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Abstract 
Origami robots have been introduced as a new soft robotic technology that can be easily 

constructed from planar sheets of material to create rigid or deformable linkages. With this Major 

Qualifying Project, the team investigated the capabilities of a modular soft robotic gripper with 

triangular beam and Yoshimura origami finger designs folded from PET plastic. Due to its origami 

design, the gripper is lightweight, flexible, and durable. A vision system working in conjunction 

with an impedance controller aided the gripper to determine and provide three stable grasp patterns 

to pick up an assortment of objects. The implementation of a switching control system has 

demonstrated the need for more adaptive control for this compliant gripper. This project provides 

a foundation for future research into origami grippers. 
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Executive Summary 
 Origami-inspired flexible robots are a subset of soft robots, therefore they differ from rigid 

robots in aspects including material, control, and potential applications. By leveraging origami 

folds, flat substrates are able to form both rigid and flexible 3D structures, such as stiff linkages 

and actuated hinges [1]. Printable origami robots enable the creation of novel robotic structures 

that are adaptable and modular. The research of this project was greatly influenced by work 

completed by WPI Soft Robotics Lab, including the Yoshimura origami modules and the 3D-

printed prosthetic hand [2]. 

 The goal of this project was to create a flexible robotic origami gripper capable 

of recognizing and grasping different objects. Throughout this MQP, we aimed to analyze the 

benefits of having origami soft materials and mechanisms utilized within the gripper, investigate 

means to control the movement and force output of the gripper, and examine the potential of 

utilizing computer vision to augment the gripper’s capabilities. Furthermore, we intend to study 

the capabilities and benefits of origami robots to create a low-cost gripper that is both lightweight 

and modular. 

 The design of the gripper leveraged two origami finger designs, the triangular beam and 

Yoshimura. These fingers are operated to form four total grasp configurations: open, pinch, power, 

and tripod. The triangular beam design is inspired by the hexapod robot [3] and provides rigid 

links with flexible joints. In contrast, the Yoshimura pattern is inspired by traditional Yoshimura 

folds, which are highly flexible axially and very strong torsionally [4]. Due to the palm’s modular 

design, the origami fingers can be easily interchanged. A switching hybrid controller was 

developed to provide a more adaptive control scheme. With a hybrid controller, the robot is able 

to utilize position control in free space until it interacts with an object. Once it senses an object, 

the gripper relies on force control to ensure a stable grasp. In addition, the team developed a 

simulation that demonstrates the trajectory of the joints in the triangular beam finger. For the vision 

system of the gripper, the team used Principal Component Analysis (PCA) to recognize an object 

and then the identified grasp is received and executed by the gripper. Overall, the system uses ROS 

to communicate between components. 

A significant result of our research determined that the grasp patterns executed by the 

Yoshimura fingers better conformed to the objects as it leveraged a continuum design. We also 

identified PCA to be a feasible method of object detection and utilizing ROS further supported a 

modular system. Based on the results of our project, we determined a number of recommendations 

that could improve this project in the future. There is potential to further experiment with different 

joint stiffnesses along the triangular beam finger. This would allow for a better closing sequence 

of the triangular beam finger for grasping objects. Additionally, we recommend an exploration of 

Yoshimura and triangular beam finger combinations to better understand if certain origami fingers 

are better for specific finger types. Furthermore, there is potential to improve upon our control 

scheme as well as the detection of small and irregular objects. 

As demonstrated through our MQP, origami modules are a viable structure for constructing 

practical and lightweight robotic grippers. The completion of this project provides a foundation 

for future research into robotic grippers that takes advantage of the benefits of origami soft 

materials. 

  

https://doi.org/10.1109/TMECH.2012.2210239
https://doi.org/10.1109/CBS46900.2019.9114463
https://doi.org/10.1115/1.4030468
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1. Introduction 
 Robots have impacted various industries as they have been used to increase efficiency, 

precision, and mobility in a number of applied settings. Throughout the 20th century, robots were 

used primarily in automation to perform monotonous labor [5]. As technology advances, robotics 

has expanded beyond manufacturing facilities and into areas such as exploration, medical devices, 

etc. Current robotics research has also grown to include developments in the area of soft robotics. 

Soft robots differ from rigid robots in aspects including material, control, and application 

potential. Soft materials have been manipulated to create novel robotic structures such as printable 

origami robots. Printable robots can leverage origami folds to achieve either rigid or flexible 3D 

structures from a flat substrate [1]. These folded modules are then able to form shapes ranging 

from stiff linkages to actuated hinges. Origami robots have been used for medical device 

applications, morphable wheels, actuated solar panels, and origami exoskeletons [6]. 

The majority of research into the field of origami robotics has been limited to niche 

applications. However, this research has provided a foundational understanding of the properties 

of origami robots. For instance in Professor Çağdaş Önal’s research with WPI Soft Robotics Lab, 

his printable origami robots utilize the Yoshimura fold pattern. This pattern provides high torsional 

stiffness while also being highly flexible axially [4]. These origami structures can also ensure a 

better payload to robot weight ratio because of the characteristics of the fold itself. Since the robots 

are created with origami folds, the structure can collapse when needed for easy storage and 

deployability. Furthermore, a key benefit of these origami robots is the quick and straightforward 

fabrication process.  

Almost all commercial and prototyped grippers rely on rigid materials to grasp various 

objects. These robotic grippers tend to be heavier, more expensive, and less flexible than what 

certain grasping applications require. However, no gripper currently exists that leverages the 

benefits of origami mechanisms to effectively grasp an object. Soft robotic origami grippers 

provide flexible and deformable characteristics that are advantageous for grasping and conforming 

to the shape of desired objects.  

Flexible Robotic Origami Gripper (FROG) is a student proposed Major Qualifying Project 

(MQP) and is in line with the research plans of WPI Soft Robotics Lab. The goal of this project to 

explore the incorporation of origami folds within a gripper as well as the potential relationship 

with object recognition. Additionally, this project establishes a comparative analysis of two types 

of origami-inspired fingers utilizing a single modular palm. Each configuration has the capability 

of performing three types of grasp patterns determined by the robot vision system. The vision 

system, which leverages Principal Component Analysis (PCA) to recognize the objects, will be 

integrated with the gripper’s switching controller to achieve the desired grasps. Additionally, a 

simulation of the gripper will be developed to visualize the output of the controller. This analysis 

will investigate the benefits of using origami robotics in the design of a gripper while addressing 

some of the difficulties of controlling compliant robots. Ultimately, this project serves as a 

foundation for future teams interested in exploring soft origami grippers. 

  

https://www.thomasnet.com/articles/automation-electronics/history-of-robotics/
https://doi.org/10.1109/TMECH.2012.2210239
https://doi.org/10.1038/s41578-018-0009-8
https://doi.org/10.1109/IROS.2017.8206027
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2. Background 

2.1 Origami Folding 

Basic polyhedra, such as cubes and prisms, can be folded from flat sheets to act as rigid 

linkages in an origami robot [7]. By connecting two folded structures along a folded edge, these 

linkages can be combined to form simple joints [7]. In WPI’s Soft Robotics Lab, a hexapod robot 

was designed from rigid triangular beams and flexural revolute joints [3]. With more complex 

origami patterns, components can attain compressed and bending configurations, which allows 

origami robots with these components to move more smoothly through the task space. Such 

origami patterns include the waterbomb base pattern which expands both radially and axially, the 

diagonal pattern which results in rotational motion, and the Yoshimura pattern which provides 

axial movement [1]. 

The Yoshimura pattern is created by making a series of horizontal valley folds and diagonal 

mountain folds. The angle of the diagonal in the Yoshimura pattern can be adjusted to obtain a 

stable structure of the desired axial length [8]. However, there can be plane deformation depending 

on the stiffness of the material, which results in the ability to compress the folded structure [8]. 

The Yoshimura pattern is employed in an origami continuum manipulator module designed in 

WPI Soft Robotics Lab [4]. The origami module has one axial degree of freedom and two bending 

degrees of freedom and is distinctive due to its high torsional stiffness in relation to its weight [4]. 

The desired properties for an origami gripper can be configured by making use of specific origami 

folding patterns. 

2.2 Human Hand Biomechanics 

Bioinspired grippers derive key aspects of their performance from the biomechanics of the 

human hand. The second through fifth fingers of the hand consist of proximal, intermediate, and 

distal phalanges with the metacarpophalangeal joint at the base of the finger and two 

interphalangeal joints, shown in Figure 1. The hand is generally modeled as an open kinematic 

chain from wrist to the fingertips with a total of over 20 degrees of freedom [9]. The 

interphalangeal joints are represented as one rotational degree of freedom and the 

metacarpophalangeal joints are represented as two rotational degrees of freedom [9]. The joints 

allow hands to execute a variety of grasps to perform tasks. Daily activities such as food 

preparation, personal care, and housekeeping utilize nine types of grasps [10]. These common 

grasps include the cylindrical grasp where fingers curl around a cylinder, the pinch grasp where 

the fingertips of the thumb and index squeeze a small object, and the hook grasp which uses the 

second through fifth fingers to pull a loop protrusion of an object [10]. Implementing a variety of 

grasps allows a gripper to grasp a larger assortment of objects. 

https://doi.org/10.1109/ICRA.2014.6907044
https://doi.org/10.1109/ICRA.2014.6907044
https://doi.org/10.1115/1.4030468
https://doi.org/10.1109/TMECH.2012.2210239
https://tsg.ne.jp/TT/cg/FoldableCylinders_miura_tachi_ISISSymmetry2010.pdf
https://tsg.ne.jp/TT/cg/FoldableCylinders_miura_tachi_ISISSymmetry2010.pdf
https://doi.org/10.1109/IROS.2017.8206027
https://doi.org/10.1109/IROS.2017.8206027
https://doi.org/10.35784/jteme.536
https://doi.org/10.35784/jteme.536
https://doi.org/10.1016/j.jht.2014.04.002
https://doi.org/10.1016/j.jht.2014.04.002
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Figure 1: Bones and joints of the hand [11]. 

2.3 Underactuated Grippers 

Underactuated grippers have grasping capabilities ranging from one simple grasp type to 

multiple complex grasp configurations. One type of basic 3-finger gripper is a gripper with soft 

monolithic fingers [12]. The fingers are a tendon-driven 3D printed structure with elliptical flexure 

hinges as joints and the gripper is operated by actuating all the tendons simultaneously [12]. The 

iRobot-Harvard-Yale (iHY) Hand is considered a moderately dexterous and medium complexity 

hand able to perform pinch and power grasps as well as in-hand repositioning [13]. While only 

having 3 fingers, the iHY Hand has 5 actuators to achieve flexion and abduction and results in the 

ability to execute more complex grasp patterns than most 3-finger grippers [13]. An 

anthropomorphic robot hand was designed with 4 tendon routing systems and 4 actuators to 

achieve power grasps and dexterous manipulation, including the complex in-hand manipulation 

task of equilibrium point manipulation [14]. 

In WPI’s Soft Robotics Lab, Ann Marie Votta et al. [2] designed a 3D printed prosthetic 

hand with force control. The inclusion of 3D magnetic force sensors in the fingertips expands the 

grasping capabilities of the prosthetic hand by monitoring the slipping of the object and automating 

object release [2]. Additionally, the grasp pattern was detected from the electromyographic activity 

https://doi.org/10.3389/fmech.2017.00005
https://doi.org/10.1089/soro.2016.0026
https://doi.org/10.1089/soro.2016.0026
https://doi.org/10.1177/0278364913514466
https://doi.org/10.1177/0278364913514466
https://doi.org/10.3389/frobt.2019.00047
https://doi.org/10.1109/CBS46900.2019.9114463
https://doi.org/10.1109/CBS46900.2019.9114463
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patterns of the user [2]. For a lightweight and inexpensive hand, the prosthetic hand reliably 

grasped objects from 1 mm to 12 cm and could lift objects greater than its weight [15]. 

2.4 Tendon Mechanics of Underactuated Fingers 

One method of controlling soft grippers is through actuated tendons in the fingers. The 

number of actuators can be reduced to fewer than the number of tendons through the use of pulleys 

to create a differential mechanism. A differential system for the tendons allows one actuator to 

control the grasping force, while the force exerted by each finger on the grasped object is 

independent of the configuration of the other fingers [16]. Another aspect of tendon-driven fingers 

is the closing sequence of the phalanges, which is controlled by the placement of the tendon guides 

relative to the hinges [16]. With flexural joints, the relation of the joint stiffnesses between the 

joints also contributes to the closing sequence of the finger. To correctly grasp an object, the tendon 

action should result in the closing sequence of proximal to distal phalanges [16]. 

The use of multiple tendons per finger can result in more complex grasp configurations 

and anthropomorphic movements of the fingers. Generally, tendons perform finger flexion within 

the gripper. However, a second tendon that is offset from the center of the finger and is routed 

through a moment arm pulley can allow for finger abduction as well [14]. To avoid extra tendons 

to compensate for finger extension and adduction, spring stiffness in the joints and a torsional 

spring in the base of the finger allow for the gripper to passively return to its initial open state [14]. 

2.5 Object Detection 

Robotic systems designed to interact with their environment often rely heavily on their 

vision system. Without this system, the robot is incapable of effectively interacting with its 

environment [17]. For this project, it is necessary to utilize a vision system that performs object 

detection. Object detection algorithms have the capacity of localizing multiple objects within a 

frame [18] as well as identifying them. The purpose of robotic systems is highly varied, but for a 

gripper intended to grasp objects in its environment, it is necessary to leverage a robot vision 

system. 

