
Integrated Solutions Towards Wireless
Transcutaneous Oxygen Monitor

A Major Qualifying Project (MQP) Report
Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements
for the Degree of Bachelor of Science in

Electrical & Computer Engineering,
Biomedical Engineering

By:

Naisargi Mehta
Olivia Kendzulak
Ryan McSweeney

Ali Attaa

Project Advisor:

Ulkukan Guler

Date: April 2024

This report represents work of WPI undergraduate students submitted to the faculty as
evidence of a degree requirement. WPI routinely publishes these reports on its website

without editorial or peer review. For more information about the projects program at WPI,
see http://www.wpi.edu/Academics/Projects.

http://www.wpi.edu/Academics/Projects

Abstract

Respiratory illnesses, such as chronic obstructive pulmonary disease (COPD), lung cancers, and

various infections, are leading causes of global mortality [1]. The COVID-19 pandemic has highlighted the

critical need for accessible and effective monitoring technologies outside traditional hospital settings [2–4].

In response, our project has worked with a novel noninvasive transcutaneous oxygen monitor that measures

the partial pressure of oxygen through the skin PtcO2, which correlates with arterial oxygen levels(PaO2).

This monitor is specifically designed for use in non-clinical environments, enhancing its applicability for

everyday monitoring. A significant challenge in such settings is motion artifacts, which can severely affect

the accuracy of sensor readings. To address this, our study implemented three testing protocols—Single

Motion Test, Dual Motion Test, and Extended Motion Test—to evaluate the sensor’s resilience against

motion-induced inaccuracies. These tests simulate various real-world scenarios, providing insights into the

sensor’s performance and identifying necessary corrective measures to maintain accuracy. Additionally, we

incorporated Bluetooth Low Energy (BLE) technology and developed a Graphical User Interface (GUI) to

improve the monitor’s wearability, data transmission efficiency, and user interface. These advancements

have not only enhanced the robustness and user-friendliness of our monitoring system but also represent a

significant step forward in remote patient monitoring, enabling reliable oxygen level assessments even during

physical activities.

i

Acknowledgements

We would like to acknowledge Parisa, Saadatmand Hashemi and Isil Isiksalan for their generous
contributions in guiding and reviewing this work, as well as Vladimir Vakhter, Burak Kahraman, and Tuna
Tufan for their valuable support, which greatly contributed to the success of this research.

ii

Contents

1 Executive Summary 1

2 Introduction 2

3 Project Overview 4

3.1 Quantifying the Effects of Motion Artifacts . 4

3.2 Correction Algorithm . 4

3.3 BLE Development . 4

3.4 Graphical User Interface Implementation . 5

4 Background 6

4.1 Transcutaneous Oxygen Sensing . 6

4.1.1 Factors Affecting Transcutaneous Oxygen . 6

4.1.2 Transcutaneous Oxygen Monitor Techniques . 7

4.2 Wiener filter . 8

4.3 Bluetooth Low Energy Techniques . 9

4.4 GUI Techniques . 10

4.4.1 Python GUIs and Tkinter . 10

5 Investigating Motion Artifact Correction Algorithm 13

5.1 Methods . 13

5.1.1 Accelerometer Calibration . 13

5.1.2 Data Collection . 14

5.1.3 Motion Artifact Correction Algorithm Research . 15

5.1.4 Wiener Filter . 16

5.2 Results . 17

5.2.1 Accelerometer Calibration Results . 17

5.2.2 Data Collection Results . 18

5.2.3 Motion Artifact Research Results . 19

5.3 Discussion . 20

6 Quantifying the Effects of Motion Artifact 22

6.1 Methods . 22

6.1.1 Single Motion Tests at 50 mmHg Oxygen . 23

6.1.2 Dual Motion Tests Across Oxygen Variations . 24

6.1.3 Extended Motion at 50 mmHg Oxygen . 24

6.2 Results . 25

6.2.1 Single Motion Tests at 50 mmHg . 25

6.2.2 Method to Quantify the Motion Artifacts . 26

6.2.3 Dual Motion Test Results . 27

6.2.4 Extended Motion at 50 mmHg . 28

iii

6.3 Discussion . 29

7 BLE Development 30

7.1 Methods . 30

7.1.1 BLE Development . 30

7.1.2 BLE Guides . 33

7.2 Results . 39

7.3 Discussion . 41

8 Graphical User Interface 43

8.1 GUI Implementation . 43

8.2 Methods . 43

8.2.1 TOM PCB and Settings . 44

8.2.2 Cloud-Based Data Storage . 45

8.3 Testing Procedure and Guides . 47

8.3.1 Data Collection Testing Procedure . 47

8.4 Results . 48

8.4.1 Data Collection and Logging . 48

8.4.2 Cloud-Based Data Storage . 49

8.4.3 Settings Editing . 49

8.5 Discussion . 50

9 Project Challenges 53

9.1 Developing Motion Artifact Correction Algorithm . 53

9.2 Quantifying the Effects of Motion Artifact . 54

9.3 BLE Development . 54

9.3.1 Navigating the Complexities of BLE Technology . 54

9.3.2 Mastering the STM32 Development Environment . 55

9.3.3 Transitioning to Integrating BLE with Custom Sensor Hardware 55

9.4 GUI Development . 55

9.4.1 Understanding Serial Communication . 55

9.4.1.1 Learning Cloud-Storage Methods . 56

9.4.2 GUI Design . 56

10 Conclusion 57

11 Ethical Considerations 58

12 Future Work 59

References 60

Appendices 64

A ICAS Lab Wireless Firmware GitHub Repository 64

B ICAS Lab GUI GitHub Repository 65

iv

List of Tables

1 Gain and Offset for Accelerometer Settings . 18

2 Motion Artifact Correction Algorithm Comparison Chart . 20

3 Summary of Max Drops in Lifetime Values, Corresponding mmHg, and Percentage in Single
Motion Tests . 26

4 Summary of Max Drops in Lifetime Values, Corresponding mmHg, and Percentage in Dual
Motion Tests . 28

5 BLE Profile Structure . 32

List of Figures

1 The Vascular Anatomy of the skin, highlighting the different layers, and densities of veins and
arteries across them [5]. 6

2 Comparison between a PyQT widget (Left) and TKinter widget (Right 11

3 Comparison of the GUI elements by using the stock TKinter (left), and TKinter.ttk (right . . 11

4 Accelerometer calibration positions: (a) +x towards gravity vector, (b) +y towards gravity
vector, and (c) +z towards gravity vector. 14

5 Protocol designed for human subject motion testing (motion types are denoted as NM - No
Motion, MR - Medial Rotation, Flex - Flexion, LR - Lateral Rotation). 15

6 Accelerometer calibration set up. 15

7 Data flow for classic wiener filter implementation. 16

8 Fluorescence lifetime time constant measurements: (a) Data of test subject A at the 8g
accelerometer setting and (b) data of test subject B at the 2g accelerometer setting. 18

9 The protocols designed for (a) single motion test, (b) dual motion test, and (c) extended
motion test (motion types are denoted as NM - no motion, LIM - low-intensity motion, and
HIM - high-intensity motion). 22

10 (a) PCB prototype annotated with main circuit blocks. Motion test setups for (b) single- and
dual-motion tests and (c) extended-motion test. 23

11 (a) Single motion test with negligible change in lifetime, (b) single motion test with noticeable
change in lifetime, (c) means and standard deviations for no motion phases 1 (NM1) and 2
(NM2) during single motion tests. 25

12 Decay curve used for lifetime to PO2 conversion. 26

13 Dual motion test. 27

14 (a) Extended motion test, (b) Average Results of Extended Motion Tests 28

15 Setup application in BLE Applications and Services tab. 34

16 Configure advertising in BLE Advertising tab. Choose CFG GAP DEVICE NAME here.
Here we use TOM BLE. 34

17 Configure services in BLE GATT and the new services tabs. 35

18 Setup characteristic in your .ioc. 36

19 Add task to sequencer. 36

20 Setup event chain. 37

v

21 Setup notification flow. 38

22 Setup characteristic in your .ioc. 38

23 Setup write management. 39

24 Setup write action. 39

25 Source of issue for implementing BLE server on flex PCB: (a) ideally sysevt ready rsp matches
WIRELESS FW RUNNING, however, (b) instead sysevt ready rsp undesirably matches FUS FW RUNNING. 40

26 A peek at the documentation available on the GitHub repository. 41

27 Example BLE data transmitted from P-Nucleo seen on IOS. 41

28 API Call Blocks. The API calls first establish a serial connection to the device, and then
it checks for the different types of inputs in an if-statement. The various input types have
different syntaxes for calling its value, so an if-statement is deployed to make sure it is processed
and sent using the correct arguments. Upon the transmission of the data, it gets read back
to the computer to ensure that the value is consistent. 45

29 Data Collection and cloud storage flow. In this figure, the Google Drive server requests client
authentication, which is done automatically by checking the client ID and credentials. After
loading the configuration, the secret token is checked by the server, ensuring it matches the
activated token (Figure 32), and the login process is initiated, where the user logs in with
their Google account information. 46

30 Google Drive Folder ID example . 48

31 GUI data collection screen. 49

32 OAuth 2.0 screen on the Google API console shows the Client ID and secret token used in
integrating the API into the software. 49

33 The transcutaneous oxygen monitor’s PCB settings are filled out with the default values. . . 50

34 Serial Output Results. The monitor prints out the value being read from the serial port and
notifies if the modification was successful. 51

35 Google Drive API Token and credentials key. These values are stored locally, and therefore,
sometimes, when changing its path, the authenticator has a hard time verifying the new one. 51

vi

Abbrevations

Abbreviation Full Form

AAE Average Absolute Error

ADC Analog to Digital Converter

AFE Analog Front End

ANC Active Noise Cancellation

API Application Programming Interface

BLE Bluetooth Low Energy

CLI Command Line Interface

COPD Chronic Obstructive Pulmonary Disease

FDA Food and Drug Administration

FFT Fast Fourier Transform

FUS Firmware Upgrade Service

GATT Generic Attribute Profile

GUI Graphical User Interface

IoT Internet of Things

LED Light Emitting Diode

MCU Microcontroller Unit

MWSCAS Midwest Symposium on Circuits and Systems

NICU Neonatal Intensive Care Unit

NLMS Normalized Least Mean Squares

PaO2 Partial Pressure of Oxygen in Arteries

PPG Photoplethysmography

PO2 Partial Pressure of Oxygen

PSD Power Sprectral Density

PtcO2 Transcutaneous Partial Pressure of Oxygen

STFT Short Time Fourier Transform

STM STMicroelectronics

b SVD Singular Value Decomposition

SoC System on Chip

SSA Singular Spectrum Analysis

TOM Transcutaneouss Oxygen Monitor

vii

1 Executive Summary

Respiratory illnesses, including chronic obstructive pulmonary disease (COPD), lung cancers, and

various infections, are significant contributors to global mortality [1]. The COVID-19 pandemic has under-

scored the urgent need for accessible monitoring technologies that can operate effectively outside of traditional

hospital settings [2–4]. Monitoring the partial pressure of oxygen in arteries (PaO2) can help with the early

detection of pulmonary diseases, such as COPD, COVID-19, and lower respiratory diseases [6]. In response,

a luminescence-based sensor [7] has been developed to monitor transcutaneous oxygen (PtcO2), a measure

of the oxygen diffusing through the skin, which reflects PaO2. Our project has contributed in the devel-

opment of this sensor for transcutaneous oxygen monitoring, improving its ability to function seamlessly in

non-clinical environments.

Outside the clinical settings, the reliability and accuracy of sensor readings are crucial. Motion

artifacts, caused by any movement during the monitoring process, can greatly degrade the quality of light-

based sensors [8–13]. Recognizing the importance of this issue, our project has conducted a thorough

assessment of how motion artifacts impact our sensor’s performance. To rigorously test and enhance the

robustness of our sensor against motion-induced inaccuracies, we have structured our investigation into

three distinct tests: single motion testing, dual motion testing, and extended motion testing. Each test

is designed to simulate different real-world scenarios where motion could influence the sensor’s readings.

By analyzing the outcomes of these tests, we aim to understand the conditions under which the sensor

maintains its accuracy and to identify scenarios where corrective measures may be necessary. The insights

gained from these experiments are key in enhancing our understanding of the sensor’s resilience and guide

our development of strategies to mitigate the effects of motion artifacts in non-clinical environments.

In addition to our focused testing protocols, we have integrated Bluetooth Low Energy (BLE)

technology to enhance the monitor’s wearability and data transmission efficiency. Furthermore, to improve

accessibility and usability, we have developed a graphical user interface (GUI). This interface facilitates serial

data transmission with the Transcutaneous Oxygen Monitor (TOM) board, runs various sensor tests, and

allows for the configuration of sensor settings. This GUI enhances the user experience by ensuring that

adjustments and monitoring can be conducted with ease and precision. By combining innovative sensor

technology with advanced data management and wireless communication capabilities, our system represents

a significant advancement in remote patient monitoring. It offers a robust, user-friendly solution tailored

to meet the dynamic needs of the users, ensuring precise and reliable oxygen level monitoring, even during

physical activity.

1

2 Introduction

Respiration is a fundamental physiological process vital for cellular function, regulation of blood

pH, and maintaining overall homeostasis. According to the World Health Organization, some respiratory

illnesses (COPD, lower respiratory infections, trachea, bronchus, lung cancers) are among the top ten diseases

that cause death worldwide [1]. The management of these illnesses heavily relies on oxygen monitoring to

track their progression. This necessity, highlighted during the COVID-19 pandemic, underscores the need

for effective respiratory monitoring solutions easily deployable outside of the clinical setting [2–4]. As a

result, remote patient monitoring emerges as a significant concern [14].

Monitoring tools that provide real-time data can significantly enhance the management of respira-

tory illnesses, offering early detection that is essential for timely and effective treatment. Monitoring PaO2

can help with the early detection of pulmonary diseases, such as COPD, COVID-19, and lower respiratory

diseases [6]. A recent luminescence-based sensor [7] measures oxygen diffusing through the skin, also known

as transcutaneous oxygen (PtcO2), which is correlated with PaO2. This method uses a light emitting diode

(LED) to excite a luminescent sensing film, making luminophore molecules transfer from their ground energy

state to a higher energy state [15]. As the luminophore molecules revert from the higher energy state, they

emit light characterized by intensity and lifetime (τ). Both luminescence intensity and lifetime correlate in-

versely with the partial pressure of oxygen (PO2). Compared to intensity-based methods, the lifetime-based

approach is more robust against optical path changes (i.e. motion artifacts) and excitation strength [16]. To

calculate the lifetime, the light detected by a photodiode is processed through an analog front end (AFE)

and converted to digital form with an analog to digital converter (ADC) [17].

