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Abstract

The microbial communities found in soils are inherently heterogeneous and often exhibit
spatial variations on a small scale. Becker et al. (2006) investigate this phenomenon and
present statistical analyses to support their findings. In this project, alternative statistical
methods and models are considered and employed in a re-analysis of the data from
Becker. First, parametric nested random effects models are considered as an alternative
to the nonparametric semivariogram models and kriging methods employed by Becker to
analyze patterns of spatial variation. Second, multiple logistic regression models are
employed to investigate factors influencing microbial community structure as an
alternative to the simple logistic models used by Becker. Additionally, the microbial
community profile data of Becker were unobservable at several points in the spatial grid.
The Becker analysis assumes that the data are missing completely at random and as such
have relatively little impact on inference. In this re-analysis, this assumption is
investigated and it is shown that the pattern of missingness is correlated with both
metabolic potential and spatial coordinates and thus provides useful information that was
previously ignored by Becker. Multiple imputation methods are employed to incorporate
the information present in the missing data pattern and results are compared with those of

Becker.
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Chapter 1  Introduction

The structure of the microbial community in soils is inherently heterogeneous as a
result of both adaptation to environmental gradients and the intrinsic biological processes
among the microbial community (Franklin et al., 2003). Therefore, the variability and
heterogeneity of the microbial community in soil samples often exhibit patterns of spatial
variation on a small scale (Etterna et al., 2002).

In a recent study, Becker et al. (2006) have investigated the spatial relationship within
and between metabolic potential and heavy metal contaminants, such as lead and
chromium, at small scale at a chronically contaminated site. The purpose of the present
study is to investigate alternative models and make improvements to the statistical
analyses. First, a hierarchical model was used to replace the semivariogram models and
kriging used by Becker for spatial analysis. Then the covariate information for all sample
points with unobservable responses were included in the microbial community analysis
using multiple imputation methods.

To better describe the hierarchical model used later, the schematics of the sampling
plan were considered as a hierarchical structure (Zhu et al., 2004), as shown in Fig. 1-1.
The soil samples of Becker et al. (2006) were collected from 5 different arrays. Only
array 1, 2 and 3 are shown here. The distance between the centers of two arrays was 50
cm. For each array, there were seven hexagonal sub-arrays. The center of each sub-array
was 15 cm away from its adjacent sub-arrays within one primary array. For each sub-
array, there were seven hexagonal sub-sub-arrays. The center of each sub-sub-array was 5

cm away from its adjacent sub-sub-arrays within one sub-array. Three samples were



collected on each sub-sub-array area. In total there were 645 soil samples (i.e., 3 samples
x 5 arrays X [1 center point + 6 sub-array %7 sub-sub-arrays]). The concentrations of the
metal contaminants lead and chromium, the metabolic potential, and a profile of

microbial community structure were measured at each sample point..

Array 1 Array 2 Array 3
Array
a0

Sub-array

Sub-sub-array

Figure 1-1 The 3-level hierarchical structure of soil samplesin the experiment of Becker et al. (2006)

A strong spatial dependence both within and between lead, chromium and metabolic
potential was found by Becker. The semivariogram models were used to describe the
spatial dependence and kriging was used to estimate the response surface for the entire
spatial grid. However, only qualitative comparisons and associations were made. The
objective of this present work is to investigate whether a parametric statistical model
based on the spatial dependent design might fit the data better and allow for more formal

statistical inference, rather than only qualitative comparisons.



In Becker, the kriging maps showed that some areas with increased metal
concentrations corresponded to the areas with decreased metabolic activity. But this
pattern did not strictly hold true for the whole area. Also there were no qualitative
comparisons because the direct relationship between the metabolic potential and the
metal contaminations was not found in independent samples on the finest scale (< 1cm)
(Becker et al., 2006). However, a multivariate hierarchical model for lead, chromium and
metabolic potential may allow for statistical inference about relationships between lead,
chromium and metabolic potential based on covariance components. Then the effect of
the heavy metals on the microbial community and the spatial variation in chronically
contaminated sites could be found.

In Chapter 2, the hierarchically nested random effects model used for the soil samples
will be explained in detail, and the features of the model will be discussed. The model fit
and test results for each of chromium concentration lead concentration and metabolic
potential will be presented and comparisons between the results from the hierarchical
spatial model and from the kriging model will be made.

In the Becker study, the microbial community profiles obtained by denaturing
gradient gel electrophoresis (DGGE) were unobservable at several sample points.
Primarily, samples with both high metal contents and high metabolic activity (137 out of
645) were obtained in the bacterial community experiment, and others samples were
unobservable. When the logistic regression was employed to identify significant
microbial populations with respect to each of lead, chromium and metabolic activity, the
missing data which were unobservable had not been taken into account. If the data were

missing completely at random, the inference from the observed data can be applied to



both observed and missing data (Little et al., 1987). Otherwise, if the missing data is not
completely at random, the analysis based on only the observed data will lose all useful
information from missing data. Especially, when the observed data is only a small
fraction of the total number of data, the inference drawn from the observed values is
questionable. Thus, it was of interest to find out the relationship between the missing data
and the other covariates, such as metal contaminations metabolic potential and spatial
information, and to include the information from the missing data into the analysis of
microbial community structure.

In Chapter 3, the logistic regression was employed to investigate the relationship
between the missingness and the concentration of the metal contaminants, the metabolic
potential and the spatial information. A complete regression model combining the
observed data as well as the covariate information from missing data was then fit using
multiple imputations. The effects of lead, chromium and metabolic potential on the
identification of significant bands (i.e., microbial populations) were then compared with

the results from Becker et al.



Chapter 2 Modeling Spatial Dependence

2.1 Methods
2.1.1 Hierarchical Nested Model

A multi-scale tree-structured spatial model was applied on soil properties in
previous work by Zhu et al. (2004). Similarly to the model from Zhu et al, a hierarchical
model (3-way nested model) with random effects could be used to model the soil samples
in Becker et al.

A linear 3-way nested model with random effects was used to analyze the spatial
dependence of the metabolic potential, lead (Pb) and chromium (Cr) contaminants. The
3-way nested design is shown in Figure 2-1. Five arrays, seven sub-arrays for each array
and seven sub-sub-arrays for each sub-array from sub-arrayl to 6 were used in the
studies. Yet the inferences are not to be confined to the particular arrays, sub-arrays and
sub-sub-arrays selected in the study, but rather they are to pertain to all possible locations
on each level of the hierarchical structure. Therefore, the effects of array, sub-array and
sub-sub-array were considered as random factors. Each of the three sets of factor levels
may be considered as the result of sampling a population about which inferences are to be
drawn.

A 3-way nested model is

Yiw = H+ 0+ By + Ty + Eos

i=12,.,aj=12..,0,k=12,.,¢,,and| =12,...,n;,.

The model represents the I observation from the k™ sub-sub-array within the i™ sub-

array of array i. The random effects (a, 3,7,€) represent the effects of array, sub-array,



sub-sub-array and measurement error. They are assumed to have mutually independent

normal distribution as followings:

a, ~N,0,%), =125

Bii, ~ N(0.0,°), j(i)=0.L--.6;

0,1,---,6, if j =1,2,---.,6;
0, if j=0.

Ei ~ N(0,0%), 1(ijk) =1,2,3.

q®~N@0h,mm:{

array 1

subarray

=
(=]
=

subaubarray

Figure 2-1 The 3-way nested design for the soil samplesfrom Becker et al. (only illustratesthe
structureof array 1)

The variance of any observation is (. + Jf, +0’ +0”)where 0., Jfg, o’ and 0 are

referred to as variance components. Different responses are assumed to be independent
except for the responses from the same array and/or from the same sub-array and/or from
the same sub-sub-array. The spatial dependence of two responses on different locations

was evaluated by the following covariance and correlation.



Observations on the same array have the following correlation.

COV(Yiikl ’Yij'k‘l‘) = E[(ai +'Bi<i> + 0 +£I<ijk>)(ai +'Bj‘<i) + yk'(ij‘) +£I'(ij'k‘))]
=B@a)+ BB, By Wi Vi) + B & i)

2

= 0‘0

0_2

Cor (Y, Y. )= a
JLURTEN 2 2 2 2
ag, +Jﬂ +Uy +0

Observations on the same array and same sub-array have the following correlation.

COV(Yiikl ’Yijk'l') - E[(ai +'8j(i) + yk<ii) +£I<iik) )(ai +18j(i) + yk‘(ij) +£|‘(ijk‘))]
=E(aa) + EB,Bii) * EWiiiViei)) t Bl i)
:0_02 +0_ﬂ2
2 2
o, +0,

COI’(Yk| 7Y.. ) =
U] ijkl 0_[]2 +0.ﬂZ +0_y2 +0_2

Observations on the same array, same sub-array and sub-sub-array have the following
correlation.
Cov(Yiy Yy ) = EL@i + Biy * Vi) + Eiio @1+ Biy + Viaiy + €y )]

=E(a,a)+E(B,i,Bi) +* EWiiy Vi) + E(gl(ijk)£|‘(ijk))
=Ua2 +0ﬁ2 +Uy2
Ja2 +0ﬂ2 +o 2

/4

Cor (Y- Vo) =

2 2 2 2

o, +0, 0, +0
Variance components can be estimated based on the analysis of variance method,
which estimates expected mean square by the corresponding observed mean squares and

solving for the variance components. The detailed formulas are given by D. M.

Mahamunulu (1963) and shown in book (Searle et al., 1992, Appendix F.3). Those



formulas were applied to the soil sample data from Becker et al. (2006), which led to the

following results.

b.=) b =5x7=35

c :zjcij =6x7+1=43;
c, =1x5=5;

c,=>.¢ :{ 7

C,=C,=C; =C, =C, =C, =7%x5=35;

N=D0 00 20 My = 645.
where b is the total number of sub-array in array i; C; is the total number of sub-sub-

array in sub-array j under array i; Ny, is the number of replicates in sub-sub array k

within sub-array j under array i.
k =D n° /N =(7x3x6+3)* x5/645 =129,
=220 M /N =[((7%3)? x6+3%)x5]/645 = 20.58;
Ky =20 D0 D M/ N =37 x43%5/645 = 3;

K, =22, /0, =[3x7)% x6+31/129 =102.907;
Ks :ZiZjan” /n, =(3*x7x6+3%)x5/129 =15;
Ke =20 D0 oM /My, =37 XTx6x5/(3%7) +3% x1x5/3 = 105.

v, = N -k, =645-129 =516; v, =k, =k, =102.907 - 20.58 = 82.327;
v, =k, —k, =15-3=12; v,=a-1=5-1=4;

Vv, = N -k, =645-102.907 =542.093; v, =k, —k, =105-15 =90;

v, =b.—a=35-5=230; v, = N —k, =645 -105 = 540;

V, =C.—b =43x5-35=180; V,, = N —C..= 645 - 43x5 = 430.

The followings sum of squares can be calculated from data.

Ty :zzz Z yijgkl’ Ta :z- Yi2 mi, Ty :zizjyi]%“/nijﬁ
ABC zz z yljk /nljk’and T _y /N



Then by equating the observed mean squares to their expected mean square values

= Vv Y v
E(MSa)=(T,-T,)/v, =0, +-20,+-0; +7° =1290, +20.58G; +30; +5°;
\2 \/1 \/
= V. V
E(MSB) =(T,5-To)IV, :V—Sﬁfj +V_6&f +a2 = 18.076}; +307 +07;
7 7
V8

E(MST) = (Type-Tpe WV, =672 +02 =36 +57;

vy
E(MSE) = (T, = Tuee )/ V,y. = 0.

