;i<C[t].face_v;i++){ // Position outer fac

C[t].Pos[ C[t].F[i] ].x = rounder( radius * cos(ang

C[t].Pos[ C[t].F[i] ].y = rounder( radius * sin(ang

cnt++;

}

for(i=0;i<C[t].inner_v;i++) // Position inner vert

C[t].Pos[ C[t].I[i] ].x = C[t].Pos[ C[t].I[i] ].y =

for(i=0;i<iterations;i++){ // Main Loop -------

// For all vertices v in V, set resultant forces Fr
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for(j=0;j<C[t].face_v;j++) Fr[ C[t].F[j] ].x = Fr[

for(j=0;j<C[t].inner_v;j++) Fr[ C[t].I[j] ].x = Fr[

// For all edges (u,v) in E, calculate attractivr f

// update Fr[u] and Fr[v]

for(j=0;j<C[t].e;j++){

int u = C[t].E[j].u; int v = C[t].E[j].v;

double distx = (C[t].Pos[u].x - C[t].Pos[v].x);

double disty = (C[t].Pos[u].y - C[t].Pos[v].y);

Fa.x = (sqrt(nodes/PI))*(pow(distx,3));

Fa.y = (sqrt(nodes/PI))*(pow(disty,3));

if(distx > 0){ // U_x > V_x

Fr[u].x = Fr[u].x - fabs(Fa.x); // Move left

Fr[v].x = Fr[v].x + fabs(Fa.x); // Move righ

}else { // U_x < V_x .....

Fr[u].x = Fr[u].x + fabs(Fa.x); // Move righ

Fr[v].x = Fr[v].x - fabs(Fa.x); // Move left

}

if(disty > 0){ // U_x > V_x

// cout << u << " .. y change = " << (-1) * a

Fr[u].y = Fr[u].y - fabs(Fa.y); // Move down
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// cout << v << " .. y change = " << abs(Fa.y

Fr[v].y = Fr[v].y + fabs(Fa.y); // Move up .

}else { // U_x < V_x .....

// cout << u << " .. y change = " << abs(Fa.y

Fr[u].y = Fr[u].y + fabs(Fa.y); // Move up .

// cout << v << " .. y change = " << (-1) * a

Fr[v].y = Fr[v].y - fabs(Fa.y); // Move down

}

}

// For all vertices v in (V - W) {INNER VERTICES},

// move vertex v in direction of force ..

for(j=0;j<C[t].inner_v;j++) {

if(Fr[ C[t].I[j] ].x != 0){

C[t].Pos[ C[t].I[j] ].x = C[t].Pos[ C[t].I

+ min(fabs(Fr[ C[t].I[j] ].x),cool(i))

* (Fr[ C[t].I[j] ].x/fabs(Fr[ C[t].I[j]

}

if(Fr[ C[t].I[j] ].y != 0){

C[t].Pos[ C[t].I[j] ].y = C[t].Pos[ C[t].I

+ min(fabs(Fr[ C[t].I[j] ].y),cool(i))

* (Fr[ C[t].I[j] ].y/fabs(Fr[ C[t].I[j]

}

}
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} // end of main loop.

// Print out coordinates ...

cout << " --- " << t << " -------- AFTER " << i << " I

for(j=0;j<C[t].face_v;j++)

cout << "[" << C[t].F[j] << "]: (" << C[t].Pos[ C[t]

<< "," << C[t].Pos[ C[t]

for(j=0;j<C[t].inner_v;j++)

cout << "[" << C[t].I[j] << "]: (" << C[t].Pos[ C[t]

<< "," << C[t].Pos[ C[t]

getch();

} // end if( not bond )

}

int PATHCHECK(int v, int x){

// Check if a path of tree edges connects v and x

int

i,node;

if(v < x)

if(Edge[v][x]==1)
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global_check = 1;

else {

for(i=0;i<A_1[v].deg;i++){

node = A_1[v].neigh[i];

if(Edge[v][node]==1)

PATHCHECK(node,x);

}

}

return(global_check);

}

void DELETE_E(int u, int v, int z){ // Delete e from ESTA

// cout << "---> Delete (" << u << "," << v << "," << z

if ( (ESTACK[estack-1].u == u) && (ESTACK[estack-1].v =

&& (ESTACK[estack-1].z == z) ) {

ESTACK[estack-1].u = 0;

ESTACK[estack-1].v = 0;

ESTACK[estack-1].z = 0;

}

else {

cout << "Problem in DELETE ESTACK (Terminate Program)

exit(1);

}

estack--;
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}

void ADD_E(int u, int v, int z){ // Add e to ESTACK

// cout << "---> Add (" << u << "," << v << "," << z <<

ESTACK[estack].u = min(u,v);

ESTACK[estack].v = max(u,v);

ESTACK[estack].z = z;

estack++;

}

void DELETEA(int h, int a, int b){ // Delete (h,a,b)

Last_Deleted.h = h;

Last_Deleted.a = a;

Last_Deleted.b = b;

if((TSTACK[tstack-1].h == h)

&& (TSTACK[tstack-1].a == a)

&& (TSTACK[tstack-1].b == b)) {

TSTACK[tstack-1].h = 0;

TSTACK[tstack-1].a = 0;

TSTACK[tstack-1].b = 0;
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}

else {

cout << "Problem in DELETE TSTACK (Terminate Program)

getchar();

exit(1);

}

tstack--;

}

void ADD(int h, int a, int b){ // Add (h,a,b) to TSTACK

// cout << "---> ADD (" << h << "," << a << "," << b <<

// getchar();

if(a < b){

TSTACK[tstack].h = h;

TSTACK[tstack].a = a;

TSTACK[tstack].b = b;

}

else {

TSTACK[tstack].h = h;

TSTACK[tstack].a = b;

TSTACK[tstack].b = a;

}

tstack++;
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}

void PATHSEARCH(int v){ // Find split components of G

int option,i,k,y,l,p,q,g,check,del_check,saveda=0,saved

int h,a,b,w,x,z1,z2,v1,v2,w1,w2,z,e1,e2,saved_x=0,saved

int num_edge=0;

for(i=0;i<A_1[v].deg;i++){ // for each w in A[v]

w = A_1[v].neigh[i];

if(Edge[v][w]==1){ // if v -> w

check = 0;

del_check = 0;

for(l=0;l<path;l++) // for each path ...

if((v==Paths[l].P[0].u)&&(w==Paths[l].P[0].v)){

// if (v,w) is the first edge of a path ..

y = 0;

if(tstack>0){

curr_h = TSTACK[tstack-1].h;

curr_a = TSTACK[tstack-1].a;
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curr_b = TSTACK[tstack-1].b;

}

else curr_h = curr_a = curr_b = 0;

// while (h,a,b) on TSTACK has a > LOWPT1[w] ..

while(curr_a > LOWPT1[w]){

y = max(y,curr_h);

DELETEA(curr_h,curr_a,curr_b); // DELETE (h,a

del_check = 1;

if(tstack>0){

curr_h = TSTACK[tstack-1].h;

curr_a = TSTACK[tstack-1].a;

curr_b = TSTACK[tstack-1].b;

}

else curr_h = curr_a = curr_b = 0;

}

// if no triples were deleted .. add ( w+ND[w]-1 , LOWP

if(del_check==0) ADD( w+ND[w]-1 , LOWPT1[w] , v );

// else if (h,a,b) last triple deleted ..