In the dynamic and ever-changing day-to-day environment, ensuring the reliability and accuracy

of sensor readings is crucial. Motion artifacts, which can arise from any movement during the monitoring

process, significantly impact the quality of sensor signals. Consequently, conducting thorough tests to un-

derstand the sensor’s behavior under motion conditions is invaluable. This testing not only reveals potential

weaknesses but also guides us in implementing necessary corrections to enhance sensor performance. Rec-

ognizing the significance of our findings, we have submitted a detailed paper on our motion artifact testing

methodologies and results to the Midwest Symposium on Circuits and Systems (MWSCAS). Moreover, we

support continuous wireless operation of the sensor with the integration of BLE technology for wireless data

transmission [17]. Furthermore, to effectively utilize this prototype, a reliable GUI is developed for automat-

ing data collection and storing data in the cloud via Google’s application programming interfact (API),

enhancing the overall user experience [14]. The GUI facilitates adjustments to sensor settings, such as those

2

for the temperature sensor, accelerometer, and AFE, enabling straightforward modification of system blocks.

3

3 Project Overview

The endeavor of developing an integrated solution for a wireless transcutaneous oxygen monitor

is a multidimensional project aimed at addressing the critical need for continuous, accurate monitoring

of oxygen levels on the skin surface. This Major Qualifying Project (MQP) is structured around several

core components, each designed to overcome specific challenges in the realm of wearable health monitoring

technologies. These components include the development of a correction algorithm, the implementation of

motion artifact testing, the incorporation of BLE for wireless data transmission, and the development of a

user-friendly GUI.

3.1 Quantifying the Effects of Motion Artifacts

A comprehensive testing framework was established to quantitatively assess the impact of motion

artifacts on sensor readings. This involved creating protocols for single, dual, and extended motion tests

under various oxygen pressure levels. The objective was to simulate real-world conditions under which the

sensor’s resilience to motion artifacts could be thoroughly evaluated. These tests were significant in validating

the need for a correction algorithm.

3.2 Correction Algorithm

The key to improving accuracy and reliability in the oxygen monitoring device is the utilization

of a robust correction algorithm. This algorithm is designed to counteract the effects of motion artifacts,

which are prevalent issues in wearable devices that can greatly affect the precision of measurements. Our

research advocates for the adoption of the Wiener Filter technique to preprocess the sensor data, effectively

enhancing signal quality by reducing the noise generated by motion artifacts. Additionally, we recommend

employing a hybrid approach by applying another filtering technique to further refine data accuracy and

reliability.

3.3 BLE Development

The introduction of BLE technology marks a significant advancement in the project’s goal of achiev-

ing wireless connectivity. This development facilitated the transmission of data to external devices, thereby

enabling real-time monitoring without the constraints of wired connections. The BLE framework was care-

4

fully designed for the oxygen sensing application, achieving organized data transfer and remote sensor con-

figuration.

3.4 Graphical User Interface Implementation

To enhance user interaction with the transcutaneous oxygen monitor, a graphical user interface was

developed. This interface provides a visual representation of the sensor data, offering an intuitive platform

for users to engage with the device. The GUI development focused on usability and accessibility, aiming to

make the monitoring process as straightforward as possible for a diverse user base.

5

4 Background

4.1 Transcutaneous Oxygen Sensing

Figure 1: The Vascular Anatomy of the skin, highlighting the different layers, and densities of veins and
arteries across them [5].

The circulatory system serves as a crucial mechanism for delivering oxygen to tissues throughout

the body, ensuring their proper functioning [18]. The process begins with oxygenation in the lungs, where

blood undergoes a transformation, becoming oxygen-rich. This oxygenated blood then embarks on its

journey through the intricate network of blood vessels, as visualized in Fig. 1 [5]. Micro-circulation, which

encompasses the smallest blood vessels such as arterioles, capillaries, and venules, plays a pivotal role in this

journey. Capillaries, stemming from arteries, serve as the primary conduits for oxygen delivery to tissues.

As blood courses through these capillaries, oxygen molecules diffuse from the blood into the surrounding

tissues, nourishing them and facilitating various metabolic processes [19]. Notably, the arteriole end of the

capillary exhibits the highest concentration of oxygen within the bloodstream, ensuring a robust supply to

the adjacent tissues. This process underscores the intricate dance between the circulatory system and tissue

oxygenation, highlighting the importance of efficient oxygen delivery for the body’s vitality and health.

4.1.1 Factors Affecting Transcutaneous Oxygen

Transcutaneous oxygen is a measure of the oxygen being supplied to the skin from the surrounding

and underlying tissue [20]. Therefore, it is impacted by multiple different factors that change the rate of

oxygen diffusion:

6

• Dermal Perfusion: The blood flow to the dermis. The oxygen pressure in the dermis correlates

closely with the levels of oxygen in the arteries. Adequate blood perfusion and oxygen diffusion from

the blood are necessary for transcutaneous oxygenation. [21–23].

• Epidermal and Subcutaneous Fat: The thickness of the fat layers on the epidermis and subcuta-

neous level hinder the diffusion of oxygen as it increases the diffusion distance [24].

• Capillary Density: The number of capillaries can affect the PtcO2 levels as the level of perfusion

across capillaries directly modifies diffusion distance for oxygen [25,26].

Recognizing the significance of these factors is crucial in determining the optimal placement of

the transcutaneous oxygen monitor and the most appropriate timing for its use. Factors such as dermal

perfusion, epidermal and subcutaneous fat thickness, and capillary density directly influence the diffusion

of oxygen and, consequently, the accuracy of transcutaneous oxygen measurements. By considering these

variables, we can understand the relevant factors that affect the measurement of PtcO2 as well as assess the

best places to take such measurements.

4.1.2 Transcutaneous Oxygen Monitor Techniques

To ensure that the measurements acquired are reliable measures of the oxygen pressure, the TOM

sensor must be placed at a reliable location. Preferred sites for transcutaneous oxygen measurements are

typically those with thin skin and a rich blood supply [27]. A study indicated that the palm of the hand

yields the most consistent transcutaneous readings, likely due to its high vascularization [28]. Other viable

locations, such as the forearm, chest, and abdomen, have been identified for testing; however, these areas were

assessed under conditions of applied heat to enhance blood flow and diffusion. Conversely, research using

a transcutaneous monitor revealed that the anterior chest may not be optimal, exhibiting lower readings

compared to the hand and arm [29]. Infants, including those in neonatal intensive care units (NICUs),

often require different measurement sites. For NICU patients and infants, the upper chest is commonly

utilized. Additionally, locations like the ear have been explored due to their lower risk of detachment during

movement [27]. For our research, testing was done on the forearm as well as a method that utilized a robot

to mimic erratic movements, as demonstrated in Section 6.

7

4.2 Wiener filter

The Wiener filter is a classic algorithm that has various usages and implementation varieties,

especially in the realm of denoising data. It performs the minimum mean square error estimation of the

desired signal given another related process [9]. In this implementation, a windowed wiener filter is utilized,

and it operates within a moving window of fixed size on the signal. At each step, it recalculates the filter

based on the latest measurements within the current window. This adaptability allows it to efficiently handle

non-stationary noises and interference. As the window slides along the signal, the filter adjusts dynamically.

The continuous updating ensures that the filter remains relevant even as the signal evolves. Unlike the classic

Wiener filter, which may require an infinite amount of past and future data, the windowed version strikes a

balance. It uses only input data within the window, making it more suitable for real-time applications [30].

Motion artifacts often introduce noise at specific frequency components, which can be distinct from

the frequency content of the photoplethysmography (PPG) signal itself. The Wiener filter operates in the

frequency domain, allowing it to selectively attenuate noise components in the spectrum. This means that

frequencies that are most affected by the noisy signal are given less importance.

The Wiener filter takes the two inputs to its signal the sensor data and and the motion data

incoming from the accelerometer:

X(f) = S(f) +N(f) (1)

Where X(f) represents the total incoming signal, S(f) and N(f) represent the sensor and motion data,

respectively. Then, the power spectral density (PSD) of each of the signals is calculated by first taking

an STFT. Unlike a normal fast Fourier transform (FFT), the short-time Fourier transform (STFT) offers

frequency information localized in time, suitable for scenarios where signal frequency components change over

time. In contrast, the conventional Fourier transform yields frequency details averaged across the entirety

of the signal’s period [30].

Pxx = |X(f)|2 (2)

Pnn = mean(|N(f)|)2 (3)

The PSD is part of the filter that gives it adaptability as it shows the most affected frequencies and uses

those to construct the filter coefficients using an adaptive transfer function Hmin and scale factor KOV ER.

These coefficients are then applied to the signal and translated back into the time domain via an Inverse

8

STFT. This signal is then used as the estimated clean signal and filters out the values that are out of the

set in this specific window.

4.3 Bluetooth Low Energy Techniques

In the evolving landscape of wireless technology, Bluetooth stands out as a pivotal innovation,

reshaping how devices communicate over short distances. However, despite its widespread use and benefits,

there are inherent limitations and challenges that affect its application, particularly in security and power

consumption.

Bluetooth technology, especially Bluetooth Low Energy (BLE), is central to the operation of many

personal devices today [31]. While BLE is designed to reduce power consumption, making it ideal for wearable

and sensor-based applications, it is not without its issues. For instance, BLE’s power efficiency, though

superior to classic Bluetooth, still poses challenges in environments requiring constant data transmission

over extended periods. Additionally, its security protocols, while robust, are still vulnerable to attacks that

could compromise data integrity and privacy.

The architecture of BLE involves several key components: Generic Attribute Profile (GATT),

Generic Access Profile (GAP), services, and characteristics. GAP and GATT play fundamental roles in BLE

communication, where GAP controls device connections and advertising, and GATT acts as the backbone

through which data is structured, stored, and exchanged between BLE devices. GATT operates on the

principle of a server-client model, where the GATT server stores data and makes it accessible to the client

upon request using a BLE protocol stack. The GATT protocol dictates how data is formatted and transferred

over BLE’s low-energy protocol through the use of services and characteristics, which are similar to objects

and their methods in an object-oriented programming structure [32–34].

BLE extends the utility of Bluetooth by enabling wearable devices to remain operational on a

single battery charge for long periods. This is achieved through its design to facilitate small bursts of data

transmission, reducing power usage without sacrificing the communication range. The implications of such a

feature are profound, especially in the domain of sensor development, where continuous data collection and

transmission are essential, yet power resources are limited [35].

9

4.4 GUI Techniques

Graphical User Interfaces GUIs have transformed how humans interact with computers, making

the computing experience intuitive and user-friendly. Originating in the 1970s, GUIs marked a pivotal shift

from the command-line interfaces prevalent at the time. They present digital information through visual

elements like windows, icons, menus, and buttons, which simplify complex tasks, streamline workflows, and

enhance productivity.

This visual format allows users of varying technical proficiency to navigate software applications

easily, without needing extensive knowledge of programming languages or system operations. The impact of

GUIs spans multiple sectors, from personal computing where they are essential for tasks like web browsing and

multimedia consumption, to industrial settings where they help manage and control complex machinery. In

every context, GUIs enhance the user experience by providing a cohesive and efficient interface for interacting

with digital systems.

4.4.1 Python GUIs and Tkinter

The Python development environment was utilized for the GUI. Python is generally regarded as

a high-level scripting language. Python is a large language and due to it being general-purpose and cross-

platform, it is very accessible.

Multiple libraries within Python allow for constructing GUIs. Notably, TKinter, PySide, and PyQT.

Each of these libraries offers unique features and styles that are advantageous in their own right. While PyQT

offers a more comprehensive way of modifying and creating GUIs and applications in Python, it’s downfall

comes from the fact that it is not a free-to-use environment and requires obtaining external licensing [PyQt

requires paying USD 550 per developer]. However, PyQT improves upon TKinter in its ability to build

projects that are also compatible with mobile users making it useful for future considerations. Alternatively,

PySide is a newer library that is free since it is licensed under the GNU Lesser General Public License

states it is free to use, unlike PyQt which is in the GNU General Public License that requires paying for

commercial or personal use. Both these libraries require utilizing the Qt framework and environment which

are separate from the main coding environment used in VSCode. One of the other arguments for using

a different environment over TKinter is for its retro look, as it looks outdated. However, to combat this,

TKinter.ttk was introduced, which modernized the interface at the expense of configuration capabilities

(Figure 3).

10

https://srinikom.github.io/pyside-docs/
https://doc.qt.io/qtforpython-6/
https://riverbankcomputing.com/commercial/buy
https://riverbankcomputing.com/commercial/buy
https://www.qt.io/
https://docs.python.org/3/library/tkinter.ttk.html

Figure 2: Comparison between a PyQT widget (Left) and TKinter widget (Right

Figure 3: Comparison of the GUI elements by using the stock TKinter (left), and TKinter.ttk (right

Python’s simplicity and versatility make it an ideal choice for developing GUIs, especially using

the Tkinter library. As a standard Python library, Tkinter facilitates the creation of desktop applications

through an intuitive widget hierarchy. Developers can easily place and customize widgets such as buttons

and entry fields within windows, tailoring their appearance and behavior to suit specific needs.

Tkinter integrates seamlessly with Python’s event-driven model, allowing developers to manage

user interactions with callback functions, ensuring the interface remains responsive. It also supports multi-

threading, enabling background tasks like network requests or file operations without interrupting the GUI’s

performance. Furthermore, Tkinter provides a wide array of input widgets designed to enhance the inter-

activity and user-friendliness of applications. These widgets accommodate various data input requirements,

offering users intuitive controls for effective interaction with the application’s features.

11

• Textboxes: Textboxes, also known as entry widgets in Tkinter, allow users to input textual data.

They provide a single-line input field where users can type alphanumeric characters, numbers, or

symbols. Textboxes are versatile and can be used for various purposes, such as entering text-based

search queries, inputting user credentials, or providing feedback.

• Checkboxes: Checkboxes are a simple yet effective way to allow users to make binary choices. They

consist of a small box that can either be checked or unchecked, indicating the selection status of an

option. Checkboxes are commonly used to enable or disable specific features or select multiple items

from a list.

• Comboboxes: Comboboxes, or dropdown menus, combine the functionality of textboxes and list-

boxes, offering users a selection of predefined options in a dropdown list format. Users can either select

an option from the list or manually input text if the desired option is not available. Comboboxes are

ideal for scenarios where users need to choose from a predefined set of options.

These input widgets can be easily integrated into Tkinter applications using the appropriate widget

classes provided by the library. Overall, Tkinter’s rich collection of input widgets empowers developers

to create highly interactive and user-friendly interfaces that enhance the overall user experience of their

applications. On the back-end interface, communication with the board is done via API calls. This API call

is structured to send a command to its respective setting on the TOM board’s sensors.

