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ABSTRACT 

 

 

Traditional probability and statistics methodologies recommended by ISO and NIST were 

applied to standardize measurement uncertainty analysis on calorimetry bench scale 

apparatuses. The analysis was conducted for each component instrument (direct 

measurement) and each related physics quantity measured indirectly. There were many 

sources contributing to the ultimate uncertainty, however, initially, we dealt with the intrinsic 

uncertainty of each measuring instrument and the uncertainty from calibration. All other 

sources of uncertainty, i.e., drift, data acquisition, data reduction (round off, truncation, and 

curve smoothing) and personal operation were assumed to be negligible. Results were 

expressed as an interval having 95% confidence that the “true” value would fall within. A 

Monte Carlo Simulation technique with sampling size of 10000 was conducted to model the 

experiments. It showed that at least 95% of the modeled experiment results were inside the 

estimate interval. The consistency validated our analysis method.  

 

An important characteristic of composite material systems is the ability to “custom design” 

the system to meet performance criteria such as cost, durability, strength and / or reaction to 

fire. To determine whether a new system is an improvement over previous ones and can meet 

required performance criteria, sufficiently accurate and precise instruments are needed to 

measure the system’s material properties in bench scale testing.  Commonly used bench scale 

apparatuses are the cone calorimeter (Cone) and the FMGR fire propagation apparatus (FPA). 

For this thesis, thermally “thin” and “thick” specimens of a natural composite, red oak, were 

tested in the Cone in an air environment and in the FPA in a nitrogen environment. Cone test 

data of two FRP composite systems from the previous work of Alston are also considered. 

The material reaction to fire properties were estimated considering both ignition and 
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pyrolysis measurements made via the Cone and FPA. Investigation of the ultimate 

uncertainty of these material fire properties based on the intrinsic uncertainty of the 

component instruments (e.g. load cell) as well as the uncertainty introduced via use of a 

current ignition and pyrolysis model are considered.  
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DOCUMENT ORGANIZATION AND THESIS OVERVIEW 

DOCUMENT ORGANIZATION -- GUIDE TO APPENDICES 

The text of this document is divided into two parts. The first part briefly describes the 

contents of the appendices. The second part is an overview of the work performed and 

conclusions drawn. Appendix A is intended to serve as a draft of a peer-reviewed paper. 

Appendix B was a conference paper published in Fire and Materials 2005. Appendices C 

through U give additional information relevant to this MS thesis that was not included in 

Appendices A and B. 

 

Appendix A Measurement Uncertainty Analysis for Calorimetry Bench Scale 

Apparatuses 

The measurement uncertainty analysis was conducted for each component instrument (direct 

measurement) and each related physics quantity measured indirectly. The component 

instruments are: oxygen analyzer, CO/CO2 analyzer, load cell, laser photodiodes, pressure 

transducer, and thermocouples. Indirectly measured physics quantities are: heat release rate, 

volume flow rate, extinction coefficient, smoke production rate, specific extinction area, and 

heat of combustion, etc. According to ISO
1,2

 and NIST
3
, results were expressed as an interval 

having 95% confidence that the “true” value would within. 

 

Appendix B Uncertainty Effects on Measurement of Fire Characteristics of Material 

Systems 

The effects of measurement uncertainty on estimation of material properties were analyzed 

by using a finite difference pyrolysis model. A natural composite system–red oak and two 

systems of FRP composite were tested by using calorimetry bench scale apparatuses, and the 

properties of red oak and the FRP composite were estimated. The properties were: Density of 
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virgin and char, thermal conductivity of virgin and char, specific heat of virgin and char, 

pyrolysis temperature, pre-exponential coefficient, vaporization heat, and surface 

emmissivity, etc. 

 

Appendix C Derivation of Welch-Satterthwaite Formula 

Shows the derivation of the Welch-Satterthwaite formula. 

 

Appendix D C-Factor Determination 

Introduced the fluid dynamic method to determine the C factor of the orifice plate in the 

exhaust duct of cone calorimeter. 

 

Appendix E Laser Photodiodes Power Cycle Investigation 

It was found that the voltage output at a specific reference obscuration has a “sine” wave 

pattern. This is why the estimated uncertainties of laser related quantities are “large”. 

 

Appendix F A Hypothetical Calibration for Oxygen Analyzer 

A hypothetical calibration for oxygen analyzer is conducted at 15% and 25% oxygen. The 

uncertainty of oxygen analyzer is estimated by using assumed voltage output standard 

deviation and the uncertainty of bottled oxygen. 

 

Appendix G Standard Deviation of Uniform Distribution 

Shows the derivation of the standard deviation of uniform distribution. 

 

Appendix H Cone VIs Introduction 

This Appendix will serve as a guide for the user to use the Cone VIs step by step.  
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Appendix I Load Cell System and Laser System Response Time 

Response time for load cell system is tested by weight drop test. Response time for laser 

system is tested by changing the obscuration of 0% and 100%. 

 

Appendix J Justification of Uncertainty Propagation Equation 

Shows the derivation of the uncertainty propagation equation. 

 

Appendix K HRR Uncertainty Based on Methane 

HRR uncertainty is estimated based on methane mass flow rate and methane heat of 

combustion 

 

Appendix L Background of Uncertainty Analysis Related to Recommended 

Methodologies 

In this appendix, the history of ISO and NIST Guide was introduced. Central Limit Theorem 

and Monte Carlo Simulation technique were also briefly described. 

 

Appendix M Measurement Error and Uncertainty 

The relationship and different between measurement error and uncertainty was introduced. 

 

Appendix N Mass Loss Rate Uncertainty 

Mass loss rat was determined experimentally and statistically. 

 

Appendix O Sensitivity Analysis for HRR 
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It was evaluated that to which component parameter the HRR is sensitive. The component 

parameters are C factor, Heat of combustion per mass of oxygen, temperature, pressure, and 

oxygen concentration. 

 

Appendix P Volume Flow Rate 

In this Appendix, volume flow rate uncertainty was estimated as well as sensitivity analysis. 

 

Appendix Q Sensitivity Analysis for Extinction Coefficient 

It was evaluated that to which component parameter the extinction coefficient is sensitive. 

The component parameters are the obscuration measured by main and compensation diodes. 

 

Appendix R Smoke Production Rate 

In this Appendix, smoke production rate uncertainty was estimated as well as sensitivity 

analysis. 

 

Appendix S Dynamic Specific Extinction Area 

In this Appendix, dynamic extinction area uncertainty was estimated as well as sensitivity 

analysis. 

 

Appendix T Dynamic Heat of Combustion 

In this Appendix, dynamic heat of combustion uncertainty was estimated as well as 

sensitivity analysis. 

 

Appendix U Constant MLR Generator for Future Work 
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In this Appendix, an initial idea for designing a constant mass loss rate generator is 

introduced. 

 

THESIS OVERVIEW 

This thesis is intended to be accessible to anyone who has interest in uncertainty analysis on 

calorimetry bench scale test apparatuses, such as cone calorimeter and FPA (Fire Propagation 

Apparatus), etc. It demonstrates how to estimate uncertainties of direct measured quantities, 

such as oxygen concentration, smoke obscuration, etc, for component instruments of 

calorimetry bench scale apparatus, and how those uncertainties propagate to indirect 

measured quantities such as, HRR, extinction coefficient, etc. It also shows the measurement 

uncertainty effects on the material property estimate for a natural composite system—red oak 

and two systems of FRP (Fiber reinforced plastic) composites. The goals of this study are to 1) 

evaluate the ability of differentiating materials, such as thermal properties estimate for 

composite materials, for our current calorimetry bench scale apparatus; 2) make an initial 

attempt to standardize uncertainty analysis for calorimetry bench scale apparatus. The 

uncertainty analysis was conducted on a cone calorimeter in the Fire Science Laboratory at 

WPI. 

 

The thesis is divided into two sections. The first section (Appendix A) describes the 

methodology of uncertainty analysis for each component instrument (direct measurement) of 

cone calorimeter. The uncertainties of the indirect measured quantities, such as HRR, 

extinction coefficient, etc, are also estimated.  
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This Section of the thesis provides the motivation to estimate the uncertainty of the 

calorimetry bench scale apparatus. Previous works are reviewed. It also examines the 

standardization history of ISO and NIST for measurement uncertainty. ISO Guide1,2 and 

NIST Guide3 on measurement uncertainty analysis and instrument calibration are introduced 

and performed in this Section. Some of the knowledge on statistical techniques is also briefly 

reviewed.  

 

It looks at the operational principles of each component instrument, such as load cell, oxygen 

analyzer, laser photodiodes, etc, and describes the methodology for uncertainty analysis 

based on corresponding standards of ISO and NIST.  

 

Load cell and laser are calibrated based on ISO 110951. Before apply the guide, four 

assumptions should be examined: 1) there is no error in the accepted values of the reference 

materials (RMs); 2) calibration function is linear; 3) repeated measurements of a given 

reference material are independent and normally distributed; and 4) the residual standard 

deviation is either constant or proportional to the accepted value of the reference material. 

Following the steps introduced by the guide, the four assumptions are tenable for load cell 

and laser. The residual standard deviation of load cell is constant, and the residual standard 

deviation of laser is proportional to the accepted value of the reference obscuration. The 95% 

confidence intervals are estimated for load cell and laser respectively. The estimated 

uncertainty of load cell is 0.38g, which is consistent with the manufacturer’s value 0.5g. Due 

to the existence of the power cycle phenomenon, the uncertainty of laser is “big”. It is 1.6% 

(relative) for main photodiode and 2% (relative) for compensation photodiode.  
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ISO 11095
1
 is not applicable to oxygen analyzer, since 1) there are errors in RM values 

(99.9% nitrogen for zero gas and dry air for span gas); 2) only two RMs are available (at least 

three RMs are required). Fortunately, the paramagnetic oxygen analyzer is inherently linear 

by design based on its transducer and the function can be represented by 

 

bmVO +=%2  

 

where m is slope determined by 

zerospan

zerospan

VV

OO
m

−

−
=

%% 22
 

 b is intercept determined by 
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−

−
=

%% 22
 

 

%2 zeroO  and %2spanO  are accepted values of the reference materials at zero and span point, 

zeroV  and spanV  are corresponding oxygen analyzer voltage output at zero and span point. The 

standard uncertainty of m ( mδ ) and b ( bδ ) are estimated by the Law of Propagation of 

Uncertainty according to ISO2 and NIST3 Guide. The uncertainty of oxygen measurement 

result can be represented as 

 

)(%)( 2 bmVkOU p δδ +=  

 

pk  is the coverage factor of the expanded uncertainty ( )(yukU cp= ), which defines an 

interval having p level of confidence (p is selected to be 95%). pk  was defined by Student’s t 
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distribution based on effν  number of effective degrees of freedom. The effective degrees of 

freedom were estimated by Welch-Satterthwaite formula. The estimated coverage factor pk  

of oxygen analyzer was two. A typical calculation of mδ  was 0.000036 volume fraction of 

oxygen per volt, and bδ  was zero. At about 20% oxygen, the uncertainty was 0.06% oxygen. 

The manufacturer value was 0.1% oxygen. 

 

Primary standard dead weight, which can generate standard pressure and be used to calibrate 

pressure transducer, is not available for the bench scale apparatus due to the operational 

complexity. The manufacturer’s value is used for the uncertainty of the pressure transducer. 

The CO/CO2 analyzer is inherently non-linear by design based on its transducer. Therefore, 

the manufacturer’s value is used for the uncertainty. Also, the manufacturer specified 

uncertainty 2.2 K is used for the thermocouples, since 1) thermocouples are relatively 

accurate and have very complex polynomial functions; 2) temperature uncertainty is 

insignificance for the indirect measured quantities. 

 

Mass loss rate uncertainty is a special indirect measurement uncertainty. Mass measurement 

is a time series measurement. The MLR uncertainty was determined experimentally as 1.5 

g/sm
2
 for 95% confidence. Please note the MLR uncertainty is 4 g/sm

2
 for 95% confidence 

by using different method in Appendix B. 

 

The Law of Propagation of Uncertainty based on ISO2 and NIST3 is used to estimate all the 

other indirect measured parameters of cone calorimeter such as heat release rate, volume flow 

rate, extinction coefficient, smoke production rate, specific extinction area, and heat of 

combustion. A full discussion for HRR was conducted in terms of uncertainty as well as 

sensitivity. Comparisons with both Enright
4
 and NIST

5  
are shown. The uncertainty and 
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sensitivity of other quantities were also fully discussed. It was shown that the estimated 

uncertainties of the smoke obscuration related quantities such as extinction coefficient, smoke 

production rate, and specific extinction area, are “large”. Our laser doesn’t have the ability to 

differentiate the obscuration related quantities due to the power cycle phenomenon. A 

stabilized laser is needed. 

 

All above uncertainty analysis methods (except for MLR uncertainty) are validated by a 

Monte Carlo Simulation (MCS) technique. Ten thousand random values are generated for 

each constant (C factor, heat of combustion per unit mass of oxygen) and component 

instrument based on its inherent variation. Then, 10000 values were estimated for each direct 

and indirect measured quantity. It was found that 95% of the 10000 values of each quantity 

are falling in our estimated uncertainty interval with 95% confidence.  

 

At the end of the section, the uncertainties of heat release rate and heat of combustion were 

estimated based on the manufacturer’s value. It was shown that the manufacturer’s 

uncertainty was conservative and tended to overestimate the uncertainty. 

 

The second section (Appendix B) of the thesis focuses on composite material thermal 

property estimation. How measurement uncertainty influences the thermal property variation 

is shown. In this section, previous works on material property estimation are reviewed. A 

FDM pyrolysis model is introduced and performed to estimate the properties for composites. 

The properties of a natural composite--red oak and two FRP (fiber reinforced plastic) 

composite systems are estimated. The time to ignition and mass loss rate history measured in 

the apparatuses, Cone and FPA, are used to estimate material properties. The best estimate 

properties make the pyrolysis model simulations agree with the experiment for both the time 
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to ignition and the subsequent transient mass loss rate of the material for different applied 

heat fluxes. For red oak time to ignition is measured by using cone, mass loss rate is 

measured by using cone in air and FPA in nitrogen. For the FRP composite all the 

measurements are conducted by using cone in air. The estimated properties are: Density of 

virgin and char, thermal conductivity of virgin and char, specific heat of virgin and char, 

pyrolysis temperature, pre-exponential coefficient, vaporization heat, and surface 

emmissivity, etc. 

 

The properties of red oak were estimated by using the pyrolysis model at different conditions, 

i.e., thermally “thin” and “thick” specimens tested in both air and nitrogen environments. It is 

found that most of the estimated properties are consistent between the different conditions 

and with literature values (maximum 25% variation). The exceptions are pre-exponential 

coefficient and vaporization heat.  There are no literature values for these properties. Across 

the various conditions the pre-exponential coefficient varies by a factor of 3.5 and the 

vaporization heat varies by a factor of 6.8. Given the consistency of the vast majority of the 

properties for red oak the model is considered to be working properly with an uncertainty of 

25% or as noted above for pre-exponential coefficient and vaporization heat. 

 

Since two standard deviations don’t work for the pyrolysis model, one standard deviation of 

mass loss rate is introduced to the model as the measurement uncertainty. Variations of four 

“key” properties, i.e., thermal conductivity of virgin and char, pre-exponential coefficient, 

and pyrolysis heat, are investigated. Based on red oak and the FRP composite, the variations 

of the four “key” properties are within the model uncertainty estimates.  
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CONCLUSIONS 

1) The measurement uncertainties of component instruments (direct measurement), load cell, 

oxygen analyzer, and laser were estimated based on ISO2 and NIST3 Guide. Pressure 

transducer, CO/CO2 analyzer, and thermocouples measurement uncertainties were determined 

by using manufacturer’s specification. The uncertainties of load cell, oxygen analyzer, and 

laser were expressed by 95% confidence interval and the uncertainties of load cell and 

oxygen analyzer were smaller than those specified by manufacturers (there was no 

manufacturer specifications for laser.). The study initially standardized measurement 

uncertainty analysis for calorimetry apparatus measurement. 

 

Based on the uncertainties of component instruments, indirect measured parameter 

uncertainties were estimated. They are heat release rate, extinction coefficient, volume flow 

rate, specific extinction area, smoke production rate, and heat of combustion. Uncertainty 

interval of 95% confidence was determined.  

 

All the uncertainty bands of direct and indirect measurement were validated by using Monte 

Carlo Simulation technique for sampling size of 10,000. It demonstrated that our uncertainty 

analysis methods were appropriate.  

 

The measurement uncertainty analysis showed that our laser doesn’t have the ability to 

differentiate obscuration related quantities. The theoretical approach for MLR uncertainty 

estimate is not available. The uncertainty is determined experimentally and statistically, and 

expressed by 95% confidence interval.  
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R value analysis showed that, for our case, HRR uncertainty depends not only on oxygen 

concentration uncertainty, but also on C factor and heat of combustion per mass of oxygen. 

 

The HRR uncertainty and its normalized uncertainty were compared at different HRR levels 

among the current analysis, Enright et al4, manufacturer value, and NIST5. Current results are 

higher than that of Enright et al4 because different methods were used to estimate oxygen 

concentration uncertainty. Current method is basically the same with NIST
5
. It also showed 

that the normalized HRR uncertainty is decreasing as the HRR increasing. The normalized 

uncertainty of current analysis at higher HRR level is consistent with NIST
5
.  

 

The data analysis for the HRR calibration at 1, 3, and 5 kW showed that the normalized HRR 

uncertainty based on component instrument calibration is consistency with the normalized 

HRR based on day-to-day variation. 

 

2) An important characteristic of composite materials is the ability to “custom design” the 

system.  To be able to properly measure the properties of the material, sufficiently accurate 

and precise instruments and models are needed.  In this work the Cone and FPA along with a 

current ignition and pyrolysis model were evaluated. The evaluation considered a natural 

composite, red oak, and two FRP composites.  The measurement systems (apparatuses and 

model) were able to estimate properties of the red oak that were consistent with literature 

values as well as estimate reasonable properties for the two composites.  An important aspect 

of simulating fires for design is to know the uncertainties of the material properties.  

Consideration of the measured mass loss rate uncertainty at the one standard deviation level 

showed that the current model could estimate properties and that their uncertainties were 

consistent with those inherent of the model.  Considering the two standard deviation level of 
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mass loss rate uncertainty (recommended by ISO
2
 and NIST

3
) stable and reasonable property 

sets could not be estimated. Future work needs to focus on either lowering the mass loss rate 

uncertainty or development of more robust models so that property uncertainties can be more 

reliably estimated. 

 

3) Recommendations for Future Work 

a) A robust method should be figured out to estimate mass loss rate uncertainty so that the 

MLR uncertainty can be obtained for different level of MLR. 

 

b) For material property estimation, it needs a more robust and easy-to-use pyrolysis model. 

 

c) The cone calorimeter in the Fire Science Laboratory at WPI needs a stabilized laser. 
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APPENDIX A MEASUREMENT UNCERTAINTY ANALYSIS 

FOR CALORIMETRY APPARATUSES 
 

Lei Zhao and Nicholas A. Dembsey 

Worcester Polytechnic Institute 

 

ABSTRACT 

The authors applied traditional probability and statistics methodologies recommended by ISO 

and NIST to standardize measurement uncertainty analysis on bench scale apparatuses. The 

analysis was conducted for each component instrument (direct measurement) and each 

related physics quantity measured indirectly. There were many sources contributing to the 

ultimate uncertainty, however, initially, we dealt with the intrinsic uncertainty of each 

measuring instrument and the uncertainty from calibration. All other sources of uncertainty 

i.e., drift, data acquisition, data reduction (round off, truncation, and curve smoothing), and 

personal operation were assumed to be negligible. Results were expressed as an interval 

having 95% confidence that the “true” value would fall within. A Monte Carlo Simulation 

technique with sampling size of 10000 was conducted to model the experiments. It showed 

that at least 95% of the modeled experiment results were inside the estimate interval. The 

consistency validated our analysis method. The comparison showed that current uncertainties 

(for heat release rate and average heat of combustion) were smaller than those estimated from 

manufacturer’s values. 
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INTRODUCTION 

This paper focuses on the measurement uncertainty analysis for calorimetry apparatuses. 