// add ( max(y,w+ND[w]-1) , LOWPT1[w] , b ) to

else ADD(max(y,w+ND[w]-1),LOWPT1[w],Last_Deleted.b);
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ADD(0,0,0); // Add end of stack marker ..

}

PATHSEARCH(w);

r = MARK[v][w];

ADD_E(v,w,r); // ADD (v,w) to ESTACK

// TEST FOR TYPE II ..........

if(tstack>0){

curr_h = TSTACK[tstack-1].h;

curr_a = TSTACK[tstack-1].a;

curr_b = TSTACK[tstack-1].b;

}

else curr_h = curr_a = curr_b = 0;

while( (v!=1) && ( ((DEGREE[w]==2) && (A1[w] > w)

if ( (curr_a == v) && (FATHER[curr_b]==curr_a) ){

DELETEA(curr_h,curr_a,curr_b); // DELETE (h,a,b) fro

}
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else {

if( (DEGREE[w]==2) && (A1[w]>w) ){

j++;

SepPair[seppair].u = v; SepPair[seppair].v =

seppair++;

// Add top two edges (v,w) and (w,x) on ESTAC

// cout << "num_comp = " << num_comp << endl;

// cout << "--- (type 2) --- NEW COMPONENT --

num_edge = 0;

// cout << "(" << ESTACK[estack-1].u << "," << ESTACK

// << ESTACK[estack-1].z << ")" << endl;

int tu = ESTACK[estack-1].u;

int tv = ESTACK[estack-1].v;

int tz = ESTACK[estack-1].z;

C[num_comp].E[num_edge].u = tu;

C[num_comp].E[num_edge].v = tv;
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C[num_comp].E[num_edge].z = tz;

num_edge++;

DELETE_E(tu,tv,tz);

DEGREE[tu]--;

DEGREE[tv]--;

// cout << "(" << ESTACK[estack-1].u << "," <

// << ESTACK[estack-1].z << ")" << endl;

tu = ESTACK[estack-1].u;

tv = ESTACK[estack-1].v;

tz = ESTACK[estack-1].z;

C[num_comp].E[num_edge].u = tu;

C[num_comp].E[num_edge].v = tv;

C[num_comp].E[num_edge].z = tz;

num_edge++;

x = ESTACK[estack-1].v;

DELETE_E(tu,tv,tz);

DEGREE[tu]--;

DEGREE[tv]--;
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// cout << "(" << v << "," << x << "," << j <

C[num_comp].E[num_edge].u = v;

C[num_comp].E[num_edge].v = x;

C[num_comp].E[num_edge].z = j;

C[num_comp].type = POLYGONS; // 3 - Polygo

num_edge++;

C[num_comp].e = num_edge;

num_comp++;

// if( (y,z) on ESTACK has (y,z)=(x,v) )

if(estack>0){

curr_x = ESTACK[estack-1].u;

curr_y = ESTACK[estack-1].v;

curr_z = ESTACK[estack-1].z;

} else curr_x = curr_y = curr_z = 0;

if ( ((curr_x == x) && (curr_y == v)) || ((curr_x ==

FLAG1 = TRUE;

saved_x = curr_x;

saved_y = curr_y;

DELETE_E(curr_x,curr_y,curr_z); // DELETE (y,z)
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}

} // end if()

else if( (curr_a == v) && ( curr_a != FATHER[curr_b] ))

SepPair[seppair].u = v; SepPair[seppair].v =

j=j+1;

DELETEA(curr_h,curr_a,curr_b); // DELETE (h,a,b)

// while ( ((x,y) on ESTACK has (a <= x <= h)

if(estack>0){

curr_x = ESTACK[estack-1].u;

curr_y = ESTACK[estack-1].v;

curr_z = ESTACK[estack-1].z;

} else curr_x = curr_y = curr_z = 0;

// cout << "num_comp = " << num_comp << endl;

// cout << "(type 2) --- NEW COMPONENT ------

num_edge = 0;

// getchar();

112



while ( (curr_a <= curr_x) && (curr_x <= curr_h)

&& (curr_a <= curr_y) && (curr_y <= curr_h

if(estack>0){

curr_x = ESTACK[estack-1].u;

curr_y = ESTACK[estack-1].v;

curr_z = ESTACK[estack-1].z;

} else curr_x = curr_y = curr_z = 0;

if((curr_x==curr_a) && (curr_y==curr_b)) { // if

FLAG1 = TRUE; // Split component is an edge ..

saved_x = curr_x; saved_y = curr_y;

saveda = curr_a; savedb = curr_b;

DELETE_E(curr_x,curr_y,curr_z);

// Delete (a,b) from ESTACK and save ..

if(tstack>0){

curr_h = TSTACK[tstack-1].h;

curr_a = TSTACK[tstack-1].a;

curr_b = TSTACK[tstack-1].b;

}

else curr_h = curr_a = curr_b = 0;

}
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else {

x = curr_x; y = curr_y; z = curr_z;

// Add (x,y) to current component ...

C[num_comp].E[num_edge].u = x;

C[num_comp].E[num_edge].v = y;

C[num_comp].E[num_edge].z = z;

num_edge++;

DELETE_E(curr_x,curr_y,curr_z);

// Delete (x,y) from ESTACK

DEGREE[x]--;

DEGREE[y]--;

}

if(estack>0){

curr_x = ESTACK[estack-1].u;

curr_y = ESTACK[estack-1].v;

curr_z = ESTACK[estack-1].z;

} else curr_x = curr_y = curr_z = 0;

} // end while()
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// Add saved edge (a,b,j) to new component ..

