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Abstract 
 This project is a part of a larger project with the goal of implementing algorithms to solve 

systems of binary quadratic equations using a recursive search on FPGAs. Our goal was to 

implement an exhaustive search method for a binary quadratic system of equations as a proof of 

concept, as well as expanding upon a modified GRASP (Generic Search Algorithm for the 

Satisfiability Problem) algorithm created in Python to improve the speed and reduce complexity 

of the decision making. Look up tables (LUTs) created by the group covered cases for two 

equations with one, two, or three differences between them. The tables and modules for the 

project are written in Verilog and SystemVerilog, with one additional module created in VHDL. 

Some work was also completed in Python. For future use, the exhaustive solver can easily be 

upgraded to scale the number of terms and solution size. The CDCL (Conflict Driven Clause 

Learning) is still a work in progress at the time of this paper. Although Boolean Satisfiability 

problem is a never-ending research problem, our group did make improvements in the solving 

that could be expanded upon by further research and improvements. 

 

Background 
 The Solution of Boolean multivariate quadratic (MQ) systems, aka Boolean Satisfiability 

Problem (SAT) is a popular problem in Cryptography. The SAT (satisfiability) problem involves 

determining whether a given logical expression, represented as a system of boolean equations, 

can be satisfied by finding a combination of truth values for the variables that makes the entire 

expression true at the same time. The MQ problem takes this premise and asks if there is a 

solution to a system of binary, quadratic systems, similar to the one shown in Figure 1.  

 

𝑋1 + 𝑋2 + 𝑋3 + 𝑋1𝑋2 = 1  

𝑋1 + 𝑋2 + 𝑋1𝑋2 + 𝑋2𝑋3 = 1  

𝑋2 + 𝑋1𝑋2 + 𝑋2𝑋3 + 𝑋1𝑋3 = 0  

Figure 1: An Example System of Binary Quadratic Equations of 3 variables 

 

The MQ problem itself is stated to be used in regard to post-quantum cryptography as 

“the building block of the Multivariate public key crypto systems (MPKCS)” (Bellini, et al. 

2022) such as Rainbow, LUOV. These public keys have specific parameters that help to 

determine the hardness of the MQ problem given as well as the specific time and space 

complexities. (Bellini, et al. 2022): 

1. Size of Finite Field (usually 2) 

2. Number of variables 

3. Number of polynomials  
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 Knowing this, there have been numerous attempts at solving the MQ as well as the SAT 

problem such as the “Crossbred” algorithm, different variations of the AmoebaSAT algorithm, as 

well as looking back at algorithms created by previous MQP teams such as the one made by 

Frank Kennedy to solve linear systems via exhaustive searching as the first step towards solving 

quadratic systems. The goal of this project is to see what can be enhanced from Frank’s 

algorithm as well as laying the groundwork for the next steps in the implementation on an 

FPGA.  

 

Implementations of MQ/SAT Problems 

 

“Crossbred” Algorithm 

 The “Crossbred” algorithm developed by French cryptographers Antoine Joux and 

Vanessa Vitse, focused on solving systems of quadratic binary polynomials using Macaulay 

matrices, much like the FXL/BooleanSolve algorithm it is based on (Joux 2018). A Macaulay 

matrix is able to show the coefficient weight of each linear and quadratic term.  

 

Figure 2: An Example Degree 2 Macaulay Matrix (Joux 2018) 

 

The main problem with a lot of solving algorithms that involve the use of this matrix is 

linear algebra that is “performed 2n-k times,” where n is the number of unknown terms and k is 

the number of known variables that can be taken out of the system (Joux 2018).  Joux and Vitse 

decided to mitigate this issue by performing this portion after the elimination of the known 

variables. 

 

 The basic premise would be to first construct the matrix in alphabetical order, like the 

matrix in Figure 2, and compute the last rows of the constructed matrix’s reduced row echelon 

form. By being able to just compute the last rows of the system, excluding variables with the X1 

term from the reduced row echelon form as shown in Figure 3, we can solve for the rest via 

exhaustive search methods, and then checking the solutions with the equations that contain X1 

(Joux 2018).   
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Figure 3: Reduced Row Echelon of Figure 2’s Matrix (Joux 2018) 

 

 However, it is not necessary to eliminate all of the k variables from the system. Joux and 

Vitse explain that a more refined version of the algorithm involves ordering the columns of the 

matrix in graded reverse lexicographic (GRevLex) order, with all quadratic terms first before 

the linear terms, creating a row echelon form of the matrix shown in Figure 4. From the last 3 

rows, we see that all the equations have X1, X2, and X3 in degree 1. This allows us to assign X4 

to whatever we want and solve for the other variables, theoretically eliminating them from the 

search. 