12

5 Investigating Motion Artifact Correction Algorithm

To address the challenge of motion artifacts and enhance the accuracy and reliability of our sensor,

our team worked on developing a robust correction algorithm. By analyzing the data collected over previous

years, we aimed to quantify and correct the distortions caused by movement. Recognizing the need for

continuous improvement, we also continued to collect data to further refine our approach.

This section outlines our systematic approach to improving sensor performance through algorithmic

corrections. We began by exploring a variety of algorithms known for effectively managing motion artifacts.

Our goal was to run tests on human subjects to collect data and analyze the measurements under various

conditions. Through iterative testing and evaluation, we aimed to identify and refine the most effective

algorithmic solutions that consistently enhance the accuracy of our sensor readings. The development and

ongoing refinement of this correction algorithm are critical to ensuring that our sensor functions reliably,

even in dynamic environments.

5.1 Methods

In this section, we outline our methodology for creating the motion artifact correction algorithm.

This phase of the project involves a sequence of tasks leading up to the selection of the appropriate correction

algorithm. These tasks include accelerometer calibration, data acquisition, and algorithmic research. Once

these tasks were performed, based on the research conducted, our team chose to implement a Wiener Filter

for motion artifact correction, as discussed in the sections below.

5.1.1 Accelerometer Calibration

Achieving a successful calibration relies on the proper setup and orientation of the PCB. This

process requires positioning the device accurately and comprehending its mechanisms to guarantee optimal

performance throughout the calibration process. Initially to ensure the PCB is correctly aligned, it should

be placed on a stable, level surface with its positive x-axis facing upwards, as shown in Fig 4a. Additionally,

it is essential to reset the PCB before starting the measurements to ensure data consistency and accuracy.

Once the PCB is set up, start the calibration process for each axis. For the x-axis calibration, the

accelerometer’s output data with the +x axis pointing upwards is collected, as set up initially. Then flip the

PCB so the +x axis points downwards (-x axis) and gather the data once more. For the +y axis calibration,

a similar approach is followed: begin by positioning the +y axis upwards (shown in Fig. 4b), gather the

13

(a) (b) (c)

Figure 4: Accelerometer calibration positions: (a) +x towards gravity vector, (b) +y towards gravity vector,
and (c) +z towards gravity vector.

data, then invert the PCB to have the +y axis pointing downwards (-y axis) and record the data again.

Lastly, for the +z axis, the same method is adopted: start with the +z axis pointing up (shown in Fig. 4c),

collect the required data, then turn the PCB to have the +z axis facing down (for -z axis) and acquire the

final set of data. This systematic approach ensures that we capture accurate readings for all axes of the

accelerometer. For our accelerometer, we calibrated using three different settings: 2g, 4g, and 8g.

5.1.2 Data Collection

The initial dataset was collected using a human subject. Prior to starting data collection, the

sensor’s settings were configured to record a total of 912 measurements, correlating with the duration of the

test at 76 minutes. Measurements were taken at five-second intervals. The total number of measurements

was calculated using the following equation

Ntotal =
76 mins× 60 secs/min

5 secs
= 912 measurements (4)

The initial 40 minutes of the test, shown in Fig. 5, served as a stabilization phase, during which 480

measurements were recorded. After this phase, three specific movements—Medial Rotation, Flexion, and

Lateral Rotation—were each monitored for two minutes. Each motion sequence was followed by a 10-minute

stabilization period. To monitor the progression of the test, the team employed a 76-minute timer, carefully

observing each scheduled milestone for motion and stabilization periods. The sensor board was powered by

a supply set at 3V and 250mA, conforming to the specifications outlined in the reference [36].

14

M
R

F
le

x

L
R

Subject Motion Test

Time (min)

L
if

et
im

e

76666454524240

NM1 NM2 NM3 NM4

Figure 5: Protocol designed for human subject motion testing (motion types are denoted as NM - No Motion,
MR - Medial Rotation, Flex - Flexion, LR - Lateral Rotation).

Figure 6: Accelerometer calibration set up.

For the tests, we first sanitized the subject’s forearm, after which they wore a sleeve and positioned

the PCB board beneath it to ensure proper contact between the sensor and their skin. We then established

a connection between the PCB and the computer through the serial communications port, which enabled

us to upload the firmware to the board. Data collection started after resetting the PCB and initiating

the measurement process. To enhance our dataset, we have devised a detailed plan for data collection

that includes varying the initial conditions described in section 6. This plan will involve integrating higher

intensity, and quicker motion ranges to investigate how exercise intensity affects oxygen levels.

5.1.3 Motion Artifact Correction Algorithm Research

After collecting data from the PtcO2 sensor, we analyzed the impact of motion artifacts on the

data. Our research then shifted to exploring motion artifact correction algorithms applicable to the lifetime

measurement raw data. Since the PCB is equipped with an accelerometer to help detect motion artifacts,

we focused on algorithms that integrate data from both the sensor and the tri-axis accelerometer. We

assessed multiple motion artifact correction algorithms by comparing their average absolute error (AAE)

using the IEEE Signal Processing Competition 2015 dataset—a public dataset including signals from two

15

PPG sensors and a three-axis accelerometer, recorded while human subjects engaged in various activities

such as arm exercises and walking [37]. Additionally, we evaluated which methods are most effective for

real-time denoising.

5.1.4 Wiener Filter

The Wiener filter, a staple in the domain of optimal filtering, is utilized for signal estimation. When

it comes to real-time applications, the challenges posed by non-stationary signals demand a more adaptive

approach. The windowed Wiener filter provides a computationally balanced and effective solution for signal

estimation by removing estimated or known noise from an observed signal. A Windowed Wiener filter

operates by applying the classic Wiener filter within a fixed-sized moving window on the signal. This method

is inherently adaptive since the filter is recalculated at every step, based on the latest set of measurements

within the current window. This continuous updating allows for the efficient tackling of non-stationary noises

and interference.

STFT(x(t))Fluorescence Data

STFT(n(t))Accelerometer Data

PXX = |X(f)|2

PNN = mean(|N(f)|2)

max{ Hmin, H = 1 - KoverPNN / Pxx }

ISTFT(S(f)) Clean Fluorescence Data

Figure 7: Data flow for classic wiener filter implementation.

In this case, the output of the ADXL367 was used to estimate the noise. The Wiener filter im-

plementation selected involves taking the observed fluorescence and the accelerometer readings into the

frequency domain. The frequency spectra are then used to calculate the PSD of the observed signal and

estimated noise. The PSD is used to construct the adaptive filter. As shown in Fig. 7 below, the short-time

Fourier transform can be used to take the signals from the time domain to the frequency domain. Fig. 7

also shows the use of a minimum filter transfer function, which can help prevent a negative filter. Note that

there is also a scale factor (KOV ER), which can be used to further scale the PSD of the noise. The filter (H)

is applied to the frequency spectra of the observed signal, yielding the estimated clean signal. The estimate

of the clean fluorescence signal is brought back into the time domain. This Wiener filter is then repeatedly

applied to a series of windows within the signal. Selecting a larger window size results in a smoothing effect,

while a smaller window size typically will sharpen the observed signal. Furthermore, the Wiener filter can be

applied to a real-time signal by having a rolling window that incorporates a set number of the most recent

samples [38]. Note that Fig. 7 visualizes the classic Wiener filter and would need to be iterated upon to

16

implement the Windowed Wiener filter.

5.2 Results

In this section, we discuss the results of our accelerometer calibration, data collection, and correction

algorithm research to improve the accuracy and reliability of our sensor.

5.2.1 Accelerometer Calibration Results

Based on the measurements collected during the accelerometer calibration procedure, we get the

A+ 1g and A− 1g values for each axis using the Equations 5 and 6. Then, we can calculate the offset and

gain for the accelerometer and use it to account for the errors and calculate the actual measurements using

equation 7. We also validated our results using Equation 7 to make sure that after applying the offset and

gain, we get the expected results.

Gain = 0.5× A1g −A−1g

1g
(5)

AOFFs[g] = 0.5× (A1g +A−1g) (6)

AACTUAL[g] =
AOUT −AOFF

Gain
(7)

The process of calculating the offset and gain was replicated for all three accelerometer measurement

ranges (2g, 4g, 8g). This setting dictates the range of acceleration values in terms of g-force, but higher

measurement range results in lower resolution, so typically the range is chosen based on the highest expected

acceleration values that need to be measured [39]. For example, we expect the relevant human range to be

up to 5g for everyday life, so the measurement range of the accelerometer was set to 8g for the remaining

tests, which comes at the cost of losing some acceleration resolution when compared to using 4g or 2g. The

table below summarizes the gain and offset for each setting.

17

Table 1: Gain and Offset for Accelerometer Settings

Setting Axis Offset Gain

2g x-axis 0.006701 0.975597

y-axis 0.007600 0.988427

z-axis 0.0012258 0.9964363

4g x-axis 0.1691645 0.9834425

y-axis -0.0454374 0.9934126

z-axis -0.1338606 1.0033883

8g x-axis 0.1696548 0.9809908

y-axis -0.0456008 0.9916147

z-axis -0.1374564 1.0001138

(a) (b)

Figure 8: Fluorescence lifetime time constant measurements: (a) Data of test subject A at the 8g accelerom-
eter setting and (b) data of test subject B at the 2g accelerometer setting.

5.2.2 Data Collection Results

When the program finishes running, it stores the data log as a text file in the directory, and then

moves any older measurements to the previous runs folder and logs its date. This data then can be transferred

into MATLAB to extract the lifetime and accelerometer data and apply any post-processing scripts. The

graph in Fig. 8b shows the timeline data for our first subject at the 8G accelerometer setting. It was

observed that the lifetime does not stabilize and continues to climb. To mitigate this issue, it was decided

to do more testing and modify our method to increase the extra stabilization periods so that the device can

be fully stabilized for the action phases. Then using our calibration data, we can apply the offset and gain

values to get a more accurate reading.

18

After testing our subjects, it is evident that we collected data samples that looked stable and

provided a more reliable reading from subject B. As with subject A, these measurements on subject B were

collected into a text log and a MATLAB script to extract the accelerometer and lifetime data from the ADC

measurements. None of our subjects have produced consistent results at the 8g accelerometer setting, which

is the desired setting. To adjust for this issue, we shifted our focus to investigating varying stabilization

periods before recording the data as well as using a gas chamber for testing rather than a human. From our

initial findings, we found that the sensor stabilizes at a lifetime between 22-20 µs on a human.

5.2.3 Motion Artifact Research Results

To evaluate the performance of motion artifact correction algorithms, we generated a chart to

compare algorithms that contained desirable attributes. According to [37], the most desirable attributes

of these algorithms for a PPG sensor are using singular value decomposition (SVD), frequency domain

approaches, and adaptive filtering. Singular value decomposition can isolate the unwanted variations in a

signal by decomposing sensor data into components, allowing for the retention of only the most significant

features. Adaptive filtering, however, is unsuitable for real-time denoising and thus cannot be employed in our

real-time algorithm. In addition, adaptive filtering has high complexity, which means it uses a high amount

of power. Retaining the most dominant features of the data, which are typically the signal components,

SVD ensures that the essential characteristics of the signal remain intact after denoising, making it an ideal

method. Frequency domain approaches are useful for denoising since they provide valuable insights into the

behavior of complex signals.

Unfavorable algorithms use singular spectrum analysis (SSA), active noise cancellation (ANC), and

normalized least mean square (NLMS) for denoising. SSA only partially removes the motion artifacts from a

raw signal and would require another method in conjunction. ANC and NLMS are types of adaptive filtering

and, therefore, are not suitable for our implementation. Also, NLMS is a great filtering technique for weaker

motion artifacts, but we expect to have a range of weak to strong motion artifacts so it is not ideal for our

use case.

We examined each algorithm discussed in [37] and included those that possess desirable attributes

in our comparison chart. Table 2 represents the comparison chart that contains the optimal choices of motion

artifact correction algorithms based on our research. From this chart, we were able to use the AAE to narrow

down the top algorithms. After looking more into the eight-layer model, we learned that it uses a signal

from a gyroscope so it was easily ruled out. The MODTRAP algorithm uses EEMD, which was found to be

one of the best motion artifact correction algorithms, but its complexity is too high and, therefore, uses too

19

much power.

Table 2: Motion Artifact Correction Algorithm Comparison Chart

Algorithm Year Pre-processing Denoising technique AAE

SPAMA [40] 2016 Bandpass Spectral filtering 0.89± 0.6

WFPV [9] 2017 4th order butterworth Wiener filter 1.02

FSM based [41] 2018 4th order butterworth Wiener filter 0.79± 0.6

Cascade and Parallel
combo [42]

2018 Bandpass Cascade and parallel con-
nection of adaptive filters

1.12± 2.30

MODTRAP [43] 2020 LPF EEMD and neural net-
work model

0.57

Eight-layer model [44] 2020 Butterworth BPF Convolution and max
pooling layer

0.76

Precision HR Estimation
[45]

2023 HR estimation based on
peaks/valleys

Hankel matrix and SVD 1.86

SVD [46] 2016 Bandpass SVD 1.25± 0.6

We looked into a Wiener filter after narrowing down our options even further. A Wiener filter takes

into account the frequency characteristics of both the signal and noise which is necessary since the noise and

signal components have different spectral profiles. The goal of a Wiener filter is to minimize the mean square

error between the estimated signal and the actual signal which will effectively reduce noise but also keep

essential characteristics of the lifetime signal [9]. Lastly, a Wiener filter is suitable for real-time applications

and has a low computational complexity. Therefore, employing a Wiener filter for noise reduction proved to

be our most effective approach.

5.3 Discussion

The development of a simple motion artifact correction algorithm represents significant strides

toward enhancing the accuracy and reliability of transcutaneous oxygen monitoring in dynamic environments.

Through accelerometer calibration, data collection, algorithmic research, and the development of a Wiener

Filter, this project has laid the groundwork for addressing one of the most pervasive challenges in wearable

medical monitoring: motion-induced artifacts.

The accelerometer calibration and subsequent data collection phases have provided invaluable in-

sights into the behavior of the sensor under motion. However, the results of the motion tests on human

subjects were not ideal, and we needed to further explore stabilization periods, different speeds and lengths

of motion, and different oxygen pressure values. Thus, we shifted our focus to testing motion artifacts and

20

the effects they have on lifetime values in the gas chamber, which is explained in Section 6.

From our initial research and data collection, the Wiener Filter emerged as a suitable solution. It

balances the demands for real-time signal processing with the need for minimal computational complexity.