// cout << "(" << saveda << "," << savedb <<

C[num_comp].E[num_edge].u = saveda;

C[num_comp].E[num_edge].v = savedb;

C[num_comp].E[num_edge].z = j;

num_edge++;

C[num_comp].e = num_edge;

// Check the type of this new split component

// Check degree of first vertex u found in th

v_cnt = 0; v_one = 0; c = 0;

for(c=0;c<C[num_comp].e;c++) {

if(c==0){ v_one = C[num_comp].E[0].u; v_cnt

else {

if( (C[num_comp].E[c].u == v_one) || (C[n

v_cnt++;

}

}

// cout << "1st vertex " << v_one << " .. cou

if(v_cnt > 2) C[num_comp].type = TRI; // T

else C[num_comp].type = POLYGONS; // Trico

// cout << "Type " << Type[C[num_comp].type]
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num_comp++;

x = savedb;

} // end else if()

if(FLAG1 == TRUE){ // split component is an edge

FLAG1 = FALSE; j++;

// cout << "num_comp = " << num_comp << endl;

// cout << endl << "(FLAG1 = TRUE) ----- NEW

// Add saved edge, (x,v,j-1) and (x,v,j) to new compo

// cout << "(" << saved_x << "," << saved_y << ",0)"

// << "(" << saved_x << "," << saved_y << "," << j

// << "(" << saved_x << "," << saved_y << "," << j

C[num_comp].E[0].u = saved_x;

C[num_comp].E[0].v = saved_y;

C[num_comp].E[0].z = j-1;

C[num_comp].E[1].u = saved_x;

C[num_comp].E[1].v = saved_y;

C[num_comp].E[1].z = 0;

C[num_comp].E[2].u = saved_x;

C[num_comp].E[2].v = saved_y;

C[num_comp].E[2].z = j;
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C[num_comp].e = 3;

C[num_comp].type = BONDS; // Multilink ...

num_comp++;

// cout << "num_comp = " << num_comp << endl;

getchar();

DEGREE[saved_x]--; DEGREE[saved_y]--;

}

// Add (v,x,j) to ESTACK

ADD_E(v,x,j);

DEGREE[x]++;

DEGREE[v]++;

FATHER[x] = v;

global_check = 0;

if( PATHCHECK(A1[v],x)==1 ) // if A1[v] -> * x

A1[v] = x;

w = x;

} // end else()
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if(tstack>0){

curr_h = TSTACK[tstack-1].h;

curr_a = TSTACK[tstack-1].a;

curr_b = TSTACK[tstack-1].b;

}

else curr_h = curr_a = curr_b = 0;

} // end while( type 2 pair loop )

if(estack>0){

curr_x = ESTACK[estack-1].u;

curr_y = ESTACK[estack-1].v;

curr_z = ESTACK[estack-1].z;

} else curr_x = curr_y = curr_z = 0;

// Check that there are more than three vertices re

// where all three have degree=2.

if( ( DEGREE[LOWPT1[w]] >2) &&

(LOWPT2[w] >= v) && ( (LOWPT1[w] != 1)

|| (FATHER[v] != 1) || (w > 3) ) ){

SepPair[seppair].u = LOWPT1[w]; SepPair[seppair].

j++;

// cout << "------- NEW COMPONENT -- C -------- "
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// while (x,y) on estack has ...

while( ((w <= curr_x) && (curr_x < (w + ND[w]))) || ((w <

&& (curr_y < (w + ND[w]))) ){

// begin ...

x = curr_x; y = curr_y; z = curr_z;

// Add (x,y) to new component ..

// cout << "(" << x << "," << y << "," << z << ") ... "

C[num_comp].E[num_edge].u = x;

C[num_comp].E[num_edge].v = y;

C[num_comp].E[num_edge].z = z;

num_edge++;

// delete (x,y) from estack ..

DELETE_E(x,y,z);

// decrement degree(x), degree(y)

DEGREE[x]--;

DEGREE[y]--;

if(estack>0){

curr_x = ESTACK[estack-1].u;

curr_y = ESTACK[estack-1].v;

curr_z = ESTACK[estack-1].z;
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} else curr_x = curr_y = curr_z = 0;

}

// Add (v,LOWPT1[w],j) to new component ..

// cout << "(" << v << "," << LOWPT1[w] << "," <<

C[num_comp].E[num_edge].u = v;

C[num_comp].E[num_edge].v = LOWPT1[w];

C[num_comp].E[num_edge].z = j;

num_edge++;

C[num_comp].e = num_edge;

// Check the type of this new split component ..

// Check degree of first vertex u found in the fi

v_cnt = 0; v_one = 0; c = 0;

for(c=0;c<C[num_comp].e;c++) {

if(c==0){ v_one = C[num_comp].E[0].u; v_cnt

else {

if( (C[num_comp].E[c].u == v_one) ||

(C[num_comp].E[c].v == v_one) )

v_cnt++;

}

}
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// cout << "1st vertex " << v_one << " .. count=

if(v_cnt > 2) C[num_comp].type = TRI; // Tri.

else C[num_comp].type = POLYGONS; // Triconnec

num_comp++;

if (A1[v] == w) A1[v] = LOWPT1[w];

// Test for multiple edges ...

if(estack>0){

curr_x = ESTACK[estack-1].u;

curr_y = ESTACK[estack-1].v;

curr_z = ESTACK[estack-1].z;

}

if ( ((curr_x==v)&&(curr_y==LOWPT1[w]))

|| ((curr_x==LOWPT1[w]) && (curr_y==v)) ) {

j = j+1;

cout << "MULTIPLE EDGE SCENARIO" << endl;

// Add (x,y) (v,LOWPT1[w],j-1) (v,LOWPT1[w],j) to new c

/* cout << " ---------------- NEW COMP.----------------
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cout << "(" << curr_x << "," << curr_y << ")" << endl;

cout << "(" << v << "," << LOWPT1[w] << "," << j-1 << "

cout << "(" << v << "," << LOWPT1[w] << "," << j << ")"

*/

DEGREE[v]--;

DEGREE[LOWPT1[w]]--;

}

if(LOWPT1[w] != FATHER[v]){

// ( v, Lowpt1(w) ) is a separation pair ...

// Check if it is also an edge ...

if(Edge[v][LOWPT1[w]] != 0){ // ( v, Lowpt1(w

j++;

/* cout << "num_comp = " << num_comp << endl;

cout << "----- NEW SPLIT COMPONENT --------------------

cout << "(" << v << "," << LOWPT1[w] << "," << j-1 << "

cout << "(" << v << "," << LOWPT1[w] << "," << 0 << ")

cout << "(" << v << "," << LOWPT1[w] << "," << j << ")"

*/

MARK[v][LOWPT1[w]] = MARK[LOWPT1[w]][v] = j;

// cout << "Mark [" << v << "][" << LOWPT1[w] <
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C[num_comp].E[0].u = v;

C[num_comp].E[0].v = LOWPT1[w];

C[num_comp].E[0].z = j-1;

C[num_comp].E[1].u = v;

C[num_comp].E[1].v = LOWPT1[w];;

C[num_comp].E[1].z = 0;

C[num_comp].E[2].u = v;

C[num_comp].E[2].v = LOWPT1[w];;

C[num_comp].E[2].z = j;

C[num_comp].type = BONDS; // Multilink ..

C[num_comp].e = 3;

num_comp++;

// cout << "num_comp = " << num_comp << endl;

}

else {

// Add (v,lowpt1[w],j) to ESTACK

ADD_E(v,LOWPT1[w],j);

DEGREE[v]++;

DEGREE[LOWPT1[w]]++;

}

} else {

j++;

// cout << "num_comp = " << num_comp << endl;

/* cout << "----- NEW SPLIT COMPONENT -----------------

cout << "(" << v << "," << LOWPT1[w] << "," << j-1 << "
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cout << "(" << v << "," << LOWPT1[w] << "," << 0 << ")

cout << "(" << v << "," << LOWPT1[w] << "," << j << ")"

*/

MARK[v][LOWPT1[w]] = MARK[LOWPT1[w]][v] = j;

// cout << "Mark [" << v << "][" << LOWPT1[w] <

C[num_comp].E[0].u = v;

C[num_comp].E[0].v = LOWPT1[w];

C[num_comp].E[0].z = j-1;

C[num_comp].E[1].u = v;

C[num_comp].E[1].v = LOWPT1[w];;

C[num_comp].E[1].z = 0;

C[num_comp].E[2].u = v;

C[num_comp].E[2].v = LOWPT1[w];;

C[num_comp].E[2].z = j;

C[num_comp].type = BONDS; // Multilink ..

