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Abstract 

Chemical reactions can have a staggering amount of molecular complexity. Reaction 

mechanisms have been proposed with over one hundred elementary reaction steps that occur in 

the same system simultaneously. While several methods exist to simplify and make sense of the 

pathways and kinetics via which these reactions proceed, e.g., reaction graphs, sensitivity or flux 

analysis, microkinetic analysis, and comparison of energy landscapes, etc., these methods all have 

limitations and are often not able to capture a comprehensive picture of the kinetics of system.   

It has been found useful to view these mechanisms as a network, i.e., a reaction graph. 

These graphs enable the visualization of the pathways of the reaction and can provide an analytical 

tool for pathway and kinetic analysis. However, many of the specific graph-theoretic approaches 

in the literature are not the most suitable for kinetic analysis of complex mechanisms; as they are 

simply not based on rules that are rigorous enough to fully enumerate all the pathways or provide 

quantitative analysis of the reaction rates. Our Reaction Route (RR) Graph approach is different 

in that it depicts the mechanism by a graph that is consistent with all physical and chemical laws 

associated with reaction networks, particularly being consistent with mass and energy 

conservation, i.e., Kirchoff’s Flux Law (KFL) and Kirchoff’s Potential Law (KPL). Because of 

their adherence to these laws, RR Graphs are able to provide an accurate graph-theoretical tool not 

only for depicting all reactions routes as walks (hence the name RR Graph) but also for pruning 

mechanisms and allowing a simplified but accurate quantitative description of reaction rates. 

This adherence to KFL and KPL does mean that the construction and implementation of 

these graphs can be prohibitively difficult for large mechanisms. For large reaction systems, 
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especially nonlinear mechanisms, it is not realistic to generate these graphs by hand. And although 

there exists an analytical solution to find a determinant matrix for the RR Graph of a mechanism, 

the process involves an exhaustive search for a solution which experiences a combinatorial 

explosion as the number of steps gets very large. This leads to the idea of developing an algorithm 

for a computer program that can determine how to generate these graphs automatically. 

Unfortunately, the same combinatorial explosion is present such that for a moderately sized twenty 

step mechanism, it could take an average computational processor over a decade to find a solution. 

We have determined, however, that this brute force combinatorial approach can be avoided if 

heuristics could be developed to bridge gaps in our knowledge of how these graphs are constructed. 

Thus, developing a better analytical approach and/or a tighter set of heuristics for a computer 

algorithm are the overarching goals of this work. 

To make progress toward developing such heuristics, a set of microkinetic mechanisms 

were analyzed with the notion that the realization of the RR Graphs would highlight a better 

approach to their construction and usage. In particular, a very large linear reaction system, a 

smaller linear system and two non-linear reaction systems were analyzed to develop insights into 

how each graph is manually constructed and analyzed. Furthermore, kinetic analysis was done for 

these mechanisms and compared to experimental data and other analytical tools to prove not only 

the validity of the RR Graphs, but also how they are a significant improvement over more 

commonly used approaches for mechanistic and kinetic analysis. 

Based on the lessons learned through a consideration of these examples, a set of heuristics 

are established and enumerated with the ultimate goal of developing an intuitive algorithm that 

can help automate drawing and kinetic analysis via RR Graphs of complex mechanisms. 
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Chapter 1. Introduction 

The difference between having a feasible, profitable process technology and having one 

that fails, can be as small as finding the right catalyst. Unfortunately, predicting the performance 

of a particular catalyst and finding the right catalyst is not yet a hard science and can take a large 

amount of resources. It takes considerable time and other resources to set up and perform 

experiments or simulations. Developing an understanding of what pathways a reaction can take 

can also take years of research. An example is the Haber-Bosch process for ammonia synthesis 

from elemental N2 and H2 developed in early 20th century that resulted in synthesis of artificial 

fertilizers and a key technological advance in overcoming hunger worldwide. The iron catalysts 

for the industrial process were developed by Fritz Haber and Carl Bosch after a dozen years of 

painstaking research (today’s formulation differs little from original) involving 2,500 different 

formulations based on practically all elements of the periodic table [1]. Haber and Bosch were 

subsequently awarded the Nobel Prize for this work. It took another 60 years before the mechanism 

(Table 1.1) and energetics (Figure 1.1) were established by Gerhard Ertl [2], who also received the 

Nobel Prize. 

s  Reaction Step 

1s : H2 + S ⇄ 2H•S 

2s : N2 ⇄ N2•S 

3s : N2•S ⇄ 2N•S 

4s : N•S + H•S ⇄ NH•S 

5s : NH•S + H•S ⇄ NH2•S 

6s : NH2•S + H•S ⇄ NH3•S 

7s : NH3•S ⇄ NH3 

Table 1.1: Catalytic synthesis of ammonia mechanism [1]. 
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Figure 1.1: Energy landscape for ammonia production [2]. 

Furthermore, operating conditions such as temperature, reactant concentration, or electrical 

overpotential for electrochemical processes, can impact the reaction rate just as much, so that 

understanding mechanism as well as kinetics is important. Years of research have been devoted to 

some reactions without coming to a hard conclusion about the kinetics of the reaction. For 

example, the oxygen reduction reaction (ORR) on the cathode of a proton exchange membrane 

(PEM) fuel cell is one of the major sources for energy lost in the operation of a fuel cell [3]. Thus, 

many studies have been conducted to better understand the mechanism and kinetics of this reaction 

[3-11]. Platinum catalysts are an effective but high cost catalyst for this reaction and there is a high 

interest in developing a cheaper alternative, so that research on ORR catalysts and mechanism 

continues. Although the mechanism for the ORR has been well researched, it has not yet been 

unequivocally established. Thus, for each new potential catalyst, a large set of elementary reaction 
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steps must be considered including their step kinetics, as bottleneck steps can vary with the 

catalyst. 

This is an issue with many reaction systems; there are so many different directions the 

reaction path can take, that it can be practically overwhelming. Recently, development of quantum 

mechanical calculation software has provided us a powerful tool for understanding the mechanism 

and kinetics of complex chemical catalytic reactions. Often we are concerned with optimizing the 

conditions to improve the overall rate on a given catalyst, but we also might be attempting to push 

the reaction in a certain direction to avoid a particular side product, which might require a different 

catalyst formulation. In either case, very thorough research is required to grasp the scope of all the 

theoretical steps in a mechanism on a given catalyst. Then, to start to understand the impact of 

each step, a calculation of the elementary reaction step energetics may be done using, e.g., density 

functional theory (DFT) or other methods. This provides the energy change and the energy barriers 

for each step, but does not provide us with enough insight to exclude any of the proposed steps. 

Conventionally, for kinetic analysis, 1) the Langmuir-Hinshelwood-Hougen-Watson (LHHW) 

approach, 2) the quasi-steady state (QSS) assumption and, 3) the microkinetic approach are used 

with a goal to determine a single rate-determining step (RDS). One could also use a simple flux 

analysis, or Campbell’s Degree of Rate Control (DRC) [13] to find the RDS. These approaches to 

reduce and better understand these systems usually oversimplify the mechanism and make 

unwarranted assumptions that could lead to ignoring important steps in the reaction network. 

There is, thus, a need for developing a rigorous approach that does not make arbitrary 

assumptions, e.g., excluding all but one elementary step, or assuming there exists a single most 

abundant reactive intermediate (MARI). These efforts could lead to the misidentification the rate-

limiting steps (RLS), because there might be more than one step that control the rate of reaction, 
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and more than one pathway that contributes materially, especially as conditions change. The 

Reaction Route Graph approach gives us this tool. Through a graph-theoretical analysis of all the 

elementary steps, each step and each pathway simultaneously is present on the graph produced by 

this method and contributes to the flux. If further provided with the activation energies that can be 

obtained through DFT, the Unity Bond Index – Quadratic Exponential Potential (UBI-QEP) 

method [14-17] or other methods, a rigorous kinetic analysis and pruning can be undertaken. In 

the RR Graph approach, each step is considered as a resistance to the overall reaction. In other 

words, we can look at the graphs in the same way as an electrical circuit diagram, since conformity 

with KCL and KPL makes RR Graph completely analogous to electrical circuits. We thus liken 

reaction rate to current and chemical affinity, or Gibbs free energy, change to voltage for both 

individual steps and overall reaction (OR). RR Graphs are further able to evaluate the resistance 

of each step and by combining those resistances appropriately, as if it were an electrical circuit, 

the (OR) resistance can be obtained, and hence the OR rate. Analysis of step resistance and those 

for parallel pathways also allow rigorous and transparent pruning. To demonstrate the superiority 

of this method, a direct comparison of the results of the RR Graph approach and those of 

Campbell’s DRC is made in this thesis. 

When we start to look at more complicated catalytic reactions, we find that the size of these 

networks can reach dozens and sometimes over a hundred elementary reactions [29]. With so many 

reactions taking place, it is difficult to visualize the staggering number of pathways for the overall 

reaction. One approach to this problem is to depict the network as a mathematical graph similar to 

the commonly used chemical mechanism schematics, as it is easier to analyze the reaction steps 

and reaction paths based on graph theory. This idea of using graphs to represent chemical reactions 

is not unique – in fact there exist many alternate approaches [18-23]. What is common among 
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these approaches, however, is that they do not rigorously follow all the rules of graph theory and 

chemical kinetics. Most egregious is the fact that energy and mass are not strictly conserved as the 

pathways are followed. If the graph were to realistically represent a chemical network, one should 

be able to follow any path on the graph without gaining or losing extra energy or mass. This is 

simply not true for conventional graph tools such as p-graphs [18] or reaction graphs [19]. The RR 

Graph approach, on the other hand, is unique in this respect. 

As an example, Figure 1.2 shows an RR Graph for a 12-step N2O decomposition 

mechanism on Fe-ZSM-5 zeolite [29] summarized in Table 1.2 [30]. All the reaction pathways are 

represented on it as pathways between the terminal nodes, TN1 and TN2, and it is easy to see how 

the elementary steps are interconnected at intermediate nodes, n1-n8. Although it might not be 

intuitive, unlike conventional graphs or reaction schematics each node of the graph does not 

necessarily represent a single intermediate species, as it would then be impossible to guarantee 

consistence with mass balance laws. However, this allows the graph to be used for quantitative 

analysis of the reaction network, which will be discussed in great detail in the following chapters. 

 For comparison, Figure 1.3 is a depiction of the same mechanism as a conventional 

reaction schematic [31]. These schematics are built to visualize how the elementary reaction steps 

are interconnected. The key intermediate species are drawn, often with their chemical structure, 

which are connected by reactions steps represented by directed arrows. Other terminal and 

intermediate species are intermittently included with a “+” or “-“ sign along the arrows to designate 

them as either a product or reactant. There is indeed a lot of useful chemistry insights to be gained 

from such a schematic, it is often difficult to visualize the alternate pathways of the reaction. In 

fact, we cannot confirm that all the pathways are even present. Most importantly, they cannot be 

used for quantitatively analyzing the network as they lack the rigorously guidelines of chemical or 
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graph theory laws, thus they are nothing more than a schematic representative of the mechanism, 

while the RR Graphs provide a quantitative representation. Of Course, what is lost in this RR 

Graph is the details of chemical structure, etc. 

 

Figure 1.2: RR Graph representation of a 12-step reaction mechanism for N2O decomposition on Fe-ZSM-

5. [29] 

 

Figure 1.3: Schematic representation of a 12-step reaction mechanism for N2O decomposition Fe-ZSM-5. 

[31] 
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s  Reaction Step 

1s : N2O + I0 ⇄ I1 

2s : I1 ⇄ I2 + N2 

3s : I1 ⇄ I3 + N2 

4s : I2 ⇄ I3 

5s : N2O + I3 ⇄ I6 

6s : I6 ⇄ I5 + N2 

7s : I5 + I0 + O2 

8s : N2O + I2 ⇄ I4 

9s : I4 ⇄ I5 + N2 

10s : I3 ⇄ I7 + O2 

11s : N2O + I7 ⇄ I8 

12s : I8 ⇄ I0 + N2 

Table 1.2: 12-step reaction mechanism for N2O decomposition on Fe-ZSM-5. I0=Z–[FeO]+; I1=Z–

[FeO]+(ON2); I2=Z–[OFeO]+; I3=Z–[FeO2]+; I4=Z–[OFeO]+(ON2); I5=Z–[O2FeO]+; I6=Z–[FeO2]+(ON2); 

I7=Z–[Fe]+; I8=Z–[Fe]+(ON2) [31]. 

 

Besides allowing reaction route and pathway analysis, the RR Graph approach, as 

previously mentioned, is a comprehensive tool for pruning mechanisms and providing a 

quantitative analysis of the kinetics. The reason for this is because it follows Kirchoff’s Flux Law 

(KFL), or mass balance, and Kirchoff’s Potential Law (KPL), or Hess’s Law, both of which are 

central for electrical circuits [24-25]. KFL states that the flux entering a node should be equal to 

that exiting a node. KPL states that for any cycle in a graph (a cycle is any set of elementary steps, 

that, when added together, cancel out all the species, i.e., a closed walk on a graph), the net voltage 
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or thermodynamic potential is zero. For chemical reactions, we consider chemical potential as an 

analog to voltage, but this law holds true for any thermodynamic state property, which ultimately 

is a statement of Hess’s Law. Thus, the RR Graph approach is completely analogous to electrical 

circuits and is hence a more rigorous and complete analytical tool than other graph-based reaction 

network approaches that are not consistent with KFL and/or KPL. Several mechanisms have been 

successfully analyzed through the RR Graph approach leading to the elucidation of dominant 

pathways and predictive equations for the overall reaction rate [26-29]. 

Currently, a limiting factor for the use of this approach is the difficulty in the construction 

of the graph for very large reaction systems, particularly non-linear ones, i.e., those with non-unit 

stoichiometric numbers [26]. As the number of elementary steps increases for a kinetic mechanism, 

the number of reaction routes increases factorially. A complete RR Graph has to include each one 

of these routes and combine them in such a way so that the graph is consistent with KFL and KPL, 

which proves to be quite restrictive, although usually resulting in a single unique solution. An 

analytical approach has been developed by us that produces an incidence matrix from which to 

draw the graph [24, 25]. However, it involves manual matrix row operations that is feasible for 

small systems, but for larger and especially non-linear systems, this process involves a lot of trial 

and error that is simply not practical. Non-linear systems, i.e., systems with higher than unit species 

stoichiometric coefficients in the mechanisms provide the most trouble, as they increase the 

complexity of the RR Graph by requiring each step to appear at least twice in the graph. These 

difficulties lead to the conclusion that in order to expand the utility of the RR Graph approach, a 

better, more efficient way to generate the RR Graph for a given mechanism is required. 

Obviously, a computer program that could draw the graph automatically would be ideal. It 

would be best to have a publicly available program that could analyze a given reaction mechanism 
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and provide an RR graph that would be consistent with KFL and KPL. This would further enable 

any mechanism to be more easily analyzed via a graph that allows enumeration of the pathways of 

the reaction as walks. An evaluation of the kinetics would then allow the pruning of the graph, by 

eliminating pathways that provide impediments for the reaction to go through, or having a high 

resistance if one were to use an electrical analogy. Attempts were made to achieve this goal by 

implementing the heuristics and graph theory tools of the hand drawn method into such a complex 

program. However, the same combinatorial explosion still existed, e.g., an attempt to automate 

drawing the graph for water-gas shift (WGS) reaction mechanism in Chapter 3 was estimated to 

take decades of computational time to exhaust the search for a valid graph using the algorithm we 

have now. 

To identify the shortcomings of our current understanding of this approach, an in depth 

examination of a larger system must be completed. A larger RR Graph can theoretically be hand 

drawn using the same methods as the smaller graphs we have so far investigated, but there are so 

many different orientations to consider for the placements of the steps that simple trial and error 

does not appear to be feasible. Brute force methods can be applied to the enumeration of the 

reaction routes, but a better approach to putting them together into a single graph has yet to be 

achieved. 

The ultimate goal of this work is to identify heuristics on how these graphs may be 

constructed. Can we identify where certain elementary steps must be connected? Is there an order 

to how empty routes should be combined? Basically, there needs to be a set of instructions and 

theorems that can be implemented into a computer program that will significantly reduce the 

number of options that need to be search. Ideally, this would result in a deterministic matrix 

manipulation or other construction method that does not require any searching at all. 
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This thesis represents the efforts toward this goal. The approach taken here was to consider 

reaction systems with different characteristics and levels of complexity so that the manual system 

of RR Graph construction could be delineated, leading to a set of heuristics. Of course, it must be 

mentioned that for microkinetic analysis the RR Graph is not essential, just as a circuit diagram is 

not essential for an electric circuit. What is required is a set of KFL and KPL relations. However, 

no one can argue the utility of an electric circuit diagram. The RR Graphs are similarly invaluable 

especially for RR enumeration, flux analysis and for pruning. 

Chapter 2 of this thesis gives a thorough description of the theory of Reaction Route Graphs 

along with the electrical analogy approach that is used to prune the graphs and derive the rate 

expression. This provides the groundwork for the algorithm and the process for the analysis of the 

mechanisms in the subsequent chapters. Two of our previous implementations of RR Graph 

analysis are given as illustrations, one that shows of the WGS reaction on Pt (111) catalyst and 

another that considers the hydrogen evolution reaction (HER). Other graph theory approaches for 

analyzing reaction networks available in the literature are examined for comparison and the 

advantages of the RR Graphs are made clear. 

Chapter 3 provides the WGS reaction on Pt-Re as an example of mechanism analysis and 

pruning. In addition, a comparison was made between the RR Graph approach and Campbell’s 

Degree of Rate Control (DRC), one of the more commonly used and powerful techniques to 

identify rate determining or rate limiting steps and intermediates. This comparison demonstrates 

the shortcomings of the DRC method in identifying the rate limiting steps, and how the RR Graph 

approach is able to quantitatively analyze the system without these pitfalls. 

A further example of a non-linear system of interest to us is given in Chapter 4, where the 

oxygen reduction reaction (ORR) is considered over several catalysts. This example also 
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demonstrates the value of the RR Graph for analyzing the same system under a wide range of 

conditions and dozens of alternate catalyst formulations. 

Chapter 5 provides an analysis of the methane dry reforming (MDR) reaction on Ni 

catalyst, a reaction system of current interest for CO2 mitigation. Of particular note is the presence 

of multiple overall reactions (OR) in this mechanism. This chapter demonstrates the difficulty of 

determining which of the may ORs should be considered and how to properly draw the RR Graph 

for multiple ORs. 

Chapter 6 summarizes the current methodology for improving the heuristics for generating 

RR Graphs. The RR Graph approach developed by us has already demonstrated its versatility and 

proven via a number of examples considered so far. If the technique could be automated it would 

represent development of a new tool for reaction network analysis with broad utility. The current 

attempts to design a program for automating the graph drawing process is discussed along with a 

detailed list of what is believed to be the rules or guidelines for drawing the graphs. It also exhibits 

our current limitations by providing an example of the largest mechanism that could be graphed 

using the program, a 13-step mechanism of methanol steam reformation on Pt(111). Further 

discussion is given on how analyzing larger and non-linear systems will lead to identifying patterns 

in the constructed graphs, eventually leading to the development of tighter heuristics to follow for 

the construction process, e.g., for a currently prohibitively large NOX decomposition mechanism 

as an example.  

Chapter 7 proposes future work into the nitrous oxide decomposition system, as well as 

other possible mechanisms worth studying via the RR Graph approach.  

  



 12 

 

1.1 References 

1 G. Ertl, Primary steps in catalytic synthesis of ammonia. J. Vac. Sci. Technol. A. 1, 1247-1253 

(1983) 

2 M. Appl, Ammonia, 2 Production Processes. Ullmann’s Encyclopedia of Industrial Chemistry 

(2012). Wiley 

3 A.J. Herron, J. Jiao, K. Hahn, G. Peng, R.R. Adzic, M. Mavrikakis, Oxygen Reduction 

Reaction on Platinum-Terminated ;Onion-structured’ Alloy Catalysts.  Electrocatalysis DOI 

10.1007/s12678-012-0087-0 (2012) 

4 J.L. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Controlling the catalytic 

activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. 

Chem. Int. Ed. 44(14), 2132–2135 (2005) 

5 M.B. Vukmirovic, J. Zhang, K. Sasaki, A.U. Nilekar, F. Uribe, M. Mavrikakis, R.R. Adzic, 

Platinum monolayer electrocatalysts for oxygen reduction. Electrochim. Acta 52(6), 2257–

2263 (2007)  

6 R.R. Adzic, J.X. Wang, Configuration and site of O2 adsorption on the Pt(111) electrode 

surface. J. Phys. Chem. B 102(45), 8988–8993 (1998) 

7 J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, 

Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 

108(46), 17886–17892 (2004) 

8 Rodrigo Ferreira de Moraisa, Philippe Sautetb, David Loffredab, Alejandro A. Francoa, “A 

multiscale theoretical methodology for the calculation of electrochemical observables from ab 



 13 

 

initio data: Application to the oxygen reduction reaction in a Pt(1 1 1)-based polymer 

electrolyte membrane fuel cell” Electrochimica Acta 56 (2011) 10842– 10856 

9 Guang-Feng Wei, Ya-Hui Fang, and Zhi-Pan Liu, “First Principles Tafel Kinetics for Resolving 

Key Parameters in Optimizing Oxygen Electrocatalytic Reduction Catalyst”, J. Phys. Chem, 

116, 12696−12705 (2012) 

10 Matthew P. Hyman and J. Will Medlin “Mechanistic Study of the Electrochemical Oxygen 

Reduction Reaction on Pt(111) Using Density Functional Theory”, J. Phys. Chem. B, 110, 

15338-15344 (2006) 

11 Wang, J. X., Zhang, J., and Adzic, R. R., “Double-Trap Kinetic Equation for the Oxygen 

Reduction Reaction on Pt(111) in Acidic Media,” J. Phys. Chem. A., 111, 12702-12710 (2007a) 

12 Fishtik, I., Callaghan, C. A., and Datta, R., “Reaction Route Graphs. I. Theory and Algorithm,” 

J. Phys. Chem. B, 108, 5671-5682 (2004a). 

13 Campbell, C. T. (2001), “Finding the rate-determining step in a mechanism: comparing 

DeDonder relations with the “Degree of Rate Control”,” Journal of Catalysis, 204(2), 520-

524. 

14 A. GroB, Surf. Sci. 500 (2002) 347-367. 

15 M. Neurock, J Catal. 216 (2003) 73-88. 

16 F. Ruette, M. Sanchez, A. Sierraalta, C. Mendoza, R. Anez, L. Rodriguez, O.Lisboa, J. Daza, 

P. Manrique, Z. Perdomo, M. Rosa-Brussin, J. Mol. Catal. A: Chemical. 228 (2005) 211-225. 

17 Desai, M. Neurock, Electrochimica Acta. 48 (2003) 3759-3773. 

18 O.N. Temkin, A.V. Zeigarnik, D.G. Bonchev, Chemical Reaction Networks: A Graph-

Theoretical Approach, CRC Press, New York, 1996. 



 14 

 

19 L. T. Fan, Y.-C. Lin, S. Shafie, B. Bertok, F. Friedler, “Exhaustive Identification of Feasible 

Pathways of the Reaction Catalyzed by a Catalyst with Multiactive Sites via a Highly Effective 

Graph-Theoretic Algorithm: Application to Ethylene Hydrogenation,” Ind. Eng.Chem. Res, 

2012, dx.doi.org/10.1021/ie200718w 

20 J.A. Papin, J. Stelling, N.D. Price, S. Klamt, S. Schuster, B.O. Palsson, “Comparison of 

network-based pathway analysis methods,” Trends in Biotechnology 22 (2004) 400-405. 

21 Schuster, S., Dandekar, T., Fell. D.A. “Detection of Elementary Flux Modes in Biochemical 

Networks: A Promising Tool for Pathway Analysis and Metabolic Engineering.” Trends 

Biotechnol .,17, 53–60 (1999). 

22 B.O. Palsson, Systems Biology: Simulation of Dynamic Network States, Cambridge 

University Press, Cambridge, UK, 2011. 

23 D. A. Beard, H. Qian, Chemical Biophysics: Quantitative Analysis of Cellular Systems, 

Cambridge University Press, Cambridge, 2008. 

24 Fishtik, I., Callaghan, C. A., and Datta, R. (2004a), “Reaction route graphs. I. Theory and 

algorithm,” The Journal of Physical Chemistry B, 108(18), 5671-5682. 

25 Fishtik, I., Callaghan, C. A., & Datta, R. (2004b), “Reaction route graphs. II. Examples of 

enzyme-and surface-catalyzed single overall reactions,” The Journal of Physical Chemistry B, 

108(18), 5683-5697. 

26 Callaghan, C. A., Vilekar, S. A., Fishtik, I., & Datta, R. (2008), “Topological analysis of 

catalytic reaction networks: Water gas shift reaction on Cu (111),” Applied Catalysis A: 

General, 345(2), 213-232. 

27 Vilekar, Saurabh A, Fishtik, Ilie, Datta, Ravindra, “Kinetics of the Hydrogen Electrode 

Reaction” Journal of The Electrochemical Society, 157 7 B1040-B1050 (2010) 



 15 

 

28 S.A. Vilekar, I. Fishtik, R. Datta, in: I. Halasz (Ed.), A comprehensive graph-theoretic 

approach for mechanistic and kinetic analysis of zeolite catalysis: N2O decomposition on Fe-

ZSM-5, Transworld Research Network, Kerala, India, 2010, pp. 49-79. 

29 S.A. Vilekar, I. Fishtik, R. Datta, Chem. Eng. Sci. 64 (2009) 1968-1979. 

30 Heyden, A.; Bell, A. T.; Keil, F. J., (2005), “Kinetic modeling of nitrous oxide decomposition 

on Fe-ZSM-5 based on parameters obtained from first-principles calculations. J. Catal. 109, 

(5), 1857-1873. 

31 Heyden, A. (2005), “Theoretical investigation of the nitrous oxide decomposition over iron 

zeolite catalysis. Ph.D. Thesis, Hamburg University of Technology, Germany. 

  



 16 

 

Chapter 2. Reaction Route and Graph Theory 

The RR Graph approach has been developed to provide a comprehensive tool for chemical 

reaction networks that goes beyond the current methods to elucidate the different reaction 

pathways, provide their fluxes, and identify the important pathways as well as kinetic steps. One 

can visualize a chemical network as a roadmap that covers the space through which the reaction 

proceeds and can take many pathways to get from the products to the reactants. The RR Graph 

approach creates this roadmap and is able to assign each pathway a quantitative estimate of traffic 

flux and how difficult it is to traverse that pathway and the key steps that impede a pathway can 

be identified. This chapter discusses the theory behind RR Graphs as well as the graph-theory to 

which it relates. Several examples of chemical reaction networks are provided and the advantages 

of using RR Graphs are discussed. Finally, other graph-theoretical approaches are discussed for 

comparison.  

2.1 Reaction Route Theory 

This section presents in detail the theory behind the RR Graph approach. The underlying 

linear algebra and graph theory are important parts of the approach that need to be explained. The 

basic approach for construction a minimal linear RR Graph can be implemented into a program to 

automate the process, but for more complicated systems, this approach does not apply. Hopefully, 

this approach will eventually be extended to provide a fully analytical approach to constructing 

the graphs without needing a brute force or a trial-and-error method for finding the incidence 

matrix of the graph. First, an understanding of the definitions used in this study is provided. 

To avoid confusion, the terms used in the approach related to graph theory are defined, 

since alternate terminology and representation for reaction networks in graph theory exists in the 



 17 

 

literature. We define a Reaction Route Graph GR as an ordered, connected, directed (i.e., a 

digraph), planar or nonplanar, cycle graph comprising B directed branches or edges, each 

representing an elementary or an overall reaction {OR, s1, s2, …, sρ, … sp}, and N nodes {n1, n2, 

…, nN}, that illustrate how the reaction steps are interconnected to allow for all of the direct 

reaction routes to be traced [1, 2]. Edges are depicted on the graph as directed arrows and nodes 

are circles, typically blue for terminal nodes (nodes that have the OR incident) and red for 

intermediate nodes, which are connected to elementary reactions. If all given reactions are 

represented only once in the graph, it is termed a minimal reaction route graph, GR,min. It has been 

determined empirically that for mechanisms with stoichiometric coefficients other than unity, that 

the graph will need to represent each elementary reaction step twice. As per the convention in 

graph theory, when an edge originates at a node nj, it is said to be incident from the node nj. When 

an edge terminates at a node nj, it is said to be incident to the node nj. Two or more edges are 

parallel if they have in common the same pair of starting and ending nodes. The orientation of the 

edge is simply assumed, and the reaction may actually proceed in either direction. There can, of 

course, be more than one overall reaction in a graph, which leads to more complexity, but can 

typically treated in the construction of the graph as another elementary step reaction. It may be 

remarked that the nodes in the reaction route graphs defined above do not denote single 

intermediates or terminal species as is almost universally the case in the so-called “reaction graphs” 

[3], but simply the interconnection of reactions involved in reaction routes, hence the reason for 

labeling these “reaction route graphs.” As a result, a node nj here represents properties associated 

with the sum of products of the reactions incident to the node plus the sum of reactants of the 

reactions incident from the node with an appropriate sign (negative for reactions incident to, and 
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positive for reactions incident from a node, as discussed later in the context of the incidence 

matrix).  

Following the detailed RR Graph theory first presented by Fishtik et al. [1], we consider a 

set of p elementary reaction steps sρ (ρ = 1,2, …, p):  


l

i ii1
0B , involving species Bi (i = 1, 2, 

…, l). The stoichiometric coefficient νρi of species i in the reaction sρ is, positive for a product, 

negative for a reactant and zero for an inert. All reactions are considered to be reversible. The 

reversibility and direction of the reaction flux for a reaction can be determined by the sign and 

magnitude of its affinity [1]. The affinity is a state function characteristic of the reaction and its 

distance from equilibrium, which is defined as the negative of the step’s Gibbs free energy change, 

or as the difference of the forward affinity A


 minus the revers affinity A

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where μi is the chemical potential of species Bi. This provides the condition for the reaction 

equilibrium, as well as the direction of spontaneous reaction rate rρ (i.e., forward for Aρ > 0, or for 

A


 > 
A


, and reverse for Aρ < 0, or for 
A


 < 
A


), as expressed succinctly by the De Donder 

inequality, 0  rAP [4]. 

The rate of an elementary reaction step is given by [5] 
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where ai is the activity of the species Bi. With the use of 
iii aRT ln0   , Eq. (2.1) may be 

written in the form  
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which is the so-called De Donder relation, where )/(RTA A is the dimensionless affinity. 

It is more useful to write an elementary reaction step sρ for a catalytic reaction in a more 

explicit form in terms of the reaction intermediates Ii and the terminal species Ti: 

  0TII:
11

00  


n

i

ki

q

k

kks      (for ρ = 1,2, …, p) (2.4) 

For simplicity, a single type of active site I0 (denotes by S for a heterogeneous catalyst) is 

assumed here, not included in Ik by virtue of site balance. The stoichiometric coefficients of the 

intermediates Ik are k (k = 1, 2, …, q) and for the terminal species Ti are i (i = 1,2, …, n). The 

De Donder affinity, thus, becomes 
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where  kkK


/ is the equilibrium constant for the elementary reaction. The species activities 

ai may be replaced by a suitable composition measure, e.g., the site fraction θi for the intermediates 

in heterogeneous catalysis and partial pressure or concentration for terminal species. Thus, the 

affinity may be computed, e.g., from elementary reaction energetics and numerical results of a 

microkinetic analysis for a given set of conditions and a specified reactor configuration [6].  