There are bench scale, intermediate scale and large scale calorimetry material flammability 

test methods. The bench scale ones, such as Cone Calorimeter 
1,2

 and Fire Propagation 

Apparatus
3
, are intended to be applied to material components or composite materials. The 

intermediate and large scale tests, such as intermediate scale calorimeter (ICAL)
4
, parallel 

panel apparatus (intermediate scale)
5
 and room corner test (large scale) specified by ASTM

6
 

and FM Global7, can deal with complete products: upholstered furniture, mattresses, stacking 

chairs, textile wall coverings, other interior finish, foam plastic insulation, foam displays, 

electrical cables and electro-technical products8. In the thesis, the uncertainty analysis 

examples were conducted on the Cone Calorimeter in the Fire Science Laboratory at 

Worcester Polytechnic Institute.  

 

Measurement is the process of finding the value of a physical quantity experimentally with 

the help of special technical means called measuring instruments
9
. It has been recognized to 

be the most important means in science and engineering. However, the experimental data will 

be meaningless until the appropriate uncertainties are known. Intervals with a certain high 

percentage of confidence should be provided to the measured results. Then, one knows how 

good are the measurements, i.e., he/she has a certain high percentage of confidence that the 

“true” values will fall in the intervals. 

 

Manufacturers define the uncertainty for one type of instrument (usually, there are several 

types for one kind of instrument) by the original plan of design. The uncertainty is always 
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defined conservatively. The experimenter could do additional work to know more 

characteristics about the instrument, hence, to obtain more exact measurement and 

uncertainty estimates. However, the absence of an standardized uncertainty analysis 

methodology for calorimetry apparatus made not only significant comparison of test results 

between fire laboratories difficult, but also could not provide a common means for people to 

estimate the uncertainty of the test, further, people didn’t know if the apparatus had the 

ability to differentiate materials. This study focused on standardizing uncertainty analysis 

method, on which cone calorimeter evaluation was based. The measurement uncertainty 

analysis was implemented in a Cone VI software (LabView). 

 

The measurement uncertainty analysis was conducted for both direct and indirect 

measurements. In the case of direct measurements the object of study is made to interact with 

the measuring instrument, and the value of the measurand is read from the indications of the 

latter. The measurands of temperature, pressure and oxygen concentration, etc are examples 

of direct measurements. In the case of indirect measurements, the value of the measurand y is 

related to the values of arguments ix  by a known function f . This relationship can be 

represented in a general form as ),...,( 1 nxxfy = . The measurands of heat release rate, smoke 

production rate, etc are examples of indirect measurements.   

 

Measurement uncertainty is made up of two components: Type A and Type B evaluation of 

uncertainty. While Type A uncertainty is obtained by the statistical analysis of series of 

observations, Type B uncertainty is obtained by means other than the statistical analysis of 

series of observations10. In this paper, both Type A and Type B uncertainties were 

considered. 
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Many sources of uncertainty could contribute to the ultimate result. For present, we only dealt 

with the intrinsic uncertainty of measuring instruments and the uncertainty from calibration. 

All other sources of uncertainty i.e., drift, data acquisition, data reduction (round off, 

truncation, and curve smoothing), and personal operation were assumed to be negligible.  

 

The measurement uncertainty analysis methodology used was recommended in NIST
10

 and 

ISO
11

 Guide. These methodologies were based on traditional probability and statistics theory. 

The results were compared with those from a Monte Carlo Simulation technique modeling 

experiments. The consistency validated the theory. 

 

Mass loss rate uncertainty analysis was an exception since the weight measurement in 

burning test was identified as time series procedure. For now, MLR uncertainty was 

determined experimentally and statistically. 

 

BACKGROUND 

For over 20 years, people have done a lot of research related to, and using Cone Calorimeter 

and FPA. A few studies exist which address the uncertainty of heat release rate measurements 

by oxygen consumption calorimetry. One of the works by Patrick A. Enright and Charles M. 

Fleischmann12 focused on the uncertainty associated with the heat release rate calculation for 

the cone calorimeter. In their study, the component uncertainties were taken from the 

manufacturer’s specification in the cases of the temperature and differential pressures. The 

component uncertainty of the oxygen analyzer is assumed to be ±100ppm, which is the 

maximum linear response and drift that ASTM E 13542 accepts. The normalized HRR 
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uncertainty (uncertainty of HRR/HRR) was reported as about 5.5% for the HRR in the range 

of 200 kW/m2 to 500 kW/m2. It was also demonstrated that the relative uncertainty was very 

high at low HRR. The greatest sources of uncertainty identified were the heat of combustion 

factor, the combustion expansion factor, and oxygen measurement. 

 

Rodney A. Bryant et al
13

 built a 3 MW quantitative heat release rate facility at NIST. In 

calculating HRR, they used the most basic measurement inputs of instrument voltages, 

thermocouple temperatures, and constant parameters (universal, empirical and calibration). It 

showed that the normalized uncertainties (uncertainty of HRR/HRR) were 7.5%, 5.3%, and 

5.3% for the HRR at 0.05 MW, 0.65 MW, and 2.7 MW respectively. The average HRR and 

its standard deviation were calculated from the measured gas flow of the calibration burner. 

For the same time intervals, the average and standard deviation for the HRR were calculated 

from the hood system measured parameters (oxygen level, hood flow, etc.). Plot the two 

results versus each other as “Actual HRR” for the natural gas calibration burner output on the 

x-axis and “Apparent HRR” for the oxygen consumption calorimetry calculated result on the 

y-axis. Perform a linear least squares fit of the data using a graphing package or spreadsheet 

statistics. Compare the results to previous such data for the system. The slopes typically agree 

within 1% to 2%.  

 

Alston14 estimated material properties or fire growth model parameters for two GRP 

composite systems, an eight-layer glass and a one-layer glass over 1-inch balsa core sandwich 

system both vacuum infused with vinyl ester resin. Instrument and calculation uncertainty 

were investigated to explore their impact on the determination of material properties and 

model parameters used in screening tools and models for evaluating material systems. 

Manufacturer specified uncertainties were used in estimating the measurement uncertainty. 
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The cone test uncertainty analysis only focused on heat released rate and the calibration 

uncertainty was not included in the ultimate uncertainty. He concluded that: “Although the 

techniques each showed differing results for effective thermal inertia for each material, the 

calculation uncertainties are too large to fully and accurately differentiate the two systems. It 

is unlikely that the techniques could differentiate between more subtle variations in material 

or skin thickness.” 

 

UNCERTAINTY ANALYSIS OF COMPONENT INSTRUMENT (DIRECT 

MEASUREMENT) 

The measurement uncertainty analysis was conducted for each component instrument of 

calorimetry bench scale apparatus. In the thesis, the component instruments were chosen 

from Cone calorimeter in the Fire Science Laboratory at Worcester Polytechnic Institute.  

 

1. Load Cell 

The load cell was Type 6005D manufactured by Automatic Timing & Control. The accuracy 

was specified as 0.5g (0.1% of full scale) by the manufacturer
15

. The linear calibration 

function provided by manufacturer is xy 1.29= . y  is mass in gram, and x  is voltage output 

in volt. 

 

The measurement uncertainty analysis for load cell is based on ISO 11095
16

. Four 

assumptions are made: 1) there is no error in the accepted values of the reference materials 

(RMs); 2) calibration function is linear; 3) repeated measurements of a given reference 

material are independent and normally distributed; and 4) the residual standard deviation is 
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either constant or proportional to the accepted value of the reference material. The estimation 

of the linear calibration function under the assumption of constant residual standard deviation 

is captured by the model  

nknnk xy εββ ++= 10  

 where  

nx  is the accepted value of the nth RM (n=1,…,N);  

nky   is the kth measurement of the nth RM (k=1,…,K), and determined based on measured 

voltage and manufacturer’s calibration factor; 

nx10 ββ + represents the expected value of the measurements of the nth RM, 0β  is the 

intercept and 1β  is the slope; 

nkε  is the deviation between nky  and the expected value of the measurement of the n
th

 RM.  

Estimates of the parameters 0β  and 1β  can be obtained by using the formulae below. 

Estimates of parameters in this paper have a hat above the symbol to differentiate them from 

the parameters themselves which are unknown. 
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Kyy
K

nkn /
1

∑=  is the average of the measurement values of a accepted value of reference 

material; 

Nyy
N

n /
1

∑=  is the average of ny . 

 

nn xy 10
ˆˆˆ ββ +=  

where 

nŷ  is the fitted value of an accepted value of a reference material; 

0β̂  is an estimate of 0β , for a “perfect” instrument 0β̂  should be zero; 

1β̂  is an estimate of 1β , for a “perfect” instrument 1β̂  should be one; 

 

Assumption 1) was appropriate because the reference material were test weights. Since the 

response time of the load cell system was in the range of 0.4s to 0.6s (see Appendix I) and 

voltage output was recorded once per second, the measurements were independent. Also, 

based on the Guide
10,11

 the voltage output of a reference material was normally distributed.  

Assumption 3) was, therefore, satisfied. Assumption 2) and 4) will be examined. 

 

In the day-to-day calibration, load cell is calibrated at 6 different RM levels, i.e., 0g, 50g, 

100g, 150g, 200g, and 230g. At each point the data are collected 60 times at the scan rate of 

once per second. As such, the linear function of load cell was estimated as 

 

nnn xxy 00008.100179.0ˆˆˆ
10 +−=+= ββ  
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The residuals are calculated as  

nnknk yye ˆ−=  

 

The relationship of nke  (residuals) and ŷ  (fitted value) is shown in Figure A-1. As seen in 

Figure A-1, the dispersion of the residuals for any fitted value is almost constant throughout, 

except for a few outliers at 230g. Therefore, the assumption, of constant residual standard 

deviation is tenable for the load cell. 

 

Figure A-1 Load Cell Residual Dispersion 

 

The linearity of load cell can be visualized from Figure A-2.  
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Measured Values vs. Accepted Values of RM for Load Cell
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Figure A-2 Load Cell Measured Values vs. Accepted Values of Reference Materials 

 

Since the measurement uncertainties (at magnitude of 0.1g) are too small comparing to the 

measurement range (at magnitude of 100g), load cell cannot be concluded to be linear only 

from the visualization inspection of Figure A-2. ISO 11095
16

 recommends the Analysis of 

Variance (ANOVA) to check the linearity. If F ratio (=
2

2

1

ˆ

ˆ

pδ

δ
) is not larger than 

),2()1( NNKNF −−−α , then there is no evidence to reject the linear model. A sum of squares 

divided by its associated degrees of freedom is called a mean square. 

 

Where  

      ∑∑ −=
N K

nnk yySSP
1 1

2)(  is the sum of the squared deviations between nky  and ny ; 

      ∑∑=
N K

nkeSSE
1 1

2)(  is the sum of the squared residuals; 
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2

ˆ 2

1
−

−
=

N

SSPSSE
δ  is the mean square of the deviation of SSE and SSP; 

      
NNK

SSP
p

−
=2δ̂  is the mean square of SSP. 

      ),2()1( NNKNF −−−α  is the )1( α− -quantile of the F distribution with numerator  

degrees  of freedom N-2 and denominator degrees of freedom NK-N; 

α  is the significance level, the probability to reject the linear model if the model is true. 

We select α =0.05.  

 

Since the load cell is calibrated by using 6 RMs in day-to-day activity, N equals 6. At each 

RM 60 measurements are taken, therefore, K equals 60. The load cell turned out to be 

nonlinear. At K=60 F test maybe too sensitive. Due to the “small” error the non-linearity of 

the load cell can be mapped. 

 

For the load cell measurement uncertainty analysis, we assume that the device is essentially 

stationary throughout the day. Our focus then is on the linearity of the instrument given that 

we know there will be some perturbation of the stationary assumption as we move from 

reference value to reference value -- arguing that we need to remove the mass and replace it 

for each measurement. Assuming essentially stationary is consistent with the fact that we 

appear to have during any 60 scans period minimal disturbance of the measurement from the 

environment.  Checking linearity then makes sense based on perturbations of stationary at 2 

measurements per 60 scans where we are comparing the non-linearity of our instrument to 

our perturbations due to operation of the instrument given an assumed stationary 
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environment. Since ISO 11095
16

 recommends at least 2 measurements for a RM, the averages 

of the first 30 and last 30 scans are used. Then, we have 53.4)6,4(26.4
ˆ

ˆ

95.02

2

1 =≤= F

pδ

δ
.   

 

Based on the statistical test and our assumptions of 2 measurements per RM we have 

demonstrated that the instrument is effectively linear. Effectively linear indicates that load cell 

uncertainty is primarily composed of instrument non-linearity not measurement error. 

Therefore, for practical purpose, the load cell is assumed to be linear.   

 

Since the load cell is linear, a single measurement 0y  of an unknown weight will lead to a 

reported weight value of 

 

00008.1

)00179.0(

ˆ

ˆ
0

1

00* −−
=

−
=

yy
x

β

β
 

 

*x  is transformed value. According to ISO 1109516, two reference weights are selected for 

the control method. These weights are selected in such a way that they cover as large a range 

as possible of values encountered during normal operating conditions. 0g and 230g are 

selected. The control values at 0g and 230g are calculated respectively 

 

iii xxd −= *  

 

where ix  is the accepted value of RMi 

The upper control limit dU  and the lower control limit dL  are estimated as  
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gNKtU d 41.0)2(
ˆ

ˆ

)2/1(

1

=−= −ξ
β

δ
 

gLd 41.0−=  

 

where 

)2(
ˆ

−
=

NK

SEE
δ  is standard deviation of residual; 

)2()2/1( −− NKt ξ  is the )2/1( ξ− -quantile of the t-distribution with NK-2 (258) degrees of 

freedom.ξ  is the significance level associated with each individual RM and with the limits 

dU  and dL  such that the overall significance of α is obtained for all the m ( 2=m ) RMs 

simultaneously 
m

α
ξ = . α  is the significance level selected for the control chart as seen in 

Figure A-3. In our case α  is taken to be 5%. m is the number of RMs selected for the control 

method. In our case m is taken to be 2, i.e., 0g and 230g. Select m RMs such that their 

accepted values cover the range of values encountered under normal operating conditions. 

Five day’s control values id  at 0g and 230g are calculated. The control values and the upper 

and lower limit are plotted in Figure A-3. As seen in Figure A-3, all the control values are 

between the upper and lower limit. Based on ISO 1109516, the load cell system is declared in-

control. 
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Figure A-3 Schematic Diagram of a Control Chart for Load Cell 

 

Based on ISO 11095
16

, the standard uncertainty of load cell is calculated as 

 

J

dd
J

j

hjlj

cal
2

)(

ˆ 1

22∑
=

+

=δ  

 

where  

J represents the time at which the measurements were made, our case 60=J .  

ljd  and hjd are the corresponding residuals at lowest (0g) and highest (230g) accepted values 

of reference material respectively. 

 

Two were taken as the coverage factor for the interval of 95% confidence according to the 

Student’s t-distribution with degrees of freedom 2J (120). Then the result can be represented 

by: 



 A-15 

 

*
x  ± 2 calδ̂  

 

A typical calculation showed that δ is approximated as 0.19g. Then, δ(95%)=0.38g. If this 

uncertainty value is deemed to be too large based on the indirect measurement results then 

the effective linearity demonstrated above is not adequate.  To lower the uncertainty the non-

linear nature of the load cell would have to be taken into account.  

 

2. Laser 

As being custom designed, laser doesn’t have the calibration factors provided by 

manufacturer. The calibration factor of laser is determined by ourselves. The linear functions 

of the main and compensation photodiodes are 001.029.0 += xy  and 002.015.0 += xy  

respectively. y  is the obscuration in obscuration, x  is the voltage output in volt. 

 

The measurement uncertainty analysis for laser was based on ISO 11095
16

. The same four 

assumptions have to hold. Assumptions 1) and 3) were examined in Load Cell Section. The 

situation is the same for laser. The estimation of the linear calibration function under the 

assumption of proportional residual standard deviation is captured by the model  

 

nknnk xy ηγγ ++= 10  

 

where 

nx10 γγ +  represents the expected value of the measurement of the nth RM; 
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nkη  is the deviation between nky  and the expected measurement of the n
th

 RM, nky  is 

determined based on measured voltage and calibration factor;. 

 

This model can be transformed into a model equivalent to the one given in Load Cell Section, 

i.e., with errors having constant variance. The transformation consists of dividing by nx  both 

on both sides. This gives 

 

nknnk wz εγγ ++= 01  

 

where 

nnknk xyz /=  is normalized measured value at n
th

 RM; 

nn xw /1=  is reciprocal at n
th

 RM; 

nnknk x/ηε =  is normalized residual at n
th

 RM. 

Estimates of the parameters 0γ  and 1γ  can be obtained by using the formulae below. 

Estimates of parameters in this paper have a hat above the symbol to differentiate them from 

the parameters themselves which are unknown. 

 

∑

∑

−

−−

=
N

n

N

nn

ww

zzww

1

2

1
0

)(

))((

γ̂  is an estimate of 0γ̂ , for a “perfect” instrument 0γ̂  should be zero; 

wz 01
ˆˆ γγ −=  is an estimate of 1γ̂ , for a “perfect” instrument 1γ̂  should be one; 

 

where 
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KNNK ×= ; 

Nww
N

n /
1

∑=  is the average of nw ; 

Kzz
K

nkn /
1

∑= is the average of normalized measured value at n
th

 RM; 

Nzz
N

n /
1

∑= is the average of nz ; 

nn wz 01
ˆˆˆ γγ += is normalized fitted value; 

nnknk zzu ˆ−= is normalized residual at n
th

 RM; 

∑∑=
N K

nkuWSSE
1 1

2)( is sum of squared normalized residual at n
th

 RM; 

2
ˆ2

−
=

NK

WSSE
τ  is the mean square of WSSE. 

 

In the day-to-day calibration, laser is calibrated at 4 different RM levels, i.e., 0%, 16%, 48%, 

and 100% obscuration. At each point the data are collected 60 times at the scan rate of once 

per second. Since the normalized value at 0% reference obscuration cannot be obtained, the 

other three points will be used for laser uncertainty analysis. 

 

As such, the linear function of laser was estimated as 

 

Main photodiode: nnn wwz 0003.09919.0ˆˆˆ
01 −=+= γγ  

Compensation photodiode: nnn wwz 0030.00041.1ˆˆˆ
01 −=+= γγ  
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The relationship of nku  (normalized residuals) and ẑ  (normalized fitted value) is shown in 

Figure A-4 and Figure A-5. As seen in Figure A-4 and Figure A-5, the dispersion of the 

normalized residuals for any normalized fitted value is almost constant through, except for a 

few outliers at 16% and 100% obscuration for compensation photodiode. Therefore, the 

assumption, of proportional residual standard deviation is tenable for both main and 

compensation photodiodes. 

 

Figure A-4 Laser Main Photodiode Normalized Residual Dispersion 

 



 A-19 

 

Figure A-5 Laser Compensation Photodiodes Normalized Residual Dispersion 

 

The linearity of laser main and compensation photodiodes can be visualized from Figure A-6 

and Figure A-7.  

 

Figure A-6 Measured Values vs. Accepted Values of Reference Materials for Main 

Photodiode 
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Figure A-7 Measured Values vs. Accepted Values of Reference Materials for 

Compensation Photodiode 

 

However, the linearity should be confirmed by using Analysis of Variance method (ANOVA) 

recommended by ISO 1109516. If F Ratio (=
2

2

1

ˆ

ˆ

pτ

τ
) is not larger than ),2()1( NNKNF −−−α , 

then there is no evidence to reject the linear model.  