And the variance components were estimated as

g’ = (To = Tasc )/ Vi 5.r2 = (Taee ~Tae _V90A-2)/V8’
05 =Ty =Tpo=V,0° =V,G;)/ Vs,
0,=(Ty-T,-V,0% =Vv,0; =V,0,)/V,.
For the above model with random factors and unequal treatment sample sizes, the
analysis of variance (ANOVA) table for the above 3-way nested model is shown in Table

2-1. The sums of squares are calculated in the same way as in the fixed factors case

(Neter et al., 1990). However, the test statistics are based on the expected mean squares

for the random effects. Thus for the hypotheses H, : 0, =0,H,:0; =0,H, :0;7 =0. the

test statistics are F, = MSa 5= M5 andF, = MSy .
MSy MSe

MSG’

Maximum likelihood method was used in the analysis of variance components. Rao

and Heckler (1997) suggest that the maximum likelihood (ML) had a lower MSE when
estimating variances in unbalanced design while restricted maximum likelihood (REML)
had the less bias, and. also takes the fix effects into account. Since our case is unbalanced

random design with random effects, the ML method was chosen.



Table 2-1 ANOVA tablefor 3-way nested model for unbalanced data from Becker et al.

(V4,V,,Vy,V,, and N can be found on previous page )

Source of Variation Sum of Squares Degrees of
Freedom
Array (Q) T,-T, v,
— 2 — 2
Ta=2, ¥ /0. T, =Y. /N.
Sub-array(within T —Ta v,
array) ([3) B 5 3 5
T, = Zi Vi /n, Tg= Zizj Yi./n;.
Sub-sub-array (within Tree —Tas v,
sub-array) (T) a 5 : 5
TAB - Zi Z] yl] /nI] 4 TABC - Zi ZJ zk yijkA / nijk'
Error (£) Ty = Tasc Vi
— 2 — 2
T, = ZZ; 22 Vier Taee = ZiZj 2 Vi / M
Total Ty - T;z Vy TV, VY

TO = ZiZj Zk ZI yi?kl > T/l = y2 /N.

It is noted that there are some drawbacks of this linear 3-way nested random effects

model. It could be seen in Figure 1-1 that there are some areas in arrays which do not

belong to any sub-array. And there are some areas in sub-arrays which do not belong to

any sub-sub-array. Also the model addressed that two points from one array will always

be more correlated than two points from different arrays. For example, according to

above model, the points on the right side of array 1 are not assumed to be more correlated

with points on the left side of array 2, but this is unlikely if strong patterns of spatial

dependence are present.
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2.1.2 Semivariogram Models and Kriging method

In order to compare the hierarchical model with the kriging model, SAS software
(SAS Institute, Cary NC) was used to reproduce the analysis in the previous study by
Becker et al. in GS+ software (Gamma Design Software, LL.C, Plainwell, Michigan).

Using kriging, spatial dependence in soil properties can be described with a
predictable spatial pattern. It is usually specified in the form of covariance or
semivariogram, which qualifies the strength of association between neighbors as a
function of pairwise distance. It is assumed that the spatial correlation does not depend on
the locations of a pair of observations, but just on the distance between two observations.

The semivariogram is a half of mean squared difference of a pair of observation. It is

Z(Xi - X)2

similar in form to the typical variance estimator Var(x) == | A semivariogram
n
y(h) can be calculated by y(h) = mZ[zi - Z...)]I>. N(h) represents the number of
i=1

the observation pairs separated by distance h. Z, and Z,, are the values of the

observation at location i and (i+h) respectively. The relationship between the

semivariogram and the covariance function is given by
y(h) = %Var(zi —-Z,)= %{Var(zi )+Var(Z,)-2Cov(Z;,Z,)}.

If assuming that the mean and variance are constant over the region (2" order stationary),

such as, Var(Z;)=Var(Z;) =0 and Cowv(Z,Z,) =Cov(h), then

y(h) =g? —Cov(h) = g*[1 - Corr(h)].

11



The sample semivariogram is derived from the data and the pairwise distance h.
Based on the sample semivariogram, the best fitted theoretical semivariogram model is
obtained. The predictions on the unobserved locations are calculated from theoretical
semivariogram model.

When two measurements taken at the same location are different, there exists nugget

effect. Nugget (c,) indicates the micro-scale variation or measurement error. It is the
intercept of the semivariogram. Sl (¢, +C, ) is the value of the semivariogram when two
observations are far enough apart to be considered nearly uncorrelated. Range (a,) is the

distance beyond which the two observations are almost uncorrelated. It is the value of

pairwise distance where the semivariogram reach the sill value. The spatial dependence

C
( i j is defined by the proportion of the difference between sill and nugget in sill
CO Cl

(Ettema et al., 2002). A typical semivariogram are shown in Figure 2-2 to illustrate the

parameters in spherical semivariogram model and the meanings of spatial dependence.

12
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Range( @, )
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v__

__silice, +¢))

C, (Sill-Nugget)

~ Nugget(C,)

Distance between neighbors

Figure 2-2 A typical theoretical semivariogram

There are several theoretical semivariograms which model the possible underlying

spatial correlation, such as spherical semivariogram, Gaussian semivariogram,

exponential semivariogram, power semivariogram and nested model (SAS Institute Inc.,

2004). A spherical semivariogram model is given by

C +cC §£—113 for h<
yz(h): 1 0 2a0 2 aO s _a()

c +¢, , for h>a,

A Gaussian semivariogram model is given by

= sefi-of-2]
&

An exponential semivariogram model is given by

13



h
y,(hy=c, + Co{l _exp(_g]}-

And a power semivariogram model is given by
y,(h)y=¢c, +c,h®.
A so-called nested semivariogram model is a combination of any of above models.

In spatial analysis, if the correlation between the observations at two points depends
not only on the distance, but also on the orientation of the two points, the model is called
anisotropic. Otherwise, it is called isotropic. It is possible that in some directions the
correlations are more than other directions.

Kriging is an interpolation method, which makes predictions to the unobserved
values of the random variable Z. SAS procedures VARIOGRAM and KRIG2D were
used to plot variogram and plot the predicted data surface. Since the NLIN procedure in
SAS can find the least squares or weighted least squares estimates of the parameters of a
nonlinear model, it was used to find the least square estimators of the parameters in the
chosen theoretical semivariogram model. The R-squares of the model fitting were
calculated as variance explained by model over the total variance.

To compare the hierarchical model and kriging model, the residuals from the 3-way
nested model and the spherical semivariogram model for the observed points were
calculated. Only array 1-3 were used in the comparison, because those three arrays were
located on one plate and contiguous to each other. Further comparison was conducted on
the predicted values on kriging grids from two models. The predicted values from kriging

model were straightforward using SAS software. However, for the nested model, the

14



transformations on x-y coordinates to hexagonal coordinates were used. Arrays were

assigned only according to the x coordinate.

2.2 Results

The analysis results from 3-way nested model for each of metabolic potential, lead

and chromium concentration showed that the metabolic potential and metal

contamination levels varied between arrays, sub-arrays and sub-sub-arrays. The R®

shown in Table 2-2 indicate that the 3-way nested models fit well.

Table 2-2 3-way nested model fitting criteria ( R ) for log(Pb), log(Cr) and log(Potential)

RZ
Log( Pb) 0.96
Log(Cr) 0.93
Log(Met abolic Potential) 0.94

The intra-class correlations induced by the hierarchical model (See Table 2-3) show
that the two responses from the same array and the same sub-array are more correlated
and the two responses from the same array sub-array and sub-sub-array are the most
correlated. The correlations increase a lot when two responses are from same sub-array
under the same array. The correlations increase slightly when two responses are from

same sub-sub-array under the same array and sub-array.

Table 2-3 The correlations between two r esponses

Correl ations Y=Log( Pb) Y=Log(Cr) Y=l og( Met abol i c Potential)
Cor (Y » Vi) 0. 508 0. 469 0. 343
Cor (Y- Y ) 0.778 0.748 0.616
Cor (Yija» Y 0.940 0. 900 0.922

15



Variograms and kriging maps were reproduced in SAS and were compared with that
from Becker et al. For simplicity, only isotropic semivariograms was considered here.
After the different theoretical semivariogram models were compared to the sample
semivariograms, the spherical models were found to be the closest models. The
parameters of our fitted spherical models and R-squares are shown in Table 2-4. The
parameters for metal contents are only slightly different from results by Becker et al. But
the parameters for activity are much more different. Although the fittings of our kriging
model from SAS are not as good as that from Becker et al. (R-squares in our test are

slightly lower), our model showed that the samples had higher spatial dependence.

Table 2-4 The parameter sand model fit criteriafor fitting model to variogram.

Spati al
Sill- ) dependence
Model Met hods Nugget Nugget Range R
(C) () (a0 o7 (- <)
Log( Pb) spheri cal variogram 0.1846 3.1625 25.0277 0.4614 0. 9448
Log(Cr) spheri cal variogram 0.1847 3.1625 25.0278 0. 46 0. 9448
Log(Activity) spherical variogram 0.1847 3.1625 25.0278 0. 465 0. 9448

The reproduced kriging maps are shown in Figure 2-3, which matches the kriging
maps from Becker well. The kriging maps show that in some areas the increasing metal
concentrations correspond to the decreasing net activity, while this relationship does not
hold true everywhere in the plots. Some areas even show the contrary relationship. For
example, on the right part of the plots (34<x<67), from the upright corner ((x, y) = (67,

21)) to ((x, y) = (34, -10.5)) the kriging maps show the increasing pattern for lead and

16



chromium levels and decreasing pattern of net activity. But on the lower left corner area,
from ((x, y) = (-67, -10.5)) to ((x, y) = (-51, -21)) the level of lead, chromium and net

activity have the same increasing fashion.

17



Kriging Plot of log(Plo)
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Figure 2-3 Kriging mapsfor log(Pb), log(Cr) and log(Activity).
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To compare the model fit of the 3-way nested model (hierarchical model) and the

kriging model, the sum of squared errors (SSE) and the sum of absolute errors (2. | el) on

the observation points were calculated and listed in Table 2-5. Because the 3-way nested

model (hierarchical model) had smaller SSE and smaller . | €l, it is clear that the 3-way

nested model (hierarchical model) fitted better than kriging model.

Table2-5SSE and 2. | €| sfrom 3-way nested model and spherical semivariogram model.

Hi er ar chi cal kri gi ng
SSE 69. 7710 78.1993
Log( Pb)
2. lel 108. 6877 121. 0323
SSE 88. 4821 94. 3125
Log(Cr)
> lel 115. 1850 122. 8490
SSE 139. 1124 160. 1952
Log(Activity)
> lel 134. 9042 160. 3095

The contour plots of the differences between the nested model and the spherical
semivariogram model on kriging grids were shown in Figure 2-4. Those contours of
difference have the nearly opposite pattern to the kriging plots in Figure 2.3. It means that
when the predictions from the kriging model are high, the predictions from the nested
model are less than the predictions from the kriging model. When predictions from the
kriging models are low, the predictions from nested model are greater than the

predictions from the kriging model. Therefore, the nested model smoothes better.
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Contour plot of the differeces between Hierarchical and Kriging model
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Figure 2-4 Contour maps of the differ ence between the nested model and the kriging model for
log(Pb), log(Cr) and log(Activity)
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2.3 Summary and Future Work

The above analysis shows that the improved 3-way nested model represents the spatial
dependence of the metabolic potential and the metal contents in sampling area. By
comparing it to the previous spherical model and kriging method, 3-way nested model
fits the data better.