The overall stoichiometric matrix î is written with the rows corresponding to reactions 

(including the overall reaction (OR), 


n

i

iiOR

1

, T , as the first row) and the columns to the species 

with the intermediates followed by the terminal species: 
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in which the active sites are excluded because of the site mass balance and, of course, the 

stoichiometric coefficients of the intermediates in the OR are zero. In general, we find that rank ν 

= m ≤ p, where p is the number of elementary steps. We further define the stoichiometric submatrix 

of ν, involving only reaction intermediates, 

 























pqpp

q

q















21

22221

11211

α  (2.7) 

referred to as the intermediates stoichiometric matrix [6]. It is assumed here that the surface 

intermediates are linearly independent, i.e., rank α = q, which would generally be smaller than p. 

If this is not the case, then the linearly dependent columns may be arbitrarily omitted.  

A reaction route (RR) is defined as an appropriate linear combination of the sequential 

elementary reaction steps s1, s2, ..., sp that eliminates all of the reaction intermediates, thus resulting 

in the OR [6]. As mentioned previously, an infinite variety of RRs is possible if no additional 

restrictions are imposed. Thus, following Milner [7], we require the RRs to be direct: that is, the 

elementary reaction steps involved in a direct RR (henceforth denoted simply as RR) are minimal. 

This means that if an elementary reaction is omitted from the given RR, then it becomes impossible 

to eliminate all of the reaction intermediates by linearly combining the remaining elementary 

reactions. Milner [7] showed that a RR involves several elementary reaction steps less than or 
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equal to the rank α +1 = q + 1, because the number of elementary reaction steps in a RR are 

independent. Thus, if the selected q + 1 steps from among the given set of p elementary reactions 

are si1, si2, ..., siq, siq+1 where i1, i2, ..., iq, iq+1, is a set of integers satisfying the conditions, 1 ≤ i1 < 

i2 < ... < iq< iq+1 ≤ p, then the kth reaction route yields(RR-35) OR =




1

1

q

h ihkh s or 

 0OR:RR
1

1

 




q

h

ikhk h
s  (2.8) 

 (for k =1, 2, …, Q) 

The total number of possible direct RRs (Q) is less than or equal to the total number of ways of 

selecting q + 1 independent elementary reactions from among a total of p [6]. 
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Typically, the number of distinct RRs is significantly fewer than this number, as many of 

the resulting routes end up being redundant due to some reactions having steps that must be 

included in all RRs. 

Fishtik and Datta [8] have shown that the stoichiometric numbers kh  may be obtained 

from the intermediates stoichiometric matrix of the chosen q + 1 elementary reaction steps from 

among p for the kth RR, i.e., 
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For each RR, the q + 1 selected elementary reactions fall into one of three possible 

scenarios: 

1) They are linearly independent and the RR is a full route (FR) that produces an OR. 

2) They are linearly dependent and the RR is an empty route (ER) or a cycle that results 

in no terminal species. 

3) They are linearly dependent and there are two or more full RRs or ERs that involve a 

subset of the same q + 1 elementary reactions. The resulting RR then is a zero RR, i.e., 

a RR in which all of the stoichiometric numbers are equal to zero. 

Eq. (2.8) may alternatively be written in matrix form, i.e., σs = 0, or 
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where σ is the reaction route matrix and s = (sOR, s1, s2, …, sp)
T is the reaction vector. The following 

mathematical theories are known to be applicable for RRs in which the stoichiometric numbers 
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are +1, -1, or 0. The latter sections will discussion why stoichiometric numbers other than these 

lead to issues in the matrix manipulations. 

The thermodynamic affinities of the OR and the elementary reactions follow the same 

linear combination, i.e., [6] 

 0
1

OR 


p

k AA


  (2.12) 

or σs = 0, where A is the affinity vector, i.e., A = (AOR, A1, A2, …, Ap)
T and AOR represents 

the affinity of the OR. Alternatively, this may be written in terms of the dimensionless affinity, 

RTGOROR /A . 

 

2.1.1 Realization of Reaction Route Graph 

The realization of the RR Graph can be achieved through the determination of an incidence 

matrix, which is essentially a matrix that charts how each node is connect. There are two alternate 

ways of obtaining the incidence matrix for a RR Graph: either from the RRs matrix or from the 

overall stoichiometric matrix. In principle, it is possible to construct the RR Graph directly from 

the RR matrix σ by trial and error, because it contains all the graph connectivity information. Thus, 

the following algorithm may be followed [1]: 

Step 1: Derive and select a fundamental RR matrix σf. Rearrange the matrix to the form σf 

= [σt:Il] by column interchange. This procedure, thus, simultaneously identifies the links 

(corresponding to the columns of the identity matrix), with the remaining branches being twigs of 

the resulting tree selected by the choice of the full and empty RRs. Clearly, there are other possible 

trees and, thus, σf is not unique.  
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Step 2: Obtain the corresponding fundamental cut-set matrix from the relation Xf = [IN-1:- 

σt
T] for this tree. 

Step 3: In view of the fact that Mf and Xf are row equivalent, Mf is obtained from Xf via 

elementary row operations such that, at most, each column of the resulting matrix consists of one 

+1 value and one -1 value, where the remaining values are zeros. 

Step 4: Obtain the complete incidence matrix M from Mf by adding the missing row, so 

that the sum of elements is zero in each column. 

The same steps can be used to find the incidence matrix based on the stoichiometric matrix, 

where the transpose of the stoichiometric matrix νT is used in place of the cut-set matrix Xf and the 

elementary row operations are then performed. This method requires much more trial and error 

and elementary row operations, so the former method is likely more suitable to computer 

automation as it directs the algorithm to a closer matrix to the incidence matrix, require less 

computation time and searching. 

This approach does not apply to mechanisms with stoichiometric coefficients other than 

unity and is not practical for larger, non-linear systems. Thus, a less deterministic method has been 

developed that relies more on manually piecing the graph together. The first step in this process is 

the same as the above, in that a fundamental RR Graph matrix is selected from the possible 

Reaction Routes of the mechanism. It is useful to enumerate all the pathways, (FRs and ERs) as 

well as the QSS mass balances of the mechanism to be able to check the resulting RR Graph to see 

if it does, in fact, contain the complete set of RRs. From this enumeration, we select a linearly 

independent set of routes, typically 1 FR for each overall reaction in the mechanism and the 

remainder are cycles (ERs). This allows the construction of a subgraph that includes all the cycles, 
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known as a cycle graph, which then easily becomes the completed RR Graph by adding the FRs 

to the cycle graph by including the ORs. 

Obtaining the cycle graph can be difficult, as the steps in each cycle need to be in a 

particular order, so that certain edges are incident to the same node in the correct direction. The 

most effective method is to take two cycles and fuse them along an edge that is common in both. 

For example, in Figure (2.1), the hypothetical ER1 and ER2 both share an s3 edge, so we could then 

fuse them together along the nodes incident to s3. This forms a fused graph that has three cycles 

ER1 (+s1 – s2 + s3), ER2 (+s3 – s4 + s5) and a new cycle: +s1 – s2 + s4 – s5. Care must be taken to 

ensure that any new cycles created are valid. If the sum of the species of the new cycle of (+s1 – s2 

+ s4 – s5) do not add to zero, it is not a cycle and the fused graph is not valid and must be discarded, 

as it does not follow energy balance laws, (i.e. Kirchoff’s Potential Law, KPL). It is useful to look 

for cycles that share multiple steps that proceed in the same direction, as it is more likely that those 

steps are required to be next to each other in series on the graph. Eventually, through educated 

guesses and trial and error, one can achieve a valid cycle graph and each of nodes of the graph 

must be checked to see if they follow mass conservation laws (i.e. Kirchoff’s Flux Law, KFL) by 

being equivalent to a QSS mass balance for a species, or a combination of multiple species QSS 

mass balance equation. Typically, for systems with mechanisms with stoichiometric coefficients 

other than unity, a cycle graph will not have balanced nodes unless a mirror image of the cycle 

graph is fused along the unbalanced nodes. This satisfies the presumption that each step must 

appear twice in the graph that is symmetric and allows the balancing of most nodes. The remaining 

FRs can then be added, which is generally trivial as all routes will generally have the steps 

remaining to be place on the graph and it is not critically to put these steps on the graph in any 
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particular order, or before or after the cycle graph, although reaction paths may dictate a 

preference. Chapter 4 provides a detailed of this process for the Oxygen Reduction Reaction. 

 

Figure 2.1: Example of a fused cycle graph 

2.1.2 Electrical Analogy 

Perhaps the most important characteristic of the RR Graphs is that they are analogous to 

electrical circuits. The laws that govern the behavior of electrical circuits are very well developed 

and accepted [9], so applying them to chemical reaction networks can be quite beneficial. The two 

laws of most interest are Kirchoff’s Current/Flux Law (KCL/KFL) and Kirchoff’s 

Potential/Voltage Law (KPL/KVL).  

KFL states: the step rate rρ (likened to edge current Iρ) of all edges incident at a node j sum 

up to zero (from mass conservation, along with the fact that Vnode = 0). In other words, 

0
1

 


p

ij rr


 , where the incidence coefficient mρj= 1 if an edge leaves the node j, and mρj 
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=−1, if an edge is coming into the node j. In fact, mρj are elements of the incidence matrix of the 

RR Graph [1]. 

KPL states: the step affinity, i.e., negative Gibbs free energy change for a reaction step, 

RTGp /A  (likened to step voltage Vρ ) of all edges in a closed walk (starting and ending at 

the same node), or a cycle, sum up to zero, i.e., 0
1

 

p

pkj
 A , where the stoichiometric number 

σgρ = +1, if an edge is directed in the direction of the walk around a cycle, and σgρ = −1, if an edge 

is directed in the opposite direction [1]. 

Because of the rigorous limitation we apply to RR Graph construction, there is certainty in 

the consistence with mass and energy conservation laws such as these, which allows us to perform 

quantitative reaction analysis for the mechanism. Following this electrical analogy, although not 

essential, each elementary reaction step can also be considered as a resistor in circuit and the 

overall reaction can be considered as a voltage applied to the circuit, or as the dimensionless 

affinity ORA .  

The resistance of each step (Rρ) now needs to be established and is defined as the inverse 

of the net step rate, between its limiting values [1], 
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These relations lead the relationship that we refer to as Ohm’s Law of Kinetics [1], 
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 (2.14) 
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This relation is based on the definition of a reaction resistance, which unlike the resistance 

in electrical circuits, is not a constant, but rather changes with reaction conditions, especially 

temperature, as the rate (rρ) would almost certainly change with composition and especially with 

temperature. 

Since the RR Graphs are drawn so that they are consistent with KFL and KPL and Ohm’s 

law kinetics representation, there is a quantitative correspondence between RR Graphs and their 

electrical circuit analogs. As a result, the overall resistance of the network might be calculated in 

terms of step resistances, with the result that the overall rate may be written as 

 
OR

OR
OR

R
r

A
  (2.15) 

Where ROR is the resistance of all the elementary steps added together as if they were 

resistors comprising an electrical circuit. This allows the calculation of the overall rate based on 

known kinetic data. Further, a predicted rate can be approximated a priori through Rdot kinetics 

described next. 

  

2.1.3 Rdot Kinetics 

Unfortunately, determining the resistances of chemical reactions through QSS analysis or 

other methods, analytical or numerical, may not always be practical. However, approximate Rdot 

resistances of these steps, 
pR , can be approximated a priori by following the LHHW approach by 

taking the rate of the forward reaction when that step is considered to be the rate determining step 

(RDS). For each step we calculate 
pR , by considering ps  to be the RDS while others are at quasi-

equilibrium (QE), which allows the q linearly independent unknown intermediate site fractions to 
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be determined by identifying the appropriate intermediate reactions (IRs) or pathways for the 

formation of intermediates. These IRs are found by a linear combination of steps js  that eliminates 

all the intermediate species except that of interest, Ik, formed from terminal species along with 

some reference intermediate, e.g., the vacant site S in case of catalytic reactions [9], i.e., 

  
kIR

kjkj IRs  (2.16) 

In analogy with KPL, the affinity of this IRk 
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Using the definition of step reversibility 
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Applying the step kinetics in terms of step weights,  , which is the combined known 

constants the rate equation for step ρ, usually the rate constants and activity of terminal species, 

then noting that, all intermediates but Ik and the reference intermediate, i.e., vacant sites S (in case 

of a catalytic reaction), are eliminated by the stoichiometric numbers chosen to produce the IR 
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Further, if we select all the steps js  in Eq. (2.31), such that it does not include the step s  

under consideration as the RDS, or in other words, all the selected steps are among the QE steps, 

1
kIRz , we have 
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Note that we use the notation 

 ,k  to represent site fraction of Ik when s  is the RDS. Finally, the 

site fractions thus calculated are used in the site balance, 



q

k

k

0

,1  , written in the form 
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Thus, the reference site fraction 

 ,0  can be determined and, from it, all the remaining site 

fractions 

 ,k . As a result, the forward rate of the RDS, and hence the step resistance, 

R  as per 

Eq. (2.13), can be evaluated a priori. The next section includes a detailed example of this process. 

2.2 Example of RR Graph Analysis for Nonlinear Systems: Hydrogen Oxidation 

Reaction and Hydrogen Evolution Reaction 

An example of RR Graph construction via determination of the incidence matrix for a 

linear mechanism in solved by Fishtik et al [1]. Here, we illustrate the procedure for a nonlinear 

mechanism. The mechanism of the hydrogen oxidation reaction (HOR) and its reverse, the 

hydrogen evolution reaction (HER), is an example of a mechanism that is important to the 

understanding of fuel cell performance and has been extensively researched to determine the 

pathways and kinetics [10-24]. Vilekar et al. [25] was able to apply the RR Graph approach to this 
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reaction network to both validate and explained the understood dual-pathway kinetics as well as 

develop an accurate rate expression, which is an excellent demonstration of the process of the RR 

Graph approach 

The mechanism used for this research is the well accepted mechanism based on the Tafel, 

Volmer, Heyrovsky steps [26-28]. Table (2.1) and Table (2.2) for basic and acidic electrolytes 

respectively, show the Volmer (sV), Tafel (sT) and Heyrovsky (sH) steps along with the coefficient 

of that step the corresponds to one of the three pathways (VT, VH and HT) for both alkaline and 

acidic medium. 

 Elementary Reactions σVT,ρ σVH,ρ σHT,ρ 

sV: H•S + OH- ⇄ H2O + S + e- +2 +1  

sT: H2 + 2S ⇄ 2H•S +1  -1 

sH: H2 + S + OH- ⇄ H2O + H•S + e-  +1 +2 

sOR: H2 + 2OH- ⇄ 2H2O
 + + 2e-    

Table 2.1: HOR mechanism in alkaline electrolyte [26-28] 

 Elementary Reactions σVT,ρ σVH,ρ σHT,ρ 

sV: H•S + H2O ⇄ H3O
+ + S + e- +2 +1  

sT: H2 + 2S ⇄ 2H•S +1  -1 

sH: H2 + S + H3O
+ ⇄ H3O

+ + H•S + e-  +1 +2 

sOR: H2 + 2H2O ⇄ 2H3O
+ + 2e-    

Table 2.2: HOR mechanism in acidic electrolyte [26-28] 
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These pathways shown can be considered as full routes (FRs) and along with an empty 

route (ER) that must exist, these routes must exist within the RR Graph. Those route are 

enumerated as such [25]: 

 FRVH: (+1)sV + (+1)sH – sOR = 0 (2.23) 

 FRVT: (+2)sV + (+1)sT – sOR = 0 (2.24) 

 FRHT: (+1)sH + (-1)sT – sOR = 0 (2.25) 

 ER1: (+1)sV + (-1)sH + (+1)sT = 0 (2.26) 

However, for this 3 elementary step mechanism with 1 independent intermediate, only μ = 

q – p = 3 – 1 = 2 routes are linearly independent and a set of only 2 of these reaction routes is 

needed to construct the RR Graph. Since the graph must follow KFL we must also consider any 

quasi-steady state (QSS) conditions. In this example with only one intermediate, there is only one 

QSS condition: QHS: (-2)rT + (+1) rV + (-1) rH = 0. We can now start constructing the RR Graph 

by selecting FRVH and ER1 as our set of independent routes. We find the best method is to create 

a graph containing all the cycles (ERs) and, in this case for which there is a stoichiometric 

coefficient of 2 in the mechanism, the cycle graph must contain 2 of each elementary reaction step. 

Typically, this is achieved by mirroring the cycle graph and fusing nodes in such a way that the 

QSS conditions are satisfied for those fused nodes. We note that by fusing ER1 with its mirror 

along the edge of sT that it creates two nodes that satisfy the QSS condition of (2)sT and (1)sH edges 

entering a node and (1)sV leaving the same node (as well as the reverse of that condition). Thus, 

the cycle graph is found and FRVH is then added to complete the RR Graph (Figure 2.2). 



 33 

 

All three pathways and the single ER can be traced on this graph as walks and the QSS 

conditions are satisfied, thus we find that this graph satisfies all the conditions of a completed and 

valid RR Graph. [25] 

Figure 2.2: RR Graph construction for the 3-step HOR/HER mechanism. 

We can now analyze the reaction network using the electrical analogy and Rdot kinetics 

explained in Chapter 2.1.3 and 2.1.4. Following the electrical analogy, we treat each reaction step 

as a resistor in an electrical circuit and the overall rate of the reaction (rOR) can be expressed as: 
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The rate on the left-hand side of has been doubled since the network involves the OR twice. 

The overall resistance ROR, can be obtained by adding the resistances of each step together in the 

same manner as if it were an electrical circuit. Utilizing a Δ-Y conversion [29, 30], the overall 

resistance for the network in Figure (2.2) is equal to [25]: 
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which are found from numerical analysis. 

The step resistances can alternately be found a priori by utilizing the Rdot kinetics detailed 

in section 2.1.4, based on the step weights of the elementary steps. The step kinetics for this 

elementary reaction rates are [25] 
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where the site balance, θ0 + θHS = 1, has been substituted to eliminate θ0 from the equations. 

The step weights in the above equation set may be written as [25] 
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where we introduce the dimensionless electrode overpotential, 
RT

F


2

1
 . Further, for the case of 

alkaline electrolytes, the parameters above, in terms of the rate constants at equilibrium electrode 

potential and the activities of the terminal species, are [25] 
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 (2.36)  

Furthermore, in these expressions, the activity of water is usually assumed to be unity, i.e., 

1OH2
a , for saturated conditions, while the activity of hydrogen is written as its partial pressure, 

i.e., 
22 HH pa  , in atm. 

Following the Rdot method, the resistance of each step are now calculate 

R  as the 

resistance of the step sρ when it is the rate-determining step (RDS), with all other steps are at quasi-

equilibrium. 


ORR  can next be calculated a priori following the LHHW approach explained in 

Chapter 2.1.4. Thus, for sT, we find [25] 
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The intermediate route to isolate H·S is IRH·S= (+1)sV. Using Eq. (2.29), we thus have 
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Following the same process for sH and sV, we obtain [25] 
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This allows us to obtain an expression for 


ORR  and rOR, where  OROROR REr , which can then 

yield an expression for current density OROR,e
Frνi -  where rOR is in units of mol cm-2 s-1 and -OR,e

ν  

is the stoichiometric coefficient of electrons in the overall electrode reaction. Thus we have [25] 
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Then substituting for the expression for 


ORR  in Eq. (2.41)  
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Using the step resistances and simplification results in an explicit equation for the current density 
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This was the first explicit rate expression in the literature to ever include the kinetics of all three 

accepted reaction pathways [25]. 
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It is of great interest, however, to discern whether or not each pathway is significant to the 

overall reaction. For the case of the HER in alkaline medium, kinetic data based on fitted 

experimental rate data from literature is available for Pt catalyst in 0.5M NaOH solution at 296K 

(Tables 2.3 & 2.4) [31, 32]. From this data we can plot 

R/1 versus overpotential η (Figure 2.4). 

This plot shows the Volmer step to be the fastest over the calculated range, but the other steps may 

be rate-limiting over a subset of the range. 

 Elementary Reactions 
0,k



 0,k


 

sT: H2 + 2S ⇄ 2H•S 10

T 108.8 k


 
10

T 108.8 k


 

sV: H•S + OH- ⇄ H2O + S + e- 7

V, 104.4
0



 k


 
8

V, 104.4
0



 k


 

sH: H2 + S + OH- + e- ⇄ H2O + H•S + e- 10

H, 104.2
0



 k


 
9

H, 104.2
0



 k


 

Table 2.3: Reaction rate constants for HER on Pt in 0.5M NaOH at 296 K [31]. 

Finally, Figure 2.3 provides QSS rates for the HOR/HER mechanism in alkaline medium 

obtained numerically by solving the KFL relations for each of the three two-step mechanisms as 

well for the case of the 3-step mechanism. It is evident that the HT mechanism is not a significant 

contributor over any part of the range of overpotentials considered here for the alkaline system. 

Furthermore, the VH and VT mechanisms have a limited range of potentials where either is the 

sole dominant mechanism.  

Figure 2.3 also plots the rate obtained from the explicit rate expression for the complete 3-

step mechanism based on QSS relations. Although the results of these expressions are 

approximations, they are highly accurate as shown in comparison with the QSS numerical results 

over the entire range of potentials of interest for both HOR and HER. Clearly, the expression is 
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adequate in the overpotential range of V24.0V3.0   for HER and V3.0V13.0   for 

HOR in the alkaline system.  

 Further, there is a great asymmetry in the Volmer-Tafel mechanism, described by the form 

of the denominator in the expression (Eq. 2.43). This mechanism is important for HER in an 

alkaline system in the overpotential range of 0.1V 0V   . 0.1V 0V   . For HOR in an 

alkaline system, the VT mechanism is only applicable in a narrow overpotential range of 

0 20mV  . 

Finally, for the kinetic data provided in Figure 2.4, this relation provides an exchange 

current density of 
24

0 cmA 107.1 i  for HER on Pt in 0.5M NaOH at T = 296 K. This value 

compares well with that predicted using the correlation provided by Chiavlo et al. [31] based on 

an extension of the Temkin development for a single reaction route. Others have also suggested 0i  

to be ~ 24 cmA 10   on Pt for alkaline electrolytes [24]. 

The RR Graph approach thus allows the visualization of the pathways for the HER/HOR 

and it enables the determination of an explicit rate equation that incorporates all three of these 

pathways, which is not possible with conventional chemical analysis techniques. Through the Rdot 

method, the rate and current density can be determined a priori with the appropriate kinetic data 

and given the conditions of the reaction. 
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Figure 2.3: Semilog plot of vs. 

R  overpotential, η (V) for hydrogen electrode reaction on Pt in 

alkaline medium. [25] 
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Figure 2.4: Semilog plot of overpotential (V), η vs. absolute value of kinetic current, i for hydrogen 

electrode reaction on Pt in alkaline medium. Solid lines represent data obtained from solving QSS 

equation for the 3-step Tafel-Volmer-Heyrovsky (black) mechanism and each of the 2-step 

mechanism, namely, Volmer-Heyrovsky (green), Volmer-Tafel (red) and Heyrovsky-Tafel 

(dotted, black) mechanism, while symbols represent calculations from Ohm’s law. ● 3-step 

mechanism, ■ 2-step Volmer-Heyrovsky mechanism Eq. (8.49), ▲ 2-step Volmer-Tafel 

mechanism. [25] 
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2.4 Additional Reaction Systems 

Next are described two further examples of reaction systems of a complicated nature for 

which the RR Graph approach can provide insights into the kinetics and mechanism. The first 

example is the oxygen reduction reaction (ORR) that has relatively few steps, but is of current 

interest as there is a need to search several catalysts to optimize costs and activity for the reaction. 

The latter considers a nitrous oxide decomposition mechanism that consists of over one hundred 

elementary steps that is difficult to analyze due to its sheer size and is considered in more detail in 

Chapter 6. Analyzing these cases will further demonstrate the breadth of the capabilities of the RR 

Graph approach and highlight the points of the graph construction we require a further 

understanding to automate the process of generating these graphs. 

 

2.4.1 Oxygen Reduction Reaction 

The ORR is an important reaction to understand the operation and optimization of a fuel 

cell. This reaction occurs at the cathode side of the fuel cell and is a large factor in the performance 

of the cell due to the significant overpotential for this reaction. Even for an expensive catalyst 

where the kinetics are very favorable such as platinum, there is still a large energy loss at this step 

of the fuel cell process. Therefore, there is significant value is finding a cheaper and/or better 

catalyst for this reaction. A deeper understanding of the mechanism and its kinetics would greatly 

assist the process of selecting this catalyst. Unfortunately, the ORR reaction mechanism is difficult 

to analyze due to the complexity of the associated multielectron transfer and its dependence on the 

electrode material and electrolyte. Rotating-ring disk electrode has been widely employed to probe 

the ORR mechanism and kinetics. 



 42 

 

 Many studies have been done to develop a comprehensive mechanism for the pathways of 

the ORR reaction [49-58]. The pathways proposed by these work that are considered feasible are 

listed as such [58]: 

1) The dissociative mechanism, which involves the dissociation of O2 followed by the 

hydrogenation of adsorbed O and OH to water. 

2) The peroxyl mechanism, which involves the formation of OOH, followed by O-O bond 

scission to yield adsorbed OH and O. 

3) The peroxide mechanism, which involves the hydrogenation of OOH to HOOH, which either 

desorbs or undergoes O-O bond scission. 

4) The aquoxyl mechanism, which involves adding an additional H atom to OOH, which then 

undergoes O-O bond scission. 

Each of these mechanisms may or may not be significant for a particular catalyst, thus for the 

evaluation of a new catalyst each of them must be considered to be feasible. 

Vilekar [60] has studied this reaction based on a simple 4-step reaction mechanism on Pt 

catalyst proposed by Wang et al. [57] (Table 2.6) and considers only the dissociative mechanism, 

either through a 2 step pathway FR1 (s1 + s4) or a 3 step pathway: FR2 (s1 + s2 + s3). Other pathways 

are excluded because of the intermediate species considered for this catalyst and conditions are 

not stable enough [51, 53, 59]. Vilekar [60] was able to apply the RR Graph theory and construct 

an RR Graph (Figure 2.5) from which a predictive rate equation and an equation for the electrode 

current density (i) using the Rdot method was obtained (Eqs. 2.40 & 2.41) that shows good 

agreement with experimental results (Figure 2.6). 
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In Chapter 4, a new RR Graph analysis is presented using the more detailed mechanism 

proposed by Herron et al. [49] seen in Table 2.5. Several different catalysts are considered and 

their activities are evaluated over a range of temperatures and electrical overpotential with the goal 

of providing a tool to easily quantify the activity of a catalyst for which the kinetic data is available. 

Future analysis may be performed based on more extensive mechanisms as proposed by Ford et 

al. [58] that included all of the previously mentioned pathways. 

 Elementary Reactions 

s1: ½ O2 + S ⇄ O⋅S 

s2: ½ O2 + H+ + e– + S ⇄ OH⋅S 

s3: O⋅S + H+ + e– ⇄ OH⋅S 

s4: OH⋅S + H+ + e– ⇄ H2O 

Table 2.4: 4-step ORR reaction mechanism on Pt(111) in acidic medium [57] 
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 Elementary Reactions 

s1: O2 + 2S ⇄ 2O•S 

s2: O•S + H+ + e- ⇄ OH•S 

s3: OH•S + H+ + e- ⇄ H2O + S 

s4: 

s5: 

s6: 

s7: 

O2 + H+ + e- ⇄ OOH•S 

OOH•S + S ⇄ O•S + OH•S 

OOH•S + H+ + e- ⇄ HOOH•S 

HOOH•S + S ⇄ 2OH•S 

Table 2.5: 7-step ORR reaction mechanism [49] 

 

Figure 2.5: RR Graph for the 4-step ORR mechanism [25] 
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Figure 2.6: Potential (V) vs. kinetic current for ORR on Pt electrode in 0.1 M HClO4 solution. Symbols (●) 

represent the experimental data [25]. Solid line represents kinetic current for the 4-step mechanism from 

Ohm’s law (Eq. (8.77)). Dotted lines represent the kinetic current for the limiting case via FR1 (blue) and 

FR2 (red) [25] 
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2.4.1 N2O Decomposition on Fe-ZSM-5 catalyst  

Nitrous oxide (N2O) decomposition briefly discussed in Chapter 1, is an increasingly 

important reaction as emission standards are steadily getting tighter and for good reason as nitrous 

oxide is considered one the most harmful greenhouse gases. Nitric acid plants are the largest 

contributor to atmospheric nitrous oxide and introducing a catalytic decomposition stage in the 

process can greatly reduce the nitrous oxide emission from the plant [61]. Understanding the 

kinetics of this reaction will facilitate the selection of the most effective catalyst and make progress 

towards the complete remove of nitrous oxide emission. 

Heyden et al. have proposed a 104 step mechanism for the decomposition of nitrous oxide 

on an iron zeolite catalyst (Fe-ZSM-5) [62]. This research provides a rigorous analysis of the 

energy and transition states of the intermediates for this mechanism. An impressive amount of 

work was done to produce a comprehensive list of the kinetic data for each reaction step through 

DFT. The full mechanism is included and discussed further in Chapter 6 (Table 6.2), although a 

full RR Graph could not be drawn. 

Several individual pathways of this mechanism are analyzed in detail, but could still benefit 

from the RR Graph approach. The most important goal would be to visualize the pathways of the 

reaction or an RR Graph and enable the quantitative analysis of all the pathways simultaneously 

through the Rdot approach. If the mechanism could further be reduced significantly, it would 

provide great insight to the steps which determine the direction and magnitude of the reaction 

network.  

2.4 Other Reaction Graphs and Their Limitations 

The idea of representing a network of chemical reactions as a graph is not a novel idea, 

other efforts to visualize reaction pathways have been attempted. However, they invariably adopt 



 47 

 

the approach that each node represents a specific species, in direct analogy with reaction 

schematics drawn conventionally. Representing the nodes in this way is fine for monomolecular 

mechanisms or for some network visualization, but they do not allow the same rigorous analysis 

that RR Graphs provide. They simply do not follow both KFL and KPL which means that they 

violate basic mass and energy conservation laws.  

One example that is used for biological networks (such as Figure 2.7) is the concept of 

elementary modes and extreme pathways as proposed by Schuster et al. [36, 37] and Palsson et al. 

[36-38]. These methods use nodes to represent individual species and directed arrows to represent 

reactions steps. Further, they make use of an algebraic stoichiometric algorithm, developed by 

Happel and Sellers [40], to enumerate their pathways, with some special constraints, in addition to 

flux analysis. The pathways enumerated by Schuster et al. [36, 37] are known as “elementary 

modes,” that is, they contain a minimal number of steps, and are, in fact, simply the “direct” 

pathways of Milner [41]. Palsson et al. [36, 38] additionally consider reaction steps that are 

irreversible, so that pathways in which the step may be traversed in the opposing direction are 

discounted, the resulting pathways being labeled “extreme pathways.” In addition to a substantial 

preoccupation with pathway enumeration by these groups, other investigators have been concerned 

with thermodynamic consistency [39] and flux analysis [42]. A schematic diagram of the chemical 

pathways (Figure 2.9) is another such method that does not have a comprehensive depiction of all 

the pathways, but is useful for visualizing some of the major pathways [43] along with some 

understanding of the chemistry of the mechanism.   