 

Where 

∑∑ −=
N K

nnk zzWSSP
1 1

2)( is the sum of squared deviations between nkz  and nz ; 

2
ˆ2

1
−

−
=

N

WSSPWSSE
τ  is the mean square of the deviation of WSSE and WSSP; 

NNK

WSSP
p

−
=2τ̂  is the mean square of the WSSP. 
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For 60 measurements, the compensation photodiode is linear, while the main photodiode is 

nonlinear. At K=60 F test maybe too sensitive. Due to the “small” error the non-linearity of 

the main photodiode can be mapped. 

 

For the laser measurement uncertainty analysis, we assume that the device is essentially 

stationary throughout the day. With the same reason as described for the load cell, we use 2 

measurements to check the linearity. The 2 measurements are the averages of the first and last 

30 scans. ),2()1( NNKNF −−−α  is the F distribution with numerator degrees of freedom N-2 

and denominator degrees of freedom NK-N, and confidence level of α−1 .  α  is the 

significance level, the probability to reject the linear model if the model is true. For the laser 

main and compensation photodiode, let α =0.05, we have  

For main photodiode, 1.6
ˆ

ˆ
2

2

1 =
pτ

τ
1.10)3,1(95.0 =≤ F , therefore, it is linear. 

For compensation photodiode, 25.0
ˆ

ˆ
2

2

1 =
pτ

τ
1.10)3,1(95.0 =≤ F , therefore, it is linear also. 

 

Based on the statistical test and our assumptions of 2 measurements per RM we have 

demonstrated that the main photodiode is effectively linear. Effectively linear indicates that 

the main photodiode uncertainty is primarily composed of instrument non-linearity not 

measurement error. Therefore, for practical purpose, the main photodiode is assumed to be 

linear.   

 

Since the laser is linear, a single measurement 0y  of an unknown obscuration will lead to a 

reported obscuration value of 
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Main photodiode: 
9919.0

)0003.0(

ˆ

ˆ
0

1

00* −−
=

−
=

yy
x

γ

γ
 

Compensation photodiode: 
0041.1

)003.0(

ˆ

ˆ
0

1

00* −−
=

−
=

yy
x

γ

γ
 

 

According to ISO 11095
16

, two reference obscurations are selected for the control method. 

These obscurations are selected in such a way that they cover as large a range as possible of 

values encounters during normal operating condition. 16% and 100% are selected. The 

control values at 16% and 100% are calculated respectively 

 

i

ii

i
x

xx
c

−
=

*

 

 

where ix  is the accepted value of RMi 

The upper control limit cU  and the lower control limit cL  are estimated as  

 

Main Photodiode 

037.0)2(
ˆ

ˆ
)2/1(

1

=−= − NKtU c ξ
γ

τ
 

037.0−=cL  

 

Compensation photodiode 

009.0)2(
ˆ

ˆ
)2/1(

1

=−= − NKtU c ξ
γ

τ
 

009.0−=cL  
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where 

)2()2/1( −− NKt ξ  is the )2/1( ξ− -quantile of the t-distribution with NK-2 (358) degrees of 

freedom. ξ  is the significance level associated with each individual RM and with the limits 

cU  and cL   such that the overall significance of α is obtained for all the m (m=2) RMs 

simultaneously 
m

α
ξ = . α  is the significance level selected for the control chart as seen in 

Figure A-8 and A-9. In our case α  is taken to be 5%. m is the number of RMs selected for 

the control method. In our case m is taken to be 2, i.e., 16% and 100% obscuration. Select m 

RMs such that their accepted values cover the range of values encountered under normal 

operating conditions. Five day’s control values ic  at 16% and 100% obscuration are 

calculated. The control values and the upper and lower limit are plotted in Figure A-8 and 

Figure A-9. As seen in Figure A-8 and Figure A-9, all the control values are between the 

upper and lower limit. Based on ISO 11095
16

, the laser system is declared in-control. 

 

Figure A-8 Schematic Diagram of a Control Chart for Laser Main Photodiode 
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Figure A-9 Schematic Diagram of a Control Chart for Laser Compensation Photodiode 

 

 

Based on ISO 11095
16

, the standard uncertainty of laser is calculated as 

 

 

J

cc
J

j

hjlj

cal
2

)(

ˆ
1

22∑
=

+

=τ  

 

where  

J represents the time at which the measurements were made, our case 60=J .  

ljc  and hjc are the corresponding control values at 16% and 100% obscuration respectively. 

 

Two were taken as the coverage factor for the interval of 95% confidence according to the 

Student’s t-distribution with degrees of freedom 2J (120). Then the result can be represented 

by: 
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*x  ± *ˆ2 xcal ∗τ  

 

A typical calculation showed that τ  is approximated as 0.012 (obscuration/obscuration) for 

main photodiode, and 0.004 (obscuration/obscuration) for compensation photodiode. Then, 

the 95% confidence interval for main photodiode is “measured value * 0.024”, and for 

compensation photodiode is “measured value * 0.008”. If this uncertainty value is deemed to 

be too large based on the indirect measurement results then the effective linearity 

demonstrated above is not adequate. To lower the uncertainty the non-linear nature of the 

laser would have to be taken into account.  

 

3. Oxygen Analyzer 

The oxygen analyzer was Type X1420 manufactured by Servomex. The accuracy was 

specified as 0.1% of oxygen for the full scale (0-25%) by the manufacturer
17

. The linear 

function provide by the manufacturer is xy 025.0= . y  is the oxygen volume fraction, x  is 

the voltage output in volt. 

 

For oxygen analyzer calibration, we would like to use the same calibration approaches for 

load cell and laser. Unfortunately, we only had zero gas and span gas. Any standard oxygen 

concentration source was not available between zero and span gas. Zero gas was 99.99% 

nitrogen. The volume fraction of oxygen can be assumed to be in the range of 0% to 0.01%, 

therefore, it was approximated as 0.005%±0.005%. Span gas was supplied by breathing dry 

air that had an oxygen volume fraction of 20.9%±0.05%13. The relative humidity of the 

laboratory is about 15%. The oxygen concentration at this relative humidity in air is about 

20.85%. Considering the oxygen concentration in dry air is 20.95%, we assume the oxygen 
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concentration after removing water from the incoming air to be in the range of 20.9%±0.05% 

oxygen. Assuming equal probabilities for the “true” oxygen concentrations lie anywhere 

within the intervals for both zero and span gas, that is, modeled them by a uniform 

distribution10. Therefore, the standard uncertainty was calculated to be 

%003.03/%005.0 = , and %03.03/%05.0 = 10,11
 for zero and span gas. Since the oxygen 

concentration and the standard uncertainty of zero gas was too small to have obvious effect 

on the uncertainty calculation, therefore, the values were assumed to be zero. Since only two 

standards were available, we could not check the behavior of the residuals, i.e., if they are 

constant or proportional to reference materials. ISO 11095
16

 was not applicable to this case. 

Fortunately, the paramagnetic oxygen analyzer was inherently linear by design based on its 

transducer and the function was represented by 

 

bmVO +=%2  

 

where m is slope determined by 

zerospan

zerospan

VV

OO
m

−

−
=

%% 22
 

 b is intercept determined by 

zerospan

zerospanspanzero

VV

VOVO
b

−

−
=

%% 22
 

 

%2 zeroO  and %2spanO  are accepted value of the reference materials at zero and span point, 

zeroV  and spanV  are corresponding oxygen analyzer voltage output at zero and span point. The 
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standard uncertainty of m and b is estimated according to the Law of Propagation of 

Uncertainty in NIST Guide10 and ISO Guidelines11. 

 

∑
∂

∂
= )()()( 222

i

i

c xu
x

y
yu  

 

The covariance terms were eliminated since the error sources were uncorrelated, i.e., the 

measurements didn’t share errors from identical sources
18

. Each )( ixu  was a standard 

uncertainty of above four direct measured quantities. Standard uncertainty is the uncertainty 

of the result of a measurement expressed as a standard deviation
10,11

. The standard 

uncertainty of voltage output was estimated as 

 

∑ −
−

=
n

i VV
n

Vu
1

2)(
1

1
)(  

Where: n was times the voltage output recorded (60 for our case) 

n

VV
V n++

=
...1  

 

Since the uncertainty of each variable is known, i.e., 0)( =zeroVu  and 4108.3)( −×=spanVu  

were oxygen analyzer voltage output standard uncertainty at zero and span point respectively; 

the data were from a typical day-to-day calibration case. %0%)( 2 =zeroOu  and 

%03.0%)( 2 =spanOu  were oxygen concentration standard uncertainty at zero and span point 

respectively. The standard uncertainty of m and b was estimated as 
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The uncertainty of oxygen measurement result can be represented as 

 

)(%)( 2 bmVkOu p δδ +=  

 

A typical calculation showed that δm was approximated as 0.000036 volume fraction of 

oxygen per volt, and δb as 0 for standard uncertainty. In our day-to-day calibration, the 

sampling size is 60 at both of zero and span point.  

 

If a physics quantity y (for now, y is m or b) is not measured directly, but is determined from 

n other statistically independent quantities nxx ,...1  through a functional relationship f : 

),...( 1 nxxfy = , 

based on NIST10 and ISO11, the coverage factor pk  of the expanded uncertainty 

( )( yukU cp= ), which defines an interval having p level of confidence (p is usually selected 

to be 95%). pk  was defined by Student’s t distribution based on effν  number of effective 
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degrees of freedom. The effective degrees of freedom was estimated by Welch-Satterthwaite 

formula 

∑
=

∂∂
=

n

i i

i

c

eff
xuxif

yu

1

444

4

)()/(

)(

ν

ν  

 

Where iν  is the degrees of freedom of )( ixu  and usually 1−= nvi , n is the sampling size of 

component parameter ix .  

 

The effective degrees of freedom calculated by using Welch-Satterthwaite formula was about 

60 for both of m and b. Then, 2 was taken as the coverage factor for interval of 95% 

confidence, the uncertainty was expressed as 

 

)000036.0(2%)( 2 VOu ×=  

 

The comparison of manufacturer specified uncertainty and current uncertainty is shown 

Figure A-10.  
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Manufacturer's Uncertainty and Current Uncertainty Comparison

for Oxygen Analyzer
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Figure A-10 Manufacturer’s Uncertainty and Current Uncertainty Comparison for 

Oxygen Analyzer 

 

The above uncertainty analysis approach for oxygen analyzer was essentially the same with 

that conducted by NIST
13

. In the current approach, the uncertainty analysis for oxygen 

analyzer was separated from that of HRR uncertainty analysis. In NIST13, the uncertainties of 

all the most basic measurement quantities were directly used to calculate the HRR 

uncertainty, the uncertainty of the oxygen analyzer was not estimated. 

 

4. Pressure Transducer 

The pressure transducer was Type 223 manufactured by MKS. The voltage output was linear 

with pressure and the uncertainty was 2.5 Pa in the full scale (500 Pa)
 19

. The linear function 

provided by the manufacturer is xy 100= . y  is pressure in Pa, x  is voltage output in volt. 

Since the deadweight primary standard (which can be used as standard pressure to calibrate 

pressure transducer) was not available, the uncertainty was estimated by using the 
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manufacturer’s specification. In day-to-day test activities, pressure transducer’s working 

condition is checked by zero and span pressure. Zero pressure was obtained by covering the 

duct, and span pressure obtained by turning on exhaust fan and hood.  

 

5. Thermocouple 

The thermocouples used to measure stack and smoke temperature were type K and 

manufactured by Omega Engineering INC. According to the manufacturer, these 

thermocouples had fundamental error limits of 2.2K
20

. Assuming a uniform distribution, the 

standard uncertainty was computed by dividing the limit by 3
10,11.  

 

6. CO/CO2 Analyzer 

CO/CO2 analyzer was Type ULTRAMAT 22 manufactured by Siemens. The accuracy was 

specified by the manufacturer as 30 ppm of CO for the full scale (0-3000 ppm) and 0.1% of 

CO2 for the full scale (0-10%)21. The linear function provided by the manufacturer is 

xy 1500=  for CO. y  is the CO concentration in ppm. x  is the voltage output in volt. The 

linear function of CO2 provided by manufacturer is xy 05.0= . y  is the CO2 volume fraction.  

x  is the voltage output in volt. The instrument operates on the non-dispersive infrared 

absorption principle using the single-beam method with opto-pneumatic double-layer 

detector. The detector has a filter in front of it, which eliminates all light except the 4.26 µm 

wavelength that CO2 molecules can absorb and 4.75µm wavelength that CO molecules can 

absorb. The intensity of 4.26 µm and 4.75µm light that reaches the detector is inversely 

related to the concentration of CO2 and CO respectively. The intensity of light striking the 
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detector is described by Beer's Law, which is an exponential function and makes the 

instrument highly non-linear. Since CO/CO2 analyzer behaved highly non-linear, and only 

zero and span gases were available, the uncertainty cannot be estimated using ISO 1109516 

and the uncertainty analysis method for oxygen analyzer is not applicable also. In day-to-day 

test activities, CO/CO2 analyzer’s working condition is checked by zero and span gases. Zero 

gas was 99.99% nitrogen, and span gases were 8.9% of CO2 and 2210 ppm of CO. 

 

UNCERTAINTY ANALYSIS OF INDIRECT MEASUREMENT 

Some of the important physics quantities such as heat release rate (HRR), extinction 

coefficient, specific extinction area (SEA), and heat of combustion (HOC), etc could not be 

measured directly but were instead found in two distinct steps. First, we measured quantities, 

such as oxygen concentration, stack/smoke temperature, pressure difference across the 

orifice, mass loss, and beam intensity of smoke, etc that could be measured directly and from 

which the interested physics quantities could be calculated. Second, we used the measured 

values of these quantities to calculate the interested physics quantities by using equations in 

ASTM E13542. In general, based on NIST10 and ISO11, if a physics quantity y is not 

measured directly, but is determined from n other statistically independent quantities nxx ,...1  

through a functional relationship f : ),...( 1 nxxfy = , the combined standard uncertainty 

)(yuc  is the positive square root of the combined variance )(2 yuc , which is given by the Law 

of Propagation of Uncertainty (if the covariance of each pair of variables is zero.) 
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Each )( ixu  is a standard uncertainty of the direct measured quantity, which was already 

estimated in direct measurement. The degrees of freedom can be estimated by using Welch-

Satterthwaite formula and the coverage factor pk  be obtained by using Student t distribution 

table. 

 

In Cone test, single measurement was taken for each direct measured quantity every second. 

Technically there would be no Type A uncertainty for a single measurement. However, if the 

measurement is supposed to represent a larger sampling size process, and if one has some 

previous knowledge of the process precision (Type A) uncertainty (at a 95% confidence 

level), then this information can be used
22

. In the calibration procedure, each instrument 

precision (Type A) uncertainty was within 95% confidence level with effective degrees of 

freedom about 60. Since the Type B uncertainty was obtained from experiences or general 

knowledge, and the lower and upper limits were chosen in such a way that the probability of 

the quantity in question lying outside these limits is in fact extremely small, the effective 

degrees of freedom may be taken to be ∞ 10,11. For Example, the relative humidity of the 

laboratory is about 15%. The oxygen concentration at this relative humidity in air is about 

20.85%. Considering the oxygen concentration in dry air is 20.95%, we assume the oxygen 

concentration after removing water to be in the range of 20.9%±0.05% oxygen. 

 

The degrees of freedom of the combination of those Type A and B uncertainties for all the 

indirect measured quantities were approximated (by using Wech-Satterthwaite formula) to be 

sufficiently large enough so that pk  can be taken to be 2 (obtained by using Student t 

distribution table) for the expended uncertainty with 95% confidence. 
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1. Heat Release Rate 

1.1 Uncertainty Estimation 

HRR is calculated by using equation (4) in ASTM E 1354
2
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where: )(
0r

hc∆
= 13100 kJ/kg unless exact value is known for the test material. 

Then the uncertainty of heat release rate can be calculated as following: 
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Temperature (T) was assumed to be uniformly distributed13. If the quantity )(
0r

hc∆
 was 

known (such as methane 12540 kJ/kg), there was no uncertainty contribution to the HRR. 

Otherwise, 5% of the generic value (13100 kJ/kg) was taken2 as the uncertainty. C factor, i.e., 

the flow coefficient, is the relative measure of the fluid flow ability of the orifice in the 

exhaust duct. The flow coefficient is determined by the volume flow rate through the orifice 

and the pressure difference across the orifice (See Appendix D). It has 5% of uncertainty2. C 

factor value was taken as 0.04323. The upper and lower limits for C-factor and )(
0r

hc∆
 were 

chosen in such a way that the probability of the “true” values of the quantities were lying 

outside these limits was extremely small. The quantities were treated as if it is equal probable 

for them to lie within the intervals, therefore, they were assumed to be uniformly distributed. 

The uncertainty of )(2 tX O  was determined by the uncertainty of oxygen analyzer, which was 

discussed in the previous Section. Since there was water vapor in the incoming air, the 

volume fraction of oxygen should be corrected as )1(2095.0 0

2

0

2 OHO XX −= , where 

100760

20

2

HP
X OH

OH = 24. OHP 2  was the vapor pressure of water in mm Hg at the ambient 

temperature and H  was the relative humidity in percent. OHP 2  could be found in CRC 

Handbook25. The uncertainty of corrected oxygen volume fraction in the incoming air was 
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assumed to be zero. Substitute equations (3)-(8) into (1) to estimate HRR standard 

uncertainty )(HRRuc  and HRR can be reported as 

 

)(2 HRRuHRR c±  

 

Typical HRR calculations for 38mm red oak at 40 kW/m2 external heat flux and 2mm red oak 

at 70 kW/m2 external heat flux in cone test are shown in Figure A-11 and Figure A-12 

respectively. We have 95% confidence of the uncertainty intervals. 

 

 
Figure A-11 Heat Release Rate and Its 95% Confidence Interval for 38mm Red Oak at 

40 kW/m2 External Heat Flux in Cone Test 

 
 

As seen in Figure A-11, when HRR was at around 75 kW/m2 (1000s to 2000s), the 

uncertainty was about 35 kW/m
2
, which was 45% of the HRR; when HRR was 100 kW/m

2
 

(the second peak), the uncertainty was still about 35 kW/m
2
, which was 35% of the HRR. As 

seen in Figure A-12, when HRR was at 300 kW/m
2
, the uncertainty was 41 kW/m

2
, which 
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was 13.6% of the HRR; when HRR was at 500 kW/m
2
 (near peak), the uncertainty was 51 

kW/m2, which was 10% of the HRR. 

 

 
Figure A-12 Heat Release Rate and Its 95% Confidence Interval of 2mm Red Oak at 40 

kW/m
2
 External Heat Flux in Cone Test 

 

 

1.2 HRR Uncertainty Comparison 

Table A-1 shows the HRR uncertainty comparison of current results, Enright and 

Fleischmann’s results
12

, and NIST results
13

. NIST results
13

 are listed just as a reference since 

the HRR measured was much larger than the other two cases. As seen in Table A-1, the HRR 

uncertainty and the normalized HRR uncertainty of Enright and Fleischmann12 was less than 

the current results, especially at lower HRR level such as 1 kW, since their uncertainty of 

oxygen analyzer was assumed to be 0.01%, which is the maximum drift value of oxygen 

analyzer the ASTM standard2 accepts. However, in the current work, the uncertainty of 

oxygen was estimated based on two-point calibration method introduced in the Oxygen 

Analyzer Section. The uncertainty is in the range of 0.048% to 0.058% based on different 
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oxygen concentration level, which is 5 to 6 times bigger than theirs. Drift uncertainty is not 

included in the uncertainty analysis in the current work. 