2.5.1 Defining a Vision System 

To develop an appropriate vision system, one must understand the different terminology 

used to describe these systems. Computer vision, machine vision, and robot vision are often used 

interchangeably, but all have specific implications of the intended use. Machine and robot vision 

can be seen as subcategories of the broad computer vision category. Computer vision takes images 

and extracts information from them to categorize them. However, machine vision takes this a step 

forward and uses this same technique for industrial applications. For example, a machine vision 

system may be used for automatic inspection of parts on a conveyor belt. Robot vision 

differentiates itself from machine vision in that the information processed by the vision system 

leads to a physical action carried out by the robot [17]. Per these definitions, this project falls under 

the scope of utilizing robot vision as the vision system will result in a grasping action by the 

gripper. 

https://doi.org/10.1109/CBS46900.2019.9114463
http://ras.papercept.net/images/temp/IROS/files/2144.pdf
https://doi.org/10.1007/978-3-319-61276-8_111
https://doi.org/10.1007/978-3-319-61276-8_111
https://doi.org/10.1007/978-3-319-61276-8_111
https://doi.org/10.3389/frobt.2019.00047
https://doi.org/10.3389/frobt.2019.00047
https://blog.robotiq.com/robot-vision-vs-computer-vision-whats-the-difference#:~:text=Machine%20Vision%20refers%20to%20the,Vision%20is%20an%20engineering%20domain.&text=But%2C%20although%20it%27s%20used%20to,same%20thing%20as%20Robot%20Vision.
https://www.mathworks.com/solutions/image-video-processing/object-recognition.html#:~:text=Object%20Recognition%20vs.&text=Object%20detection%20is%20the%20process,also%20located%20in%20an%20image.
https://blog.robotiq.com/robot-vision-vs-computer-vision-whats-the-difference#:~:text=Machine%20Vision%20refers%20to%20the,Vision%20is%20an%20engineering%20domain.&text=But%2C%20although%20it%27s%20used%20to,same%20thing%20as%20Robot%20Vision.
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2.5.2 Existing Approaches 

2.5.2.1 Augmented Reality (AR) Markers 

A prevalent approach to object detection in previous MQP projects has been to use AR 

markers to mark objects of interest for a robotic hand. Most notably, the 2015 Vision-Based 

Intelligent Prosthetic Arm project used a palm embedded camera to determine object positions 

based on recognizing AR markers they attached to different objects [19]. Although relatively 

straightforward to implement, various teams emphasized that a significant drawback to this system 

was that all the objects in the environment needed to be tagged for their arm to detect the object 

[19], [20]. There is a multitude of libraries that may be used to implement these markers such as 

ARToolkit and ArUco that can also be integrated with ROS (Robot Operating System). 

2.5.2.2 Image Processing-Based Methods 

OpenCV is one of the most well-known open-source libraries aimed to integrate computer 

vision into real-time applications [21]. Due to its cross-platform support and documentation, it is 

frequently used as the foundation for various computer vision tasks. The OpenCV library provides 

simpler image processing-based object detection methods such as image segmentation and cascade 

classifiers. However, it also includes the deep neural networks (DNN) module that allows 

integration with machine and deep learning models that can be used for object detection [22]. 

2.5.2.3 Machine and Deep Learning 

 The object detection method used is highly dependent on a use case. If a machine or deep 

learning model is used, the user has the option to construct and train a model from scratch or utilize 

transfer learning on a pre-trained model [18]. However, constructing a model from scratch is 

mostly recommended for users with experience in creating convolutional neural networks (CNN) 

as it entails choosing the exact weights and convolutional layers that will yield optimal results. In 

the case of conventional machine learning methods, the features to be detected must also be 

identified by the developer as they cannot be automatically selected like in deep learning networks. 

Common machine learning object detection algorithms include HOG feature extraction, the Viola-

Jones algorithm, and cascade classifiers [18], [23]. 

 As mentioned previously, deep learning object detection methods leverage CNNs to detect 

and learn object features from the input data. This requires a large amount of raw labeled data so 

that the network can be trained to achieve the expected degree of accuracy. As a result, these 

models are only recommended if the user has access to a powerful GPU that can efficiently train 

the model. However, the majority of the impact felt by these large training sets is mostly seen 

when creating a model from the ground up. Often transfer learning will instead be used to take a 

pre-trained model, provide it a new set of labeled data, train it and then use it as expected. This 

approach takes advantage of the careful training done by deep learning specialists on a common 

dataset. The accuracy and efficiency of these pre-trained models also depend on the base network 

architecture and object detection frameworks they were built upon. For example, common base 

architectures include VGG, ResNet, as well as MobileNet [24]. Common frameworks and methods 

include Faster R-CNN, YOLO, and SSDs [25]. Pre-trained models will often select a base network 

then remove the last few layers that will classify an image and replace those layers with a specific 

object detection framework [18]. 

https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=4578&context=mqp-all
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=4578&context=mqp-all
https://web.wpi.edu/Pubs/E-project/Available/E-project-042816-153659/unrestricted/Frankenhand_MQP_Final_Paper_MMerlin_KSullivan.pdf
https://opencv.org/
https://docs.opencv.org/master/d2/d58/tutorial_table_of_content_dnn.html
https://www.mathworks.com/solutions/image-video-processing/object-recognition.html#:~:text=Object%20Recognition%20vs.&text=Object%20detection%20is%20the%20process,also%20located%20in%20an%20image.
https://www.mathworks.com/solutions/image-video-processing/object-recognition.html#:~:text=Object%20Recognition%20vs.&text=Object%20detection%20is%20the%20process,also%20located%20in%20an%20image.
https://web.wpi.edu/Pubs/E-project/Available/E-project-032317-170943/unrestricted/Humanoid_Stereoscopic_Vision_System_Final_Report.pdf
https://arxiv.org/pdf/1704.04861.pdf
https://doi.org/10.1007/978-3-319-46448-0_2
https://www.mathworks.com/solutions/image-video-processing/object-recognition.html#:~:text=Object%20Recognition%20vs.&text=Object%20detection%20is%20the%20process,also%20located%20in%20an%20image.
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 2.5.2.4 Point Clouds 

Point clouds are useful to leverage to perform object detection. Point clouds are data 

structures used to represent a collection of multi-dimensional points and are commonly used to 

represent three-dimensional data [26]. Acquired from sensors like stereo cameras, they represent 

the X, Y, and Z geometric coordinates of the underlying object. The retrieved point cloud could 

be used to determine the object’s depth or distance from the camera while the filtered data could 

help classify the object [27]. Point clouds provide highly useful information that can be used to 

accurately identify the location of an object and enable a robot to move appropriately to its 

location. A previous MQP project utilized point clouds to classify objects within three categories: 

cylinders, spheres, and cubes and then used the camera input to signal to the prosthetic arm when 

to begin grasping an object [27]. The Point Cloud Library (PCL) is an open-source project for 

2D/3D image and point cloud processing that can interface with OpenCV [26]. This library 

contains algorithms capable of various tasks such as filtering outliers from noisy data, stitching 

3D point clouds together, and segmenting images. By leveraging this library it is possible to filter 

out the noise from a point cloud, and then use this information to more accurately classify the 

filtered object. 

2.6 Impedance Control 

2.6.1 Difficulties of Controlling Robots 

Robotic manipulators can be classified into two categories, rigid robots and compliant 

robots. Stiff robots typically have very precise position control and can accurately determine their 

end effector position using sensor feedback [28]. However, these robots have trouble interacting 

with their environment. They tend to struggle to safely interact with objects and humans, especially 

in dynamic environments despite their joints having high levels of precision [28]. Stiff robots lack 

the ability to slow down when approaching an object, which helps to avoid high-speed collisions 

that may damage both the robot and surrounding objects or humans. Additionally, stiff robot 

systems are more likely to experience oscillations when they come into contact with objects [28]. 

This instability further deteriorates the potential for force control. 

On the other hand, there are compliant robotic manipulators that are significantly better at 

managing their interactions with their environment [28]. However, the downfall of compliant 

systems due to their underactuated nature is the reduction in precise control [28]. In fact, soft robots 

are even more sensitive to external forces in the environment than rigid robots since they are 

inherently compliant. Since there is not as much control over the robot’s trajectories, manipulation 

is significantly more difficult. Finding the balance between precise position control and robust 

grasp control is critical to the design approach. 

2.6.2 Impedance Control in Soft Robotics 

A robot’s movements can be divided into three phases [29]. In the first phase, the robotic 

manipulator moves in free space clear of objects and potential obstacles. The second phase is 

initiated when the manipulator comes close to an object. This is known as the transition phase, 

rightfully named as it transitions from free motion to constrained motion. The third and last phase 

is the constrained motion phase where the robot is fully constrained and in contact with an object. 

https://pointclouds.org/about/
https://web.wpi.edu/Pubs/E-project/Available/E-project-042717-130204/unrestricted/Dexter_MQP_Report.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-042717-130204/unrestricted/Dexter_MQP_Report.pdf
https://pointclouds.org/about/
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=2943&context=mqp-all
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=2943&context=mqp-all
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=2943&context=mqp-all
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=2943&context=mqp-all
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=2943&context=mqp-all
https://open.library.ubc.ca/media/download/pdf/24/1.0167046/1
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These different movements can be determined by control algorithms. Model-based control systems 

are typically more accurate since the nonlinearities in the dynamic model are canceled out by the 

feedback in the system [29]. However, as a result of its better performance, the model-based 

control algorithms have larger computing loads. 

Impedance control, which is a type of indirect force control algorithm, has been used to 

guarantee safe and compliant interactions between a robot and its environment. With impedance 

control, the interaction force is regulated so that the dynamic relationship between the interaction 

force and its resulting motions are controlled [29]. With this controller, the robot would be required 

to be tuned to the specific task the robot would be carrying out as well as its dynamic properties, 

namely, mass, inertia, and damping. Impedance control is modeled as follows: 

 

Variables with the subscript “d” represented the desired values. The variable X is the actual 

position vector of the robot’s end effector while M, B, D, and X represent inertia, damping, 

stiffness, and position respectively. The result of the operations is the interaction force, Fe. The 

interaction force is defined as the force between the robot end effector and the interacted object 

and can be monitored with a force sensor [29]. 

2.6.3 Impedance Control Design 

Designing the controller by selecting the parameters to monitor the impedance of the robot 

is called impedance shaping [29]. This is achieved by using a robot’s dynamic model and 

calculated based on its differential kinematic relationship between the joint-space velocity and the 

Cartesian-space velocity. Based on the implementation of the impedance control, it may be a 

motion control-based approach, which is often used in industrial robots. With a motion control-

based approach, the impedance equation would incorporate a new position variable that would 

represent the reference trajectory [29]. This type of impedance control may also be referred to as 

admittance control [29]. 

2.7 Force Sensing 

Force sensors can be incorporated into a gripper to enable intelligent grasping with force 

control [2]. To do so, the sensors utilize the information on shear and normal forces that is captured. 

The normal force would help to detect stable grasps, while the readings from the shear force would 

help identify when an object is lifted or slipping. This type of data would be crucial to 

understanding the stability of a grasp. For instance, if there is an increase in shear force and the 

gripper has not been moving, then most likely the item that it is holding is about to slip and the 

gripper may want to readjust its grasp. 

  

https://open.library.ubc.ca/media/download/pdf/24/1.0167046/1
https://open.library.ubc.ca/media/download/pdf/24/1.0167046/1
https://open.library.ubc.ca/media/download/pdf/24/1.0167046/1
https://open.library.ubc.ca/media/download/pdf/24/1.0167046/1
https://open.library.ubc.ca/media/download/pdf/24/1.0167046/1
https://open.library.ubc.ca/media/download/pdf/24/1.0167046/1
https://doi.org/10.1109/CBS46900.2019.9114463
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3. Project Strategy 

3.1 Project Goal 

The FROG MQP is designed to explore and research the capabilities of a soft robotic 

gripper while utilizing the advantages of origami folds. With origami, soft materials can be 

manipulated to create a flexible yet durable structure based on the bending and torsional stiffness 

properties of the origami pattern. This project analyzes the benefits of having certain structural 

components of the gripper made with origami folded soft materials as well as investigates means 

to control the movement and strength of the robotic gripper. Being a soft robot, the system requires 

force sensors that help determine and track the gripper movement. In conjunction, this MQP 

examines the potential of utilizing computer vision to augment the gripper’s capabilities through 

object recognition. Therefore, the goal of this project is to create a flexible robotic origami gripper 

that can recognize and grasp objects. 

3.2 Task Specifications 

The scope of this project is to develop a flexible robotic gripper that utilizes origami designs 

to stably grasp various objects detected by computer vision. By the conclusion of the MQP, the 

team plans to achieve the following features: 

 

1. The total cost of the project should not exceed $600 (MQP student budget). 

2. The maximum weight of the gripper including its onboarded motors must not exceed 333 

grams (weight of Ann Marie’s hand). 

3. The payload weight should be a minimum of 50 grams (the weight of a small ball). 

4. The gripper must be able to successfully grasp an object up to an 8cm diameter/width (or 

have a crevice or protrusion for the gripper to hold it). 