 

Figure 4: GRevLex Row Echelon Form of Matrix (Joux 2018) 

 

In terms of implementation, Joux and Vitse tackled the Fukuoka Type I MQ challenges 

issued in 2015 to assess the hardness of solving the systems of equations (Joux 2018). They used 

a network of Opteron and Xeon processors and were able to solve challenges using up to 74 

differing variables taking an estimated maximum of 300,000 hours to solve (Joux 2018). 

 

AmoebaSAT 

 The AmoebaSAT algorithm is a cooperation between software and the hardware of an 

FPGA based on amoeba cell biology. Primarily used for Internet of Things (IoT) oriented 

applications, requiring the processing of many variables, the algorithm is based on how an 

amoeba can grow and move from light signals called “Bounceback signals” (Ngyuen, et al. 

2020). These signals are sets of rules that dictate that each variable cannot be both 1 and 0 at the 

same time, all literals cannot be 0, and rules to resolve situations where a variable cannot be 

either 0 or 1. These decisions end up consuming a lot of memory to operate. 
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Figure 5: AmoebaSAT model for 4 Variable SAT Case (Nguyen, et al. 2020) 

 

 An iteration of this algorithm known as AmoebaSATslim (ASATslim) is able to reduce 

the amount of memory it uses by omitting certain rules from the bounce back signals and instead, 

implementing them as temporary signals on a branch-by-branch basis. Although it will need 

nearly the same number of iterations as the original ASAT algorithm, due to memory issues 

being mitigated to a degree, ASATslim can handle more variables (Ngyuen, et al. 2020). An 

even more “evolved” version of this algorithm known as ASATone further reduces the 

computational resources needed by representing variables as single branches in a more instance-

based method.  

 

This version of the ASAT algorithm was able to be implemented h copies of the uf50-

100.cnf 3-SAT instance, a set of variables that only have one solution with 50h variables and 

218h clauses on a Zynq Ultrascale+ FPGA and compared with a software implementation using 

a Ryzen 3960X 24 Core CPU (Nguyen 2020). When compared to the software implementation, 

the FPGA was able to be anywhere between 3 and 15 times faster while sipping power using 

under ten watts (Nguyen 2020). By utilizing the ability to execute multiple instances through 

parallelization on FPGAs, they are best suited for these multiple variable problems. 

 

Frank Kennedy’s Implementation 

 Frank Kennedy’s implementation has been built off of previous work from WPI students 

Liam Stearns, Carlton Mugo, and James McAleese, from the past two years with the main idea 

of his recursive algorithm was to split the system into smaller groups decreasing the number of 

solutions to “2n-s, where s is equivalent to the number of groups'' (Kennedy, 2023). Kennedy’s 

goal was to create a program to solve a set of quadratic equations via partial solutions to the 
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linear terms of the equations. Kennedy started his improvements by observing when different 

equations would be nearly identical besides one variable, while also observing the Right Hand 

Side (RHS) variable, also known as the solution of the equation, along with a Rest variable that 

is defined as “what the solution adds to using bitwise addition with the exception of the variable 

in question” (Kennedy, 2023) to see if there is a possible solution and what the said solution 

would be. Figure 6 below shows Kennedy’s table for two equations with a one variable 

difference. These rules are able to assist in Kennedy’s recursive algorithm, eliminating sets that 

need to be figured out in the rest of the algorithm. 

 

Figure 6: Rules for One Different Variable (Kennedy, 2023) 
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In terms of Kennedy’s recursive searching algorithm for the sets of equations, he 

intended on splitting the system matrix into smaller pieces, treating the linear portion as its own 

section. Kennedy only assigns weights to each linear portion of the equations, organizing the 

equations from lowest weight to highest weight. This organized form of the matrix is then further 

reorganized “starting with the first equation in the matrix, if a 1 is found, the entire column 

swaps places with the first 0, ” removing that column from other reorganizations, and repeated 

for the following equations to form an upper right-hand triangle, creating a priority on how to 

search the variables (Kennedy 2023). This first variable can be set to 0 at first and evaluate the 

rest of the terms to see if it was a viable solution in the first place. If it works, then the solution is 

considered SAT and the work is done. If not, then the first term is set to 1 and the process starts 

all over again. If there continues to not be a solution found, then the system can be considered 

UNSAT, meaning that there are no solutions. 