 48 

 

 

Figure 2.7: An example of a network proposed by of the core metabolic network in the human red blood 

cell comprised of glycolysis, the pentose pathway, and adenine nucleotide metabolism. [42] 
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Figure 2.8: Example of a Chemical Pathway graph [43] 

One of the more prominent of these alternate graph techniques being developed is the idea 

of a P-graph (or process graphs) proposed by Fan et al [34]. These graphs are focused mainly on 

pathway enumeration, and are directed bipartite graphs which use circles for representing an active 

species, node and horizontal bars for representing elementary-reaction step nodes with direct arcs 

linking them [34]. An example of a P-graph is shown in (Figure 2.9). Creating a P-graph involves 

following an algorithm to find a set of reaction steps that are connected through graph theory 

calculations [44, 45]. Similar to RR Graph construction, the idea of finding smaller subgraphs to 
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combine into larger graphs. However, P-graphs do not include the idea of maintaining 

thermodynamically consistent cycles, so instead of focusing on fusing cycle graphs, the approach 

more closely resembles a tree branching out.  

 

Figure 2.9: Example of a P-graph of the reaction H2 + C2H4 → C2H6 by Fan et al. [44] 

In detail, the graph is determined through a deterministic approach included here [44]: Let 

O be the set of elementary-reaction steps and M be the set of chemical or active species under 

consideration; then, )()( MMO PP  , where ØMO . If (α, β) is a reaction step, i.e. (α, 

β)ϵO, then α is called the input set, and β, the output set of the step. Pair (M, O) is termed a P-

graph with the set of vertices UM   and the set of arcs {(x, y): y=(α, β)ϵO and xϵ α} {(y, x): 

y=(α, β)ϵO and xϵβ}. P-graph (M, O) is identified to be a subgraph of (M’, O’), i.e. (M, O) (M’, 

O’), if M M’and O O’. The union of P-graphs (M1, O1) and (M2, O2) results in the P-graph 

(M1M2, O1O2). The resulting P-graph represents a reaction network which starts from 
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reactants (precursors) to final products (targets). The graph is considered to be a feasible reaction 

pathway if it follows the six axioms proposed by Fan et al. [44, 47]: 

(R1) Every final product (target) is totally produced by the reaction steps represented in 

the pathway. 

(R2) Every starting reactant (precursor) is totally consumed by the reaction steps 

represented in the pathway. 

(R3) Every active intermediate produced by any reaction step represented in the pathway 

is totally consumed by one or more reaction steps in the pathway, and every active intermediate 

consumed by any reaction step represented in the pathway is totally produced by one or more 

reaction steps in the pathway. 

(R4) All reaction steps represented in the pathway are defined a priori. 

(R5) The network representing the pathway is acyclic. 

(R6) At least one elementary-reaction step represented in the pathway activates a starting 

reactant (precursor). 

These axioms represent a consistence to mass balance laws, similar to KFL. Additionally, 

the graph is considered to be combinatorially feasible if it follows the included seven other axioms 

proposed by Fan et al [44, 47]: 

(T1) Every final product (target) is represented in the network. 

(T2) Every starting reactant (precursor) is represented in the network. 

(T3) Each reaction step represented in the network is defined a priori. 
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(T4) Every active species represented in the network has at least one path leading to a final 

product (target) of the overall reaction. 

(T5) Every chemical or active species represented in the network must be a reactant for or 

a product from at least one reaction step represented in the network. 

(T6) A reactant of any elementary reaction represented in the reaction network is a starting 

reactant (precursor), if it is not produced by any reaction step represented in the network. 

(T7) The network includes at most either the forward or reverse step of each elementary 

reaction represented in the network. 

Essentially, what these axioms propose is that the P-graph must include all the species and 

reactions steps in the mechanism and that the graph starts at the reactants and proceeds towards 

the products. These axioms, while dealing with stoichiometry, do not include any notion of 

thermodynamics, thus there is no consistence with KPL, so there is no possibility for quantitative 

reaction analysis, as proceeding through a walk in a given P-graph may break the law of 

conservation of energy, as it is possible to have a disparity between the summation of the chemical 

potential changes of steps you proceed through and what it actually should be on the graph, i.e. 

there are no guarantee that there are thermodynamically consistent cycles. 

These graphs all use nodes to represent individual species [33], which is likely due to the 

conventional representation of reaction mechanisms taught in college chemistry and biochemistry 

courses, wherein chemical species are drawn, often with structural detail, and are connected by 

arrows representing chemical reactions. Unfortunately, this practice limits the utility of the 

resulting graphs, rendering them inconsistent, for example, with KPL [39]. In fact, thermodynamic 

inconsistence of a graph goes hand-in-hand with its unsuitability for graph-theoretic enumeration 
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of reaction pathways. Finally, these graphs are non-unique, because each individual could draw 

them differently, and there is no easy way to tell if two given graphs are the same. In summary, 

none of these existing graph-theoretic methodologies provide a comprehensive graphical depiction 

of a given reaction network, including pathway, thermodynamic, and kinetic analyses, as offered 

by the RR Graph methodology. 

2.5 Conclusions 

This chapter details the past efforts to develop the RR Graph methodology as well as the 

motivations to pursue this research, mostly based on how it improves on other, more conventional 

methods. It is important to recognize that this methodology is imperative to the full understanding 

of complex reaction networks. For catalytic and electrocatalytic applications, this understanding 

is critical to successfully selecting the correct catalyst and parameters for operation. The following 

mechanistic analyses will further demonstrate the capabilities of this methodology and Chapter 6 

explains how to further improve upon it.   
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Chapter 3. Pruning Microkinetic Mechanisms through Reaction 

Route Graph Analysis Versus Campbell’s Degree of Rate Control 

Elucidation of the key molecular steps and pathways in an overall reaction is of central 

importance in developing a better understanding of catalysis. Campbell’s degree of rate control 

(DRC) is the leading methodology currently available for identifying the germane steps and key 

intermediates in a catalytic mechanism. We contrast Campbell’s DRC to our alternate new 

approach involving an analysis and comparison of the “resistance” and de Donder “affinity,” i.e., 

the driving force, of the various steps and pathways in a mechanism, in a direct analogy to electrical 

networks. We show that our approach is as just rigorous and more insightful than Campbell’s 

DRC. It clearly illuminates the bottleneck steps within a pathway and allows one to readily 

discriminate among competing pathways. The example used for a comparison of these two 

methodologies is a DFT study of the water-gas shift (WGS) reaction on Pt-Re catalyst published 

recently. 

3.1 Introduction 

A detailed understanding of the molecular mechanism of an overall reaction (OR) is of 

great importance in many fields including catalysis [1-4], combustion [5-7], environmental 

pollution [8-10], and metabolic modeling [11]. However, assembling a comprehensive molecular 

mechanism, complete with associated kinetic and thermochemical parameters, is a formidable 

task, given the often enormous number of possible steps and molecular intermediates. For instance, 

the GRI 3.0 mechanism for methane combustion [12] includes 325 reaction steps among 53 

species. 
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Emulating such extensive gas-phase kinetic models, now in common usage in air pollution 

and combustion modeling, e.g., via CHEMKIN [7], catalytic reaction mechanisms are also 

becoming increasingly impressive in size, from dozens of steps [13-15] to over a hundred [16]. 

This, despite the fact that accurate prediction of kinetic and thermodynamic parameters on a given 

catalyst based on first-principles [17-19] and/or semi-empirical [20, 21] approaches is a 

significantly more daunting task than it is for gas-phase reactions. Typically, therefore, via the 

microkinetic approach [1,22-24], these step kinetics are incorporated in species mass balance 

differential equations for a given reactor, and solved numerically for the unknown concentrations 

of the surface intermediates, from which the individual rate of each step as well as that of the OR 

may be obtained. The numerical predictions may be finally compared to experimental data, e.g., 

in a parity plot under a variety of operating conditions [25], to determine if the proposed 

mechanistic steps and their computed kinetics are valid.  

This modern computational “blackbox” approach is in stark contrast with the classical 

Langmuir-Hinshelwood-Hougen-Watson (LHHW) approach [26,27], in which, somewhat 

arbitrarily, a single rate-determining step (RDS) is assumed, the remaining steps being at quasi-

equilibriums (QE). If the resulting LHHW rate expression with fitted rate and equilibrium 

parameters agrees with experiments, the RDS is deemed [28].  

There is needed a middle ground between these two extremes that retains the rigor of 

modern predictive approach but endows it with insight to make the analysis and subsequent 

mechanism reduction more transparent. We describe such an approach here. 

 Whether the postulated molecular and kinetic complexity of a microkinetic network is 

justified in reality is, thus, an open and important question. In other words, it is much easier to 

propose a mechanistic step than to dispose-off one. On the other hand, the parsimonious Ockham’s 
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razor [30] would recommend the simplest mechanism that can explain observations. For instance, 

Lu and Law [31] were able to reduce the complex GRI 3.0 [12] from 325 down to a 15-step 

mechanism that was found to be accurate in its predictions over a broad range of conditions. Such 

reduction, if done insightfully, is, of course, very desirable, as kinetic systems are often 

computationally challenging [32], especially when coupled with transport equations, as in 

microkinetics [1,25], or in computational fluid dynamics (CFD). If key steps could be identified, 

the researchers could devote more of their energies to accurately characterizing their 

kinetic/thermodynamic parameters, and focus on these in the design of more active and/or selective 

catalysts [33].  

Some of the tools that are currently in use for simplifying complex catalytic chemistry 

models include: 1) a pictorial comparison of the energy landscape of different pathways for 

pathway discrimination [25], 2) a comparison of step reversibility, as proposed by Dumesic [34], 

and 3) evaluation of Campbell’s degree of rate control (DRC) [35-38] for identifying important 

steps and dominant surface intermediates.  

The first of these, although intuitively appealing, is a qualitative graphical tool, while the 

second involves only a thermodynamic criterion, not kinetic [36,39]. The most rigorous tool 

available so far is Campbell’s DRC, which involves evaluating a normalized differential change 

in the rate of the overall reaction (OR), ORr , for a normalized differential change in the forward 

rate constant of a given step 



s , holding invariable all step equilibrium constants and all other step 

rate constants, i.e.,


 



rkKORDRC krX 


,, )ln/ln( . Campbell’s DRC is powerful and derives 

from the broader concept of parametric sensitivity used widely in the analysis of kinetic and reactor 

systems [3,7,40,41]. However, it is a “black box” numerical approach. 
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Here, we discuss an alternate approach based on electrical network analogy of a reaction 

mechanism within the reaction route (RR) graph analysis approach [42-45] developed by us, which 

involves an evaluation of the reaction step “affinity,” or driving force, and “resistance” under a 

variety of conditions. It is just as rigorous and substantially more revealing than Campbell’s DRC, 

allowing transparent pruning of complex catalytic reaction networks. The example that we use for 

this study involves the DFT study of the water-gas shift (WGS) reaction on Pt-Re [4]. It is shown 

that while Campbell’s DRC leads to erroneous conclusions for this example, our approach allows 

rigorous mechanism analysis and reduction, eventually leading to a simplified but accurate rate 

law. 

An expansive starting mechanism is, of course, not necessarily exhaustive, and could well 

miss one or more critical steps. One does not know a priori which elementary steps really occur, 

and which are the real intermediates. The intermediates are generally too fleeting to be detected 

via spectroscopic techniques, so that one has to depend on quantum mechanical methods for 

insights. However, these are extremely time consuming for an exhaustive search. Therefore, one 

is limited by pointers in the literature and one’s own chemical intuition to assemble a good 

mechanism, followed by use of DFT to find their energetics. Clearly, however, there is a risk that 

an important reaction is overlooked. The approach presented here, of course, cannot overcome any 

such deficiency of a given mechanism. It is, thus, only an ex post method to check the consistency 

of the network found by experimental and DFT procedures, and as a useful tool for 

reducing/pruning the network. 

3.2 Theory 

Since Campbell’s DRC is a form of parametric sensitivity analysis, we start below with a 

discussion of the latter first.  
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3.2.1 Parametric Sensitivity Analysis 

Consider a system (e.g., a catalyst, or a catalytic reactor), as shown schematically in Figure 

3.1, characterized by its steady-state “response” variable a(jj yy  ) (e.g., conversion, selectivity, 

composition of a reactant or a product, the rate of the OR, or the rate of generation/consumption 

of a species, etc.), which may be an explicit expression, a numerical solution, or simply tabular 

data, where  is a vector of p independent system parameters, (e.g., step rate constants , pre-

exponential factors, or activation barriers, etc.), and a is a vector of n input, or “imposed,” variables 

(e.g., species activities, temperature, pressure, flow rate, etc.).  

 

Figure 3.1: A chemical system (e.g., a catalyst) as a (black) box, with response (r), e.g., conversion or OR 

rate, determined by input variables (e.g., species composition vector, a) and system parameters (e.g., step 

activation energy vector, ). 

 

The total differential change in the response variable jy  due to incremental changes in all 

system parameters 
  ( = 1, 2, …, p) 

 



p

yp

p

jjjj

j dSd
y

d
y

d
y

d
y

dy
j

1

,2

2

1

1

)(



























a    (3.1) 
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which may be an analytical expression if jy  is an explicit expression [3], or a numerical, or even 

an experimental value, and depends on the input variables vector a and the balance system 

parameters in  that remain unchanged.  

As an aside, the local sensitivity coefficients may also be used, along with an estimate of 

the uncertainty in each parameter,  , e.g., those of the rate constants in their DFT estimation,[47] 

to obtain the overall uncertainty in the response variable, via an estimate of its variance,9 via 
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a  where each term in the summation is an estimate of the 

contribution of the uncertainty in each parameter   to the overall uncertainty in the response 

variable jy . 

It is, however, often preferable to define an alternate normalized (or a relative) local 

sensitivity coefficient 
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in which the parameter   as well as the response function y are normalized, so that it has the 

additional virtue of being dimensionless.  

Once computed, these p sensitivity indices may be written as a row normalized sensitivity 

coefficient vector, 
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Further, as above, from the definition of the total derivative for yj 
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3.2.2 Campbell’s Degree of Rate Control 

The generic parametric sensitivity coefficient defined above is of broad utility in a variety 

of fields [6-11]. On the other hand, Campbell’s degree of rate control (DRC) [35-37] is a 

specialized version developed for use in pruning microkinetic models in catalysis, with the 

following stipulations: 1) It is defined as the normalized sensitivity coefficient of the rate of the 

OR (i.e., the response variable, 



y j  rOR ) with respect to 2) the forward rate constant of step 



s , 

(i.e., the system parameter,  k


 ), while 3) holding constant all other step rate constants, as 

well as 4) all step equilibrium constants (including that of the step 



s ), i.e., 
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Here, the last equality stems from the thermodynamic transition-state theory (TTST) relation for 

the rate constant, i.e., )/exp()/( o,‡ RTGhTkk B  


 , where 
o,‡

G


  is the Gibbs free energy 

(GFE) of activation for the forward step. Further, since 
o,‡o,‡o,‡

 STHG


  
o,‡

 STE


 , the 

differential change in k


ln may be brought about by incrementally changing the activation energy 

E


 of the step 



s , holding the entropy of activation 
o,‡

S


  constant [37]. 

The key aspect, thus, that distinguishes Campbell’s DRC from simply being the normalized 

sensitivity coefficient with respect to the forward rate constant [8], is that the thermodynamics of 

the step 



s , are not altered in Campbell’s DRC as k


 is varied incrementally, so that k


 changes 

concomitantly such that  kkkk


//  . This is so because the equilibrium constant that is 
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held constant for the elementary step and its forward and reverse rate constants are interrelated via 

the TTST relation 
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Further, the Gibbs free energy (GFE) of activation for the forward step in Eq. (3.6) is 
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where 
o,‡

,fG  is the standard (for unit activity) GFE of formation of the transition-state complex 

(TSC) of step 



s , 
o

,ifG  is that of the reactant species i  in step 



s  , and i  is the stoichiometric 

coefficient of species i in step 



s  (by convention, 



i  0 for reactants and 



i  0 for products).  

It is assumed next that the incremental change in 
o,‡

G


  in Eq. (3.6) is brought about by 

incrementally perturbing the standard GFE of formation of the TSC of step 



s , i.e., 
o,‡

,fG , rather 

than that of any of the reactant species
o

,ifG  in the step 



s . Then Campbell’s DRC, Eq. (3.6), may 

alternately be written in the form [37] 
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where all other standard GFE of formation of species are held constant, as well as that for the TSCs 

of all other steps. The incremental change in the standard GFE of formation of the TSC may further 

be brought about by incrementally changing the standard enthalpy of formation of the TSC of the 

step, 



H f ,
‡,o , holding the entropy of formation of the TSC 



S f ,
‡,o  constant [37].  
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An alternate way to view Eq. (3.9) is as a reaction forming the particular TSC from the 

reactants of the overall reaction (OR), or from terminal species, rather than from those in the step 



s , so that the Campbell’s DRC may then be construed as a derivative with respect to the 

equilibrium constant of reaction of formation of the TSC of step  from the OR terminal 

reactants.37  This may be accomplished by appropriately combining the elementary steps into the 

so-called intermediate reactions (IR) [42-44]. 

There are different ways in which the Campbell’s DRC, once hence numerically computed 

for all the steps in a microkinetic model, may be utilized for identification of key steps and model 

reduction [48]. One such method is the so-called principal component analysis (PCA) [41,49,50] 

in which the eigenvalues and eigenvectors of the matrix XX
T

 are computed. The dominant 

eigenvalues then indicate the principal eigenvectors, and the biggest elements of these eigenvectors 

provide the most significant steps in the mechanism. 

A second approach is to simply compare Campbell’s DRC of a given step as a fraction of 

its sum for all steps, where the latter may be obtained from Eqs. (3.5) and (3.6), which for equal 

relative variation of the rate constants (i.e., for kkdkkdkkdkkd





//// 2211   ) 
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and describes the total normalized change in the OR rate as a result of an equal normalized 

differential change in the rate constants of all steps in a microkinetic mechanism. 

In fact, it has been often conjectured [3,36,51] (based on some numerical examples, 

although not proven mathematically) that 1
1

, 


p

DRCX


 . Therefore, Campbell [35,36] suggests 
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simply comparing the absolute numerical value of the DRC for each step for model reduction and 

for identification of the rate-determining step (RDS), if any. However, in more recent work, it has 

been found that the common assertion that 1
1

, 


p

DRCX


  is incorrect [25]. 

At any rate, the larger the calculated value of 



XDRC , , the greater the degree of control that 

the step 



s  exerts on the overall rate. A positive value for 



XDRC ,  suggests that increasing the rate 

constant k


 would increase ORr , so that the corresponding step 



s  may be considered as a rate-

limiting step (RLS). On the other hand, a negative value for 



XDRC ,  suggests an inhibiting step. 

A 



XDRC , 0 indicates a quasi-equilibrated (QE) step. On the other hand, a 



XDRC , 1 indicates 

a RDS. Once the key steps in a mechanism are hence identified, one can, in principle, design a 

better catalyst based on these insights [33,38].   

It is possible to generalize Campbell’s sensitivity analysis approach to determine the so-

called degree of thermodynamic control (DTC) of a step [37], defined, in analogy to Eq. (3.9), as 

 
o‡,
,
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
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   (3.11) 

where the relative change in the rate of the OR is evaluated in response to a small relative change 

in the standard-state GFE change of the step 



s , made by changing the GFE of formation of the 

intermediate k in that step, holding constant all other GFE extrema (minima as well as saddle points 

in the energy landscape). Further, as above, the GFE of formation in Eq. (3.11) may be written in 

terms of the equilibrium constant of an IR forming the desired intermediate from terminal species, 

by appropriately linearly combining the elementary steps. 
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In view of Eqs. (3.9) and (3.11), both the degree of rate control (DRC) and the degree of 

thermodynamic control (DTC) may be viewed from a common standpoint [37], with the standard 

GFE of formation of the TSC being varied in one, while the standard GFE of formation of the 

intermediate of interest being varied in the other. 

Stegelmann et al. [37] further conjectured (although also not proven mathematically), 

based on numerical examples, that the degree of thermodynamic control is proportional to the 

surface coverage of the intermediate k,  

 kkDTCX  ,    (3.12) 

with the proportionality constant  varying typically between 1 and 2, being the number of sites 

involved in the RDS. Further, they found that the degree of thermodynamic control is always zero 

or negative, i.e., rate remains unchanged or reduces when an intermediate is stabilized depending 

on whether or not it is a dominant species on the surface. Increasing the coverage of an already 

abundant surface intermediate can reduce OR rate by suppressing those of others further. 

In summary, 



XDRC ,  may be used to determine the kinetically significant TSCs in a 

microkinetic mechanism, while kDTCX ,  may be used for identifying the key reactive intermediates, 

i.e., those that exert a dominant control on the rate of the OR. This then offers the potential of 

increasing the OR rate by changing the appropriate step energies through catalyst design. 

As a practical matter in catalyst design, of course, it is not possible to simply change GFE 

of one transition state or of one intermediate and nothing else.38 The GFE of activation and that of 

a step are, in fact, related via the commonly observed linear-free energy relation [52], 
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Other such relations that describe the commonly observed interrelation between kinetics and 

thermodynamics are the Brønsted-Evans-Polanyi-Semenov relation,3,53 )()( o

  HdEd 


.  

3.2.3 Electrical Analogy and Reaction Networks 

A virtue of Campbell’s DRC is that it is general tool of microkinetic model reduction, i.e., 

without regard to the degree of complexity of a molecular mechanism, which may involve multiple 

parallel pathways. However, a limitation is that it is simply a numerical sensitivity analysis tool 

for a chemical system treated as a proverbial “black box” (Figure 3.1). 

On the other hand, Horiuti provided an alternate criterion for identifying the RDS in a 

sequence [34, 54], i.e., the RDS is the only exergic step (



A  G  0, where 



A  is the de 

Donder affinity) in a sequence, the remaining steps being at quasi-equilibrium (QE) ( 0A ). 

However, the step affinity is simply its thermodynamic driving force, akin to voltage across an 

electrical element in an electrical circuit, the rate (current) of a step (electrical element) being also 

determined by its kinetics (resistance) as well. Further, of course, there can be, and often is, more 

than one step with 



A  0 [54]. 

Thus, identification of significant steps simply based on perturbation of the rate constant 

or activation barriers, as via Campbell’s DRC [36], or alternately based on simply the 

thermodynamic driving force, the de Donder affinity [34,54], both provide only a partial 

perspective, as the net rate of a step involves both kinetics and thermodynamics, i.e., 

 )1()1( 



A
 erzrrrr


   (3.14)  
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where  rrz


/  is the step reversibility [34], and   



A  A /RT  is dimensionless de Donder 

affinity, while 



A  G  is the de Donder affinity for reaction step 



s [55]. 

In other words, one needs both thermodynamic (affinity, or reversibility) and kinetic 

(resistance) characteristics of a reaction step to judge its significance in the overall scheme of 

things. The electrical network analogy based on the reaction route (RR) Graph approach [42-44] 

incorporates both of these aspects. It, thus, comprehensively incorporates and illuminates the 

network structural constraints embodied by the two Kirchhoff’s laws (mass balance, and Hess’s 

law) described below, which further ascribe to reaction networks complete and quantitative 

correspondence to electrical networks. Further, the pictorial representation of the reaction network 

not only provides the corresponding electrical circuit but makes abundantly clear which pathways 

and steps are dominant and which may be neglected. It is, thus, a comprehensive and a transparent 

approach. For its application, however, one first needs the complete, or at least its simplified 

version, RR Graph, obtained for a given mechanism as described below. 

3.2.3.1 The Reaction Route (RR) Graph and the Electrical Analogy 

The Reaction Route (RR) Graph of a mechanism for an OR comprising of p reaction steps 



s  among q + 1 intermediate species and n terminal species (OR reactants and products), is a 

quantitative graph theoretical depiction of the reaction network, in which the steps as well as the 

OR, are represented individually as directed (arrows pointed in the assumed direction) branches, 

or edges, interconnected at nodes, or vertices, nj, so that all reaction routes (RRs) may be traced 

on it as closed walks, or cycles, and the nodal connectivity to branches is consistent with quasi 

steady-state (QSS) mass balance of one or a linear combination of species.  
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An example of a RR Graph is shown in Figure 3.2, which, as described below, is the RR 

Graph for the WGS mechanism on Pt-Re provided in Table 3.1. Once the RR Graph of a 

mechanism is obtained, the equivalent electrical network is obtained simply by replacing the 

individual branches by their step resistances, and the OR by an electromotive force (EMF) 

providing the OR driving force of OR affinity, as shown in Figure 3.3 for the WGS example. 

While, graphically, an RR is a closed walk starting and ending at the same node, 

mathematically, it is a linear combination of reaction steps, 0 :   sRR gg
. Here  g  is 

stoichiometric number (usually, 0, ±1 or ±2) of step 



s  in the gth RR, which provides the number 

and direction of a step in a walk. Mathematically,  g  is determined from the requirement to 

eliminate all species, intermediate as well as terminal, in a RR. When the reaction steps involved 

in a RR do not include the OR, then the RR is called an empty route (ER). When the OR is included, 

then the RR is a full route (FR). In fact, subtracting one FR from another results in an ER, because 

the OR gets cancelled in the process. Further, note that for this the sequence of steps is arbitrary. 

There are, however, some walks that are not closed, i.e., they start and end at different 

nodes. These are called intermediate reaction routes (IRRs). In these, not all species are eliminated. 

Thus, the resulting intermediate reaction (IR), typically includes both terminal species and 

specified intermediate species.  

As per the Horiuti-Temkin theorem, furthermore, an independent RR set is any set of μ = 

p – q  RRs, which may include any FRs and ERs, so long as they include among them all of the 

steps in the mechanism. Moreover, the number of linearly independent ERs is given by μ – 1 = p 

– (q + 1). In other words, any set of RRs (ERs and FRs) that includes all the steps including the 

OR is an appropriate independent set, e.g., an appropriate set is μ – 1 ERs and one FR. 
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Table 3.1: The Microkinetic Model for WGS on Pt-Re. The Letter ‘S’ is a Surface Site. Activation Energies 

in kJ/mol; the Units of the Pre–exponential Factors are atm–1 s–1 for Adsorption and Desorption Reactions 

and s–1 for Surface Reactions.   is the Reaction Step Weight in Terms of Rate Constant, k and Partial 

Pressure of Terminal Species. The Forward and Reverse Rate Constants ( k


 and k


, Respectively) are 

Calculated by: 


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
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2s : 0 1.00x10
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2
O + S ⇄ H

2
O·S 0 1.00x10

13
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pk
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2k


 

3s : 0 1.00x10
13

 CO + S ⇄ CO·S 0 3.30x10
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 CO3 pk
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 3k


 

4s : 44.16 1.00x10
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 H
2
O·S + S ⇄ OH·S + H·S 44.16 7.89x10
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 4k


 4k

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 5k
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 6k
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 6k
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2
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 7k
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 7k
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 10k
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 COOH·S + S ⇄ CO
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15s : 175.68 1.00x10
13

 HCOO·S·S + O·S ⇄ CO
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Figure 3.2: Complete RR Graph for the WGS reaction on Pt-Re. 

 

Figure 3.3: An Electrical Analogy for the WGS reaction. 

As indicated above, the RR Graph is a useful, quantitative, graph-theoretical representation 

of the molecular mechanism that provides: 1) consistence of nodes with species mass balance, i.e., 
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Kirchhoff’s Flux Law (KFL), alternately, Kirchhoff’s First Law, i.e., the quasi-steady state (QSS) 

assumption of kinetics, or the Bodenstein approximation; 2) consistence of RRs with the state-

property of thermodynamic functions (e.g., Gibbs free energy, G, enthalpy H, and entropy S), i.e., 

Kirchhoff’s potential law, or KPL, also called Kirchhoff’s second law, alternately known as Hess’s 

law, according to which change in a thermodynamic state property along a cycle is zero; 3) 

graphical enumeration of all possible reaction routes as closed walks, normally done from 

stoichiometric analysis [55]; and 4) minimality, or directness [57], of both RRs as well as nodal 

degree, namely, the number of branches incident on a node.  

It, actually, turns out that the second and third property above, i.e., consistence with KPL 

and enumeration of RRs, are mathematically equivalent. In other words, a RR Graph that is 

consistent with KPL is automatically amenable to a graph-theoretic enumeration of all RRs, and 

vice versa. As a result, we are concerned only with the two requirements of consistence with the 

two Kirchhoff’s laws, along with their directness, i.e., the number of steps involved in the KPL 

and KFL relations are minimal.  

3.2.3.2 Drawing the RR Graph or Electrical Network 

The first step in the use of the RR Graph approach is, of course, to construct the RR Graph 

or electrical network from a given mechanism. It turns out that this is often not a trivial matter, 

because of the fact that the three basic requirements, namely, KFL, KPL, and minimality impose 

strict limitations on the topology of the resulting RR Graph, so that often only a unique solution 

of is admissible. We have so far found no more than two RR Graphs for any reaction system. The 

preferred method to draw the RR Graph for a given mechanism is to start with a set of independent 

cycles (KPL relations) that are drawn and combined in a way to ensure compatibility with KFL 

relations.  
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Thus, the recipe for drawing the RR Graph is as follows [42]: 1) Start with a set of 

independent RR matrix  in which there is a single OR (or an independent number of ORs), and 

the remaining are ERs (ERs may be obtained by subtracting one FR from another other); 2) Obtain 

a set of KFL relations by starting with the QSS relations for the individual species and linearly 

combining them to obtain a set with minimality (≤ p – q + 1); 3) Draw the ERs as cycles, as well 

as the FR, with steps drawn as branches, interconnected at nodes; 4) Combine ERs, one at a time, 

by merging common branches as far as one can go. The resulting sub-graph containing the ERs is 

called the cycle graph; 5) If a step is repeated in a RR, i.e., if 



g  2, then duplicate the cycle 

graph, flipping it on an axis; 6) Fuse minimal number of nodes to merge the cycle graphs, ensuring 

that the fused nodes are also direct or minimal; 7) Merge with the FR that includes the OR, to 

obtain the complete RR Graph; and finally, 8) Check to make sure that connectivity at all the nodes 

is consistent with appropriate KFL relations. 

Finally, it should be remarked that the QSS analysis is used in our approach to obtain the 

KFL relations that provide the nodal connectivity of the RR Graph. However, once determined, 

the RR Graph can be used for the analysis of non-steady-state cases as well. 

3.2.3.3 Kirchhoff’s Laws and The Electrical Network Analogy 

Since consistence with the two Kirchhoff’s laws is central to the RR Graph architecture, 

these are defined next, and impose important constraints on the kinetics and thermodynamics of 

reaction networks.  

Thus, Kirchhoff’s Flux Law (KFL) implies that the branch rate, rr
 (likened to branch 

current) of all branches incident at a node j sum up to zero, i.e., 0:    rm jj , where the 
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incidence coefficient 



mj  1, if a branch leaves a node, and 



mj  1, if a branch is coming into 

it.  