5. In a closed gripper position, the gripper should be confined to a 25 cm cube. 

6. The gripper will contain origami modules. 

7. The gripper will contain a single modular palm structure with 2 sets of interchangeable 

origami fingers. 

8. There must be at least 2 different origami finger designs. 

9. The gripper will have at least 3 fingers (maximize grasp potential). 

10. There should be at least one force sensor per gripper finger. 

11. The gripper in coordination with the Jaco arm must reach a final grasp position within 30 

seconds. 

12. The gripper must close around the object within 1 second. 

13. The gripper must be able to grasp objects that do not require a change in wrist 

orientation. 

14. The gripper should have a maximum of 1 motor per finger. 

15. The gripper should have a maximum of 4 motors per gripper. 

16. Motors should fit within the palm of the gripper. 

17. The gripper must not shake to the point of gripping failure. 

18. The system must be able to respond to input from the vision system. 

19. An object must be identified by the vision system within less than 120 seconds. 
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20. The vision system must be able to detect the shape of an object to indicate the appropriate 

grasp for the gripper. 

21. The vision system must be able to accurately recognize an object within the Jaco arm's 

task space that is fully present in the camera’s field of view (i.e not expected to recognize 

occluded objects). 

22. The object will be recognized using partial object shape data (i.e it will identify a soda 

can as a cylinder). 

23. The vision system will determine the location of the object to a degree of accuracy where 

it will be able to successfully grasp the object. 

24. The camera size should not exceed 90 mm x 25 mm x 25 mm. 

25. The vision system and the gripper will use up to 2 total processing units. 

26. System architecture should be designed in a modular fashion. 

27. The vision system should utilize an RGB-D camera to capture depth information. 

28. Wires should have enough slack so that they do not unplug from ports. 

29. The gripper design should ensure the mechanical and electrical components are easily 

accessible if maintenance is required (should not require taking apart the entire module if 

one component is in disrepair). 

30. The gripper should not endanger any humans. 

3.3 Approach and Timeline 

3.3.1 Gripper Design Process 

In the first quarter, the project began with paper origami prototyping to explore different 

variations of gripper fingers. This included testing models of fingers that were either a continuous 

origami pattern or an origami structure with discrete folds that define joints. This rapid prototyping 

was done with paper to allow the team to understand the advantages and disadvantages of origami 

patterns and structure. Additionally, this allowed the team to physically test the structures of the 

gripper fingers before committing to a particular design. By the second quarter, the project team 

chose two finger designs and began developing a complete set of fingers for the gripper. Iterations 

of the two origami finger designs were modified throughout the second and third quarters to 

improve the grasping ability of the fingers. One finger design required extra support through the 

addition of endoskeleton pieces to reinforce the origami structure, which was implemented in the 

third quarter. 

In addition, the team created a gripper palm design. A factor that contributed to this design 

included the grasp patterns that the final gripper needed to accomplish. An initial palm design was 

developed in the second quarter and was redesigned at the beginning of the fourth quarter to adjust 

the angle of the fingers to perform the desired grasps as well as to include an attachment to the 

Jaco arm. Additionally, connector pieces to attach the origami fingers to the gripper palm were 

created at the beginning of the fourth quarter. Finally, during the fourth quarter, fingertips were 

designed to attach to the origami fingers as well as secure the magnetic force sensor. 

3.3.2 Gripper Controller Development Process 

The control portion of the project began in the first quarter by designing a circuit that was 

capable of controlling multiple motors. These motors would be small DC motors that were small 

enough to fit within the palm of the gripper yet strong enough to compress the Yoshimura origami 
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modules. The motors in the gripper were programmed to receive feedback from its motor encoders 

to determine its desired position. Using breadboards to control four separate motors proved to be 

quite space consuming. Therefore, throughout the second quarter, the team experimented with 

designing a printed circuit board (PCB) to minimize the footprint and reduce the total number of 

electrical wires. Concurrently, the team also developed a program that began to coordinate the 

fingers of the gripper to form four different grasping configurations. 

In the third quarter, the team worked together to develop a dynamic model of the triangular 

beam finger by determining the inertial, damping, and spring parameters. This dynamic model was 

then used as the foundation for the controller. In the fourth quarter, this controller was then 

implemented on the robotics gripper as well as used to develop a simulation. The control system 

was applied to all fingers of the gripper and resulted in coordinated finger control. By working in 

parallel with the computer vision system, the gripper was able to perform smart grasp patterns 

based upon the specific object identified. 

3.3.3 Vision System Development Process 

In the first quarter of this project, the team researched and tested various open-source object 

recognition models. This included deep learning models as well as popular image segmentation 

techniques. Through this research, the team understood the current limitations in existing computer 

vision systems for similar projects. The second quarter continued to explore image segmentation 

techniques that utilized point cloud data gathered using an RGB-D camera. Segmenting the object 

of interest from a captured scene subsequently led to this object being matched to templates 

corresponding to the grasp of interest. This research heavily leveraged the use of the Point Cloud 

Library (PCL). In the final two quarters, research stepped away from utilizing template alignment 

to match an object to a corresponding template. This was because of the limited reliability of 

template matching caused by segmentation limitations discussed in Section 5.1.4. The vision 

system switched to using PCA to match the appropriate template to an object. The vision system 

was then integrated with the existing gripper. 

3.4 Project Timeline 

With this project elapsing over an entire academic year, four quarters, the team has denoted 

below a number of major milestones completed throughout the year. 
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Table 1: MQP Milestones 

Milestones: Deadline: 

Final Proposal Week of Oct. 12th 

Final Testing of 2D Image Segmentation Week of Oct. 12th 

Finalized Gripper Design Week of Dec. 7th 

Finalized Finger Design Week of Dec. 7th 

Finalized 3D Image Segmentation Week of Dec. 7th 

Completion of Grasp Patterns Week of Feb. 22nd 

Implementation of Object Recognition with Camera Unit Week of Mar. 15th 

Implementation of Controller Week of Mar. 15th 

Final Integration of Vision System with Gripper Week of Apr. 5th 

Final Presentation Apr. 30th 

Final Paper Completed May 6th 
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4. Design 
The design of the gripper and its overarching system are documented in this section. Each 

subsection summarizes the iterations of work required to reach the final system design. 

4.1 Gripper Structure 

4.1.1 Palm 

Task specification #7 of this project emphasized designing a gripper structure with 

interchangeable gripper fingers. A modular structure such as this supported a beneficial 

prototyping environment for the gripper’s fingers. Because of the ease of interchanging fingers, 

the gripper was capable of supporting a variety of finger combinations. For instance, the “thumb” 

finger could be a triangular beam finger while the other three fingers could be Yoshimura fingers. 

An additional benefit to this modular design was that it provides ease of access to different 

components of the gripper for any maintenance that may be required. 

The hand structure is designed to be capable of incorporating up to four origami fingers. 

With four fingers, the gripper is capable of executing three different grasp patterns: pinch, tripod, 

and power. Human hands are capable of performing the common grasps shown in Figure 2. In the 

first iteration of the design, the fingers were positioned as depicted in Figure 3. The grasp 

configurations are listed in Table 2. 

 

Figure 2: Power and precision grasp types [30]. 

 

https://doi.org/10.1109/CVPR.2015.7298637
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Figure 3: Bottom view of triangular palm structure 

 
Table 2: Grasp Configurations. 

 

One of the primary issues of this first design is that in the open configuration, the fingers 

of the gripper do not open as much as desired. Additionally, the design does not include a way of 

attaching the robotic origami gripper to the Jaco arm, which is the robot we are using to maneuver 

the gripper in the task space. To address these problems, the team designed a new hexagonal palm 

that deviates from the initial triangular design. To allow the fingers to open to an optimal width, 

separate angled faces were created so each finger is slanted outwards. 

1. “Thumb” 

2. “Index” 

3. “Middle” 

4. “Ring” 
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Figure 4: Bottom view of hexagonal palm. 

This new design also allows for easier maintenance of the gripper as it incorporates a 

multilayer design. This made it possible to remove different levels to fix components in specific 

layers. The base of the palm, seen in Figure 4, is where the four DC motors were kept and the four 

fingers were attached to the palm. As seen in Figure 5, the midsection of the palm holds the custom 

PCB, discussed further in Section 4.3.2, with the lip that was created along the bottom edge to 

ensure the PCB lays flat without falling through. The wires were located between the base and 

midsection of the palm and connected the motors to the PCB to provide signal and power. The 

side of the midsection has a slot that allows wires from the gripper to connect to power and leads. 

Lastly, the lid of the gripper connects the gripper to the Jaco arm, with a total of six holes across 

the top edge of the lid to ensure a secure connection. 

 

Figure 5: Multilayer design of gripper. 

4.1.2 Connectors 

A twist and lock mechanism connects the fingers in the initial palm structure. A custom 

connector was created to attach each finger to the base of the palm. The base of the finger connects 

to the triangular portion of the connector. At the cylindrical portion of the connector, there is a key 
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that coincides with a cutout created within the finger holes of the palm structure, as seen in Figure 

4. This twist and lock mechanism is illustrated in Figure 6, where the connector is inserted upwards 

into the finger hole and turned approximately 60 degrees clockwise before being pulled back 

downwards. With this design, the motors can be left within the palm and only the fingers need to 

be changed to switch between the triangular beam and Yoshimura fingers. 

 

Figure 6: Twist and lock mechanism 

 The new palm design utilizes a new connector that pivoted away from the twist and lock 

mechanism. The intention of the first iteration design was to ensure all the fingers were in the 

correct orientation. However, the team found that when the fingers were in the closed position, the 

fingertips were offset from the center of the palm. In addition, the connectors popped out of their 

sockets when the torque provided by the motor was larger than the force applied to the finger. 

 To mitigate these issues, the new connector is secured to the palm with a 16 mm M3 screw. 

The connector has a screw hole that is tangent to the outer edge of the hexagonal palm. With this 

new design, the connector is oriented in the correct direction for all the gripper’s fingers. Two 

versions of the design exist to account for the two finger designs. The triangular prism, seen on 

the left side of Figure 7, allows the Yoshimura finger to connect to the palm. The longer prism 

with slanted base acts as the endoskeleton (see Section 4.2.2) for the triangular beam fingers, as 

shown on the right side of Figure 7. 

 

Figure 7: New connector for Yoshimura fingers (left) and triangular beam fingers (right). 
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4.1.3 Spool 

 Spools are pieces that attach to the Adafruit N20 DC motor shafts and help contract and 

expand fingers by either winding or unwinding the fishing line that act as the tendon of the finger. 

The spools were originally designed with a 1.3 mm lip and 5 mm wide. Each finger’s fishing line 

is attached to a spool by threading through the hole on the spool’s lateral area and making a knot 

at the spool’s base. Since the spool was designed to fit the Adafruit N20 DC motor shafts, there is 

a 2.3 mm flat surface to align the D-shaft. 

 

Figure 8: Spool for finger tendons. 

 Because the fishing line tended to fall off the spool when winding, the width of the spool 

was doubled, shown in Figure 8. An additional change to the spools connects the two cable holes 

on the spool via a direct path. Originally, the holes were connected at a right angle, thus making it 

exceptionally difficult to thread the fishing line through the spool. The direct hole provides 

unobstructed access for the fishing line to be threaded. 

4.1.4 Motor Holders 

 Motor holders were developed to ensure the motors remain in place while the fingers move 

and large torques are applied. The flat surface on the bottom of the motor holders complements 

the shape of the motor and allows the motor to maintain a specific orientation. In total, four motor 

holders are secured to the bottom of the palm, as shown in Figure 9. 

 

Figure 9: Motor holders. 
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4.2 Finger Design 

4.2.1 Origami 

This project explores two types of origami fingers to compare their properties and 

performance in a gripper. One type of finger is designed based on a simple triangular beam, while 

the other is based on a traditional Yoshimura pattern. 

4.2.1.1 Paper Origami Design Iterations 

Upon experimenting with folding paper Yoshimura patterns and triangular linkages that 

presented varying degrees of structural integrity and bending configurations, it was noted that the 

Yoshimura pattern with 45º angle diagonals forms rigid structures and the diameter can be changed 

by the length of paper, as demonstrated in Figure 10. Prototyped Yoshimura patterns with different 

diagonal angles and radial frequencies are shown in Figure 11. Additionally, a smaller scale 

version of the folded Yoshimura pattern, seen in Figure 12, establishes the efficacy of using this 

pattern in an underactuated finger. Exhibited in Figure 13, is a simpler design made from triangular 

beams and connected folds to create joints. Both Figure 13 and Figure 14 show the paper origami 

prototypes connected to a motor to demonstrate the bending configurations that occur when a 

tendon is attached. The paper prototypes helped the team learn folding techniques that were later 

applied to the origami design printed on PET. 

 

Figure 10: Yoshimura pattern with 45º angle diagonals. 

 

Figure 11: Yoshimura pattern with different radial frequencies and axial lengths. 
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Figure 12: Small scale Yoshimura pattern. 

 

 

Figure 13: Progression of triangular linkage finger curling. 

 

 

Figure 14: Progression of Yoshimura collapsing. 

4.2.1.2 Triangular Beam Finger 

 The triangular beam finger has multiple triangular prism links attached by one continuous 

strip of plastic that provides a small amount of spring back. The first triangular beam laser cutting 

design is shown in Figure 15. 