 

Although Kennedy was unable to finish or implement this searching algorithm, he states 

that the algorithm has a theorized number of solutions of 2n/2, which is a significant improvement 

when compared to the 2n complexity of exhaustive searching. From his report, Kennedy also 

states that he “utilized many hard coded values in order to establish the equations and matrices 

used in the setup portion of the code,” and that the process could be made more efficient if there 

was less hard coding and a possible reading from a memory file occurred instead. Kennedy also 

suggested that creating a lookup table of solutions for cases in which two variables differ would 

also be beneficial in checking solutions for complexity reduction. The only issue he saw with this 

method would be that there would be a significant jump in the memory usage and the board he 

was using did not have enough non-volatile flash to store this data and that a new board should 

be looked into. 

 

GRASP 

During the project’s duration, part of our group completed a modified implementation of 

Generic Search Algorithm for the Satisfiability problem (GRASP) in Python. GRASP is made 

with a decision tree that bases later decision off earlier decisions. The decision tree helps reduce 

the number of solutions worked through, as large portions of the tree can be eliminated at once. 

The decision tree also allows for easier backtracking. This backtracking is a result of a conflict, 

where several variables have been chosen but the solution is no longer viable. This is where the 

term Conflict Driven Clause Learning (CDCL) comes from, as GRASP is the earliest example of 

a CDCL. GRASP was finished in 1996 and there have been several improvements in both time 

complexity and ease of design. GRASP sets an important basis for future CDCLs and 

improvements in our own project itself. 
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Figure 7 below shows an example binary decision tree. The beginning of the tree chooses 

the most involved variable (variable that occurs the most) and then continues from there. The 

decisions are stored in the database, as well as the level that they are decided at. The tree will 

eventually reach a point where a solution has been found and the system is satisfiable, or all 

viable options have been tested and the system is unsatisfiable. Although the algorithm improves 

a lot when compared to an exhaustive solver, there is still some randomness (Silva & Sakallah, 

1996). 

  

Figure 7: GRASP example implication graph with decisions and levels (Silva & Sakallah, 1996) 

 

 

Improving Solving Lookup Table to Account for 

Quadratics and Two Term Differences  
 Building off of Kennedy’s work on comparing two equations with one differing linear 

variable, we decided to create a simulation written in SystemVerilog in the Xilinx Vivado ISE to 

generate all of the combinations of coefficients for the equations of the format shown in Figure 

7, excluding the Rest and RHS. The aim was to be able to create a lookup table of common 

solutions for when equations may appear very similar besides two coefficients that involve linear 

or quadratic terms, hence the exclusion of Rest and RHS. The goal is that this lookup table 

would be able to be referenced in recursive searching algorithms when breaking down equations 
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with differences in three or more terms, decreasing the complexity of solving these kinds of 

systems. 

 

X1 X2 X3 X4 X1X2 X2X3 X3X4 REST RHS 

0 0 1 0 1 0 0 0 1 

Figure 8: Equation Format for Weight of 2 Solving with Example Coefficients 

 

Using this specific set of terms, I am able to cover all of these five different scenarios:  

1. Two different linear terms (X1, X3), 

2. One linear and one quadratic without a shared term (X1, X2X3),  

3. One linear and one quadratic with a shared term (X1, X1X2),  

4. Two quadratics without a shared term (X1X2, X3X4),  

5. Two quadratics with a shared term (X1X2, X2X3).  

This equation format also uses the assumption that there are more terms that we are not looking 

at that are the same between each equation that both reduce down to a simple “Rest” term of 

either 1 or 0, similar to Frank’s research. The RHS can be either the same or different for each 

equation and thus is not accounted for in the binary weight as well as the rest. 

 In order for me to figure out what every combination of weight of two was for the seven 

coefficients, I started with a simple bit-counting simulation in Verilog that would use a seven-bit 

counter as an input and output a 1-bit flag that says if the input value has a binary weight of 2. 