Kirchhoff’s Potential Law (KPL) implies that a thermodynamic potential change across a 

branch 
YΔ , (e.g., H , G , or S , likened to branch voltage drop) of all branches in a cycle 

or RR, sum up to zero, i.e., 0  Yg
, where the stoichiometric number 



g  1, if a branch 

is directed in the direction of the walk, and 



g  1, if a branch is directed in the opposite 

direction. 

The requirement of consistence with the two Kirchhoff’s laws confers on the RR Graphs a 

one-to-one correspondence with electrical circuits, which is a useful analogy because of the vast 

and well-grounded literature on circuit analysis [58]. Thus, the electrical analog of the RR Graph 

is obtained by simply replacing the branches by resistors and the OR by an EMF, as shown in 

Figure 3.3. 

Even though, the electrical analogy is complete without the following, for convenience, we 

may write the rate of a reaction step in the form of Ohm’s law [42] 

 





R

r
A

    (3.15) 

where A  is the dimensionless step affinity akin to voltage in an electrical circuit. It is in turn 

related to the ratio of the rate in the forward direction     

   

 
r r  to that in the reverse direction,     

   

 
r r , via the 

de Donder relation [34,54] 
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which stems from the thermodynamic consistence of elementary step kinetics, so that the step 

resistance, by combining the last two equations, is 

 





rr

rr
R 






)/ln(
   (3.17) 

Clearly, unlike electrical resistance which is substantially constant, this definition of kinetic 

resistance of a step, strongly depends on reaction conditions, especially, temperature. 

Now that the RR Graph follows KFL, KPL, as well as Ohm’s law, it is completely 

consistent with a resistive network [58]. Consequently, we can write the overall rate as the ratio of 

the affinity of the OR and the overall resistance of the reaction network 

 
OR

OR

OR
R

r
A

    (3.18) 

where the OR resistance of the network is obtained in terms of the individual step resistances, in a 

manner similar to the electrical circuit [58]. 

3.2.3.4 Use of the Electrical Analogy for Microkinetic Analysis and Pruning 

To obtain the rates for the elementary steps as well as for the OR, one needs to first solve 

for the unknown intermediates concentrations 



k  (k = 0, 1, 2, …, q), for which the number of 

relations needed are (q + 1). One of these is always the mass balance of intermediates, e.g., site 

balance, i.e., site fractions add up to unity, 



1 k
k0

q

 . The remaining are the q independent KFL 

relations applied to the nodes in the RR Graph, which are essentially linear combinations of the q 
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quasi-steady state (QSS) relations, i.e., the Bodenstein approximation that assumes that the 

concentrations of the intermediate species are invariant with time. In these are substituted step 

kinetics. We club together in the mass-action kinetics, the product of the known rate parameters 

and activities of terminal species into reaction weights,  , leaving behind the rates explicitly in 

terms of the unknown intermediates concentrations and known  . In fact, for non-linear kinetic 

systems, numerical solution of this set of differential equations can be computationally easier than 

root finding for a set of nonlinear algebraic relations resulting from the corresponding QSS 

equations. 

The q KFL equations incorporating step kinetics and combined with site balance are solved 

for the unknown intermediate activities, or site fractions, 



k . For linear systems this would result 

in explicit expressions in terms of  , while for nonlinear systems, in general, only numerical 

results for a given set of conditions (activities of terminal species and temperature) are possible. 

Once the unknown intermediates surface converges 



k  are hence evaluated, all the step rates as 

well as the OR rate can be determined. Additionally, it becomes apparent that all the step rates are 

simply linear combinations of only μ
 
independent step rates or RR fluxes. It may be noted that this 

procedure is different from conventional microkinetic analysis, in which 



k  are obtained from a 

solution of mass balance (partial or ordinary differential) equations of all species in a given 

reaction system and for a given set of reaction conditions. 

These hence calculated step rates when written on the RR Graph electrical network can 

quickly reveal which pathways provide the bulk of the flux. Thus, one way to prune the mechanism 

is to use the RR Graph and dropping branches that contribute negligibly to the OR rate, i.e. 
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0ORrr , which can often result in clear and drastic pruning. Of course, this needs to be done 

over a range of conditions of interest to ensure the robustness of the pruned network. 

Additionally, once the step rates in the forward direction r


 
and in the reverse direction, 

r


 
are determined as above for a given set of conditions, one can readily compute step affinities 

(Eq. 3.16) as well as step resistance (Eq. 3.17), which may also be provided on the RR Graph. 

Steps whose resistance R  is a significant fraction of 
ORR  are kinetically significant, and are 

termed as the rate-limiting steps (RLS), the others are not. In fact, step resistances can be plotted 

over a broad range of conditions, especially temperature to determine whether the significant steps 

change. In case there is a step with 



R ROR , it may be denoted as the rate determining step 

(RDS). 

Finally, a comparison of step affinities   



A  (or step reversibity, z , Eq. 3.16) to those for 

the OR   



AOR  (or OR reversibility, 
ORz ), i.e., ORAA  , also sheds light on which steps are at QE 

and which are not. Steps with   



A 0, or with reversibility 



z 1 (Eq. 3.17), are at QE, while 

those steps whose   



A  is a significant fraction of that of the OR   



AOR  are the RLSs. Further, it is 

noteworthy that if there are parallel pathways that contribute significantly to the OR flux, then as 

per KPL, the affinity drop over all parallel pathways is the same, i.e., there are RLSs in all parallel 

pathways!  

An additional possibility is to compare ratio of the power dissipation in each step [42], 

namely,   



rA , to that in the OR,   



rORAOR   

 1
1






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
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   (3.19) 
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which stems from the conservation of energy [42], i.e., 

  



rA

1

p

  rORAOR . 

In summary, a comparison of the dissipation as above, along with three different RR 

Graphs labeled with step rates, step affinities, and step resistances can completely illuminate the 

reaction network, laying bare the important pathways, RLSs, as well as the QE steps. Additionally, 

plots of step resistances in comparison with that of the OR resistance over a range of temperatures 

can provide unequivocal evidence of the identity of the crucial steps and pathways in a 

microkinetic mechanism. 

3.2.3.5 Deriving an Explicit Rate Expression for a Pruned Microkinetic Mechanism 

Once the mechanism has been suitably pruned as described above, and the corresponding 

reduced RR Graph obtained, we have shown [59,60] that an accurate, albeit approximate, explicit 

rate law may be obtained in the spirit of the LHHW methodology, but following the so-called Rdot 

approach, even for nonlinear systems, and those with more than one RLSs, for which it is not 

ordinarily possible to obtain explicit rate expressions. Such explicit rate expressions are, of course, 

of immense value in the design and analysis of industrial reactors. 

The expression for the OR rate takes the form 

 












 




n

i

i

OROROR

OR
OR

ia
KRR

z
r

1

1
1

1)1(   (3.20) 

where the overall resistance of the reduced network is computed from its equivalent electrical 

network in terms of the step Rdots. These in turn are computed from 

 
 




r

R 
1

   (3.21) 
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where the resistance 



R


 
(Rdot) is equal to the inverse of the rate of the forward step (1/


r


) (Eq. 

3.21), under conditions that it is the RDS, i.e., when the entire driving force (affinity) for the OR 

occurs across it, the other steps being at QE. In other words, step 

r


 is obtained following the 

LHHW approach, with which there is broad familiarity and ease. 

In short, the step resistances 



R
  can be obtained a priori via the LHHW methodology, by 

treating each of the steps as RDS, in turn, and using the QE approximation for the remaining to 

determine any unknown activities of the intermediate species in 

r


. The basic idea is that for a 

given RDS, the q linearly independent unknown intermediate site fractions are determined by 

identifying the appropriate intermediate reactions, or IRs, or pathways for the formation of 

intermediates that may be considered to be at QE, i.e., all involved steps have 0jA . An IR 

results from an appropriate linear combination of steps sj that eliminates all of the intermediate 

species except that of interest, 



Ik , formed from terminal species along with the vacant site S. It is 

important to pick QE steps sj that don’t violate a KPL relation. For instance, if the RDS 



s  (

  



A  AOR ) under consideration is a part of an ER, clearly all the steps in the parallel branch of the 

ER cannot be at QE (
  



A j 0), since that would violate the KPL for the cycle. This is, of course, 

not true when the cycle contains the OR, for which the affinity drop is equal to   



AOR . 

Finally, the resulting rate law can be further simplified if the surface coverages of some of 

the intermediates are negligible, as is often the case. In fact, sometimes only a single intermediate 

is the most abundant reactive intermediate (MARI) on the surface [27]. 
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3.3 Results and Discussion 

We will follow the example of the WGS reaction, which we have analyzed before via the 

RR Graph approach [45], but using a recent DFT microkinetic model for the Pt-Re(111) catalyst 

[46]. This system with a single OR is not only of great practical significance in a variety of 

processes, but also is one in which the microkinetic models developed are of significant, although 

not overwhelming, complexity, so that our RR Graph based paring approach can be illustrated 

meaning and without excessive complexity. We will then compare the RR approach to Campbell’s 

DRC for the same mechanism to directly compare the deductions and insights provided by the two 

alternate approaches.  

It should be noted that the mechanism presented cannot be guaranteed to be exhaustive in 

listing the possible steps and intermediates that occur within this system. The approach presented 

does not widen the scope of a mechanism that is theorized through experimentation and DFT 

calculations, and thus will not be able to suggest what further steps or intermediates should be 

included in the mechanism. The major benefits are confirming the consistency of the DFT 

calculations and the connectivity of the steps, as well as pruning the mechanism down to the steps 

and kinetics that are most important to driving the reaction in the desired direction.  

3.3.1 Constructing the RR Graph 

The mechanism for the WGS on Pt-Re is shown in Table 3.1 with p = 15 elementary 

reaction steps 



s , and 1 overall reaction, OR. There are a total of 13 unique species which can be 

divided into n = 4 terminal species i.e., the reactants (H2O and CO) and products (CO2 and H2) 

and, l = 9 surface intermediates (H2O·S, CO·S, H·S, CO2·S, OH·S, O·S, COOH·S, HCOO·S and 

S) where S stands for a free active site on the catalyst surface. Due to the site conservation, 

however, only q = 8 out of l = 9 intermediates are independent. The RR Graph can be constructed 
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based on a complete list of stoichiometrically enumerated RRs and nodes [59,60]. However, this 

rigorous mathematical enumeration of the complete list of pathways is tedious and unnecessary, 

since only a handful of RRs are independent.  

According to Horiuti-Temkin theorem, only μ = p – q = 15 – 8 = 7 RRs are linearly 

independent from the complete set of enumerated FRs and ERs for this system. Any appropriate 

set may be chosen. Additionally, only μ – 1 = 7 – 1 = 6 of the ERs are linearly independent. Thus, 

a set of 7 linearly independent RRs may be readily determined by finding 6 independent ERs and 

one FR for the mechanism. These can, in fact, be determined simply from an inspection of the 

mechanism, thus avoiding the step of systematic stoichiometric algorithm as described in our 

earlier publications [42-45,59,60]. Such an independent set for this mechanism is provided in 

Table 3.2. In fact, the complete set of FRs and ERs can subsequently be determined topologically 

as walks, once the RR Graph is constructed. A direct FR for this system, as mentioned earlier, 

involves no more than q + 1 = 8 + 1 = 9 elementary steps, and contains no ERs. These FRs and 

ERs can be enumerated via manual counting or automated graph theoretical tools. This particular 

system contains 52 unique FRs and 33 unique ERs. 

Cycle s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 OR1 

FR1 +1 +1 +1 0 0 0 +1 +1 +1 +1 0 0 0 0 0 -1 

ER1 0 0 +1 0 0 0 0 0 0 0 0 0 +1 0 +1 0 

ER2 0 0 0 +1 0 0 0 0 0 0 0 0 +1 -1 0 0 

ER3 0 0 0 0 +1 0 0 0 0 0 0 0 0 -1 -1 0 

ER4 0 0 0 0 0 +1 0 0 -1 0 -1 0 0 0 0 0 

ER5 0 0 0 0 0 0 0 0 0 +1 -1 0 +1 -1 0 0 

ER6 0 0 0 0 0 0 0 0 0 0 -1 +1 0 -1 -1 0 

Table 3.2: List of an Example of a Linearly Independent Set of Cycles for the WGS Mechanism in Table 

3.1. 
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To construct the RR Graph, we begin by drawing the cycle graph by assembling the ERs 

together such that no reaction step is repeated in the graph by identifying common edges and nodes 

and fusing these “subgraphs” to produce a cycle graph that includes each ER.  For example, in 

Figure (3.4a), ER1 and ER2 have in common a pair of nodes that have an 14s  edge between them, 

so those cycle are fused along that edge.   

We continue this process until we have a cycle graph that consists of the 6 linearly independent 

ERs. As suggested earlier for this example, each step, including the overall reaction step, should 

appear twice, and also the graph should be symmetric, which leads to the flipping and doubling of 

this fused graph (Figure 3.4b).  We can clearly see that the two graphs have two edges ( 6s and 7s

) in common that we can fuse to make it symmetrical. We then check each node to make sure that 

the KFL is satisfied, which are linear combinations of the species QSS relations provided in Table 

3.3. We find the nodes highlighted in Figure (3.4c) to be considered as unbalanced, as they do not 

satisfy any KFL relation. These nodes can be balanced by adding two 3s  edges to one and two 8s  

edges to the other. This creates two new unbalanced nodes to which we can add two 2s  edges and 

two 9s  edges. The steps 2s , 3s , 8s , and 9s  represent the adsorption and desorption steps that may 

be placed in any sequential order in the graph without affecting analysis or calculations, but the 

shown order makes the most sense in terms of how the mechanism proceeds. Finally, the OR is 

added twice to balance the terminal nodes, resulting in the complete RR Graph shown in Figure 

3.2 and its electrical analogy in Figure 3.3. 

Although in this example we are simply concerned with chemical steps, even surface or 

pore diffusion steps can be added within the RR Graph approach, as illustrated by Deveau et al. 

[61]. 
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b)  

c)  

Figure 3.4a: Process of forming the RR Graph for the WGS reaction on Pt-Re. ERs are added in succession 

to form a cycle graph. 

Figure 3.4b: Original and flipped cycle graphs with unfilled circles representing unbalanced nodes. 

Figure 3.4c: The two cycle graphs having been merged along s6 and s7. 
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SOH2 Q :  (+1) 2r  + (-1) 4r  + (+1) 6r  + (+1) 13r  + (+1) 16r = 0 

SCOQ :  (+1) 3r  + (-1) 7r  + (-1) 10r = 0 

SOHQ :  (+1) 4r  + (-1) 5r  + (-2) 6r  + (-1) 10r  + (+1) 12r  + (-1) 13r  + (+1) 15r  = 0 

SHQ :  (+1) 4r  + (+1) 5r  + (-2) 9r  + (+1) 11r  + (-1) 14r  = 0 

SOQ :  (+1) 5r  + (+1) 6r  + (-1) 7r  + (-1) 12r  + (-1) 15r = 0 

SCO2
Q : (+1) 7r  + (-1) 8r  + (+1) 11r  + (+1) 12r  + (+1) 13r  + (-1) 14r  + (+1) 15r  +(+1) 16r =0 

SCOOHQ : (+1) 10r  + (-1) 11r  + (-1) 12r  + (-1) 13r  = 0 

SHCOOQ : (+1) 14r  + (-1) 15r  + (-1) 16r  = 0 

Table 3.3: QSS Relations for Each of the Intermediate Species. 

 

3.3.2 Network Analysis and Pruning 

The experimental WGS studies in Ref. (46) were performed on a Pt-Re catalyst primarily 

at a temperature T = 548 K, and pressure p = 1 atm, at various feed compositions. For our analysis, 

we chose parameters similar to those chosen by Carasquillo-Flores et al. [46], with a feed 

composition of H2O (25%), CO (15%) and N2 (balance), and a conversion, X = 0.25. A numerical 

solution of the KFL equations (QSS relations) for the intermediates concentrations under these 

conditions was then performed as described in section 3.2.3. A microkinetic approach based on 

differential equations was also used to estimate initial values for solving the KFL equations. The 

step weights   for this were determined from terminal species partial pressures and the rate 

constants determined from the activation energies and pre-exponential factors for the Pt-Re 

catalyst as tabulated in Table 3.1 [46]. The determination of the intermediates concentrations hence 

allowed calculation of step rates along with reversibility, affinities and resistances for the 
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elementary reaction steps, which are summarized in Table 3.4. Finally, the rate of the OR can be 

obtained from the TNs (Figure 3.2), e.g. 



rOR  r2  r9.  

It is immediately clear from Figure 3.2 that there is only one pathway where there is an 

appreciable flux, while for all other steps and pathways, the flux is negligible. This pathway 

consists of the adsorption/desorption steps ( 2s , 3s , 8s , and 9s ), dissociation of water ( 4s ), 

formation of carboxyl species ( 10s ), and the subsequent direct dehydrogenation of adsorbed 

carboxyl ( 11s ).  This leads to a reduced RR Graph with a single FR (Figure 3.5), obtained by 

dropping those with negligible rates. 

A look at the calculated resistance of each step for these conditions confirms this 

conclusion. It further indicates that 4s  and 10s  have a much higher resistance than the other steps 

in the remaining FR. Thus, we can approximate the overall reaction rate in terms of the overall 

resistance being equal to the sum of the resistances of the two steps in sequence, and using Eq. 

(3.20): 

 



rOR 
(1 zOR )

ROR
 

1

R4

  R10

 1
1

KOR
ai
 i

i1

n










 (3.22) 

The electrical analogy for this is provided in Figure 3.6.  
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Reaction Step Step Resistance Rate (s-1) Reversibility Affinity 

2 1.15E-10 0.0917 1.000 1.05E-11 

3 1.26E-08 0.0917 1.000 1.15E-09 

4 9.91 0.0917 0.403 9.09E-01 

5 1.79E-07 1.0E-06 1.000 1.79E-13 

6 2.38E-11 1.0E-07 1.000 2.38E-18 

7 43.1 1E-20 1.000 4.31E-19 

8 1.55E-13 0.0917 1.000 1.42E-14 

9 7.92E-13 0.0917 1.000 7.26E-14 

10 3.53E-01 0.0917 0.968 3.24E-02 

11 1.56E-06 0.0917 1.000 1.43E-07 

12 5.39E-03 1.0E-06 1.000 5.39E-09 

13 4.89E-11 1E-15 1.000 4.89E-26 

14 1.08E-10 1E-14 1.000 1.18E-24 

15 3.58E-10 1E-16 1.000 3.58E-26 

16 2.87E-12 1E-14 1.000 2.87E-26 

Table 3.4: Step Resistances, Rates, Reversibilities and Affinities for each Step in the WGS Reaction. 

 

 

Figure 3.5: Reduced RR Graph for the WGS reaction on Pt-Re catalyst 

 

Figure 3.6: Simplified electrical analogy diagram for the WGS reaction on Pt-Re catalyst 
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In short, we can surmise based on this flux analysis and confirmed by the resistance 

comparisons of the steps, that the Full Route (FR) of ( 2s  + 3s  + 4s  + 8s  + 9s  + 10s  + 11s ) is the 

only dominant pathway for the WGS on Pt-Re under these conditions and that steps 
4s  and 10s  

can be considered as the two rate limiting steps (RLSs). This is confirmed for a range of 

temperatures as shown in Figure 3.7, which shows an evaluation of the resistances for the steps: 

4s , 10s  and 11s , all others being much smaller. 

Figure 3.7: Comparison of step resistances Ri for the non-adsorption/desorption steps versus temperature 

for the dominant pathway of the WGS reaction on Pt-Re. 
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3.3.3 Explicit Rate Expression through Alternate Form of Ohm’s Law 

We use the Rdot approach described in section 3.2.3.5 to obtain an explicit rate expression 

via (Eq. 3.22) for the WGS reaction on the Pt-Re catalyst. For each step, thus, we calculate 



R
  by 

considering each step in turn to be the RDS, the remaining steps being at QE, and then following 

the conventional LHHW [26,27] approach. This allows determination of the q intermediate site 

fractions by identifying the appropriate QE intermediate reactions (IRs), or pathways, for the 

formation of intermediates. These IRs are found by a linear combination of the QE steps js  that 

eliminates all the intermediate species except that of interest, Ik, formed from terminal species 

along with some reference intermediate, e.g., the vacant site S in case of catalytic reactions.  

We start by first considering 4s  as the RDS, the remaining steps being at QE. Thus, 
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where the superscript dot refers to the Rdot methodology, and the subscript 4 serves as a reminder 

that this is for the case when 4s  as the RDS. With all other steps then at QE, appropriate IRs for 

the formation of the q = 8 independent surface intermediates, (H2O·S, CO·S, H·S, CO2·S, OH·S, 

O·S, COOH·S, and HCOO·S) are: 

SOH2 IR : (+1) 2s   

SCO IR  : (+1) 3s  

SOHIR  : (-1) 3s  + (-1) 5s  + (-1) 7s  + (-1) 8s  + (-1/2) 9s  
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SHIR  : (-1/2) 9s  

SOIR    : (-1) 3s  + (-1) 7s  + (-1) 8s  (3.24) 

SCO2
IR  : (-1) 8s  

SCOOHIR : (-1) 8s  + (-1/2) 9s  + (-1) 11s  

SHCOOIR : (-1) 5s  + (-1) 8s  + (-1/2) 9s  + (-1) 15s  

For these steps at QE, the corresponding site fractions, thus, following the LHHW methodology, 

are: 
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and using site balance to determine the unoccupied site fraction, we finally get: 
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Performing a similar analysis for 


10R   i.e., with step 10s  as the RDS 
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By examining each site fraction individually, i.e., 




p

pk

,0

,




, it might be possible to simplify these 

further.27 Thus, 






p,0

SOH2




0.113, 644.0

,0

SCO 






p


, 000131.0

,0

SOH 






p


, 







p,0

SO




0.000685, 194.0

,0

SH 






p



, 000150.0
,0

SCO2 






p


, 0000445.0

,0

SCOOH 






p


, and 00000315.0

,0

SHCOO 






p


, it is revealed that 

SO ,



SCOOH , 

SOH , 

SCO2
 and 

SHCOO  are relatively insignificant in comparison to 


SCO ,


SOH2
 , and 

SH  
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in both 

4R  and 

10R , so that the smaller site fractions can be neglected when summing the site 

fractions to find 


p,0 . Thus, the above expressions simplify to 
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and 
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so that the simplified expression for the overall rate from Eqs (3.22), (3.28) and (3.29): 
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Finally, substituting the rate constants and concentration of terminal species for reaction step 

weights p  (Table 3.1), we have the overall reaction rate expression in the conventional form 
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where,  kkK


/ is the equilibrium constant for step ps , and the DFT parameters for the rate 

constants are provided in Table 3.1. 
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This equation is in good agreement with the results of the numerically calculated QSS 

calculation as shown in a parity plot (Figure 3.8), proving that the Rdot method and subsequent 

simplification are valid for the kinetic data used for the WGS reaction on Pt-Re catalyst.  

 

Figure 3.8: Comparison of overall QSS rate obtained from implementation of Ohm’s law Eq. (3.32) and 

that calculated numerically for the WGS reaction on Pt-Re. Where each point is a different temperature for 

which the QSS rate is calculated.  

 

3.3.4 Analysis via Campbell’s Degree of Rate Control 

Campbell’s DRC analysis for the WGS reaction on Pt-Re catalyst was conducted from the 

rates for each step calculated via numerical QSS analysis for the same conditions used in the 

previous section, i.e., a temperature of 548K, and pressure p = 1 atm with a feed composition of 

H2O (25%), CO (15%) and N2 (balance), and a conversion, X = 0.25. To estimate 



XDRC, (Eq. 3.6 

or 3.9), the change in the overall rate when a rate constant changes incrementally was calculated 
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as follows. The forward rate constant of a chosen step was thus increased by a small amount (i.e., 

1%), and since 
 kkK


/  needs to be constant, the reverse rate constant was increased by 1% as 

well. The new ORr  was calculated using the increased k


and k


 values, with all other rate 

constants remaining unchanged. Thus, the Campbell’s DRC was calculated using the finite 

difference form of Eq (3.6) 
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  (3.32) 

This process was completed for each step of the mechanism in turn and compared to the 

calculations for this system that are reported by Carrasquillo-Flores et al [46]. (Table 3.5). The 

results are similar, showing that 
10s , the formation of the carboxyl species step, has the largest 

DRC and is hence the RDS, the DRC of all other steps being insignificant or zero. 

A similar approach was used to estimate Campbell’s Degree of Thermodynamic Control 

(DTC), as given in Eq. (3.11), to determine the significance of the stability of an intermediate 

species on OR rate. For numerical estimation, we used the finite difference form of Eq. (3.11). 

Since changing the GFE of formation directly changes the binding energy, to calculate Campbell’s 

DTC for an intermediate k, the binding energy of that intermediate was reduced by 1% while all 

other binding energies were kept constant. The rate constants for each forward or reverse reaction 

step that includes that intermediate was thus changed due to the activation energy barrier being 

raised due to the lower energy state of the intermediate. The above described QSS numerical 

calculation was then performed using these new rate constants to find the change in the overall 

rate. This was repeated for each of the eight intermediates and the results are shown in Table 3.6.  
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Reaction Step XDRC,Pt-Re
[A] XDRC,Pt-Re

[B] 

1 0 0 

2 0 0 

3 0 0 

4 -1x10-4 -3x10-4 

5 0 0 

6 0 0 

7 0 0 

8 0 0 

9 0 0 

10 0.95 0.95 

11 8x10-3 9x10-3 

12 0 0 

13 0 0 

14 0 0 

15 0 0 

16 0 0 

Table 3.5: Values for Campbell’s Degree of Rate Control for Pt-Re Catalyst for [A] This Work and [B] 

Carrasquillo-Flores et al [46]. 

 

Reaction 

Intermediate 

XDTC,Pt-Re 

O·S 0 

OH·S 0 

CO·S -0.650 

CO2·S -0.018 

COOH·S 0 

H2O·S 0 

H·S -0.058 

HCOO·S 0 

Table 3.6: Values for Campbell’s Degree of Thermodynamic Control for Each Reaction intermediate. 

Carasquillo-Flores et al. reported coverage of CO to be approximately 2/3 ML and 

coverage of H atoms to range between 0.15 ML to 0.2 ML under similar conditions for their 

model.46 This agrees with the results for both Campell’s DoRC and the RR Graph Approach. As 
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seen in Table 3.6, DTC,COX = -0.65 and DTC,HX = -0.058, which suggests that CO is the MARI for 

these conditions with some H atoms also occupying the surface. The site fraction comparison for 

the Rdot method also suggest that CO is the MARI for this reaction with H coverage having 

additional, although lesser, importance.  

3.3.5 Comparison of Campbell’s Degree of Rate Control and RR Graph Approach 

For the WGS reaction on the Pt-Re catalyst, Campbell’s DRC determines that the 

formation of the carboxyl species step (
10s ) is the RDS of the mechanism, since its 96.010, DRCX , 

that for the remaining steps being much smaller or zero. On the other hand, the RR approach 

concludes that the dissociation of water step ( 4s ) is the largest contributor to limiting the overall 

rate, with 
10s  also limiting the rate somewhat, although not to the same extent as s4. Carrasquillo-

Flores et al. [46], in fact, also eventually concluded that 4s  was the RDS despite 
10s  being indicated 

as the RDS from Campbell’s DRC, stating: “Putting all the observations together we infer that 

H2O activation, 4s , is the underlying rate-controlling step.”  

Carrasquillo-Flores et al. [46] further noted that based on their model and experiments, 

they concluded that the pathway including 4s , 
10s  and 11s  was the only pathway with a significant 

amount of flux. Not only does the RR approach agree with this conclusion arrived at circuitously 

by the authors, it provides a quantitative estimation of how much each step contributes to the 

overall rate. Clearly, Campbell’s DRC arrives at the wrong conclusion in this case.  

Furthermore, according to Campbell’s theory, the sum of the DRC of all the steps should 

add to unity. For the WGS reaction on Pt-Re catalyst, it is found to be 0.96, which is close to, but 

not precisely unity. However, there are examples that show that it is significantly different from 

unity. Thus, according to the results found in Ref. (25) for the WGS reaction on Cu catalyst, it 
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only adds up to approximately 0.83, well below unity. On the other hand, this does not seem to 

affect the conclusions one can make about a mechanism, as long as for one of the steps 



XDRC ,  is 

much higher than that of any other step.   

For the WGS reaction example under consideration, thus, there is more than one RLS and 

this conclusion does not much change with temperature (see Figure 3.7) or other conditions.  In 

fact, the RR approach provides quantitative estimates of the resistance of each step and clearly 

identifies those that limit the rate and the pathways that contribute significantly.  

3.4 Conclusions 

We have shown via a detailed example of how the analysis and reduction of a reaction 

mechanism can be accomplished by using the electrical network analogy within our Reaction 

Route Graph method. Although Campbell’s Degree of Rate Control is the most common technique 

available, currently, we show here that our RR Graph approach is superior and more insightful. 

The example of the WGS reaction on Pt-Re considered here, in fact, shows that Campbell’s DRC 

can lead to erroneous conclusions that are inconsistent with experimental results [46]. Further, the 

contention that 1
1

, 


p

DRCX


  is not true in general. The RR Graph method is not limited to a 

single RDS or single pathway mechanisms in its usefulness. Further, the electrical analogy 

combined with the well-familiar LHHW methodology provides accurate rate expressions even for 

non-linear cases such as the WGS reaction example considered here, not otherwise possible. It is 

thus concluded that the electrical analogy and the RR Graph approach is a much more effective 

and revealing Ockham’s razor for pruning microkinetic catalytic mechanisms than is Cambell’s 

DRC. 
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A current limitation of our approach is that manually drawing the RR Graph for a system 

with a very large number of steps is challenging, especially for non-linear systems such as the 

WGS reaction. However, this does not limit the efficacy of the electrical analogy approach in 

pruning a large mechanism via a comparison of the reaction step resistance and affinity following 

a numerical analysis. Of course, we envision a tool that will eventually automate the graph drawing  
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Chapter 4. Kinetic and Pathway Analysis of the Oxygen Reduction 

Reaction 

The kinetics of the oxygen reduction reaction (ORR) at the cathode of a proton exchange 

membrane (PEM) fuel cell is a key limitation and has a dominant impact on its performance and 

feasibility as an energy converter. Even with platinum catalysts, which are the most commonly 

used, significant overpotential occurs that greatly diminishes the power efficiency and 

performance of the cell. Hence the search goes on for alternatives to Pt that are cheaper but equally 

or more effective. An analysis of the mechanism and kinetics using our reaction route (RR) graph 

approach was performed to better understand the ORR on Pt and its alloys based on a DFT study 

recent step kinetics. The three reaction routes for this mechanism were thus analyzed on thirty-two 

Pt alloy onion-structured catalysts to identifying which routes are the most favored and for 

calculating the corresponding activity of the overall reaction. A volcano plot was developed to 

compare the activates of the studied catalysts. The dissociative reaction route was found to be the 

most active on Pt catalysts, but other reaction routes were found to be dominant in the less active 

catalyst. A rate equation was determined via the electrical analogy, enabling faster comparison and 

pruning of the mechanism. The analysis provided by our approach here is more robust than other, 

more common, methods as all reaction routes and elementary steps can be evaluated 

simultaneously without any adhoc simplifications. 