C[num_comp].e = 3;

num_comp++;

// getchar();

}

} // end type 1 pair loop ..

int check3=0;

for(g=0;g<path;g++) // for each path ...
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if((v==Paths[g].P[0].u)&&(w==Paths[g].P[0].v))

// if (v,w) is a first edge of a path

check3=1;

if(check3==1){

// cout << "(" << v << "," << w << ") is a first edge" <<

// cout << "Delete all entries down to EOS .. " <

check = 1;

while(check==1){

if(tstack==0) check = 2;

else if ((TSTACK[tstack-1].h == 0) && (TSTACK[tstack-1]

&& (TSTACK[tstack-1].b == 0 )){

DELETEA(TSTACK[tstack-1].h,TSTACK[tstack-1].a,TSTACK[

check = 2;

}

else DELETEA(TSTACK[tstack-1].h,TSTACK[tstack-1].a,TST

if(tstack>0){

curr_h = TSTACK[tstack-1].h;

curr_a = TSTACK[tstack-1].a;

curr_b = TSTACK[tstack-1].b;

}

else curr_h = curr_a = curr_b = 0;
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}

}

// while (h,a,b) on TSTACK has HIGHPT[v] > h ..

while((HIGHPT[v] > curr_h) && (tstack>0)) {

DELETEA(curr_h,curr_a,curr_b);

if(tstack>0){

curr_h = TSTACK[tstack-1].h;

curr_a = TSTACK[tstack-1].a;

curr_b = TSTACK[tstack-1].b;

}

else curr_h = curr_a = curr_b = 0;

}

}

else { // v - -> w

// if (v,w) is the first and last edge of a path ..

for(g=0;g<path;g++)

if((v==Paths[g].P[0].u)&&(w==Paths[g].P[0].v)&&(Paths[g].

del_check = y = 0;
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if(tstack>0){

curr_h = TSTACK[tstack-1].h;

curr_a = TSTACK[tstack-1].a;

curr_b = TSTACK[tstack-1].b;

}

else curr_h = curr_a = curr_b = 0;

while((curr_a > w) && (tstack>0)){

y = max(y,curr_h);

DELETEA(curr_h,curr_a,curr_b);

del_check = 1;

if(tstack>0){

curr_h = TSTACK[tstack-1].h;

curr_a = TSTACK[tstack-1].a;

curr_b = TSTACK[tstack-1].b;

}

else curr_h = curr_a = curr_b = 0;

}

if(del_check==0) { // Add (v,w,v) to TSTACK

ADD(v,w,v);

}

else if ( (Last_Deleted.h == h) && (Last_Deleted.a == a

&& (Last_Deleted.b == b)) {
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// Add (y,w,b) to TSTACK

ADD(y,w,b);

}

}

if(w==FATHER[v]){

j = j+1;

// Add (v,w), (v,w,j), tree arc (w,v) to new component ..

/* cout << "num_comp = " << num_comp << endl;

cout << "NEW COMPONENT ------- E -------------" << endl;

cout << "(" << v << "," << w << ")" << endl;

cout << "(" << v << "," << w << "," << j << ")" << endl;

// Mark tree arc (w,v) as virtual edge j

cout << "(" << v << "," << w << "," << j << ")" << endl;

*/

C[num_comp].E[0].u = v;

C[num_comp].E[0].v = w;

C[num_comp].E[1].u = v;

C[num_comp].E[1].v = w;

C[num_comp].E[2].u = v;

C[num_comp].E[2].v = w;

C[num_comp].type = BONDS; // Multilink ...

C[num_comp].e = 3;
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num_comp++;

// getchar();

DEGREE[v]--;

DEGREE[w]--;

}

else {

r = MARK[v][w];

ADD_E(v,w,r); // Add (v,w) to ESTACK

}

}

}

}

void PATHFINDER(int v){ // Find a set of paths that cove

int i,w,j;

NEWNUM[v] = m - ND[v] + 1;

for(i=0;i<A_1[v].deg;i++){
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w = A_1[v].neigh[i];

if(s==START) { // start new path ..

s = v;

path++;

}

// add (v,w) to current path

Paths[path-1].P[path_cnt].u = v;

Paths[path-1].P[path_cnt].v = A_1[v].neigh[i];

Paths[path-1].cnt++;

if(Edge[v][w]==1){ // if v -> w

path_cnt++;

PATHFINDER(w);

m--;

}

else if(Edge[v][w]==2) { // if v - -> w

if(HIGHPT[NEWNUM[w]]==0) {

HIGHPT[NEWNUM[w]] = NEWNUM[v];

}
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// output current path

s = START;

path_cnt = 0;

}

}

}

void DFS(int v, int u){

int i=0,w;

n = NUMBER[v] = n + 1;

// (comment a) ..

LOWPT1[v] = LOWPT2[v] = NUMBER[v];

ND[v] = 1;

// ( end comment a ) ..

for(i=0;i<A[v].deg;i++){ // for each w in A(v)

if(NUMBER[A[v].neigh[i]]==0){ // w is a new vertex

Edge[v][A[v].neigh[i]] = 1; // (v,w) is a tree ar

DFS(A[v].neigh[i],v);

131



// (comment b) ..

if(LOWPT1[A[v].neigh[i]] < LOWPT1[v]){

LOWPT2[v] = min(LOWPT1[v],LOWPT2[A[v].neigh[i]]);

LOWPT1[v] = LOWPT1[A[v].neigh[i]];

}

else if(LOWPT1[A[v].neigh[i]]==LOWPT1[v]){

LOWPT2[v] = min(LOWPT2[v],LOWPT2[A[v].neigh[i]]);

}

else {

LOWPT2[v] = min(LOWPT2[v],LOWPT1[A[v].neigh[i]]);

}

ND[v] = ND[v] + ND[A[v].neigh[i]];

FATHER[A[v].neigh[i]] = v;

// end (comment b ) ....

}

else if ( (NUMBER[A[v].neigh[i]] < NUMBER[v]) &&

( (A[v].neigh[i] != u) || (FLAG[v]==1) ) ){

Edge[v][A[v].neigh[i]] = 2; // (v,w) is a frond
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// (comment c) ..

if(NUMBER[A[v].neigh[i]] < LOWPT1[v]){

LOWPT2[v] = LOWPT1[v];

LOWPT1[v] = NUMBER[A[v].neigh[i]];

}

else if(NUMBER[A[v].neigh[i]] > LOWPT1[v]){

LOWPT2[v] = min(LOWPT2[v],NUMBER[A[v].neigh[i]]);

}

// end (comment c ) ...