From there, I was able to construct the table shown in Figure 8 that shows the combination of 

two sets of coefficients that follow the following rules: 

1. The coefficients can NOT be the same value (blacked out in Figure 8) 

2. The combination of coefficients can not be covered twice  

(i.e (EQ1 = 0000011, EQ2 = 0000101) and (EQ1 = 0000101, EQ2 = 0000011) 

 

Figure 9: Valid Combinations of Coefficients 
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 The table demonstrates that there are 190 total valid combinations of coefficients that can 

be iterated through, alongside the different variations of RHS (00, 01, 10, and 11 for 

{EQ1,EQ2}, respectively) and Rest (0 or 1), resulting in a total of 1,520 systems in the format 

portrayed in Figure 9. 

 

Figure 10: Format for Two Equations with Weight Two in Code 

 

Knowing all of this, I was able to create a look-up table to iterate two counters through all 

of the valid coefficients from Figure 8 and form a simulation that would also iterate through the 

combinations of the RHS for the equations via a two-bit value (RHS[1] = RHS2 and RHS[0] = 

RHS1), as well as the rest value, outputting all data on the number of total systems created, what 

the equations are, all valid combinations of X1, X2, X3, and X4 iterated via a 4-bit counter 

mapped to each linear term (the quadratic terms are just the linear terms multiplied by each other 

through the use of bitwise AND), as well as the number of solutions for each system. The 

systems are solved via conducting a bitwise-XOR on both equations generated, then performing 

a bitwise-AND on the resulting coefficients and the possible solution made by the 4-bit counter. 

From there, the resulting string is XOR’d with each other and compared to the final RHS value. 

If the values are the same, then it is labeled a valid solution and displayed in the console of the 

simulation.  The code for finding the weight of two, look-up table, solving module, simulation, 

and the results can be found in Appendices B, C, D, E, and F respectively. At the end of my time 

on this project, I was also able to create the look-up table for cases involving a weight of three 

and modified the weight-finding code to parametrize the binary weight. The code for these will 

be in Appendix I and J respectively.  

Choosing a New Board 
 To perform such operations for row and column operations that act similar to Gaussian 

elimination, as well as the storage of multiple arrays, we will need to utilize more memory on the 

FPGA. With taking Frank Kennedy’s input and recommendations on getting a better board than 

the Digilent Basys-3 board with the Artix-7 A35 FPGA on-board (Kennedy, 2023), we decided 

to look for a board that fulfilled these requirements: 

1. Has more than 32 megabits of non-volatile flash 

2. At least 5 times as many logic cells as Basys-3 (A35 has 33,280) 

3. At least 5 times as much Block RAM (BRAM) (5 * 1800 kilobits on Basys-3) 

When accounting for these requirements, a board with the Artix-7 A200 FPGA, more 

specifically, Digilent’s Nexys Video board would be the best for this application. The A200 

{Coefficient_EQ1,REST, RHS1} 
{Coefficient_EQ2,REST, RHS2} 
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Artix-7 FPGA has 215,360 logic cells, covering the second requirement, and has 13 megabits of 

BRAM, fulfilling the third requirement. The board itself has 32 megabytes of non-volatile flash 

on board when compared to the 32 megabits on the Basys-3, fulfilling the first requirement. 

 

 

Figure 11: Comparison of A35 and A200 FPGA (Xilinx Website) 

 

Using this board would allow for implementation of systems of equations with a larger 

number of equations and a numerous number of differing terms, executing programs in a 

reasonable amount of time. 

Aside from this board chosen, the team wanted to explore implementing code using 

Python onto a Xilinx Zynq 7000 System-on-Chip (SoC) board, more specifically the PYNQ-Z2 

board. PYNQ itself is an open-source project developed by Advanced Micro Devices (AMD) 

that takes Python and any associated libraries and translates it to hardware description language 

during run-time or for parallelization of the code. At the time of writing, the board is still a work 

in progress. The actual board did not work directly with python as expected. The modules are 

being converted to Verilog to be able to run properly on the board. Not everything of the module 

needs to be converted between languages, but the board was not as “plug and play” as expected. 

Some of the Python programs work as expected, but much of the top level module has to be 

converted into Verilog and SystemVerilog. This is a different effort from the full CDCL in 

SystemVerilog. The two boards can be used to compare a Python implementation vs a full HDL 

implementation and determine the performance differences. 

  

https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html#productTable
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Exhaustive Searching 
 When looking at the previous exhaustive search code from Frank Kennedy, the team and 

I saw that there were many areas that could be improved. The first one that was shown was the 

creation of classes, column-swapping, and weight assignments, which would not impact the time 

complexity of 2n, where n is the number of linear terms. The classes also contained more 

information than what was needed for exhaustive search to be performed. 