 

Figure 15: First triangular beam finger design with solid lines to be cut and dashed lines to be perforated by the 

laser cutter. 
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`One iteration is designed with the link lengths based on the optimizations done for the 3D printed 

prosthetic hand by Votta et al. [12]. As shown in Figure 16, the triangular beam with the 

optimization values resulted in a very slender shape as the origami design requires tabs to fold it 

together. Additionally, this design did not integrate well with the palm as the palm design by the 

team has significantly different properties than the 3D printed prosthetic hand. The design also 

includes flaps at the end for a connector to attach the finger to the palm as well as an internal 

triangular prism that allows for cable routing, displayed in Figure 17. However, the internal 

triangular prism did not stay in place with folding, tabs, or glue, so cable routing was implemented 

through a 3D printed endoskeleton, which is described in Section 4.2.2. 

 

Figure 16: Triangular beam design with optimized link length from Votta et al. 

 

 

Figure 17: Flaps to attach finger to palm connector and internal triangular prism for cable routing. 

http://ras.papercept.net/images/temp/IROS/files/2144.pdf
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 To achieve extension in the triangular beam design, a double triangular beam finger was 

designed to allow a second cable to run on the back of the finger, shown in Figure 18. A fourth 

link is included in the finger because the first link is rigidly attached to the palm. This allowed the 

three most distal links to create a more adaptive grasp than only two rotating links. 

 

Figure 18: Double triangular beam design with 4 equal length links (left) and optimized lengths from Ann Marie 

(right). 

 The final triangular beam design shown in Figure 19 varies slightly from the initial double 

triangular beam design. The link lengths were adjusted so the proximal link is as short as possible 

to allow for tabs since it is not a rotating link. The distal link is shorter than the intermediate links 

to achieve a better closing configuration. This design was created with the intention that the fishing 

line is secured to the fingertip (discussed in Section 4.2.3), so the end piece to tie off the fishing 

line was removed from this design. 

 

Figure 19: Final design for triangular beam finger with the proximal links (left) and distal links (right). 
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4.2.1.3 Yoshimura Finger 

 The other type of finger design is inspired by the Yoshimura pattern and includes tabs and 

slots to keep the ends together. The design in Figure 20 is adapted from a Yoshimura module in 

the WPI Soft Robotics Lab.  

 

Figure 20: Yoshimura pattern for laser cutting with tabs (top) and slots (bottom)  

and attachment flaps (left and right side). 

The power and focus of the laser had to be adjusted for the plastic to be fully cut but not melted. 

This was important due to the difficulty associated with inserting tabs of such small size and having 

the tabs not pop back out. The Yoshimura finger before and after tabs are put together is shown in 

Figure 21. Due to complications with the laser cutter, a new workflow for designing and printing 

origami patterns was developed and is found in Appendix A. 

 

Figure 21: Yoshimura module from the lab with tabs open (top), recreated piece with tabs together and fishing line 

(bottom). 

 By repeating the Yoshimura pattern more times, different length fingers were created. After 

testing the two fingers shown in Figure 22 on the gripper, the shorter finger was chosen because 

the proportions allowed the fingers to minimally overlap during the grasp. 
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Figure 22: Two lengths of fingers using the Yoshimura pattern. 

4.2.2 Endoskeleton  

 Since cable routing could not be implemented through the folding pattern of the triangular 

beam design, 3D printed endoskeleton pieces were created to align the tendons of the triangular 

beam fingers. The endoskeleton is based on a triangular prism with diagonal bases. The cable 

routing hole is closer to one point of the triangle to provide greater torque to rotate the links. The 

holes on the lateral faces of the triangular prism are used to secure the endoskeleton to the 

triangular beam finger with fishing line. The length of each endoskeleton piece corresponds to its 

triangular beam link length, pictured below in Figure 23. 

  

Figure 23: Endoskeleton for link 3 (left) and link 2 (right) of the triangular beam finger. 

4.2.3 Fingertip 

 The fingertip is inspired by the fingertips and force sensors of the 3D printed prosthetic 

hand designed by Ann Marie Votta et al. [2]. The 3D magnetic force sensor circuits provide 

information at the tip of the origami fingers regarding the normal force applied as well as any shear 

forces. A PCB is mounted into the fingertip and a small magnet is inserted into the hole to create 

the magnetic force sensor, shown in Figure 24. Initially, the team planned to incorporate the force 

sensors into each of the gripper’s fingers. To achieve this, the triangular prism portion of the 

fingertip is similar to the connectors discussed in Section 4.1.2 and is used to attach the fingertip 

to the origami finger. Additionally, the fishing line which acts as the tendons of the finger is run 

through the triangular prism and affixed to the fingertip with a knot. The Yoshimura finger has a 

https://doi.org/10.1109/CBS46900.2019.9114463
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similar fingertip, with the only difference being that the triangular prism section was modified to 

attach to the Yoshimura origami pattern, displayed in Figure 25. 

  

Figure 24: Fingertip for triangular beam fingers, showing the black PCB (left) and the beige cube magnet (right). 

 

 

Figure 25: Fingertip for Yoshimura fingers. 

4.3 Electronics 

4.3.1 Hardware 

 To determine the optimal motor to drive the tendons of the gripper, the team experimented 

with several small motors. These tests involved a 3V DC motor as well as an N20 6V DC motor 

with a pre-attached magnetic encoder. The pre-attached encoders are a beneficial feature as they 

ensure the motor is correctly reaching the desired speed and position. To allow the motor to rotate 

both clockwise and counterclockwise, the circuit incorporates a TB6612 DC motor driver. With 

an H-bridge, it is possible to control the motor direction with two push buttons. When neither 

button is pressed, the motor is idle. However, whenever push button 1 is depressed, the motor turns 

counterclockwise and if push button 2 is pressed, the motor rotates clockwise. Appendix B 

contains the schematic that illustrates the initial motor circuit. 

 This test circuit examined the capabilities of the Adafruit N20 DC motor. The Adafruit 

N20 DC motors were chosen for this application due to the motor specifications. These motors are 

geared at a 1:50 ratio which is responsible for a no-load speed of approximately 200 RPM and 

provides a torque of about 200 kilogram-centimeters [30]. The second iteration of the circuit design 

utilizes an Espressif ESP32 DevKit microcontroller to control four total motors in conjunction 

https://www.adafruit.com/product/4641


 24 

with an Adafruit FeatherWing motor driver. The Espressif ESP32 Dev Kit is an optimal 

microcontroller to manage and control the motors because the board has 39 GPIO pins that 

provides ports for all the external encoders and force sensors that are beneficial to monitor the 

system [31]. Additionally, this microcontroller is capable of communicating with other devices 

through SPI, I2C, and transmitting information through WiFi or Bluetooth [31]. The Adafruit 

FeatherWing was chosen as it can handle a load of up to four motors, which is the requirement for 

this project. Additionally, this device can communicate with the main microcontroller via I2C [32]. 

The hardware for this project includes four Adafruit N20 DC motors, an ESP32 board, an 

Adafruit FeatherWing motor driver, and a 3-axis magnetic force sensor provided by WPI Soft 

Robotics Lab. The ESP32 microcontroller digital reads each DC motor’s encoder and the output 

of the motor is then managed through the motor driver by the ESP32 using I2C. The hardware is 

connected to the custom PCB to condense the electronics and circuitry. 

4.3.2 Custom PCB 

A customized printed circuit board (PCB) was designed for the electrical components of 

this origami gripper. This PCB was designed to minimize wire jumping as well as to reduce the 

possibility of incorrect motor wiring. The PCB design incorporates female headers that correspond 

to the pins on both the ESP32 and FeatherWing motor driver. The female header pins on the board 

allow for easy maintenance as the boards do not need to be directly soldered to the PCB. The PCB 

also includes additional female header pins that are associated with the motors’ high power, lower 

power, and encoder wires. These wired connections are illustrated in Figure 26. This PCB design 

is made for the first iteration triangular palm that was designed and printed in the second quarter 

of this project. 

 

Figure 26: PCB schematic. 

https://components101.com/microcontrollers/esp32-devkitc
https://components101.com/microcontrollers/esp32-devkitc
https://www.adafruit.com/product/2927
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 When the gripper’s palm was redesigned as described in Section 4.1.1, there was a need 

for a new PCB as the original PCB shape did not fit into the new palm. While making this change, 

additional female header pins were added as breakout pins to support a more modular design and 

additional wired connections in the future. The final design of the PCB used in this project is shown 

in Figure 27. 

 

Figure 27: Hexagonal PCB design. 

4.4 Controller 

4.4.1 Motor Control Program 

 During the first quarter of the project, the motor control test code was written using the 

Arduino IDE. Although it was advantageous that the Arduino IDE provides significant 

documentation, it also has many limitations that made developing a multi-class program difficult. 

Therefore, the motor controller test code was subsequently ported from the Arduino IDE into 

Visual Studio Code. This transition at the end of the second quarter was necessary to ensure that 

classes (.cpp files) and their headers (.h files) were properly configured rather than using the 

Arduino .ino files. With this transition, object classes were made to further organize the structure 

of the code, as shown in the class diagram found in Appendix C. 

The Encoder class initializes all the motor encoders and the Motor class creates an instance of an 

Adafruit DC motor. Using these two classes the Grasp class controls the motors and encoders to 

perform various grasp patterns. All of these functions are called within the main mqp_gripper class 

to control the actions of the gripper. As the project progressed, this program grew to incorporate 

classes that control the motors with proportional derivative (PD) control and that controlled the 

force sensors. 

4.4.2 Dynamic Model and Control 

 Throughout the second half of the project, the team dedicated significant effort to designing 

the controller for the triangular beam finger. Although there are two finger designs, the team 

created a controller for just the triangular beam model. This is because the triangular beam finger 
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has a much simpler structure that can be related to rigid links and joints while the Yoshimura finger 

has a continuum design that would be challenging to model. 

The triangular beam controller was initially designed based upon the derivations shown in Figure 

28 that calculate the kinetic and potential energy of the system. The difference between the 

potential energy and kinetic energy is used to produce the Lagrangian function. Derivations of the 

Lagrangian in terms of the joint angles and time are used to compute the Euler-Lagrangian. From 

the Euler-Lagrangian, the trajectory of the joint angles can be followed. Lastly, ordinary 

differential equations are utilized to generate the time step and determine joint angles at each time 

step. 

 

Figure 28: Kinetic and potential energy derivations. 

4.4.3 Simulation 

 The simulation of the triangular beam finger was created in MATLAB using the Robotics 

Toolbox created by Peter Corke. The simulation was created by designing a simple stick model of 

the links and joints. Once all the links were connected in a fashion that represented the serial design 

of the triangular beam finger, the parameters of the controller were defined. This includes 
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proportional and derivative terms of the control as well as the starting and ending joint 

configurations. Next, the controller takes the inputs to generate a plot of the three joint trajectories 

as it moves from the starting to ending location. In addition to the plot, the MATLAB program 

also animates the movement of the modeled finger in a three-dimensional space. 

4.5 Computer Vision 

4.5.1 Camera Placement 

An important aspect for the vision system involves the position of the camera in the test 

space and the type of camera used to collect data. A few possibilities for the vision system’s camera 

placement are shown in Figure 29 and Figure 30. Figure 29 places the camera in front of the Jaco 

arm, overlooking the taskspace from a side view. A few potential issues with this position includes 

that the Jaco arm could obscure objects from the camera’s view as it grasped them, multiple objects 

on the field could easily occlude one another, and the camera would be limited to a side view of 

all the objects. Figure 30 places the camera above the taskspace, providing a bird’s eye view of 

the objects. This position could still lead to the camera being obscured by the Jaco arm, but if the 

arm approaches the object from the side there is less chance for this obstruction to occur. In the 

latter half of this project however, the camera position was switched to be at an angle. This final 

placement allows the team to leverage partial point cloud data to better match object templates. 

 

Figure 29: Sketch of potential placement of camera to side of Jaco taskspace. 

 

 

Figure 30: Sketch of potential placement of camera above Jaco taskspace. 
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A 3D camera was purchased to aid in differentiating objects with similar silhouettes with 

only 2D information. For example, from a side view, there is a distinct difference between a sphere 

and a cylinder, however, from above both these objects share the same profile. Without depth 

information, the vision system could easily classify the sphere as requiring a grasp pattern reserved 

for cylindrical shapes. An Intel RealSense Depth Camera D435, shown in Figure 31, was chosen 

due to its depth and RGB capabilities as well as its onboard vision processor board. 

 

Figure 31: Intel RealSense Depth Camera D435. 

4.5.2 Initial Experimentation 

At the start of the project, the team investigated the systems used by past MQP teams as 

well as modern object detection techniques. Initial experimentation focused on understanding 

simpler object detection techniques that utilized image segmentation. The team experimented with 

2D object detection with algorithms such as watershed, grabcut, and OpenCV’s matchShapes. 

These initial attempts can be seen in Figure 32 and Figure 33. After further research, matchShapes 

was determined to be an unreliable manner to detect objects. For example, although Figure 32 

demonstrates a high degree of accuracy for cup detections, the reading is highly influenced by the 

lighting, position, and size of the object in the image. In Figure 33, the grabcut algorithm is seen 

to isolate the desired cup object relatively well. However, in the second image of this figure, the 

table surface is not appropriately segmented from the foreground. These experiments highlighted 

the drawbacks of working with 2D images for object detection. Although these algorithms can be 

modified to improve accuracy, it was deemed more efficient to work directly with the information 

collected by a 3D camera. 