}

if(A[v].neigh[i]==u) FLAG[v]=1;

}

}

void Create_Adj(void){

// ------- Create adjacency structure for the split co

int j=0,k=0,l=0,h=0;

for(j=0;j<num_comp;j++) // for each component

for(k=0;k<C[j].e;k++) // for each edge

if(C[j].E[k].z != 0) // if its virtual

for(l=j+1;l<num_comp;l++) // for every other co
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for(h=0;h<C[l].e;h++) // for each edge

// If components i and j share a virtual edge

// place (u,v,j) in A[i][j], A[j][i]

if(C[l].E[h].z == C[j].E[k].z){

Comp_A[j][l].u = Comp_A[l][j].u = C[j].

Comp_A[j][l].v = Comp_A[l][j].v = C[j].

Comp_A[j][l].z = Comp_A[l][j].z = C[j].

Comp_D[j]++; Comp_D[l]++;

}

}

void Merge_Poly(void){

// --------------- Merge adjacent polygons -----------

int i=0,j=0,m=0,n=0;

for(i=0;i<num_comp;i++)

if(strcmp(Type[C[i].type],"POLYGONS")==0) // fo

for(j=0;j<num_comp;j++){ // fo

// which is a neighbor & polygon

if( (strcmp(Type[C[j].type],"POLYGONS")==0)

&& (Comp_A[i][j].u != 0) ) {

// Add edges of j except virtual edge
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// (Comp_A[i][j].u,Comp_A[i][j].v,Comp_A[

for(int m=0;m<C[j].e;m++){

// if edge e not virtual, add to comp

if(C[j].E[m].z != Comp_A[i][j].z){

C[i].E[C[i].e].u = C[j].E[m].u;

C[i].E[C[i].e].v = C[j].E[m].v;

C[i].E[C[i].e].z = C[j].E[m].z;

C[i].e++; // increase edges i

}

}

// Delete virtual edge in comp i ...

for(m=0;m<C[i].e;m++)

if(C[i].E[m].z == Comp_A[i][j].z){

for(n=m;n<(C[i].e - 1);n++){

C[i].E[n].u = C[i].E[n+1].u;

C[i].E[n].v = C[i].E[n+1].v;

C[i].E[n].z = C[i].E[n+1].z;

}

C[i].E[ C[i].e - 1 ].u = 0;

C[i].E[ C[i].e - 1 ].v = 0;

C[i].E[ C[i].e - 1 ].z = 0;

}

C[i].e--; // Decrease edges in comp i
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// Update adjacency structures of neighbo

for(m=0;m<num_comp;m++)

if(Comp_A[m][j].u != 0){

if(m == i){

Comp_A[m][j].u = Comp_A[m][j].v =

Comp_A[j][m].u = Comp_A[j][m].v =

Comp_D[i]--;

}

else{ // neighbors of j ...

Comp_A[i][m].u = Comp_A[m][i]. u

Comp_A[i][m].v = Comp_A[m][i]. v

Comp_A[i][m].z = Comp_A[m][i]. z

Comp_D[i]++;

Comp_A[m][j].u = Comp_A[m][j].v =

}

}

// Set Comp_A[j][0...numcomp] to 0

for(m=0;m<num_comp;m++)

Comp_A[j][m].u = Comp_A[j][m].v = Comp
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}

}

getchar();

}

void Acc_Adj(void){

// Initialize variables and Structures ...

int curr_v = 0,prev_v = 0,temp_v = 0;

int i=0,j=0,v1=0,w1=0;

for(i=0;i<(2*nodes)+1;i++)

BUCKET[i].num = 0;

// ------------ STEP 2 --------------------------- //

for(i=1;i<nodes+1;i++)

for(j=1;j<nodes+1;j++){

if(Edge[i][j]==1) {

// compute theta(v,w) for tree arcs

if(LOWPT2[j] < i){

theta[i][j] = 2 * LOWPT1[j];

}
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if(LOWPT2[j] >= i){

theta[i][j] = 2 * LOWPT1[j] + 1;

}

BUCKET[theta[i][j]].Edges[BUCKET[theta[i][j]].num].u = i;

BUCKET[theta[i][j]].Edges[BUCKET[theta[i][j]].num].v = j;

BUCKET[theta[i][j]].num++;

}

if(Edge[i][j]==2) {

// compute theta(v,w) for fronds

theta[i][j] = 2 * j + 1;

BUCKET[theta[i][j]].Edges[BUCKET[theta[i][j]].num].u = i;

BUCKET[theta[i][j]].Edges[BUCKET[theta[i][j]].num].v = j;

BUCKET[theta[i][j]].num++;

}

}

for(j=0;j<nodes+1;j++)
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A_1[j].deg = 0;

for(i=0;i<(2*nodes)+1;i++){

prev_v = 0;

for(j=0;j<BUCKET[i].num;j++){

v1 = BUCKET[i].Edges[j].u;

w1 = BUCKET[i].Edges[j].v;

curr_v = v1;

// Add w1 to end of A1[v]

A_1[v1].neigh[A_1[v1].deg] = w1;

if(curr_v == prev_v){

if((A_1[curr_v].neigh[A_1[curr_v].deg] > curr_v)

&&(A_1[curr_v].neigh[A_1[curr_v].deg-1] < curr_v)){

temp_v = A_1[curr_v].neigh[A_1[curr_v].deg-1];

A_1[curr_v].neigh[A_1[curr_v].deg-1] =

A_1[curr_v].neigh[A_1[curr_v].deg];

A_1[curr_v].neigh[A_1[curr_v].deg] = temp_v;

}
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}

A_1[v1].deg++;

prev_v = curr_v;

}

}

}

// Main Function ...

int main(int argc, char* argv[]){

int i=0, curr_v, prev_v, temp_v; // variables used

int m=0,n=0;

// Sample input, |V|=6, |E| = 9

A[1].deg = 2;

A[1].neigh[0] = 2;

A[1].neigh[1] = 3;

A[2].deg = 3;

A[2].neigh[0] = 1;

A[2].neigh[1] = 3;

A[2].neigh[2] = 4;

A[3].deg = 4;
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A[3].neigh[0] = 1;

A[3].neigh[1] = 2;

A[3].neigh[2] = 4;

A[3].neigh[3] = 5;

A[4].deg = 4;

A[4].neigh[0] = 2;

A[4].neigh[1] = 3;

A[4].neigh[2] = 5;

A[4].neigh[3] = 6;

A[5].deg = 3;

A[5].neigh[0] = 3;

A[5].neigh[1] = 4;

A[5].neigh[2] = 6;

A[6].deg = 2;

A[6].neigh[0] = 4;

A[6].neigh[1] = 5;

nodes=6;m=6;