 After consideration, we were able to create a new packed structure 16 bits long for the 

equation’s coefficients, with n for the implementation being five linear terms (5 linear terms + 10 

quadratic terms + RHS = 16). This structure is used to create a packed array of 16 hard-coded 

equations generated with the use of a random number generator online to perform the exhaustive 

search. Although the initial idea was to use a clocked 16-bit linear feedback shift register (LFSR) 

to create the array, there ended up being some cross-clock domain synchronization issues making 

some equations have all values of X (don’t care in SystemVerilog) and concerns of true 

randomness not being possible that resorted to the use of the hard-coded equations discussed. 

While this hard-coded solution is not the final idea, the team intends to move this 

implementation to read off of an SD card loaded onto the Nexys board, which will take a longer 

amount of time to determine a proper way of doing so in the future. 

From there, I XOR all of the equations together, similar to my simulation in the 

improving linear solving section. This is to determine what terms are needed to be accounted for 

to solve the system. In regard to the terms, I use five of the switches on the Nexys board to 

assign values of 1 or 0 to the linear terms X1 to X5 and assign the quadratic values via a bitwise 

AND between these linear terms. All of these terms are concatenated into a 15-bit long string as 

shown in the code snippet in Figure 11 to easily perform a bitwise AND between them and the 

term coefficients (bits 16 to 1) of the XORed equations. 
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Figure 12: Term Assignment Code Snippet 

 

 Once the AND operation has been completed and stored in a 15-bit wire, all of the bits in 

it are XORed together for the addition to compare to the RHS value created from XORing all of 

the initial equation coefficients’ RHS to determine if the combination of switches is solves the 

system. If it is a solution, the set of LEDs corresponding to the switches will turn on, indicating 

that it is a solution; if not, then an LED not controlled by the LED will be turned on, indicating 

that it does not provide a solution. As my solution was only concerned with combinational logic, 

a clock was not required for my implementation to operate. Of course, with wanting to read from 

an SD card in the future, there will arise the need to use a clock and ensure that the SD card is 

fully read from to ensure the system of equations is properly solved. 

 

 

Figure 13: Exhaustive Searching Flow Diagram 

 

When the solution flag within the code is 1, the team also wants a string to be outputted 

saying that a solution has been found at the value of the terms. This is currently being worked on 

and utilizes the UART protocol to operate while encoded our string into ASCII text for 

communication purposes. At the time of this report, we are able to print out the equations into a 

terminal and some of the solutions.  
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Exhaustive Searching Results 
 To first test to see if the exhaustive searching works, I simulated my searching module, 

updating the terms register of the simulation every 10 nanoseconds, and comparing it to what the 

good_out wire, the representation of the LEDs, gave. As shown in Figure 13, any time that the 

wire had a hexadecimal value of 20 (binary value of 100000), that would mean that the 

combination of terms was not a solution to the system. Conversely, when the wire equals the 

terms register, that indicates that the combination is a valid solution. Figure 14 shows that my 

implementation uses little-to-no resources of the board, meaning that this implementation can be 

scaled to include many more linear terms, thus more quadratic terms as well, up to however 

many switches that you would want to control the value of the linear terms. 

 To prove that the simulation is correct, I also generated the bitstream and programmed 

the Nexys board to run the exhaustive search code. Figure 15 shows that a hex value of 0a (X2 

and X4 = 1) does not provide a solution to the system, while a value of 12 (X2 and X5 = 1) is a 

solution and turns on the LEDs shown in Figure 16. 

 

Figure 14: Exhaustive Search Vivado Simulation Results 

 

Figure 15: Exhaustive Search Resource Utilization 
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Figure 16: X2 and X4 = 1 on Board 

 

Figure 17: X2 and X5 = 1 on Board  
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Exhaustive Searching Expanded 
In order to truly meet the challenge of solving larger and more complex systems, the 

exhaustive solver was expanded to eight variables (as a proof of concept), which creates an 

individual equation size of 36 bits. The solution length is the same length as the number of 

variables, which in this case is 8 terms long. Eight was chosen just to show expandability, the 

solver is adjustable for more. To meet the need to show larger solutions, UART printing was 

used. The starting code provided by Digilent in VHDL served as a good starting point for how 

the UART printing worked (Digilent, 2016). The code was modified to accept parameters based 

on the equation length and size, as shown in figure 18. The parameters allow the VHDL module 

to be called from the Verilog top level module.  There was a focus on parameterization so that 

the printing could be easily changed. The length of the terms, number of equations, and number 

of variables are all modifiable from the top level of the module, without changing any VHDL 

code. 