  

Figure 32: Image segmentation – initial attempts to use OpenCV matchShapes. 
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Figure 33: Image segmentation - initial attempts to use OpenCV grabcut. 

Based on the research conducted during the first quarter, it was decided to further explore 

the possibility of using image segmentation techniques on 3D image data to perform object 

recognition for the gripper. Utilizing template matching along with segmentation techniques 

eliminated issues associated with creating a training data set for a deep learning object recognition 

model. As discussed in Section 2.5.2.3, training a deep learning model, even via transfer learning, 

takes a considerable amount of time and requires the use of a high number of training images. By 

exploring template matching, the limitation of generating a large amount of training data was 

eliminated.  

For the majority of the second quarter, the camera was positioned from a top down vantage 

point as described in Section 4.5.1. Therefore, the original templates utilized were similar to 2D 

shape templates rather than 3D object templates. Figure 34 shows one such template matched to a 

cylindrical object viewed from the top down. The template is represented by the red dots in the 

figure. After the angle of the camera was switched to its final position, updated templates were 

generated to represent simple 3D object shapes that could be matched to 3D object point clouds. 

The template types used are a combination of filled, unfilled, downsampled, and non-

downsampled. A filled template contains points within the area of the object while an unfilled 

template contains only the points that outline the surface of the object. A downsampled template 

consists of fewer points than a non-downsampled template as a specified number of points are 

filtered out. The left-hand figures in Appendix D depict the filled, non-downsampled templates 

used and the right-hand figures show the unfilled, downsampled templates. 

 

Figure 34: Original template for a cylindrical object (red points). 

Appendix E displays the eight objects initially used to test template matching using the 

modified camera angle. The last two objects proved to be difficult to detect as they could not be 

distinguished from the plane that was segmented out. These test scenes translated to a point cloud 
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similar to that in Figure 35 which showcases the object in Figure 37 in the middle of the figure. 

The area of interest is located between the three vertical planes in the scene. The area on the left is 

outside of the test area. 

 

Figure 35: Raw point cloud of Figure 37 (Object is located in the center of ROI). 

4.5.3 Object Detection Logic 

 

Figure 36: Object recognition program logic. 

The initial vision system logic flow is outlined in Figure 36. In this flow, the second step 

is to downsample, crop, and segment the area of interest. Following this process, the raw point 

cloud in Figure 35 is transformed to the point cloud cluster in Figure 37. Using the Voxel Grid 

filter supplied by PCL, a 3D voxel grid is created over the input point cloud and the points are then 

downsampled using their centroid. This reduces the number of points in the raw point cloud and 
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improves the loading and processing time of the point cloud. To minimize the area of the point 

cloud, the input cloud is cropped using PCL’s CropBox implementation where the points within a 

set of constraints are kept. The resulting point cloud is then segmented using the RANSAC 

algorithm to remove the major planes within the scene. Finally, PCL’s Euclidean clustering 

algorithm is used to find the largest cluster within the final cloud. This cluster represents the object 

data point cluster that is to be matched with a template. Finally, the template matched to the object 

would depend on the object detection method used. 

 

Figure 37: Side and front view of the segmented object from Figure 35. 

4.5.4 Template Matching 

Working with templates, whether 2D or 3D, requires a transformation to find the best fit to 

an object’s point cloud cluster. Initially, first attempts at object detection focused on aligning 

templates to the object using the Sample Consensus Initial Alignment algorithm found in PCL [26]. 

This method of detection is very computationally intensive as it attempts to estimate the best 

transformation to align an input cloud to its target. To visualize an alternative to this template 

alignment, the team explored scaling templates according to principal component analysis (PCA). 

Without scaling, it was unlikely a template would accurately match to an object. As seen in Figure 

38a, the unscaled 2D template identified an object’s shape by fitting to a corner of the cluster, 

however this template was expected to cover the entire object cluster. Initially, simple matrix 

transformations were used to scale the templates to match an object. However, PCL’s PCA 

functionality was later used to resize the axis of the point clouds according to the scale derived 

from the target cloud. In this case, the target cloud was the object of interest and the template cloud 

was the cloud that was scaled. Figure 38b and Figure 38c shows initial attempts at scaling 2D 

templates using the PCA method. Figure 38b was seen to be successful in modifying the scale of 

the red template cloud to cover the entire object. However, Figure 38c initially failed as each 

cloud’s axis was scaled with different principal components. 

 

https://pointclouds.org/about/
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a: Red, unscaled template matching to the cluster 

  

b: Successful scaling using PCA to match to two different cylindrical objects 

  

c: Initial failed attempt at scaling a 3D template using PCA - the Z axis did not scale as 

intended 

Figure 38: Scaling templates using PCA. 
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Moving to 3D templates, non-downsampled and filled templates were first tested. These 

templates took too long to load into the program and to scale to an object’s cluster. An additional 

problem was that shadows cast by an object created trailing points behind the main face of the 

object as seen in Figure 39a. This caused incorrect templates to be matched to the object cloud as 

the algorithm tried to align to these points. In Figure 39b and Figure 39c, the expected outcome 

was that the thin cylinder template would be matched to cylinder_0, however, due to the trailing 

points, the cone and sphere were determined to be better matched. On removing these from the list 

of possible templates, the thin cylinder was observed as the best match and the alignment of the 

template was as expected. 

 
a: cylinder_0 

 
b: Cone matched 

 
c: Sphere matched 

 
d: Thin cylinder 

matched 

Figure 39: Non-downsampled template matching with cylinder_0. 

The following figures showcase the same issue as above. In the case of cylinder_1 in Figure 

40b, sometimes the correct template was chosen, but the template was not aligned as expected.  

 
a: cylinder_1 

 
b: Cylinder matched 

to cylinder_1 

 
c: cylinder_2 

 
d: Rectangle matched 

to cylinder_2 
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e: hook_0 

 
f: Thin cylinder 

matched to hook_0 

 
g: hook_1 

 
h: Sphere matched to 

hook_1 

 

 
i: tripod_0 

 
j: Sphere matched to 

tripod_0 

 

Figure 40: Template matching with multiple objects. 

On testing downsampled and unfilled templates, the team found that the loading time of 

the templates into the program as well as the time to find the best alignment improved drastically. 

Although the matching was still slower than expected, it was better than using the non-

downsampled templates. Figure 41 shows how the individual templates are aligned for cylinder_0. 

As noted previously, the template attempts to encapsulate all points of the cloud, thereby not 

aligning as expected. In all these cases, the trailing points of the cluster interfere and alter the 

alignment of the template. 

 
a: Match to rectangle template 

 
b: Match to thin cylinder template 

Figure 41: Downsampled template matching with cylinder_0. 

In experimenting with aligning a template to best fit a cluster, a few issues were made clear. 

The first being that a template would scale to best fit the given cluster, this was an issue when the 
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object contained unexpected points in its cluster. Additionally, a template would not maintain its 

aspect ratio when scaled as each axis was individually scaled. This meant that an incorrect template 

was chosen when too many of its points were matched to an incorrect position on the object. This 

led to the problem that although a correct template was chosen, it may not have been fit to the 

object as expected. 

4.5.5 Principal Component Analysis 

PCA essentially reduces the dimensionality of data by calculating principal components i.e 

axes where the data has the most variance. The first component attempts to encompass the 

maximum amount of data possible and then attempts to encompass the rest in the 2nd and 3rd 

component. Because of this, we can eliminate the information of one of the last components if 

necessary as they will hold the least amount of information. By calculating the components of both 

a template and an object of interest, we can then scale and compare the components to determine 

the best match.  

The initial intention of using PCA was to visually scale the templates to match the objects 

of interest. However, in the latter half of the project the issues involving the system not accurately 

matching the correct template to the object present in the scene and the time it took to scale were 

solved by leveraging PCA as the method of object detection. On initialization of the program, the 

user provides a set of point cloud data templates whose principal components are calculated. When 

the system must detect an object, it segments it out of its background and calculates the object’s 

principal components as well. After scaling a template’s first component to match that of the 

object, the second and third components then determine the template the object matched with. This 

match occurred in 1408249 microseconds, or approximately 1.4 seconds.  

4.6 System Architecture 

This project required an integrated system for the components involved. Because the team 

ultimately needed to integrate the gripper as an end effector to the Jaco arm, it was decided that 

ROS would be used to orchestrate the system. ROS has various available packages that facilitate 

the integration with the Jaco arm as well as with the gripper’s individual components. The team 

planned to leverage a controller node to coordinate the interaction between the nodes of the system. 

Originally, the nodes planned to include a camera, processing, robot, and gripper node that would 

have a publisher and subscriber relationship. The preliminary design of this architecture can be 

seen in Figure 42 where the nodes are represented by circles and topics by rectangles. The topics 

these nodes publish and subscribe to hold information necessary for other nodes to properly react 

to changes in the system and environment. The controller then subscribes to the majority of these 

topics to coordinate the actions of the nodes. In this diagram, the camera node represents the Intel 

RealSense depth camera, the robot node the Jaco arm, the processing node the object detection 

logic, and the gripper node the origami gripper. The gripper node in particular holds the motor 

control code defined in Section 4.4. 
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Figure 42: Preliminary ROS software architecture. 
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5. Results 
 In this section, we discuss both the final status of the project as well as the final design and 

implementation of our overall gripper system. 

5.1 Flexible Robotic Origami Gripper System 

Section 3.2 lists task specifications that were outlined at the beginning of the project that 

identified the guidelines and parameters of the MQP. Below is a table that summarizes the status 

of these task specifications at the conclusion of our project. As can be seen in Table 3, 27 of the 

30 task specifications were met.  

 
Table 3: Task Specification Completion Status 

# Task Specification Complete? 

1 The total cost of the project should not exceed $600 (MQP student 

budget). 
✓ 

2 The maximum weight of the gripper including its onboarded motors must 

not exceed 333 grams (weight of Ann Marie’s hand).    
✓ 

3 The payload weight should be a minimum of 50 grams (the weight of a 

small ball). 
✓ 

4 The gripper must be able to successfully grasp an object up to an 8cm 

diameter/width (or have a crevice or protrusion for the gripper to hold it). 
✗ 

5 In a closed gripper position, the gripper should be confined to a 25 cm 

cube. 
✓ 

6 The gripper will contain origami modules. ✓ 

7 The gripper will contain a single modular palm structure with 2 sets of 

interchangeable origami fingers. 
✓ 

8 There must be at least 2 different origami finger designs. ✓ 

9 The gripper will have at least 3 fingers (maximize grasp potential). ✓ 

10 There should be at least one force sensor per gripper finger. ✗ 

11 The gripper in coordination with the Jaco arm must reach a final grasp 

position within 30 seconds. 
✓ 

12 The gripper must close around the object within 1 second. ✓ 

13 The gripper must be able to grasp objects that do not require a change in 

wrist orientation. 
✓ 

14 The gripper should have a maximum of 1 motor per finger. ✓ 

15 The gripper should have a maximum of 4 motors per gripper. ✓ 

16 Motors should fit within the palm of the gripper. ✓ 

17 The gripper must not shake to the point of gripping failure. ✓ 

18 The system must be able to respond to input from the vision system. ✓ 

19 An object must be identified by the vision system within less than 120 

seconds. 
✓ 
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20 The vision system must be able to detect the shape of an object to indicate 

the appropriate grasp for the gripper. 
✓ 

21 The vision system must be able to accurately recognize an object within 

the Jaco arm's task space that is fully present in the camera’s field of view 

(i.e not expected to recognize occluded objects). 

✓ 

22 The object will be recognized using partial object shape data (i.e it will 

identify a soda can as a cylinder). 
✓ 

23 The vision system will determine the location of the object to a degree of 

accuracy where it will be able to successfully grasp the object. 
✗ 

24 The camera size should not exceed 90 mm x 25 mm x 25 mm. ✓ 

25 The vision system and the gripper will use up to 2 total processing units. ✓ 

26 System architecture should be designed in a modular fashion. ✓ 

27 The vision system should utilize an RGB-D camera to capture depth 

information. 
✓ 

28 Wires should have enough slack so that they do not unplug from ports. ✓ 

29 The gripper design should ensure the mechanical and electrical 

components are easily accessible if maintenance is required (should not 

require taking apart the entire module if one component is in disrepair). 

✓ 

30 The gripper should not endanger any humans. ✓ 

  

Task specification #2 references the requirement to design a gripper with a maximum 

weight of 333 grams. Table 4 displays a detailed breakdown of the gripper’s weight. Listed under 

“Parts'' are the individual components that make up the origami gripper. The “Assemblies” section 

lists the masses of the assembled triangular beam finger gripper and Yoshimura finger gripper.  

 
Table 4: Origami gripper masses 

Mass (g) Parts 

173.65 Assembled palm 

10.087 1 triangular beam finger with spool 

6.463 1 Yoshimura with spool 

57.35 PCB 

15.4 1 single motor with wires 

Mass (g) Assemblies 

332.95 Assembled gripper with triangular beam fingers 

318.45 Assembled gripper with Yoshimura fingers 
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5.2 Final Gripper 

The designing, prototyping, and initial testing culminated in the following gripper design. 

The gripper consists of four origami fingers and a multilevel 3D printed gripper palm, shown in 

Figure 43.  