// Initialize DFS(), PATHFIND(), and PATHSEARCH() Struc

for(i=1;i<nodes+1;i++){

NUMBER[i] = FLAG[i] = Paths[i].cnt = 0;

LOWPT1[i] = LOWPT2[i] = ND[i] = FATHER[i] = 1;

for(j=1;j<nodes+1;j++)
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Edge[i][j]=0;

}

// Initialize Triconnected Component Structures ...

for(i=0;i<15;i++){

Comp_D[i]=0;

for(j=0;j<15;j++)

Comp_A[i][j].u = Comp_A[i][j].v = Comp_A[i][j].z

for(j=0;j<30;j++)

Comp_A[i][j].u = Comp_A[i][j].v = Comp_A[i][j].z

}

for(i=0;i<10;i++)

SepPair[i].u = SepPair[i].v = 0;

// Initialize Graph Drawing Structures ...

for(i=0;i<20;i++){

C[i].face_v = C[i].inner_v = C[i].d_bond = 0;

Final.face_v = Final.inner_v = 0;

for(j=0;j<30;j++){

C[i].E[j].u = C[i].E[j].v = C[i].E[j].z = 0;

C[i].F[j] = C[i].I[j] = C[i].V[j] = 0;

Final.E[j].u = Final.E[j].v = Final.E[j].z = 0;

Final.F[j] = Final.I[j] = 0;

T_number[j] = 0;

}

for(j=0;j<20;j++)
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MARK[i][j] = 0;

}

// ---- BEGIN -----------------------------------------

// STEP 1 - Depth First Search / Construct Palm Tree

// - Calculate LOW1, LOW2, ND and FATHER values

n = 0;

int start=1,temp;

DFS(start,1); // DFS() - Generate Palm tree

// Print out tree arcs and fronds of P

// cout << " ----------- RESULTS - Procedure 1 --------

cout << "Tree arcs .. ";

for(i=1;i<nodes+1;i++)

for(j=1;j<nodes+1;j++)

if(Edge[i][j]==1)

cout << "(" << i << "," << j << ") ";

cout << endl << "Fronds .. ";

for(i=1;i<nodes+1;i++)

for(j=1;j<nodes+1;j++)

if(Edge[i][j]==2)

cout << "(" << i << "," << j << ") ";

cout << endl;
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// STEP 2 - Construct acceptable adjacency structure ..

Acc_Adj();

// STEP 3 - Peform a depth-first search of G using new

// Procedure 5 ....

s = START;

path_cnt=0;

for(i=1;i<nodes+1;i++){

NEWNUM[i] = 0;

HIGHPT[i] = 0;

A1[i] = 0;

}

// Generate a set of disjoint paths that cover G

// Start at vertex 1 ...

PATHFINDER(1);

for(i=1;i<nodes+1;i++){ // Set the first descend

A1[i] = A_1[i].neigh[0]; // Set the degree of ver

DEGREE[i] = A[i].deg;

}

// Print out results of PATHFINDING() Procedure ...

cout << "------------- Procedure 5 Results ------------

cout << "------- # of Paths = " << path << " -------- "
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cout << "===============================" << endl;

for(i=0;i<path;i++){

for(j=0;j<Paths[i].cnt;j++)

cout << "(" << Paths[i].P[j].u << "," << Paths[i].P

cout << endl;

}

getchar();

// Procedure 6 - Determine Split Components ...

// Initialize Stacks ...

for(i=0;i<50;i++){

ESTACK[i].u = ESTACK[i].v = ESTACK[i].z = 0;

TSTACK[i].h = TSTACK[i].a = TSTACK[i].b = 0;

}

j=0;

FLAG1 = FALSE;

// ------ PATHSEARCH -- Generate Split Components -----

PATHSEARCH(1);

// cout << "------ FINAL COMPONENT ----------" << endl;

for(i=0;i<estack;i++){

// cout << "(" << ESTACK[i].u << "," << ESTACK[i].v <

C[num_comp].E[i].u = ESTACK[i].u;

C[num_comp].E[i].v = ESTACK[i].v;

C[num_comp].E[i].z = ESTACK[i].z;
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}

// cout << endl; // # of virtual edges = j;

C[num_comp].e = estack;

// Check the type of this new split component ..

// Check degree of first vertex u found in the first ed

v_cnt = 0; v_one = 0; c = 0;

for(c=0;c<C[num_comp].e;c++) {

if(c==0){ v_one = C[num_comp].E[0].u; v_cnt++; }

else { if( (C[num_comp].E[c].u == v_one) || (C[nu

v_cnt++;

} }

if(v_cnt > 2) C[num_comp].type = TRI; // Tri.

else C[num_comp].type = POLYGONS; // Triconnected Co

num_comp++;

cout << "There are " << num_comp << " split components

for(i=0;i<num_comp;i++)

cout << "C[" << i << "] has " << C[i].e << " edges, t

cout << endl;

getchar();

// -------------------- Print out the split components

for(j=0;j<num_comp;j++){
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cout << "[" << j << "] ";

for(i=0;i<C[j].e;i++)

cout << " (" << C[j].E[i].u << "," << C[j].E[i].v

cout << Type[C[j].type] << endl;

}

getchar();

// ...... ..... .... ..... ....... .... Print out the

cout << "Separation Pairs .... {";

for(i=0;i<seppair;i++)

cout << "(" << SepPair[i].u << "," << SepPair[i].v <

cout << "}" << endl;

// ----------------------------------------------------

// Rearrange split components to create triconnected co

// Set Up Component Adjacency Structure .. Create virtu

// ----- ----- ---- ---------------------- Create 3-blo

// --- Create Adjacency Structure for Split Components

Create_Adj();

// --------------- Merge adjacent polygons -----------

Merge_Poly();

// getchar();

// --- ------------ ------ Print out triconnected compo
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int new_count=0;

for(j=0;j<num_comp;j++)

if(Comp_D[j] > 0){

new_count++;

cout << "Comp [" << j << "].D = " << Comp_D[j] <<

for(i=0;i<C[j].e;i++)

cout << "(" << C[j].E[i].u << "," << C[j].E[i].v

cout << Type[C[j].type] << endl;

}

cout << "There are now " << new_count << " triconnected

getchar();

// Draw each Triconnected Graph G and Polygons and Mult

// m_edge = nodes + 1;

for(j=0;j<num_comp;j++)

if(Comp_D[j] > 0)

Draw_T(j); // Draw each triconnected comp

// Merge planar representations ..