For the next stage, to obtain the effects of the heavy metal contents on metabolic
potential, the overall hierarchical model based on all variables (lead, chromium and
metabolic potential) should be analyzed. From the covariance components, the
relationships between lead, chromium and metabolic potential can be found.

The overall hierarchical model will be

(1) (1) (1) (1)

Yiiju M a, i (i) Vi €\ (k)
— (2) (2) (2) (2)

Yoiw | = | Mo | T | O + i | Yea | T €k
(3) (3) (3) (3)

Ysij H a; P (i) Y €\ ik )

where Yy is the observed vector of lead, chromium and metabolic potential on each
observation point. Vector ¢ is the effect of array. Vector [ is the effect of sub-array.
Vector y is the effect of sub-sub-array. Vector € is the effect of measurement error. The

superscripts (1)-(3) are corresponding to variable lead, chromium and metabolic

potential. The assumptions area ~ N(0,%Z,),8 ~ N(@©,25), ¥ ~N(0,z))and
-1 ~ i ~ k()

£ ~N(0,2,). The variance and covariance matrices 2,,2;and 2 are assumed to
~ 1(ijk)

have the forms below
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where a,b, and c;

parameters T"uz) ,

T
a3’

A1)

a3)
2
aa)

TV<13>

Y23 b Icij ’
2

146

were defined as

Tﬂ(m ’

T 4
A3 ° " Buny?

components which we are interested in.

Tﬁ<23> >

950 Tao Lo
_ 2
Zﬁ - Tﬁ'(zl) Jﬂu) Tt8(23> b Ih and
2
Tﬂm) Tﬂ(32) 0-/3(3)

in 3-way nested model in page 6. The

and 7 are the covariance

TVuz) > TV<13) Vi2s)

The current version of SAS (v. 9.1) is not able to perform analysis of multivariate

nested models with random effects. Therefore, within the limited time of this project, the

overall model fit and analyses of covariance components were not investigated using

other software. Further study could continuously analyze the multivariate model on

random effects and the covariance components.
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Chapter 3  Microbial Community Analysis

3.1 Methods

3.1.1 Logistic Regression

Logistic regression model was used to determine whether there was a relationship
between missingness of the presence of a band and the metal contents, the metabolic

potential and the spatial coordinates. If let 77 represent the probability that sample i was
not missing and 1- 77 the probability that sample i was missing, the logistic regression
model can be written as follows.

logit(77) = 1og(li] = BxX

- 7T

where X = (1, Pb;, Cr;, Potential;, x;, y;, z;)'
B=(By.B,. B, B5. By Bs: Bs)-

X, Y, and z are the three-dimensional spatial coordinates of the i" sample.
To find the significant effects of lead, chromium, metabolic potential and spatial
coordinates x and y on missingness, the hypotheses tests on each contribution from X

were carried out, such as, H, :,8j =0,)=1..6. It was based on the property of

asymptotic distribution of the likelihood ratio test: —2logA(X) - X/ in distribution,
where A(X) is the likelihood ratio test statistic and ; is the chi-square distribution with
1 degree of freedom. If L, represents the maximized log-likelihood for the model with
B; #0 and L, represents the maximized log-likelihood for the model with B; =0, the p

value are calculated by 1- Chi(-2 (L,-L,),1) . Chi(-2 (L,-L;), 1) represents the
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cumulative probability of Chi-square distribution with 1 degree of freedom at - 2 (L,-

L,). Then the elements of X without significant effects were eliminated from the original

logistic model. After the final model was selected, the least square estimator of

parameters are B and the estimated probability with sample i not missing is

exp(B*X)

=
[+ exp(Bx X)

3.1.2 Missing Data and Multiple Imputation

Since there were missing data during the experiment of obtaining DGGE gel, the
missing data pattern need to be identified at first. In general, there are three general types
of missing-data mechanisms (Little et al., 1987): missing completely at random (MCAR),
missing at random (MAR) and neither missing at random nor observed at random. For
MCAR, the probability of missingness is independent of response variable Y and
covariates X. For MAR, the probability of missingness only depends on covariates X but
not on response variable Y. For the third case, the probability of missingness depends on
response variable Y and possible covariates X as well. In the previous microbial
community analysis by Becker et al., the missing data were assumed to be MCAR.
However, the missingness was found not independent of covariate X using logistic
regression model as shown in section 3.2. It means that the assumption MCAR was not
true for the data. In our study, the missing data is assumed to be MAR

To include the missing data in the analysis of the presence of a significant band,
multiple imputations for missing data methods were used. For each missing value, the

multiple imputation procedure generates a set of values and those values are combined
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with the original data to be a set of complete data. Then they were used for analysis and
the results are combined for inference (Yuan, 2000).
In our case, the presence of a band was represented by a binary variable (y), which

was assumed to have a Bernoulli distribution with a probability ¢. The probability of
presence (¢ ) depended on covariates X, such as lead, chromium and metabolic potential.

The relationship between them can be described by logistic regression as follow.

logit(@) = log(L] =[x X
1-¢@ - -
where )~( =(1,Pb,,Cr,, Potential)'.
B=(Bos B Bos ),

As mentioned before, some of data y were unobservable (missing). For each missing
datay, the probability of its missingness (¢ ) was modeled by logistic regression on
metal contents, metabolic potential and spatial coordinates as described in section 3.1.1.

Note that none of X were missing.

To estimate the parameter § and the significant effects by lead, chromium and

potential, the following procedures based on the logistic regression imputation method
were carried out automatically by the MI proc of SAS. First, a logistic regression model

for the presence of a band was fit based only on the observed data, and the estimated

parameter [ was obtained. Then based on this fitted model with S, probability ¢ was

calculated for each missing data. For each ¢, multiple draws (y;) from Bernoulli (¢)

were combined with the observed data as multiple complete data sets. Finally, the logistic
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regression for presence of a band was reapplied on each complete data set, and the
estimations of parameter were combined to give results (Allison, 2005).

After the final logistic regression model was obtained, the significant effects of lead,
chromium and metabolic potential were analyzed using hypothesis tests. Both overall
logistic regression on all covariates (lead, chromium and metabolic potential) and the
logistic regression on each individual covariate were fit for 68 bands data. In order to
compare the results with that from Becker et al., the logistic regression on each of lead,
chromium and net activity was also tested. The adjusted p values for controlling false
discovery rate in multiple tests were used as described in details in the next section. The
results of significant effects from overall logistic regression tests and contributions from
each individual covariate were obtained. The adjusted p values and the significance on
bands derived from individual covariate test were compared with the results from Becker

et al.

3.1.3 False Discovery Rate

In testing the effect of lead, chromium and metabolic potential on the presence of
bands in the microbial community profile, the overall test was based on multiple
inferences of 68 multiple logistic regression tests. For multiple inferences, family-wise
error rate control and false discovery rate (FDR) control are two methods commonly used
to reduce the increased false positive (significance) rate. To obtain as many as possible
discoveries (bands on which the covariates have significant effects) in our case, family-
wised error rate control was not needed and controlling FDR is used (Benjamini et al.,

1995).
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FDR is the expected proportion of the false rejected null hypothesizes among all
rejections of null hypothesizes (Benjamini et al., 1995). If the numbers of false rejections
(rejection of null hypothesis when null hypothesis is true) is V and the number of correct
rejections (the rejection of null hypothesis when alternative hypothesis is true) is S, the

FDR (Q,) is defined by

E{ v } ifV+S#£0;
Q.= V+S

0 itV+S=0.

To control the FDR in a multiple-test procedure, the p-values ( p,, pP,,..., P,) of m

null hypothesizes H,,H,,....,H  should be ordered as p,, P> P - For FDR ata,

m

allH ),

i =1,2,...,kshould be rejected, for k is the largest i which satisfies P Sl—a’
m

(Benjamini et al., 1995). The adjusted p-values (s) controlling the FDR used in SAS
software is just an alternative way of the above calculation. The FDR adjusted p-values
(s) are defined in step-up fashion (SAS Institute Inc., 1999):

Sm = pm
S = min(Sm ,[m/(m=-1)] Pim-1) )

m-1)

S(m—Z) = min(S(m_l) ’ [m/(m - 2)] p(m—2) )

3.2 Results

The logistic regression model for missingness was fitted for all considered covariates
(lead, chromium, metabolic potential and coordinates) firstly. The test results from SAS

outputs were listed in Table 3-1. At significant level a =0.05, p values of log(Pb),
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log(Cr) and coordinates z are great than 0.05. Therefore, the effects of lead, chromium
and coordinates z on the missingness were not significant. After those three variables
were deleted, the new model had the test results from SAS outputs shown in Table 3-2. It
showed that the missingness was significantly related with the metabolic potential and the

spatial coordinates x and y.

Table 3-1 SAS output of logistic regression test for missingness using all covariates

Anal ysi s of Maxi mum Li kel i hood Esti nat es

St andard wal d
Par anet er DF Esti mate Error Chi - Squar e Pr > Chi Sq
I nt ercept 1 -1.9102 0. 1755 118. 4341 <. 0001
Tot al _Pb 1 0. 000010 0. 000092 0.0128 0.9100
Total _Cr 1 -0. 00004 0. 000329 0.0184 0. 8920
Pot ent i al 1 0.1071 0. 0157 46. 2861 <. 0001
X 1 -0.00903 0. 00340 7.0518 0. 0079
Y 1 0.0616 0.0117 27. 6984 <. 0001
z 1 0. 000910 0. 00194 0. 2197 0. 6392

Table 3-2 SAS output of logistic regression test for missingness based on metabolic potential and
coordinatesx and y

Anal ysis of Maxi mum Li kel i hood Esti mates

St andard wal d
Par anet er DF Esti mate Error Chi - Squar e Pr > Chi Sq
I nt ercept 1 -1.7514 0. 1606 118. 8560 <. 0001
X 1 -0.0118 0. 00336 12. 3452 0. 0004
Y 1 0. 0453 0.0141 10. 3822 0.0013
Pot enti al 1 0. 0639 0.0271 5.5710 0.0183
Model Fit Statistics
I nter cept
I nt er cept and
Criterion Only Covari at es
Al C 379. 696 346. 626
SC 383. 654 362. 460
-2 Log L 377. 696 338. 626
Testing dobal Null Hypothesis: BETA=0
Test Chi - Squar e DF Pr > Chi Sq
Li kel i hood Ratio 39. 0696 3 <. 0001
Score 40. 4463 3 <. 0001
val d 34. 2098 3 <. 0001
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From the above estimated logistic regression model, the probability of non-missing 77
was estimated for each band data. The histogram of 77 was plotted in Figure 3-1. The
plot indicates that the band data were observed without missing most likely with

probability around 0.06-0.24.
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Figure 3-1 Histogram of the estimated probability of non-missing.