Table A-1 HRR Uncertainty Estimation Comparison 

Current Results Enright and Fleischmann NIST  

1 kW 

(100 

kW/m2) 

3 kW 

(300 

kW/m2) 

5 kW 

(500 

kW/m2) 

1 kW 

(100 

kW/m2) 

3 kW 

(300 

kW/m2) 

5 kW 

(500 

kW/m2) 

50 kW 

Uncer. 0.35 kW 0.41 kW 0.51 kW 0.06 kW 0.17 kW 0.27 kW 3.75 kW 

Norm. 
Uncer. 

35% 13.6% 10% 6% 5.5% 5.5% 7.5% 

 

To verify our HRR uncertainty, three similar thick PMMA (23mm) burning tests were 

replicated. The average HRR and the standard deviation of the average HRR were calculated 

based on the data of steady burning duration of each test, see Table A-2. As seen in Table A-

2, the average HRRs at steady burning duration were 526 kW/m2, 502 kW/m2, and 536 

kW/m2 respectively. The standard deviation of the three average HRRs was 18 kW/m2. The 

uncertainty of 95% confidence is, therefore, 57 kW/m2 with 3 degrees of freedom. Our 

estimate showed that the uncertainty of 95% confidence was 53 kW/m2 for HRR at the level 

of 510 kW/m2. The test result and the estimate were similar. 

Table A-2 Average HRR and the Standard Deviation of HRR at Steady State Burning 

Duration of Thick PMMA 

 Average HRR 

(kW/m2) 

SD of HRR (kW/m2) 95% Confidence 

Uncer (kW/m2) 

Test 1 526 

Test 2 502 

Test 3 536 

 

18 

 

57 
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1.3 HRR Uncertainty and Methane HRR Calibration 

In day-to-day calibration, methane is used to generate 1, 3, and 5 kW of HRR. At each HRR 

level, data are collected for 120s at the rate of one scan per second. The measured quantities 

are voltage output of methane flow meter, oxygen analyzer, and pressure transducer. The 

stack temperature is reported as degree C. Data sets for each HRR level in ten different days 

are selected. By using the collected data and oxygen consumption method (Equation (2)) 

recommended by ASTM E 13542, 120 HRRs are calculated and averaged at each HRR level 

for each day. The standard deviation of the ten means for each HRR level is estimated and the 

95% confidence interval can be approximated. Also, 120 HRR uncertainties with 95% 

confidence and their averages can be calculated by using the Law of Propagation of 

Uncertainty at each HRR level for each day. Please note that the uncertainty of the heat of 

combustion per mass of oxygen for methane is assumed to be negligible since the exact value 

is known. The results are shown in Table A-3. The values in column 2, 4, and 6 from “Day1” 

row to “Day10” row in Table A-3 are HRR averages of 1, 3, and 5 kW at each day. HRR is 

calculated based on oxygen consumption method (Equation (2)) recommended by ASTM E 

13542. C factor is taken as a fixed value 0.04323.The values in the last row of column 2, 4, 

and 6 in Table A-3 are HRR uncertainty with 95% confidence based on the day-to-day 

variation. The ten HRR averages at each level are assumed to be in a normally distributed 

population respectively, and the standard deviation )(HRRu  for each HRR level can be 

calculated by using the following equations 

 

∑ −
−

=
10

1

2])[(
110

1
)( HRRHRRHRRu i

 

10

...
][ 101 HRRHRR

HRR
++

=  
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where: [HRR] represents the average of ten HRR averages. 

 

The uncertainties of 95% confidence for day-to-day variation at each level (values in the last 

row of column 2, 4, and 6 in Table A-3) are estimated as )(26.2 HRRu , where 2.26 is the 

coverage factor obtained from 95%-quantile of t distribution with 9 (10-1) degrees of 

freedom. 

Table A-3 HRR Uncertainty Based on Day-to-Day Variation and HRR Uncertainty 

Based on Component Instrument Calibration 

 1 (unit: kW) 3 (unit: kW) 5 (unit: kW) 

 Avg. 

HRR 

Avg. Uncer. Avg. 

HRR 

Avg Uncer Avg. 

HRR 

Avg. Uncer. 

Day 1 0.92 0.37 1.94 0.32 4.28 0.36 

Day 2 1.57 0.22 2.78 0.33 4.93 0.39 

Day 3 1.33 0.28 3.35 0.34 4.79 0.39 

Day 4 1.17 0.32 3.22 0.32 5.05 0.38 

Day 5 1.07 0.30 2.92 0.31 4.76 0.36 

Day 6 1.36 0.33 3.40 0.34 5.00 0.4 

Day 7 1.11 0.32 3.08 0.31 4.78 0.36 

Day 8 1.21 0.30 3.14 0.32 5.31 0.38 

Day 9 1.35 0.32 3.34 0.32 5.05 0.39 

Day 10 1.17 0.32 3.19 0.33 4.96 0.39 

95% 

Conf. 

Uncer. 

0.42 0.31 

(avg. above)  

0.98 0.32 

(avg. above) 

0.60 0.38  

(avg. above) 
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The values in column 3, 5, and 7 from “Day1” row to “Day10” row in Table A-3 are HRR 

uncertainty averages of 1, 3, and 5 kW at each day. HRR uncertainty is calculated by using 

the Law of Propagation of Uncertainty recommended by NIST10 and ISO11 (as introduce in 

the beginning of HRR Section). The uncertainty of C factor is based on 5% of the fixed value 

0.04323. The uncertainty of oxygen concentration is based on the calibration of oxygen 

analyzer as introduced in the Section of “Oxygen Analyzer”. The values in the last row of 

column 3, 5, and 7 in Table A-3 are averages of HRR uncertainty based on ten day’s 

uncertainty averages. 

 

As seen in Table A-3, the uncertainty based on day-to-day variation is much bigger than that 

by using the Law of Propagation of Uncertainty. In day-to-day calibration, the operator 

cannot set the HRR (based on methane) exactly to 1, 3 or 5 kW based on the poor control of 

the needle valve. Since the study of the needle valve is out of our scope, normalization will 

be needed to meaningfully compare the HRR (based on oxygen) day-to-day variation to the 

calibration based uncertainty as seen Table A-4.  

 

Basically, the values in Table A-4 are the normalized values of Table A-3. The values in 

column 2, 4, and 6 from “Day1” row to “Day10” row in Table A-4 are normalized HRR 

averages of 1, 3, and 5 kW at each day. Normalized HRR is calculated as the ratio of HRR 

based on oxygen consumption method recommended by ASTM E 1354
2 

and HRR based on 

methane flow rate (see Appendix K). The values in the last row of column 2, 4, and 6 in 

Table A-4 are the uncertainties with 95% confidence based on day-to-day variation of 

normalized HRR averages at each HRR level for ten days. The ten normalized HRR averages 

at each level are assumed to be in a normally distributed population respectively, and the 

standard deviation )(NorHRRu can be calculated by using the following equations 
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where: [NorHRR] represents the average of ten normalized HRR averages.  

 

The uncertainties of 95% confidence for day-to-day variation at each level (values in the last 

row of column 2, 4, and 6 in Table A-4) are estimated as )(26.2 NorHRRu , where 2.26 is the 

coverage factor obtained from 95%-quantile of t distribution with 9 (10-1) degrees of 

freedom. 

 

The values in column 3, 5, and 7 from “Day1” row to “Day10” row in Table A-4 are 

normalized HRR uncertainty averages of 1, 3, and 5 kW at each day. HRR uncertainty is 

calculated by using the Law of Propagation of Uncertainty recommended by NIST
10

 and 

ISO11 (as introduce in the beginning of “HRR” Section). The uncertainty of C factor is based 

on 5% of the fixed value 0.04323. The uncertainty of oxygen concentration is based on the 

calibration of oxygen analyzer as introduced in the Section of “Oxygen Analyzer”. 

Normalized HRR uncertainty is the ratio of HRR uncertainty and the HRR based on methane 

flow rate (see Appendix K). 

 

As seen in Table A-4, our estimated normalized uncertainty averages are consistency with the 

uncertainties based on day-to-day variation at each HRR level. Therefore, the methane 

calibration is under control in terms of our uncertainty estimation based on the uncertainty of 

component instrument calibration. This is also shown in Figure A-13, Figure A-14, and 
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Figure A-15. As seen in Figure A-13, the red line demonstrates the normalized HRRs at 1 kW 

for ten days. There are 120 normalized HRRs for each day. Therefore, there are total 1200 

HRRs as shown in Figure A-13. Then, the 1200 normalized HRRs are averaged. The “green 

band” is the averaged value plus and minus the normalized HRR uncertainty dynamically. 

The “blue band” is the average value plus and minus the 95% confidence uncertainty based 

on day-to-day variation, i.e., the last value in column 2 of Table A-4. Figure A-14 and Figure 

A-15 are constructed in the similar way with Figure A-13. 

Table A-4 Normalized HRR Uncertainty based on Day-to-Day Variation and 

Normalized HRR Uncertainty Based on Component Instrument Calibration 

 1 (unit: kW) 3 (unit: kW) 5 (unit: kW) 

 Avg. Nor. 

HRR 

Avg. Nor. 

Uncer. 

Nor. Avg. 

HRR 

Avg. Nor. 

Uncer. 

Nor. Avg. 

HRR 

Avg. Nor. 

Uncer. 

Day 1 1.03 0.37 0.99 0.17 0.94 0.08 

Day 2 1.08 0.22 1.11 0.13 1.03 0.08 

Day 3 1.13 0.28 1.08 0.11 0.95 0.08 

Day 4 1.19 0.32 1.07 0.11 1.03 0.08 

Day 5 1.06 0.30 0.98 0.11 0.95 0.07 

Day 6 1.35 0.33 1.14 0.11 1.00 0.08 

Day 7 1.17 0.32 1.02 0.10 0.95 0.07 

Day 8 1.17 0.30 1.04 0.10 1.06 0.08 

Day 9 1.37 0.32 1.13 0.11 1.00 0.08 

Day 10 1.17 0.32 1.09 0.11 0.98 0.08 

95% 

Conf. 

Uncer. 

 

0.26 

 

0.31 

 

0.12 

 

0.12  

 

0.09 

 

0.08  
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As seen in these three Figures, our estimated bands (green bands) are almost the same with 

the day-today variation bands (blue bands), i.e., our methane calibration is under control, 

which is the same conclusion drawn above from Table A-4.   

 

 

Figure A-13 Normalized HRR for Ten Days and Its 95% Confidence Uncertainty Band 

Based on Day-to-Day Variation and 95% Confidence Uncertainty Band based on 

Calibration for 1 kW Methane Burning Test 
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Figure A-14 Normalized HRR for Ten Days and Its 95% Confidence Uncertainty Band 

Based on Day-to-Day Variation and 95% Confidence Uncertainty Band based on 

Calibration for 3 kW Methane Burning Test 

 

 

Figure A-15 Normalized HRR for Ten Days and Its 95% Confidence Uncertainty Band 

Based on Day-to-Day Variation and 95% Confidence Uncertainty Band based on 

Calibration for 5 kW Methane Burning Test 

 

1.4 HRR Uncertainty and Normalized HRR Uncertainty 
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In current study, the normalized HRR uncertainty was decreasing as the HRR increasing. The 

reason for this is observed in Figure A-16 and Figure A-17. The data for these two Figures 

are of the 2mm red oak burn test at external heat flux of 70 kW/m2. The Y-axis on the left is 

the HRR uncertainty. The Y-axis on the right is the normalized HRR uncertainty, which is 

the ratio of HRR uncertainty and HRR. The X-axis is the HRR. As seen in Figure A-16, at 

lower HRR level (4 to 30 kW/m2) the HRR uncertainty is in the range of 30 to 34 kW/m2, 

while the normalized HRR uncertainty is in the range of 110% to 800%. As seen in Figure A-

17, at higher HRR level (40 to 500 kW/m2) the HRR uncertainty is in the range of 30 to 50 

kW/m2, while the normalized HRR uncertainty is in the range of 8% to 76%. It is found that 

at higher HRR level the normalized HRR uncertainty is lower. As seen in Figure A-19 again, 

when the HRR is in the range of 200 to 500 kW/m2, the normalized HRR uncertainty is in the 

range of 10% to 20%. 

 

 

Figure A-16 HRR Uncertainty and the Normalized HRR Uncertainty (above 100%) of 

2mm Red Oak at 70 kW/m2 External Heat Flux in Cone Test 
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Figure A-17 HRR Uncertainty and the Normalized HRR Uncertainty (below 100%) of 

2mm Red Oak at 70 kW/m2 External Heat Flux in Cone Test 

 

1.5 Uncertainty Contribution from Component Parameters 

In order to investigate the uncertainty contribution of each component variable to the total 

uncertainty, R value was introduced. Based on the uncertainty of day-to-day calibration, we 

define UNi as the variance of the indirect measured quantity (HRR for this case) calculated 

from only one of the component variables, and UNt as the total variance of indirect measured 

quantity calculated from all of the component variables, then, )%/(*100 tii UNUNR = . 

Based on the definition, it is obvious ∑ =
i

ti UNUN  and ∑ =
i

iR 1. 

 

Figure A-18 showed R value for each component variable. As seen in Figure A-18, R values 

of temperature and pressure were always small, i.e., HRR was not sensitive to pressure and 

temperature. At lower HRR, oxygen uncertainty dominated the uncertainty of HRR. However, 

as the HRR was going up, R value of oxygen was going down and those of C factor and heat 
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of combustion per unit mass of oxygen were going up. Eventually, R values of Oxygen 

concentration, C factor, and heat of combustion per mass of oxygen are 36%, 32%, and 32% 

respectively when HRR reached about 500 kW/m2. The R values of these three parameters 

are similar. For our case, HRR is not only sensitive to oxygen concentration, but also 

sensitive to C factor and HOC per unit mass of oxygen, especially at higher HRR level. The 

reasons for this are 1) the oxygen depletion term increases as oxygen concentration decreases, 

which will result in bigger values for equation (3) and (4); 2) uncertainty (% of oxygen) of 

oxygen concentration measurement decreases as oxygen concentration decreases. 

Considering the two reasons and equation (1), (3), (4), and (8), the trend in Figure A-18 is 

obvious.  

 

 

Figure A-18 R Values of the Component Variables for Heat Release Rate Calculation 

for 2mm Red Oak at 70 kW/m2 External Heat Flux in Cone Test 

 

Generally speaking, HRR is most sensitive to oxygen concentration. However, for a specific 

oxygen analyzer with certain uncertainty, there is a specific HRR point, around which HRR is 
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sensitive not only to oxygen concentration, but also to C factor and HOC per unit mass of 

oxygen. 

 

2. Extinction Coefficient 

Extinction coefficient is calculated by using equation (14) in ASTM E 1354
2
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Then the uncertainty of extinction coefficient can be calculated as following 

 

                                                                  
00

1

LII

k
=

∂

∂
                                                     (9) 

 

                                                                  
LII

k 1
−=

∂

∂
                                                     (10) 

 

Substitute equations (9)-(10) into (1) to estimate k  standard uncertainty )(kuc  and k can be 

reported as 

)(2 kuk c±  

 

A typical k  calculation for 38mm red oak at 40 kW/m2 external heat flux is shown in Figure 

A-19. We have 95% confidence of the uncertainty.  
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Figure A-19Extinction Coefficient and Its 95% Confidence Interval of 38mm Red Oak 

at 40 kW/m2 External Heat Flux in Cone Test 

 

The uncertainty analysis of extinction coefficient showed that the uncertainty was a constant-

-
m

1
2.0 . As seen in Figure A-19, during 500s to 3800s, the extinction coefficient is around 

zero, which is much less than the estimated uncertainty. Around the peak value of the 

extinction coefficient, the normalized uncertainty (k uncertainty/k value) is about 100%. 

Therefore, the uncertainty is too big relative to the measured extinction coefficient. Since the 

photodiode uncertainty is proportional to the measured value, the extinction coefficient 

uncertainty is a constant. This constant is “too big” because the photodiode can only be 

calibrated to 0.024 of measured value of uncertainty for main photodiode and 0.008 of 

measured value of uncertainty for compensation photodiode. The reason for this is because of 

the power variation of the laser.  
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Figure A-20 R Values of the Component Variables for Extinction Coefficient 

Calculation for 38mm Red Oak at 40 kW/m2 External Heat Flux in Cone Test 

 

Since the uncertainty of main photodiodes is larger than that of compensation photodiode 

(from the typical calculation), the R value is also larger, see Figure A-20. Apparent difference 

in photodiodes and / or circuits used to produce voltage response. Each photodiode has 

different amplification in its circuits to make the voltages similar. This effectively indicates 

that compensation photodiode is not working. 

 

3. Average Specific Extinction Area 

Average specific extinction area is calculated by using equation (15) in ASTM E 13542 
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where it∆  is 1 second and assumed to be no error. m1 and m2 are initial and final mass 

respectively. Then the uncertainty of SEA can be calculated as following 
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Substitute equations (11)-(17) into (1), we obtain 
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to estimate SEA standard uncertainty )(SEAuc  and SEA can be reported as 

 

)(2 SEAuSEA c±  

 

A typical average SEA calculation for 38mm red oak at 40 kW/m
2
 external heat flux is 0.003 

±0.002 m2/g. We have 95% confidence of the uncertainty. The R values of the parameters of 

average SEA calculation are listed in Table A-5. As seen in Table A-5, average SEA is most 

sensitive to main photodiode. Compensation photodiode also has significant effect on average 

SEA. Theoretically, the average SEA should be equally sensitive to main and compensation 

photodiode, which can be seen form equation (21) and (22). Apparent difference in 

photodiodes and / or circuits used to produce voltage response. Each photodiode has different 

amplification in its circuits to make the voltages similar. This effectively indicates that 

compensation photodiode is not working. Since the uncertainty of main photodiodes is larger 

than that of compensation (from the analysis of typical test data), the R value is also larger. 
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The other parameters such as C factor, pressure, temperature, and mass, are insignificant for 

average SEA calculation. 

 

Table A-5 R Values of C Factor, Pressure, Temperature, Main Photodiode, 

compensation Photodiode, and Mass for Average SEA Calculation 

 C Factor Pressure Temperature Compensation Main Mass (m1 and m2) 

R Value 

(%) 

0.0005 0.0001 5102 −×  10 90 11107.1 −×  

 

4. Average Heat of Combustion 

Average effective heat of combustion (HOC) is calculated by using equation (12) in ASTM E 

13542 
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where t∆  is 1 second and assumed to be no error. m1 and m2 are initial and final mass 

respectively. 

 

Then the uncertainty of average HOC can be calculated as following 
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Substitute equations (18)-(20) into (1) , we obtain 
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to estimate HOC standard uncertainty )(HOCuc  and HOC can be reported as 

 

)(2 HOCuHOC c±  

 

A typical average HOC calculation for 38mm red oak at 40 kW/m2 external heat flux is 

13.4±0.1 kJ/g. The normalized uncertainty is about 0.8%. We have 95% confidence of the 

uncertainty. The calculation shows that the R value of HRR is 99.8% and the R value of 

initial and final mass is 0.1% respectively. Therefore, most of the average HOC uncertainty 

comes from HRR uncertainty contribution. Mass uncertainty has insignificant effect on 

average HOC for our case. 
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UNCERTAINTY ANALYSIS METHODS VALIDATION BY MONTE CARLO 

SIMULATION (MCS) 

All of the methods recommended by ISO and NIST can be expected to work well in many 

circumstances. However, it is generally difficult to quantify the effects of the approximations 

involved, namely, linearization (GUM
11

 5.1.2), the Welch-Satterthwaite formula for the 

effective degrees of freedom
11

 (GUM G.4.2) and that assumption that the probability 

distribution for the output quantity value is normal (GUM
11

 G.2.1, G.6.6). Linearization 

approximation was based on the assumption that the indirect measured quantity was 

approximated by a first order Taylor expansion.  