Merge_3_Block_Tree(new_count);

getchar();

// Dual Eulerian Alg. Setup ...........................
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int a=0,b=0,next=0;

V=nodes; DUAL=0;

// Initialize arrays ...

for(i=0;i<30;i++){

SPECIAL[i] = 0;

Vrt[i].u = Vrt[i].v = Vrt[i].id = Vrt[i].part = 0;

for(j=0;j<30;j++)

W[i][j] = 0; }

for(i=0;i<30;i++){

Tr[i].x = Tr[i].y = 0;

C1[i].x = C1[i].y = 0;

C2[i].x = C2[i].y = 0;

Temp[i].x = Temp[i].y = 0; }

// Copy Final[x,y] into C1[x,y] ....

for(j=1;j<nodes+1;j++){

C1[j].x = Final.Pos[j].x;

C1[j].y = Final.Pos[j].y;

}

int k=0;

// Set up adjacency matrix from adjacency lists ...

for(i=1;i<nodes+1;i++) // for each vertex i ..

for(k=i+1;k<nodes+1;k++) // for each vertex k .

for(j=0;j<A[i].deg;j++) // for each neighbor of i

if(A[i].neigh[j] == k) { W[i][k]++; W[k][i]+
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/* Print out adjacency matrix ...

for(i=1;i<nodes+1;i++){

for(k=1;k<nodes+1;k++)

cout << W[i][k] << " ";

cout << endl;

} */

// ---------- Begin (Multiple Edge Section) -----------

// Creates 2 virtual edges for each multiedge, and the

// algorithm keeps track of the edges that are virtual

// For each multiple edge ... create virtual edges part

int cnt=0; int m_edge=0;

for(i=1;i<nodes+1;i++)

for(k=i+1;k<nodes+1;k++) // note .. i < k

if(W[i][k] > 1){

int part=0;

for(j=0;j<(W[i][k]-1);j++) { // for each mult

Vrt[m_edge].u = i; // part 1

Vrt[m_edge].v = k;

Vrt[m_edge].id = j;

Vrt[m_edge].part = part;

m_edge++;

part++;

Vrt[m_edge].u = i; // part 2
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Vrt[m_edge].v = k;

Vrt[m_edge].id = j;

Vrt[m_edge].part = part;

m_edge++;

}

}

cnt=1;

for(i=0;i<m_edge;i++){ // for every virtual edg

// Print out first part of each pair of virtual egde

cout << "(" << Vrt[i].u << "," << Vrt[i].v << ","

<< Vrt[i].id << "," << Vrt[i].part << ") ";

// Get coordiantes of vertices incident to multiple

int x1 = C1[Vrt[i].u].x; int y1 = C1[Vrt[i].u].y;

int x2 = C1[Vrt[i].v].x; int y2 = C1[Vrt[i].v].y;

// Create virtual vertices corr. to virtual edges ..

// New vertex is (V+cnt) ..

if(x1==x2){ // vertical line

cout << " vert ";

C1[V+cnt].x = x1 + .5;

C1[V+cnt].y = (y1+y2)/2;

}
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else if(y1==y2){ // horizontal line

cout << " horiz ";

C1[V+cnt].x = (x1+x2)/2;

C1[V+cnt].y = y1 + 0.5;

}

else { // slope > 0 or slope < 0

cout << " s>0 or s<0 ";

C1[V+cnt].x = x1 + .75*(x2-x1);

C1[V+cnt].y = min(x1,x2) + (.75)*(max(x1,x2)-min

}

// Print out new vertex information ...

cout << V+cnt << " (x,y) = " << "(" << C1[V+cnt].x

<< "," << C1[V+cnt].y << ")" << endl;

// Update adjacency structures of (V+cnt), (Vrt[i].u

A[V+cnt].deg = 2;

A[V+cnt].neigh[0] = Vrt[i].u; A[V+cnt].neigh[1] = Vr

A[Vrt[i].u].neigh[ A[Vrt[i].u].deg ] = V+cnt;

A[Vrt[i].u].deg++;

A[Vrt[i].v].neigh[ A[Vrt[i].v].deg ] = V+cnt;

A[Vrt[i].v].deg++;

// Mark New virtual vertices as SPECIAL ..

SPECIAL[nodes+cnt] = 1;
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i++; // Skip second part of virtual edge ...

cnt++; // Increase next virtual vertex number by

}

// ----------------- Update |V| and |E| ---------------

V = V + (cnt-1);

E = E + (m_edge/2);

cout << " ----------- |V|= " << V << " |E|= " << E << "

// ----------------------- End (Multiple Edge Section)

// Copy C1[] to C2[] (temp lists)

for(int i=1;i<(V+1);i++){

C2[i].x = C1[i].x;

C2[i].y = C1[i].y;

}

// Dual Eulerian Algorithm .....

// Finds the maximum size Petrie path in G. This versio

// to build the path from the starting edge, going the

// starting with the same initial turn.

int flag=0; // Checks when to stop euler petrie path

int TRY=0; // From (a,b), go left ... then if necce

turn = LEFT; // First turn left first ...

while( (DUAL==0) && (TRY<2)) {
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getchar();

// Initialize edge stacks ...

for(i=0;i<30;i++)

STACK[i].u = STACK[i].v = 0;

RESET(); // Reset coordinates of each vertex ..

// Begin with first two vertices ... (v_1,v_2) , v_2

a = 1; b = A[1].neigh[0];

Strt.u = a; Strt.v = b;

STACK[0].u = a; STACK[0].v = b; stack_cnt = 1;

while(flag==0){ // Euler-Petrie algorithm ....

cout << "(" << a << "," << b << ") ";

if(turn==LEFT) cout << " L " << endl;

else cout << " R " << endl;

RESET();

TURN(a,b,turn); // turn (turn) at edge (a,b)

if(turn==LEFT) next=DIR.left;

else next=DIR.right;
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// Check for multiple edge on STACK ..

// cout << "Checking (" << b << "," << next << ")"

if( STACK_CHECK(b,next) == 1) flag = 1;

else { // Add new edge to STACK ...

STACK[stack_cnt].u = b;

STACK[stack_cnt].v = next;

stack_cnt++;

a = b; b = next;

if(SPECIAL[next]==0){ // if current head

if(turn==LEFT) turn=RIGHT; // switch direction ..

else turn=LEFT;

}

}

}

TRY++;

flag = 0; // Re-enter previous loop ..

turn = RIGHT; // If neccessary turn right first ...
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} // end main while()

getchar();

return(0);

} // end of main program ..

/clearpage

// Biconnectivity Algorithm ..

// Input: Undirected graph without multiple edges ..

// Output: Biconnected Components ...

// Implementation of created by Robert Tarjan in [10]

// Store biconnected components in B[].

// # of biconnected components is bicmps.

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <iostream.h>

#include <algorithm>

#include <conio.h>

#define START 1000

#define EOS 100

#define TRUE 1
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#define FALSE 0

int nodes = 0, m = 0; // # of vertices in G

typedef struct { // Adjacency lists for each vertex

int neigh[50]; // List of vertices adjacent to v

int deg; // Degree of vertex v

} Adj_List;

typedef struct { // Structure

int u; int v; int z;

} EDGE;

typedef struct { // Stores each biconnected compone

EDGE edges[20]; // Stores edges of component B

int e; // The number of edges in componen

} Bi_Comp;

typedef struct {

int u; int v; int d;

} Bond;
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EDGE AllEdges[50]; // Store edges ..

int alledge = 0;

Bond Bonds[20]; // Store Bonds

int bonds = 0;

Bi_Comp B[20]; // Biconnected Components ...

int bicmps = 0; // # of biconnected components ..