The plot of estimated non-missing probability by coordinates x and y (shown in
Figure 3-2) gave an intuitive understanding of how missing data occurred in array 1-3.
Three similar patterns from the left to right in the whole area of the plot correspond to the
array 1, 2 and 3 in soil sample area. The plot indicates that the samples observed more

likely appear around array 1 since very small probabilities of non-missing dominate the

most areas in array 2 and 3 (in green and red color).
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Figure 3-2 Estimated non-missing probabilities by coordinates (X and Y).

With the control of FDR, the overall logistic regression model for 68 significant
bands data based on 1000 imputations for missing data showed that lead, chromium and
metabolic potential had significant effects on band #3, #21, #41, #49, #52, #56, #22, #12
and #14 (overall test results shown in Table 3-2). Among those bands, band #3 was
significantly affected by lead and metabolic potential, band #12 was significantly affected
by all three variables (lead, Chromium and metabolic potential) and other bands were
only significantly affected by metabolic potential (shown in Table 3-3).

Comparing the test results from the logistic regression models for each of lead,
chromium and metabolic potential using 500 imputations on missing data with the results
from Becker et al., the adjusted p-value by controlling FDR with imputations were larger
than those from Becker et al. That means strong controls for false rejections in the tests

using imputation because that the generated data from imputation for missing data
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increased the information for analysis. In the analysis of logistic regression for 68 bands
on chromium with 500 imputations, no significant effect was found on any band. But

from the analysis of Becker et al. (2006), chromium had significant effect on band #22.

Table 3-3 The overall hypothesistestsresultsfor 68 bands.

raw_p is the p-value of independent hypothesis test for each band. fdr_p is the adjusted p-values controlling
FDR. The rows with green shading color indicate the bands which the overall effects of lead, chromium
and metabolic potential are significant.

band raw_p fdr_p

3| 0.0001 | 0.00136
21| 0.0001 | 0.00136
41| 0.0001 | 0.00136
49 | 0.0001 | 0.00136
52 | 0.0001 | 0.00136
56 | 0.0013 | 0.01473
22 | 0.0033 | 0.03206
12 0.005 | 0.03778
14 0.005 | 0.03778
16 | 0.0091 | 0.06182

2 0.01 | 0.06182
61| 0.0139 | 0.07877
62 | 0.0315 | 0.15834

7| 0.0326 | 0.15834
58 | 0.0408 | 0.18496
35| 0.0448 | 0.1904
67 | 0.0496 | 0.1984
57 | 0.0716 | 0.24869
65| 0.0738 | 0.24869
32| 0.0749 | 0.24869
44 | 0.0768 | 0.24869
53 | 0.1004 | 0.31033
10| 0.1235 | 0.35048

9| 0.1237 | 0.35048
20| 0.1706 | 0.4454

5 0.176 | 0.4454
39| 0.1795| 0.4454

4 0.1834 0.4454
31| 0.2007 | 0.47061
15| 0.2159 | 0.48937
27 | 0.2238 | 0.48939
29 | 0.2303 | 0.48939
51 | 0.2448 | 0.4968
28 | 0.2484 | 0.4968
24| 0.3032 | 0.58907
30| 0.3301 | 0.62352
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46 0.3438 | 0.63185
54 | 0.3602 | 0.64457
18 0.4009 | 0.69901
40 0421 | 0.7157
42 0.4577 | 0.75911
47 0.4793 | 0.77601
11 0.5302 | 0.81467
45 0.5365 | 0.81467
43 0.544 | 0.81467
36 0.5511 | 0.81467
50| 0.5904 | 0.8542
37 0.6242 | 0.88067

1 0.6346 | 0.88067
55 0.6522 | 0.88073
63 0.6728 | 0.88073
64 | 0.6861 | 0.88073
13 0.6889 | 0.88073
60 | 0.6994 | 0.88073
38 0.7368 | 0.91095

8 0.7774 | 0.93091

6 0.7894 | 0.93091
17 0.8009 | 0.93091
68 0.8077 | 0.93091
33 0.8461 | 0.9555
23 0.8823 | 0.9555
59 0.8882 | 0.9555
48 0.9115| 0.9555
34| 0.9163 | 0.9555
25 0.9367 | 0.9555
26 0.9478 | 0.9555
66 0.9535 | 0.9555
19 0.9555 | 0.9555

Table 3-4 Significant testsfor the effect of lead, chromium and metabolic potential among 9 selected
bands.

The rows with green shading color indicate the metabolic potential have significant effects on the bands.
The rows with yellow shading color indicate the lead have significant effects on the bands
The rows with pink shading color indicate the chromium have significant effects on the bands.

Obs | Parm Probt band
1| Total Pb 0.0014 3
2 | Total Cr 0.6427 3
3 | Potential 0.0001 3
4 | Total Pb 0.9552 21
5 | Total Cr 0.589 21
6 | Potential <.0001 21
7 | Total Pb 0.5168 41
8 | Total Cr 0.4086 41
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9 | Potential <.0001 41
10 | Total Pb 0.3199 49
11 | Total Cr 0.2783 49
12 | Potential <.0001 49
13 | Total Pb 0.9119 52
14 | Total Cr 0.984 52
15 | Potential <.0001 52
16 | Total Pb 0.0424 56
17 | Total Cr 0.0465 56
18 | Potential 0.0006 56
19 | Total Pb 0.2252 22
20 | Total Cr 0.1168 22
21 | Potential 0.0009 22
22 | Total Pb 0.0367 12
23 | Total Cr 0.0426 12
24 | Potential 0.0265 12
25 | Total Pb 0.251 14
26 | Total Cr 0.2043 14
27 | Potential 0.0016 14

3.3 Conclusion and Futurework

The missing data is related to the metabolic potential and the spatial coordinates. The
logistic regression model based on observed and unobservable DGGE fingerprint data
indicated that the metabolic potential and the metal contents had significant effects on
band #3, #21, #41, #49, #52, #56, #22, #12 and #14. Compared to the significant effects
from analysis by Becker et al. where the missing data were ignored, the significant bands
affected by chromium are different. This showed that the missingness has an effect on the
microbial community analysis. Therefore, the missingness was not completely at random
and should be taken in account.

The results of the effect of heavy metal contents on the presence of the bands in the
logistic regression analysis might also be of interest to biologist. It was showed that the
lead had a significant effect on band #3 and both lead and chromium had significant

effects on band #12. Further experiments and analysis on those two bands would provide
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more information on the microbial community changes caused by heavy metal

contaminants.
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Appendix: SAS Code

1. SAS code for 3-way nested model for each of lead, chromium and metabolic potential.

Calculate SSN andZI el for each model.

/* using nested nodel to analysis Pb,Cr and Metabolic Potential*/
/* cal cul ate SSE and sum of absolute errors */

*i mput dat a;
PROC | MPORT OUT= WORK. PbCr Net
DATAFI LE= "R\ proj ect\ DATA. x| s"
DBMS=EXCEL REPLACE;
SHEET="docdat a$";
GETNAMVES=YES;
M XED=NO,
SCANTEXT=YES;
USEDATE=YES;
SCANTI ME=YES;
RUN;
kkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkkhkhkhkhkkhkhkkhkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkkkkkkk**x*%x.
* take | og;
data | ogPbCr Net ;
set PbCrNet;
| _Pb=I og(Total _Pb);
| _Cr=log(Total _Cr);
| _Met abol i c_Potenti al =l og(Met abol i c_Potenti al +1);
7|;E?;******************************************************************-
* macro to cal cul ate SSE and Sum of the ABS(error);
%racro sse,;
Proc in;
use resids;
read all var {Z} into x;
SSE=t (x) *x; * sum of square of errors;
print SSE;
run;
data resids;
set resids;
ABSZ=abs(Z); * absolute errors;
run;

Proc inm;
use resids;

read all var {ABSZ} into x;
S ABSE=sun(x); * Sum of absolute errors;
print S _ABSE;

run;

quit;

%rend;

khkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkkhkhkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkkkkkkkk*x*%x.

/* Fit a nested nodel to |og(lead) data;*/
proc gl m dat a=l ogPbCr Net ;
class Array Sub Subsub Rep;
Model | _Pb=Array Sub(Array) Subsub(Sub Array);
random Array Sub(Array) Subsub(Sub Array)/test;
out put out =resids predicted=PRED residual =Z;
run;

%se; *cal culate SSE and Sum of the ABS(error);
Proc VARCOW Met hod=M.; * Estimating variance conponents;

Cl ass Array Sub Subsub Rep;
Model | _Pb=Array Sub(Array) Subsub(Sub Array);
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run;
* check nodel assunption;
Proc gpl ot dat a=resids;
pl ot Z*PRED=Array Z*PRED=Sub Z* PRED=Subsub;
plot Z*Array Z*Sub Z*Subsub; * variability between different
arrays, subarrays, subsubarrays;
run;
quit;
* check normality of residuals;
proc univariate data=resids normal ;
qgpl ot Z;
run;

/* Fit a nested nodel to log(Cr);*/

proc gl m dat a=l ogPbCr Net ;
class Array Sub Subsub Rep;
Model | _Cr=Array Sub(Array) Subsub(Sub Array);
random Array Sub(Array) Subsub(Sub Array)/test;
out put out =resids predicted=PRED residual =Z;
run;
Proc VARCOW Met hod=M.; * Estinating variance conponents;
Class Array Sub Subsub Rep;
Mbdel | _Cr=Array Sub(Array) Subsub(Sub Array);
run;
Proc gpl ot data=resids;
pl ot Z*PRED=Array Z*PRED=Sub Z* PRED=Subsub;
plot Z*Array Z*Sub Z*Subsub; * variability between different
arrays, subarrays, subsubarrays;
run;
quit;
* check normality of residuals;
proc univariate data=resids noprint ;
qgpl ot Z;
run;

%sse; * calculate SSE and Sum of the ABS(error);
/* Fit a nested nodel to |og(Metabolic potential);*/

proc gl m dat a=l ogPbCr Net ;
class Array Sub Subsub Rep;
Model | _Metabolic_Potential =Array Sub(Array) Subsub(Sub Array);
random Array Sub(Array) Subsub(Sub Array)/test;
out put out =resids predicted=PRED residual =Z;
run;
Proc VARCOW Met hod=M.; * Estinating variance conponents;
Class Array Sub Subsub Rep;
Mbdel | _Metabolic_Potential =Array Sub(Array) Subsub(Sub Array);
run;
Proc gpl ot data=resids;
pl ot Z*PRED=Array Z*PRED=Sub Z* PRED=Subsub;
plot Z*Array Z*Sub Z*Subsub; * variability between different
arrays, subarrays, subsubarrays;
run;
quit;
* check normality of residuals;
proc capability data=resids noprint;
qgpl ot Z;
run;
%sse; * calculate SSE and Sum of the ABS(error);

2. SAS code for estimating theoretical semivariogram model and plotting kriging map.

* SAS Code for variogram and kriging;
*i mput dat a;
PROC | MPORT OUT= WORK. PbCr Net
DATAFI LE= "R\ proj ect\ DATA. x| s"
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DBVS=EXCEL REPLACE;
SHEET="docdat a$";
CETNAMES=YES;

M XED=NO,

SCANTEXT=YES;

USEDATE=YES;

SCANTI ME=YES;
RUN;

R R R R R R R R R
’