 

nn XcXcXcY +++= ...2211  

 

Even if the distributions of iX  are not normal, the distribution of Y may often be 

approximated by a normal distribution because of the Central Limit Theorem11. The 

approximation of Welch-Satterthwaite formula can be found in Appendix C. Since these 

circumstances cannot readily be tested, MCS technique is the one can be used to validate our 

method
26

. The uncertainty intervals with 95% of confidence of all the physics quantities 

measured directly and indirectly were validated. The example of HRR was introduced.  

 

First, hypothetical true values for the variables were assigned along with their standard 

uncertainties for normal distributions and half width for uniform distributions. The values 

used in the example are given in Table A-6. With the information given in Table A-6 and a 

assumed voltage output for a specific transient oxygen concentration, the uncertainty interval 
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(band), )(2 HRRuHRR ctrue ± , with 95% confidence was estimated by using the method 

introduced in “HRR Section”. 

 

Table A-6 Hypothetical True Values for HRR Variables 

Variables True 

Value 

Distribution 

)(
0r

hc∆
 (kJ/kg) 

13100 Uniform Distribution, half width=665 

C-factor 0.043 Uniform Distribution, half width=0.002 

Pressure (Pa) 150.0 Normal Distribution, Standard Uncertainty=1.25 

Temperature (K) 323.0 Normal Distribution, Standard Uncertainty=1.1 

O2 analyzer slope m 0.025 Normal Distribution, Standard 

Uncertainty=0.000036 1/v 

 

Suppose above assumptions (linearity, Welch-Satterthwaite formula and normal distribution 

of output quantity) are hold for our HRR case. We can safely conclude that if a large number 

of HRR was calculated at specific pressure, temperature, and oxygen concentration, and if all 

the related parameters for HRR calculation vary based on the population that we estimated in 

the previous sections, 95% of calculated HRR will fall in the estimated uncertainty interval. 

The hypothetical true values were assumed to be the means of the corresponding parent 

populations. Then, 10000 values (experiments) were generated for each variable according to 

its mean and standard deviation of normal distribution or half width of uniform distribution. 

We take C factor case as an example. C factor is assumed to be in a uniformly distributed 

population. As seen in Table A-6, the mean value (true value as indicated) is 0.04323, the half 

width is 0.002. The generated 10000 values are expected to be uniformly distributed in the 
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range of 0.041 to 0.045. As a built in function, the random variable generator can be found in 

Excel and MatLab. Ten thousand HRR were calculated by using the values of each parameter 

randomly. For example, one value from each population (10000 numbers) is picked as, C 

factor: 0.042, HoC: 12600 kJ/kg, slope of oxygen analyzer: 0.024982, temperature: 323.87K, 

and pressure: 149.62Pa. Suppose the ambient oxygen concentration is known, the HRR is 

calculated to be 500.5 kW/m2 when the voltage output for oxygen analyzer is 8v. For each of 

the 10000 HRRs, a check was made for the interval to determine if the band 

)(2 HRRuHRR ctrue ±  contained the HRR. If the band contained the HRR, a counter was 

increased by one. This technique allowed the determination of the coverage fraction for the 

estimated band. This kind of simulation was conducted for all of the direct and indirect 

measurements. The results can be found in Table A-7.  

 

Table A-7 Monte Carlo Simulation Results 

 Interval Coverage Fraction for MC Simulated Values 

Load Cell 96% 

Main Photodiode 99% 

Compensation Photodiode 96% 

Oxygen Analyzer 95% 

HRR 96% 

Volume Flow Rate 99% 

Extinction Coefficient 96% 

Smoke Production Rate 95% 

Specific Extinction Area 95% 

Heat of Combustion 95% 
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The results demonstrated that the appropriate interval with 95% confidence can be obtained 

by using our uncertainty analysis methods.  

MANUFACTURER VALUE VS. CURRENT ANALYSIS 

The uncertainty of direct measurement has direct effects on the uncertainty of indirect 

measurement. For Example, the uncertainty of oxygen analyzer has effects on the uncertainty 

estimate of heat release rate and heat of combustion, and the uncertainty of load cell has 

effects on the uncertainty estimate of heat of combustion, specific extinction area etc.  

 

As seen in Figure A-21, when the HRR was 75 kW/m2 from 1000s to 2000s, the uncertainty 

interval was –40 kW/m2 to 200 kW/m2 based on the manufacturer’s specification. The 

normalized HRR uncertainty is as high as 160%. It was obvious that the interval was too big. 

Also as seen in Figure A-21, the current uncertainty analysis narrowed down the range of 

95% confidence interval, which is about 40 kW/m2 to 110 kW/m2. The normalized HRR 

uncertainty decreased to 47%. Figure A-22 shows the comparison between manufacturer’s 

and current analysis for higher level of HRR. At 300 kW/m
2
 of HRR, the uncertainty is 60 

kW/m
2
 based on manufacturer value. The normalized uncertainty is 20%. At 500 kW/m

2
 of 

HRR, the uncertainty is 68 kW/m
2
 based on the manufacturer value. The normalized 

uncertainty is 14%. 
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Figure A-21 HRR Uncertainty Comparison Between Current Analysis and 

Manufacturer’s Value for 38mm Red Oak at 40 kW/m2 External Heat Flux in Cone 

Test 

 

 

Figure A-22 HRR Uncertainty Comparison Between Current Analysis and 

Manufacturer’s Value for 38mm Red Oak at 40 kW/m2 External Heat Flux in Cone 

Test 
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Table A-8 shows the HRR uncertainty comparison among current analysis, Enright et al
12

, 

Manufacturer Value (of Cone in WPI), and NIST13. The HRR uncertainty and its normalized 

uncertainty at different HRR level are listed. From Table A-8, we found that the HRR 

uncertainty at various HRR levels based on our instrument manufacturer value is bigger than 

the others, i.e., our current analysis, Enright et al12, and NIST13. Enright et al12 showed 

smallest HRR uncertainty at all three levels of HRR. The normalized uncertainty of current 

analysis at higher HRR level is consistent with NIST
13

. 

 

Table A-8 HRR Uncertainty and Its Normalized Uncertainty Comparison among 

Current Analysis, Enright et al
12

, Manufacturer Value, and NIST
13

   

 HRR Level Uncertainty Normalized 

Uncertainty 

1 kW 0.35 kW 35% 

3 kW 0.35 kW 11.7% 

 

Current Uncertainty 

5 kW 0.45 kW 9% 

1 kW 0.06 kW 6% 

3 kW 0.17 kW 5.5% 

 

Enright et al 

5 kW 0.27 kW 5.5% 

1 kW 1.3 kW 130% 

3 kW 0.6 kW 20% 

 

Manufacturer 

5 kW 0.68 kW 14% 

NIST 50 kW 3.75 kW 7.5% 

 

The information in Table A-8 is also shown in Figure A-23. As seen in Figure A-23, the 

normalized HRR uncertainty is decreasing as the HRR increasing. 
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Figure A-23 Normalized HRR Comparison at Different HRR Levels among Current 

Analysis, Enright et al12, Manufacturer Values (of Cone in WPI), and NIST13 

 

 

Uncertainty of average heat of combustion is calculated by using the manufacturer’s value 

(oxygen analyzer and load cell) for a cone calorimeter test of 38mm red oak at 40 kW/m2 

external heat flux. The uncertainty is 0.32 kJ/g, which is 3 times bigger than that (0.1 kJ/g) 

based on our calibration uncertainty. Since the average heat of combustion is the same, the 

normalized average heat of combustion uncertainty of manufacturer is also 3 times bigger 

than that based on our calibration uncertainty. 

 

CONCLUSIONS 

The measurement uncertainties of component instruments (direct measurement), load cell, 

oxygen analyzer, and laser were estimated based on NIST
10

 and ISO
11

 Guide. Pressure 

transducer, CO/CO2 analyzer, and thermocouples measurement uncertainties were determined 

by using manufacturer’s specification. The uncertainties of load cell, oxygen analyzer, and 
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laser were expressed by 95% confidence interval and the uncertainties of load cell and 

oxygen analyzer were smaller than those specified by manufacturers (there was no 

manufacturer specifications for laser.). The study initially standardized measurement 

uncertainty analysis for calorimetry apparatus measurement. 

 

Based on the uncertainties of component instruments, indirect measured parameter 

uncertainties were estimated. They are heat release rate, extinction coefficient, volume flow 

rate, extinction coefficient, smoke production rate, and heat of combustion. Uncertainty 

interval of 95% confidence was determined.  

 

All the uncertainty bands of direct and indirect measurement were validated by using Monte 

Carlo Simulation technique for sampling size of 10,000. It demonstrated that our uncertainty 

analysis methods were appropriate.  

 

The measurement uncertainty analysis showed that our laser doesn’t have the ability to 

differentiate obscuration related quantities. The theoretical approach for MLR uncertainty 

estimate is not available. The uncertainty is determined experimentally and statistically, and 

expressed by 95% confidence interval.  

 

R value analysis showed that, for our case, HRR uncertainty depend not only on oxygen 

concentration uncertainty, but also on C factor and heat of combustion per mass of oxygen. 

 

The HRR uncertainty and its normalized uncertainty were compared at different HRR levels 

among the current analysis, Enright et al12, manufacturer value, and NIST13. Current results 

are higher than that of Enright et al12 because different methods were used to estimate oxygen 
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concentration uncertainty. Current method is basically the same with NIST
13

. It also showed 

that the normalized HRR uncertainty is decreasing as the HRR increasing. The normalized 

uncertainty of current analysis at higher HRR level is consistent with NIST13.  

 

The data analysis for the HRR calibration at 1, 3, and 5 kW showed that the normalized HRR 

uncertainty based on component instrument calibration is consistency with the normalized 

HRR based on day-to-day variation. 
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ABSTRACT 

 

An important characteristic of composite material systems is the ability to “custom 

design” the system to meet performance criteria such as cost, durability, strength and / or 

reaction to fire. To determine whether a new system is an improvement over previous ones 

and can meet required performance criteria, sufficiently accurate and precise instruments are 

needed to measure the system’s material properties in bench scale testing.  Commonly used 

bench scale apparatuses are the cone calorimeter (Cone) and the FMGR fire propagation 

apparatus (FPA). For this paper, thermally “thin” and “thick” specimens of a natural 

composite, red oak, were tested in the Cone in an air environment and in the FPA in a 

nitrogen environment. Cone test data of two FRP composite systems from the previous work 

of Alston are also considered. The material reaction to fire properties were estimated 

considering both ignition and pyrolysis measurements made via the Cone and FPA. 

Investigation of the ultimate uncertainty of these material fire properties based on the 

intrinsic uncertainty of the component instruments (e.g. load cell) as well as the uncertainty 

introduced via use of a current ignition and pyrolysis model are considered.  

 

INTRODUCTION  
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       How a material reacts to the thermal insult from fire depends on properties of the 

material, such as: density of the virgin material and the char, heat conductivity of the virgin 

material and the char, heat capacity of the virgin material and the char, etc. Material reaction 

to fire is usually measured as heat release rate, mass loss rate, time to ignition, etc. These 

reactions to fire cannot be simulated for design purposes without knowing the properties of 

the material. To date there are limited databases of these properties for traditional building 

materials.  For composites there is even less available information on these properties. Since 

an important aspect of composite material systems is the ability to “custom design” the 

system to meet performance criteria, the ability to reliably measure the properties of these 

“custom systems” is of importance. According to Alston and Dembsey
1
, composites are being 

used in an ever increasing number of applications where reaction to fire is of importance. So, 

a methodology to estimate properties is critical. There are two steps to obtain the properties 

of a material: (1) bench scale testing; and (2) estimate properties by use of a pyrolysis model. 

The most widely used bench scale apparatuses are the cone calorimeter (Cone) and the 

FMGR fire propagation apparatus (FPA). The Cone test method is regulated in ISO 56602 

and ASTM E 13543 and has the measuring functions of heat release rate, mass loss rate, total 

heat released, effective heat of combustion, ignitibility, smoke obscuration, smoke production 

rate, specific extinction area and concentration of CO/CO2. The FPA test method is regulated 

in ASTM E 2058
4
 and has measuring functions of chemical heat release rate, convective heat 

release rate, flame spread, mass loss rate, effective heat of combustion, ignitibility, smoke, 

soot, toxic gases and total hydrocarbons. The test environment can be from 0% to 40% 

oxygen balanced with nitrogen.  

 

In this paper, we focus on determining how the test uncertainty causes the estimated 

properties’ variation. The time to ignition and mass loss rate history measured in the 



 B-3 

apparatuses were used to estimate material properties. The best estimate properties make the 

pyrolysis model simulations agree with the experiment for both the time to ignition and the 

subsequent transient mass loss rate of the material for different applied heat fluxes. 

        

BACKGROUND  

 

Traditionally, composite material reaction to fire is evaluated by using the “Steiner 

Tunnel test”, i.e., Standard Test Method for Surface Burning Characteristics of Building 

Materials, which is regulated as a standard test method in ASTM E 84
5
. The test measures 

material flammability by using a “flame spread index” and “smoke developed index”.  

However, it was demonstrated by Dembsey et al6 that the Steiner Tunnel test is not as good as 

bench scale apparatuses (Cone or FPA) to characterize the flammability of composites.  

 

An initial attempt to estimate the uncertainty of thermal inertia was conducted by Alston1. He 

used various ignition and pyrolysis models to estimate material properties for both a “thick” 

and  a “thin” composite material. He concluded that: “Although the techniques each showed 

differing results for effective thermal inertia for each material, the calculation uncertainties 

are too large to fully and accurately differentiate the two systems. It is unlikely that the 

techniques could differentiate between more subtle variations in material or skin thickness.” 

 

PYROLYSIS MODEL 

 

The mathematical modeling of charring solids has a long history dating back to the 

1950’s. Kung
7
 formulated and solved the classical mathematical model of wood pyrolysis. He 

concluded that the pyrolysis rate depends very strongly on the thermal conductivity of char, 

which has been proven to be a very important practical result. The problems of the model 
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were 1) not able to handle solids having very narrow pyrolysis fronts with steep density 

gradients; and 2) very long computation times. 

 

Field modeling based on the CFD methodology is playing a more and more important role in 

fire research. It has been quite successfully used in many different fire situations over the last 

two decades. Yan and Holmstedt8 developed a practical pyrolysis model and implemented it 

into CFD. The model uses well established physics suitable for engineering applications and 

achieves its exceptional speed by employing dual spatial meshes—a coarse mesh for the 

smoothly varying temperature field and a moving fine mesh for the steeply varying density 

field which moves with the pyrolysis front. It can be used in the complex cases such as those 

with transient incident heat flux and temperature-dependent material properties. It is 

generally applicable to charring and non-charring materials. The limitations of Kung’s model 

were overcome. 

 

By using essentially the same pyrolysis model, deRis9 and Yan10 developed an equivalent 

properties optimization program to analyse and fit bench scale test results. The program is 

able to determine the effective pyrolysis properties of a material which make pyrolysis model 

predictions agree with experiment for both the time to ignition and the subsequent transient 

mass loss rate of the material for different external heat fluxes. The algorithm is implemented 

in a 32-bit digital visual Fortran DLL for access by MS Excel spreadsheet front ends. The 

program essentially consists of two spreadsheets, i.e., ignition and pyrolysis. A spreadsheet 

supplies the Fortran program with 1) material properties, such as density of virgin and char, 

thermal conductivity of virgin and char, specific heat of virgin and char, pyrolysis 

temperature, pyrolysis rate coefficient, heat of vaporization, etc.; 2) transient external heat 

flux histories; 3) initial temperature and density profiles; and 4) program parameters. The 
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ignition spreadsheet returns with the calculated time to ignition at six different external heat 

fluxes. The pyrolysis spreadsheet returns with the calculated mass loss rate history at three 

different external heat fluxes. One needs to adjust the material properties so that calculated 

results agree with test data. The criterion for termination of the property estimation procedure 

(agreement) is: a) Peak mass loss rate (MLR) matches and; b) MLR residual, see Equation 1, 

is less than 2 g/m2s for n = 100 point interval located evenly throughout test duration. 

 

                                   MLR residual 
n

tMLRtMLR caltest

n
2

1

))()(( −

=
∑

                                 [1] 

 

SPECIMEN PREPARATION  

 

Red Oak (natural composite used for model calibration): Before testing, the red oak 

samples were conditioned in the laboratory at nominally 12% relative humidity and 23 °C 

until moisture equilibrium was reached. The moisture content was approximately 3%. The 

thickness of the samples was 38 mm and 2 mm. The samples were prepared such that the 

grain was perpendicular to the incident heat flux. 

 

Composite (Alston
1
): The two composite systems tested were chosen based on their thermal 

behavior and were previously tested at WPI. The typical end use configuration of FRP 

consists of thin outer skin layer(s) and a core material. The thermally “thick” material 

consisted of eight layers of 560808 glass with a vinyl ester (VEX) resin. The thermally “thin” 

specimen, typical of that used in fast ferry construction, consisting of a sandwich panel with 

one 560808 glass layer with vinyl ester (VEX) resin over a balsa core, was also tested to 

contrast its fire properties to the “thick”.  
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In terms of HRR, there are significant differences between the thermally “thin” and thermally 

“thick” composite systems. In Cone testing the peak HRR was about 400 kW/m2 for the 

thermally “thin” composite and 100 kW/m2 for the thermally “thick” composite. In room 

corner testing the “thick” and “thin” materials were subjected to a propane source fire of 30 

kW. The HRR of the “thick” composite was as low as about 60 kW on average. The HRR of 

the “thin” composite reached 1200 kW in 190 s, room flashover, such that the test had to be 

terminated.  

 

TEST SETUP 

 

An important aspect of the test setup is the sample holder. Theoretical predictions of 

ignition and pyrolysis in standard flammability apparatuses show that sample holder 

construction has large effect on the measurements such as time to ignition and mass loss rate 

especially for thermally thin samples11. To minimize the heat loss from the rear surface of the 

specimens, ceramic fiberboard, which has very low heat conductivity, was used, and, 

aluminum foil was used to wrap each of the specimens, covering sides and bottom, in order to 

minimize any mass transfer3. In the property estimation procedure two model parameters, 

rear heat transfer coefficient and rear thermal inertia, are used to represent the heat transfer 

from the specimens into the ceramic fiberboard.  Both of these values were fixed for all 

property estimations and their values were: rear heat transfer coefficient 5 W/m
2
K, and rear 

thermal inertia 430 J/m
2
Ks

-0.5
. 

  

For thermally thin specimens and the 2
nd

 peak of thermally thick specimens, when the 

pyrolysis front  approaches the rear surface, the insulating effects of the rear boundary allows 
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the specimen to vaporize with little further addition of heat
10

. Since the sample holder and 

rear boundary condition was not fully specified, it is unknown if the specimen actually lost or 

received heat through the sample holder. Thus, there are some uncertainties about MLR data 

for thermally “thin” and the 2nd peak of thermally “thick” specimens. In this paper, we ignore 

these uncertainties in the following analysis. 

 

Pyrolysis tests (in nitrogen environment) of the same thermally “thin” (2 mm) and “thick” (38 

mm) red oak specimens were also tested horizontally using the FPA. In order to make the test 

results comparable to those of Cone, we used the same sample holder and substrate as we did 

in Cone and the specimen was wrapped in aluminum foil. The nitrogen was supplied at the 

flow rate of 100 l/min. The sample is 100×100 mm square and the surface was blackened.  

 

PROPERTY ESTIMATION 

 

The measured reactions to fire of time to ignition and mass loss rate (MLR) at six 

different external heat fluxes for the “thin” and “thick” red oak, and the “thin” and “thick” 

composite were used to estimate properties. Since some of the tests were conducted in air 

environment, the flame heat flux feedback to the surface should be known. It is hard to 

estimate the heat feedback under lower external heat fluxes for thermally “thick” specimens 

because the flame is very small and not stable. Higher external heat fluxes (50 kW/m
2
 and 

above) were selected for thermally “thick” specimens so that the flames were observed above 

the cone heater and stable, i.e., flame feedback to the surface can be estimated to be 30 

kW/m
2
 according to Quintiere and Rhodes

12
. For the thermally “thin” specimens, both high 

and low external heat fluxes can be selected since the flame is high and stable so that the 

flame feed back can be estimated as 30 kW/m2. The estimated properties make pyrolysis 
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model predictions agree with experiment for both the time to ignition and the subsequent 

transient mass loss rate for different applied heat fluxes.  