EDGE STACK[50]; // Edge stack ...

Adj_List A[50]; // Adjacency lists ...

int st_cnt=0; // Edge count for STACK

int W[50][50]; // Weight Matrix ...

int NUMBER[50]; // Vertex Numbering ...

int LOWPT1[50]; // LOWPT1 Info ...

int b_cnt=0; // Counter for Biconnect() numbering

void BICONNECT(int v, int u);

void BICONNECT(int v, int u){

int w,u1,u2,u3,cnt=0;

NUMBER[v] = b_cnt = b_cnt + 1;

LOWPT1[v] = NUMBER[v];

for(int i=0;i<A[v].deg;i++){
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w = A[v].neigh[i];

if(NUMBER[w]==0){ // If w is not numbered ..

// Add (v,w) to STACK ..

STACK[st_cnt].u = v;

STACK[st_cnt].v = w;

st_cnt++;

BICONNECT(w,v);

LOWPT1[v] = min(LOWPT1[v],LOWPT1[w]);

if(LOWPT1[w] >= NUMBER[v]){

// Start new biconnected component ...

cnt=0;

u1 = STACK[st_cnt-1].u;

u2 = STACK[st_cnt-1].v;

while(NUMBER[u1] >= NUMBER[w]){

// Send (u1,u2) to new component ..

cout << "(" << u1 << "," << u2 << ")";
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B[bicmps].edges[cnt].u = u1;

B[bicmps].edges[cnt].v = u2;

cnt++;

// Delete (u1,u2) from STACK ..

STACK[st_cnt-1].u = 0;

STACK[st_cnt-1].v = 0;

st_cnt--;

u1 = STACK[st_cnt-1].u;

u2 = STACK[st_cnt-1].v;

}

cout << "(" << v << "," << w << ")." << endl;

B[bicmps].edges[cnt].u = v;

B[bicmps].edges[cnt].v = w;

cnt++;

B[bicmps].e = cnt; // Set number of edges in new compone

bicmps++; // Increase # of components by 1 ...

STACK[st_cnt-1].u = 0;

STACK[st_cnt-1].v = 0;

st_cnt--;
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}

}

else if( (NUMBER[w] < NUMBER[v]) && (w != u) ){

// Add (v,w) to STACK

STACK[st_cnt].u = v;

STACK[st_cnt].v = w;

st_cnt++;

LOWPT1[v] = min(LOWPT1[v],NUMBER[w]);

}

}

}

int main(){

int i=0,j=0,k=0;

// Initialize adjacency structures W & A to 0

// W is adjacency matrix. A[] is set of adjacency list

for(i=0;i<50;i++){

A[i].deg = 0;

AllEdges[i].u = AllEdges[i].v = AllEdges[i].z = 0;

for(j=0;j<50;j++){
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A[i].neigh[j] = 0;

W[i][j] = 0;

}

}

// Initialize arrays ..

for(i=0;i<50;i++)

NUMBER[i] = LOWPT1[i] = 0;

// Initialize edge stack ..

for(i=0;i<50;i++)

STACK[i].u = STACK[i].v = 0;

// Initialize Biconnected Components ...

for(i=0;i<20;i++){

B[i].e = 0;

Bonds[i].u = Bonds[i].v = Bonds[i].d = 0;

for(j=0;j<20;j++)

B[i].edges[j].u = B[i].edges[j].v = B[i].edges[j].z = 0;

}

bicmps = b_cnt = st_cnt = bonds = 0; // Reset coun

// Input Adjacency Structure (Weight Matrix W) ..

// Example

W[1][2] = W[1][5] = W[1][6] = W[1][7] = 1;

W[2][1] = W[2][3] = W[2][4] = W[2][5] = 1;
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W[3][2] = W[3][4] = 1;

W[4][2] = W[4][3] = 1;

W[5][1] = W[5][2] = W[5][6] = 1;

W[6][1] = W[6][5] = 1;

W[7][1] = W[7][8] = W[7][9] = 1;

W[8][7] = W[8][9] = 1;

W[9][7] = W[9][8] = 1;

nodes = m = 9;

// Convert W[][] to A[] & count |E| -------------

int deg=0;alledge=0;

for(i=1;i<nodes+1;i++){

deg = 0;

for(j=1;j<nodes+1;j++)

if(W[i][j] > 0){ // if (i,j) is an edge ...

A[i].neigh[deg] = j; // Store j in A[i],neigh[]

A[i].deg++;

deg++;

// ......... Count and Stack ........

if(j>i)

for(k=0;k<W[i][j];k++) {

AllEdges[alledge].u=i;

AllEdges[alledge].v=j;
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alledge++;

}

if(W[i][j]>1){

Bonds[bonds].u = i;

Bonds[bonds].v = j;

Bonds[bonds].d = W[i][j];

bonds++;

}

}

}

cout << "|E|= " << alledge << endl;

getch();

// Print out A[] --------------------------

for(i=1;i<nodes+1;i++){

cout << i << " : { ";

for(j=0;j<A[i].deg;j++) cout << A[i].neigh[j] << " ";

cout << " }" << endl;

}

// ----- Begin -- BICONNECT() ------------------

b_cnt=0;

for(i=1;i<nodes+1;i++)

if(NUMBER[i]==0)

BICONNECT(i,0);
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// Print out Biconnected Components ...

cout << "There are " << bicmps << " biconnected com

for(i=0;i<bicmps;i++){

cout << "Component[" << i << "] = { ";

for(j=0;j<B[i].e;j++)

cout << "(" << B[i].edges[j].u << "," << B[i].edges[j].

cout << "}" << endl;

}

cout << endl;

getch();

return 0;

}

/clearpage

// Structures ....

// File is structures.h

enum Comp_Type { BONDS,POLYGONS,TRI };

char *Type[] = {"BONDS","POLYGONS","TRI"};

typedef struct {

int neigh[15];

int deg;

165



} Adj_List;

typedef struct {

int u; int v;

} EDGE;

typedef struct {

int u; int v; int z;

} EDGES;

typedef struct {

EDGE P[14];

int cnt;

} PATH;

typedef struct {

EDGE Edges[30];

int num;

} Bucket;

typedef struct {

int h; int a; int b;

} Triple;

typedef struct {

double x; double y;

} Pair;
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typedef struct {

int e,v; // e = |E|, v = |V|

EDGES E[30]; // Edges is |E|

Comp_Type type; // Type of Component - (Polygon, Mult

int face_v; // # of vertices on outer face ..

int inner_v; // # of vertices in inner face ..

int F[30]; // outer face vertices {0 .. face_v}

int I[30]; // Inner vertices ..

int V[30]; // Identify Virtual vertices for mult

int d_bond; // Check for drawing bond ..

Pair Pos[15]; // Vertex positions ..

// separation pairs

// neighbor ...

} Component;

typedef struct {

int left;

int right;

} Direction;

typedef struct {

int u;

int v;
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int id;

int part;

} VIRT;
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