4.1 Introduction 

The slow kinetics of oxygen reduction reaction (ORR) at the cathode of a proton exchange 

membrane (PEM) fuel cell accounts for a large part of the inefficiency of the cell. Likewise, 

oxygen evolution reaction (OER) exerts the dominant effect in water electrolysis [1, 2]. Fuel cell 

viability is dependent on both the cost effectiveness of the cell and on its efficiency. This 
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technology is attractive because of its potential role in providing clean energy, but is currently not 

as cost effective compared to conventional energy technologies [2-4]. The slow activity of the 

ORR on platinum catalyst and its cost remain key deterrents towards widespread adoption. Thus, 

finding either a cheaper, or more active catalyst than platinum is of paramount importance to the 

viability of the PEM fuel cell and hydrogen economy.  

Significant efforts have, thus, been made towards understanding the kinetics and 

mechanism of the ORR [1-21]. One promising solution to finding cheaper catalysts is to alloy Pt 

catalyst with nonprecious transition metals [3-13]. In particular, Adzic et al. have had success with 

the development of depositing a Pt monolayer on different transition metals that in fact provided 

higher activity than that of pure Pt [4-6]. More recent studies include onion structures that have 

multiple deposited layers of different transition metals on varying substrates, but all containing at 

least one layer of Pt [3]. Stamenkovic et al. reported that a Pt skin can be formed through annealing 

at 1,000K of the binary Pt3M (M = Fe, Co, Ni, Ti, V) alloy electrocatalysts [12-15]. These alloys 

had higher ORR activities than Pt(111) alone, coupled with attractive stability. 

The selection of alternative, superior catalysts can be aided by theoretical evaluation of the 

activity from the reaction mechanism and predicted step kinetics. However, the mechanisms on 

alternative catalysts are not adequately known. In fact, even the mechanism on Pt is debatable. 

Further, the assumption and simplifications for the mechanism on platinum catalyst might not be 

applicable to alternatives. Azdic et al. have used a Sabatier analysis in some studies [3,16]. The 

Sabatier principle states that in a system of catalytic reactions, there is a maximum reaction rate as 

a function of the adsorption energy of the key reactive intermediates [21, 22]. Thus, an activity for 

each pathway is calculated as a function of the forward rate constants and the activity of the 

pathway with the highest activity is considered to be that for the catalyst. Other researchers have 
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used Campbell’s Degree of Rate Control (DoRC) for their analysis of other mechanisms, although 

this has not yet been applied to ORR [23, 24]. This method identifies the importance of reaction 

steps and intermediates by perturbing specific kinetic data and calculating the effect that 

perturbation has on the overall reaction rate. A detailed analysis and comparison of Campbell’s 

DoRC versus our approach was recently published [25].  

What many of the current studies lack and what we intend to improve upon here, is the lack 

of a robust analysis that encompasses the entire mechanism and quantitatively accounts for each 

elementary step where calculating the rate of the overall reaction. This study of the ORR 

mechanism aims to provide superior insights into the inner workings of the ORR pathways based 

on DFT kinetics [3]. 

Table 4.1 thus shows the 7-step mechanism for the ORR investigated by Herron et al. [3] 

and adopted by us for our analysis. A more detailed 14-step mechanism has been more recently 

published [16], but the 7-step mechanism is adequate for the scope of the conditions and catalysts 

in this research because the additional steps in the larger mechanism do not significantly contribute 

to the flux of the reaction under normal operating conditions of the cathode of a PEM fuel cell. Of 

course, our approach can be applied to the large mechanism as well.  

The 7-step mechanism is comprised of 3 pathways, for which the stoichiometric number 

of each step (σρ) is shown in Table 4.1 for each different pathway, namely: dissociative, peroxyl 

and hydrogen peroxide.  
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sρ Elementary Reaction Step σDissociative, ρ σPeroxyl, ρ σHydrogen Peroxyde, ρ 

s1: O2 + 2S ⇄ 2O⋅S +1   

s2: O⋅S + H+ + e– ⇄ OH⋅S +2 +1  

s3: OH⋅S + H+ + e– ⇄ H2O + S +2 +2 +2 

s4: O2 + H+ + e–  + S ⇄ OOH⋅S  +1 +1 

s5: OOH⋅S + S ⇄ O⋅S + OH⋅S  +1  

s6: OOH⋅S + H+ + e– ⇄ HOOH⋅S   +1 

s7: HOOH⋅S + S ⇄ 2OH⋅S   +1 

 



 :sOR g  O2 + 4(H+ + e–) ⇄ 2H2O 
   

Table 4.1: 7-step ORR reaction mechanism in acid electrolytes [3]. 

A common approach to kinetics involves reducing the mechanism, either to a single 

pathway, or elementary step. Here, we discuss a comprehensive approach that simultaneously 

considers all steps and pathways. It is based on electrical network analogy of the reaction 

mechanism based on the reaction route (RR) graph analysis approach [26-32] developed by us, 

which involves an evaluation of the reaction step “affinity,” or driving force, and “resistance” 

under a variety of conditions. It is equally rigorous and substantially more insightful than more 

common methods (e.g., the DoRC), allowing transparent pruning of complex catalytic reaction 

networks. It allows rigorous mechanism analysis and reduction, eventually leading to a simplified 

but accurate rate law, as demonstrated here for the case of the ORR. 
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4.2 Reaction Route Graph 

The RR Graph approach has been developed by us [25-32] to provide a tool for analysis of 

chemical reaction networks that goes beyond the current methods to elucidate the reaction 

pathways and identify the important kinetic steps. One can visualize a chemical network as a road 

map on which walks define the pathways through which the overall reaction (OR) proceeds, with 

the graph depicting all possible pathways to get from the reactants to the product in the OR. The 

RR Graph approach provides this road map and is able to assign each pathway a quantitative 

estimate of how difficult it is to traverse that pathway, based on an electrical resistance analogy, 

or alternately the flux through a given pathway. 

We define a Reaction Route Graph GR as an ordered, connected, directed, planar or 

nonplanar, cycle graph comprising directed edges or branches, each representing an elementary or 

an overall reaction {OR, s1, s2, …, sρ}, and N nodes {n1, n2, …, nN}, that illustrate how the reaction 

steps are interconnected to allow for all of the direct reaction routes to be traced as walks [27, 28]. 

Edges are depicted on the graph as directed arrows and nodes are circles, typically blue for terminal 

nodes (nodes that have the OR incident to them) and red for intermediate nodes, i.e., those with 

only elementary steps connecting. Two or more edges are parallel if they have in common the 

same pair of starting and ending nodes. The direction of the edge is simply assumed, and the 

reaction may actually proceed in either direction by a given OR. A key distinction is that the nodes 

in the reaction route graphs defined above do not denote single intermediates or terminal species, 

which is commonly assumed in other graph-theoretical depictions [35-38], but simply the 

interconnection of reactions involved in reaction routes, hence the reason for labeling these 

“reaction route graphs.” In fact, a node nj in an RR Graph represents properties associated with the 

sum of products of the reactions incident to the node plus the sum of reactants of the reactions 



 115 

 

incident from the node with an appropriate sign (negative for reactions incident to, and positive 

for reactions incident from a node). 

Perhaps the most important aspect of RR Graphs is that they are analogous to electrical 

circuits. The laws that govern the behavior of electrical circuits, i.e., Kirchoff’s laws, are very well 

developed [33], so that applying them to chemical reaction networks can be quite beneficial and 

revealing. The two network laws of most interest here are Kirchoff’s Flux Law, KFL, alternatively 

known as Kirchoff’s Node Law, and Kirchoff’s Potential (KPL), alternatively called Kirchoff’s 

Loop Law [33].  

KFL states that the step rate rp (likened to electrical current) of all edges incident at a node 

j sum up to zero (from QSS mass conservation). In other words, 0
1

 


p

pjj rmr


 , where the 

incidence coefficient mρj= +1, if an edge leaves the node j, and mρj = −1, if an edge is coming into 

the node j [27].  

KPL states that the step affinity, i.e., negative Gibbs free energy change for a reaction step, 

written in dimensionless form, RTGp /A  (likened to step voltage Vρ) of all edges in a 

closed walk (starting and ending at the same node), or a cycle, sum up to zero, i.e., 0
1

 

p

pgp
 A

, where the stoichiometric number σgρ = +1, if an edge is directed in the direction of the walk 

around a cycle, and σgρ = −1, if an edge is directed in the opposite direction [27]. Note that this is 

the equivalent of the thermodynamic Hess’s law. 

The affinity of a reaction step can be related to the resistance of an electrical circuit, such 

that the higher the resistance of a step for a given affinity, the less current that passes through, 
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while higher affinity of a chemical reaction leads to higher flux. Thus, the resistance of each step 

is defined by writing the rate of a reaction step in the form of Ohm’s law [27] 

 





 rr
R

r



A

   (4.1) 

where A  is the dimensionless step affinity akin to voltage in an electrical circuit. It is in turn 

related to the ratio of the rate in the forward direction 
r


 to that in the reverse direction, r


, via the 

de Donder relation [31,32] 
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which stems from the thermodynamic consistence of elementary step kinetics, so that the step 

resistance, by combining the last two equations, is provided in terms of step kinetics by 

 





rr

rr
R 






)/ln(
   (4.3) 

In the above,  rrz


/  is the step reversibility. Clearly, unlike electrical resistance, 

which is substantially constant, this definition of kinetic resistance of a step strongly depends on 

reaction conditions – especially temperature. 

Now, in view of the fact  that the RR Graph follows KFL, KPL, as well as Ohm’s law, it 

is completely consistent with a resistive electrical circuit [31]. Consequently, we can write the 

overall rate as the ratio of the affinity of the OR and the overall resistance of the reaction network 

 
OR

OR

OR
R

r
A

    (4.4) 
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where the OR resistance of the network is obtained in terms of the individual step resistances, in a 

manner similar to resistive electrical circuits [31]. 

Because of these rigorous network laws applicable to RR Graphs, the construction of the 

RR Graph can be challenging for complex mechanisms, although the ORR case considered here it 

is straightforward. For the 7-step ORR mechanism [3] provided in Table 4.1, the RR Graph is 

readily found by first finding a linearly independent set of pathways or full routes (FRs), that 

include the OR, and cycles, or empty routes (ERs), the latter  including only elementary steps.  

These reaction routes (RRs) represent a summation of the elementary steps that when combined 

as shown in the cycle matrix will cancel out all chemical species in the reactions. (e.g., if one were 

to combine steps such as: s4 + s5 - s1 - s2, as per ER1, all the species will cancel out). The number 

of linearly independent reaction routes (μ) can be found by subtracting the number of independent 

intermediate species (q) from the number of mechanistic steps (p).  In this case: μ = p – q = 7 – 4 

= 3 independent routes, which can be either full or empty routes.  An example of a linearly 

independent set of 3 RRs for this mechanism is provided in Table 4.2. The independent set of KPL 

relations (Hess’s law) for thermodynamic functions such as enthalpy or Gibbs free energy change 

is identical to these cycles. 

 s1 s2 s3 s4 s5 s6 s7 sOR 

FR1 1 2 2 0 0 0 0 -1 

ER1 -1 -1 0 1 1 0 0 0 

ER2 0 -1 0 0 -1 1 1 0 

Table 4.2: Cycle matrix for 7-step ORR mechanism. 
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Species QSS Relation 

O⋅S: (2) s1 + (-1) s2 + (-1) s5 = 0 

OH⋅S: (1) s2 + (-1) s3 + (1) s5 + (2) s7 = 0 

OOH⋅S: (1) s4 + (-1) s5 + (-1) s6 = 0 

HOOH⋅S: (1) s6 + (-1) s7 = 0 

O2: (-1) s1 + (-1) s4 + (1) OR1 = 0 

H2O: (1) s3 + (-1) OR1 = 0 

Table 4.3: QSS Relations for each of the terminal and intermediate species. 

Knowing that each of these cycles in Table 4.2 will appear in the final graph, we proceed 

by identifying common edges and nodes we can fuse together in  these “subgraphs” and produce 

a graph that includes each cycle.  For example, ER1 and ER2 share nodes that have an s5 edge 

entering and leaving, so those cycle are fused to combine that step as shown in the resulting cycle 

graph (Figure 4.1a). Since the mechanism is nonlinear, each step, including the overall reaction 

step, would appear twice in the RR Graph, and the graph should be symmetric, which leads to the 

doubling of this fused cycle graph (Figure 4.1b).  Clearly, two s2 steps are already present in each 

cycle graph so they are fused together (Figure 4.1c) while retaining both s1 steps.  We then check 

each node to see if it conforms to KFL, which means that the rates of the steps entering the nodes 

equals those leaving, as provided by QSS mass balance on species as given in Table 4.3.  The two 

nodes on the top and bottom are already balanced, which is also why the graphs were not fused 

using those nodes.  An s3 edge is added to both ends to balance those nodes (Fig. 4.1c).  Finally, 

the OR is added twice to balance the terminal nodes and the complete RR Graph is found (Fig. 

4.1d). 
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Figure 4.1a-d: Steps to construct the cycle Graph; a) Fusing Empty Routes. 

 

Figure 4.1b: Duplication of cycle graph. 
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Figure 4.1c: Balancing of nodes. 

 

Figure 4.1d: Completed RR Graph for Oxygen Reduction Reaction. 

The completed RR Graph allows the analysis of the complete reaction network by showing 

the inter-relationships among the elementary steps.  In addition, the nodes provide us with mass 

balance equations that allows us to solve for the concentrations of the intermediates, based on the 

quasi-steady state assumption.  Since kinetic data for the reaction steps is available, we can confirm 
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their consistence via KPL, and also calculate the overall activity for the catalyst, as described 

below. 

4.3 Rate Analysis 

Through the extensive DFT computational results of Herron et al. [3], we have access to 

the reaction free energy (RFE) values at electrode equilibrium potential of 1.23V for the proton 

exchange steps (s2, s3, s4, s6) of the reaction network and the binding energies and activation energies 

for oxygen bond breaking (s1, s5, s7) for several alloy catalysts.  From this data we can perform a 

quasi-steady state (QSS) balance on the system using nodes in the graph as mass balance equations.  

The QSS assumption allows us to determine the concentrations of intermediate species assumed 

as constant.  Since the nodes of the RR Graph follow Kirchoff’s flux law, we can derive the 

following independent KFL equations, which turn out to be related to QSS mass balance of 

indicated intermediate species (Table 4.3): 

 (+2)r1 + (–1)r2 + (+1)r5 = 0   (O⋅S) (4.5) 

 (+1)r2 + (–1)r3 + (+1)r5 + (+2)r7 = 0   (OH⋅S) (4.6) 

 (+1)r4 + (–1)r5 + (–1)r7 = 0   (OOH⋅S) (4.7) 

 (+1)r7 + (–1)r6 = 0  (HOOH⋅S) (4.8) 

The rates of each elementary reaction,  rrr


  can be written in the form  
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where  kk


,  are the forward and reverse rate constants for step ρ, ai is the activity of terminal 

species i, kθ  is the unknown catalyst site fractions for intermediate species k and 0  is the 

unoccupied site fraction ( 0 ). 

The step weights (ωρ) for each reaction step combine the known quantities in the above 

rate laws, i.e., the rate constants, terminal species activity and any electrode overpotential that is 

being applied to the system. This leaves the step rates written explicitly in terms of the unknown 

surface intermediate site fractions, which may be determined either via the QSS (or KFL) relations 

or via the microkinetics approach [34]. The reaction rate constants are written in terms of the 

thermodynamic transition-state theory [28] as:  
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where the Gibbs-free energy of activation includes the effect of the electrode potential:  
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where the first term on the right is the Gibbs free energy of activation in the absence of potential. 

Thus, the reaction rate constant can by expressed as 
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where  , the symmetry factor, assumed to be ½, and the potential is   0, , where   is 

the dimensionless overpotential term defined as the difference between the potential and the 
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standard operating potential (1.23V for the ORR). Further, using the relation of 
o, G


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o,o,    STH
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 the forward rate constant can also be expressed as  
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and 
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 , the preexponential factor.  Utilizing these relationships, the 

step weights for the forward and reverse of each reaction step can be calculated from known kinetic 

data.   

Since the ORR is an electrochemical reaction mechanism, it is comprised of reaction steps 

that include a proton and electron exchange. For the steps that do not include any electron 

exchange, 0e  , there is no dependence on the electrode potential, so terms that include ψ are 

excluded, thus the rate constant equation is simply 
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Using these equations and the kinetic data obtained by Herron et al.[3] the forward and reverse 

rate constant for each elementary step can be calculated for a particular catalyst and reaction 
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conditions, e.g., for Pt (111) catalyst at 298 K the rates of the seven elementary steps of the 

mechanism are presented in terms of the site fractions 
i  and step weights k and e  for steps that 

include a proton and electron exchange (Table 4.4). 

sρ  rrr


  
0, k


 0, k


  

s1: 
2

SO1

2

0O1111 2   kakrrr


 4.45x10-7 1.14x10-14  

s2: 
  ekekr SOH2

2

SO22 



 


 3.37x10-2 1.36x10-12  

s3: 
  eakekr 0OH3SOH33 2


 

  2.43x1018 2.39x10-3  

s4: 
  ekeakr SOOH40O44 2 

 


 2.90x1019 2.76x10-11  

s5: SOHSO50SOOH55    kkr


 5.81x1013 8.18x103  

s6: 
  ekekr SHOOH6SOOH66 



 


 4.08x1012 1.78x104  

s7: 
2

SOH7SHOOH077    kkr


 6.38x1012 5.31x101  

Table 4.4: Rate equations and rate constants for the 7-step ORR reaction mechanism on Pt (111) catalysts 

at 298 K [3]. 

 

We then introduce step weights (  ) as a term that lumps together the terminal species activities, 

rate constants and overpotential for each of the forward and reverse steps, ρ. 
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For the numerical analysis, we assume the activities of the terminal species (ai) are unity, i.e., 

“standard” conditions. These rate equations were then substituted into the QSS (KFL) equations 

for which a numerical solution for the unknown site fractions was found for a range of 

overpotentials across a list of several catalysts.  Since calculated step rates allow us to relate them 

to the rate of the OR, rOR, from Figure 4.1d and thus, obtain the kinetic current density, i, of the 

electrode for the ORR 

 OReOR
Fri 

,
     (4.25) 

where νOR,e- is the number of electrons produced in the overall reaction, and F is Faraday’s 

constant. 

 Fig. 4.2a provides the currents density of the different steps for Pt at a temperature of 298K 

and a potential of Φ0.8V. The flux of the reaction entirely passes through the dissociative pathway, 

with only trace amounts through the other pathways. This is expected under standard conditions 

on Pt catalyst, however for other catalysts under other conditions this is not necessarily the case 

and the RR Graph can be used to easily visualize which pathways are dominant. 

The RR Graph approach can provide additional insight into the mechanism through the 

quantification of step resistance in terms of the rate and affinity of the step. In addition to the 

overall activity of the catalyst, we can also then look at how much each reaction route contributes 
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to the overall rate of the reaction.  The different pathways are compared similar to those in an 

electric circuit, as previously mentioned.  A resistance is calculated for each step, which represents 

how difficult that step is to traverse along a path [29-33].   

4.4 Electrical Analogy 

4.4.1 Step Resistance and Rate Analysis 

Since RR Graphs are constructed to be consistent with both KFL and KPL, they can be 

made completely analogous to an electrical circuit.  This provides additional insights into the 

mechanism and facilitates kinetic analysis via the use of analytical techniques that are fully 

developed and widely known in electric circuit analysis. The steps shown in the RR Graph are, 

hence, replaced with a resistance as shown in Fig. 4.2b, with the caveat that, unlike in electrical 

circuits, these step resistances are not constant, but rather, vary with conditions such as temperature 

and composition, bit can be calculated using Eq. (4.3) once the site fractions have been determined 

for a given set of conditions.  The OR is replaced with a power source with EMF 

 OROR zE 1     (4.26) 

where the OR reversibility )exp(1 ORORz A  
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Figure 4.2: a) Electrical circuit analysis with currents for each pathway superimposed on the respective 

step (currents in mA/cm2) b) Electrical circuit analysis of RR Graph for ORR wherein OR is replaced by a 

power source, and steps are replaced by resistors. c) Resistance values (s-1) are imposed on the graph. Values 

evaluated on Pt catalyst at 0.8V, 298K and 1 atm. 
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The resistance of each step is a quantitative representation of the difficulty for the reaction 

to proceed through that step. The overall resistance of the electric circuit for the ORR can then be 

found via usual electrical circuit approaches [31] as described below, so that the overall reaction 

rate is written as 

 
OR

OR

OR
R

r
A

2     (4.27) 

where the OR affinity is defined as:
RT

GOR

OR


A . For example, Figure 4.2c shows the step 

resistances calculated for Pt catalyst at a potential of 0.8V, temperature of 298K and pressure of 

1atm. 

For calculating the overall resistance of the analogous electrical circuit for the RR Graph 

of this mechanism, three delta-Y conversions [31] must be used to properly express the summation 

of these resistances analytically. Figure 4.3 shows the first delta-Y conversion performed on the 

two symmetrical cycles of R4, R5, R6 and R7. The resistances of the new branches are: 
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Figure 4.3: Delta-Y conversion performed on either side of the electrical graph. 

A third delta-Y conversion on the left cycle of RB, RC, 2R2 and (1/2)R1 results in the circuit shown 

in Figure 4.4. The third set of resistances are: 
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Figure 4.4: Final delta-Y transformed electrical graph. 

 ROR can finally be expressed by adding the resistances in series and parallel  

 C4B

3OR 11

1
2

RRRRR

RRR












 (4.34) 

 For Pt at 298 K and Φ=0.8V, the use of Eq (4.26) in Eq (4.25) with ROR predicted as above, 

the same current density as calculated above via KFL or QSS. For catalysts which only have one 

dominant pathway, the overall resistance can be greatly simplified because the entire resistance is 

along a single pathway, or even a single reaction step. For each of the three individual reaction 

pathways, the pathway resistance can simply be added in series  

 RDissociative = (2)R3 + (1/2)R1 + (2)R2 (4.35) 

 RPeroxyl = (2)R3 + R4 + R6 + R7 (4.36) 

 RHydrogen Peroxide = (2)R3 + R2 + R4 + R5 (4.37) 
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and represented as a simplified graph (Fig. 4.5a-c). 
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Figure 4.5: Electrical analog graphs of the three individual ORR pathways of the 7-step mechanism a) 

Dissociative; b) Peroxyl; c) Hydrogen Peroxide 

 

A further discussion of the individual pathways is provided below. 

4.4.2 Rdot Analysis 

The Ohm’s law analysis described above, while conceptually appealing, still requires 

numerical analysis based on the KFL relations to calculate step rates and hence resistances. 

Alternatively, the step resistances can be determined a priori using the approximate but accurate 

Rdot method, which further allows explicit rate laws. A simplified definition and explanation of 

the method follows, but the theory and process behind this method is explained in greater detail in 

references [27-29].  The Rdot resistance, 

R , is defined as the resistance of the step sρ when it is 

considered as the rate-determining step (RDS), with all other steps, with the exception of those in 

an ER with the RDS, being at quasi-equilibrium (QE), i.e., )1( ORzrr  



, where ORez

A
OR , 



 133 

 

the OR reversibility; i.e., when the entire affinity drop of the OR occurs across the RDS step, those 

of the QE steps approaching zero. Further, the Rdot method provides the resistance of step ρ, Rρ, 

under these conditions as: 

 rR


1 , which in turn, can be determined via the Langmuir-

Hinshelwood-Hougen-Watson (LHHW) formalism, as described below. 

The forward rates for each step can hence be determined via the LHHW approach by 

assuming each of them to be the RDS in turn, the other steps being at QE. Then the site fraction 

for each intermediate species can be evaluated by finding an intermediate route (IRi) and using the 

QE assumption for the involved steps in a manner which combine to produce the intermediate 

species being evaluated directly from terminal species. For example, to calculate 

1R , we first 

consider the forward step of s1 to be RDS, then the intermediate routes for each intermediate 

species could be identified as 

 IROS: -s2 – s3  (4.38) 

 IROHS: -s3  (4.39) 

 IROOHS: s4  (4.40) 

 IRHOOHS: s4 + s6  (4.41) 

Care has to be exercised in choosing these pathways for formation of the intermediate species to 

not include steps that might not be at QE, e.g., at least one step in a parallel pathway in an ER is 

not at QE, otherwise KPL of that cycle will be violated. The ratio of fractional site coverage of 

each of the intermediate species k to the unoccupied catalyst site can now be evaluated by [28,29] 
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Where 

k,ρθ  is the site fraction of species k for step ρ, and j  is the step weight for each step j in 

the IRk equation with σkj representing the stoichiometric numbers for that step in the intermediate 

route. The expressions for each of the intermediate species can hence be written as 
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Where 

i,k  is the site fraction of species i for step k and k  is the step weight for the forward or 

reverse of reaction step k.  The fractions of all catalyst sites add up to unity via site balance, so the 

reciprocal of the unoccupied catalyst site is expressed as 
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Finally, the Rdot resistance for step 1 is 
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This process is applied to each step in turn to evaluate 

ORR by an expression equivalent to Eq (4.34). 

Thus assuming next 2s to be the RDS, we obtain in terms of step weights. 
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and so on. Similarly, 
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and  
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so that 
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The overall rate for the ORR can then be written as 

 2 ORr =


OR
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E
  (4.56) 

Further, recall that the thermodynamic driving force ORE  is defined as  

 OROR 1 zE 
 (4.57) 

where ORz  is the reversibility of the overall reaction [26]. The current density can finally be 

calculated using Eq. (4.25) with the overall reaction rate estimated according to 

 OROR 2)1( RzrOR , which provides the equation for current density as 
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Based on KPL, ORz  can be written in terms of step weights,  

 (4.59) 

 

For the each of three the full routes of the 7-step ORR mechanism it can be seen that ORz  may be 

alternatively written as 
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where 0,


is the step weight evaluated at zero overpotential (ψ = 0). Further, at equilibrium, the 

reversibility is unity, i.e. as ψ approaches zero, ORz approaches unity. Thus, the ratio of the step 

weights in the above expression also must be unity, e.g.,
2
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8 ezOR  simply. 

 This relation can be substituted into Eq. (4.45) to finally obtain 
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Alternatively, the equation can be expressed using the exchange current density, which is defined 

as the current density at zero overpotential in either direction. At zero overpotential the net current 

density is zero (i = 0), but the rate of current in either the positive and negative direction are equal 

and nonzero 0iii 


. Thus, the exchange current density 0i  is calculated by  
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with the OR resistance corresponding to equilibrium conditions. The exchange current density is 

a useful value as it characterizes evaluates the intrinsic activity of the catalyst without the added 

driving force of the electric overpotential. 
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4.4.3 Catalyst Activity Comparison 

The equation for 

ORR is valid, regardless of the conditions for the reaction (temperature, 

overpotential, catalyst, etc.). This, of course, assumes no additional chemical pathways become 

viable, but if ordinary fuel cell operating conditions are considered, that is a reasonable 

assumption. Thus, for a set of conditions and kinetic data, the 

ORR and thus the kinetic current of 

the ORR can be approximated by Eqs (4.61 and 4.62). This facilitates the process of finding 

suitable catalysts and narrowing their optimal conditions by quickly comparing the resulting 

ORR . 

To ensure that the equations for 

ORR  are valid, the reaction rates were calculated at varying 

overpotentials via Rdot kinetics on Pt catalyst and compared to the values obtained through 

traditional QSS numerical calculations in a parity plot (Fig 4.6). The figure shows good agreement 

proving that the Rdot method and its simplifications are valid for the kinetic analysis or the ORR 

reaction. 

The activity of each catalyst in terms of exchange current density was also evaluated, i.e., 

via Eq (4.62), to be used for comparison with the results provided by Herron et al. [3]. For a 

platinum catalyst at 298K and 1atm, this value was calculated to be 2.35x10-10 A/cm2, which is 

well within the expected range for this catalyst [26, 32].  Figure 4.7 shows the kinetic current as a 

function of the applied overpotential for platinum catalyst.  It is seen that the results agree 

reasonably with the experimental data of Wang et al. [17]. Exchange current densities were also 

calculated for the other catalysts (Table 4.5). The exchange current density for the platinum 

catalyst is highest among the catalysts that were analyzed, but several of the candidates have 

current densities that are within an order of magnitude of the platinum catalyst. 
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Figure 4.6: Parity plot of current density obtained from Rdot rate expression (straight line) and that 

calculated numerically for the ORR reaction (points). Each point is a different electric overpotential for 

which the current density is calculated.  
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Figure 4.7: Graph of Potential (V) vs Kinetic Current (mA/cm2) off the ORR on Pt catalyst using the Rdot 

method with comparison to experimental values found by Wang et al. [17] 

 

Catalyst Exchange Current Density (A/cm2) 

Pt 2.35x10-10 

Pt*/Au 3.42x10-11 

2Pt*/Pd 2.57x10-11 

Pt*/Pd 9.83x10-12 

3Pt*/Pd 8.07x10-12 

Pt*/Pd/Pd3Ir 3.03x10-12 

Pt(3.91) 1.07x10-12 

Pt*/Pd/Pd3Cu 1.69x10-13 

Pt*/Pd/Pd2Ir2 8.40x10-15 

Pt*/Pd/Pd3Ni 3.30x10-15 

Pt(3.87) 1.45x10-16 

Pt/Pd3Ni 8.58x10-18 

3Pt*/Re 1.27x10-18 

Pt(3.86) 9.39x10-20 

Pt*/Pd3Ir 2.86x10-23 
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Pt*/Pd/Ir 2.34x10-23 

Pt*/Pd2Ir2 9.95x10-25 

Pt*/2Pd/Re 2.31x10-26 

Pt&/2Pd/Ru 8.43x10-27 

Pt*/2Pd/Ir 6.51x10-27 

Pt*/Pd3Cu 1.20x10-27 

Pt*/Pd2Cu2 5.95x10-28 

Pt*/Pd/Pd3Fe 3.11x10-28 

Pt*/Pd/Pd2Cu2 2.49x10-30 

Pt*/2Pd/Rh 9.34x10-31 

2Pt*/Re 7.48x10-31 

Pt*/Ir 8.75x10-32 

Pt*/Pd/Re 3.22x10-34 

Pt*/Pd2/Co2 7.09x10-38 

Pt*/Pd3Fe 2.13x10-38 

Pt*/Pd/Pd2Co2 1.75x10-38 

Pt*/Pd/Ru 5.45x10-39 

Table 4.5: Exchange current densities calculated for ORR on Pt alloy catalysts at 298 K and standard 

conditions (unit activities) 

 

Pt catalyst is clearly the most active, however, knowing quantitatively the difference 

between different catalysts allows better insight into potential catalyst compositions that might 

provide improved activity or a cost benefit. Figure 4.8 shows the relative activity for each catalyst 

as reported by Herron et al. [3] and compared with that computed in this work. Herron et al. define 

the maximum activity of a catalyst as [21, 22] 

 
  0logmin kkTkA iiB

 (4.63) 

where ki is the forward rate constant for reaction step i, k0 normalizes the activity of non-activated 

proton/electron transfer steps to zero and the mini function takes the smallest value of ki amongst 

all reaction steps [3]. Since exchange current density is proportional the catalyst activity, we can 

relate the exchange current density found above to the activity calculated by Herron et al. [3]. The 

activity of Pt for Ohm’s Law kinetics was thus set to that reported by Herron et al. [3] and the 
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activity other catalysts are reduced by the fraction equal to the ratio of the catalyst current density 

to the current density of Pt. This allows a comparison of the relative activity for each catalyst in 

comparison to Pt. The graph shows many similar trends, but of particular note is the great 

difference in activity for catalyst that exhibit a dual pathway mechanism, as discussed below  

Figure 4.8: Comparison of relative catalyst activity for the ORR using Ohm’s Law kinetics vs values 

calculated by Herron et al. [3] Large differences in values between the two methods are denoted by a 

connecting line. All other catalysts have overlapping or nearly overlapping points. 