 

1. ESTIMATION OF BASELINE PROPERTIES  

Baseline properties were estimated by using the test data without mass loss rate uncertainties. 

Red oak from the same tree should have a set of unique properties no matter whether the 

specimen is thermally “thick” or “thin”, and, no matter whether the specimen is tested in air 

or nitrogen environment. Thermally “thick” and “thin” red oak specimens were tested in both 

the Cone and FPA in air and nitrogen environment respectively. The properties of red oak 

were then estimated by using the pyrolysis model and compared with the literature values. 

The purpose is to calibrate the pyrolysis model since it was not tested extensively. It should 

be noted that the model takes the surface regression into account. The model is more suitable 

to apply to red oak. Surface regression was not obvious for the composite systems. 

1.1 Red Oak Tested in Air Environment Using Cone 

38 mm thickness red oak (which was identified as thermally “thick”) and 2 mm thickness red 

oak (which was identified as thermally “thin”) specimens were tested by using the Cone in air 

environment. Time to ignition tests were conducted at 30, 40, 50, 60, 70 and 80 kW/m2, and, 

mass loss rate tests were conducted at 60, 70 and 80 kW/m2 for the thermally “thick” 

specimens. Similar to thermally “thick” red oak, thermally “thin” red oak were tested at 20, 

22, 40, 60, 65, and 70 kW/m2 for time to ignition, and, also were tested at 60, 65 and 70 

kW/m2 for mass loss rate. The properties of thermally “thin” and “thick” red oak were 

estimated by using the pyrolysis model. These estimated properties make the calculated time 

to ignition and mass loss rate data agree with the test data. Figure B-1 shows the comparison 

of experimental mass loss rate history with the estimated one for thermally “thick” red oak 
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specimen subject to 60 kW/m
2
 external heat flux. Figure B-2 shows the comparison of 

experimental mass loss rate history with the estimated one for thermally “thin” red oak 

specimen subject to 20 kW/m2 external heat flux. Table B-1 shows the comparison of 

estimated properties (from thermally “thin” and “thick” red oak) with the literature values.  

 

 

Figure B-1 Measured and Calculated MLR Comparison for Thermally “Thick” Red 

Oak at 60 kW/m
2
 External Heat Flux in Air Using Cone 
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Figure B-2 Measured and Calculated MLR Comparison for Thermally “Thin” Red Oak 

at 20 kW/m
2
 External Heat Flux in Air Using Cone 
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Table B-1 Comparison of Estimated Properties (Using Cone Data in Air without 

Uncertainties) and Literature
13, 14, 15, 0

 Values of Red Oak. 

Properties 38mm 2mm Liter. 

Virgin Density (kg/m3) 675 675 660 

Char Density (kg/m3) 200 200 170 

Pyro. T (K) 720 720 600 

Pre-exponential coeff. (1/Ks) 0.00017 0.0003 N/A 

Vaporization Heat (kJ/kg) 680 600 N/A 

Surface Emmissivity 1 1 0.88-1 

Arrheniud E/R*T 20 20 N/A 

Critical Ign. MLR (g/sm2) 2 2 2-4 

Virgin Conductivity (W/mK) 0.16 0.16 0.15-0.21 

Virgin specific heat (J/kgK) 1500 1580 1400-1700 

Char conductivity (W/mK) 0.26 0.27 0.23 

Char specific heat (J/kgK) 3000 3000 2500 

 

    

1.2 Red Oak Tested in Nitrogen Environment Using FPA 

Pyrolysis tests (in nitrogen environment) for the same thermally “thin” (2 mm) and “thick” 

(38 mm) red oak specimens were also tested horizontally using the FPA. Three pyrolysis tests 

were conducted at 25, 35 and 50 kW/m2 for the thermally “thick” specimens. Ignition data 

from the Cone was also needed and taken at 20, 30, 40, 45, 50 and 60 kW/m2. Similar to 

thermally “thick” red oak, thermally “thin” red oak were tested at 25, 30 and 40 kW/m
2
 for 

the pyrolysis tests.  Ignition data from the Cone was also needed and taken at 20, 30, 40, 45, 

50 and 60 kW/m
2
. The properties of thermally “thin” and “thick” red oak were estimated by 

using the pyrolysis model. These estimated properties make the calculated time to ignition 
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and mass loss rate data agree with the test data. Figure B-3 shows the comparison of 

experimental mass loss rate history with the estimated one for thermally “thick” red oak 

specimen subject to 50 kW/m2 external heat flux. Figure B-4 shows the comparison of 

experimental mass loss rate history with the estimated one for thermally “thin” red oak 

specimen subject to 25 kW/m2 external heat flux. Table B-2 shows the comparison of 

estimated properties with the literature values.  

 

 

Figure B-3 Measured and Calculated MLR Comparison for Thermally “Thick” Red 

Oak at 50 kW/m
2
 External Heat Flux in nitrogen Using FPA. 
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Figure B-4 Measured and Calculated MLR Comparison for Thermally “Thin” Red Oak 

at 25 kW/m
2
 External Heat Flux in nitrogen Using FPA. 

 

 

The properties of red oak were estimated by using the pyrolysis model at different conditions, 

i.e., thermally “thin” and “thick” specimens tested in both air and nitrogen environments. 

From Table 1 and 2, it is found that most of the estimated properties are consistent between 

the different conditions and with literature values (maximum 25% variation). The exceptions 

are pre-exponential coefficient and vaporization heat.  There are no literature values for these 

properties.  Across the various conditions the pre-exponential coefficient varies by a factor of 

3.5 and the vaporization heat varies by a factor of 6.8. Given the consistency of the vast 

majority of the properties for red oak the model is considered to be working properly with an 

uncertainty of 25% or as noted above for pre-exponential coefficient and vaporization heat. 
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Table B-2 Comparison of Estimated Properties (Using FPA Data in nitrogen without 

Uncertainties) and Literature Values of Red Oak. 

Properties 38mm 2mm Liter. 

Virgin Density (kg/m3) 700 675 660 

Char Density (kg/m3) 200 200 170 

Pyro. T (K) 685 675 600 

Pre-exponential coeff. (1/Ks) 0.0003 0.0006 N/A 

Vaporization Heat (kJ/kg) 100 100 N/A 

Surface Emmissivity 1 1 0.88-1 

Arrheniud E/R*T 20 20 N/A 

Critical Ign. MLR (g/sm2) 2 2 2-4 

Virgin Conductivity (W/mK) 0.16 0.15 0.15-0.21 

Virgin specific heat (J/kgK) 1800 1500 1400-1700 

Char conductivity (W/mK) 0.19 0.18 0.23 

Char specific heat (J/kgK) 2500 2500 2500 

 

1.3 Composites Tested in Air Environment Using Cone 

Thermally “thin” and “thick” composite specimens were tested using the Cone in air 

environment, see Alston
1
. Time to ignition tests were conducted at 20, 35, 40, 50, 75, 85 

kW/m
2
, and, mass loss rate tests were conducted at 50, 75 and 85 kW/m

2
 for both of the 

thermally “thin” and “thick” composite specimens. The properties of thermally “thin” and 

“thick” composites were estimated by using the pyrolysis model. These estimated properties 

make the calculated time to ignition and mass loss rate data agree with the test data. Figure B-

5 shows the comparison of experimental mass loss rate history with the estimated one for 

thermally “thick” composite specimen subject to 50 kW/m2 external heat flux.  Figure B-6 
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shows the comparison of experimental mass loss rate history with the estimated one for 

thermally “thin” composite specimen subject to 50 kW/m2 external heat flux.  

 

 

Figure B-5 Measured and Calculated MLR Comparison for Thermally “Thick” 

Composite at 50 kW/m
2
 External Heat Flux in Air Using Cone. 

  

 

 

Figure B-6 Measured and Calculated MLR Comparison for Thermally “Thin” 

Composite at 50 kW/m2 External Heat Flux in Air Using Cone. 
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Table B-3 shows the estimated properties of both thermally “thin” and “thick” composites. 

Using the model uncertainty estimates noted above, we find that all but one of the properties 

are consistent with the differences between the material systems or have variations consistent 

with the model uncertainty. The one exception is the char specific heat which is inconsistent 

with the virgin material specific heat. 

Table B-3 Comparison of Estimated Properties of Thin and Thick Composites 

Properties Thin Composite Thick Composite 

Virgin Density (kg/m
3
) 500 2000 

Char Density (kg/m
3
) 150 200 

Pyro. T (K) 655 825 

Pre-exponential coeff. (1/Ks) 0.0003 0.001 

Vaporization Heat (kJ/kg) 800 900 

Surface Emmissivity 1 1 

Arrheniud E/R*T 20 20 

Critical Ign. MLR (g/sm
2
) 4 4 

Virgin Conductivity (W/mK) 0.3 0.55 

Virgin specific heat (J/kgK) 2000 1200 

Char conductivity (W/mK) 0.3 0.5 

Char specific heat (J/kgK) 1500 2000 

 

 

2. PROPERTY ESTIMATION WITH MLR UNCERTAINTY 

In Section 1 (Estimation of Baseline Properties), the baseline properties of red oak were 

estimated without uncertainty of mass loss rate. Next we will investigate how the estimated 

thermal properties change according to the uncertainty of mass loss rate and the time to 

ignition. Please note that the uncertainty of time to ignition is a matter of one second, which 
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won’t cause significant change of the estimated thermal properties. Therefore, we only 

consider the uncertainty of MLR. 

 

2.1 MLR and Its Uncertainty Calculation 

2.1.1 MLR Calculation 

Mass loss rate (MLR) is calculated using 5-point numerical differentiation method 

recommended by ASTM E-1354
3
: 

 

                                              
t

mmmm
MLR iiii

∆

+−+−
= ++−−

12

88 2112                                         [2] 

 

where: t∆  is 1 second. 

 

2.1.2 Uncertainty of MLR Calculation 

In the burning test, the mass decreases as the time increases, i.e., it should be identified as a 

time series measurement. Time series is defined as an ordered sequence of values of a 

variable at equally spaced time intervals17. For now, MLR uncertainty was determined 

experimentally (statistically). Five similar PMMA burning tests were replicated. We found 

that the extreme mass loss rate uncertainty of the steady state burning duration is 6 g/m
2
s. 

Assuming the MLR at steady state burning duration is normally distributed, we conclude that 

there is 68% confidence of one SD (2 g/m
2
s) interval and 95% confidence of two SD’s (4 

g/m
2
s) interval. Figure B-7 illustrates two different uncertainty bands of MLR, i.e., one SD 

band and two SD band. 
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Figure B-7 MLR and Its Uncertainty Bands for Thermally “Thick” Composite at 50 

kW/m
2
 External Heat Flux in Air Using Cone Calorimeter. 

 
 

The uncertainty of MLR plus the original MLR is the upper limit of the MLR, while the 

original MLR minus the uncertainty of MLR is the lower limit of the MLR. It was noticed 

that the average mass loss rate of thermally “thin” red oak and composite were in the range of 

10-15 g/m2s and that of thermally thick were in the range of 5-10 g/m2s. We found that the 

extreme MLR uncertainty 6 g/m2s is too big to implement property estimation for the current 

pyrolysis model. The estimated properties were totally different from the baseline properties, 

which was meaningless for the study. In some cases, there was no set of properties that made 

the calculated results agree with the test data.  

 

As a convention, two SD is used to express an uncertainty in engineering application 

according to ISO
18

 and NIST
19

 guide. Therefore, we would like to use 4 g/m
2
s as the 

uncertainty of MLR and implement the property estimation for the current model. 

Unfortunately, 4 g/m2s still doesn’t work. The average MLR of thermally thick red oak and 

composite is in the range of 5-10 g/m2s. Two SD, 4 g/m2s, is 40% to 80% of the average 
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MLR. At this level of uncertainty the model does not work properly. In use of the pyrolysis 

model, we found that one SD, i.e., 2 g/m2s of MLR uncertainty (20% to 40% of the average 

MLR), can be used to estimate the red oak and composite properties without any problems by 

using the current pyrolysis model. We will use this mass loss uncertainty to estimate the red 

oak and composite properties’ variation. 

 

2.2 Property Estimation with One Standard Deviation of MLR 

In general, the mass loss rate of thermally “thin” material is governed by the pre-exponent 

coefficient and the pyrolysis heat, while the mass loss rate of thermally “thick” material is 

governed by the virgin and char thermal conductivities9. These four properties are defined as 

the “key” properties in the current study. 

 

Since the uncertainty of time to ignition is ignored, the original test data will still be used. 

Mass loss rate uncertainty plus the original mass loss rate is the upper limit mass loss rate. 

Original mass loss rate minus mass loss rate uncertainty is the lower limit of mass loss rate. 

The properties of red oak and composite were estimated by using the pyrolysis model. These 

estimated properties make the calculated time to ignition and mass loss rate data agree with 

the test data of time to ignition and upper/lower limit of mass loss rate respectively. 

2.2.1 Red Oak Tested in Air Environment Using Cone and in Nitrogen Environment 

Using FPA  

When the estimated properties variations are considered based on the upper and lower bounds 

of the MLR, the comparisons of the “worst” estimations (biggest difference from the baseline 

values) of the four “key” properties with the baseline values are shown in Table B-4.  The 
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variations of the four “key” properties are within the model uncertainty estimates noted 

above. 

Table B-4 Comparisons Between the “Worst” Estimations and the Baseline Values for 

Red Oak. 

 Pre-

exponential 

coeff. (1/Ks) 

Pyrolysis 

Heat (kJ/kg) 

Virgin 

Cond. 

(W/mK) 

Char cond. 

(W/mK) 

Baseline 

thick 

0.00017 680 0.16 0.26 

Worst est. 0.0003 680 0.17 0.23 

Variation Factor of 1.8 Factor of 0 6% 10% 

Baseline thin 0.0003 600 0.16 0.27 

Worst est. 0.0006 680 0.18 0.29 

Using Cone 

in Air 

Variation Factor of 2 Factor of 1.1 10% 7% 

Baseline 

thick 

0.0003 100 0.16 0.19 

Worst est. 0.0002 200 0.17 0.21 

Variation Factor of 0.7 Factor of 2 7% 10% 

Baseline thin 0.0006 100 0.15 0.18 

Worst est. 0.0005 150 0.14 0.20 

Using FPA 

in N2 

Variation Factor of 0.8 Factor of 1.5 7% 11% 

 

2.2.2 Composites Tested in Air Environment Using Cone 

When the estimated properties variations are considered based on the upper and lower bounds 

of the MLR, the comparisons of the “worst” estimations of the four “key” properties with the 
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baseline values are shown in Table B-5. Similar to the red oak the variations of the four “key” 

properties are within the model uncertainty estimates noted above. 

Table B-5 Comparisons Between the “Worst” Estimations and the Baseline Values for 

FRP Composite. 

 Pre-exponential 

coeff. (1/Ks) 

Pyrolysis Heat 

(kJ/kg) 

Virgin Cond. 

(W/mK) 

Char cond. 

(W/mK) 

Baseline 

thick 

0.0001 900 0.55 0.5 

Worst est. 0.0001 1200 0.6 0.55 

Variation Factor of 0 Factor of 1.3 12% 10% 

Baseline 

thin 

0.0003 800 0.3 0.3 

Worst est. 0.0005 1000 0.27 0.27 

Variation Factor of 1.7 Factor of 1.2 10% 10% 

 

CONCLUSIONS 

 

An important characteristic of composite materials is the ability to “custom design” 

the system.  To be able to properly measure the properties of the material, sufficiently 

accurate and precise instruments and models are needed.  In this work the Cone and FPA 

along with a current ignition and pyrolysis model were evaluated.  The evaluation considered 

a natural composite, red oak, and two FRP composites.  The measurement systems 

(apparatuses and model) were able to estimate properties of the red oak that were consistent 

with literature values as well as estimate reasonable properties for the two composites.  An 

important aspect of simulating fires for design is to know the uncertainties of the material 

properties.  Consideration of the measured mass loss rate uncertainty at the one standard 
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deviation level showed that the current model could estimate properties and that their 

uncertainties were consistent with those inherent of the model.  Considering the two standard 

deviation level of mass loss rate uncertainty (recommended by ISO18 and NIST19) stable and 

reasonable property sets could not be estimated. Future work needs to focus on either 

lowering the mass loss rate uncertainty or development of more robust models so that 

property uncertainties can be more reliably estimated. 
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APPENDIX C DERIVATION OF WELCH-SATTERTHWAITE 

FORMULA1,2 
 

1. RELATIONSHIP BETWEEN DISTRIBUTIONS 

1-1 Normal and Standard Normal Distribution 

If ),(~ 2δµNX , δµ /)( −= XZ  has a standard normal distribution. This is established by 

writing 
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δ
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x
t  

1-2 Standard Normal and Chi Squared Distribution 

Let X have the standard normal distribution 
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We consider the distribution of 2
XY = . By transformation 
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So, the probability density function (pdf) of Y is a chi squared distribution with 1 degree of 

freedom. Denote 2

)( pχ  as chi squared distribution with p degrees of freedom.  
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1-3 Summation of Chi Squared Distribution 

Let nXX ,...1  are independent and 2~
ipiX χ . We consider the distribution of 

nXXY ++=′ ...1 . From the moment generation function of chi squared distribution, we 

obtain 
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It is obvious that Y ′  has a chi squared distribution with )...( 1 nPP ++ degrees of freedom 

( 2

)...( 1 nPp ++χ ).  

1-4 Standard Normal, Chi Squared and Student’s t Distribution 

We can get Student’s vt distribution from the ratio of a standard normal variable to an 

independent variable distributed as vv /2χ . 
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idd

v+ ,

vX

X

v

i

i

v

∑
=

+

1

2

1  is a vt distribution. 
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2  has a Chi square( v ) distribution, 

while 1+= vXU  is a N(0,1) and independent of W. The joint pdf of U and W is 
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Now make the transformation 
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The Jacobian of the transformation is vt /2 , and the marginal pdf of 1t  is given by 
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Recognize the integrand as the kernel of a gamma ,2/)1(( +v  ))/1/(2 2
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2. W-S FORMULA DERIVATION 

Let nxx ,...,1  be a random sample from a normal distribution ),( 2δµn , then  
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Since )1,0(~ N
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u i

i
δ

−
= , i.e., standard normal distribution, we obtain 2
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Define 

 

                                                   ∑=+⋅⋅⋅+=
k

iikk sasasaS
1

222

11

2
                                         (8) 

 

where the ia  are known constants (e.g. 2)(
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We propose to approximate the distribution of 2S  by 2R , which has a chi squared 

distribution with degrees of freedom of f ′ , 2

)( f ′χ , so that they have the same expected value 

and variance. 
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Generally, for chi squared distribution, 
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Equating (9) and (11) 
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APPENDIX D  C-FACTOR DETERMINATION1 

 

C factor, i.e., the flow coefficient, is the relative measure of the fluid flow ability of the 

orifice in the exhaust duct. The flow coefficient is determined by the volume flow rate 

through the orifice and the pressure difference across the orifice. When holding the inlet and 

outlet pressures constant, the flow coefficient of a given orifice should be a constant. Figure 

D-1 shows the vertical part of the exhaust duct of cone calorimeter with orifice plate and the 

pressure ports.     