This filter’s ability to adapt to the signal’s changing characteristics makes it particularly well-suited for

the task, enabling more accurate transcutaneous oxygen measurements by effectively reducing the noise

introduced by the wearer’s movements. The preliminary results, as outlined in Section 5.2, have demonstrated

the Wiener Filter’s potential to enhance sensor data quality, marking a promising advance in the quest for

reliable wearable health monitoring. However, more testing still needs to be performed on the sensor to

understand the effects of motion artifacts before it is fully implemented.

21

6 Quantifying the Effects of Motion Artifact

In dynamic environments outside the clinical setting, ensuring the reliability and accuracy of sensor

readings becomes vital. Motion artifacts, induced by any form of movement during the monitoring process,

can significantly compromise the quality of sensor signals. To address this critical issue, it is essential to

thoroughly assess the impact of these artifacts on the performance of our sensor. In this section, we explore

how motion artifacts affect sensor functionality through a series of experiments.

We have structured our investigation into three distinct tests: the Single Motion Test, the Dual

Motion Test, and the Extended Motion Test. Each test is designed to simulate different real-world scenarios

where motion could influence the sensor’s readings. By analyzing the outcomes of these tests, we aim to

understand the conditions under which the sensor maintains accuracy and identify scenarios where corrective

measures may be necessary. The findings from these experiments enhance our understanding of the sensor’s

robustness and guide the development of strategies to mitigate the effects of motion artifacts in non-clinical

environments.

6.1 Methods

To accurately quantify the impact of motion on measurement accuracy, a comprehensive testing

methodology has been developed to examine variations in lifetime values under different scenarios. Our

approach includes three distinct test protocols, illustrated in Figure 9, each designed to understand how

motion artifacts can affect lifetime values under various conditions. Since this sensor is to be part of a

wearable device, it is imperative to test various motion scenarios. The device can be used during different

motion intensities as well as varying lengths of time. In addition, testing motion at various oxygen levels is

crucial to analyze the varied changes in lifetime values, as the nature of the exponential decay curve of PO2

versus lifetime, depicted in Figure 12, implies that the alterations in lifetime values will differ for each level

of PO2 [7, 15].

(c)

Extended Motion Test

Time (min)

L
if

et
im

e

10 40 80

NM1 LIM NM2

(b)

Dual Motion Test

Time (min)

L
if

et
im

e

3 8 18 23 33

NM1 HIM LIMNM2 NM3

(a)

Single Motion Test

Time (min)

L
if

et
im

e

10 15 55

NM1 LIM NM2

Figure 9: The protocols designed for (a) single motion test, (b) dual motion test, and (c) extended motion
test (motion types are denoted as NM - no motion, LIM - low-intensity motion, and HIM - high-intensity
motion).

22

The experiment setup comprises an aluminum gas chamber, within which a luminescent film is

placed. Opposite this film, a flexible circuit board equipped with an accelerometer is placed. The flexible

circuit board’s architecture resembles the PCB with main circuit blocks, illustrated in Fig. 10a. This ar-

rangement aims for efficient data collection by ensuring the sensor directly faces the center of the luminescent

film, as illustrated in Fig. 10b. The extended motion experiment is performed by a Romi Robot controlled

by a Romi 32U4 control board. The test setup from the previous experiment is used and attached to the

robot, as seen in Fig. 10c.

100.0mm

63.0mm

50
.0
m
m

E
X
T
E
R
N
A
L

S
U
P
P
L
Y

BATTERY
HOLDER

SWs

PMU

FLASH

MCU AFE
U
A
R
T

S
W
D

ACC

SENSOR
HEAD

LED

PDPD F
il
te
r

1mm

(a)

Gas Chamber

Power
Supply

Gas
Outlet

Gas
Inlet

Flex

PCB

(b)

Gas Chamber

Gas
Inlet

Gas
Outlet

Power
Supply

Romi
Robot

Flex
PCB

(c)

Figure 10: (a) PCB prototype annotated with main circuit blocks. Motion test setups for (b) single- and
dual-motion tests and (c) extended-motion test.

6.1.1 Single Motion Tests at 50 mmHg Oxygen

The first protocol, ’Single Motion,’ showcased in Fig. 9a, is designed for a constant PO2 of 50

mmHg, with a single instance of motion to assess its impact on lifetime values. Selecting 50 mmHg is based

on the typical PtcO2 values observed in the absence of heat application in our experiments [47]. Heating is

used to increase the oxygen diffusion through the skin in the traditional transcutaneous oxygen monitors [48].

This test allows for the isolation of motion’s impact on the sensor’s performance, establishing a clear baseline

for its responsiveness without the confounding effects of fluctuating oxygen levels.

The initial stability phase begins with a three to ten-minute period of no motion. Initially, the

tests were performed with three minutes in the no motion phase. However, to better visualize the baseline

at the initial phase, we extended the stabilization period to ten minutes for the remaining tests. This

extended duration allows the sensor to settle into the environment, ensuring that a reliable baseline for

sensor readings is established without any motion influence. In the following, a five-minute motion period

is introduced for assessing the sensor’s response to movement, simulating potential real-life disturbances.

Concluding the sequence, a 33-to-40-minute stability period follows the motion. This extended final phase is

designed to observe the sensor’s ability to maintain its baseline readings after experiencing motion, providing

23

a comprehensive view of its stability over time. The experimental setup in Fig. 10b is utilized for Single

Motion tests.

6.1.2 Dual Motion Tests Across Oxygen Variations

In the ’Dual Motion’ protocol, motion is induced twice in a single experiment under varying PO2.

During this test, high- and low-intensity motions are tested at four different PO2 levels. This test protocol

provides insight into whether the sensor’s performance is affected by consecutive disturbances, which is vital

for understanding how it might perform in real-world scenarios where users are not stationary. Furthermore,

testing across a range of PO2 levels with repeated motion events allows for a detailed analysis of how oxygen

variability influences the sensor’s response to motion.

This experiment investigates the sensor’s performance across four different PO2 levels, from no

oxygen present (0 mmHg) to a level resembling that of ambient air (∼ 150 mmHg). To accurately create

these specific oxygen conditions, a mixture of high-purity oxygen (OX UHP20, sourced from Airgas) and

nitrogen (NI UHP80, also from Airgas) is used. The utilized experimental setup was previously elaborated

in [7]. This mixture is carefully adjusted through mass flow controllers to reach the target PO2 levels: 0

mmHg (0% O2), 50 mmHg (6.57% O2), 100 mmHg (13.2% O2), and 150 mmHg (19.7% O2). Nitrogen makes

up the balance to total 760 mmHg, the standard atmospheric pressure.

To assess the influence of motion artifacts on sensor performance across the various PO2 levels,

the test sequence is designed to mimic real-world conditions where motion intensities can vary, depicted in

Fig. 9b for Dual Motion tests. Each test starts with a three-minute initial no motion phase. Subsequently,

this phase transitions into five minutes of high-intensity motion, followed by a ten-minute no motion interval

to monitor post-motion signal behavior. Following this, a phase of low-intensity motion for five minutes is

conducted before entering a concluding stabilization period of ten minutes to again monitor post-motion

signal behaviour. The experimental setup in Fig. 10b is utilized for Dual Motion tests.

6.1.3 Extended Motion at 50 mmHg Oxygen

The ’Extended Motion’ test is performed at 50 mmHg oxygen pressure but extends the motion

duration to evaluate its prolonged effects. This is crucial for continuous monitoring applications, where the

sensor must accurately track changes in oxygenation over extended periods, despite ongoing user activity.

To observe the effects of a longer period of motion on the sensor, we test movement for 30 minutes, as shown

in Fig. 9c. The 30 minutes of movement is performed by a Romi Robot, programmed to move back and

24

forth 15 cm. Before the movement, there is a ten-minute stabilization period to identify the drop during the

motion period. The test setup from the previous experiment is used and attached to the robot as seen in

Fig. 10c. The oxygen pressure level used is 50 mmHg. This test helps us to identify the effect of motion

artifacts on the signal during extended periods of motion.

6.2 Results

The results of our motion artifact tests provide crucial insights into the operational integrity and

reliability of the sensor under various motion conditions. In this section, we present a detailed analysis of

the data collected from the Single, Dual, and Extended Motion tests.

Note: All the results presented here are from analysis of raw data without any post processing or correction

algorithm.

6.2.1 Single Motion Tests at 50 mmHg

(a) (b) (c)

(b)

Figure 11: (a) Single motion test with negligible change in lifetime, (b) single motion test with noticeable
change in lifetime, (c) means and standard deviations for no motion phases 1 (NM1) and 2 (NM2) during
single motion tests.

Upon analysis of the measurement data, we observed two distinct response patterns. Notably, two

tests exhibited a clear decrease in lifetime values during the motion phase, as illustrated in Fig. 11a. This

contrasted with the remaining tests, which did not present a clear decline during motion periods as seen

in Fig. 11b. After the motion, we observed that the signal tends to settle at a new value. The mean and

standard deviations during the ”No Motion” phase 1 (NM1) and ”No Motion” phase 2 (NM2) are shown in

Fig. 11c.

Table 3 shows the drops in lifetime values (µs) and the corresponding value in mmHg and percentage.

Each 1% of oxygen pressure is equivalent to 7.6 mmHg. The highest drop in PO2 is 0.11%.

25

Table 3: Summary of Max Drops in Lifetime Values, Corresponding mmHg, and Percentage in Single Motion
Tests

Lifetime Drop PO2 Drop PO2 Drop

(µs) (mmHg) (%)

0.011 0.082 0.011

0.025 0.180 0.024

0.056 0.406 0.053

0.012 0.088 0.012

0.117 0.837 0.110

0.022 0.156 0.021

0.053 0.378 0.051

0.023 0.167 0.022

6.2.2 Method to Quantify the Motion Artifacts

To quantify the effects of motion artifacts during the motion phase, the maximum drops on the

mean plot (difference between maximum and minimum values during motion) were calculated. Subsequently,

these drops were translated into corresponding PO2 values in mmHg. This conversion was essential for

understanding how much motion artifacts negatively influence the sensor’s PO2 readings. Based on data

collected from experiments carried out at four distinct PO2 values for the dual motion tests, Fig. 12 was

created to illustrate the relation between PO2 and lifetime values.

Figure 12: Decay curve used for lifetime to PO2 conversion.

The black data points signify the average lifetime value corresponding to each PO2, while the red

error bars illustrate the deviation in lifetime value observed during each maximum drop. The data points

26

were fit to an exponential decay model, shown as a dashed blue line in Fig. 12, and the fit equation is given

as follows:

τ = 20.6905× e−0.0127x + 11.5368, (8)

where the variables x and τ represent PO2 in mmHg and lifetime in µs, respectively. With this equation,

we calculate the derivative at the four different PO2 values used in the dual motion tests. The derivative is

the rate of change in mmHg/µs. This rate is then used in a linear equation as the slope and maximum τ

drops serve as the dependent variable. Through this approach, we can determine the maximum PO2 drop

in mmHg and the oxygen percentage from the lifetime values that the prototype measures.

6.2.3 Dual Motion Test Results

0 100 200 300 400 500 600 700 800
Sample Number

14.1

14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

L
if

e
ti

m
e
 (

u
s)

Dual Motion at 150 mmHg

Mean Data
Original Data

Figure 13: Dual motion test.

Fig. 13 illustrates an example of the signal output obtained during the dual motion test at a

PO2 of 150 mmHg. To quantitatively evaluate the extent of artifacts during dual motion experiments,

we determined the maximum decrease in lifetime values during motion, observed across each oxygen level

tested.These maximum drops were converted into corresponding PO2 in Table 4. It is evident from Table

4 that none of the observed drops exceed 1% PO2. The most substantial drop is 5.102 mmHg (0.67%),

indicating that motion artifacts have a minimal effect on the PO2 output of the sensor. In addition, the

standard deviation of lifetime, represented by the error bars in Fig. 12, is not significant.

27

Table 4: Summary of Max Drops in Lifetime Values, Corresponding mmHg, and Percentage in Dual Motion
Tests

PO2 Lifetime Drop PO2 Drop PO2 Drop

(mmHg) (µs) (mmHg) (%)

150 0.165 4.219 0.555

100 0.377 5.102 0.671

50 0.337 2.422 0.319

0 0.363 1.383 0.182

6.2.4 Extended Motion at 50 mmHg

The extended motion tests provide a similar result to the dual motion tests. In Fig. 14a, the plotted

data reveals a drop during the motion period of the test that tapers off towards the end of the 30-minute

motion period around 900 samples.

0 200 400 600 800 1000
Sample Number

21.4

21.45

21.5

21.55

21.6

21.65

21.7

21.75

21.8

L
if

e
ti

m
e
 (

u
s)

Extended Motion at 50 mmHg

Mean Data
Original Data

(a) (b)

Figure 14: (a) Extended motion test, (b) Average Results of Extended Motion Tests

The results from the extended motion tests are visualized in Fig. 14b. All tests were performed

under the same PO2 conditions with the same sensor film and board on different days. Cross markers

represent the moving average measurements, computed with a window length of one hundred. Solid lines

depict the polynomial fit with a degree of 4, serving as the line of best fit. Additionally, a vertical line at

250 samples denotes the start of the motion period. From each average test, it is evident that the slope

decreases as time increases. The total drops in PO2 values varied between 2 mmHg to about 6 mmHg with

the highest value being 6.054 mmHg (0.797 %). It is evident that the longer motion does not increase the

drop in lifetime and the values stop decreasing around 15 minutes.

The Food and Drug Administration (FDA) recommends that the accuracy of PtcO2 should be

within 5 mmHg over the range of 0 to 20.9% and 10 mmHg for the higher oxygen range [49]. The presented

values in Table 3 are consistently lower than the values recommended by the FDA. The values in Table 4

28

are also mainly lower than 5 mmHg except one slightly higher than that value. In the extended motion

tests, the PtcO2 change reaches a maximum of 6.054 mmHg (0.797 %). These results indicate the robustness

of the lifetime-based measurements of luminescence-based transcutaneous oxygen prototype against motion

artifacts even with the raw data without post-processing applied.

6.3 Discussion

This section has detailed efforts to quantify and understand the impact of motion artifacts on a tran-

scutaneous oxygen measurement sensor, highlighting the pursuit of a reliable, wearable, noninvasive blood

oxygen sensor. Grounded in previous research, the findings contribute significantly to the comprehension of

the sensor’s behavior in the presence of motion. Through the setup and execution of three experiments—dual

motion, single motion, and extended motion—the resilience of this luminescence-based sensor against motion

artifacts was demonstrated, showing less than 1% sensor error even when subjected to motion.