  

 

Figure 43: Final gripper design with Yoshimura fingers (left) and triangular beam fingers (right). 

5.2.1 Palm Structure 

Each layer of the gripper’s multilayer palm provides a different function that helps connect 

the fingers to the Jaco arm robot. The base of the palm, seen in Figure 44 as the highlighted layer 

in the leftmost image, is where the connectors of each assembled finger are screwed into the palm. 

The connectors are angled at 14.04 degrees. This allows the robot to grasp objects up to 6.2 cm 

wide. The midsection of the palm, shown in the center image of Figure 44, ensures the proper 

placement of the custom PCB. The slot on the side of this layer aids in the cable management of 

multiple power wires. Lastly, the lid of the palm, pictured in the rightmost image of Figure 44, 

maintains a secure connection between the gripper and the Jaco arm.  

 

Figure 44: The complete multilayer gripper highlighting the palm (left), middle layer (center), and lid (right). 
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5.2.2 Origami Fingers 

 The final origami finger designs can be seen below. Each Yoshimura finger weighs 

approximately 6.5 g and measures a length of 11.1 cm. Meanwhile, the triangular beam fingers 

each weigh approximately 10 g and measure a length of 11.6 cm. Both are tendon-driven with 

fishing line and are actuated by a single Adafruit N20 DC motor per finger. When contracted, the 

fingers appear as shown in Figure 45. In contrast, when no tension is applied to the fishing line by 

the motor, the fingers are relaxed as shown in Figure 46. 

 

Figure 45: Triangular beam finger (left) and Yoshimura finger (right) shown in the closed configuration. 

 

 

Figure 46: Yoshimura finger (top) and triangular beam finger (bottom) with fingertips, connectors, and triangular 

beam endoskeleton. 
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5.2.3 Grasp Configurations 

 The gripper is capable of four types of finger configurations or grasps: open, pinch, tripod, 

and power, seen in Figure 47. In the open configuration, no motors are engaged, and all the fingers 

are relaxed. For the pinch grasp, motors for the thumb and middle finger contract their respective 

fingers to perform the pinch. The tripod grasp requires three motors to run for the thumb, index, 

and ring finger. Finally, the power grasp utilizes all four motors, so all the fingers are contracted.  

The gripper was able to grasp three types of objects with both the triangular beam and 

Yoshimura fingers, as seen in Figure 48. The pinch grasp is used for thin cylindrical objects, the 

tripod grasp is used for spherical objects, and the power grasp is used for sturdy cylindrical objects. 

The spherical objects had to be placed on a support stand so they would not roll away during the 

execution of the grasp. For the power grasp, the gripper required human assistance to lift the object 

to a position at which the gripper could secure a stable hold on the object. A common problem 

with grasping was the fingertips have a low coefficient of friction which resulted in objects slipping 

before a stable grasp was achieved. From our testing, we found that the performance of the 

triangular beam varied from that of the Yoshimura finger. Since the triangular beam finger is made 

up of multiple rigid links, the fingers struggled to conform to the shape of certain objects despite 

the flexible joints. In contrast, the Yoshimura fingers were better able to conform to the objects 

than the triangular beam fingers as the Yoshimura fingers exhibit a continuum design.  

 
Figure 47: The open grasp and three closing grasp types of the gripper. 
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Figure 48: Gripper with triangular beam and Yoshimura fingers grasping 3 types of objects. 

5.3 Control System 

The control system for our origami robotic gripper consists of the electronics, the motor 

control C++ program, and a MATLAB simulation of expected results. The electronics are all 

connected to a custom PCB designed by the team to improve cable management. The Espressif 

ESP32 Dev Kit and Adafruit FeatherWing motor drivers are attached to the top of the PCB while 

the headers pins that connect to the four motors are mounted to the bottom. With the boards 

connected to the top side of the PCB, it is simpler to reset or enable the boards when necessary. 

The header pins for the motors soldered to the bottom side of the PCB as it is closer to the motors. 

Figure 49 shows the motors and boards attached to the PCB. 

 

Figure 49: Top view of PCB (left) and bottom view of PCB (right).  
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To program the electronics to perform the functions we desired, we created a motor control 

program in C++. The control class diagram of this multiclass program is illustrated in the class 

diagram in Appendix F. This program is integrated with ROS to determine the grasps required for 

different objects. Once the program is given a command, the gripper will execute the specified 

grasp. The controlled encoder and force sensor readings are used to control the movement of the 

motors. The setpoints for each finger of the opened and closed grasps are configured as class 

members. The controller programs the motors to continuously rotate to the desired setpoints. The 

Encoder, Motor, and Force Sensing classes all flow into the Grasp class. The configurations and 

initializations for each component are found in their respective classes. The Control class applies 

the controller to the inputs of the encoders and sensors to produce the outputs of the motor. 

 The last piece of the control system was the controller design, which was designed in 

MATLAB. This controller originally used the potential energy and kinetic energy equations of the 

triangular beam finger to produce the Lagrangian equation. The Lagrangian equation is simply the 

difference of the kinetic energy and potential energy. The Lagrangian equation then provides the 

foundation for the Euler-Lagrangian equation, which helps determine the trajectory of the joint 

angles. The Lagrangian, as well as the Euler-Lagrangian equations for both joints, are written out 

below. 

 

Figure 50: Lagrangian equation. 

 

 

Figure 51: Euler Lagrangian equations. 

Since the Euler-Lagrangian equations for both joints are equivalent to zero, MATLAB was 

able to determine the joint acceleration of both joints using the solve function. Next, the team 

implemented ordinary differential equations to produce the time step used to track the trajectory 

of the joint angles. The torques from the Euler-Lagrangian equations were derived in terms of the 

input force, which in our application was the tension applied by the motor. The torque equations 

are found in Figure 52. 
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Figure 52: Joint torque equations. 

The results produced by the MATLAB controller are given in Figure 53, each plot 

illustrates the predicted trajectory of the joint angles. 

 

Figure 53: Diverging plots from the original controller. 

The plots of the joint angles produced by the controller appear to diverge, an issue that is 

further addressed in Section 6.2. Considering the plots from the controller were diverging, the team 

decided to also implement a controller based upon a dynamic model by Jinho Kim et al. [33]. In 

their research, the team had created a dynamic model that reflected a three-link system, similar to 

our triangular beam finger. By inputting the parameters based on the measurements and properties 

of our triangular beam finger, the new dynamic model produced the following plot, shown in 

Figure 54.  

 

Figure 54: Plot of joint angles of triangular beam finger control. 

https://doi.org/10.5954/ICAROB.2017.GS8-3
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As can be seen, all three joint angle trajectories are plotted on the same graph. It appeared 

that the first joint and second joints overshot before reaching the setpoint. Meanwhile, the third 

joint appeared to slowly approach the setpoint without any overshoot. 

In addition to the joint angle plot, a simulation was created to further illustrate the change 

of joint angles as a force was applied to the system. The simulation represented a single origami 

triangular beam finger. As seen below in Figure 55, the model had four links, just like the triangular 

beam. However, when the triangular beam finger was mounted onto the gripper, the base link was 

stationary. Since the fourth link of the system acts as a ground, the finger still represents a three-

link system. This simulation works well as it replicates the movement of the triangular beam joints 

when it closes. The MATLAB code for the controller model as well as the simulation can be found 

in Appendix G. 

 

Figure 55: Simulation of a single triangular beam finger. 

5.4 Object Detection 

To test the implementation of the object detection system, three test objects were chosen 

to encompass the three grasp configurations of the gripper. As described in Section 4.5, the final 

object detection system used PCA to classify these objects, shown in Figure 56, according to pre-

selected down sampled and unfilled templates. From left to right, the grasp type needed for each 

object was pinch, tripod, and power. The templates that correlated to each grasp are listed in Table 

5 along with the identification number used to recognize the templates in experiments. 

 

Figure 56: Final set of test objects. 
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Table 5: Templates corresponding to each grasp configuration. 

Grasp Template ID # 

Pinch Thin 

Cylinder 

1 

Tripod Cone 2 

Sphere 3 

Power Rectangle 4 

Cylinder 0 

 
The figures below outline the process of identifying each of the selected objects. Figure 57 

demonstrates the process for a thin cylindrical object that requires a pinch grasp. The upper left 

corner of the figure displays the object from the camera’s point of view. The next image highlights 

the region of interest in the test scene while the right-hand image shows the identified clusters in 

this region. The cluster in red represents the point cloud of the object of interest and in the lower 

left image, the point cloud is seen overlaid over the initial test scene. Upon finding this cluster, the 

algorithm iterates through the five templates and determines that the thin cylinder best matches the 

target object, shown in the fifth sub image in red. 

 

Figure 57: Process of identifying pinch configuration. 
Using PCA on the target object’s point cloud from Figure 57 yielded the eigenvalues listed 

in Table 6. These values were then used to calculate the best template match by comparing them 

to each of the template’s calculated eigenvalues as well. The result of this process is shown in 

depth in Table 7. The three principal components (PC) are listed with both their scaled and 

unscaled values. As shown in the table, PC1 is scaled to that of the object’s and then the absolute 

error between the template and object’s eigenvalues is calculated. Per these calculations, template 

1 was determined to be the closest match to the object. As seen below, the percent error for 

template 1 for both PC2 and PC3 is the least among all the templates. 
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Table 6: Eigenvalues corresponding to the pink test object. 

 PC1 PC2 PC3 

Object Eigenvalues 1.38E-03 5.47E-04 6.23E-05 

 
Table 7: Eigenvalues of all templates compared to the first object’s eigenvalues. 

 Template 0 (Cylinder) Eigenvalues  

 Unscaled Scaled Absolute 

Error 

Percent 

Error 

PC1 3.80E-01 1.38E-03 0.00E+00 0.00% 

PC2 3.62E-01 1.32E-03 7.68E-04 140.38% 

PC3 1.70E-01 6.17E-04 5.54E-04 889.73% 

 Template 1 (Thin cylinder) Eigenvalues  

 Unscaled Scaled Absolute 

Error 

Percent 

Error 

PC1 1.02E-01 1.38E-03 0.00E+00 0.00% 

PC2 5.04E-03 6.85E-05 4.79E-04 87.48% 

PC3 4.38E-03 5.95E-05 2.80E-06 4.49% 

 Template 2 (Cone) Eigenvalues  

 Unscaled Scaled Absolute 

Error 

Percent 

Error 

PC1 2.31E-01 1.38E-03 0.00E+00 0.00% 

PC2 2.25E-01 1.34E-03 7.97E-04 145.75% 

PC3 6.33E-02 3.78E-04 3.15E-04 505.94% 

 Template 3 (Sphere) Eigenvalues  

 Unscaled Scaled Absolute 

Error 

Percent 

Error 

PC1 3.38E-01 1.38E-03 0.00E+00 0.00% 

PC2 3.33E-01 1.36E-03 8.12E-04 148.46% 

PC3 3.27E-01 1.34E-03 1.27E-03 2045.26% 

 Template 4 (Rectangle) Eigenvalues  

 Unscaled Scaled Absolute 

Error 

Percent 

Error 

PC1 1.10E-01 1.38E-03 0.00E+00 0.00% 

PC2 1.10E-01 1.38E-03 8.34E-04 152.35% 

PC3 1.10E-01 1.38E-03 1.32E-03 2116.05% 

 

For the last two test objects, Table 8 and Table 9. provide a summarized overview of the 

matched template. Only the matched template’s eigenvalues are displayed within these tables. Like 
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the first object, the object in Figure 58 is identified and matched best to template 2, the cone 

template. The last two images in the figure show the alignment of the object to the cone template 

from a side view as well as a bottom-up view. Ultimately, this object is determined to need a tripod 

grasp based on Table 3. Likewise, the third object in Figure 59 is matched to template 0 and shown 

to require a power grasp. Ultimately, the object detection method chose the grasp configuration 

that was expected for each of the three objects. 

 

Figure 58: Process of identifying tripod configuration. 

 
Table 8: Eigenvalues of template 2 compared to the second object’s eigenvalues. 

 Template 2 (Cone) Eigenvalues  Object Eigenvalues 

 Unscaled Scaled Absolute 

Error 

Percent 

Error 

 

PC1 2.31E-01 8.06E-04 0.00E+00 0.00% 8.06E-04 

PC2 2.25E-01 7.85E-04 2.55E-04 48.05% 5.30E-04 

PC3 6.33E-02 2.20E-04 1.10E-04 99.64% 1.10E-04 

 



 49 

 

Figure 59: Process of identifying power configuration. 

 
Table 9: Eigenvalues of template 0 compared to the third object’s eigenvalues. 