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D-1 Illustration of the Vertical Part of the Exhaust Duct of Cone Calorimeter 

with Orifice Plate and Pressure Ports 
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Since the fluid speed in the duct is sufficiently subsonic (<0.3mach), the incompressible 

Bernoulli’s equation describes the flow reasonably well. Applying this equation to the fluid in 

duct (ignore gravitational force): 

 

2

2

2

121 5.05.0 VVPPP ρρ −=−=∆  

 

Along with the continuity equation 

 

2211 VAVA =  

 

The volumetric flow rate can be can be calculated as: 
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1

2
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AQ

e −
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ρ
 

 

Where: A1 is the inside diameter of duct (m
2
); 

             A2 is the diameter of the orifice (m
2
); 

P1 is the pressure of upstream fluid (Pa); 

P2 is the pressure of downstream fluid (Pa); 

Q is the volumetric flow rate in the duct (m3/s); 

V1 is the velocity of upstream fluid (m/s); 

V2 is the velocity of downstream  fluid (m/s); 

eρ  is the density of the fluid in the duct (kg/m3); 
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The above equation applies only to perfectly laminar, inviscid flows. For the fluid in the duct 

of cone calorimeter, viscosity and turbulent are present and act to convert kinetic energy into 

heat. To account for this effect, a discharge coefficient Cd is introduced in to the above 

equation to marginally reduce the flow rate Q. Also, since the value of 2

1

2 )(
A

A
 is very small, 

we ignore that in the equation: 

                                                     
e

d

P
ACQ

ρ

∆
=

2
2                                                      (1) 

It is assumed that the exhausted fluid in the duct of cone calorimeter has the same properties 

as air and behaves as ideal gas. The density of the fluid can be calculated as: 

                                                        ee TT /00ρρ =                                                        (2) 

Where:  

=0ρ 1.29 kg/m3 

=0T 273 K 

The mass flow rate can be calculated as: 

                                              
ee

ed
T

C
P

ACm
ρ

ρ
ρ

∆
=

∆
=

⋅ 2
2

                                        (3) 

The constant C value in equation (3) is the C Factor of the cone calorimeter.  
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APPENDIX E LASER PHOTODIODES POWER CYCLE 

INVESTIGATION 
 

There is a power variation in the laser photodiodes. The variation will definitely affect the 

uncertainty of the laser measurements. To investigate the nature of the power variation, three 

groups of test were conducted at different obscuration levels, i.e., 0%, 16%, 48%, and 100%. 

These obscuration levels are routinely checked in our day-to-day calibration activities. In all 

the tests, output voltage was collected once per second. 

 

In the first group of test, the voltages were collected for 1800s for each reference obscuration 

level. Four files were created. In the second group test, start a data file and check various 

obscuration levels for 0%, 16%, 48%, and 100% for back to back 300 seconds 

periods.  "Randomly" vary which obscuration is used for each 300-second period. After about 

6000 seconds stop and close the data file. The third group data was randomly selected from 

the day-to-day calibration files. In the day-to-day calibration, voltage output of the reference 

obscuration was recorded for 60s. The power cycle phenomenon of the laser can be 

illustrated by Figure E-1 through Figure E-4. The four Figures were drawn by using the data 

from the first group. 
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Figure E-1 Power Cycle Illustration of Main Photodiode at 16% Reference Obscuration 

 

 

Figure E-2 Power Cycle Illustration of Compensation Photodiode at 16% Reference 

Obscuration 
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Figure E-3 Power Cycle Illustration of Main Photodiode at 100% Reference 

Obscuration 

 

 

Figure E-4 Power Cycle Illustration of Compensation Photodiode at 100% Reference 

Obscuration 

 

The average and standard deviation of the output voltage are shown in Table E-1 and Table 

E-2. The standard deviation is illustrated in Figure E-5 and Figure E-6. 
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Table E-1 Average and Standard Deviation of Output Voltage of Main Photodiode 

Test Period Reference 

Obscuration 

Average (v) Standard Deviation 

(v) 

0% -0.0041 0.0031 

16% 0.4780 0.0199 

48% 1.1979 0.0231 

 

1800s 

 

100% 2.5289 0.0461 

0% -0.0044 0.0029 

16% 0.4660 0.0124 

48% 1.2260 0.0262 

 

300s 

100% 2.5460 0.0324 

0% -0.0034 0.0026 

16% 0.5155 0.0031 

48% 1.5732 0.0047 

 

60s 

100% 3.424 0.0155 
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Table E-2 Average and Standard Deviation of Output Voltage of Compensation 

Photodiode 

Test Period Reference 

Obscuration 

Average (v) Standard Deviation 

(v) 

0% -0.0019 0.0011 

16% 1.0181 0.0412 

48% 2.5185 0.0473 

 

1800s 

 

100% 5.2474 0.0954 

0% -0.0020 0.0010 

16% 0.9862 0.0248 

48% 2.5741 0.0540 

 

300s 

100% 5.2957 0.0665 

0% -0.0002 0.0008 

16% 1.0416 0.0016 

48% 3.1979 0.0092 

 

60s 

100% 6.6893 0.0332 

 

As seen in Figure E-5 and Figure E-6, the standard deviation of 60s has the smallest values at 

each reference obscuration. The reason for this is that 60s collected data is only a part of a 

period. The uncertainty analysis based on 60s data collection should be an underestimate. 

However, the uncertainty of laser (based on 60s data collection) propagates to related 

quantities, such as extinction coefficient, specific extinction area, and results in too big 

uncertainties for these quantities (These can be found in the corresponding Sections in the 

paper). The laser used in the cone calorimeter in the Fire Lab at WPI doesn’t have the ability 

to differentiate obscuration related quantities. Therefore, a stabilized laser is needed. 
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Figure E-5 Output Voltage Standard Deviation of Main Photodiode at Different 

Reference Obscuration Level 

 

 

Figure E-6 Output Voltage Standard Deviation of Compensation Photodiode at 

Different Reference Obscuration Level
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APPENDIX F A HYPOTHETICAL CALIBRATION FOR 

OXYGEN ANALYZER 
 

The oxygen analyzer is calibrated hypothetically at two points 15% and 25% oxygen. 

Suppose we have two gas bottles with the oxygen concentration of 15% and 25% respectively. 

The oxygen concentration uncertainty specified by the manufacturer is ±0.05% oxygen. The 

uncertainty of the voltage output for 15% and 25% oxygen concentration is assumed to be the 

same as we measured from 20.9% oxygen concentration.  

 

Since the paramagnetic oxygen analyzer was inherently linear by design based on its 

transducer and the function was represented by 

 

bmVO +=%2  

 

where m is slope determined by 

zerospan

zerospan

VV

OO
m

−

−
=

%% 22
 

 b is intercept determined by 

zerospan

zerospanspanzero

VV

VOVO
b

−

−
=

%% 22
 

 

%2zeroO  and %2spanO  are defined as accepted value of the reference materials at 15% and 

25% oxygen, zeroV  and spanV  are corresponding oxygen analyzer voltage output at 15% and 

25% of oxygen concentration. The standard uncertainty of m and b is estimated according to 

the Law of Propagation of Uncertainty in ISO Guide
1
 and NIST Guidelines

2
. 
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The covariance terms were eliminated since the error sources were uncorrelated, i.e., the 

measurements didn’t share errors from identical sources. Each )( ixu  was a standard 

uncertainty of above four direct measured quantities. Standard uncertainty is the uncertainty 

of the result of a measurement expressed as a standard deviation. The standard uncertainty of 

voltage output was estimated as 
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Where: N was times the voltage output recorded (60 for our case) 
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Since the uncertainty of each variable is known, i.e., =)( zeroVu
5109.4)( −×=spanVu  are 

oxygen analyzer voltage output standard uncertainty at 15% and 25% oxygen respectively; 

%03.0%)( 2 =zeroOu  and %03.0%)( 2 =spanOu  are oxygen concentration standard uncertainty 

at 15% and 25% oxygen concentration respectively. The data are from a typical day-to-day 

calibration case. The standard uncertainty of m and b was estimated as 
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The standard uncertainty of oxygen measurement result can be represented as 

 

)(%)( 2 bmVkOu p δδ +=  

 

A typical calculation showed that δm was approximated as 0.000106 volume fraction of 

oxygen per volt, and δb as 0.000875 volume fraction of oxygen for standard uncertainty. In 

our day-to-day calibration, the sampling size is 60 at both of zero and span point.  

 

If a physics quantity y (for now, y is m or b) is not measured directly, but is determined from 

n other statistically independent quantities nxx ,...1  through a functional relationship f : 

),...( 1 nxxfy = , 

based on ISO1 and NIST2, the coverage factor pk  of the expanded uncertainty 

( )( yukU cp= ), which defines an interval having p level of confidence (p is usually selected 

to be 95%). pk  was defined by Student’s t distribution based on effν  number of effective 

degrees of freedom. The effective degrees of freedom was estimated by Welch-Satterthwaite 

formula 
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Where iν  is the degrees of freedom of )( ixu  and usually 1−= nvi , n is the sampling size.  
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The effective degrees of freedom calculated by using Welch-Satterthwaite formula was about 

60 for both of m and b. Then, 2 was taken as the coverage factor for interval of 95% 

confidence, the uncertainty was expressed as 

 

)000875.0000106.0(2%)( 2 +×= VOu  

 

The uncertainty is bigger than that based on 0% and 20.9% calibration. 
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APPENDIX G STANDARD DEVIATION OF UNIFORM 

DISTRIBUTION1 
 

The continuous uniform distribution is defined by spreading mass uniformly over an interval 

[a, b]. Its probability density function (pdf) is given by 
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−

=
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),(        if ],[ bax ∈ , otherwise the pdf is 0. 

 

The expected value or mean of random variable X is 
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For each integer n, the nth moment of X, '

nµ , is 

 

n

n EX='µ  

 

The nth central moment of X, nµ  is 

 

n

n XE )( µµ −= , 

where EX== '

1µµ  

 

The variance of a random variable X is the second central moment, 

2)( EXXEVarX −= . The positive square root of VarX is the standard deviation of X. 

For the uniform case,  
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APPENDIX H  CONE VIs INTRODUCTION 
 

The cone calorimeter is a fire instrument based on the principle of oxygen consumption 

calorimetry.  All data is acquired via the NI data acquisition system.  This data is gathered 

using Virtual Instruments or VIs.  A set of VIs for measurement uncertainty analysis is 

developed to allow a user to operate the cone calorimeter from start-up to shutdown. Overall 

uncertainty analysis methods described in Appendix A are implemented in the VIs. At the 

end of each test, VIs reports all the engineering units with their 95% confidence interval of 

component instruments and indirect measured quantities. 

 

The process of calibration and testing is incorporated into one main VI, ConeDAQ_uncer2.vi.  

This overall VI is broken down into the following for ease of understanding and operation: 

� Calibration (Calibration Procedure 1) 

� C Factor (Calibration Procedure 2) 

� Test 

� Post-test/Shutdown 

The details of each subVI are described as following: 

� Calibration (Calibration Procedure 1) 

1. Pre-Test/Warm Up 

Complete the checklist and tick at the end of each item. Make note(s) of any maintenance in 

the left bottom box. Press Shift+Enter to continue. 

2. Change Parameter? 

Input a new value for any listed parameters that user wants to change. Press Save button to 

continue. 

3. Smoke Calibration 
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Four levels of reference obscuration, 0%, 16%, 48%, and 100%, are included in the 

procedure. After the beginning of each obscuration check, press the red Record button, which 

stops the data collection after 60s. At the end of the calibration, the calibration factors and the 

uncertainty of laser show up. If you accept the value, press Done, otherwise, press repeat to 

redo the procedure. 

Algorithm 

The algorithm of this procedure is based on the “Laser” in “Uncertainty Analysis of 

Component Instrument” Section in Appendix A. 

4. Load Cell 

Six levels of reference weight, 0g, 50g, 100g, 150g, 200g, and 230g, are included in the 

procedure. After the beginning of each check, press the red Record button, which stops the 

data collection after 60s. At the end of the calibration, the current calibration factors and their 

uncertainty, manufacturer calibration factors, and the uncertainty of load cell show up. If you 

accept the value, press Done, otherwise, press Repeat to redo the procedure. 

Algorithm 

The uncertainty of load cell is based on the “Load Cell” in “Uncertainty Analysis of 

Component Instrument” Section in Appendix A. 

5. Specimen Height 

Complete the checklist and tick at the end of each item. Press Complete button to continue. 

� C Factor (Calibration Procedure 2) 

1. Duct Flow and Temperature 

Zero and span conditions are checked for pressure transducer. Compare the output voltage 

with the given range. Compare the reported temperature with the ambient temperature. At the 

end of the calibration, if you accept the value, press Done, otherwise, press Repeat to redo the 

procedure. 
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2. Oxygen Analyzer 

Zero and span conditions are included in the procedure. After the beginning of each check, 

press the red Record button, which stops the data collection after 60s. At the end of the 

calibration, the current calibration factors and their uncertainty, and manufacturer calibration 

factors of oxygen analyzer show up. If you accept the value, press Done, otherwise, press 

Repeat to redo the procedure. 

Algorithm 

The uncertainty of load cell is based on the “Oxygen Analyzer” in “Uncertainty Analysis of 

Component Instrument” Section in Appendix A. 

3. CO/CO2 Analyzer 

Zero and span conditions are checked for CO/CO2 analyzer. Compare the output voltage with 

the given range. At the end of the calibration, if you accept the value, press Done, otherwise, 

press Repeat to redo the procedure. 

4. Methane Calibration 

Complete each item and then make a tick at the end of the item. In this procedure, three levels 

of heat release rate, i.e., 1 kW, 3 kW, and 5 kW, are obtained as standards by burning 

methane. The heat release rates along with their uncertainties are also calculated based on the 

C factor value of 0.043 by oxygen consumption theory. At the end of the procedure, the 

calculated heat release rate and their uncertainties show up. Compare the calculated results 

with the standards. If you accept the value, press Done, otherwise, press Repeat to redo the 

procedure. 

Algorithm 

The uncertainty of heat release rate calculation is based on the “Heat Release Rate” in 

“Uncertainty Analysis of Indirect Measurement” Section in Appendix A. 

� Cone Calorimeter (Test Procedure) 
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Press the circle button of “Time of Shutter Open”, “Time of Ignition”, “Time of Flame Out”, 

and “Time of Clean Air” accordingly to conduct the test procedure. To finish test, press the 

red STOP button. 

Algorithm 

The algorithm in the test procedure is based on Appendix A. 

� Post-Test 

Complete the checklist and tick at the end of each item. Press Complete button to end the 

overall test.
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APPENDIX I LOAD CELL SYSTEM AND LASER SYSTEM 

RESPONSE TIME 
 

Load cell system refers to the devices from load cell all the way to the computer. Laser 

system refers to the devices from laser all the way to the computer.  

 

1. Laser System Response Time 

Tests were conducted by using the reference obscurations of 0% and 100%. The obscurations 

were tested one and the other at the scan rate of 0.2s per scan. Zero seconds response time 

was found for the laser system, see Figure I-1 and Figure I-2. 

 

 

Figure I-1 Main and Compensation Photodiodes Response Time shown by Changing 

from 100% Obscuration to 0% Obscuration 
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Figure I-2 Main and Compensation Photodiodes Response Time shown by Changing 

from 0% Obscuration to 100% Obscuration 

 

2. Load Cell System 
 

Tests were conducted by using two 50g reference weights. One of the weights stayed on load 

cell during the test. The other weight was gently dropped and taken away. The test was 

repeated for several times. The scanning rate is 0.2s per scan. It was found that the response 

time of load cell system was 0.4s to 0.6s, see the Figure I-3 and Figure I-4. 
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Figure I-3 Load Cell System Response Time by Weight dropped on the Load Cell 

 

 

Figure I-4 Load Cell System Response Time by Weight Taken Away from the Load Cell 
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APPENDIX J JUSTIFICATION OF UNCERTAINTY 

PROPAGATION EQUATION1 
 

Suppose that, in order to find a value for the function q(x, y, …), we measure the quantities x, 

y, …, several times, obtaining n pairs of data, (x1, y1, …), …, (xn, yn,…). From the data, we 

can compute the mean [x], [y], …, standard deviation of x, y, … values δx, δy, …. Also, 

using the data, we can compute n values of the quantity of interest 

 

,...),( iii yxqq =  

 

Given iq , we can now calculate their mean [q], and the standard deviation δq. 

We consider that all the uncertainties are small so that it may be represented by the first few 

terms in a Taylor series expansion of q about points x, y, …. 
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In this expression the partial derivatives are taken at the point [x], [y],…. 

The best estimation of q can be taken as the average of iq  
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So, 

∑ =− 0])[( xxi  

 

Thus we have the simple result 

 

                                                             [q]=q([x], [y], …)                                               (2) 

 

The standard deviation of q is calculated as 
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where: xδ is the standard deviation of x 

yδ  is the standard deviation of y 

∑ −−= ])[])([(
1

yyxx
n

iixyδ is called covariance of x and y. 

 

Discussion 1 

If the uncertainties of x, y,… are independent and random, on the average, we should expect 

to find equal distributions of positive and negative values for each the covariance term in 
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equation (3). Therefore, we should expect the term to vanish in finite number of observations. 

This is often a reasonable approximation and equation then reduces to 
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Discussion 2 

If the measurements of x, y, … are not independent, then covariance need not to be zero. For 

instance, it is easy to imagine a situation where an overestimate of x will always be 

accompanied by an overestimate of y, …, and vice versa. The value of covariance will always 

be positive. When the covariance is not zero, we say that the errors in x and y are correlated. 

 

Suppose an arbitrary number t and consider the function 
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Since A(t) is positive whatever the value of t, the minimum value Amin can be found by 

setting its derivative dA/dt equal to zero, and this Amin is still greater than or equal to zero. 
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Amin will be obtained when dA/dt equal to zero, i.e., 
2

y
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Equation (3) then can be rewritten as 
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Whether or not the errors in x, y, … are independent , and whether or not they are normally 

distributed, the uncertainty in q will never exceed the RHS of equation (5). 
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APPENDIX K  HRR UNCERTAINTY BASED ON METHANE 
 

The methane mass flow meter was manufactured by Teledyne Hastings-Raydist. The 

accuracy is 1% of full scale (0-25 SLPM). The manufacturer’s calibration factor is 

xy 0833.0= . y  is the flow rate in l/s, x  is the voltage output in volt. We assume the voltage 

output is normally distributed and manufacturer specified uncertainty has 95% confidence. 

The standard uncertainty is estimated as 0.00208 l/s (25*1%/60/2). Gas phase methane 

density at 1.013 bar and 25C is 0.657 g/l. Therefore, the standard mass flow rate uncertainty 

is 0.00137 g/s (0.00208*0.657). 

 

The purity of the methane in bottle is at least 99.5% based on ASTM E 1354
1
. We assume 

methane concentration has uniform distribution with 99.75% average concentration in the 

range of 99.5% to 100%. The heat of combustion of methane is 50 kJ/g. The standard 

uncertainty is 0.072 kJ/g (50*0.5%/2/ 32/%5.050× 2,3
). 

 

HRR based on methane flow rate is determined as 

 

HoCteMassFlowRaCHHRR ×=)( 4  

 

With the standard uncertainty of mass flow rate and heat of combustion estimated above, the 

HRR uncertainty can be estimated by using the following equation of Law of Propagation of 

Uncertainty recommended by ISO and NIST Guide2,3  

 

22 )*)(()*)(()( teMassFlowRaHoCHoCteMassFlowRaHRRu δδ +=  
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where )( teMassFlowRaδ  and )(HoCδ  are the standard uncertainty of mass flow rate and 

heat of combustion respectively. 

 

Then, the HRR uncertainty with 95% confidence is pressed as )(2 HRRu , where 2 is the 

coverage factor of 95% confidence with large degrees of freedom. 