Compared to the motion artifacts found in other light-based technologies, such as PPG and fNIRS,

the luminescence-based transcutaneous oxygen monitor with lifetime measurement technique demonstrates

less vulnerability against motion artifacts. At most, the motion artifacts caused a (PaO2) error of about 6

mmHg at an extended motion duration. These findings support the potential for this sensor in applications

that require reliable, long-term, wearable, continuous, oxygen monitoring. Future motion artifact testing

could involve long-term human testing to better quantify long-term drift and deviation and the development

of motion artifact correction to further improve sensor accuracy.

29

7 BLE Development

The application of BLE within sensor development opens a new frontier of possibilities. Sensors,

such as those monitoring environmental conditions, health parameters, or equipment status, benefit im-

mensely from BLE’s capabilities. The initiative to adopt BLE for the transcutaneous oxygen monitor was

primarily motivated by the challenges encountered with wired connections, which often became disconnected

during motion artifact testing. Through the adoption of BLE technology, the transcutaneous oxygen mon-

itor can achieve operational longevity while enabling real-time data transmission and facilitating seamless

connectivity with other devices.

In Section 7.1, we will explore the methods and processes employed in developing a sensor-specific

BLE application for the transcutaneous oxygen monitor. Next, in Section 7.2, we will look at the current

implementation of the BLE application as well as the challenges faced during development. Finally, Section

7.3 will discuss the outcomes of this application and the future directions for this project, emphasizing the

untapped potential and areas for further exploration.

7.1 Methods

This methods section will cover the flow of BLE development and the resources and knowledge used

to support that in Section 7.1.1. Then, we will dive into step-by-step instructions on the implementation of

a custom BLE server in Section 7.1.2.

7.1.1 BLE Development

SoC: STM32WBx5 The integration of BLE technology into our oxygen sensing device started with a

foundational emphasis on understanding our selected system on chip (SoC), specifically an STM32-based

microcontroller unit (MCU) renowned for its support of wireless communication protocols, including BLE.

The SoCs used for development were part of the STM32WBx5 series, which have comprehensive support for

BLE and also align with our project’s requirements for efficient, reliable wireless communication. This series

was used for previous sensor development [17,36], but the sensor had not yet utilized the wireless capability

of the SoC.

The process of familiarization began with a deep dive into STM’s documentation related to the SoC

by utilizing datasheets [33], application notes [33], wiki articles, and video content [50, 51]. Through this

growth in understanding, we learned that the STM32WB MCUs are a very capable solution towards meeting

30

the demanding requirements of modern IoT applications. Below are the standout features and benefits that

made the STM32WBx5 series ideal, compared to competitors such as the ESP32 and NRF52 [52,53], for the

transcutaneous oxygen monitor [33]:

• Power Efficiency: Power consumption is a critical factor in the design of portable medical devices.

The STM32WBx5 series excels in this area with its energy-efficient design and various power-saving

modes, allowing for extended battery life. This ensures that the oxygen monitor can operate for longer

periods without frequent recharging, making it more convenient and reliable for users.

• Security Features: Security is paramount in healthcare applications to protect sensitive patient

data. The STM32WBx5 series comes equipped with advanced security features ensuring that all data

transmitted and received over BLE is securely encrypted.

• Flexibility and Scalability: The modular architecture of the STM32WBx5 series allows for sig-

nificant flexibility and scalability in design. This enables the integration of additional sensors or

communication protocols, should the need arise, making the platform suitable for future enhancements

or iterations of the oxygen monitor.

• Integration of Multiple Wireless Protocols: Besides BLE, the STM32WBx5 series supports

other wireless protocols, offering the potential for multi-protocol wireless applications. This could be

leveraged in future iterations of the oxygen monitor.

• Robust Ecosystem and Development Tools: STM provides an extensive ecosystem of develop-

ment tools, software libraries, and support resources for the STM32WBx5 series.

BLE Architecture The next step in gaining the foundational understanding necessary for this project

involved understanding Bluetooth and, more specifically, BLE. Similar to before, this involved reviewing

articles [32], wiki articles [33, 34], and videos [50, 51]. This learning led to the design of a generic attribute

(GATT) profile, a key component of our BLE implementation. GATT plays a fundamental role in BLE

communication, acting as the backbone through which data is structured, stored, and exchanged between

BLE devices. GATT operates on the principle of a server-client model, where the GATT server stores data

and makes it accessible to the client upon request using a BLE protocol stack. This model is essential for

BLE devices, as it dictates how data is formatted and transferred over BLE’s low-energy protocol through

the use of services and characteristics. In the context of our project, the GATT server was designed to cater

to the specific data requirements of the oxygen-sensing device. We designed a custom profile comprising two

primary services: sensor configuration and sensor data transmission.

31

The profile implementation is shown in Table 5, showcasing the service used for data transmission

and an example service for sensor configuration. The sensor configuration service has the potential to enable

the remote setup and calibration of the oxygen sensor, allowing users to tailor the device’s operation to

their specific needs. Currently the sensor configuration service only consists of example characteristics for

demonstrating the functionality of notifying, reading, and writing with characteristics in conjunction with

hardware, such as switch buttons and LEDs. This service intends to create a foundation via examples

for when the BLE server integration within the sensor firmware has been resolved and we are ready to

incorporate useful characteristics for sensor configuration. The sensor data transmission service, which will

likely is responsible for the real-time streaming of collected data, which includes critical parameters such as

temperature, accelerometer readings, and tau values indicating PtcO2 levels. Specific details of the services

and characteristics can be seen in the table, such as the amount of data, in bytes, each characteristic is

responsible for. More information can be accessed via the ICAS lab on their GitHub.

Table 5: BLE Profile Structure

Service Long Name SensorConfiguration SensorData

Service Short Name SConfig SData

UUID Type 128 bits 128 bits

Characteristic Long Name My LED Char My Switch CharTOM Temp TOM Accel TOM Tau

Characteristic Short Name LED C SWITCH C TOM T TOM A TOM TAU

UUID Type 128 bits 128 bits 128 bits 128 bits 128 bits

Char Properties Read +
Write w/o
response

Notify Notify Notify Notify

Char Value Length 2 2 2 6 200

STM32 Development Suite The implementation of BLE began with an in-depth familiarization with

STM32 hardware and its development suite [54]. This initial phase was crucial for establishing a solid

foundation of understanding, given the breadth and depth of the tools available for hardware development

from STM32 and involved running example codes from the STM32CubeWB GitHub Repository on the

P-Nucleo Development Board [55]. The next phase involved an immersive learning experience on BLE

development, especially concerning the STM32 ecosystem. This consisted of leveraging wiki articles/guides

and video tutorials [50,51,56], to acquire the necessary skills and knowledge for custom BLE implementation.

This theoretical groundwork paved the way for the practical application phase, developing a custom BLE

server using STM32’s P-Nucleo-WB55 development board, using the STM32WB55. The next step, which is

32

currently in progress, involves integrating the BLE server onto the existing flexible PCB sensor hardware,

which necessitates overcoming a few significant differences in features. The hurdles include a difference in

pinout, a different MCU (the flex PCB incorporates the STM32WB35), and the lack of a functional low-speed

external (LSE) clock.

7.1.2 BLE Guides

The following guides walk through BLE related procedures and are available on the ICAS Lab

GitHub repository (https://github.com/icaslab/tom-mcu-wireless-fw).

Custom BLE Server Procedure

This procedure walks through the creation of a BLE server. You can refer to the guides (later in

this section) for creating “notify” and “write” characteristics for more detail on that.

Prerequisites:

• Install STM32CubeIDE (optionally you can install STM32CubeMX too, but most features are available

in STM32CubeIDE).

• Update Firmware Upgrade Service (FUS) and flash wireless stack. BLE Hardware Setup Instructions.

If you are using the P-Nucleo it is recommended to flash this P2P Server Application to confirm BLE

is functional (will not work on flex PCB). You will need STM32CubeProgrammer to update FUS and

flash wireless stack.

• Get the BLE development app on the client device. LightBlue for IOS is a good option.

• Get PuTTY or some other serial console.

1. Define the desired services and characteristics of your application

For our application, we use the setup shown in Table 5.

Note: Recommended to use a UUID generator to create custom 128-bit UUIDs, but, if preferred, can use

assigned 16-bit UUIDs by referring to Assigned Numbers.

2. Initialize CubeMX, Pinout and Configuration, Clock Configuration, and Project Manager

You can do this by following Cection 4.1-4.4 of STM32CubeMX Application Conception.

Note: For step 4.4 select STM32CubeIDE as Toolchain/IDE.

33

https://www.st.com/en/development-tools/stm32cubeide.html#st-get-software
https://www.st.com/en/development-tools/stm32cubemx.html#st-get-software
https://wiki.st.com/stm32mcu/wiki/Connectivity:STM32WB_BLE_Hardware_Setup
https://github.com/STMicroelectronics/STM32CubeWB/tree/master/Projects/P-NUCLEO-WB55.Nucleo/Applications/BLE/BLE_p2pServer
https://www.st.com/en/development-tools/stm32cubeprog.html#st-get-software
https://punchthrough.com/lightblue/
https://www.putty.org/
https://www.famkruithof.net/uuid/uuidgen
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Assigned_Numbers/out/en/Assigned_Numbers.pdf?v=1709830251105
https://wiki.st.com/stm32mcu/wiki/Connectivity:STM32WB_BLE_STM32CubeMX

3. Enable Traces!

To get feedback on BLE events and activity, you will want to enable traces. You can follow section 6 of

STM32CubeMX Application Conception and don’t forget to add APPD Init(); to app entry.c.

4. Setup custom BLE application in STM32 WPAN.

Refer to Section 5 of STM32CubeMX Application Conception for example. This is where you configure your

services and characteristics.

a. Setup applications and services

Figure 15: Setup application in BLE Applications and Services tab.

b. Setup advertising configuration

(a)

(b)

Figure 16: Configure advertising in BLE Advertising tab. Choose CFG GAP DEVICE NAME here. Here
we use TOM BLE.

34

https://wiki.st.com/stm32mcu/wiki/Connectivity:STM32WB_BLE_STM32CubeMX
https://wiki.st.com/stm32mcu/wiki/Connectivity:STM32WB_BLE_STM32CubeMX

c. Define services and characteristics

(a)
(b)

(c)

Figure 17: Configure services in BLE GATT and the new services tabs.

d. Define pairing (optional security features)

See Section 5.3.3 of STM32CubeMX Application Conception or BLE Security with STM32WB for more

information.

Guide for Characteristic Notification

This guide walks through how to get notify functionality with a characteristic. We will use a button

to trigger a notification for this guide, but you can use this as a reference to notify with hardware or software

triggers.

Prerequisites:

Make sure you have your notification trigger set up, whether it’s a timer, button, or a software sequence.

1. Setup characteristic in your .ioc (can use CubeMX or CubeIDE)

Make sure that CHAR PROP NOTIFY and GATT NOTIFY ATTRIBUTE WRITE are enabled. Also,

make sure your value length is enough to contain your data and note that ’Variable’ length characteristic

does not mean that you can exceed your value length (Fig. 18).

2. Add task to sequencer

We will name the task after the cause of the notification, which in our case is a button (Figure 19).

• app conf.h - CFG Task Id With HCI Cmd t

35

https://wiki.st.com/stm32mcu/wiki/Connectivity:STM32WB_BLE_STM32CubeMX
https://youtube.com/playlist?list=PLnMKNibPkDnGbiUxaLBqTdM2nNIVAk_MO&feature=shared
https://github.com/icaslab/tom-mcu-wireless-fw/blob/main/ble_server/Core/Inc/app_conf.h

Figure 18: Setup characteristic in your .ioc.

Figure 19: Add task to sequencer.

3. Setup event chain

Here, we set up the chain of callbacks to trigger the notification. Since we are using a button, we create

a callback for the button (Figure 20a), then create an app action function to step into (this is your bridge

from CPU1 to CPU2) (Figure 20b), and finally create the BLE function to set the flag for the event for the

sequencer (Figure 20c). Make sure you declare the functions you create in their respective include files!

• app entry.c - Callback Function (In the case of an interrupt-related event. For software-related events,

you can put your function wherever else makes sense as long as the code is running on CPU1.)

• app ble.c - Action Function

• custom app.c - Set Event Function

36

https://github.com/icaslab/tom-mcu-wireless-fw/blob/main/ble_server/Core/Src/app_entry.c
https://github.com/icaslab/tom-mcu-wireless-fw/blob/main/ble_server/STM32_WPAN/App/app_ble.c
https://github.com/icaslab/tom-mcu-wireless-fw/blob/main/ble_server/STM32_WPAN/App/custom_app.c

(a)

(b)

(c)

Figure 20: Setup event chain.

4. Setup notification flow

Here, we start by creating our function to send the notification (Fig. 21a). This function relies on the

button as a toggle using SW1 Status, so we need to set that up by adding it to Custom App Context t

(Fig. 21b). We also need to add the ability for the client device to decide the notification status by adding

to Custom STM App Notification (Fig. 21c). Finally, we can initialize the notification and register the

notification task with the sequencer in Custom APP Init (Fig. 21d).

• custom app.c - All remaining functions in Figure 21, including Custom App context t,

Custom STM App Notification(), and Custom APP Init().

Guide for Characteristic Writing

This guide walks through how to get “writing” functionality with a characteristic. We toggle an

LED state as an example for this guide, but you can use this as a reference to change hardware or software

states.

Prerequisites:

Make sure you have your writing destination set up, whether it’s an LED or a variable.

1. Setup characteristic in your .ioc (can use CubeMX or CubeIDE)

Make sure that CHAR PROP WRITE or CHAR PROP WRITE WITHOUT RESP is enabled. Also, make

37

https://github.com/icaslab/tom-mcu-wireless-fw/blob/main/ble_server/STM32_WPAN/App/custom_app.c

(a)

(b)

(c)

(d)

Figure 21: Setup notification flow.

sure your value length is enough to contain your data and note that “Variable” length characteristic does

not mean that you can exceed your value length (Figure 18).

Figure 22: Setup characteristic in your .ioc.

2. Setup write management

Add code to the relevant condition in Custom STM Event Handler function to manage the write from a

client device to your server. In this case, our condition is CustomLed C, which matches our characteristic

38

definition (Figure 23).

• custom stm.c - Custom STM Event Handler()

Figure 23: Setup write management.

3. Setup write action

Add code to write event in Custom STM App Notification function. This code should handle the desired

effect of your write. In this case, the write changes an LED state depending on its value (Figure 24).

• custom app.c - Custom STM App Notification()

Figure 24: Setup write action.