 
Figure 18: UART printing module in VHDL  

Figure 19 shows an example output with 5 variables. The equations are printed first, then 

the solutions are shown. Because of the limitations of Verilog, the solutions wire length must be 

determined at compile time. This means that the solutions wire length must be guessed. Figure 

19 shows what happens because of this. When the solutions wire is longer than the number of 

solutions, the solutions are just repeated. If the system has no solutions, the entire solutions wire 

is all 0’s. The don’t care (X) is added in to be written over, due to VHDL restrictions on loops. 
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Figure 19: Example printing with input equations shown 

 

The exhaustive solver is similar to the previous exhaustive solver, where a terms wire is 

created and iterates through all possible options. If the solution works, it is appended to the 

solutions and later sent to the UART printing VHDL module. The specific benefit of adding the 

UART printing and slightly modifying the exhaustive solver is that the project is now 

expandable to a much larger set of equations. The modules have parameters to be easily changed. 

The problem with exhaustive searching is the high complexity as the solutions are 

expanded. The actual running of the module is still less than 2 seconds, but the process to create 

(synthesis, implementation, and bitstream generation) took about 15 minutes with 8 variables and 

10 equations. Although the system can be expanded, it will take exponentially longer to build. 

The team needed another solution. 

 

GRASP Python Implementation 
Due to the exponential complexity of the exhaustive solver, another implementation was 

created. The group initially split into two teams, one working on a CDCL implementation in 

python and one group working on the FPGA exhaustive search. After the CDCL in python 

finished, the group convened to work together on converting the files to SystemVerilog. This 

includes, the look up tables, operations on the look up tables, and other important CDCL 

functions. This presented a unique set of challenges, as the original code contained many 

functionalities that do not exist in SystemVerilog, such as dynamic arrays (appending to an array 

of unknown length). As of the end of C term, the modules are mostly completed but the code 

itself has not been fully run on a board yet, just a few individual modules. Figure 20 and 21 show 

two of the same modules, one in Python and one in SystemVerilog. The module takes in an NxM 

matrix and returns an NxN matrix with the differences between equations. For example, 

xor_transpose[2][4] will show the number of differences between equations 2 and 4. This shows 

the difficulty in converting modules, as many python functionalities are not available in 

SystemVerilog. For example, the inputs in SystemVerilog must be more explicitly defined, 

including the size of arrays. 
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Figure 20: XOR transpose in python 

 
Figure 21: XOR transpose in SystemVerilog 

 

Another major accomplishment of the group was the conversion of additional look up 

tables from python to SystemVerilog. These look up tables cover cases for one, two, and three 

differences between equations. The tables can be used recursively and are an expansion of the 

previous section mentioning differences between two equations. They cover different types of 
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cases such as differences being quadratic dependent (xaxb + xaxc, where one of the differences 

is a shared term and the other is not). There are a number of important tables that speed up the 

calculation complexity. Figure 22 shows an example of one table below. 

 
Figure 22: Look Up Table for 2 quadratic independent differences 
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Conclusion 
During our time on the project, the overall goal was to construct improvements to solving 

systems of similar equations besides a combination of linear and/or quadratic terms, 

implementing the quadratic exhaustive search, and upgrading the hardware used for 

implementation. We were able to implement an exhaustive solver that used the peripherals of the 

board to change equations, and a more advanced exhaustive solver which can be scaled for larger 

equations. In addition, we were able to help advance our group in their implementation of a 

CDCL FPGA solver by completing a significant amount of the modules and testing the 

individual modules. Although the project remains unfinished, that is the nature of the research. 