 

Of particular note are the differences in Figure 4.8 between our calculations and those of 

Herron et al. [3] for the catalysts: Pt*/Pd/Pd2Co2 and Pt*/Pd/Pd2Ir2, which have multiple routes 

contributing to the overall reaction rate. Since the Rdot kinetics completely evaluates the rate of 

all the reaction routes, instead of estimating the activity of only the most dominant route, our results 

can be considered quite robust and accurate. 
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For the 32 catalysts studied by Herron et al. Rdot calculations were performed over an 

overpotential range of 0-1.0V at 298K with terminal species activity set as unity. Figures 4.9-4.11 

quantitatively compare overall resistance of each of the pathways as discussed above to determine 

which of the pathways are dominant for each catalyst at a range of overpotentials, with a lower 

resistance meaning the reaction flux is higher through that pathway. 

 

Figure 4.9: Pure Pt catalyst OR Rdot resistance graph. 
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Figure 4.10: Pt*/Pd/Re catalyst OR Rdot resistance graph 

 

Figure 4.11: Pt*/Pd3/Cu catalyst OR Rdot resistance graph 
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Figure 4.8 shows platinum catalyst as having the dissociative mechanism as the dominant pathway 

for any reasonable overpotential for the ORR and the peroxide pathway for the oxygen evolution 

reaction (OER). This is true for most of the catalysts analyzed, including all of the catalysts with 

higher current densities shown in Table 4.3. However, Figures 4.10 and 4.11 show examples of 

two catalysts that have higher flux through different RRs. In particular, at lower overpotentials the 

peroxyl and hydrogen peroxide mechanisms can dominate the kinetics in the catalysts. 

 Another valuable insight obtained from the RR approach is the identification of which 

exact steps are rate limiting in a given pathway. In the case for the ORR on platinum catalyst, we 

see that the dissociative mechanism is the dominant pathway, so looking at each individual step 

resistance, we can quantify the amount that step affects the overall rate. For the dissociative 

mechanism, thus, we compare the Rdot resistance for s1, s2 and s3 in Fig. 4.12. 

 

Figure 4.12: Comparison of resistance for the elementary steps in the dissociative mechanism on platinum 

catalyst. 
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It is evident that both s1, the O-O bond breaking step and s2, the hydrogenation of the bound O 

atom, are rate limiting for overpotentials of practical interest and that the overpotential greatly 

affects which one and to what degree. It also shows that 


1R  and 


2R  are the only significant sources 

of resistance for these conditions, so the overall resistance can be approximated by using Eq. (4.55) 

for the resistances in the dissociative pathway and Eqs. (4.48) and (4.49) for the resistances of 


1R  

and 


2R . 
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Then, we can expand the site fraction to show an explicit equation for 


1R that can be used to 

calculate the current density.  
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Thus, substituting Eqs. (4.65) into (4.61) 
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4.4 Conclusions: 

 We have demonstrated how even a relatively simple recently proposed 7-step reaction 

mechanism for the ORR can be quite complex when analyzing how each elementary step 

contributes to the rate overall reaction. The RR approach does not require the mechanism to be 
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simplified or reduced a priori and thus allows the analysis to simultaneously include each reaction 

pathway in the overall rate expression that was determined. Not only does it provide such a useful 

expression, but it is also robust enough to be used for use of new catalysts without being concerned 

if the dominant pathways change. However, if it is determined that any one pathway or elementary 

step is indeed rate determining, the resulting expressions can be simplified, as shown here. 

 Analysis of each catalyst confirms several of the results of Herron et al. [3], but also 

provides insights beyond the conditions they used as well as the effect of potential to see the effect 

of other conditions. The resistance graphs demonstrate how much overpotential can affect the 

mechanism and gives us a variable to change when searching for a suitable catalyst. The dominant 

pathways for the reaction can be clearly seen for each mechanism. Differences in the ORR 

activities for the catalysts with multiple reaction pathways demonstrated how the RR method can 

be a more robust method for analyzing the kinetics.   Understanding exactly which steps are 

limiting can prove useful when exploring new catalysts and looking for structures that could 

potential affect those steps. Hopefully, this approach will allow us to investigate ORR mechanism 

on new catalysts with increased accuracy. 
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Chapter 5. Elucidation of Dry Methane Reforming Pathways and 

Kinetics on Ni Catalyst Using Reaction Route Graph Theory 

A visualization of all the pathways for a 33-step mechanism for the Methane Dry 

Reforming (MDR) via reaction route (RR) graph theory is presented alongside an analysis of the 

flux through each pathway and identification of steps that are rate-limiting or quasi-equilibrated. 

The graph-theoretical visual depiction of the chemical pathways is also consistent with 

fundamental mass and energy balance laws and with the state-properties of thermodynamic 

functions, or Hess’s Law, much like Kirchoff’s laws of electrical circuits. Density functional 

theory (DFT) calculations of Fan et al. [1] for molecular steps on Ni catalyst were utilized in a 

microkinetic analysis of the catalyst activity under quasi-steady state (QSS) conditions. The QSS 

results are consistent with the networks laws and energy balance laws, and conform to Ohm’s law 

analogy with electrical circuits. This analysis leads to an accurate quantification of the propensity 

of the reaction to proceed through the various possible pathways, and pinpoints which step kinetics 

are the most limiting in determining the flux of the reaction in these pathways. Based on these 

insights, the 33-step mechanism is reduced to three parallel pathways, each with a rate-limiting 

step (RLS), namely: i) the oxidation of C to CO by O; ii) the oxidation of C to CHO by OH; iii) 

and the oxidation of CH to CHO by O. Finally, explicit rate expressions are developed that 

accurately predict the MDR kinetics involving all these parallel pathways. 

5.1 Introduction 

Natural gas in the largest feedstock used in the production of hydrogen and syngas (CO + 

H2). The industrial process uses steam as a source for oxygen to oxidize the carbon in the methane 

to CO releasing 2 molecules of hydrogen, along with a third coming from water. In addition, the 
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water gas shift reaction can further oxidize the CO into CO2 with H2O so that a third molecule of 

H2 produced. An alternative process to this process methane steam reforming (MSR) is to use CO2 

as the source of oxygen in the so-called methane dry reforming (CH4 + CO2 ⇋ 2CO + 2H2) to 

produce syn gas. The MDR is of particular interest as it has the potential for recycling CO2. 

The study of the MDR mechanism on Ni catalyst is, thus, ever more important, due not 

only to its practical importance in producing syngas from two abundant greenhouse gases, CH4 

and CO2, but also because of its significant complexity [1-17]. Some researchers have proposed 

mechanisms that include over 40 unique elementary steps and hundreds of possible reaction routes 

or pathways [2, 3]. While many of the proposed intermediate species and reaction routes are 

primarily theoretical and may not practically matter, it takes a great investment of time and 

resources to determine which. Clearly, an improved understanding the mechanism would go far in 

improving the MDR process and its catalysis. The reaction route (RR) graph approach developed 

by us [25-28] is the most rigorous and insightful tool currently available for elucidation of 

mechanism and kinetics [28]. We recently used it to illuminate the chemistry and kinetics of 

methane steam reforming (MSR) on Ni. [29] This paper extends that to the case of MDR. 

Ni, Rh and Ru catalysts have been widely studied as the catalysts for MSR and MDR, and 

while Ru based catalysts can achieve higher activity; the Ni catalysts have comparable 

performance with far lower cost [2, 4]. The most significant issue with nickel catalyst performance 

is deactivation due to carbon formation. Much research has gone towards better understanding of 

how to limit carbon deposition. Despite the substantial research already devoted to this mechanism, 

there are still knowledge gaps concerning the discrete chemical pathways for the reaction. 

Understanding precisely which pathways are dominant and which steps are rate-limiting and how 

their kinetics can be improved could lead to improved catalysts and operation of this reaction. Fan 
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et al. [1] concluded that the dominant pathway involves direct decomposition of CO2 forming 

atomic O and methane decomposing down to CH, which is then oxidized by surface atomic O into 

CHO or COH, which finally decomposes into CO or direct oxidation of C by O into CO. The rate-

limiting steps in this study were found to be CH and C oxidation, with the reaction proceeding 

through CH oxidation much more so at the lower temperatures. 

Wei and Iglesia [10] based their findings on kinetic and isotopic measurements, and argued 

that C atoms are oxidized by atomic O to form CHxO which is the most abundant intermediate on 

the surface. Rostrup-Nielsen and Hansen [11] predicted that methane dissociation and atomic 

carbon oxidation determine the overall reaction rate and that both steam and dry reforming of 

methane on Ni catalyst proceed at the same rate. Bradford and Vannice [12] suggested that dry 

reforming of methane occurs via the reversible dissociation of CH4 and CO2 to produce CHxO, 

and the decomposition of CH4 as well as CHxO is the kinetically slow step. Luo et al. [13] claimed 

that both the cleavage of C−H bonds and the decomposition of CHxO (x = 1−2) into CO and 

adsorbed H species are rate-limiting steps, with the latter being the far more dominant pathway. 

The work by Osaki and Mori supported their conclusion, as the same pathways were identified 

over the K-promoted Ni catalysts [14,15]. Chang et al. proposed that the oxidization of atomic 

carbon by surface oxygen species is the only rate-determining step (RDS) in the reforming reaction 

over a K−Ni−Ca catalyst [16]. Using steady-state and transient kinetic methods, Cui et al. [17] 

investigated the mechanism for the MDR reaction over Ni/α-Al2O3 catalyst over a wide range of 

temperatures. They suggested that the rate limiting steps change with temperature, with CH4 

dissociation at low temperatures and the reaction between CHx and CO2 at high temperatures. 

There is much need for use of a widely accepted method for understanding chemical reaction 
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networks, which accurately and completely evaluates each reaction route and elementary step for 

the MDR reaction [18].  

5.2 Mechanism and Kinetics 

For our investigation, we have selected the MDR mechanism of Fan et al. [1] who provide a 

comprehensive list of DFT calculations for a 33-step MDR mechanism on Ni catalyst (Table 5.1). 

Three active sites are considered for the Ni catalyst, which Fan et al. accounts for by assuming 

movement of intermediate species between sites is much faster than reaction rates and their 

concentrations can be assumed to be at equilibrium. Thus, we take the rate constant of the step to 

be a sum of the fraction coverage of each site: (Ni(111) 74%, Ni(100) 15%, and Ni(211) 11%). 

We use this set of steps and kinetics for performing accurate analysis of the MDR mechanism. 

While Fan et al. provide numerical results of a mechanistic analysis, it cannot be said that the 

network is well understood to the point where one can identify clearly which reaction pathways 

and steps are dominant. Further, since the time it takes to numerically analyze microkinetics of 

even one facet of the reaction system (in some cases not even to the fullest extent) is prohibitively 

great, thus we strive to illuminate the process with RR Graph theory. Furthermore, we plan to 

explain which overall reactions (OR)s are needed for this mechanism, as well as establishing a 

method to determine a rate equation for the overall reaction. 

5.2.1 Quasi-steady State Analysis 

 Fane et al. [1] use a microkinetic analysis of this mechanism. Another rate approach is to 

use the quasi-steady state (QSS) method. The QSS relations for the q = 19 intermediate species 

and the n = 5 terminal species in this mechanism are summarized in Table 5.2. This algebraic QSS 

analysis to determine intermediates calculations is an alternative to microkinetic analysis, which 

is a set of species mass balance differential equations applied to a packed bed reactor [1]. 
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Table 5.1: 33-step DMR mechanism on Ni catalyst. Rate constants calculated at 973.15 K [1] 

  Ni(111) Ni(100) Ni(211) 

Step  Reaction 
k


 k


 k


 k


 k


 k


 

1 CH4(g)+2S ⇋ CH3•S +H•S 1.01x10-02 1.42x1010 9.30x10-02 1.28x1010 6.35x10-02 5.66x108 

2 CH3•S +S ⇋ CH2•S +H•S 1.83x1010 2.16x1010 5.43x1010 1.49x109 1.76x1010 1.60x1011 

3 CH2•S +S ⇋ CH•S+H•S 1.31x1012 2.81x1010 4.74x1012 1.41x109 2.22x1011 8.31x108 

4 CH•S+S ⇋ C•S +H•S 3.18x107 6.72x109 9.93x1010 1.06x109 9.63x1011 4.54x108 

5 CO2(g)+S ⇋ CO2•S 4.23x102 8.39x1012 4.88x102 1.42x1011 4.34x102 2.39x1011 

6 CO2•S +S ⇋ CO•S+O•S 1.82x108 5.47x105 3.12x109 4.98x105 4.07x107 1.03x105 

7 CO2•S +H•S ⇋ COOH•S+S 7.74x106 1.59x1010 7.60x104 5.59x108 5.56x104 3.75x1010 

8 CO2•S +H•S ⇋ HCOO•S+S 3.55x108 2.20x109 1.60x108 4.29x1010 3.25x105 1.66x106 

9 HCOO•S+S ⇋ CHO•S+O•S 1.33x106 2.89x109 6.99x104 3.19x102 1.28x105 4.37x107 

10 COOH•S+S ⇋ CO•S+OH•S 2.08x1010 2.08x105 4.74x109 3.89x103 1.28x1011 1.75x102 

11 CH3•S +OH•S ⇋ CH3OH•S+S 5.01x105 6.30x106 4.72x101 2.58x105 1.39x102 5.24x108 

12 CH3OH•S+S ⇋ CH2OH•S+H•S 2.39x107 8.34x109 9.70x108 2.71x109 5.66x1010 3.86x1010 

13 CH2•S +OH•S ⇋ CH2OH•S+S 7.21x106 2.67x1010 3.32x105 1.85x1011 5.27x105 1.49x1011 

14 CH2OH•S+S ⇋ CHOH•S+H•S 6.40x1010 1.91x109 7.99x1011 6.39x109 7.26x1012 3.79x1011 

15 CH•S+OH•S ⇋ CHOH•S+S 1.37x106 1.12x109 7.42x103 3.78x109 6.86x102 2.70x109 

16 CHOH•S+S ⇋ COH•S+H•S 2.41x1013 2.17x109 1.35x109 1.96x104 1.14x1013 1.07x109 

17 C•S +OH•S ⇋ COH•S+S 2.23x106 4.43x102 3.07x103 1.14x108 1.54x104 1.21x108 

18 COH•S+S ⇋ CO•S+H•S 6.67x108 3.71x103 1.27x1010 1.38x104 3.49x1011 4.98x105 

19 CH3•S +O•S ⇋ CH3O•S+S 2.49x105 3.58x106 9.91x104 2.06x108 2.31x103 2.31x106 

20 CH3O•S+S ⇋ CH2O•S+H•S 5.23x109 6.44x1010 6.32x109 3.07x108 5.82x1010 7.95x1010 

21 CH2S+O•S ⇋ CH2O•S+S 2.36x106 3.54x108 7.40x103 2.03x107 1.28x106 1.92x108 

22 CH2O•S+S ⇋ CHO•S+H•S 1.94x1012 3.08x109 1.93x1012 1.71x109 1.67x1011 3.66x109 

23 CH•S+O•S ⇋ CHO•S+S 8.33x105 9.19x106 1.41x103 2.10x107 6.34x106 5.58x109 

24 CHO•S+S ⇋ CO•S+H•S 8.63x1010 1.24x104 1.03x1012 1.13x106 2.64x1013 5.74x106 

25 C•S +O•S ⇋ CO•S+S 4.91x105 3.69x10-03 2.45x102 3.72x102 3.03x104 1.23x102 

26 CH3OH•S+S ⇋ CH3O•S+H•S 1.12x1010 1.87x109 1.50x1011 1.12x109 5.70x1013 4.16x1010 

27 CH2OH•S+S ⇋ CH2O•S+H•S 2.18x1011 1.30x109 1.31x1011 1.71x107 4.02x108 5.87x105 

28 CHOH•S+S ⇋ CHO•S+H•S 6.77x1010 1.35x108 9.33x1011 1.35x107 1.15x1010 7.06x106 

29 O•S+H•S ⇋ OH•S+S 4.36x107 2.97x108 1.39x107 5.22x108 7.14x106 2.60x106 

30 OH•S+H•S ⇋ H2O•S+S 1.55x108 7.57x108 3.26x105 5.14x107 1.55x105 4.54x107 

31 H2O•S ⇋ H2O(g)+S 4.29x1012 3.52x102 1.44x1012 5.69x102 1.99x1011 1.78x102 

32 H•S+H•S ⇋ H2(g)+2S 7.16x107 2.70x101 1.52x108 4.35x102 4.25x107 3.69x101 

33 CO•S ⇋ CO(g)+S 1.03x106 4.89x100 6.99x105 3.74x101 6.07x105 8.11x100 
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QSS Relations for Intermediate Species: 

292523211996SO 0 rrrrrrrQ 
 

32302928272624222018161412874321SH 20 rrrrrrrrrrrrrrrrrrrQ   

291715311110SOH 0 rrrrrrQ   

3130SOH 0
2

rrQ 
 

33252418106SCO 0 rrrrrrQ   

8765SCO 0
2

rrrrQ 
 

25714SC 0 rrrQ   

231543SCH 0 rrrrQ   

1332SCH 0
2

rrrQ 
 

1121SCH 0
3

rrrQ 
 

282423229SCHO 0 rrrrrQ   

817116SCOH 0 rrrQ   

107SCOOH 0 rrQ   

98SHCOO 0 rrQ   

261211SOHCH 0
3

rrrQ   

262019SOCH 0
3

rrrQ   

141312SOHCH 0
2

rrrQ   

27222120SOCH 0
2

rrrrQ   

28161514SCHOH 0 rrrrQ   
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QSS Relations for Terminal Species: 

1)(CH 14
0 rrQ ORg   

33)(CO 21
0 rrrQ ORORg   

5)(CO 32
0 rrQ ORg   

31)(OH 212
0 rrrQ ORORg   

32)(H 212
30 rrrQ ORORg   

Table 5.2: QSS relations 

5.2.2 Selecting Overall Reactions 

The actual chemical reactions occurring on the Ni catalyst are described in entirety by the 

set of elementary steps listed in Table 5.1. The overall reactions (OR)s that are used to describe 

conversion of the initial and final terminal species are, on the other hand, constructs in our efforts 

to represent the overall stoichiometry observed, which can rarely be described by a single OR. 

Thus, Xu & Froment made great progress in their efforts to discerning which ORs should be 

adopted to properly characterize the reaction system for methane steam reforming [24]. In their 

study of methane steam reforming (MSR), they concluded that three ORs were significant and 

necessary to describe the entire chemical mechanism as described below by Eqs 5.2, 5.3 and 5.5. 

However, their conclusion to use three ORs for the MSR system are considered as over defining 

the system.  

What actually matters is the list of the terminal (reactants and products) species, along with 

the list of elementary reaction steps occurring on the catalyst surface representing the molecular 

mechanism in which the terminal species along with intermediate species participate. Although 

often lacking experimental corroboration, it is the mechanistic steps that represent the real 
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molecular events, not the ORs. Since ORs do not involve intermediate species, they may, in fact, 

be derived directly from the set of given terminal species, and their constituent elements [25]. 

Thus, the n terminal species are considered as made up of r “elements,” or chemical building 

blocks, which are the radicals, or molecular fragments, that remain unchanged among the given 

terminal species. These are selected such that the rank of the formula matrix is equal to the number 

of elements, r, and are frequently, but not always, the actual chemical elements [25]. For instance, 

the formula matrix for the MDR case is: 

  C   H   O 

 

020

201

101

120

041

H

CO

CO

OH

CH

2

2

2

4

  (5.1) 

which has a rank, r = rank[ε] = 3. Thus, for this case, C, H, and O are appropriate “elements.” 

The number of linearly independent ORs, m, is related to the number of terminal species n 

and the rank of the formula matrix r via m = n – r [33]. Thus, with n = 5 (CH4, H2O, CO, CO2 and 

H2), and for r = 3 (C, H and O), the number of independent ORs, m = 5− 3 = 2. Further, the number 

of terminal species involved in a direct or minimal OR = n − (m −1) = n − (n − r) +1 = r +1. For 

instance, for the MSR case, the maximum number of terminal species in a direct OR = 3 + 1 = 4.  

Ultimately, any two linearly independent reactions that involve all five terminal species 

(CH4, H2O, CO, CO2 and H2) are suitable for defining this reaction. Knowing the rate of two of 

these ORs, one can determine the rate of formation of all terminal species. For MDR as well as for 

MSR, both of which share the same terminal species, four ORs that are commonly considered are: 
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 OR1: CH4 + H2O ⇌ CO + 3H2 (5.2) 

 OR2: CO2 + H2 ⇌ CO + H2O  (5.3) 

 OR3: CH4 + CO2 ⇌ 2CO + 2H2  (5.4) 

 OR4: CH4 + 2H2O ⇌ CO2 + 4H2  (5.5) 

It is easily shown how by selecting any two of these reactions, the other two can be obtained 

through linear combinations, e.g.:  

 OR1 + OR2 = CH4 + CO2 ⇌ 2CO + 2H2 = OR3 (5.6) 

And similarly, OR1 – OR2 results in OR4. Thus, we determine that it is of no consequence, from a 

mathematical standpoint, which ORs we select to represent the overall process chemistry. 

Regardless, it is easier to express the overall flux of the reaction in terms of these ORs, instead of 

a series of elementary steps, so we arbitrarily choose two ORs to form our analysis, i.e., OR1 and 

OR2. It is noteworthy that Fan et al., on the other hand, for this system picked OR2 and OR3. 

5.3 The Reaction Route Graph 

The methodology utilized in this study to analyze the MDR system is the Reaction Route 

(RR) Graph Theory, which was introduced by us [25, 26] and developed further in other 

publications [27,28]. The RR Graph of a mechanism for an OR comprising of p reaction steps 



s  

among q + 1 intermediate species and n terminal species (OR reactants and products), is a 

quantitative graph theoretical depiction of the reaction network, in which the steps as well as the 

OR, are represented individually as directed (arrows pointed in the assumed direction) edges, or 

branches, interconnected at nodes, or vertices, nj, so that all reaction routes (RRs) may be traced 
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on it as closed walks, or cycles, and the nodal connectivity to edges is consistent with quasi steady-

state (QSS) mass balance of one or a linear combination of participating species.  

The RR Graph is a useful, quantitative, graph-theoretical representation of the molecular 

mechanism that provides: 1) consistence of nodes with species mass balance, i.e., Kirchhoff’s Flux 

Law (KFL), alternately, Kirchhoff’s First Law, i.e., the quasi-steady state (QSS) assumption of 

kinetics, or the Bodenstein approximation; 2) consistence of RRs with the state-property of 

thermodynamic functions (e.g., Gibbs free energy, G, enthalpy H, and entropy S), i.e., Kirchhoff’s 

potential law, or KPL, also called Kirchhoff’s second law, alternately known as Hess’s law, 

according to which change in a thermodynamic state property along a cycle is zero; 3) graphical 

enumeration of all possible reaction routes as closed walks, normally done from stoichiometric 

analysis [30]; and 4) minimality, or directness [32], of both RRs as well as nodal degree, namely, 

the number of branches incident on a node.  

It turns out that the second and third property above, i.e., consistence with KPL and 

enumeration of RRs, are mathematically equivalent. In other words, a RR Graph that is consistent 

with KPL is automatically amenable to a graph-theoretic enumeration of all RRs, and vice versa. 

As a result, we are concerned only with the two requirements of consistence with the two 

Kirchhoff’s laws, along with their directness, i.e., the number of steps involved in the KPL and 

KFL relations are minimal. 

The requirement of consistence with the two Kirchhoff’s laws confers on the RR Graphs a 

one-to-one correspondence with electrical circuits, which is a very useful analogy [28] because of 

the vast and well-grounded literature on circuit analysis [34]. Thus, the electrical analog of the RR 

Graph is obtained by simply replacing the edges by resistors and an OR by an electromotive force 
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(or EMF). This analogy will be used to quantitatively evaluate all the possible pathways for the 

reaction. 

To begin drawing the RR Graph, we first determine a suitable set of RRs to serve as a basis 

for construction. As per the Horiuti-Temkin theorem, an independent RR set is any set of μ = p – 

q  RRs, which may include any full routes (FRs) that include an OR and empty routes (ERs), so 

long as they include among them all of the steps in the mechanism. Thus for the case of this MDR 

mechanism, we have p = 33 elementary steps and q = 19, the number of independent intermediate 

species, resulting in μ =14 independent reaction routes. In order to include all 5 terminal species, 

we select two linearly independent ORs to include in two linearly independent FRs, namely OR1 

and OR2. This leaves 12 ERs to be specified to form an independent set. The RRs and those selected 

for our RR Graph are shown in Table 5.3. This is not a unique set and another such set may 

alternatively be used as the starting point. The set is obtained manually via a close inspection of 

the mechanism. 

FR1 : (+1)s1 + (+1)s2 + (+1)s3 + (+1)s4 + (+1)s25 + (-1)s29 + (-1)s30 + (-1)s31 + (+3)s32 + 

(+1)s33 + (-1)OR1 

FR2 : (+1)s5 + (+1)s6 + (+1)s29 + (+1)s30 + (+1)s31 + (-1)s32 + (+1)s33 + (-1)OR2 

ER1 : (+1)s2 + (+1)s11 + (-1)s19  

ER2 : (+1)s6 + (-1)s8 + (-1)s9 + (-1)s24 

ER3 : (+1)s12 + (-1)s20 + (-1)s26 + (+1)s27 

ER4 : (+1)s2 + (-1)s19 + (-1)s20 + (+1)s21  

ER5 : (+1)s13 + (-1)s21 + (+1)s27 

ER6 : (+1)s15 + (-1)s23 + (+1)s28 

ER7 : (+1)s3 + (-1)s21 + (-1)s22 + (+1)s23 

ER8 : (+1)s3 + (-1)s13 + (-1)s14 + (+1)s15* 

ER9 : (+1)s4 + (-1)s23 + (-1)s24 + (+1)s25 
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ER10 : (+1)s4 + (-1)s15 + (-1)s16 + (+1)s17 

ER11 : (+1)s15 + (-1)s17 + (-1)s18 

ER12 : (+1)s6 + (-1)s7 + (-1)s10  

Table 5.3: Set of independent reaction routes for the 33-step DMR 

 

To construct the RR Graph from this set, we begin by drawing the cycle graph by 

overlapping the ERs in such a way that no reaction step is repeated in the graph. By identifying 

common edges and nodes, we can fuse two cycles into a “subgraphs”, which would contain both 

the original two cycles, as well as a new, linearly dependent cycle. This process was repeated to 

produce a cycle graph that includes each ER (Fig. 5.1).  All the ERs listed in Table 5.3 can be 

found in this graph, as well as many more that were not part of the original set. Any walk from 

one node through a series of edges, back to its original node is a valid ER. This means that one can 

identify series of reaction steps whose thermodynamic properties sum to zero because the graph is 

consistent with KPL. 

The solid nodes of Figure 5.1 represent balanced nodes (consistence with KFL or species 

QSS relations given in Table 5.2, or their linear combination), and the hollow nodes represent 

nodes that are unbalanced and require additional incident edges. The next step in completing this 

graph would be to add the FRs into the graph so that KFL is satisfied for all nodes. Additionally, 

since some of these routes involve multiple instances of the same edge, the graph must be doubled 

in order for certain RRs that are known to exist to appear. Figure 5.2 is the completed graph with 

all possible RRs traceable as walks. We also introduce an intermediate route (IR1: s29 + s30 + s31 +       

(-1)s32) as a means to condense the graph. Note that there are four ORs that appear in this graph 

that themselves form a cycle among them, i.e., they are not all independent. As mentioned earlier, 

the ORs can be combined to generate the other direct ORs. Thus, if two ORs are drawn on an RR 
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Graph, the linear combinations of those ORs will also be able to be traced as walks. However, the 

additional ORs are redundant, as two ORs are satisfactory in describing the overall reaction rates 

of the system. 

For comparison, Figure 5.3 shows the traditional reaction schematic for visualizing the 

mechanism and chemical pathways [34]. These reaction networks, however, can be drawn 

arbitrarily and are not consistent with KPL, KFL or other thermodynamic law. Because they lack 

these rigorous constraints, they are not suitable for the analysis of the system, unlike RR Graphs, 

although they serve the purpose of developing a qualitative understanding of the mechanism. The 

pathways represented in RR Graphs can be used to show flux analysis and compare reaction step 

affinities as we will demonstrate. 

 

Figure 5.1: Cycle graph for the 33-step MDR mechanism on Ni catalyst 
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Figure 5.2: Full MDR RR Graph. 
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Figure 5.3: Conventionally drawn reaction network [38]. 
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Figure 5.4: MDR rates (s-1). 



 169 

 

 

Figure 5.5: Pruned MDR graph with resistances for the steps of the dominant pathways  
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5.4 Network Analysis and Pruning 

A microkinetic calculation for the MDR mechanism on Ni catalyst proposed by Fan et al. 

[1] was performed at temperature T = 973.15 K, and a pressure p = 10 bar. For our analysis, we 

chose parameters similar to those chosen by Fan 2015 et al. [1] in their calculations, with a feed 

composition starting at CH4 (50%) and CO2 (50%) and the rates evaluated at conversions of CH4 

and CO2 of 
4CHX =15.9% and 

2COX =37.8%. The rates for these steps are superimposed on the RR 

Graph (Fig. 5.4). From this graph, we can readily discern the pathways that are most active in the 

network, by tracing the reaction from the terminal nodes of the reactants to the terminal nodes of 

the products. Superimposing the rates of each step presents a clear picture of the chemical 

pathways of the system, with any rate below 10-3 mol/gcat•h was considered negligible and 

represented as approximately zero. Since these steps do not contribute appreciably to the overall 

kinetics they can be removed from the mechanism in this specific case. It is possible, however, 

that at other operating conditions, these steps might add relevant pathways and one cannot 

rigorously assume that they can be ignored under all conditions without evaluating other 

conditions, nonetheless, the graph can now be pruned to facilitate further analysis through the 

electrical analogy. 

Figure 5.5 is a representation of the hence reduced RR graph as an analogy to an electrical 

circuit. The resistance of each step was evaluated using the following method. We may write the 

rate of a reaction step s  in the form of Ohm’s law [25] 

 





R

r
A

    (5.7) 
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where A  is the dimensionless step affinity akin to voltage in an electrical circuit. It is in turn 

related to the ratio of the rate in the forward direction r


 to that in the reverse direction, 
r


, via the 

de Donder relation [36,37] 

 



































zr

r 1
lnln 



A    (5.8) 

which stems from the thermodynamic consistence of elementary step kinetics, so that the step 

resistance, by combining the last two equations, is 

 





rr

rr
R 






)/ln(
   (5.9) 

Clearly, unlike electrical resistance, which is substantially constant, this definition of kinetic 

resistance of a step strongly depends on reaction conditions – especially temperature. Hence 

 rrz


/ is the step reversibility. 