Helpful STM32 tutorials/guides:

• STM32CubeMX Application Conception

• BLE Security with STM32WB

• How to build wireless applications with STM32WB MCUs

• STM32 Bluetooth Firmware Tutorial (Bring-Up) - Phil’s Lab #129

7.2 Results

The implementation of BLE on the flex PCB could not be completed due to various issues with

software and hardware. The LSE clock on the flex PCB does not function as necessary, which requires a

workaround involving referencing the high-speed external (HSE) clock. In other words, the LSE clock is

39

https://github.com/icaslab/tom-mcu-wireless-fw/blob/main/ble_server/STM32_WPAN/App/custom_stm.c
https://github.com/icaslab/tom-mcu-wireless-fw/blob/main/ble_server/STM32_WPAN/App/custom_app.c
https://wiki.st.com/stm32mcu/wiki/Connectivity:STM32WB_BLE_STM32CubeMX
https://youtube.com/playlist?list=PLnMKNibPkDnGbiUxaLBqTdM2nNIVAk_MO&feature=shared
https://www.st.com/resource/en/application_note/an5289-how-to-build-wireless-applications-with-stm32wb-mcus-stmicroelectronics.pdf
https://youtu.be/-xYoI84zJew?feature=shared

(a) (b)

Figure 25: Source of issue for implementing BLE server on flex PCB: (a) ideally sysevt ready rsp
matches WIRELESS FW RUNNING, however, (b) instead sysevt ready rsp undesirably matches
FUS FW RUNNING.

not strictly necessary, but there needs to be a lower speed reference to utilize lower power modes for BLE.

Furthermore, an issue relating to the wireless stack not initializing properly prevents CPU2 from running,

which is important since CPU2 handles all wireless communication. Unfortunately, this issue is rare and is

not well documented.

Other than the implementation of BLE on the flex PCB, the accomplishments of BLE development

exist on the TOM Wireless GitHub repository (https://github.com/icaslab/tom-mcu-wireless-fw). The fol-

lowing contributions were made to this repository toward creating a foundation for BLE development on the

sensor:

• Branch with most recent flex PCB codes.

• Resources relating to BLE development on the STM32.

• Guides for creating a BLE server from scratch for any application.

• Guides for implementing characteristics for reading, writing, and notification.

• Branch with test BLE server for P-Nucleo.

As mentioned before, the flex PCB codes are in a working state. The origin of the wireless stack

issue, depicted in Figure 25 needs to be determined before further progress can be made.

Detailed guides containing helpful resources, many of which were discussed above, are available

on the GitHub repository, partially shown in Figure 26. These resources cover general topics useful for

understanding BLE, STM, and the MCU. The repository also contains resources useful for creating BLE

40

Figure 26: A peek at the documentation available on the GitHub repository.

applications from scratch using the STM development tools. These tools have a steep learning curve, so the

guides are meant to provide simple guidance that was honed with trial and error throughout the course of

this project.

Figure 27: Example BLE data transmitted from P-Nucleo seen on IOS.

Figure 27 shows the example BLE data transmitted from the P-Nucleo development board. From

left to right, each screenshot shows temperature data, accelerometer data, and tau values. All the data is

encoded in little-endian and needs to be handled as such by any client devices. The next step with the flex

PCB is to transmit data that looks like this, which would indicate the successful implementation of BLE on

the flex PCB.

7.3 Discussion

BLE marks a significant milestone in leveraging wireless communication to enhance the wearability

and practicality of the transcutaneous oxygen monitor. However, to achieve this, the further steps need to

be taken:

41

1. Solve wireless stack issue by figuring out the source of the bug that prevents CPU2 from running and

sets sysevt ready rsp to FUS FW RUNNING, as shown in Figure 25.

2. Verify successful advertisement of BLE server from flex PCB to other devices, such as the data shown

in Figure 27.

3. Add relevant characteristics for TOM to the GATT profile, such as number of samples per decay curve,

battery operation, LED width, LED offset, TIA gain, or other settings that exist in Wired Firmware

GitHub Repository.

4. Integrate the BLE server into existing TOM firmware.

5. Incorporate power-saving functionality using low power modes, such as SLEEP mode (without LSE

clock you cannot go into lower power modes such as STOP/STOP2).

6. Add BLE security features as desired.

Note that the power saving and security features in steps 5 and 6 can be developed in parallel with

the integration of the BLE server into the TOM firmware in step 4.

The guides and resources that have been compiled are meant to create a foundation for future

development of BLE. By utilizing previous experiences, hopefully future work can overcome the remaining

challenges towards making TOM wireless.

42

https://github.com/icaslab/tom-mcu-wired-fw/blob/main/Core/Inc/icas/measurement-settings.h
https://github.com/icaslab/tom-mcu-wired-fw/blob/main/Core/Inc/icas/measurement-settings.h

8 Graphical User Interface

A GUI significantly enhances our interaction with devices by providing an intuitive and user-friendly

platform. This interface simplifies the communication between the user and the machine, enabling straight-

forward command inputs, real-time data reception, and clear visualization of system statuses. Specifically,

within the TOM PCB project, the implementation of a GUI streamlines operations, simplifying the config-

uration of settings and data collection. This is a considerable improvement over command-line interfaces

(CLIs), which demand that users memorize and input complex commands and syntax.

GUIs present all available options and features in an organized and visually appealing format, dra-

matically reducing the learning curve and improving overall usability. The simplicity of GUIs is vital in

enhancing user experience, making advanced technology accessible even to those without technical exper-

tise. Moreover, GUIs incorporate important visual cues, such as status indicators, which are essential for

monitoring device activities and pinpointing issues promptly.

The integration of a GUI into device communications represents a significant advancement toward

greater efficiency, user satisfaction, and engagement. Additionally, GUIs facilitate the adoption of cutting-

edge technologies like Bluetooth Low Energy (BLE), boosting data collection and transmission capabilities

as we move towards a more interconnected future.

8.1 GUI Implementation

To construct the GUI, the Python environment was initialized with libraries required for serial

communication; PySerial is a library that allows the Python environment to access the serial ports and

provides the required backend for running on various operating systems (Windows, Mac OS, Linux, and

others). This serial data can be read and outputted into the terminal. To store data in Cloud storage, a

Google API was implemented to allow the automated logging of tests, using OAuth2.0 as the method of

accessing the servers. This section details the various sensors, the method of storing data, and a guide for

setting up a test.

8.2 Methods

The integration of the GUI into the TOM device first started with understanding the needs and

criteria that needed to be addressed. This required a delve into the TOM PCB and an understanding of the

43

function of each of the parts at play. It also required gaining knowledge about the hardware components

and software functionalities and learning about the basics of Cloud-Enabled Data storage.

8.2.1 TOM PCB and Settings

The TOM board is based on an STM32 SoC, discussed in Section 7.1; therefore, to establish a

connection to it via serial communication, one needs to find the associated COM port and the transmission

baud rate (BR). The COM port refers to the communication port used for serial data transmission. This is

the computer port that the device connects to. Using Python’s built-in serial library, the connection can be

established to any peripheral connected to it. The baud rate, on the other hand, is a term used to quantify

the rate of data transmission through a communication channel. Specifically for serial communication, this

number indicates the maximum number of transferable bits per second. This baud rate has to be equal

on both the peripheral and the computer (receiver), allowing it to sample at the proper rate. Once that is

established, commands can be sent to the main MCU, which distributes the commands to their respective

destination. This is done by having API calls to the specific blocks and having functions that prepare the

data packet (refer to Figure 28), including the input in the correct format so that the MCU can understand

the instructions. There were three main blocks on the TOM board (refer to Figure 10a) that serial setting

manipulation was planned to be achieved for:

• Accelerometer: The accelerometer being used is helpful in correlating motion to the deviations seen

in the decay time and eliminating motion artifacts.

• Temperature Sensor: The temperature sensor can be used to monitor the atmospheric temperature

and adjust its functions accordingly.

• Analog Front End/ADPD: The analog front end, in general, is responsible for handling analog

signals. In this case, the APDP is the photodiode used in this luminescence-based method.

These blocks and their respective settings were extracted from the board’s firmware supplied by

the ICAS Lab. Additionally, error checking was implemented to ensure that the inputs being sent were

valid. To gain this, the list of possible values for each of the settings was obtained from the firmware, and

an error-checking function was implemented to ensure that the input was valid. To maximize efficiency, a

switch-case method is deployed that recognizes which specific function is being modified and checks that the

value is either valid or within the specified range.

44

https://docs.python.org/3/tutorial/controlflow.html

(a) API Call Code Block, showcasing the method of
getting data from the TOM Board.

(b) API Call Code Block, showcasing the method of
sending data to the TOM Board.

Figure 28: API Call Blocks. The API calls first establish a serial connection to the device, and then it
checks for the different types of inputs in an if-statement. The various input types have different syntaxes
for calling its value, so an if-statement is deployed to make sure it is processed and sent using the correct
arguments. Upon the transmission of the data, it gets read back to the computer to ensure that the value
is consistent.

8.2.2 Cloud-Based Data Storage

To establish a connection to a cloud server, the Google Drive API and OAuth frameworks were

utilized. Google APIs are provided by Google and allow communication with their services and their inte-

gration into other services. These APIs are designed to be easy to use and to provide powerful functionality

to developers. In this case, they were utilized as a part of a Python script to log data specifically via the

Google Drive API in Section 8.4.1.

OAuth 2.0 is the authorization framework that enables applications to gain access to user accounts

on these APIs. It works by delegating user authentication to the service that hosts the user account and

authorizing third-party applications to access the user account. OAuth 2.0 provides authorization flows for

web and desktop applications and mobile devices as shown in Figure 29:

• Resource Center: Typically, the end-user owns the data the application wants to access. In this case

the resource center

• Client: The application that wants to access the user’s data. The client must be registered with the

provider and have a client ID and secret (Figure 32). The client in this case is the Python script.

• Authorization Server: The server that presents the interface where the user approves or denies the

request for an access token. Here the server requesting the authorization is the OAuth2.0 server, it is

integrated within the Google API Console and gives permissions and an access token to the client.

• Resource Server: The server hosting the protected data. Within this implementation, this server is

45

https://datatracker.ietf.org/doc/html/rfc6749

Run Data
Collection

Server Requests
Client

Authentication

Load
client's

configuration

Start Login
process

Valid
Token?

Has
Access?

Saved log
file Upload File Unauthorized

Yes

No

Yes No

Start Data
Collection

Figure 29: Data Collection and cloud storage flow. In this figure, the Google Drive server requests client
authentication, which is done automatically by checking the client ID and credentials. After loading the
configuration, the secret token is checked by the server, ensuring it matches the activated token (Figure 32),
and the login process is initiated, where the user logs in with their Google account information.

the main Google server that redirects to the Google Drive framework

• Access Token: A token that is granted by the authorization server, which the client uses to access the

resource server on behalf of the user. This token is stored locally and can be accessed and downloaded

via the Google API Console (Figure 35).

The client will redirect the user to the authorization server, where they will log in and approve the

access request. The authorization server then redirects back to the client with an authorization code, which

the client will exchange for an access token. The client can then use the access token to access the resource

server and request the data it needs.

46

8.3 Testing Procedure and Guides

This section highlights the various procedures for testing the GUI and provides examples and guides

to be followed.

8.3.1 Data Collection Testing Procedure

Prerequisites:

• A code interpreter installed (Usually Visual Studio Code is used) .Alternatively the terminal can be

used to run Python files.

• Gain access to the Google Drive API and be given testing credentials (This step is provisional for

development purposes).

• Identify the file path and folder ID (Done by navigating to the folder in the browser and copying its

ID).

• Make sure the settings are properly set up (Usually, the settings will display the current stored values).

1. Running script and initialization

This can be done by opening the script in a coding environment or running it via the terminal. Upon

running, the GUI (Figure 31) should appear on the screen. Navigate to the settings menu (Figure 33) to

ensure the settings are loaded and are within the desired ranges.

2. Generate Google Drive API Credentials and Key

Navigate to Google API Console 32, and create a new secret by clicking the button. A new entry shows

up on the screen with a new set of secret tokens. To enable these tokens, one must download the JSON

file associated that holds the token by pressing the arrow icon next to the token. Once this new file is

downloaded, it should be moved to the file path that houses it within the repository (Section 8.3.1).

3. Running Data Collection

Upon pressing the data collection screen, the user will be redirected to the Google login page to authorize

their client (Figure 29); this will be done by the server checking the user token and then requiring them to

log in to their Google account (Section 8.3.1).

47

https://code.visualstudio.com/
https://vteams.com/blog/how-to-run-a-python-script-in-terminal/
https://vteams.com/blog/how-to-run-a-python-script-in-terminal/
https://developers.google.com/workspace/guides/create-credentials
https://developers.google.com/drive/api/guides/manage-uploads
https://github.com/icaslab/tom-gui/tree/main/application%20format/client%20secrets

Figure 30: Google Drive Folder ID example

8.4 Results

By utilizing the aforementioned methods, a GUI was deployed for the transcutaneous oxygen moni-

tor. This GUI has served the purpose of running data collection tests and modifying the settings of different

hardware blocks on the PCB. This also allowed testing for cloud-based storage via the Google Drive API,

which paves the way alongside BLE for an intuitive and all-encompassing solution. With the effectiveness

of the GUI and BLE efforts, this can drive a force of contemporary capabilities and integration. The results

are compiled in a GitHub repository under the ICASLab’s main branch and supervision.

8.4.1 Data Collection and Logging

The collection of data was achieved through the Python environment by deploying multiple libraries

that aided in establishing a serial connection with the PCB:

• Serial: Allows connection and manipulation of serial ports occupied on the computer.

• OS: Stands for Operating System and allows the user, to read, write, and manipulate system files.

• JSON: The JavaScript Object Notation (JSON) library allows to read and manipulate JSON files.

For the GUI and GDrive authentication, the client credentials are stored as a JSON file and must be

read using this library.

• TKinter: TKinter is the standard graphical library used to generate the GUI elements.

• Threading: Threading is used to allow the Python script to run 0multiple tasks at the same time by

creating a separate flow of commands (thread).

• Google API Python Client: The main API Client given by Google. Used to establish communica-

tion between the client and a specified Google service.

• PyDrive2: PyDrive2.0 is a wrapper for the Google API Python Client, and it improves the efficiency

of the OAuth2.0 framework.

These libraries assisted in the communication and transfer of data with the TOM board and in

acquiring the correct variables for data collection and logging. Upon completion of a run, the data is

automatically stored in a timestamped log file both locally and on the cloud.

48

https://github.com/icaslab/tom-gui/
https://pyserial.readthedocs.io/en/latest/shortintro.html
https://www.geeksforgeeks.org/create-an-empty-file-using-python/
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/tkinter.ttk.html
https://realpython.com/intro-to-python-threading/#what-is-a-thread
https://github.com/googleapis/google-api-python-client
https://github.com/iterative/PyDrive2?tab=readme-ov-file

Figure 31: GUI data collection screen.