We tried to implement the best way to push the solutions to be faster and faster, by both 

improving hardware and improving the approach to the problem. 
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Appendix B: Finding Binary Weight of Two Code 

module hamming #(parameter length = 7)( //Defines how many bits long testing    

 input [length-1:0] counter, //arrays start @ 0 

 output flag2 

 ); 

     

 integer i; 

 reg [length -1:0] weight; 

     

 always @ (counter) begin 

     weight = 0; 

     for(i = 0; i <= length; i = i + 1)begin 

         if(counter[i] == 1'b1) begin 

             weight = weight + counter[i]; 

         end 

     end 

 end 

     

 assign flag2 = (weight > 1 && weight < 3) ? 1'b1 : 1'b0; 

     

endmodule 
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Appendix C: Binary Weight of Two Lookup Table Code 

module weight2_lut( 

 input [4:0] counter, 

 output reg [6:0] coeff 

 ); 

     

 always @ (counter) begin 

     case(counter) 

         5'd0: coeff <= 7'd3; 

         5'd1: coeff <= 7'd5; 

         5'd2: coeff <= 7'd6; 

         5'd3: coeff <= 7'd9; 

         5'd4: coeff <= 7'd10; 

         5'd5: coeff <= 7'd12; 

         5'd6: coeff <= 7'd17; 

         5'd7: coeff <= 7'd18; 

         5'd8: coeff <= 7'd20; 

         5'd9: coeff <= 7'd24; 

         5'd10: coeff <= 7'd33; 

         5'd11: coeff <= 7'd34; 

         5'd12: coeff <= 7'd40; 

         5'd13: coeff <= 7'd48; 

         5'd14: coeff <= 7'd65; 

         5'd15: coeff <= 7'd66; 

         5'd16: coeff <= 7'd68; 

         5'd17: coeff <= 7'd72; 

         5'd18: coeff <= 7'd80; 

         5'd19: coeff <= 7'd96; 

         default: coeff <= 7'd3; 

     endcase 

end 

endmodule 
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Appendix D: Two Equation Weight of Two Solving Module Code 

module solver( 

 input [3:0] terms, 

 input [8:0] Co_1, Co_2, 

 output solved 

 ); 

     

 wire X1, X2, X3, X4; 

 assign {X4, X3, X2, X1} = terms[3:0]; 

     

 //X1 + X2 + X3 + X1X2 + X2X3 + X3X4 + Rest = RHS 

 //7 Terms + Rest + RHS = 9 Bit long Equations 

     

 wire X1X2 = X1 & X2; 

 wire X2X3 = X2 & X3; 

 wire X3X4 = X4 & X3; 

     

 wire [8:0] temp_eq = Co_1 ^ Co_2;   //XOR arrays 

     

 wire result = (X1 & temp_eq[8]) ^ (X2 & temp_eq[7]) ^ (X3 & temp_eq[6]) ^(X4 * 

temp_eq[5]) ^(X1X2 & temp_eq[4]) ^(X2X3 & temp_eq[3]) ^(X3X4 & temp_eq[2]) ^ 

temp_eq[1]; 

     

 assign solved = (result == temp_eq[0]) ? 1'b1 : 1'b0; 

     

endmodule 

  



 

27 

Appendix E: Two Equation Weight of Two Solving Simulation Code 

`timescale 1ns / 1ps 

 

module weight2_table( 

 

 ); 

 reg [4:0] eq1_count, eq2_count;   //iterate for loop 

 reg [2:0] RHS;  //for equations 

 wire RHS1, RHS2; 

 assign {RHS2, RHS1} = RHS[1:0]; 

 reg [1:0] Rest;   //for equations 

 wire [6:0] eq1_co, eq2_co;  //output of lut 

 integer sys_num, solutions_num; //for # of systems and solutions per system 

 reg [4:0] terms; //for iterating through X1-X4 

 wire solved; //for saying if solution 

     

 //Equations 

 wire[8:0] eq1, eq2; 

 assign eq1 = {eq1_co, Rest[0], RHS1}; 

 assign eq2 = {eq2_co, Rest[0], RHS2}; 

     

 weight2_lut eq1_coefficient( 

     .counter(eq1_count), 

     .coeff(eq1_co) 

 ); 

     

 weight2_lut eq2_coefficient( 

     .counter(eq2_count), 

     .coeff(eq2_co) 

 ); 

     

 solver algorithm( 

     .terms(terms[3:0]), 

     .Co_1(eq1), 

     .Co_2(eq2), 

     .solved(solved) 

 ); 
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 initial begin 

     eq1_count = 0; 

     eq2_count = 1; //avoid "squared" positions 

     RHS = 3'b000; 

     Rest = 2'b00; 

     sys_num = 0; 

     solutions_num = 0; 

     terms = 0; 

     #20; 

     while(Rest[1] != 1'b1) begin 

         while(RHS[2] != 1'b1) begin 

             while(eq1_count <= 18) begin 

                 while(eq2_count <= 19) begin 

                     sys_num = sys_num + 1; 