Since the RR Graph follows KFL, KPL, as well as Ohm’s law, it is completely consistent 

with a resistive network [34]. Consequently, we can write the overall rate as the ratio of the affinity 

of the OR and the overall resistance of the reaction network 

 
OR

OR
OR

R
r

A
    (5.10) 

where the OR resistance ORR  of the reduced network is obtained in terms of the individual step 

resistances, in a manner similar to an electrical circuit [34]. 

From Figures 5.4 and 5.5, we can conclude that for OR1, there are only three dominant 

pathways and only three rate-limiting steps, s17, s23, and s25. For OR2, we can see that s6 is the 
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predominant rate-limiting step, although its resistance is smaller than those of the other steps 

mentioned. This implies that the WGS reaction may be considered essentially at QE under these 

conditions. Consequently, knowing that OR1 + OR2 = OR3, we can reduce the graph to only show 

OR3 and the steps that contribute to the overall reaction (Figure 5.6). The three major pathways 

shown include stepwise methane decomposition rapidly first into CH•S (s1 + s2 + s3), which then 

either oxidizes into CHO•S (s23), or decomposes further into elemental carbon, which can then 

oxidize into COH•S (s17) or straight to CO (s25). In this scheme, all the steps are quasi-equilibrated 

except for s17, s23 and s25, one in each of the three parallel branches. This is identical to the 

conclusions reached by Fan et al. [1] via numerical microkinetic analysis. For the MSR mechanism 

analysis performed by Vilekar et al. [35], we saw the same methane decomposition pathway that 

oxidizes elemental carbon, but neither of the other two pathways seen in the MDR were found to 

be significant. However another parallel pathway that oxidizes CH3, then ultimately decomposes 

into CO was found. These differences are likely simply a result of a different set of elementary 

reactions and their energetics. While the RR Graph approach can rigorously analyze and prune a 

given mechanism based on the given step rates, clearly the conclusions are dependent on the input 

information, it evidently cannot account for any missing key steps or erroneous kinetics.  

Assuming these few rate-limiting steps to be the sole contributors to the overall reaction 

kinetics, we can derive a QSS rate expression for any of the overall reactions. First, we identify 

steps that can be considered at quasi-equilibrium by computing their reversibilities as shown in 

Figure 5.7, which allows us to equate the forward and reverse of those equations and proceed to 

solve for the unknown site fractions following the LHHW approach. It is seen that all steps, 

including s6 the RLS for WGS reaction, have 1z , implying they are at QE, with the exception 

of s17, s23, and s25. 
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Figure 5.6: Simplified Reaction network for MDR reaction CH4 + CO2 ⇌ 2CO + 2H2 

 

Figure 5.7: Reversibility for each step of the 33-step MDR mechanism. 
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The rate of the steam reforming overall reaction, OR1, can be determined by the summation 

of the fluxes of the three parallel routes. Using the quasi-steady state approximation (detailed in 

Appendix B), the rate equations are comprised of the step rate constants ( k


 and k


), equilibrium 

constants (  kkK


 ) and pressures of the terminal species: 
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where we note that these equations are in such a form that there is combination of rate constants 

multiplying the pressure of terminal species raised to the power of their stoichiometric coefficients 

of the overall reaction. Thus, we recognize that those coefficients can be defined as the inverse of 

the overall reaction equilibrium (1/KOR1). Then, combining the three rates because 

 252317 rrrrOR 
 (5.14) 

the overall reaction rate is 
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  (5.15) 
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Additionally, we estimate the free catalyst site fraction as the total minus the most abundant 

species on the site surface: 

 SCHSCOSOSHSC0 1   
 (5.16) 
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For the reverse water-gas shift reaction: 
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The rate of OR3, the dry reforming of methane can now be determined as 
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We can compare the reaction rate obtained through this equation with experimental data from Wei 

and Iglesia [10]. Figure 5.8 shows good agreement with predicting the reaction being first order 

with respect to methane. 
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Figure 5.8: Comparison of LHHW overall reaction rate vs experimental data [10] at 973.15 K 

 

5.5 Conclusions 

We have demonstrated a method for comprehending the pathways and kinetics for the 

MDR system on Ni catalyst. Through RR Graph theory, all the unique pathways are enumerated 

and each route can be assessed for how it contributes to the overall reaction rate. This leads us to 

conclude that there are three parallel pathways, each having a rate limiting steps for MDR, namely, 

C oxidation with O, CH oxidation with O and C oxidation through OH. Furthermore, we have 

derived a comprehensive rate expression for the overall reaction rate through RDS and QE 

assumption based on resistance and reversibility calculations that is entirely productive as it is 

based on DFT calculations of step rates. 

It is of some concern that there are some concessions made in drawing this graph. Because 

of the multiple ORs in this system, the rates of the formation of the terminal species cannot simply 
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be related to each other like most RR Graphs. For example: if only the WGS and no other OR had 

any flux through it, we can relate the rates of H2O and H2 as being 1:1, because of the 

stoichiometry. However, for the MDR mechanism with multiple ORs the ratio between each 

terminal species is dependent on the flux through each OR. This is relatively simple to represent 

in QSS equations (Table 5.2), but it is difficult to both maintain these KCL relations, while 

simultaneously drawing a minimal graph that contains every possible RR and adheres to KPL. In 

this case, we recognize that the rate for s32, the hydrogen evolution step, is not correct on the graph, 

especially since it appears in multiple places with different rates. Based on the QSS equations, we 

know that the rate of s32 should be: 

 3311
)1()3( rrr OROR   (21) 

Based on the rates of other terminal species we can find that: 

 ;6.18
1
ORr     ;5.6

2
ORr     3.495.66.18x333 r  (22) 

Note that relationships between terminal species can be found by selecting any two of the 

four ORs. While this relationship could not be represented on the graph, we can still extract the 

exact rate of each of the relative ORs, based on other nodes that we know are balanced, and 

calculate the rate of hydrogen formation. Thus, despite the fact that we cannot immediately 

visualize the actual rate of s32 on the graph; we do visualize how the reactions proceeds through 

the steps and we can still use reaction resistances to estimate the affinities for each step. 
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Chapter 6: Methodology of Automating RR Graph Construction 

There has been some success in the automation of constructing RR Graphs through the use 

of a computer program written by Heineman et al. (in preparation). The current limitations have 

been mentioned briefly in previous chapters, but here the procedure of how the current algorithm 

operates is explained, as well as the goals moving forward. Hopefully, the conclusions made about 

the heuristics that govern RR Graph construction will be enumerated further in the future and 

proven through either linear algebra or graph-theory. 

6.1 Algorithm for Constructing an RR Graph 

The computer algorithm attempts to follow much of the linear algebra steps discussed in 

section 2.1, with the added benefit of automatically searching for possible solutions. Beginning 

with the stoichiometric matrix (v), define r to be the rank of the stoichiometric matrix after 

applying a Gauss-Jordan transformation of vT (GJ(vT)). From v all possible direct ERs can be 

computed by performing row operations on the matrix. Since a direct ER involves no more than r 

+1 reaction steps, the total number of potential cycles for a mechanism with p steps is: 
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 (6.1) 

These ERs can be enumerated through brute force by computing the determinant of every 

r x r sub-matrix of GJ(vT). If the determinant is non-zero, then these columns are independent. 

Given any set of r independent columns representing steps, construct sets of steps by combining 

these r selected steps with one of the (p – r) unselected steps. Because there can be no more than 

r independent columns, these r + 1 columns must be dependent and each set matches one of the 

ERs in the set of the full enumeration of ERs  for the mechanism. The cycles are determined by 
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reading the column entries for the unselected step minus the step being added. Not all of these 

cycles that are enumerated are independent. The goal is to determine any one set of independent 

cycles, there are many such among the enumerated ERs, but the RR Graph can be constructed with 

any set. Although the set of independent ERs selected will not affect the resulting RR Graph when 

it is complete, there might be some intelligent way of selecting the optimal one so that the 

following graph construction steps are more effective. 

Also similar to the manual method described in this work, the quasi-steady state (QSS) 

conditions are examined for each intermediate along with their linear combinations for 

determining an independent set of nodes. The algorithm checks each intermediate to identify the 

steps in which it is included and determines the QSS equation for each. Each node in the RR Graph 

represents one of these equations or their linear combination. In order to limit the number of 

combinations considered, the algorithm performs a similar brute force matrix search to identify 

combinations where the rates are summed to zero. Once a list of feasible nodes is computed, a 

search is performed to find a set of these nodes that is balanced by containing each reaction step 

twice in the whole set. Thus, we have our intermediate nodes for which we can create our RR 

Graph. 

Taking the set of ERs found earlier, the algorithm then creates a list of possible ERs that 

satisfy the set that was predetermined. A specific ER will have the same steps going in the same 

direction, however the order in which they appear and edges that have common incidence to a 

node can change. The algorithm will search all possible ER combinations and for each 

combination, create a set of sub graphs, one for each ER and will attempt to fuse the sub graphs 

along common edges to create the cycle graph. The algorithm checks to makes sure that (a) no 
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cycle is lost; (b) newly formed cycles are valid; and (c) each node satisfies one of the combinations 

of mass-balance conditions. 

Currently, the most complex network for which the algorithm can build a graph is a 13-

step methanol decomposition on Pt(111) mechanism (Table 6.1) [1]. For this, the RR Graph was 

automatically found (Figure 6.1), with some manual intervention to enforce symmetry. An attempt 

to generate a graph for a 17-step WGS reaction however, failed and resulted in an estimated 

computational time of approximately a decade to perform an exhaustive search for the solution. 

Thus, the complexity for which this algorithm is suitable is around this 13 to 17 steps at this time. 

 Elementary Reactions 

s1: 

s2: 

CH3OH + S ⇄ CH3OH⋅S 

CH3OH⋅S + S ⇄ CH3O⋅S + H⋅S 

s3: 

s4: 

s5: 

CH3O⋅S + 2S ⇄ CH2O⋅S2 + H⋅S 

CH2O⋅S2 ⇄ CHO⋅S + H⋅S 

CHO⋅S + S ⇄ CO⋅S + H⋅S 

s6: CH3OH⋅S + S ⇄ CH2OH⋅S + H⋅S 

s7: 

s8: 

s9: 

s10: 

s11: 

s12: 

s13: 

CH2OH⋅S + S ⇄ CHOH⋅S + H⋅S 

CHOH⋅S + S⇄ COH⋅S + H⋅S 

COH⋅S + S ⇄ CO⋅S + H⋅S 

CHOH⋅S + 2S ⇄ CO⋅S + 2H⋅S 

CH2OH⋅S + 2S ⇄ CH2O⋅S2 + H⋅S 

CO + S ⇄ CO⋅S 

2H⋅S ⇄ H2 + 2S 

Table 6.1: 13-step Methanol Decomposition mechanism on Pt(111) [1] 
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Figure 6.1: Automatically constructed RR Graph for 13-step methanol decomposition mechanism  

  

6.2 Future Development of RR Graph Theory 

The algorithm presented above certainly applies the RR Graph theory correctly and does 

indeed find the RR Graph under favorable conditions. However, it is a brute force approach and 

certainly it is not as efficient as possible. For larger systems, this brute force approach is not 

feasible. The program follows the heuristics that have been developed well enough, but the list of 

heuristics we have compiled so far is not complete. 

One of the issues with the algorithm is that it arbitrarily selects a set of ERs and INs from 

which to create the RR Graph. While it is true that any set of ERs will eventually lead to the same 

RR Graph, there may be a preferred way to select this starting set. Additionally, the procedure for 

finding the INs should, in theory, determine a unique set for a given set of starting ERs for which 
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there is a minimal number of balanced nodes, but it is possible that this is not the case. If there 

were guidelines or heuristics for selecting the most efficient set of ERs for constructing the graph 

and a corresponding set of INs and for determining the placement of steps within the ERs, this 

would greatly facilitate their construction, both manually and automatically. 

Another unresolved question posed is the best way to include overall reactions (ORs). The 

current algorithm treats the OR differently and tries to fit it in the end once all other steps are in 

place. It might be better to include the OR in the cycle matrix and treat the terminal species in the 

same way as intermediates. This may serve only to add to the complexity of the graph fusing, but 

it could also provide some flexibility in selecting the most efficient ERs to begin constructing the 

graph. For mechanisms with multiple ORs, this could be necessary in order to properly draw the 

graph. The methane dry reforming (MDR) mechanism described in Chapter 6 poses a particularly 

interesting problem. Since the ORs are non-linear, it makes it difficult to balance the nodes of the 

graph and retain consistency with KFL. 

6.2.1 Guidelines for Graph Construction 

Step 1: Characterize the graph in terms of complexity with regards to linearity, size and maximum 

stoichiometric coefficient. 

 Before drawing the graph, the proper method must be selected and any constraints must be 

recognized. The most important distinction is the linearity of the system. For a linear system, each 

step will occur only once, nonlinear systems are obviously much more complicated to draw and 

almost always require each step to be represented twice or more. In the case of mechanisms where 

the maximum stoichiometric coefficient is two or more, it is a requirement that the graph be 

symmetrical and every step be repeated. Every mechanism can be made to be symmetrical of 

course, if this were not necessary, then it would be simpler not to require that extra complexity. 
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However, symmetry is important to ensure that a step rate remains unchanged regardless of 

location. For linear systems, since there is only one of each step in RRs, one can use the matrix 

manipulation technique described in section 2.1.2 to create an incidence matrix a priori for the RR 

Graph.  

Step 2: Simplification: Identify steps involved in every FR, find steps that contain unique 

intermediates, ignore steps that are in zero cycles, and possibly select a sub mechanism. 

 For larger mechanism, it is best to start by analyzing the mechanism and narrowing the 

steps that are most important to drawing the cycle graph. There are certain aspects of the steps that 

allow us to either ignore them completely, or reduce the possibilities of where it could appear in 

the graph. Additionally, if there is a valid subset of the mechanism, a graph of that subset must 

exist within the larger graph, thus we can begin graph construction starting with that subset, then 

building upon it.  

One easy simplification is to identify steps that must be included in every FR. Since they 

are necessary steps, they will not be included in the cycle graph as they will not form cycles outside 

of the FRs. Thus, we can proceed to find the cycle graph ignoring these steps, then adding them to 

the completed cycle graph to fulfill the QSS conditions. These steps are often the adsorption or 

desorption steps. However, if there are multiple ways for the terminal species to be adsorbed or 

desorbed, then they must be included in the cycle matrix. The ORR mechanism in Chapter 4 is an 

excellent example where s1, the primary adsorption step appears in the middle of the graph, as 

opposed to closer to the terminal nodes, which is more common for adsorption and desorption 

steps (e.g., the H2O evolution step, s3). Since s4 is an alternate adsorption pathway, both s1 and s4 

must be considered in the cycle graph. It is also common for steps that share intermediates to share 

a common node, again the example in Chapter 4, one might expect that s1 and s4, since they are 
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both adsorption steps, would be incident to the same node, since one or the other must be present 

in every FR. However, the graph shows that this assumption is not valid and the placement of the 

step in the physical pathway the reaction takes has little bearing on where it appears in the graph. 

Several reaction steps have a species that is unique to that step, which we will refer to as 

deterring steps. This means that many of the steps produce something that could be considered as 

a dead end for the reaction, where an intermediate is formed that does not proceed to the terminal 

species, i.e., participate in a FR. Since these deterring steps have a unique intermediate, they cannot 

be a part of any cycle, unless that cycle has the same step in reverse, which would ultimately result 

in a trivial case where that step would be represented as a forward edge entering a node, with the 

same edge exiting the node in the opposite direction. Ultimately, these steps will never be part of 

any reaction route, including FRs, thus will not affect the OR resistance, however, their presence 

on the surface can affect concentrations of other intermediates and hence affect the OR rate. Thus, 

we can exclude them from the cycle fusing steps and add them later for the sole purpose of 

satisfying the QSS conditions. Also of note, these steps must be at quasi-equilibrium (QE) if the 

overall reaction is at QE and there will be no flux through these steps. Despite this, these deterring 

steps must still be considered in the kinetics analysis of the reaction because the intermediate 

species they produce could significantly affect the surface coverage of the catalyst. Thus, the step 

must be included for Rdot or microkinetic calculations when calculating site coverages. However, 

for the purpose of drawing the graph, they may be excluded, at least initially. 

A less important, but nevertheless useful, simplification is to combine steps that must be 

present in a direct series in a graph. If two steps share a species and that species is unique to only 

those two steps, they must be adjacent to the same node and that node must have no other adjacent 

steps. These steps can be combined into an intermediate route (IR), or just noted as existing as an 
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uninterrupted series. This is especially useful if automating the search for possible cycles by 

significantly reducing the number of searches required by the program. Occasionally, there will be 

three or more steps that must be in such a series where each step produces an intermediate that 

only exists in exactly one other step. Expressing such a series as an immediate route frees the graph 

from a lot of clutter and makes managing the cycle graph construction much easier. This property 

was used in the MDR example in Chapter 5. 

Step 3: Create the cycle matrix. 

 This step has been demonstrated numerous times in this thesis, see section 2.1.1 for the 

rationale behind the cycle matrix. For most RR Graph construction, the set of starting cycles 

chosen for this matrix is often arbitrary. While there are no guidelines yet, it is typically useful to 

select smaller cycles with common series of steps, preferably cycles with three steps. If two cycles 

have the same pair of steps and no other common steps, then those steps must be incident to the 

same node. This knowledge is very useful to constrain the amount of trial and error needed to find 

the RR Graph. 

Step 4: Judicious fusion of cycles. 

 For smaller mechanisms, simple trial and error will suffice, but as the number of 

independent cycles grows, the complexity scales factorially. The difficultly lies in being able to 

identify what order the steps in a cycle are in. For example, a three step cycle could have two 

unique configurations (Figure 6.2a), a four-step cycle could have six (Figure 6.2b), and the number 

increases factorially. (In this case, unique means having the same incidence matrix, so to determine 

if a graph is the same or not, one must examine the nodes and note which edges and in what 
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direction are incident to each.) Thus, we require a smarter way of fusing cycles in order to realize 

the RR Graph in a reasonable timeframe. 

 

 

Figure 6.2: Examples of cycle multiplicity for a) 3 steps and b) 4 steps in different orders 

 It seems that the best way to begin constructing the cycle graph is to start with the smallest 

cycles that contain steps that are present in most other RRs. Additionally, it is helpful to choose 
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steps that have intermediates that are present in the most steps, as those steps are more likely to be 

incident to nodes with a greater number of steps. These conditions will more commonly lead to 

starting with cycles that have steps that are shared with a greater number of other cycles, thus 

allowing the immediate realization of the constraints on how the steps are ordered. The key issue 

with drawing the cycles and fusing them, is that the order of the steps in the cycle is unknown until 

you realize that the order is incompatible with other cycles. By starting with a cycle that has several 

other common cycles, one can immediately recognize which orders of steps will or will not work. 

Also, by starting with the smallest cycles, it limits the number of configurations that cycle could 

have.  

Step 5: Balance nodes and merge graphs to achieve symmetry. 

 This step is straightforward if the complete cycle graphs have been realized. Both sections 

3.3.1 and 4.2 show instructive examples of this process. The important part of this step is to add 

the terminal nodes and fuse the graph in such a way to make the graph symmetrical. If the cycle 

graphs are constructed correctly, there will be few, if not a singular, ways to add or fuse edges. 

Rarely have we found more than two RR Graphs corresponding to a mechanism. Usually there is 

a unique RR Graph for a given mechanism. 

Step 6: Confirm KFL and KPL. 

 Lastly, the validity of the graph must be confirmed. This is certainly a step that could be 

automated, as the cycles and QSS conditions are known, it is simply a matter of checking the graph 

or incidence matrix to confirm that the cycles are present and that all the QSS relations or their 

combinations are present in the graph. A list of all the possible combinations of QSS conditions, 

or INs, is useful in readily determining if such a condition exists. 
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6.3 Example of Complex Graph Construction 

To develop the method further by utilizing the heuristics and steps mentioned previously, 

a complex reaction network was analyzed and particularly steps 2 and 4 were heavily utilized. This 

interesting mechanism proposed by Heyden et al. [2] is a NOx decomposition mechanism 

comprised of 104 elementary reaction steps (Table 6.2), each of which were analyzed through DFT 

and values for the activation energies and the pre-exponential factors, or rate constants, were 

found. There is a substantial qualitative discussion and analysis of the pathways that this reaction 

goes through provided by Heyden et al. [2], but there could be substantially more quantitative 

insight that the RR approach could provide by enabling a visualization of all the pathways as well 

as providing a comprehensive tool for analyzing the effect of all these pathways simultaneously. 

The q + 1 = 74 intermediate species and n = 8 terminal species (N2, NO, N2O, NO2, O2, H2O, cis-

HNO2, and trans-HNO2) involved in the mechanism are summarized in Table 6.3. 

Table 6.2: Mechanism for nitrous oxide decomposition on Fe-ZSM-5 zeolite catalyst [1]. 

sρ Elementary Reaction Step   

s1 Z-[FeO]+{M = 6} + NO(g) ⇄ Z-[FeONO]+{M = 5} 

s2 Z-[FeONO]+{M = 5} ⇄ Z-[Fe]+{M = 4} + NO2(g) 

s3 Z-[FeO]+{M = 6} + NO(g) ⇄ Z-[FeO2N]+{M = 5} 

s4 Z-[FeO2N]+{M = 5} ⇄ Z-[Fe]+{M = 4} + NO2(g) 

s5 Z-[FeO]+{M = 6} + NO(g) ⇄ Z-[OFeNO]+{M = 5} 

s6 Z-[FeO2]+{M = 6} + NO(g) ⇄ Z-[FeOONO]+{M = 5} 

s7 Z-[FeOONO]+{M = 5} ⇄ Z-[FeO]+{M = 6} + NO2(g) 

s8 Z-[OFeO]+{M = 6} + NO(g) ⇄ Z-[OFeONO]+{M = 5} 

s9 Z-[OFeONO]+{M = 5} ⇄ Z-[FeO]+{M = 6} + NO2(g) 

s10 Z-[OFeO]+{M = 6} + NO(g) ⇄ Z-[OFeO2N]+{M = 5} 

s11 Z-[OFeO2N]+{M = 5} ⇄ Z-[FeO]+{M = 6} + NO2(g) 

s12 Z-[OFeO]+{M = 6} + NO(g) ⇄ Z-[FeO2NO]+{M = 5} 

s13 Z-[FeO2NO]+{M = 5} ⇄ Z-[FeO]+{M = 6} + NO2(g) 

s14 Z-[FeONO]+{M = 5} + N2O(g) ⇄ Z-[FeONO]+(N2O){M = 5} 

s15 Z-[FeONO]+{M = 5} + N2O(g) ⇄ Z-[FeONO]+(ON2){M = 5} 
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s16 Z-[FeONO]+(ON2){M = 5} ⇄ Z-[OFeONO]+{M = 5} + N2(g) 

s17 Z-[OFeONO]+{M = 5} + N2O(g) ⇄ Z-[OFeONO]+(N2O){M = 5} 

s18 Z-[OFeONO]+{M = 5} + N2O(g) ⇄ Z-[OFeONO]+(ON2){M = 5} 

s19 Z-[OFeONO]+(ON2){M = 5} ⇄ Z-[O2FeONO]+{M = 5} + N2(g) 

s20 Z-[O2FeONO]+{M = 5} ⇄ Z-[O2FeONO]+{M = 7} 

s21 Z-[O2FeONO]+{M = 7} ⇄ Z-[FeONO]+{M = 5} + O2(g) 

s22 Z-[O2FeONO]+{M = 7} ⇄ Z-[FeO2]+{M = 6} + NO2(g) 

s23 Z-[OFeONO]+{M = 5} + NO(g) ⇄ Z-[Fe(ONO)2]+{M = 6} 

s24 Z-[Fe(ONO)2]+{M = 6} ⇄ Z-[FeONO]+{M = 5} + NO2(g) 

s25 Z-[Fe(ONO)2]+{M = 6} ⇄ Z-[ONOFeO2N]+{M = 6} 

s26 Z-[OFeONO]+{M = 5} ⇄ Z-[FeO2NO]+{M = 5} 

s27 Z-[FeONO]+{M = 5} ⇄ Z-[FeO2N]+{M = 5} 

s28 Z-[FeO2N]+{M = 5} + N2O(g) ⇄ Z-[FeO2N]+(N2O){M = 5} 

s29 Z-[FeO2N]+{M = 5} + N2O(g) ⇄ Z-[FeO2N]+(ON2){M = 5} 

s30 Z-[FeO2N]+(ON2){M = 5} ⇄ Z-[OFeO2N]+{M = 5} + N2(g) 

s31 Z-[OFeO2N]+{M = 5} + N2O(g) ⇄ Z-[OFeO2N]+(N2O){M = 5} 

s32 Z-[OFeO2N]+{M = 5} + N2O(g) ⇄ Z-[OFeO2N]+(ON2){M = 5} 

s33 Z-[OFeO2N]+ (ON2){M = 5} ⇄ Z-[O2FeO2N]+{M = 5} + N2(g) 

s34 Z-[O2FeO2N]+{M = 5} ⇄ Z-[O2FeO2N]+{M = 7} 

s35 Z-[O2FeO2N]+{M = 7} ⇄ Z-[FeO2N]+{M = 5} + O2(g) 

s36 Z-[O2FeO2N]+{M = 7} ⇄ Z-[FeO2]+{M = 6} + NO2(g) 

s37 Z-[OFeO2N]+{M = 5} + NO(g) ⇄ Z-[ONOFeO2N]+{M = 6} 

s38 Z-[ONOFeO2N]+{M = 6} ⇄ Z-[FeO2N]+{M = 5} + NO2(g) 

s39 Z-[ONOFeO2N]+{M = 6} ⇄ Z-[Fe(O2N)2]+{M = 6} 

s40 Z-[OFeO2N]+{M = 5} ⇄ Z-[OFeONO]+{M = 5} 

s41 Z-[FeO2N]+{M = 5}  + N2O(g) ⇄ Z-[FeO2NO]+{M = 5} + N2(g) 

s42 Z-[FeO2NO]+{M = 5} + N2O(g) ⇄ Z-[FeO2NO]+(N2O){M = 5} 

s43 Z-[FeO2NO]+{M = 5} + N2O(g) ⇄ Z-[FeO2NO]+(ON2){M = 5} 

s44 Z-[FeO2NO]+(ON2){M = 5} ⇄ Z-[OFeO2NO]+{M = 5} + N2(g) 

s45 Z-[OFeO2NO]+{M = 5} + N2O(g) ⇄ Z-[OFeO2NO]+(N2O){M = 5} 

s46 Z-[OFeO2NO]+{M = 5} + N2O(g) ⇄ Z-[OFeO2NO]+(ON2){M = 5} 

s47 Z-[OFeO2NO]+(ON2){M = 5} ⇄ Z-[O2FeO2NO]+{M = 5} + N2(g) 

s48 Z-[O2FeO2NO]+{M = 5} ⇄ Z-[O2FeO2NO]+{M = 7} 

s49 Z-[O2FeO2NO]+{M = 7} ⇄ Z-[FeO2NO]+{M = 5} + O2(g) 

s50 Z-[O2FeO2NO]+{M = 7} ⇄ Z-[OFeO2]+{M = 6} + NO2(g) 

s51 Z-[OFeO2NO]+{M = 5} ⇄ Z-[OFeO]+{M = 6} + NO2(g) 
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s52 Z-[OFeO2NO]+{M = 5} + NO(g) ⇄ Z-[ONOFeO2NO]+{M = 6} 

s53 Z-[ONOFeO2NO]+{M = 6} ⇄ Z-[FeO2NO]+{M = 5} + NO2(g) 

s54 Z-[ONOFeO2NO]+{M = 6} ⇄ Z-[NO2FeO2NO]+{M = 6} 

s55 Z-[Fe(OH)2]+{M = 6} + NO(g) ⇄ Z-[Fe(OH)2]+(ON){M = 7} 

s56 Z-[Fe(OH)2]+{M = 6} + NO(g) ⇄ Z-[Fe(OH)2]+(NO){M = 7} 

s57 Z-[Fe(OH)2]+(NO){M = 7} ⇄ Z-[Fe(OH)2]+(NO){M = 5} 

s58 Z-[Fe(OH)2]+(NO){M = 5} ⇄ Z-[FeOH]+(trans-HNO2){M = 5} 

s59 Z-[Fe(OH)2]+(NO){M = 5} ⇄ Z-[FeOH]+(cis-HNO2){M = 5} 

s60 Z-[FeOH]+(trans-HNO2){M = 5} ⇄ Z-[FeOH]+{M = 5} + trans-HNO2(g) 

s61 Z-[FeOH]+(cis-HNO2){M = 5} ⇄ Z-[FeOH]+{M = 5} + cis-HNO2(g) 

s62 Z-[FeOH]+{M = 5} + N2O(g) ⇄ Z-[FeOH]+(N2O){M = 5} 

s63 Z-[FeOH]+{M = 5} + N2O(g) ⇄ Z-[FeOH]+(ON2){M = 5} 

s64 Z-[FeOH]+(ON2){M = 5} ⇄ Z-[OFeOH]+{M = 5} + N2(g) 

s65 Z-[OFeOH]+{M = 5} + N2O(g) ⇄ Z-[OFeOH]+(N2O){M = 5} 

s66 Z-[OFeOH]+{M = 5} + N2O(g) ⇄ Z-[OFeOH]+(ON2){M = 5} 

s67 Z-[OFeOH]+(ON2){M = 5} ⇄ Z-[O2FeOH]+{M = 5} + N2(g) 

s68 Z-[O2FeOH]+{M = 5} ⇄ Z-[O2FeOH]+{M = 7} 

s69 Z-[O2FeOH]+{M = 7} ⇄ Z-[FeOH]+{M = 5} + O2(g) 

s70 Z-[OFeOH]+{M = 5} + NO(g) ⇄ Z-[ONOFeOH]+{M = 6} 

s71 Z-[ONOFeOH]+{M = 6} ⇄ Z-[FeOH]+{M = 5} + NO2(g) 

s72 Z-[OFeOH]+{M = 5} + NO(g) ⇄ Z-[FeO]+(trans-HNO2){M = 6} 

s73 Z-[FeO]+(trans-HNO2){M = 6} ⇄ Z-[FeO]+{M = 6} + trans-HNO2(g) 

s74 Z-[OFeOH]+{M = 5} + trans-HNO2(g) ⇄ Z-[OFeOH]+(trans-HNO2){M = 5} 

s75 Z-[OFeOH]+(trans-HNO2){M = 5} ⇄ Z-[OFeOH2]+(NO2){M = 5} 

s76 Z-[OFeOH2]+(NO2){M = 5} ⇄ Z-[OFeOH2]+(NO2){M = 7} 

s77 Z-[OFeOH2]+(NO2){M = 7} ⇄ Z-[FeO]+(OH2){M = 6} + NO2(g) 

s78 Z- [FeO]+(OH2){M = 6} ⇄ Z-[FeO]+{M = 6} 

s79 Z- [FeO]+(OH2){M = 6} ⇄ Z-[Fe(OH)2]+{M = 6} 

s80 Z-[OFeO]+{M = 6} + N2O(g) ⇄ Z-[FeO]+(cis-(NO)2){M = 6} 

s81 Z-[FeO]+(cis-(NO)2){M = 6} ⇄ Z-[FeO]+(ON){M = 5} + NO(g) 

s82 Z-[FeO]+(ON){M = 5} ⇄ Z-[FeO]+{M = 6} + NO(g) 

s83 Z-[ONOFeO]+{M = 5} + N2O(g) ⇄ Z-[FeONO]+(cis-(NO)2){M = 5} 

s84 Z-[FeONO]+(cis-(NO)2){M = 5} ⇄ Z-[FeONO]+(ON){M = 4} + NO(g) 

s85 Z-[FeONO]+(ON){M = 4} ⇄ Z-[FeONO]+{M = 5} + NO(g) 

s86 Z-[OFeO2N]+{M = 5} + N2O(g) ⇄ Z-[FeO2N]+(cis-(NO)2){M = 5} 

s87 Z-[FeO2N]+(cis-(NO)2){M = 5} ⇄ Z-[FeO2N]+(ON){M = 4} + NO(g) 
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s88 Z-[FeO2N]+(ON){M = 4} ⇄ Z-[FeO2N]+{M = 5} + NO(g) 

s89 Z-[OFeO2NO]+{M = 5} + N2O(g) ⇄ Z-[FeO2NO]+(cis-(NO)2){M = 5} 

s90 Z-[FeO2NO]+(cis-(NO)2){M = 5} ⇄ Z-[FeO2NO]+(ON){M = 4} + NO(g) 

s91 Z-[FeO2NO]+(ON){M = 4} ⇄ Z-[FeO2NO]+{M = 5} + NO(g) 

s92 Z-[OFeOH]+{M = 5} + N2O(g) ⇄ Z-[FeOH]+(cis-(NO)2){M = 5} 

s93 Z-[FeOH]+(cis-(NO)2){M = 5} ⇄ Z-[FeOH]+(ON){M = 4} + NO(g) 

s94 Z-[FeOH]+(ON){M = 4} ⇄ Z-[FeOH]+{M = 5} + NO(g) 

s95 Z-[OFeO]+{M = 6} + NO2(g) ⇄ Z-[OFeO]+(NO2){M = 5} 

s96 Z-[OFeO]+(NO2){M = 5} ⇄ Z-[OFeO2]+{M = 4} + NO(g) 

s97 Z-[OFeONO]+{M = 5} + NO2(g) ⇄ Z-[OFeONO]+(NO2){M = 6} 

s98 Z-[OFeONO]+(NO2){M = 6} ⇄ Z-[O2FeONO]+{M = 5} + NO(g) 

s99 Z-[OFeO2N]+{M = 5} + NO2(g) ⇄ Z-[OFeO2N]+(NO2){M = 6} 

s100 Z-[OFeO2N]+(NO2){M = 6} ⇄ Z-[O2FeO2N]+{M = 5} + NO(g) 

s101 Z-[OFeO2NO]+{M = 5} + NO2(g) ⇄ Z-[OFeO2NO]+(NO2){M = 6} 

s102 Z-[OFeO2NO]+(NO2){M = 6} ⇄ Z-[O2FeO2NO]+{M = 5} + NO(g) 

s103 Z-[HOFeO]+{M = 5} + NO2(g) ⇄ Z-[HOFeO]+(NO2){M = 6} 

s104 Z-[HOFeO]+(NO2){M = 6} ⇄ Z-[HOFeO2]+{M = 5} + NO(g) 

OR1 N2O(g) + NO(g) ⇄ N2(g) + NO2(g) 

OR2 N2O(g) + NO2(g) ⇄ N2(g) + NO(g) + O2(g) 

OR3 N2(g) + O2(g) ⇄ 2NO 

OR4 H2O(g) + N2O(g) + O2(g) ⇄ 2trans-HNO2 

OR5 H2O(g) + N2O(g) + O2(g) ⇄ 2cis-HNO2 

Table 6.2: Mechanism for nitrous oxide decomposition on Fe-ZSM-5 zeolite catalyst [1]. 