 

Based on above information the HRR uncertainty with 95% confidence from methane is 

calculated as a constant 0.14 kW for 1, 3, and 5 kW of HRR.  
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APPENDIX L BACKGROUND OF UNCERTAINTY 

ANALYSIS RELATED TO RECOMMENDED 

METHODOLOGIES 
 

In the field of measurement uncertainty analysis, National Bureau of Standards (now NIST) 

has provided leadership dating all the way back to Mayo Hershey in 19111. Then, scientists 

from NIST and other organizations have provided a wealth of noteworthy papers and reports 

on this topic. However, they encountered a big challenge when trying to reach a consensus on 

the expression of uncertainty. The vast majority of NIST measurement results are 

accompanied by quantitative statements of uncertainty, but there has never been a uniform 

approach at NIST to the expression of uncertainty
2
. Similarly, the world’s highest authority in 

metrology CIPM (International Committee for Weights and Measures) also recognized the 

lack of international consensus on the expression of uncertainty in measurement. Both 

organizations decided to make their contributions to resolve this problem. In 1977, CIPM 

requested BIPM (International Bureau of Weights and Measures) to address the problem in 

conjunction with the national standards laboratories and to make a recommendation. A 

working group on the Statement of Uncertainties, which was attended by experts from 11 

national standards laboratories, developed Recommendation INC-1 (1980), Expression of 

Experimental Uncertainties. The CIPM approved the Recommendation in 1981 and 

reaffirmed it in 1986. The latest ISO Guide3 establishes general rules for evaluating and 

expressing uncertainty in measurement that are intended to be applicable to a broad spectrum 

of measurements. The basis of the Guide is Recommendation 1 (CI-1981) of CIPM and 

Recommendation INC-1 (1980) of the working group on the Statement of Uncertainties. The 

Guide was prepared by a joint working group consisting of experts nominated by the BIPM, 

IEC (International Electrotechnical Committee), ISO and OIML (International Organization 

of Legal Metrology). Instead of categorizing uncertainties as either systematic (bias) or 
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random (precision), the uncertainty is divided into type A and type B uncertainties in the 

current Guide. Later, NIST Ad Hoc Committee on Uncertainty Statements was established in 

1992 to address this issue. Then, the first edition of NIST Technical Note (TN 1297), i.e., 

NIST uncertainty standard4 was initially published in 1993. The latest 1994 edition was 

published in order to recognize the official publication of the ISO Guide to the Expression of 

Uncertainty in Measurement on which TN 1297 is based2. The 1994 edition is in full 

harmony with the ISO standard. The guide uses expanded uncertainty U  to report the results 

of all NIST measurements other than those for which standard deviation ( )(yU c ) has 

traditionally been employed. To be consistent with current international practice, the 

coverage factor value pk  ( )(yUkU cp= ) is, by convention, 2=pk for large sampling size 

( 10≥N )5. Values of pk other than 2 are determined by using Student’s t distribution with p 

level of confidence and effv  degrees of freedom. effv  was estimated by using Welch-

Satterthwaite formula 2,6. 

 

ISO 110957 introduces a methodology of calibrating an instrument by using reference 

materials. Four assumptions were made: 1) there is no error in the accepted values of the 

reference materials (RMs); 2) calibration function is linear; 3) repeated measurements of a 

given reference material are independent and normally distributed; and 4) the residual is 

either constant or proportional to the accepted value of the reference material. Then, the 

interval with 95% confidence can be estimated. The details of the method will be introduced 

in next section. 

Above methodologies recommended by ISO6 and NIST2 Guides were based on a marvelous 

theorem—Central Limit Theorem. The theorem may be expressed as: Given a population of 

values with a finite variance, if we take independent samples from this population, all of size 

n, then the population formed by the average of these samples will tend to have a normal 
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distribution, regardless of what the distribution is of the original population. Mathematically, 

CLT is an asymptotic law, i.e., the complete identity with the normal distribution actually 

never takes place (unless the original population is itself normal), but it approached more and 

more as N increases. The restriction that the population from which the samples are taken 

must have a finite variance is of no practical importance, since all but a few very special 

populations possess finite variances. The Guides tell us that if ),...( 1 nxxfy =  can be 

expressed by the first order of Taylor series expansion, according to CLT, y is approximated 

to be normally distributed. 

 

The Monte Carlo Simulation technique is any method which solves a problem by generating 

suitable random numbers and observing that fraction of the numbers obeying some property 

or properties. The method is useful for obtaining numerical solutions to problems which are 

too complicated to solve analytically8.  

 

Another useful theory was shown by Steele et al
9
. They demonstrated that the determination 

of precision uncertainty is described for experiments where the test measurements are 

obtained from single or from a limited number of independent readings. For these cases, the 

limits of precision uncertainty are best determined from previous experience. 
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APPENDIX M MEASUREMENT ERROR AND 

UNCERTAINTY 
 

Measurement Uncertainty is a parameter, associated with the result of a measurement, that 

characterizes the dispersion of the values that could reasonably be attributed to the 

measurand1. The parameter may be a standard deviation or the half-width of an interval 

having a stated level of confidence. Measurement error is the result of a measurement minus 

a true value of the measurand
1
. The total measurement error consists of two components: 

systematic and random error, see Figure M-1. 

 

Figure M-1 Illustration of Systematic Error, Random Error and Total Measurement 

Error (The Figure is Modified from Figure 4.1 of Test Uncertainty2 ) 

 

Since the true value cannot be known and therefore only its limits, i.e., its uncertainty can be 

estimated. ISO Guide1 groups uncertainty components into two categories based on their 

method of evaluation, “Type A” and “Type B”. Type A uncertainty is obtained by the 

statistical analysis of series of observations. Type B uncertainty is obtained by means other 
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than the statistical analysis of series of observations
1
. These categories apply to uncertainty 

and are not substitutes for the words “random” and “systematic”. The uncertainty for a 

known effect may in some cases be obtained by a Type A evaluation while in other cases by a 

Type B evaluation, as may the uncertainty characterizing a random effect1. The purpose of 

the Type A and Type B classification is to indicate the two different ways of evaluating 

uncertainty components and is for convenience of discussion only. The classification is not 

meant to indicate that there is any difference in the nature of the components resulting from 

the two types of evaluation
1
. 
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APPENDIX N MASS LOSS RATE UNCERTAINTY 
 

MLR is calculated using 5-point numerical differentiation method recommended by ASTM 

E-1354
1
: 

 

t

mmmm
MLR iiii

∆

+−+−
= ++−−

12

88 2112  

 

where: t∆  is 1 second. 

 

In the burning test, the mass decreases as the time increases, i.e., it should be identified as a 

time series measurement. Time series is defined as an ordered sequence of values of a 

variable at equally spaced time intervals2. For now, MLR uncertainty was determined 

experimentally (statistically). Five similar PMMA burning tests were replicated. The mass 

loss rates were averaged out for the steady state burning duration. Then, the standard 

uncertainty of MLR was calculated based on the standard deviation of the means. The value 

turned out to be 0.58 g/sm
2
. The uncertainty was approximated at PMMA steady state 

burning rate duration about 23 g/sm
2
. Was the uncertainty able to represent the uncertainty at 

different burning rate level? It is not fully understood and will be put in the future work (see 

Appendix K). Based on the standard uncertainty, MLR of 2mm red oak at 40 kW/m
2
 external 

heat flux with its 95% confidence interval was shown in Figure N-1. According to the t 

distribution, the uncertainty of 95% confidence of 5 degrees of freedom is 0.58*2.57=1.5 

g/sm2. 
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Figure N-1 MLR and Its 95% Confidence Interval of 2mm Red Oak at 70 kW/m2 

External Heat Flux in Cone Test 
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APPENDIX O SENSITIVITY ANALYSIS FOR HRR 
 

The SC value of each parameter is calculated by using the Equation recommended by NIST 
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and the calculation details are shown in the following equations  
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 The values are shown in Table O-1. In principle, SC was indicating how many percent 

change for HRR if there is 1% change for a component variable ix . As seen in Table O-1, 

HRR was most sensitive to oxygen volume fraction, i.e., HRR would change 10% to 420% if 

there was 1% change of oxygen volume fraction. 10% HRR change corresponded to higher 

level of HRR, while 420% corresponded to lower level of HRR. The higher level of HRR 

corresponds to 19% of oxygen concentration and the 1% of variation is 0.19% oxygen. The 

lower level of HRR corresponds to 20.9% of oxygen concentration and the 1% of variation is 

0.209% oxygen. The SC was calculated by assuming the oxygen concentration in the 

incoming air was 20.95% oxygen. It showed that the sensitivity of oxygen volume fraction to 

HRR increased when HRR decreased. 

Table O-1 SC of Each variable Being Used to Calculate HRR  

 

0r

hc∆
 

C P T 
2OX (t) 

(19%-20.9%) 

SC 1 1 0.5 0.5 10 to 420 
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APPENDIX P VOLUME FLOW RATE 
 

Assuming gas in the duct is ideal, volume flow rate can be represented 

 

PT
C
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Then the uncertainty of volume flow rate can be calculated as following 
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The dynamic VFR can be estimated by substituting equations (1)-(3) into the Law of 

Propagation of Uncertainty recommended by ISO
1
 and NIST Guide

2
, i.e., 
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then, the uncertainty with 95% confidence is expressed as 

)(2 VFRuVFR c±  
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A typical VFR calculation for 38mm red oak at 40 kW/m
2
 external heat flux is shown in 

Figure P-1. We have 95% confidence of the uncertainty. The 95% confidence interval was 

0.022 to 0.026 m3/s, which was the range specified in the ASTM E 13543. 

 

 

Figure P-1 Five-point Average of Volume Flow Rate and Its 95% Confidence of Interval 

for 38mm Red Oak at 40 kW/m
2
 External Heat Flux in Cone Test 

 

The SC value of each parameter is calculated by using the Equation recommended by NIST 
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and the calculation details are shown in the following equations 
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The SC is shown in Table P-1. As seen in Table P-1, volume flow rate is most sensitive to C 

factor. 

Table P-1 SC of Each Variable Being Used to Calculate VFR  

 C Factor P T 

SC 1 0.5 0.5 

 
 

 

 

Figure P-2 R Values of the Component Variables of Volume Flow Rate Calculation for 

38mm Red Oak at 40 kW/m
2
 External Heat Flux in Cone Test 
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As seen in Figure P-2, the R value of C- Factor is almost 100% while the R values of pressure 

and temperature are almost 0%. From SC and R value analysis, VFR was most sensitive to C-

Factor. 
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APPENDIX Q SENSITIVITY ANALYSIS FOR EXTINCTION 

COEFFICIENT 
 

The SC value of each parameter is calculated by using the Equation recommended by NIST 
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and the calculation details are shown in the following equations 
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The SC is shown in Table Q-1. 

Table Q-1 SC of Each variable Being Used to Calculate Extinction Coefficient  

 I I0 

SC )/ln(/1 0 II  )/ln(/1 0 II  

 

As seen in Table Q-1, k was equally sensitive to 0I  and I . The SC value is in the range of 33 

to 6101.3 × . Since the uncertainty of main photodiodes is larger than that of compensation 

photodiode (from the typical calculation), extinction coefficient is more sensitive to main 

photodiode. Apparent difference in photodiodes and / or circuits used to produce voltage 
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response. Each photodiode has different amplification in its circuits to make the voltages 

similar. This effectively indicates that compensation photodiode is not working. 
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APPENDIX R SMOKE PRODUCTION RATE 
 

Smoke production rate is calculated by 
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Then the uncertainty of smoke production rate can be calculated as following 
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The dynamic SPR can be estimated by substituting equations (1)-(5) into the Law of 

Propagation of Uncertainty recommended by ISO1 and NIST Guide2, i.e., 
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then, the uncertainty with 95% confidence is expressed as 

 

)(2 SPRuSPR c±  

 

A typical SPR calculation for 38mm red oak at 40 kW/m
2
 external heat flux is shown in 

Figure R-1. We have 95% confidence of the uncertainty. 

 

The uncertainty analysis of SPR showed that the uncertainty was about 0.006 m2/s. As seen 

in Figure R-1, during 500s to 3800s, the smoke production rate is around zero, which is much 

less than the estimated uncertainty. Around the peak value of the smoke production rate, the 

normalized uncertainty (SPR uncertainty/SPR value) is about 100%. Therefore, the 

uncertainty is too big relative to the measured smoke production rate due to extinction 

coefficient. 
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Figure R-1 Smoke Production Rate and Its 95% Confidence Interval for 38mm Red 

Oak at 40 kW/m
2
 External Heat Flux in Cone Test 

 

The SC value of each parameter is calculated by using the Equation recommended by NIST 
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and the calculation details are shown in the following equations 
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The SC is calculated and shown in Table R-1. 

Table R-1 SC of Each variable Being Used to Calculate SPR  

 C Factor P T I I0 

SC 1 0.5 0.5 )/ln(/1 0 II  )/ln(/1 0 II  

 

Since the absolute value of )/ln(/1 0 II  is always greater than 1, SPR was equally sensitive to 

0I  and I . The SC value of 0I  and I  is in the range of 33 to 6101.3 × . However, the 

uncertainty of main photodiodes was larger from the typical calculation, therefore, the R 

value of main photodiode was also larger, see Figure R-2. Apparent difference in photodiodes 

and / or circuits used to produce voltage response. Each photodiode has different 

amplification in its circuits to make the voltages similar. This effectively indicates that 

compensation photodiode is not working. From the SC and R value analysis, SPR is most 

sensitive to main photodiode. 
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Figure R-2 R Values of the Component Variables of Smoke Production Rate 

Calculation for 38mm Red Oak at 40 kW/m
2
 External Heat Flux in Cone Test 
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APPENDIX S DYNAMIC SPECIFIC EXTINCTION AREA 
 

The dynamic SEA can be estimated by substituting equations (1)-(6) into the Law of 

Propagation of Uncertainty recommended by ISO
1
 and NIST Guide

2
, i.e., 

 

∑
∂

∂
= )()()( 222

i

i

c xu
x

f
yu  

 

                                                     
i

iii

i

MLR

I

I

L

TP

C

SEA
)ln(

1

353

)(

)(
0

=
∂

∂
                                       (1) 

 

                                                          
i

i

ii

i

i

MLR

LI

TPC

I

SEA 0

0

353

)(

)(
=

∂

∂
                                             (2) 

 

                                                           
i

i

ii

i

i

MLR

LI

TPC

I

SEA 353

)(

)(
=

∂

∂
                                            (3) 

 

                                                    
i

i

i

i

i

i

i

MLR

P

T

I

I

L

C

P

SEA
)ln(

706

)(

)(

0

=
∂

∂
                                   (4) 

 

                                                     
i

i

i

i

i

i

i

MLR

T

P

I

I

L

C

T

SEA
)ln(

706

)(

)(

0

=
∂

∂
                                   (5) 



 S-2  

                                                   
2

0 )ln(
1

353

)(

)(

i

i

iii

i

i

MLR

I

I

L

TPC

MLR

SEA
−

=
∂

∂
                                (6) 

 

A typical dynamic SEA calculation for 38mm red oak at 40 kW/m2 external heat flux is 

shown in Figure S-1. We have 95% confidence of the uncertainty. As seen in Figure S-1, the 

uncertainty is at least one magnitude larger than that of SEA. 

 

 

Figure S-1Five-Point Average of Dynamic Specific Extinction Area and Its 95% 

Confidence Interval of 38mm Red Oak at 40 kW/m
2
 External Heat Flux in Cone Test 

 

The SC value of each parameter is calculated by using the Equation recommended by NIST 
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and the calculation details are shown in the following equations  
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The SC values are shown in Table S-1 

Table S-1 SC of Each variable Being Used to Calculate Dynamic SEA 

 C Factore Main Compensation Pressure Temperature MLR 

SC 1 )/ln(/1 0 II  )/ln(/1 0 II  0.5 0.5 1 
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Since the absolute value of )/ln(/1 0 II  is always greater than 1, theoretically, dynamic SEA 

is equally sensitive to 0I  and I . The SC value of 0I  and I  is in the range of 33 to 6101.3 × . 

 

 

Figure S-2 R Values of C Factor, Pressure, and Temperature for Dynamic Specific 

Extinction Area Calculation for 38mm Red Oak at 40 kW/m2 External Heat Flux in 

Cone Test 

 



 S-5  

 

Figure S-3 R Value of Mass Loss Rate for Dynamic Specific Extinction Area 

Calculation of 38mm Red Oak at 40 kW/m
2
 External Heat Flux in Cone Test 

 

 

Figure S-4 R Values of Main and Compensation Photodiodes for Dynamic Specific 

Extinction Area Calculation of 38mm Red Oak at 40 kW/m
2
 External Heat Flux in 

Cone Test 

 

Similar to the analysis of average SEA, R values for dynamic SEA were shown in Figure S-2, 

Figure S-3, and Figure S-4. Figure S-2 showed the “first group” R values of C factor, 
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pressure and temperature, Figure S-3 showed the “second group” R value of mass loss rate, 

and Figure S-4 showed the “third group” R values of main and compensation photodiodes. 

The R values of the “first group” were found very small compared to the other two groups. 

Most of the R values of the second group is less than 1%. In the “third group”, it was obvious 

that the uncertainty of main photodiode dominated the uncertainty of dynamic SEA. 

Theoretically, the dynamic SEA should be equally sensitive to main and compensation 

photodiode, which can be found from equation (2) and (3). Apparent difference in 

photodiodes and / or circuits used to produce voltage response. Each photodiode has different 

amplification in its circuits to make the voltages similar. This effectively indicates that 

compensation photodiode is not working. Since the uncertainty of main photodiodes is larger 

than that of compensation (from the typical calculation), the R value is also larger. 

 

REFERENCES 

1. International Organization for Standardization, “Guide to the Expression of Uncertainty in 

Measurement”, ISBN 92-67-10188-9, 1995. 

2. Taylor, B. N., and Kuyatt, C. E., Guidelines for Evaluating and Expressing the Uncertainty 

of NIST Measurement Results, NIST Technical Note 1297, NIST, Gaithersburg, MD, 1994. 

3. Bryant, Rodney A., Ohlemiller, Thomas J., Johnsson, Erik L., Hammins, Anthony, Grove, 

Brian S., Guthrie, William F., Maranghides, Alexander, and Mulholland George W., “The 

NIST 3 Megawatt Quantitative Heat Release Rate Facility”, NIST Special Publication 1007, 

December 2003.   

 



 T-1  

APPENDIX T DYNAMIC HEAT OF COMBUSTION 
 

The dynamic HOC can be estimated by substituting equations (1)-(2) into the Law of 

Propagation of Uncertainty recommended by ISO
1
 and NIST Guide

2
, i.e., 
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A typical dynamic HOC calculation for 38mm red oak at 40 kW/m2 external heat flux is 

shown in Figure T-1. We have 95% confidence of the uncertainty.  

 

The SC value of each parameter is calculated by using the Equation recommended by NIST 
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and the calculation details are shown in the following equations 
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From the SC calculation, we find HRR and MLR have the same SC in terms of dynamic 

HOC calculation. 

 

 

Figure T-1 Five-Point Average of R Values of Component Variables for Dynamic HOC 

Calculation for 38mm Red Oak at 40 kW/m2 External Heat Flux in Cone Test 

 

R values are shown in Figure T-2. As seen in Figure T-2, for the current case, HRR 

uncertainty contributes more uncertainty to the dynamic HOC than that of MLR. 
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Figure T-2 R Values of Component Variables for Dynamic HOC Calculation for 38mm 

Red Oak at 40 kW/m
2
 External Heat Flux in Cone Test 
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APPENDIX U CONSTANT MLR GENERATOR FOR FUTURE 

WORK 
 

In order to estimate the MLR uncertainty at different MLR level, a device can be designed 

and built in the future, see the Figure K-1 below. 

 

 

 

 

 

 

 

 

 

 

Figure U-1 Constant Mass Loss Rate Generator for MLR Uncertainty Estimate 

 

As seen in Figure K-1, a stable MLR at different level can be obtained by adjusting the water 

flow rate. Mass can be recorded for many times, then the MLR is calculated by using  

t

mmmm
MLR iiii

∆

+−+−
= ++−−

12

88 2112  

 

Load Cell 

Water 
Flow Meter

Regulator

1m×1m Surface 