* take | og;

data krigedata;
set PbCr Net
| _Pb=l og( Tot al _Pb);
| _Cr=log(Total _Cr);
I _Activity=log(Activity+620);
if (array gt 3) then del ete;
run;

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkkhkhkhkhkkhkkhkkhkkhkkhkhkkhkkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkkkkkkk**x*%x.
’

* Using variogram nodel and Kriging on |og | ead data;

Khhkhhhhhkhhkhhkhhhhhhhkhhkhhhhhkhhhhhkhhkhhkhhhhhkhhkhhhkhhkhhkhhkhkhhkhhkhkhkkk k-
’

* 3D plot-surface plot;
proc g3d dat a=kri gedat a;
title 'Surface Plot';
scatter X*Y=l_Pb / xticknume5 yticknume5
grid zm n=0 zmax=15;
| abel X ="'X
Y="'Y
| _Pb ="lead
run;
* using variogramto estimate the nunber of the |ags;
proc vari ogram dat a=kri gedata outdi st ance=out d;
conput e novari ogram
coordi nates xc=X yc=Y;
var | _Pb;
run;

title ' OQUTDI STANCE= Data Set Showi ng Di stance Intervals';
proc print data=outd;
run;

data outd; set outd;

mdpt =r ound( (| b+ub)/2,.1);

| abel mdpt = 'Mdpoint of Interval';
run;

axi s1 m nor=none;
axi s2 m nor=none | abel =(angl e=90 rot at e=0) ;
title 'Distribution of Pairw se Distances';
proc gchart data=outd;
vbar ndpt / type=sum sunvar=count discrete frane
cframe=ligr gaxi s=axi sl raxi s=axi s2 nol egend;
run;

* distribution of the pairw sed distances;
proc vari ogram dat a=kri gedata out di st ance=out d;
conput e novari ogram nhcl asses=40;
coordi nates xc=X yc=Y;
var | _Pb;
run;
title ' OQUTDI STANCE= Data Set Showi ng Di stance Intervals';
proc print data=outd;
run;

data outd; set outd;

mdpt =r ound( (| b+ub)/2,.1);
| abel mdpt = 'Mdpoint of Interval';
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runj

axi s1 m nor=none;
axi s2 m nor =none | abel =(angl e=90 rot at e=0);
title 'Distribution of Pairw se Distances';
proc gchart data=outd;
vbar ndpt / type=sum sunvar=count discrete frane
cframe=ligr gaxis=axi sl raxi s=axi s2 nol egend;
run;

proc variogram dat a=kri gedat a out v=outv;
conmput e | agd=1. 75 maxl ag=38 robust;
coordi nates xc=X yc=Y;
var | _Pb;
run;

title ' QUTVAR= Data Set Showi ng Sanpl e Variogram Results';
proc print data=outv | abel;

var lag count distance variog rvario;
run;

data outv2; set outv;
vari =variog; type
vari=rvario; type
run;
Proc Print data=outv2;
run;
title 'Standard and Robust Sem variogramfor |ogPb Data';
proc gpl ot data=outv2;
pl ot vari*di stance=type / frame cfranme=ligr vaxi s=axis2
haxi s=axi s1;
synbol 1 i=join | =1 c=bl ue /* v=star */;
synbol 2 i=join | =1 c=yellow /* v=square */;
axi s1 m nor=none
| abel =(c=bl ack 'Lag D stance') /* offset=(3,3) */;
axis2 order=(0 to 5 by 1) m nor=none
| abel =(angl e=90 rotate=0 c=bl ack ' Variogram)
/* offset=(3,3) */;

"regul ar'; output;
"robust'; output;

run;
quit;

proc print data=outv2;
run;

khkhkhkhkkhkhkhkhkhkkkhk .
’

* Spherical nodel;

kkkkkkkhkkkkkkkkkkk.

* optimze spherical nodel;

proc nlin data=outv2 met hod=Gauss hougaard;

parnms c0=2 to 5 by 0.5
cl=0 to 1 by 0.1
a0=10 to 50 by 1;
if distance gt a0 then
nodel variog =c0+cl; * variog and rvario are different;
el se
model variog = cl+c0*((3/2)*(distance /a0)-
0. 5*(di stance*di st ance*di st ance)/ (a0*a0*a0));
out put out=vari onod pred=gvhat;
run;

* fit optimzed spherical nodel;
data outv3; set outv;
c0=3. 1625; a0=25.0277; c1=0.1846;
if distance gt a0 then vari=c0+cl;
el se vari = c1+c0*((3/2)*(distance /a0)-
0. 5*(di st ance*di st ance*di st ance)/ (a0*a0*a0) ) ;
type = 'Spherical'; output;
vari = variog; type = 'regular'; output;
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vari = rvario; type = 'robust'; output;
run;

title 'Theoretical and Sanple Senivariogramfor |_Pb';
proc gpl ot data=outv3;
pl ot vari*di stance=type / frame cfranme=ligr vaxi s=axis2
haxi s=axi s1;

synbol 1 i=join | =1 c=bl ue /* v=star */;
synbol 2 i=join | =1 c=yellow /* v=square */;
synbol 3 i=join | =1 c=cyan /* v=di anond */;

axi s1 m nor=none
| abel =(c=bl ack 'Lag D stance') /* offset=(3,3) */;
axis2 order=(0 to 5 by 1) m nor=none
| abel =(angl e=90 rotate=0 c=bl ack ' Variogram)
/* offset=(3,3) */;
run;
quit;

* using proc krig2D to predict the unobserved dat a;
proc krige2d data=krigedata outest=est;
pred var=l_Pb r=60;
nodel nugget =0. 1846 scal e=3. 1625 range=25. 0277 f or m=SPHERI CAL;
coord xc=X yc=Y;
grid x=-67 to 67 by 1 y=-21 to 21 by 1;
run;

proc g3d dat a=est;
title 'Surface Plot of Kriged | _Pb';
pl ot gxc*gyc=esti mat e/ r ot at e=30;

* scatter gxc*gyc=estimate / grid;
| abel gyc ='Y
gxc ='X
estimate = '| _Pb'
run;

goptions htitle=2 htext=2;

footnotel ;
axi sl label = ("X");
axis2 label = ("Y");

| egendl position=(right middle)
| abel =(position=top 'l og(Pb)')
val ue=( hei ght =2)
SHAPE=BAR( 6, 4)
across=1,
proc gcontour data=est;
title '"Kriging Plot of |log(Pb)';
pl ot gyc*gxc=estinate / pattern
aut ol abel =(check=none)
haxi s=axi s1
vaxi s=axi s2
| egend=I egend1l;
run;
quit;
* plot the standard errors;
proc g3d dat a=est;
title 'Surface Plot of Standard Errors of Kriging Estinates';
scatter gxc*gyc=stderr / grid;
"Y'

| abel gyc =
gxc ='X
= "'"Std Error’

stderr

run;

kkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkkkkkkk*x*x*%x.
’

* Using sem vari ogram nodel and Kriging on | og Chrom um dat a;

Khhkhhkhhhkhhkhhkhhhhhhhkhhhhhhhhhhhhkhhkhhhhhkhhkhhkhhhkhhkhhkhkhkhkhhkhkhkhkkkk k-
’

* 3D plot-surface plot;
proc g3d dat a=kri gedat a;
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title 'Surface Plot';
scatter X*Y=l_Cr / xticknume5 yticknume5
grid zm n=0 zmax=15;
| abel X ="'X
Y="'Y
| _ O = "'Chromate'
run;
* using variogramto estimate the nunber of the |ags;
proc vari ogram dat a=kri gedata out di st ance=out d;
conmput e novari ogram
coordi nates xc=X yc=Y;
var | _Cr;
run;

title ' OQUTDI STANCE= Data Set Showi ng Di stance Intervals';
proc print data=outd;
run;

data outd; set outd;

mdpt =r ound( (| b+ub)/2,.1);

| abel mdpt = 'Mdpoint of Interval';
run;

axi s1 m nor=none;
axi s2 m nor=none | abel =(angl e=90 rot at e=0);
title 'Distribution of Pairw se Distances';
proc gchart data=outd;
vbar ndpt / type=sum sunvar=count discrete frane
cframe=ligr gaxi s=axi sl raxi s=axi s2 nol egend;
run;

* distribution of the pairw sed distances;
proc vari ogram dat a=kri gedat a out di st ance=out d;
conput e novari ogram nhcl asses=40;
coordi nates xc=X yc=Y;
var | _Cr;
run;
title ' OQUTDI STANCE= Data Set Showi ng Di stance Intervals';
proc print data=outd;
run;

data outd; set outd;

mdpt =r ound( (| b+ub)/2,.1);

| abel mdpt = 'Mdpoint of Interval';
run;

axi s1 m nor=none;
axi s2 m nor =none | abel =(angl e=90 rot at e=0);
title 'Distribution of Pairw se Distances';
proc gchart data=outd;
vbar ndpt / type=sum sunvar=count discrete frane
cframe=ligr gaxis=axi sl raxi s=axi s2 nol egend;
run;

proc variogram dat a=kri gedata out v=out v;
conmput e | agd=1. 75 maxl ag=38 robust;
coordi nates xc=X yc=YZ;
var | _Cr;

run;

title ' QUTVAR= Data Set Showi ng Sanpl e Variogram Results';
proc print data=outv | abel;

var |lag count distance variog rvario;
run;

data outv2; set outv;
vari =variog; type
vari=rvario; type

"regul ar'; output;
'robust'; output;
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runj

title 'Standard and Robust Sem variogramfor log(Cr)’;
proc gpl ot data=outv2;
pl ot vari*di stance=type / frame cfranme=ligr vaxi s=axis2
haxi s=axi s1;
synbol 1 i=join | =1 c=bl ue /* v=star */;
synbol 2 i=join | =1 c=yellow /* v=square */;
axi s1 m nor=none
| abel =(c=bl ack 'Lag Di stance') /* offset=(3,3) */;
axis2 order=(0 to 5 by 1) m nor=none
| abel =(angl e=90 rotate=0 c=bl ack ' Variogran)
/* offset=(3,3) */;
run;
quit;
*******************;
* Spherical Model;
* optimze spherical nodel;
proc nlin data=outv2 nmet hod=Gauss hougaard;

parnms c0=1 to 4 by 0.5
cl=0 to 1 by 0.1
a0=10 to 50 by 2;
if distance gt a0 then
nodel variog=c0+cl; * using variog and rvario are different;
el se
model variog = cl+c0*((3/2)*(distance /a0)-
0. 5*(di st ance*di st ance*di st ance) / (a0*a0*a0));
out put out=vari onod pred=gvhat;
run;