8.4.2 Cloud-Based Data Storage

Cloud computing has continued to be the path forward in this era for a multitude of different

applications, and its use here for data logging has been crucial. In this project, the Google Drive API was

utilized to log data to a shared drive. This was done by implementing the OAuth 2.0 framework outlined in

Section 8.2.2.

Figure 32: OAuth 2.0 screen on the Google API console shows the Client ID and secret token used in
integrating the API into the software.

8.4.3 Settings Editing

One of the main functions of the device was that it was used to modify various system components

via a user interface rather than writing CLI commands. This was constructed using TKinter due to its

plethora of customization; multiple components in the GUI can be programmed to execute different com-

mands. This takes user input, and then, via the functions shown in Figure 28, it sends a command serially

to the transcutaneous oxygen monitor that instructs it on the exact change to be done. This is done via

API calls implemented within the board’s firmware, which takes the user input and addresses the specified

system block.

49

https://developers.google.com/identity/protocols/oauth2
https://tkdocs.com/tutorial/widgets.html
https://tkdocs.com/tutorial/widgets.html

Figure 33: The transcutaneous oxygen monitor’s PCB settings are filled out with the default values.

8.5 Discussion

Overall, the apparent success with achieving serial communication via a GUI (Figure 34) is a

promising prospect in streamlining the efficiency of collecting data and remote patient monitoring in general.

Notably, enabling the modification of various parts of the transcutaneous oxygen monitor via an appealing

GUI rather than through the command line helps flatten the learning curve that comes with such low-level

50

system modification and assists in making this technology more widespread.

Figure 34: Serial Output Results. The monitor prints out the value being read from the serial port and
notifies if the modification was successful.

The development of the GUI did come with its fair share of hardships, which ended up in aiding the

understanding of not only the STM32 platform but also applications in Python, GUI development and its

elements, and an understanding of serial communication and command line interactions. Most importantly,

the ability to test out and use the transcutaneous oxygen monitor in itself was a challenge and pleasure

as it allowed the opportunity to learn more about its inner workings, and the multiple blocks that were

manipulated using the GUI.

Development challenges and limitations were faced throughout the timeline of the project. These is-

sues hindered the development process throughout the semesters and required extra debugging to understand

the underlying issues and formulate a solution:

• Cloud Communication Issues: In the current software, there are some issues with the connection

using the current key and token. Changing the path of the repository sometimes caused the Google

Authentication server to not recognize the key and broke the authentication flow. To fix this, the key

and token have to be re-instantiated if the repository path changes. However, after pushing the service

being used for the GUI to the public this should no longer be an issue.

Figure 35: Google Drive API Token and credentials key. These values are stored locally, and therefore,
sometimes, when changing its path, the authenticator has a hard time verifying the new one.

• Grabbing Serial Data: Issues arose during the conception of the functions to grab values stored

serially. During testing via Arduino, variables were initialized to store the values being sent serially.

However, when it came to reading these values, they were not being displayed on the terminal.

• Error Checking Statement silencing: Due to some syntactical issues and structuring, the GUI

flow sometimes bypasses the error-checking statements that are in place to validate the input. This

51

issue is mitigated by having corresponding error checks on the TOM board’s firmware

The next logical continuation would be to work on integrating the outlined BLE framework within

the GUI. This will provide a unified data collection platform that allows for both wired and wireless data

transmission. Unlocking this avenue can spell wonders in the realm of transcutaneous oxygen monitoring

and aid in evaluating and testing its effectiveness and viability in testing.

In conclusion, the GUI development for the transcutaneous oxygen monitor aids in improving the

overall experience and the usability of the monitor. This GUI also serves as a platform for testing and

improving communication, implementing frameworks such as Bluetooth Low Energy.

52

9 Project Challenges

In the development of advanced sensor technologies, integrating sophisticated components and

ensuring their seamless interaction presents a series of challenges. Our project encompassed four different

aspects: developing a motion artifact correction algorithm, quantifying the effects of motion artifact, BLE

development, and GUI development. Each component not only plays a vital role in the functionality of our

sensor system but also brings unique challenges that must be addressed to achieve optimal performance and

reliability. The motion algorithm is the core of our sensor’s capability, designed to accurately interpret and

respond to physical movements. Perfecting this algorithm required overcoming significant computational

and real-world application challenges. In parallel, the motion artifact testing was essential to ensure that

the sensor’s readings remained accurate under various dynamic conditions.

Additionally, the integration of BLE technology was critical for wireless communication, which

posed challenges in ensuring robust and consistent connectivity, essential for real-time data transmission. The

GUI, designed to enhance user interaction and usability, also presented its own set of challenges, particularly

in aligning technical functionality with user experience. This section discusses the specific challenges we

encountered in each of these areas, detailing the iterative processes and innovative solutions we employed to

navigate these complexities, thereby enhancing the overall effectiveness and usability of our sensor system.

9.1 Developing Motion Artifact Correction Algorithm

The development of a motion artifact correction algorithm for a wireless transcutaneous oxygen

monitor has posed several significant challenges. These challenges stemmed primarily from the complexity

of distinguishing between noise induced by motion and the true physiological signals. A major challenge

we faced was the variability in signal responses when testing on human subjects and under different motion

scenarios. We observed that lifetime measurements varied significantly from one individual to another, which

are elaborated in the literature [47], including differences in individuals’ skin properties, age, and weight.

This variability necessitated the implementation of more controlled testing to thoroughly understand the

effects of motion artifacts on the sensor’s readings.

Due to the limited data available, establishing a definitive algorithm to effectively correct for motion

artifacts remains a work in progress. While the Wiener filter has provided a solid foundation, it is clear that

a hybrid approach may be necessary. Such an approach would allow the algorithm to dynamically adapt

to varying noise levels associated with different types of motion, enhancing the monitor’s adaptability and

53

accuracy across a broader range of real-world applications.

9.2 Quantifying the Effects of Motion Artifact

Throughout the development of our motion artifact testing procedures for a new sensor system, our

team faced several significant challenges. These challenges necessitated multiple iterations and methodolog-

ical adaptations to ensure the effectiveness and reliability of our testing protocols.

One of our primary challenges was designing a robust test setup compatible with all required tests,

especially as we tested the sensor independently of its BLE and GUI components. We frequently encountered

issues where our setups would disconnect during specific motions, notably during high mobility tests, which

are critical for assessing the sensor’s performance in dynamic conditions. To address these issues, our team

systematically revised our testing apparatus. Initial setups used standard connectivity solutions, which

proved inadequate. Subsequent iterations involved employing more secure fixings using the gas chamber.

Based on some of the challenges noted, we also worked on developing integrated BLE and GUI

components for the sensor. This integration aims to streamline future testing processes, allowing for easier

setup, more stable data transmission, and enhanced user interaction during tests. By addressing the con-

nectivity and usability challenges directly, these developments are expected to facilitate smoother testing

experiences and more reliable outcomes.

9.3 BLE Development

The development journey of incorporating BLE into the transcutaneous oxygen monitor was marked

by a series of technical challenges. These hurdles not only shaped the trajectory of our project but also pro-

vided invaluable learning experiences that enriched our understanding and application of wireless technology

in medical devices.

9.3.1 Navigating the Complexities of BLE Technology

Gaining a comprehensive understanding of BLE posed a significant challenge due to the technology’s

extensive features and operational nuances. BLE’s vast ecosystem, characterized by a myriad of profiles,

services, and protocols, demanded an in-depth learning curve. The initial phase of our project was heavily

invested in demystifying these complexities, involving rigorous study to harness BLE’s full potential for our

oxygen monitor.

54

9.3.2 Mastering the STM32 Development Environment

Similarly, the STM32 microcontroller, with its rich set of development tools and software libraries,

presented a steep learning curve. The complexity of the STM32 ecosystem, while offering powerful capa-

bilities, required dedicated effort to master. Considerable time was invested in navigating the intricacies

of STM32’s hardware and software interfaces, leveraging online resources, and engaging with the developer

community to overcome challenges.

9.3.3 Transitioning to Integrating BLE with Custom Sensor Hardware

A significant hurdle in the project was the migration from the STM32WB55 development board to

the STM32WB35 microcontroller, coupled with the integration of BLE technology into the custom hardware

of the oxygen sensor. This dual-faceted challenge was marked by compatibility issues arising from the differ-

ences in the two MCU models’ specifications, which necessitated adaptation of our development strategies

to accommodate the STM32WB35’s different features. Furthermore, embedding BLE functionality into the

custom-designed sensor hardware presented its own set of obstacles. These ranged from small issues like

remapping GPIO to issues that were more difficult to analyze, such as the LSE clock on the board not

working. Overcoming these hurdles is still a work-in-progress and demands a flexible, iterative approach,

involving extensive testing to seamlessly merge BLE capabilities with the intricacies of the custom sensor

design.

9.4 GUI Development

The development of the graphical user interface presented its own unique challenges and learning

curves that helped shape the path of the project and the overall integration of the GUI into the transcutaneous

oxygen monitor.

9.4.1 Understanding Serial Communication

Getting a solid grasp on this part of the project meant learning the inner workings of how serial

communications are established and are used to send and receive commands from whichever target it is

connected to. The serial communication portion had some hurdles to its testing and integration. Firstly,

testing was initiated with an Arduino board as the communication protocol is similar and translates nicely

to the STM32 platform. However, immediate issues were faced with storing sent communications to the

55

Arduino and having it read back to the GUI. This led to spending more time understanding the different

memory and storage architectures deployed within the Arduino microcontroller as well as the STM32 board

to ensure no issues would occur when translating between the two. To combat this issue local variables were

initialized that stored the value and were able to be sent back to the GUI upon request.

9.4.1.1 Learning Cloud-Storage Methods

When it came to managing and storing the data on a cloud system, major technical hurdles had to

be overcome just by learning about the environment and setting up the client and server. To parse through

this a multitude of Google’s documentations were read that outlined the integration and usage of the service.

This was then tested by creating a testbench environment and integrating it within a Python script that

connected to a Google Drive and uploaded a test folder. After this was successfully achieved the API was

then implemented within the main Python environment of the GUI

9.4.2 GUI Design

Some issues were faced when it came to designing the GUI and making sure it ran efficiently. Some

issues arose from the graphical library being used; TKinter. TKinter was used to draw the interface, buttons,

pop-ups, and other interface items. Some of the issues faced with this included:

• Repetitive Code Blocks: The GUI elements had some repetitive sections that made the code very

lengthy and hard to debug. This required refactoring the code as functions to draw the GUI elements

rather than repeating statements.

• Encoding GUI Elements: Encoding the buttons with their functions was somewhat tricky to nail

down as there were multiple input methods and some of them did not support the same value-grabbing

structure. For example, to grab the value of a checkbox it would be by checking its state whereas a

text input would require calling a method to read the input value.

• Updating GUI Elements: Some issues were faced with being able to update the GUI with values

being read from the serial port and distinguishing between inputs and read values.

56

10 Conclusion

This project vastly developed a transcutaneous oxygen monitoring system integrating advanced

technologies to enhance wearable health monitoring capabilities. Throughout, we overcame various challenges

such as motion artifact correction, BLE integration, and the development of a GUI. These components not

only improved the functionality and reliability of the sensor but also demonstrated the potential for real-time,

non-invasive monitoring of oxygen levels.

Motion artifact testing has demonstrated the reliability of the transcutaneous oxygen monitor

during everyday life, which is rich with constant motion. Additionally, the integration of BLE has set

the stage for future advancements in wireless and remote monitoring, offering significant implications for

healthcare applications outside traditional clinical settings. Furthermore, the GUI now provides a solid

foundation for more efficient and effective research and development for blood gas sensing prototypes.

This project exemplifies how engineering solutions can significantly advance medical technology,

offering insights into both the challenges and potentials of integrating electronics and biomedical engineer-

ing to enhance patient care. Future work will continue to build on this foundation, aiming to introduce

more sophisticated algorithms and integration with other medical monitoring devices to provide a more

comprehensive suite of monitoring tools.

57

11 Ethical Considerations

Following ethical codes, multiple considerations must be taken into account. These considerations

help not only the end user and consumers of the product but also researchers and developers create a safe

environment around the device.

• User Consent: Users should be fully informed about the data collected by the sensor and how it

will be used. Developers must obtain explicit consent from users before collecting any data, and users

should have the ability to opt-out or delete their data at any time.

• Accessibility: Wearable sensors should be accessible to individuals with disabilities and diverse cul-

tural backgrounds. This is also relevant for this sensor as most photometric approaches have some

biases.

• FDA Regulations: The device must pass all FDA considerations from its accuracy in reporting

results to its size and compliance with other factors.

58

12 Future Work

Looking forward, the project aims to expand its impact by exploring further enhancements in

sensor accuracy through motion artifact correction, advancing wireless capabilities by incorporating power

management schemes and security features, and adding BLE compatibility to the GUI to create a fully

comprehensive user-driven development experience. These improvements will ensure that the transcutaneous

oxygen monitor can meet the demands of a fast-paced research environment, and the strict constraints for

wearable health technology, and provide reliable support in healthcare monitoring systems.

59

References

[1] World Health Organization, “The top 10 causes of death,” 2019.

[2] U. Guler, I. Costanzo, and D. Sen, “Emerging blood gas monitors, how they can help with COVID-19,”
IEEE Solid-State Circuits Magazine, vol. 12, no. 4, pp. 33–47, 2020.

[3] M. Folke, L. Cernerud, M. Ekström, and B. Hök, “Critical review of non-invasive respiratory monitoring
in medical care,” Medical and Biological Engineering and Computing, vol. 41, pp. 377–383, July 2003.

[4] J. W. Severinghaus, P. Astrup, and J. F. Murray, “Blood Gas Analysis and Critical Care Medicine,”
American Journal of Respiratory and Critical Care Medicine, vol. 157, pp. S114–S122, Apr. 1998.
Publisher: American Thoracic Society - AJRCCM.

[5] S. Raju, P. Sanford, S. Herman, and J. Olivier, “Postural and Ambulatory Changes in Regional Flow
and Skin Perfusion,” European Journal of Vascular and Endovascular Surgery, vol. 43, pp. 567–572,
May 2012.

[6] I. Costanzo, D. Sen, L. Rhein, and U. Guler, “Respiratory monitoring: Current state of the art and
future roads,” IEEE Reviews in Biomedical Engineering, vol. 15, pp. 103–121, 2022.

[7] V. Vakhter et al., “A prototype wearable device for noninvasive monitoring of transcutaneous oxygen,”
IEEE Transactions on Biomedical Circuits and Systems, 2023.