 Template 0 (Cylinder) Eigenvalues  Object Eigenvalues 

 Unscaled Scaled Absolute 

Error 

Percent 

Error 

 

PC1 3.80E-01 1.22E-03 0.00E+00 0.00% 1.22E-03 

PC2 3.62E-01 1.17E-03 4.75E-04 68.76% 6.91E-04 

PC3 1.70E-01 5.47E-04 3.87E-04 240.87% 1.61E-04 

5.5 System Architecture 

 The final implementation of the gripper’s system architecture leveraged ROS Melodic to 

orchestrate the integration between components. This system was written in C++ and depended on 

the use of the Intel RealSense SDK, realsense-ros, rosserial, and the Point Cloud Library versions 

available in Ubuntu 18.04. Similar to the design discussed in Section 4.6, Figure 60 shows the final 

system design that utilizes the publisher and subscriber relationship to pass information between 

nodes. The camera node is launched using the launch files provided by realsense-ros and publishes 

to more than the listed topic. This particular topic provides a point cloud of the current scene and 

can be viewed through rviz. The rosserial package is used to communicate to the gripper node as 

a serial node as it runs on an ESP32. To run the system, it is necessary to upload the motor control 

program previously discussed in Section 5.3 via Visual Studio Code’s PlatformIO extension. Once 

uploaded, a launch file is used to begin all other nodes in the system. If the serial node is not 

running, the system will fail to publish information to it. 
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Figure 60: Final ROS software architecture design. 

Figure 61 includes a class diagram of the ROS nodes listed above with the exception of the 

gripper node. For this class diagram, refer to Section 4.6. It is important to note that only public 

member variables and functions are listed within this diagram. The keyboard, jaco, and manager 

nodes have minimal functions as their purpose is to provide callbacks for the topics they are 

subscribed to. It is important to note that although the jaco node is included in this diagram for 

descriptive purposes, during the experiments the Jaco arm was controlled separately from the 

system. The processing node is held within an overarching object detection package as it contains 

an instance of an object detection specific manager class. This class coordinates the interaction 

between the other classes necessary to perform object detection. The logic discussed in Section 

4.5.3 was kept and further expanded upon. The most significant change was that the 

TemplateMatcher class uses PCA to make an appropriate match. 
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Figure 61: Class diagram of the ROS nodes used. 
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6. Discussion 
 At the conclusion of this MQP, the team accomplished the design and production of a 

flexible robotic origami gripper system. As mentioned in the previous chapter, there were 30 total 

task specifications that the team had determined at the beginning of this project. By the end, we 

were able to accomplish all but three. The three task specifications we were unable to complete 

include: grasping an object that is 8 cm in diameter or width (Task Specification #4), implementing 

at least one force sensor per gripper finger (Task Specification #10), and determining the location 

of the object with the vision system (Task Specification #23). 

6.1 Gripper Design 

The gripper can grasp objects up to 6.2 cm. However, once the object size exceeds this 

diameter, the gripper is unable to perform stable grasps. This issue is partly influenced by the fact 

that the fingers are placed too close together to allow for such a large grasp. With the fingers 

attached only 2.5 cm from the center of the base, this design created a compact gripper that could 

comfortably grasp objects smaller than 6.2 cm. Furthermore, the design and behavior of the fingers 

contributed to the inability to grasp large objects. Both the triangular beam and Yoshimura fingers 

are designed to approximately contract to the shape of a small arc, which prevents the finger from 

wrapping around such a wide object to secure a grasp. In addition, the fingertips have a relatively 

low coefficient of friction thus not providing enough traction to provide a stable grasp for large 

and heavy objects.  

6.2 Control System 

 We were unable to add a force sensor to each of the four fingers as there was a lack of 

available force sensors in the WPI Soft Robotics Lab. As a result, rather than using four force 

sensors as previously planned, only one force sensor was used in the entire system. The team 

placed the sensor on the thumb as it is the only finger used in all grasp types. This ensured that 

each grasp had the potential to be force controlled to an extent. However, even with the restriction 

of the single force sensor, the force control was unable to be fully implemented. The code for the 

force control component of the switching control is within the program, but the force sensor was 

unable to produce understandable readings. The team believes a wiring connection problem 

propagated from either the original soldering or the sensor PCB could have caused the 

aforementioned issue. 

 With regards to the switching control, the code was written to have the motors controlled 

initially by position control until there was a threshold force of 100 mT detected at the fingertip. 

Once this force was detected, the controller would switch to force control ensuring the motors still 

rotated until the force sensor detected a maximum force of 200 mT. As mentioned, the force 

sensors were unable to properly detect forces, thus resulting in a system controlled purely by 

position control. 

 There was significant difficulty creating the controller throughout the course of this project. 

Early in the project, it was decided that creating a controller for the Yoshimura module would be 

too difficult to accomplish. Developing a dynamic model for the Yoshimura module would impose 

the challenge of understanding the nonlinear behavior of the continuum manipulator. With infinite 

degrees of freedom, it would be extremely difficult to determine its movement trajectory especially 
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if outside forces were to be introduced. Therefore, the team focused on the dynamic model of the 

triangular beam finger. These fingers closely resembled a three-link serial manipulator, which 

made the designing of the controller significantly less complex. Although the triangular beam 

fingers were made of a flexible material and were much more compliant than typical rigid linkages, 

those properties of the finger were neglected to simplify the system. 

 Originally, the team attempted to design the controller starting with the dynamic model. 

Throughout the duration of the controller design, it was unclear whether the system was solvable 

as there were more unknowns than known values in a three-joint system. As mentioned in the 

results, this method ended in plots of the joint trajectories diverging. Most likely this issue may 

have arisen from errors in the derivations of the potential and kinetic energies, which would 

subsequently lead to the creation of an incorrect dynamic model. 

 The implementation of the dynamic model designed by Jinho Kim et al. [33] helped to 

achieve a significantly more understandable and realistic response curve. Since this was a symbolic 

dynamic model, the team was able to use our own parameters that reflected the measurements of 

the triangular beam finger. Still using the same foundation as the previous controller, ordinary 

differential equations were used to increment the time. The output generated three joint angles all 

appearing to converge at the given setpoint. 

6.3 Object Detection System 

 Of the task specifications related to the vision system, all but one of them were achieved. 

Of particular interest was the time spent trying to detect an object. Prior to the final method of 

detection, the system was quite slow in trying to match a template. However, on switching to PCA, 

the match was significantly faster. Task Specification #23 concerned determining the pose of an 

object within the Jaco arm’s task space and was not completed in this iteration of the project. 

Although the system was able to identify the corresponding grasps for three test objects, the 

identification was still dependent on the test conditions. The lighting and positioning of the object 

could affect the accuracy of the detection system. Because only one camera was leveraged, the 

team only had partial point cloud data of the target object. Although this was better than viewing 

the object from top-down, the data was not enough to eliminate the problem introduced by poor 

lighting conditions. In such a setting, the shadow of the object was considered a part of the point 

cloud data and subsequently, the system tried to accommodate this. At times, this led to an object’s 

point cloud resembling that of another. This was most prevalent in the detection of a power and 

tripod grasp. The method of determining the correct template relies on finding the minimum 

average absolute error of the second and third principal components. Therefore, if the point clouds 

of two objects yielded similar principal components, it could misidentify the expected grasp. In 

Section 5.4, the choice between a tripod and power grasp was close for the second and third objects.  

 The test objects were chosen for their ability to both be grasped by the gripper and detected 

by the system. Solid, bright colors allowed the objects to be distinct against the white backdrop of 

the task space. Smaller objects than the pink test object discussed in Section 5.4 were not chosen 

as these objects slipped between the gripper’s fingertips and the vision system could not accurately 

and reliably segment these objects from the background. Tests showed that even when the point 

cloud of a small object was found, it was ignored in favor of the largest cluster that was not 

removed from the scene by the segmentation algorithm. The team determined that this method of 

detection proved more useful for these larger test objects. Another contributing factor to the 

https://doi.org/10.5954/ICAROB.2017.GS8-3
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selection of the grasp was the templates used to identify the grasp. The shape and dimensions of 

these 3D templates influenced the principal components determined by PCA.  

6.4 System Architecture 

 The final system architecture simplified the integration between the gripper’s software 

components. By utilizing ROS, the components easily transferred information and allowed for the 

system to be launched with a few commands. Appendix H outlines the steps the team followed to 

create a virtual machine for this system. As mentioned in Section 5.5, the packages and libraries 

of note included Intel RealSense SDK, realsense-ros, rosserial, and the Point Cloud Library. Each 

of these provided necessary functionality to the system although there were several challenges that 

arose over the course of the project. A problem that arose with the use of rosserial was that during 

testing, the gripper node would time out and unsync with the master node. When this occurred, 

the system had to be restarted to resync the board. We determined that this issue arose when the 

motor control code spent too long reaching the desired grasp position. Other users of rosserial 

expressed this could occur when the time between spinning the node was too long. The realsense-

ros package provided functions helpful for debugging and testing the program. By recording the 

test scene and saving to a bag file, the camera node code can then be launched using the recorded 

stream. By using the launch file arguments, the team could launch using either the live camera 

stream or a from a file. 

When the program runs, the camera publishes every frame to the 

/camera/depth/color/points topic and keeps track of the current frame within the detection node. 

By leveraging the keyboard node to read user input, the manager node then directs the detection 

node to take the most recent saved frame and process it. All nodes report back to the manager node 

if they have completed their task and only until they have reported back does the manager 

command the next node in the process to continue running the program. An advantage to this 

modularized approach is that each of the nodes are independent of one another and may be 

switched out with other nodes as long as the topics are still published as expected. For example, 

the camera node could be switched out with another node that publishes similar data. Another 

component of our system included integrating the Jaco arm. For the purposes of our tests, we 

independently maneuvered the arm to the desired locations. Due to time constraints, the foundation 

for the integration of the jaco node was added to the system architecture, but the implementation 

is incomplete. To run the Jaco arm without facing issues caused by the kinova-ros package, the 

team recommends using Ubuntu 18.04. 

Before the team switched development to a virtual machine, both the object detection and 

motor control programs were running on a Windows environment. To begin testing integration 

methods in this environment the team had initially experimented with Google’s Firebase. 

However, it was quickly decided to switch to ROS to consolidate the system. Although the 

advantages of ROS heavily outweighed the disadvantages, an issue present in the system is that 

the topics in the system are constantly publishing and receiving information from nodes. This has 

the potential of affecting the performance of the system if important published information is 

dropped before it is received. Due to time constraints, the team did not modify the system to use 

ROS services which would remedy this issue. 
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6.5 Impacts of COVID-19 

All in all, the team is satisfied with the hard work of the members as well as collaborators 

who helped make this project a success. The COVID-19 pandemic contributed to various 

difficulties that affected the planning and outcome of this project. Due to COVID-19 restrictions, 

the team had limited access to the lab because of the space capacity of the lab and campus closures 

throughout the year. These limitations resulted in slower development and prototyping of fingers 

as we could not laser cut, solder, or access a power supply. Additionally, our team could not meet 

in person at the beginning of the year, which made integration later in the project more challenging. 

Furthermore, it was difficult to gain access to previously developed materials such as the force 

sensor. Despite the challenges of COVID-19, the help of collaborators ensured the team was able 

to address the above obstacles.   
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7. Conclusions and Recommendations 
 The FROG MQP was designed on the premise that origami soft robots would prove 

advantageous in gripper applications for their light weight, low cost, and modularity. By utilizing 

triangular beam and Yoshimura origami fingers, a position control system, and an object detection 

system, the resulting gripper was able to detect objects, identify the correct grasp pattern, and 

execute the grasp.  

The work accomplished in this MQP leads the team to believe that there is much room for 

exploration into the use of origami modules in robots. At the beginning of this MQP, the team set 

out to design and build a flexible robotic origami gripper that was able to recognize and grasp 

various objects. Throughout our project, the team analyzed the benefits of using foldable soft 

materials to create strong origami structures. This was evident as the gripper prototypes with either 

the triangular beam or Yoshimura fingers weighed less than 333 g and were able to withstand 

payloads of over triple its weight. Furthermore, the project investigated the advantages that hybrid 

controllers offer. Our origami fingers are underactuated, which makes their movement highly 

unpredictable. The introduction of a position controller allowed the team to control the grasps 

utilizing the finger’s position. Preliminary research was also conducted to explore the feasibility 

of using a force sensor as part of a hybrid controller scheme. Moreover, this MQP examined the 

use of computer vision to supplement the gripper’s abilities. An Intel RealSense depth camera was 

used to collect point cloud data to process with image segmentation algorithms. This application 

of computer vision allowed the gripper to respond to its environment and grasp various types of 

objects by identifying a corresponding grasp type based on the detected shape of the object using 

a computationally efficient principal component analysis (PCA). At the conclusion of the project, 

the team reaffirmed that there is potential to utilize the benefits of origami robots in other 

applications. 