* fit optimzed spherical nodel;
data outv3; set outv;

c0=3. 1625; a0=25.0278; c1=0.1847;

if distance gt a0 then vari=c0+cl;

el se vari = c1+c0*((3/2)*(distance /a0)-
0. 5*(di stance*di st ance*di st ance)/ (a0*a0*a0));

type = 'Spherical'; output;

vari = variog; type = 'regular'; output;

vari = rvario; type = 'robust'; output;
run;

title 'Theoretical and Sanple Senivariogramfor |_Cr';
proc gpl ot data=outv3;
pl ot vari*di stance=type / frame cfranme=ligr vaxi s=axis2
haxi s=axi s1;

synbol 1 i=join | =1 c=bl ue /* v=star */;
synbol 2 i=join I =1 c=yellow /* v=square */;
synbol 3 i=join | =1 c=cyan /* v=di anond */;

axi s1 m nor=none
| abel =(c=bl ack 'Lag Di stance') /* offset=(3,3) */;
axis2 order=(0 to 5 by 1) m nor=none
| abel =(angl e=90 rotate=0 c=bl ack ' Variogran)
/* offset=(3,3) */;
run;
quit;
* using proc krig2D to predict the unobserved dat a;
proc krige2d data=kri gedata outest =est;
pred var=l_Cr r=60;
nmodel nugget =0. 1847 scal e=3. 1625 range=25. 0278 f or n=SPHERI CAL;
coord xc=X yc=Y;
grid x=-67 to 67 by 1 y=-21 to 21 by 1;
run;

proc g3d dat a=est;
title 'Surface Plot of Kriged | _CO';
pl ot gxc*gyc=esti mat e/ r ot at e=30;
*scatter gxc*gyc=estimate / grid;
| abel gyc ='Y
gxc ='X
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estimate = 'I_Cr'
run;
goptions htitle=2 htext=2;

footnotel ;
axi sl label = ("X");
axis2 label = ("Y");

| egendl position=(right mniddle)
| abel =(position=top 'log(Cr)"')
val ue=( hei ght =2)
SHAPE=BAR( 6, 4)
across=1,
proc gcontour data=est;
title '"Kriging Plot of log(Cr)"';
pl ot gyc*gxc=estimate / pattern
aut ol abel =(check=none)
haxi s=axi s1
vaxi s=axi s2
| egend=I egend1;
run;
quit;
* plot the standard errors;
proc g3d dat a=est;
title 'Surface Plot of Standard Errors of Kriging Estinates';
scatter gxc*gyc=stderr / grid;
'Y

| abel gyc =
gxc ='X
= "Std Error’

stderr

run;

Khhkhhkhhhkhhkhhkhhhkhhkhhhhhhhhhkhhhkhhkhhkhhkhhhhhkhhkhhkhkhhkhkhkhkhhkkhkhkhkk k% -
’

* Using sem variogram nodel Kriging on |log Activity data;

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkkhkhkkhkhkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkhkkkkkhkkhkkkkkkkkkkkkkkkkk*x*x*%x.
’

* 3D plot-surface plot;
proc g3d dat a=kri gedat a;
title 'Surface Plot';
scatter X*Y=l_Activity / xticknume5 yticknunmes
grid zm n=0 zmax=15;

| abel X ='X
YZ="Y
| _Activity = "In(Activity)'

run;
* using variogramto estimate the nunber of the I|ags;
proc variogram dat a=kri gedat a out di st ance=out d;
conput e novari ogram
coordi nates xc=X yc=Y;
var | _Activity;
run;

title ' OQUTDI STANCE= Data Set Showi ng Di stance Intervals';
proc print data=outd;
run;

data outd; set outd;

mdpt =r ound( (| b+ub)/2,.1);

I abel mdpt = 'M dpoint of Interval';
run;

axi s1 m nor=none;
axi s2 m nor=none | abel =(angl e=90 rot at e=0);
title 'Distribution of Pairw se Distances';
proc gchart data=outd;
vbar ndpt / type=sum sunvar=count discrete frane
cframe=ligr gaxis=axi sl raxi s=axi s2 nol egend;
run;
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* distribution of the pairw sed distances;
proc variogram dat a=kri gedat a out di st ance=out d;
conput e novari ogram nhcl asses=40;
coordi nates xc=X yc=Y;
var | _Activity;
run;
title ' OQUTDI STANCE= Data Set Showi ng Di stance Intervals';
proc print data=outd;
run;

data outd; set outd;

mdpt =r ound( (| b+ub)/2,.1);

| abel mdpt = 'Mdpoint of Interval';
run;

axi s1 m nor=none;
axi s2 m nor=none | abel =(angl e=90 rot at e=0) ;
title 'Distribution of Pairw se Distances';
proc gchart data=outd;
vbar ndpt / type=sum sunvar=count discrete frane
cframe=ligr gaxi s=axi sl raxi s=axi s2 nol egend;
run;

proc variogram dat a=kri gedata out v=outv;
conmput e | agd=1. 75 maxl ag=38 robust;
coordi nates xc=X yc=Y;
var | _Activity;
run;

title ' OUTVAR= Data Set Showi ng Sanpl e Variogram Results';
proc print data=outv |abel;

var |ag count distance variog rvario;
run;

data outv2; set outv;
vari =variog; type
vari=rvario; type
run;

"regul ar'; output;
'robust'; output;

title 'Standard and Robust Semivariogramfor |_Activity’;
proc gpl ot data=outv2;
pl ot vari*di stance=type / frame cframe=ligr vaxi s=axis2
haxi s=axi s1;
synbol1l i=join | =1 c=blue [/* v=star */;
synbol 2 i=join | =1 c=yell ow /* v=square */;
axi s1 m nor=none
| abel =(c=bl ack 'Lag D stance') /* offset=(3,3) */;
axis2 order=(0 to 5 by 1) m nor=none
| abel =(angl e=90 rotate=0 c=bl ack ' Variogram)
/* offset=(3,3) */;
run;
quit;

khkkhkkhkhkhkhhkhkhkhhkkhk .
’

* spherical Model;
*******************;
* optimze spherical nodel;
proc nlin data=outv2 nmethod=Gauss hougaar d;
parns c0=1 to 5 by 0.5
cl=0 to 1 by 0.1
a0=10 to 40 by 2;
if distance gt a0 then
nmodel variog=cO+cl; * using variog and rvario are different;
el se
nodel variog = cl+c0*((3/2)*(distance /a0)-
0. 5*(di stance*di st ance*di st ance)/ (a0*a0*a0));
out put out =vari onod pred=gvhat;
run;
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* fit optimzed spherical nodel
data outv3; set outv

c0=3. 1625; a0=25.0278; c1=0.1847

if distance gt a0 then vari=cO+cl

el se vari = c1+c0*((3/2)*(distance /a0)-
0. 5*(di stance*di st ance*di st ance)/ (a0*a0*a0))

type = 'Spherical'; output;

vari = variog; type = 'regular'; output;

vari = rvario; type = 'robust'; output;
run

title 'Theoretical and Sanple Semivariogramfor |_Activity'
proc gpl ot data=outv3
pl ot vari*di stance=type / frame cfranme=ligr vaxi s=axis2
haxi s=axi s1

synmbol 1 i=join | =1 c=bl ue [* v=star */;
synbol 2 i=join | =1 c=yellow /* v=square */;
synbol 3 i=join | =1 c=cyan /* v=di anond */;

axi s1 m nor=none
| abel =(c=bl ack 'Lag D stance') /* offset=(3,3) */;
axi s2 order=(0 to 6 by 1) m nor=none
| abel =(angl e=90 rotate=0 c=bl ack ' Variogram)
/* offset=(3,3) */;
run
quit;

* using proc krig2D to predict the unobserved data
proc krige2d data=krigedata outest=est;
pred var=l_Activity r=60
nodel nugget =0. 1847 scal e=3. 1625 range=25 f or m=SPHERI CAL
coord xc=X yc=Y,
grid x=-67 to 67 by 1 y=-21to 21 by 1
run

proc g3d dat a=est;
title 'Surface Plot of Kriged | _Activity'
pl ot gyc*gxc=esti mate/rotate=30
*scatter gxc*gyc=estimate / grid

| abel gyc ='Y
gxc ='X
estimate = "I _Activity

run
goptions htitle=2 htext=2

footnotel ;
axi sl label = ("X")
axi s2 label = ("Y")

| egendl position=(right mddle)
| abel =(position=top 'log(Activity)')
val ue=( hei ght =2)
SHAPE=BAR( 6, 4)
across=1
proc gcontour data=est;
title 'Kriging Plot of log(Activity)'
pl ot gyc*gxc=estinate / pattern
aut ol abel =(check=none)
haxi s=axi s1
vaxi s=axi s2
| egend=I egendl
run
quit;
* plot the standard errors
proc g3d dat a=est;
title 'Surface Plot of Standard Errors of Kriging Estinmates'
scatter gxc*gyc=stderr / grid
Ly

| abel gyc =
gxc ='X
= 'Std Error

stderr
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run;
3. Comparing predicted difference between hierarchical model and krige model

* SAS Code for conparing predicted difference between hierarchical nodel and krige nodel;

data arrayl123;

i nput Sanpl e$ replicate$ Array Sub Subsub Rep X Y Z Activity Total Pb Total Cr
Potenti al ;

cards;

runj

* take | og;
data arrayl23;

set arrayl23;

| _Pb=l og( Tot al Pb);

| _Cr=log(Total Cr);

I _Activity=log(Activity+620);
run;

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkkhkkhkkhkkhkhkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkkkkkkkkkkk*x*x*%x.
’

* Transformthe xy coordinates to array-sub-subsub coordi nates;

Khhkhhhhhkhhhhhhhhhhhhhhkhhkhhkhhkhkhhkhhkhhhkhhkhhkhhhhhkhhkhhkhkhkhkhhkkhkkk k-
’

***********Assi gn Array # *******;
%racro array,;

data tran;

set krigest;

if gxc < -25 then array=1,

else if gxc > 25 then array=3;

el se array=2;

run;

proc print data=tran;
run;
%rend;

***********Assi gn Sub # *********;

* Algorithm

* 1. transformthe original cardinal coordinates in krig nodel to the cardinal
coordi nates using the center of each

* hexagon as the origin.

* 2. transformthe new cardinal coordinates (x,y) to the hexagonal coordi nates.
* 3. repeat 1 & 2 for each array;

%racr o sub;

%lo |l =1 %o 3; * fromarray 1 to array 3;

data trand ;

set tran;

if array ne & then del ete;

s0=0; s1=1; s2=2; s3=3; s4=4; s5=5;s6=6; * # of the subarray;

dx0=0; dx1=(-1); dx2=(-1); dx3=0; dx4=1; dx5=1; dx6=0;* the unit offsets fromthe center of
subarray to (0, 0)coordinates on x;

dy0=0; dy1=(-1);dy2=1; dy3=2; dy4=1; dy5=(-1);dy6=(-2);* the unit offsets fromthe center
of subarray to (0,0)coordinates on vy;

x1=12; y1=6.93; * the magnitude on the unit offsets;
%lo m= 0 %o 6;
if ABS(gxc + 50 * (2 - &) + x1 * dx&m- (gyc + yl * dy&n / 1.732) <= 8
and ABS(gxc + 50 * (2 - &) + x1 * dx&n+ (gyc + yl1 * dy&m / 1.732) <=8
and ABS((gyc + yl1 * dy&m) / 0.866) <= 8 then sub = s&m
*el se sub=7;* it did not work. why?;
%end;

run;
%end;
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data transub;

set tranl tran2 trang3;
run;

%rend;

*kkkkkk* aSSl gn SUbSUb # ***********;
* split the data to two parts(in/out of array boundary);
%racro split;
Dat a out sub;
set transub;
if sub ne . then delete;
subsub = .;
keep VARNAME GXC GYC ESTI MATE STDERR array sub subsub;
run;
proc print data=outsub;
run;
%rend;