 

 

Table 6.3: Abbreviations for the intermediate species in the mechanism for nitrous oxide decomposition on 

Fe-ZSM-5 zeolite catalyst [1] 

Intermediate Species Abbreviation 

Z-[FeO]+{M = 6} I1 

Z-[FeO2]+{M = 6} I2 

Z-[FeO2]+{M = 6} I3 

Z-[Fe(ONO)2]+{M = 6} I4 

Z-[FeO]+(cis-(NO)2){M = 6} I5 

Z-[FeO2N]+{M = 5} I6 

Z-[FeO2N]+(cis-(NO)2){M = 5} I7 

Z-[FeO2N]+(N2O){M = 5} I8 

Z-[FeO2N]+(ON){M = 4} I9 

Z-[FeO2N]+(ON2){M = 5} I10 

Z-[FeO2N]+{M = 5} I11 
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Z-[FeO2NO]+(cis-(NO)2){M = 5} I12 

Z-[FeO2NO]+(N2O){M = 5} I13 

Z-[FeO2NO]+(ON){M = 4} I14 

Z-[FeO2NO]+(ON2){M = 5} I15 

Z-[FeO2NO]+{M = 5} I16 

Z-[FeONO]+(cis-(NO)2){M = 5} I17 

Z-[FeONO]+(N2O){M = 5} I18 

Z-[FeONO]+(ON){M = 4} I19 

Z-[FeONO]+(ON2){M = 5} I20 

Z-[FeONO]+{M = 5} I21 

Z-[FeOONO]+{M = 5} I22 

Z-[NO2FeO2NO]+{M = 6} I23 

Z-[O2FeO2N]+{M = 5} I24 

Z-[O2FeO2N]+{M = 7} I25 

Z-[O2FeO2NO]+{M = 5} I26 

Z-[O2FeO2NO]+{M = 7} I27 

Z-[O2FeONO]+{M = 5} I28 

Z-[O2FeONO]+{M = 7} I29 

Z-[OFeONO]+{M = 5} I30 

Z-[OFeO]+(NO2){M = 5} I31 

Z-[FeO]+{M = 6} I32 

Z-[OFeO2]+{M = 5} I33 

Z-[OFeO2]+{M = 6} I34 

Z-[OFeO2N]+(N2O){M = 5} I35 

Z-[OFeO2N]+(NO2){M = 6} I36 

Z-[OFeO2N]+(ON2){M = 5} I37 

Z-[OFeO2N]+{M = 5} I38 

Z-[OFeO2NO]+(N2O){M = 5} I39 

Z-[OFeO2NO]+(NO2){M = 6} I40 

Z-[OFeO2NO]+(ON2){M = 5} I41 

Z-[OFeO2NO]+{M = 5} I42 

Z-[OFeONO]+(N2O){M = 5} I43 

Z-[OFeONO]+(NO2){M = 6} I44 

Z-[OFeONO]+(ON2){M = 5} I45 

Z-[OFeONO]+{M = 5} I46 

Z-[ONOFeO]+{M = 5} I47 

Z-[ONOFeO2N]+{M = 6} I48 

Z-[ONOFeO2NO]+{M = 6} I49 

Z-[Fe(OH)2]+(NO){M = 5} I50 

Z-[Fe(OH)2]+(NO){M = 7} I51 

Z-[Fe(OH)2]+(ON){M = 7} I52 

Z-[Fe(OH)2]+{M = 6} I53 

Z-[FeO(OH)2]+{M = 6} I54 
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Z-[FeO]+(trans-HNO2){M = 6} I55 

Z-[FeOH]+(cis-(NO)2){M = 5} I56 

Z-[FeOH]+(cis-HNO2){M = 5} I57 

Z-[FeOH]+(N2O){M = 5} I58 

Z-[FeOH]+(ON){M = 4} I59 

Z-[FeOH]+(ON2){M = 5} I60 

Z-[FeOH]+(trans-HNO2){M = 5} I61 

Z-[FeOH]+{M = 5} I62 

Z-[HOFeO]+(NO2){M = 6} I63 

Z-[HOFeO]+{M = 5} I64 

Z-[HOFeO2]+{M = 5} I65 

Z-[O2FeOH]+{M = 5} I66 

Z-[O2FeOH]+{M = 7} I67 

Z-[OFeOH]+(N2O){M = 5} I68 

Z-[OFeOH]+(ON2){M = 5} I69 

Z-[OFeOH]+(trans-HNO2){M = 5} I70 

Z-[OFeOH]+{M = 5} I71 

Z-[OFeOH2]+(NO2){M = 5} I72 

Z-[OFeOH2]+(NO2){M = 7} I73 

Z-[ONOFeOH]+{M = 6} I74 

N2 T1 

N2O T2 

NO T3 

NO2 T4 

O2 T5 

trans-HNO2 T6 

cis-HNO2 T7 

H2O T8 
Table 6.3: Abbreviations for the species in the mechanism for nitrous oxide decomposition on Fe-ZSM-5 

zeolite catalyst [1] 

 

Construction of an RR Graph of this magnitude has never been accomplished. This is, 

however, a linear mechanism, so the theory behind minimal RR Graphs should apply (Chapter 2). 

On the other hand, it contains multiple ORs. Theoretically, we could automate the process of 

creating the incidence matrix through matrix manipulation, but the amount of computational time 

it would take would not make it feasible. Thus, the graph was attempted to be constructed by hand 

as per the guidelines detailed above. 



 199 

 

First, the mechanism was classified in order to identify the best means for drawing the 

graph. Although this is a very large system, it is completely linear. In theory, it would be possible 

to use the matrix manipulation method described in section 2.1.1, but efforts to utilize that method 

were unsuccessful, as it is a technique based on trial and error and there are far too many 

combinations to realistically sort through. However, because it is linear, we do not have to be 

concerned about mirroring the graph. Thus, we determined that the best approach was to simplify 

the mechanism into sub mechanisms and then construct the graph through fusing cycle graphs 

similar to the approach in Chapter 3. 

Finally it was decided that, the mechanism could be simplified. The goal was to make the 

mechanism more manageable by identifying which steps can be ignored or combined with other 

steps, thus reducing the complexity. Also, since this is such a large mechanism, starting with a 

smaller subset of the reaction network would help to reduce some of the trial and error.  

Fortunately, this mechanism has clear points where it can be simplified, most importantly 

it can be divided into two distinct separate mechanisms: a mechanism for the species containing 

hydrogen and a mechanism for species without hydrogen. It is important to note that none the 

hydrogenated species are involved in the steps with non-hydrogenated species so that the 

subgraphs with these species are independent. In other words, reactions steps with hydrogenated 

species only react with hydrogenated species so that the system comprises of two independent 

subgraphs. This means that no minimal cycle exists with steps that include hydrogenated species 

and those that do not. Thus, we can create a cycle matrix with only non-hydrogenated species to 

build the subgraph from. The mechanism is thus divided into those two parts (Table 6.4). 

Hydrogenated Steps Nonhydrogenated Steps  

55-80, 92-94, 103, 104 1-54, 81-91, 95-102  
Table 6.4: Division of the 104-step NOx mechanism [2] into separate sub mechanism by hydrogenation 
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The case of nonhydrogenated subgraph is described next. We identify those steps that 

cannot possibly be included in any cycles, because of a side intermediate that does not further lead 

to an OR (Table 6.5). Then, steps that must be in an uninterrupted series because they uniquely 

share an intermediate are combined into intermediate routes and their common intermediate is 

ignored in further graph construction (Table 6.6). Thus, we have pruned the mechanism down to   

p = 40 steps and q = 20 linearly independent species, which we determine from Milner’s [2] theory 

to have p – q = 20 linearly independent RRs.  

Each intermediate is assigned as Ik for abbreviation, along with the terminal species (N2, 

N2O, NO, NO2, and O2), assigned as Tn (Table 6.3), A stoichiometric matrix can then be created 

for this mechanism (Table 6.7). Using this stoichiometric matrix, it would be possible to find a 

cut-set matrix for a linearly independent set of reaction routes. For this, a Mathematica program 

was written to automate this process and identify any possible RRs (Appendix 1). The program 

identifies routes by checking to see if a combination of steps adds up to either no intermediate  

Deterring Steps Side intermediate 

s5 I30 

s14 I18 

s17 I43 

s28 I8 

s31 I35 

s39 I3 

s42 I13 

s45 I39 

s50 I34 

s54 I23 

s83 I47 

s84 I17 

s85 I19 

s95 I31 

s96 I33 

Table 6.5: Identification of steps with side intermediates that can be ignored in the cycle graph. 
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Intermediate Route, IRρ Steps Common Intermediates 

IR1 s2 & (-1)s4 I1 

IR2 s6 & s7 I22 

IR3 s15 & s16 I20 

IR4 s18 & s19 I45 

IR5 s32 & s33 I37 

IR6 s43 & s44 I15 

IR7 s46, s47, s48 & s49 I26, I27, I41 

IR8 s52 & s53 I49 

IR9 s80, s81 & s82 I5, I6 

IR10 s86, s87 & s88 I7, I9 

IR11 s89, s90 & s91 I12, I14 

IR12 s97 & s98 I44 

IR13 s99 & s100 I36 

IR14 s101 & s102 I40 
Table 6.6: Identification of intermediate routes and the intermediate species that are common. 

species (ERs) or only terminal species (FRs). In the latter case, an overall reaction was added to 

balance the species. The most common set of terminal species were presumably involved in the 

following ORs, i.e., (n – e) = 5 – 2 = 3 ORs: 

 OR
1

 : N
2
O + NO ⇄ N

2
+ NO

2 (6.1) 

 OR
2
 : 2NO

2 
⇄ 

 
+ 2NO + O

2 (6.2) 

 OR
3 

: N
2 

+ O
2 
⇄ 2NO (6.3) 

Thus, these were selected as the ORs to appear in the graph. A list RRs was selected and checked 

to make sure they were, in fact, linearly independent and combined into a cycle matrix (Table 6.8). 

From this cycle matrix, we can now start constructing the RR Graph by combining cycles 

to form larger cycle graphs. This proved to be an extremely challenging endeavor, however, due 

to the large amount of possible cycles and combination of cycles, so some intelligent selection of 

which cycle to start with was required. First, we wanted to select cycles with only three steps, as 
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there are fewer orientations for the steps within the cycle. ER2 and ER3 both share s41, which 

contains I11 and I16, two of the most commonly occurring intermediates in the mechanism making 

this a good place to begin the graph construction. Unfortunately, when we fuse these two cycles, 

they can be oriented in one of four configurations (Figure 6.3). If the network were simple, then 

any configuration would be equally correct, however, as more cycles are added, some of these 

configurations proved to be incorrect as the cycles that needed to be added would not fit. More 

information was needed to determine which is correct, so we looked to other common cycles. It 

was noticed that s8 and s9 are common in ER8, without either s11 or s10, thus we concluded that s9 

and s8 must be incident to the same node and either configuration 3-A or configuration 3-D have 

such a node and ER8 was fused into each of those cycles producing Fig. 6.4. Unfortunately, we 

have the same issue, as there are still 4 viable configurations. While some of them might look 

similar, each one has unique nodes with different edges or direction of edges incident to it. 

However, we note that 4-C and 4-D are simply the negative incidence of 4-A and 4-B, thus, while 

they are not equivalent, they would simply produce an inverted graph with the same cycles and 

they do not need to be considered further.  

 Next, we noticed that ER10 contains s10 and s12, but none of the other steps in the current 

cycle graph, so we determined that those steps must be incident to the same node. However, we 

decided to hold off from adding ER10 to this cycle because there are six ways to add the other three 

steps, resulting in six total configurations. However, we did discover that configuration 3-A is the 

correct configuration.  
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Step S  I2 I4 I11 I16 I21 I24 I25 I28 I29 I32 I38 I42 I46 I48 T1 T2 T3 T4 T5 

s1 -1  0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 

IR1 0  0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s3 -1  0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 

IR2 1  -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s8 0  0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 -1 0 0 

s9 1  0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 

s10 0  0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 -1 0 0 

s11 1  0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 1 0 

s12 0  0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 

s13 1  0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

IR3 0  0 0 0 0 -1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 

IR4 0  0 0 0 0 0 0 0 1 0 0 0 0 -1 0 1 0 0 0 0 

s20 0  0 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 

s21 0  0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 

s22 0  1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 1 0 

s23 0  0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 -1 0 0 

s24 0  0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

s25 0  0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

s26 0  0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 

s27 0  0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

s29 0  0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 

s30 0  0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 

IR5 0  0 0 0 0 0 1 0 0 0 0 -1 0 0 0 1 -1 0 0 0 

s34 0  0 0 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 

s35 0  0 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 

s36 0  1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 0 

s37 0  0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 -1 0 0 

s38 0  0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 

s40 0  0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 

s41 0  0 0 -1 1 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 

IR6 0  0 0 0 -1 0 0 0 0 0 0 0 1 0 0 1 -1 0 0 0 

IR7 0  0 0 0 1 0 0 0 0 0 0 0 -1 0 0 1 -1 0 0 1 

s51 0  0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 1 0 

IR8 0  0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 -1 1 0 

IR9 1  0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 2 0 0 

IR10 0  0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 -1 2 0 0 

IR11 0  0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 -1 2 0 0 

IR12 0  0 0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 1 -1 0 

IR13 0  0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 1 -1 0 

IR14 0  0 0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 1 -1 0 

Table 6.7: Stoichiometric matrix for the reduced dehydrogenated 104-step NOx mechanism [2]. 
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Figure 6.3: Possible configurations of the fused cycle graph of ER2 and ER3. 

 

Figure 6.4: Possible configurations of the fused cycle graph of ER2, ER3 and ER8. 
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 Another approach is to look for more series of steps that are common in the RRs. ER15 and 

ER16 both contain s3, s13 and s41, thus those steps must be present in a series. To determine the 

order of that series, we looked at ER1, which contains s3 and ER6, which contains s13, and both 

contain s1. In order for both of these cycles to exist and have s3 and s13 be in a series, there is only 

one configuration that was found to be possible (Figure 6.5). 

Figure 6.5: Cycle graph found by fusing cycle in Figure 6.4 and cycle ER1. 

 Now, considering ER4, ER5 and ER6, we note the common series of s1, s11 and s37, along 

with the common series of s1 and s24, leads us to Figure 6.6 as the partial cycle graph which has so 

far been realized. Note that the series of s38 and s27 might not be in the correct order. 
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Figure 6.6: Fused cycle graph of Figure 6.5, ER4, ER5 and ER6. 

In this manner we could continue to add cycles carefully and judiciously until we realize the final 

RR Graph. Since this is a linear mechanism with multiple ORs included in the cycle matrix, there 

would be no need to mirror the graph. The ORs would finally be added to balance the nodes and 

then the graph much be checked for consistency with KPL and KFL. However, this is still a work 

in progress. 

6.4 Conclusions 

Much effort has been spent to make the RR Graph approach as practical as possible. It 

has proven to be a powerful tool, but also unwieldly at times. We recognize that making this tool 

more accessible is the most important step in its success. As more RR Graphs are constructed, 

we start to see more patterns in the steps of how they are constructed. This chapter summarizes 
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all the insights gained from previous examples of RR Graphs as well as the original linear 

algebra on which the methodology is based. Ideally, these guidelines will serve as important 

tools for future RR Graph analysis and, in turn, those analyses will further the understanding of 

the RR Graph methodology. 
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Chapter 7: Conclusions and Future Work 

In summary, the significance and power of the RR Graph methodology in mechanistic and 

kinetic analysis along with mechanism pruning has been unequivocally demonstrated in this thesis 

through the analysis and examples provided. This clearly demonstrates the superiority of this 

approach over other methodologies. Most notably, the RR Graph was demonstrated to more 

completely elucidate the correct rate limiting step kinetics while Campbell’s Degree of Rate 

Control (DoRC), which is based on sensitivity analysis, could not. Furthermore, the RR Graph 

properly enumerates all the potential reaction routes as walks, which other graph-theory based 

techniques are unable to do so rigorously.  

Although there were many insights gained from a comparison of the RR Graph 

methodology with Campbell’s DoRC, it highlights a significant knowledge gap in the 

understanding of why these methods provide different results. The DoRC methodology involves 

isolating a single step and quantifying how changing the kinetics of that step would affect the 

overall kinetics while holding all other step rate and equilibrium constants unchanged. This process 

neglects the fact that the kinetics of elementary steps are complicated and that changing the kinetics 

of one step could have an effect on other steps. In other words, there might be issues with 

maintaining thermodynamic consistence. The RR Graph methodology avoids this trap and 

provides the step and pathway fluxes with the given step and rate equilibrium constants so that all 

steps and pathways with appreciable flux can be directly identified. However, these ideas are 

mostly speculation and are not proven to be the reason for the discrepancy between the two 

methods. Researching these ideas could very well prove to be insightful for further understanding 

reaction kinetics in general and possibly providing a better understanding of the RR Graphs. 
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What is lacking for the broader application of RR Graph methodology is an efficient way 

to draw them. Without an RR Graph it can be difficult for many researchers to apply this technique. 

Hopefully, the steps detailed in Chapter 6 go a long way towards delineating drawing of these 

graphs and making this method more accessible. It would, of course, be desirable to automate the 

drawing of the RR Graph, and make it available to all researchers, but this is not yet realistic. 

Regardless, the quantitative aspects of the theory can be applied without the realization of an RR 

Graph, just as an electrical circuit can be analyzed on the basis of the Kirchoff’s laws without a 

circuit diagram. Although the RR Graph is invaluable for flux analysis and pruning, further 

development of the RR Graph method needs to be continued so that it may be more broadly 

accessible and employed. The further development of this approach could be based on the analysis 

of addition examples of mechanism and kinetics for which DFT energetics are available. Some of 

the suggested examples are described below. 

7.1 NOx Decomposition 

A method for drawing the graph for a very large system was discussed in Chapter 6. 

However, the full RR Graph has yet to be realized for this system. The entire mechanism can be 

combined to include the hydrogenated steps that have not yet been introduced. Once a complete 

and valid RR Graph is found, the same Rdot analysis seen in section 2.1.3 could be done to prune 

the mechanism and establish a comprehensive mechanistic understanding along with predictive 

rate equations. Ultimately, the realization of the complete kinetic picture for this mechanism will 

likely appear as two separate RR sub-graphs that may not share ORs and any of the elementary 

steps. The realization of such a graph would likely provide great insight into how future RR Graphs 

can be constructed. 
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7.2 Oxygen Reduction Reaction 

Further study into the oxygen reduction reaction (ORR) is warranted to better understand 

the mechanism so as to find catalysts that might provide actual improvement over platinum 

catalyst. While Chapter 4 demonstrated how powerful the RR Graph methodology can be in 

characterizing the activity of a catalyst, no clear activity improvement over Pt catalyst for the 

investigated mechanism over the many different catalysts was found. On the other hand, if cheaper 

catalysts can provide activity comparable to Pt, then that can lead to practical catalysts. Additional 

catalysts can however be analyzed and it is possible to increase the window of investigation to 

possibly find better alternative catalysts and determine the optimal conditions and loadings for 

using those catalysts. 

Furthermore, it is possible that other catalysts need to consider different pathways. A larger 

mechanism might thus need to be considered in order to capture the full kinetics of alternative 

catalysts. One such larger ORR mechanisms for which the RR Graph approach can be applied to 

is shown in Table 7.1, which is a 14-step mechanism for the ORR on transition metal surfaces 

proposed by Ford et al. [1], as compared to with the 7-step mechanism analyzed in Chapter 4. An 

RR Graph for this mechanism is provided in Figure 7.1, but it might need to be edited to ensure 

proper consistence with Kirchoff’s laws, and the kinetics and resistances have yet to be analyzed 

in detail. 
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 Elementary Reactions 

s1: 

s2: 

O2 + S ⇄ O2⋅S 

O2⋅S + H⋅S ⇄ OOH⋅S 

s3: 

s4: 

s5: 

OOH⋅S + H⋅S ⇄ HOOH⋅S 

OOH⋅S + H⋅S ⇄ OOHH⋅S 

H⋅S + HOOH⋅S ⇄ HOOHH⋅S 

s6: O⋅S + H⋅S ⇄ OH⋅S 

s7: 

s8: 

s9: 

s10: 

s11: 

s12: 

s13: 

s14: 

sOR1: 

sOR2: 

O⋅S + OH⋅S ⇄ H2O⋅S 

2OH⋅S ⇄ H2O⋅S + O⋅S 

O2⋅S + ⇄ 2O⋅S 

OOH⋅S ⇄ OH⋅S + O⋅S 

HOOH⋅S ⇄ 2OH⋅S 

OOHH⋅S ⇄ H2O⋅S + O⋅S 

HOOH⋅S ⇄ HOOH 

H2O⋅S ⇄ H2O 

O2 + 2H ⇄ HOOH 

O2 + 4H ⇄ 2H2O 

Table 7.1: 14-step ORR mechanism [1] 
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Figure 7.1: RR Graph for the 14-step ORR mechanism [1] 

 

7.3 References 

1. Ford, Denise C., Nilekar, A. U., Xub,Y., Mavrikakis, M. Partial and complete reduction of O2 

by hydrogen on transition metal surfaces, Surface Science 604 (2010) 1565-1575 
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Appendix A: Mathematica Program for Enumerating Empty Routes 

The code used to find the cycles of the reduced NOx mechanism is available here. v is the 

stoichiometric matrix, a is an empty vector that steps are added into and is used to check for empty 

vectors. To change this to accommodate other mechanism, simply enter the stoichiometric matrix 

and adjust the empty vector to fit the number of intermediates q of the mechanism. The For loops 

are entered to fit the number of independent steps q. This example searches for cycles with at most 

5 steps. The loops may be adjusted for any n number of steps. Where the first loop ends at q-n, the 

second at q-n+1 and the third at q-n+2…and the final at q. 

v={{0,0,0,2,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0}, 

   {0,0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 

   {0,0,0,1,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0}, 

   {0,0,-1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0}, 

   {0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0}, 

   {0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0}, 

   {0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0}, 

   {0,0,1,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0}, 

   {-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0}, 

   {0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0}, 

   {0,0,0,-1,1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0}, 

   {0,0,0,0,1,0,1,0,-1,0,0,0,0,0,0,0,0,0,0}, 

   {0,0,0,1,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0}, 

   {0,0,0,1,0,-1,-1,0,1,0,0,0,0,0,0,0,0,0,0}, 

   {0,0,1,0,-1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0}, 

   {0,0,0,0,1,-1,0,-1,1,0,0,0,0,0,0,0,0,0,0}, 

   {0,0,0,-1,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0}, 

   {0,0,1,0,-1,0,0,-1,0,1,0,0,0,0,0,0,0,0,0}, 

   {0,0,0,0,1,-1,0,-1,0,1,0,0,0,0,0,0,0,0,0}, 

   {0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,-1}, 

   {0,0,0,1,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0}, 

   {0,0,0,1,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0}, 

   {0,0,0,1,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0}, 

   {0,0,-1,0,1,0,0,0,0,0,0,0,1,-1,0,0,0,0,0}, 

   {0,0,1,0,-1,0,0,0,0,0,0,-1,1,0,0,0,0,0,0}, 

   {0,0,1,0,-1,0,0,0,0,0,-1,1,0,0,0,0,0,0,0}, 

   {0,0,0,0,1,-1,0,0,0,0,0,0,-1,1,0,0,0,0,0}, 
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   {0,0,0,0,1,-1,0,0,0,0,0,-1,1,0,0,0,0,0,0}, 

   {0,0,0,0,1,-1,0,0,0,0,-1,1,0,0,0,0,0,0,0}, 

   {0,0,1,0,0,0,-1,0,0,0,1,0,0,0,0,0,0,0,0}, 

   {0,0,1,-1,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0}, 

   {0,0,0,-1,1,0,-1,0,0,0,1,0,0,0,0,0,0,0,0}, 

   {0,0,0,0,0,0,-2,1,0,0,1,0,0,0,0,0,0,0,0}, 

   {0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,1,-1,0,-1}, 

   {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,-1,1,0}, 

   {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}; 

a={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

mat={{0,0,0,0,0},{0,0,0,0,0}} 

For[h = 1, h < 32, h++, 

 For[i = h + 1, i <= 33, i++, 

  For[j = i + 1, j <= 34, j++, 

   For[k = j + 1, k <= 35, k++, 

    For[l = k + 1, l <= 36, l++, 

     For[c = -1, c <= 1, c = c + 2, 

      For[d = -1, d <= 1, d = d + 2, 

       For[e = -1, e <= 1, e = e + 2, 

        For[f = -1, f <= 1, f = f + 2, 

         a = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

         a = b*v[[h]]+c*v[[i]]+d*v[[j]]+e*v[[k]]+f*v[[l]]; 

         mat = {{b, c, d, e, f}, {h, i, j, k, l}}; 

         If[a == {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}, 

Print["cycle,at"] Print[mat]]b=1; 

      ] 

     ] 

    ] 

   ] 

  Print["step"]Print[h] 

 ] 
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Appendix B 

For the case of the MDR in which steps s17, s23, and s25 are considered to be reversible 

while all other steps are considered to be irreversible and that the three reversible steps are each 

in their own parallel pathway which contributes to the overall reaction rate, such that 

  252317 rrrrOR   (B.1) 

The rates constant and terminal species activities are known values, so solving for the site 

fractions of the intermediate species will enable the calculation of the rates. These values were 

calculated based on the QE approximation. The methodology is illustrated for one species, C·S. 

The surface coverage of the other intermediate species can be derived following a similar 

procedure, unless otherwise stated in the text. 

In order to obtain the QE surface coverage of C·S, we first identify the Intermediate 

Reaction for the formation of C·S from amongst steps that can be considered to be quasi-

equilibrated. Thus, for C·S, the appropriate intermediate reaction is  

(s1 + s2 + s3 + 2s32) 

Step Elementary Reaction σρ 

s1 CH4(g) + 2S ⇋ CH3•S + H•S +1 

s2 CH3•S + S ⇋ CH2•S + H•S +1 

s3 CH2•S + S ⇋ CH•S + H•S +1 

s4 CH•S + S ⇋ CH•S + H•S +1 

s32 H•S + H•S ⇋ H2(g) + 2S +2 

IRC·S CH4(g) + 2S ⇋ CH•S + H2(g)  
 

 0

2

HCH

2

324321SC 24
 

  PPKKKKK  (B.2) 

It follows for other species 
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   0

12

HCH33

2

32254321SO 24




  PPKKKKKKK  or   0OH

1

H313029SO 22
 PPKKK



   (B.3) 

 0CO

1

33SCO  PK 

   (B.4) 

   0OH

1

H3130SOH 22
 PPKK



   (B.5)  

 0H

1

32SH 2
 PK 

   (B.6)  

 0CO5SCO 22
 PK  (B.7) 

 0CH

3

H

3

32321SCH 42
 PPKKKK 

   (B.8) 

For site fractions that cannot be considered at QE, we utilize the idea that certain reaction 

steps are equivilent and the unknown site fractions can be solved by setting certain reactions 

equal to each other. For s17, the site fraction for COH•S is unknown, thus we set the rates for s17 

and s18 equal to each other, then use substitution to develop an equation for r17, which is then 

repeated for s23 and s25. 

 0SCOH17SOHSC1717    kkr


 (B.9) 

 SHSCO180SCOH1818    kkr


 (B.10) 

 1817 rr   (B.11) 

 SHSCO180SCOH180SCOH17SOHSC17    kkkk


 (B.12) 

 
  01718

SHSCO18SOHSC17
SCOH






kk

kk







 

  (B.13) 
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