[8] D. Castaneda, A. Esparza, M. Ghamari, C. Soltanpur, and H. Nazeran, “A review on wearable photo-
plethysmography sensors and their potential future applications in health care,” International Journal
of Biosensors & Bioelectronics, vol. 4, no. 4, pp. 195–202, 2018.

[9] A. Temko, “Accurate Heart Rate Monitoring During Physical Exercises Using PPG,” IEEE Transactions
on Biomedical Engineering, vol. 64, pp. 2016–2024, Sept. 2017. Conference Name: IEEE Transactions
on Biomedical Engineering.

[10] M. R. Ram, K. V. Madhav, E. H. Krishna, N. R. Komalla, and K. A. Reddy, “A Novel Approach for
Motion Artifact Reduction in PPG Signals Based on AS-LMS Adaptive Filter,” IEEE Transactions
on Instrumentation and Measurement, vol. 61, pp. 1445–1457, May 2012. Conference Name: IEEE
Transactions on Instrumentation and Measurement.

[11] R. J. Cooper, J. Selb, L. Gagnon, D. Phillip, H. W. Schytz, H. K. Iversen, M. Ashina, and D. A.
Boas, “A Systematic Comparison of Motion Artifact Correction Techniques for Functional Near-Infrared
Spectroscopy,” Frontiers in Neuroscience, vol. 6, p. 147, Oct. 2012.

[12] R. Di Lorenzo, L. Pirazzoli, A. Blasi, C. Bulgarelli, Y. Hakuno, Y. Minagawa, and S. Brigadoi, “Recom-
mendations for motion correction of infant fNIRS data applicable to multiple data sets and acquisition
systems,” NeuroImage, vol. 200, pp. 511–527, Oct. 2019.

[13] M. Kim, S. Lee, I. Dan, and S. Tak, “A deep convolutional neural network for estimating hemodynamic
response function with reduction of motion artifacts in fNIRS,” Journal of Neural Engineering, vol. 19,
p. 016017, Feb. 2022. Publisher: IOP Publishing.

[14] D. R. Seshadri, E. V. Davies, E. R. Harlow, J. J. Hsu, S. C. Knighton, T. A. Walker, J. E. Voos,
and C. K. Drummond, “Wearable Sensors for COVID-19: A Call to Action to Harness Our Digital
Infrastructure for Remote Patient Monitoring and Virtual Assessments,” Frontiers in Digital Health,
vol. 2, 2020.

[15] I. Costanzo, D. Sen, J. Adegite, P. M. Rao, and U. Guler, “A noninvasive miniaturized transcutaneous
oxygen monitor,” IEEE Transactions on Biomedical Circuits and Systems, vol. 15, pp. 474–485, Jun.
2021.

60

[16] V. Vakhter, B. Kahraman, G. Bu, F. Foroozan, B. A. Beidleman, and U. Guler, “The Impact of Motion
Artifacts on Transcutaneous Oxygen Measurements,” in 2023 IEEE Biomedical Circuits and Systems
Conference (BioCAS), pp. 1–5, Oct. 2023. ISSN: 2766-4465.

[17] B. Kahraman, V. Vakhter, I. Costanzo, G. Bu, F. Foroozan, and U. Guler, “A Miniaturized Prototype
for Continuous Noninvasive Transcutaneous Oxygen Monitoring,” in 2022 IEEE Biomedical Circuits
and Systems Conference (BioCAS), pp. 486–490, Oct. 2022. ISSN: 2163-4025.

[18] F. Gul, O. F. Boran, R. Arslantas, F. Gul, O. F. Boran, and R. Arslantas, “Microcirculation and
Hyperbaric Oxygen Treatment,” in Hyperbaric Oxygen Treatment in Research and Clinical Practice -
Mechanisms of Action in Focus, IntechOpen, Mar. 2018.

[19] R. N. Pittman, “The Circulatory System and Oxygen Transport,” in Regulation of Tissue Oxygenation,
Morgan & Claypool Life Sciences, 2011.

[20] M. M. Kmiec, H. Hou, M. Lakshmi Kuppusamy, T. M. Drews, A. M. Prabhat, S. V. Petryakov, E. Demi-
denko, P. E. Schaner, J. C. Buckey, A. Blank, and P. Kuppusamy, “Transcutaneous oxygen measurement
in humans using a paramagnetic skin adhesive film,” Magnetic resonance in medicine, vol. 81, pp. 781–
794, Feb. 2019.

[21] I. D. Stephen, V. Coetzee, M. Law Smith, and D. I. Perrett, “Skin Blood Perfusion and Oxygenation
Colour Affect Perceived Human Health,” PLoS ONE, vol. 4, p. e5083, Apr. 2009.

[22] A. Madan, “Correlation between the levels of SpO2 and PaO2,” Lung India : Official Organ of Indian
Chest Society, vol. 34, no. 3, pp. 307–308, 2017.

[23] I. R. McPhail, L. T. Cooper, D. O. Hodge, M. E. Cabanela, and T. W. Rooke, “Transcutaneous partial
pressure of oxygen after surgical wounds,” Vascular Medicine, vol. 9, no. 2, pp. 125–127, 2004.

[24] U. K. Franzeck, A. Bollinger, R. Huch, and A. Huch, “Transcutaneous oxygen tension and capillary
morphologic characteristics and density in patients with chronic venous incompetence,” Circulation,
vol. 70, pp. 806–811, Nov. 1984.

[25] R. W. Samsel and P. T. Schumacker, “Oxygen delivery to tissues,” European Respiratory Journal, vol. 4,
pp. 1258–1267, Nov. 1991. Publisher: European Respiratory Society Section: Original Articles.

[26] B. J. McGuire and T. W. Secomb, “Estimation of capillary density in human skeletal muscle based on
maximal oxygen consumption rates,” American Journal of Physiology-Heart and Circulatory Physiology,
vol. 285, pp. H2382–H2391, Dec. 2003. Publisher: American Physiological Society.

[27] R. D. Restrepo, K. R. Hirst, L. Wittnebel, and R. Wettstein, “AARC Clinical Practice Guideline:
Transcutaneous Monitoring of Carbon Dioxide and Oxygen: 2012,” Respiratory Care, vol. 57, pp. 1955–
1962, Nov. 2012. Publisher: Respiratory Care Section: AARC Clinical Practice Guideline.

[28] S. P. Philimon, A. K. C. Huong, and X. T. I. Ngu, “TISSUE OXYGEN LEVEL IN ACUTE AND
CHRONIC WOUND: A COMPARISON STUDY,” Jurnal Teknologi, vol. 82, June 2020. Number: 4.

[29] D. Blake, “Transcutaneous oximetry: variability in normal values for the upper and lower limb,” Journal
of the South Pacific Underwater Medicine Society, vol. 48, Mar. 2018.

[30] J. Allen and L. Rabiner, “A unified approach to short-time Fourier analysis and synthesis,” Proceedings
of the IEEE, vol. 65, pp. 1558–1564, Nov. 1977. Conference Name: Proceedings of the IEEE.

[31] “Bluetooth Wearables Are Driving the Future of Data Transfer Device Growth,” May 2022.

[32] “Introduction to Bluetooth Low Energy.”

[33] “STM32WB - Bluetooth, Wireless Microcontrollers (MCU) - STMicroelectronics.”

[34] “Bluetooth,” Apr. 2024. Page Version ID: 1220444249.

61

[35] “Bluetooth Technology Overview.”

[36] V. Vakhter, B. Kahraman, G. Bu, F. Foroozan, and U. Guler, “A Prototype Wearable Device for
Noninvasive Monitoring of Transcutaneous Oxygen,” IEEE Transactions on Biomedical Circuits and
Systems, vol. 17, pp. 323–335, Apr. 2023. Conference Name: IEEE Transactions on Biomedical Circuits
and Systems.

[37] Pankaj, A. Kumar, R. Komaragiri, and M. Kumar, “A Review on Computation Methods Used in
Photoplethysmography Signal Analysis for Heart Rate Estimation,” Archives of Computational Methods
in Engineering, vol. 29, pp. 921–940, Mar. 2022.

[38] Digital Signal Processing and System Theory, “Exercise ”Adaptive Filters”, Part 1, Wiener Filter,”
May 2021.

[39] “ADXL367 datasheet and product info.” [Online]. Available: https://www.analog.com/en/products/
adxl367.html.

[40] S. M. A. Salehizadeh, D. Dao, J. Bolkhovsky, C. Cho, Y. Mendelson, and K. H. Chon, “A Novel Time-
Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate
Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor,” Sensors,
vol. 16, p. 10, Jan. 2016. Number: 1 Publisher: Multidisciplinary Digital Publishing Institute.

[41] H. Chung, H. Lee, and J. Lee, “Finite State Machine Framework for Instantaneous Heart Rate Validation
Using Wearable Photoplethysmography During Intensive Exercise,” IEEE Journal of Biomedical and
Health Informatics, vol. 23, pp. 1595–1606, July 2019. Conference Name: IEEE Journal of Biomedical
and Health Informatics.

[42] M. T. Islam, S. Tanvir Ahmed, I. Zabir, C. Shahnaz, and S. A. Fattah, “Cascade and parallel com-
bination (CPC) of adaptive filters for estimating heart rate during intensive physical exercise from
photoplethysmographic signal,” Healthcare Technology Letters, vol. 5, no. 1, pp. 18–24, 2018. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1049/htl.2017.0027.

[43] B. Roy and R. Gupta, “MoDTRAP: Improved heart rate tracking and preprocessing of motion-corrupted
photoplethysmographic data for personalized healthcare,” Biomedical Signal Processing and Control,
vol. 56, p. 101676, Feb. 2020.

[44] D. Jarchi and A. J. Casson, “Description of a Database Containing Wrist PPG Signals Recorded during
Physical Exercise with Both Accelerometer and Gyroscope Measures of Motion,” Data, vol. 2, p. 1,
Mar. 2017. Number: 1 Publisher: Multidisciplinary Digital Publishing Institute.

[45] S. Thakur, P. C.-P. Chao, and C.-H. Tsai, “Precision Heart Rate Estimation Using a PPG Sensor Patch
Equipped with New Algorithms of Pre-Quality Checking and Hankel Decomposition,” Sensors, vol. 23,
p. 6180, Jan. 2023. Number: 13 Publisher: Multidisciplinary Digital Publishing Institute.

[46] M. Boloursaz Mashhadi, E. Asadi, M. Eskandari, S. Kiani, and F. Marvasti, “Heart Rate Tracking
using Wrist-Type Photoplethysmographic (PPG) Signals during Physical Exercise with Simultaneous
Accelerometry,” IEEE Signal Processing Letters, vol. 23, pp. 227–231, Feb. 2016. Conference Name:
IEEE Signal Processing Letters.

[47] A. Leonardi, C. Murphy, S. Hobson, V. Rohera, V. Vakhter, B. Kahraman, G. Bu, F. Foroozan, L. Rhein,
and U. Guler, “Optimizing Transcutaneous Oxygen Measurement Sites on Humans,” in 2023 45th
Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),
pp. 1–4, July 2023. ISSN: 2694-0604.

[48] W. van Weteringen, T. G. Goos, T. van Essen, C. Ellenberger, J. Hayoz, R. C. J. de Jonge, I. K. M. Reiss,
and P. M. Schumacher, “Novel transcutaneous sensor combining optical tcPO2 and electrochemical
tcPCO2 monitoring with reflectance pulse oximetry,” Med. Biol. Eng. Comput., vol. 58, pp. 239–247,
Feb 2020.

62

https://www.analog.com/en/products/adxl367.html
https://www.analog.com/en/products/adxl367.html

[49] “Cutaneous Carbon Dioxide (PcCO2) and Oxygen (PcO2) Monitors - Class II Special Controls Guidance
Document for Industry and FDA,” Dec. 2002.

[50] STMicroelectronics, “STM32WB Series MCU Bluetooth LE™ 5.2 IEEE 802.15.4 Zigbee 3.0 & Thread,”
July 2021.

[51] STMicroelectronics, “BLE Security with STM32WB - 01 Introduction and theory,” June 2021.

[52] “ESP32 Wi-Fi & Bluetooth SoC | Espressif Systems.”

[53] “Nordic Semiconductor Infocenter.”

[54] “STM32 MCU MPU Software Development Tools - STMicroelectronics.”

[55] “STM32CubeWB/Projects/P-NUCLEO-WB55.Nucleo/Applications at master · STMicroelectron-
ics/STM32CubeWB.”

[56] Phil’s Lab, “STM32 Bluetooth Firmware Tutorial (Bring-Up) - Phil’s Lab #129,” Jan. 2024.

63

Appendices

A ICAS Lab Wireless Firmware GitHub Repository

64

B ICAS Lab GUI GitHub Repository

65

	Executive Summary
	Introduction
	Project Overview
	Quantifying the Effects of Motion Artifacts
	Correction Algorithm
	BLE Development
	Graphical User Interface Implementation

	Background
	Transcutaneous Oxygen Sensing
	Factors Affecting Transcutaneous Oxygen
	Transcutaneous Oxygen Monitor Techniques

	Wiener filter
	Bluetooth Low Energy Techniques
	GUI Techniques
	Python GUIs and Tkinter

	Investigating Motion Artifact Correction Algorithm
	Methods
	Accelerometer Calibration
	Data Collection
	Motion Artifact Correction Algorithm Research
	Wiener Filter

	Results
	Accelerometer Calibration Results
	Data Collection Results
	Motion Artifact Research Results

	Discussion

	Quantifying the Effects of Motion Artifact
	Methods
	Single Motion Tests at 50 mmHg Oxygen
	Dual Motion Tests Across Oxygen Variations
	Extended Motion at 50 mmHg Oxygen

	Results
	Single Motion Tests at 50 mmHg
	Method to Quantify the Motion Artifacts
	Dual Motion Test Results
	Extended Motion at 50 mmHg

	Discussion

	BLE Development
	Methods
	BLE Development
	BLE Guides

	Results
	Discussion

	Graphical User Interface
	GUI Implementation
	Methods
	TOM PCB and Settings
	Cloud-Based Data Storage

	Testing Procedure and Guides
	Data Collection Testing Procedure

	Results
	Data Collection and Logging
	Cloud-Based Data Storage
	Settings Editing

	Discussion

	Project Challenges
	Developing Motion Artifact Correction Algorithm
	Quantifying the Effects of Motion Artifact
	BLE Development
	Navigating the Complexities of BLE Technology
	Mastering the STM32 Development Environment
	Transitioning to Integrating BLE with Custom Sensor Hardware

	GUI Development
	Understanding Serial Communication
	Learning Cloud-Storage Methods

	GUI Design

	Conclusion
	Ethical Considerations
	Future Work
	References
	Appendices
	ICAS Lab Wireless Firmware GitHub Repository
	ICAS Lab GUI GitHub Repository