%racr o subsub;
%lo | =1 %o 3;
data transub& ;
set transub;
if array ne & then delete;
x1=12; y1=6.93; * the nagnitude on the unit offsets on subarray |evel;
x2=4; y2=2.309; * the nagnitude on the unit offsets on subsubarray |evel;
%lo n =0 %o 6;
data transub& &n; * split data into 3*6 groups by array and subarray;
set transub&l ;
if sub ne & then del ete;
%lo m=0 %o 6;
if ABS(gxc+50*(2-& ) +x1*dx&m+x2*dx&m -
(gyc+yl*dy&mty2*dy&m)/ 1. 732) <=2. 666
and ABS(gxc+50*(2- & ) +x1* dx&mtx2* dx&m
+(gyc+yl*dy&mty2*dy&n)/ 1. 732) <=2. 666
and ABS((gyc+yl*dy&mty2*dy&m) /0. 866) <=2. 666 then

subsub=s&m
%end;
run;
%end;
run;
%end;

data transsi;
set transubl0 transubll transubl2 transubl3 transubl4 transubl5 transubl6;

run;
data transs2;

set transub20 transub2l transub22 transub23 transub24 transub25 transub26;
run;
data transs3;

set transub30 transub31l transub32 transub33 transub34 transub35 transub36;
run;
data transubsub;
set transsl transs2 transss3;
run;
%rend;

%racr o conbi netran;
data transubsub;

set transubsub;

keep VARNAME GXC GYC ESTI MATE STDERR array sub subsub;
run;

proc print data=transubsub;
run;

* conbine two parts (in/out of array boundary) together;
data transubsub_T;

set transubsub outsub;
run;
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proc print data=transubsub_T;
run;

proc sort data=transubsub_T;
by array;
run;

%rend;

Khhkhhkhhhkhhkhhhhhhhkhhkhhhhhkhhkhhhhhkhhkhhhhhkhhkhhhkhhkhhkhkhkhkhkkhkkhkhk ok k-
’

* predict the log(Pb/Cr/Activity) for transformed data on grids;

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkkkkkk*x*x*%x.
’

B R R R R R R R R R

* calcultate the difference between the predictions in kriging nodel and those in nested
nodel ;

R R R R R R R R R
’

%racro diff;

* del ete observed data;
data nest_pred;
set resids;
if gxc=. then delete;
run;

* sort data of predictions fromboth nodels in order to nmerge them together;
proc sort data=nest_pred,;
by gxc gyc;

run;

proc sort data=krigest;

by gxc gyc;

run;

proc print data=nest_pred,;
run;

proc print data=krigest;
run;

* calculate prediction fromhierarchical - prediction fromkriging on each grid;
data preddif;
merge nest_pred krigest;
nest_krig = pred - estinate;
run;
proc print data=preddif;
run;
title Scatter plot of the differeces between Hierarchical and Kriging nodel';
proc g3d dat a=preddif;
scatter gyc*gxc=nest_krig;
run;

%rend;

khkhkhkhkkhkkhkhhkhhkkhkk.

*  For Log(Pb) *
******************;
* using proc krig2D to predict the unobserved data;
proc krige2d data=arrayl23 outest=krigest;
pred var=l _Pb r=60;
nmodel nugget =0. 1846 scal e=3. 1625 range=25. 0277 f or n=SPHERI CAL;
coord xc=X yc=Y;
grid x=-68 to 68 by 2 y=-21 to 21 by 2;
run;
proc print data=krigest;
run;

Khkhkhhhhkhhkhhhhhhhkhhkhhhhhkhhkhhhhkhhkhhkhkhhkhhkhkhhkhhkkhkhhkhhkkkkkk k-

* Transformthe xy coordinates to array-sub-subsub coordi nates;

* Assign Array # ;
Yarray;

* Assign Sub # ;

Ysub;

proc print data=transub;

49



run;
* split the data to two parts(in/out of array boundary);

Ysplit;

* Assign Subsub # ;
Y%subsub;

proc print data=transubsub;
run;

* conmbine two parts (in/out of array boundary) together;
% onbi netran;

kkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkhkkhkhkkhkkhkhkhkhkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkkk**x*%x.
’

* predict the log(Pb) for transforned data on grids;

*seperate the data by Pb , Cr and Potenti al;
dat a obs_Pb;

set arrayl23;

*if array gt 3 then delete;

gxe= ., gyc= .

keep array sub subsub gxc gyc rep | _Pb;
run;
Proc print data=obs_Pb; run;

* cal cul ate nmean from observed val ues;
* it will be used as the prediction on points w thout sub or subsub val ue;
Proc neans dat a=obs_Pb;

var | _Pb;
out put out =pbout mean=m | ogPb;
run;

proc print data=pbout ;run;

* prepare the identical structure for transforned data;

Dat a new;,

set transubsub_T;

I _Pb =. ; * set the value of response which we want to predict as m ssing;

rep = 1; * glmdo not predict new response w thout assign rep(any of 1,2,3 has sanme
results ;

keep gxc gyc array sub subsub rep | _Pb;
run;

proc print data=new, run;

* put observed data and transformed data together;
data all;
set obs_Pb new,
run;
proc print data=all; run;

* Fit a nested nodel to |og data;
proc gl mdata=all;
class Array Sub Subsub Rep;
Model | _Pb=Array Sub(Array) Subsub(Sub Array);
random Array Sub(Array) Subsub(Sub Array)/ TEST;
out put out =resids predicted=PRED residual =Z;
run;
proc print data=resids;
run;
data resids;
set resids;
if sub=. then pred=5.768; * set predicted values on other points to esti mated
aver age(5. 768) ;
if subsub=. then pred=5.768;
run;

kkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkkhkkhkkhkhkkhkhkhkkhkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkkk*x*%x
*kkk k-
* calcultate the difference between the predictions in kriging nodel and those in nested
nodel ;

%di ff;
goptions htitle=2 htext=2;
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footnotel ;
axi sl | abel
axi s2 | abel

("X")
("Y");
| egendl position=(right mddle)
| abel =(position=top 'l og(Pb)(Nest-Krig)")
val ue=( hei ght =2)
SHAPE=BAR( 6, 4)
across=1;

titlel Contour plot of the differeces between H erarchical and Krigi ng nodel"’
title2' for log(Pb)'
proc gcontour data=preddif;
pl ot gyc*gxc=nest_krig/pattern
aut ol abel =(check=none)
haxi s=axi s1
vaxi s=axi s2
| egend=I egend1;

run;
quit;
kkkkkkkkkkkkkkkkkk.

*  For Log(Cr) *

kkkkkkkhkkkkkkkkkkkk.
’

* using proc krig2D to predict the unobserved dat a;
proc krige2d data=arrayl123 outest=krigest;
pred var=l _C r=60;
nodel nugget =0. 1846 scal e=3. 1625 range=25. 0277 f or m=SPHERI CAL;
coord xc=X yc=Y;
grid x=-68 to 68 by 2 y=-21 to 21 by 2;
run;
proc print data=krigest;
run;

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkhkkhkkhkkhkkhkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkkkk**x*%x.

* Transformthe xy coordinates to array-sub-subsub coordi nates;

* Assign Array # ;

Yarray;

* Assign Sub # ;

Ysub;

proc print data=transub;
run;

* split the data to two parts(in/out of array boundary);
Ysplit;

* Assign Subsub # ;
Y%subsub;

proc print data=transubsub;
run;

* conbine two parts (in/out of array boundary) together;
Y%onbi netran;

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkkhkkkkkkkkkkkkkkkkkk*x*x*%x.
’

* predict the log(Cr) for transformed data on grids;

*seperate the data by Pb , O and Potential;
data obs_Cr;

set arrayl23;

*if array gt 3 then delete;

gxc= . ; gyc= . ;|

keep array sub subsub gxc gyc rep | _Cr;
run;
Proc print data=obs_Cr; run;

* cal cul ate nmean from observed val ues;

* it wll be used as the prediction on points w thout sub or subsub val ue;
Proc neans dat a=obs_Cr;

var | _Cr;

out put out =Crout nean=m | ogCr;

run;
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proc print data=Crout ;run;

* prepare the identical structure for transforned data;

Dat a new;,

set transubsub_T;

I _C& =. ; * set the value of response which we want to predict as m ssing;

rep =1 ; * glmdo not predict new response without assign rep(any of 1,2,3 has sane
results ;

keep gxc gyc array sub subsub rep | _Cr;
run;

proc print data=new, run;

* put observed data and transformed data together;
data all;
set obs_CO new,
run;
proc print data=all; run;

* Fit a nested nodel to |og data;
proc gl mdata=all;
class Array Sub Subsub Rep;
Model | _Cr=Array Sub(Array) Subsub(Sub Array);
random Array Sub(Array) Subsub(Sub Array)/ TEST;
out put out=resids predicted=PRED residual =Z;
run;
proc print data=resids;
run;
data resids;
set resids;
if sub=. then pred=4.0794; * set predicted values on other points to estimated
aver age(5. 768) ;
if subsub=. then pred=4.0794;
run;

kkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkhkkhkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkkkk*x*%x
*k ok ok k-
’

* calcultate the difference between the predictions in kriging nodel and those in nested
nodel ;

%di ff;

goptions htitle=2 htext=2;
footnotel ;

axi sl label = ("X");

axi s2 label = ("Y");

| egendl position=(right mddle)
| abel =(position=top '10og(Cr)(Nest-Krig)")
val ue=( hei ght =2)
SHAPE=BAR( 6, 4)
across=1;

titlel Contour plot of the differeces between Hierarchical and Kriging nodel’
title2' for log(Cr)';
proc gcontour data=preddif;
pl ot gyc*gxc=nest_krig/pattern
aut ol abel =(check=none)
haxi s=axi s1
vaxi s=axi s2
| egend=I egend1l;

run;
quit;

khkhkhkhkhkhkhhkhhhhhhkhkhdhhkhk .
’

* For Log(Activity) *;

kkkkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkkk*x.