Based upon the results of our work, we identified several recommendations that could 

improve this project in the future. There is potential to further experiment with different joint 

stiffnesses along the triangular beam finger. This would allow for a better closing configuration of 

the triangular beam finger for grasping objects. Additionally, we recommend an exploration of 

Yoshimura and triangular beam finger combinations to better understand if certain origami fingers 

are more suitable for specific finger positions. Another aspect to explore is the use of a second set 

of tendons to control the extension of the fingers since it was not integrated into the final design 

of the gripper. Furthermore, there is potential to improve upon the control of the gripper by fully 

incorporating a hybrid position and force controller. This addition would ensure proper feedback 

from the system both from the fingers’ position as well as the force detected at the fingertips. In 

terms of the vision system, the detection of small and irregular objects could be improved as the 

system can incorrectly segment them as part of a plane. There is the potential to modify the use of 

PCA and introduce an object detection method capable of distinguishing between a wider array of 

objects. Through the implementation of these recommendations, the Flexible Robotic Origami 

Gripper could be developed into a more robust system with more adaptive grasps.  
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Appendices 

Appendix A: SolidWorks to Adobe Illustrator Workflow for Laser 

Cutting 

 

In SolidWorks: 

● Create 2D origami pattern  

● Measure (and write down for use in Adobe Illustrator) the total length and width of 

design 

● Saved as DWG file 

 

In AutoCad: 

● Opened the DWG file 

● Select lines to be perforated and change to HIDDEN line type 

● Export as .eps file 

 

In Adobe Illustrator: 

● Open .eps file 

● Set artboard size to Legal and orientation to Landscape 

● Scale origami pattern to correct size using the total length dimension written down from 

SolidWorks (pattern originally shows up smaller) 

● Select all lines and change stroke to 0.001 

○ The dashed lines from AutoCad transfer over 

● Print to laser cutter 
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Appendix B: First Iteration Motor Circuit  

Schematic of the initial test circuit used to drive the origami modules.  
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Appendix C: Initial Motor Control Code Structure  

Class diagram of motor control program in beginning stages of the project. 
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Appendix D: Object Templates 

 
a: Non-downsampled cone template 

 
b: Downsampled cone template 

 
c: Non-downsampled thin cylinder template 

 
d: Downsampled thin cylinder template 

 
e: Non-downsampled cube template 

 
f: Downsampled cube template 
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g: Non-downsampled sphere template 

 
h: Downsampled sphere template 

 
i: Non-downsampled cylinder template 

 
j: Downsampled cylinder template 
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Appendix E: Test Images 

 
a: Test image - cylinder_0  

 
b: Test image - cylinder_1 

 
c: Test image - cylinder_2  

 
d: Test image - hook_0 

 
e: Test image - hook_1 

 
f: Test image - tripod_0 

 
g: Test image - pinch_0  

 
h: Test image - pinch_1 
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Appendix F: Final Motor Control Code Structure  

Final class diagram of motor control program. 
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Appendix G: MATLAB Modeling and Simulation code 

The code below includes two files. The file MQP_linkTracking.m establishes the controller using 

the dynamic model. Meanwhile, MQP_simulation.m utilizes the controller to control the input and 

simulate a controlled output from the fingers. 

 

MQP_linkTracking.m 
function [ dx ] = MQP_linkTracking( t,x,xf,Kp,Kd,a1,a2 ) 

%param should include: a1, a2 (trajectory parameters), 

%m1,m2,m3,I1,I2,I3,l1,l2,r1,r2,r3 (system parameters); 

I1=10; I2 = 10; I3 = 10; 

m1=.01; r1=.01; 

m2=.01; r2=.01; 

m3=.01; r3=.02; 

l1=.02; l2=.02; 

g=9.8; 

 

%% variables 

% joint angles and joint velocities 

theta1 = x(1); 

theta2 = x(2); 

theta3 = x(3); 

theta1_dot = x(4); 

theta2_dot = x(5); 

theta3_dot = x(6); 

 

% simplified sin/cos equations 

c1 = cos(theta1); 

c2 = cos(theta2); 

c3 = cos(theta3); 

c12 = cos(theta1 + theta2); 

c23 = cos(theta2 + theta3); 

c123 = cos(theta1 + theta2 + theta3); 

s2 = sin(theta2); 

s3 = sin(theta3); 

s23 = sin(theta2 + theta3); 

 

%% building matrices 

% building mass matrix 

a11 = m1*r1^2 + m2*(l1^2+r2^2+2*l1*r2*c2) + m3*(l1^2 + l2^2 + r3^2 + 2*l1*l2*c2 + ... 

    2*l1*r3*c23 + 2*l2*r3*c3) + I1 + I2 + I3; 

a12 = m2*(r2^2 + l1*r2*c2) + m3*(l2^2 + r3^2 + l1*l2*c2 + l1*r3*c23 + 2*l2*r3*c3) + I2 

+ I3; 

a13 = m3*(r3^2 + l1*r3*c23 + l2*r3*c3) + I3; 

a22 = m2*r2^2 + m3*(l2^2 + r3^2 + 2*l2*r3*c3) + I2 +I3; 

a23 = m3*(r3^2 + l2*r3*c3) + I3; 

a33 = m3*r3^2 + I3; 

 

% building damping matrix 

b1 = -m2*l1*r2*(2*theta1_dot +theta2_dot)*s2*theta2_dot - 

m3*(l1*l2*(2*theta1_dot+theta2_dot)*s2 + ... 

    l1*r3*(2*theta1_dot+theta2_dot+theta3_dot)*s23 + 

l2*r3*(2*theta1_dot+2*theta2_dot+theta3_dot)*s3); 

b2 = -m2*(l1*r2*(theta1_dot^2 + theta1_dot*theta2_dot)*s2 + 

l1*r2*theta1_dot*s2*theta2_dot) - ... 

    m3*(l1*l2*(theta1_dot^2 + theta1_dot*theta2_dot) +l1*r3*(theta1_dot^2 + 

theta1_dot*theta2_dot + ... 

    theta1_dot*theta3_dot)*s23 + l2*r3*(theta1_dot^2 + 2*theta1_dot*theta2_dot + 

theta1_dot*theta3_dot + ... 

    theta2_dot^2 + theta2_dot*theta3_dot)*s3 + l1*l2*theta1_dot*s2*theta2_dot + 

l1*r3*theta1_dot*theta2_dot*s23 + ... 
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    l2*r3*(2*theta1_dot + 2*theta2_dot + theta3_dot)*s3); 

b3 = -m2*(l1*r3*(theta1_dot^2 + theta1_dot*theta2_dot + theta1_dot*theta3_dot)*s23 + 

l2*r3*(theta1_dot^2 + ... 

    2*theta1_dot*theta2_dot + theta1_dot*theta3_dot + theta2_dot^2 + 

theta2_dot*theta3_dot)*s3 + ... 

    l1*r3*theta1_dot*theta3_dot*s23 + l2*r3*(theta1_dot+theta2_dot)*s3*theta3_dot); 

 

% building gravity matrix 

g1 = g*(c1*(m1*r1+m2*l1+m3*l1) + c12*(m2*r2 + m3*l2) + c123*(m3*r3)); 

g2 = g*((m2*r2 + m3*l2)*c12 + m3*r3*c123); 

g3 = g*(m3*r3*c123); 

 

%% creating the matrices 

 

Mmat = [a11 a12 a13 

    a12 a22 a23 

    a13 a23 a33]; 

Cmat = [b1 0 0 

    b2 0 0 

    b3 0 0]; 

Gmat = [g1 

    g2 

    g3]; 

 

%% calculations 

% compute the control input for the system, which 

% should provide the torques 

K = [Kp, Kd]; 

e = x(1:6,1) - xf; 

tau = -K*e;     

dtheta= x(4:6,1); 

 

ddq = Mmat\(tau -Cmat*dtheta - Gmat); 

 

% use the computed torque and state space model to compute 

% the increment in state vector. 

% compute dx = f(x,u); the rest 

% of which depends on the dynamic model of the robot. 

dx(1,1) = x(4,1); 

dx(2,1) = x(5,1); 

dx(3,1) = x(6,1); 

dx(4,1) = ddq(1,1); 

dx(5,1) = ddq(2,1); 

dx(6,1) = ddq(3,1); 

 

end 
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MQP_simulation.m 
%% clear 

clc 

clear all; 

close all; 

 

%% creating the robot 

% link lengths 

len0 = 2; 

len1 = 2; 

len2 = 2; 

len3 = 4; 

 

% creating links 

link0 = Revolute('a', len0, 'alpha', 0, 'qlim', [0 0]); 

link1 = Revolute('a', len1, 'alpha', 0, 'qlim', [0 pi/3]); 

link2 = Revolute('a', len2, 'alpha', 0, 'qlim', [0 pi/3]); 

link3 = Revolute('a', len3, 'alpha', 0, 'qlim', [0 pi/3]); 

 

% creating robot 

robot = SerialLink([link0 link1 link2 link3], 'name', 'tribeam') 

 

% config in form [fixed joint, joint1, joint2, joint3] 

config1 = [0 0 0 0];             % plot fully expanded 

config2 = [0 pi/3 pi/3 pi/3];    % plot fully contracted 

% config3 = [0 pi/8 pi/8 pi/8];    % plot slighyly contracted 

 

%% modeling 

% parameters for the controller 

x0= [config1(2),config1(3),config1(4),0,0,0]; 

tf = 5; 

xf = [config2(2); config2(3); config2(4); 0; 0; 0]; 

Kp = diag([300, 700, 300]); 

Kd = diag([200, 200, 200]); 

a1 = 1; 

a2 = 1; 

 

% controller 

options = odeset('RelTol',1e-4,'AbsTol',[1e-4, 1e-4, 1e-4, 1e-4,1e-4, 1e-4,]); 

[T,X] = ode45(@(t,x) MQP_linkTracking(t,x,xf,Kp,Kd,a1,a2),[0 tf],x0, options); 

 

% recording all the joint values for the contorlled config2 

for k = 1:length(X(:,1)) 

    controlled_config2 = [0, X(k,1), X(k,2), X(k,3)]; 

end 

%% plotting the robot 

% configure timing and trajectory 

t = [0:.05:1.5]'; 

qtg = jtraj(config1, controlled_config2, t); 

 

% initializing arrays that will store all the joints 

joint1Arr = []; 

joint2Arr = []; 

joint3Arr = []; 

 

% animated plot config 

fh = figure(); 

fh.WindowState = 'maximized'; 

 

% plotting the robot and recording joint angles 

tiledlayout(1,2) 

nexttile 

for q=qtg' 
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  robot.plot(q','floorlevel',-1,'zoom', .8, 'noraise', 'tilesize',3 ,... 

  'jointcolor','m', 'linkcolor', 'r','base','basecolor','k'); 

  view(70,60); 

  joint1Arr = [joint1Arr; q(2)]; 

  joint2Arr = [joint2Arr; q(3)]; 

  joint3Arr = [joint3Arr; q(4)]; 

end 

 

% initializing an customizing plot 

nexttile 

plot(T, (X(:,1)*180/pi),'k--'); 

hold on 

plot(T, (X(:,2)*180/pi),'b--'); 

hold on 

plot(T, (X(:,3)*180/pi),'m--'); 

h = animatedline('Marker','o', 'Color','k'); 

i = animatedline('Marker','^','Color', 'b'); 

j = animatedline('Marker','s','Color', 'm'); 

legend('ideal theta_1','ideal theta_2','ideal theta_3','simulation theta_1','simulation 

theta_2','simulation theta_3', 'Location', 'southeast'); 

title('Control of theta_1, theta_2, and theta_3 for Triangular Beam Fingers'); 

xlabel('Time (s)'); 

ylabel('Joint Angles (degrees)'); 

xlim([0 2]); 

index = 1; 

 

% plotting joint angles on a graph 

for x = 0:1.5/length(joint1Arr):1.5 

    addpoints(h,x,joint1Arr(index)*180/pi); 

    addpoints(i,x,joint2Arr(index)*180/pi); 

    addpoints(j,x,joint3Arr(index)*180/pi); 

    drawnow; 

    pause(0.2); 

    if index < 31 

        index = index + 1; 

    end 

end 
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Appendix H: Virtual Machine Environment Setup 

Steps to set up a virtual machine environment for the system: 

1. Use VMWare or VirtualBox to install Ubuntu 18 

2. Install ROS Melodic 

3. Install Intel RealSense SDK 

a. If the camera is not detected, unplug and plug back in the USB connection. 

b. Installs the realsense viewer 

c. Test install: 

i. Run realsense-viewer (without camera connected use a bag file to launch) 

4. Install ROS Wrapper 

a. (Installs librealsense library) 

b. Source the devel/setup.bash after installation 

c. Test install: 

i. roslaunch realsense2_camera rs_camera.launch filters:=pointcloud 

ii. rosrun rviz rviz (Should see point cloud after modifying world view) 

5. Git clone repo of the project’s ROS package and install 

6. Install rosserial in ROS workspace 

a. sudo apt-get install ros-melodic-rosserial-arduino 

b. sudo apt-get install ros-melodic-rosserial 

7. Install VSCode and add PlatformIO extension 

8. Clone gripper-control code and import project into PlatformIO 

9. Upload code to ESP32 

a. sudo chmod a+rw /dev/ttyUSB0 

b. /dev/ttyUSB0 was automatically detected, but if having issues connecting, add 

udev rules of PlatformIO 

10. Verify that everything is installed by launching command #2 above 

11. Install kinova-ros package for ROS Melodic 

 

Commands to run: 

1. In launch file change the default argument to desired bagfile: 

a. <arg name="rosbag_filename" value="/path/to/bagfile/test.bag"/> 

2. roslaunch ros_object_detection frog_mqp.launch cam_type:=file 

a. Make sure that code is uploaded to ESP32 beforehand 
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Appendix I: Relevant GitHubs 

To note, only collaborators can view the code as they are private repositories. Please contact gr-

frog-mqp@wpi.edu for further information. 

 

Motor Control 

This GitHub link contains the code that pertains to driving the motors attached to the 

origami finger tendons and the controlling the system with a hybrid position and force sensing 

controller: https://github.com/smspry/MQP-Gripper.v1.git.  

 

Vision System 

This GitHub link contains the code related to the ROS package created for everything 

excluding the gripper node: https://github.com/mariamedi/ros_object_detection 

 

https://github.com/smspry/MQP-Gripper.v1.git
https://github.com/mariamedi/ros_object_detection