* using proc krig2D to predict the unobserved data;
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proc krige2d data=arrayl23 outest=krigest;
pred var=l _Activity r=60;
nmodel nugget =0. 1846 scal e=3. 1625 range=25. 0277 f or n=SPHERI CAL;
coord xc=X yc=Y;
grid x=-68 to 68 by 2 y=-21 to 21 by 2;
run;
proc print data=krigest;
run;

Khkhhkhhhkhhkhhkhhhhhhhkhhhkhhkhhkhhhhhkhhkhhhkhhkhhkhhhkhkhhkhhkkhkhhkhhkkkkhk k-

* Transformthe xy coordinates to array-sub-subsub coordi nates;

* Assign Array # ;

Yarray;

* Assign Sub # ;

Ysub;

proc print data=transub;
run;

* split the data to two parts(in/out of array boundary);
Ysplit;

* Assign Subsub # ;
Ysubsub;

proc print data=transubsub;
run;

* conbine two parts (in/out of array boundary) together;
% onbi netran;

Khkhhkhhhkhhkhhhhhhhkhhkhhhhhkhhkhhhhhkhhkhhhhhkhhkhhkhhkhhkhkhkkhkhhkhhkhkhk ok k-
’

* predict the log(Activity) for transformed data on grids;

*seperate the data by Pb , Cr and Potential;
data obs_Activity;

set arrayl23;

*if array gt 3 then delete;

gxe= . , gyc= .

keep array sub subsub gxc gyc rep | _Activity;
run;
Proc print data=obs_Activity; run;

* cal cul ate nmean from observed val ues;
* it will be used as the prediction on points w thout sub or subsub val ue;
Proc neans dat a=obs_Activity;

var | _Activity;

out put out =Act out nean=m | ogact ;

run;

proc print data=Actout ;run;

* prepare the identical structure for transforned data;

Dat a new,

set transubsub_T;

| _Activity = . ; * set the value of response which we want to predict as m ssing;

rep =1; * glmdo not predict new response w thout assign rep(any of 1,2,3 has sane
results ;

keep gxc gyc array sub subsub rep | _Activity;
run;

proc print data=new, run;

* put observed data and transformed data together;
data all;
set obs_Activity new,
run;
proc print data=all; run;

* Fit a nested nodel to |og data;
proc gl mdata=all;
class Array Sub Subsub Rep;
Model | _Activity=Array Sub(Array) Subsub(Sub Array);
random Array Sub(Array) Subsub(Sub Array)/ TEST;
out put out =resids predicted=PRED residual =Z;
run;

53



proc print data=resids;
run;
data resids;
set resids;
if sub=. then pred=7.66825; * set predicted values on other points to esti mated
aver age(5. 768) ;
if subsub=. then pred=7.66825;
run;

R R R R R R R R
*kkk k-
’

* calcultate the difference between the predictions in kriging nodel and those in nested
nodel ;

%di ff;

goptions htitle=2 htext=2;
footnotel ;

axi sl label = ("X");

axis2 label = ("Y");

| egendl position=(right middle)
| abel =(position=top 'l og(Act)(Nest-Krig)')
val ue=( hei ght =2)
SHAPE=BAR( 6, 4)
across=1;

titlel Contour plot of the differeces between H erarchical and Krigi ng nodel"’
title2' for log(Activity)'
proc gcontour data=preddif;
pl ot gyc*gxc=nest_kri g/ pattern
aut ol abel =(check=none)
haxi s=axi s1
vaxi s=axi s2
| egend=I egend1;

run;
quit;

4 Logistic regressions for missingness on other variables

* find the rel ati onshi p between m ssingness and ot her vari abl es;

*i mput dat a;
PROC | MPORT OQUT= WORK. al | dat a
DATAFI LE= "R\ project\all Data.xls"
DBMS=EXCEL REPLACE;
SHEET="Al| Val ues$"

GETNAMES=YES;
M XED=NG,
SCANTEXT=YES,
USEDATE=YES;
SCANTI ME=YES;
RUN;
proc print data=alldata;
run;

* Fit a logistic regression to censoring variabl e;
proc | ogistic data=alldata;
nmodel Censoring=Total _Pb Total _Cr Potential XY,
run;

* del ete Total _Pb and Total _Cr because they don’t have significant effect;
proc |l ogistic data=all data;
nmodel Censoring= X Y Potential;
out put out=tenp pred=phat;
where array le 3;
run;
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* plot the mssing data pattern with X and Y coordi nates;
proc gcontour data=tenp;
pl ot Y*X=phat/pattern;
run;
proc freq data=all dat a;
tabl e censoring*array/ nopercent nocol norow,
run;

data prob;

set tenp;

keep sanpl e phat;
run;

proc print data=prob;
run;

5 multiple imputations for missing data using logistic regression methods (overall test

and individual tests on lead, chromium and activity)

/*code for nultiple inputation estinate the paraneters for 68 bande binary vaiable with
m ssi ng val ues*/

*imput dat a;
PROC | MPORT OQUT= WORK. al | dat a
DATAFI LE= "R\ project\all Data.xls"
DBMS=EXCEL REPLACE;
SHEET="Al| Val ues$";
GETNAMES=YES;
M XED=NG,
SCANTEXT=YES,
USEDATE=YES;
SCANTI ME=YES;
RUN;

R R R R R R R R R R R R R R R

* cal cul ate overall nodel p-value for HO: betal=beta2=beta3=0 wi thout testing beta0;
khkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkkhkhkhkhkhkhkhkkhkkhkkhkhkhkkhkhkkhkkhkhkkhkhkhkhkhkhkkhkkhkkhkkhkhkkhkhkkhkkhkkhkkhkhkkhkkhkkkkkhkkkhkkkkkkkkkkkkkkkkkkkkkkk*x*x*%x.
%racr o param
dat a pararns;

run;
%o | =1 %o 68;
proc m data=alldata out=outlog& noprint ninpute=5;
class x& ;
var Total _Pb Total _Cr Potential x& ;
* |logistic regression inputation method;
nonot one | ogi stic(x& =Total _Pb Total _Cr Potential);
run;
proc |l ogistic data=outl og& outest=c& covout noprint;
nodel x& =Total _Pb Total _Cr Potential;
by _Inputation_;
run;
proc m anal yze data=c& nmult;
ods out put Paraneter Esti mat es=par ns& ;
nodel effects Total _Pb Total O Potential;
run;
dat a parans;
set parans parnmsé ;
run;
%end;
%rend;
Y%par am

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkkkkkkkkk*x*%x.
’

* use FDR controlling to adjust multiple test P val ues;
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Khkhhkhhhkhhkhhkhhhhhhhhhhhhhhkhhkhhhhhkhhkhhhkhhkhhkhhhhkhkhkkh k-

*imput dat a;
PROC | MPORT OUT= WORK. overal | p
DATAFI LE= "R\ proj ect\overall p. x| s"
DBMS=EXCEL REPLACE;
SHEET="sheet 1$";

GETNAMES=YES;
M XED=NO,
SCANTEXT=YES;
USEDATE=YES;
SCANTI ME=YES;
RUN;
proc print data=overall p;
run;

data overall p;

set overall p;

raw_p=p;
run;
proc sort data=overallp;

by raw p;

run;
* cal culate the adjusted p values for controlling FDR;
proc nulttest pdata=overallp fdr out=overalltest;
run;
proc print data=overalltest;
run;
dat a pararns;
run;

%racro paran(l);

proc m data=alldata out=outlog& noprint ninpute=1000;
class x& ;
var Total Pb Total _Cr Potential x& ;
nonot one | ogi stic(x& =Total _Pb Total _Cr Potential);
run;

proc | ogistic data=outl og& outest=c& covout noprint;
nodel x& =Total _Pb Total _Cr Potential;
by _Inputation_;

run;

proc manal yze data=c& nmnult;
ods out put ParaneterEsti mat es=parnmsé&l ;
nodel effects Total _Pb Total _Cr Potential;
run;
dat a pararns;
set parans parnsé&l ;
run;
%rend;

* multiple inmputation test for each of the significant bands
* which the overall adjusted p values |ess than 0.05;
* (band #3, 21, 41, 49. 52. 56. 22. 12. 14)

%ar am( 3) ;

Y%ar am(21) ;

Y%ar anm(41) ;

Ypar an( 49) ;

%ar am(52) ;

%ar am(56) ;

Y%ar am(22) ;

Y%param(12) ;

Y%ar anm( 14) ;

* add the band nunber to estinators;
dat a parans;
set pararns;
do i=1to 9;
if (_n_-1) gt ((i-1)*3) and (_n_-1)le (i*3) then id=i;
end;
if _n_=1 then del ete;

56



if (id eq 1) then band=3;
if (id eq 2) then band=21;
if (id eq 3) then band=41,
if (id eq 4) then band=49;
if (id eq 5) then band=52;
if (id eq 6) then band=56;
if (id eq 7) then band=22;
if (id eq 8) then band=12;
if (id eq 9) then band=14;
keep parm probt band;
run;
proc print data=parans;
run;

kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkhkkkkkkkkkkkkkk*x*x.
’

* tests for each of lead, Cr and activity;
)\')\')\')\')\'**********************************)\')\';
* for |ead;
%racro estimatel ead;
data pl ead;
run;
%o | =1 %o 68;
proc m data=alldata out=outlog& noprint ninpute=5;
class x& ;
var Total _Pb x& ;
nonot one | ogi stic(x& =Total _Pb );
run;

proc | ogistic data=outl og& outest=c& covout noprint;
nodel x& =Total _Pb ;
by _Inputation_;

run;

proc manal yze data=c& nmnult;
ods out put Paraneter Esti mat es=pl ead& ;
nmodel effects intercept Total _Pb ;
run;
data pl ead;
set plead pl eadd ;
run;
%end;
%rend;
%esti mat el ead;

* add the band nunber to estimators;

data pl ead;
set plead;
do i=1 to 68;
if (_n_-1) gt ((i-1)*2) and (_n_-1)le (i*2) then band=i;
end;

if _n_=1 then del ete;
run;

proc print data=pl ead;
run;

dat a pl ead;
set plead;
if parmeq '"intercept' then delete;
keep band probt estimate;
run;
proc print data=pl ead;
run;
dat a pl ead;
set plead;
raw_p=probt;
run;
proc sort data=pl ead;
by raw p;
run;
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proc multtest pdata=plead fdr out=lead;

run;
proc print data=l ead;
run;
* for Cr;
%racro estimateCr;
data pCr;
run;
%o | =1 %o 68;
proc m data=alldata out=outlog& noprint ninpute=5;
class x& ;
var Total _Cr x&;
nmonot one | ogi stic(x& =Total _Cr );
run;
proc | ogistic data=outl og& outest=c& covout noprint;
nmodel x& =Total _Cr ;
by _Inputation_;
run;
proc m anal yze data=c& nult;
ods out put ParaneterEsti mat es=pCr & ;
nmodel effects intercept Total _COr ;
run;
data pCr;
set pCr pCr&;
run;
%end;
%rend;

% st i mat eCr;
* add the band nunber to estimators;

data pCr;
set pCr;
do i=1 to 68;
if (_n_-1) gt ((i-1)*2) and (_n_-1)le (i*2) then band=i;
end;
if _n_=1 then del ete;
run;

proc print data=pCr;
run;

data pCr;
set pCr;
if parmeq 'intercept' then delete;
keep band probt estimate;

run;

proc print data=pCr;

run;

data pCr;
set pCr;
raw_p=probt;
run;

proc sort data=pCr;
by raw p;
run;

proc nulttest pdata=pCr fdr out=Cr;
run;

proc print data=Cr;

run;

* for Activity;
%racr o esti mat eact;

data pact;
run;
%o | =1 %o 68;
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proc m data=alldata out=outlog& noprint ninpute=5;
class xé&;
var Net _Activity x& ;
nmonot one | ogistic(x& = Net_Activity );

run;

proc |l ogistic data=outl og& outest=c& covout noprint;
nmodel x& =Net _Activity ;
by _Inputation_;

run;

proc m anal yze data=c& nult;
ods out put Paranet er Esti mat es=pact & ;
nodel effects intercept Net_Activity ;

run;
data pact;
set pact pact& ;
run;
%end;
%rend;

%esti mat eact ;
* add the band nunber to estinmators;

data pact;
set pact;
do i=1 to 68;
if (_n_-1) gt ((i-1)*2) and (_n_-1)le (i*2) then band=i;
end;

if _n_=1 then delete;
run;

proc print data=pact;
run;

data pact;
set pact;
if parmeq "intercept' then delete;
keep band probt estimate;

run;

proc print data=pact;

run;

data pact;
set pact;
raw_p=probt;
run;

proc sort data=pact;
by raw p;
run;

proc multtest pdata=pact fdr out=activity;
run;

Proc print data=activity;
run;
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