                     $display("System # %d", sys_num); 

                     $display("EQ1 : %b", eq1); 

                     $display("EQ2 : %b", eq2); 

                     while(terms[4] != 1) begin 

                         if(solved) begin 

                             solutions_num = solutions_num + 1; 

                             $display("Solution : X1 = %b X2 = %b X3 = %b X4 = %b", terms[0], 

terms[1], terms[2], terms[3]); 

                         end 

                         #5 terms = terms + 1; 

                     end 

                     terms = 0; 

                     solutions_num = 0; 

                     eq2_count = eq2_count + 1'b1; 

                 end 

                 eq1_count = eq1_count + 1'b1; 

                 eq2_count = eq1_count + 1'b1; 

             end 

             RHS = RHS + 1'b1; 

             eq1_count = 0; 

             eq2_count = 1; 

         end 
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         Rest = Rest + 1'b1; 

         RHS = 3'b000; 

         eq1_count = 0; 

         eq2_count = 1; 

     end 

     $stop; 

 end 

     

     

endmodule 
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Appendix F: Two Equation Weight of Two Solving Results 

 Due to the brevity of the results, a link to the text on Github has been provided. 

  

https://github.com/Matthew-Lund/FPGA-SAT-Solver-MQP/blob/main/Weight2_Table_Results.txt
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Appendix G: Exhaustive Search Code 

module exhaustive_search( 

 //input clk, reset_n, 

 input [4:0] sw, 

 output [5:0] led 

 ); 

     

 // Define packed struct for equation coefficients 

 typedef struct packed { 

     logic [15:0] coefficient; 

 } EquationCoeff; 

     

 //16 equations with 15 coefficients + RHS 

 EquationCoeff EQ_Matrix [0:15];   //X1 + X2 + X3 + X4 + X5 + X1X2 + X1X3 + X1X4 

+ X1X5 + X2X3 + X2X4 + X2X5 + X3X4 + X3X5 + X4X5 = RHS 

     

 wire X1, X2, X3 ,X4 ,X5 ,X1X2, X1X3, X1X4, X1X5, X2X3, X2X4, X2X5, X3X4, 

X3X5, X4X5; 

 wire [4:0] Terms = sw[4:0]; 

 assign X1 = Terms[0]; //Assign Linear Terms 

 assign X2 = Terms[1]; 

 assign X3 = Terms[2]; 

 assign X4 = Terms[3]; 

 assign X5 = Terms[4]; 

     

 //Assigning Quad Terms 

 assign X1X2 = X1 & X2; 

 assign X1X3 = X1 & X3; 

 assign X1X4 = X1 & X4; 

 assign X1X5 = X1 & X5; 

 assign X2X3 = X2 & X3; 

 assign X2X4 = X2 & X4; 

 assign X2X5 = X2 & X5; 

 assign X3X4 = X3 & X4; 

 assign X3X5 = X3 & X5; 

 assign X4X5 = X4 & X5; 
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 wire [14:0] term_string = {X1, X2, X3, X4 ,X5, X1X2, X1X3, X1X4, X1X5, X2X3, 

X2X4, X2X5, X3X4, X3X5, X4X5}; //easier for computation 

     

 //Equations 

 assign EQ_Matrix[0].coefficient = 16'b01001_1011_001_11_0_1; //X2 + X5 + X1X2 + 

X1X4 + X1X5 + X2X5 + X3X4 + X3X5 = 1 

 assign EQ_Matrix[1].coefficient = 16'b10110_0001_101_01_1_0; 

 assign EQ_Matrix[2].coefficient = 16'b11001_1010_010_10_0_1; 

 assign EQ_Matrix[3].coefficient = 16'b11110_1100_111_00_1_0; 

 assign EQ_Matrix[4].coefficient = 16'b01011_0011_011_10_1_0; 

 assign EQ_Matrix[5].coefficient = 16'b01000_0100_110_01_0_0; 

 assign EQ_Matrix[6].coefficient = 16'b00000_0101_101_01_0_1; 

 assign EQ_Matrix[7].coefficient = 16'b01101_1001_111_01_1_0; 

 assign EQ_Matrix[8].coefficient = 16'b00100_0100_101_01_0_1; 

 assign EQ_Matrix[9].coefficient = 16'b11100_0000_100_00_1_0; 

 assign EQ_Matrix[10].coefficient = 16'b10110_1000_101_10_1_1; 

 assign EQ_Matrix[11].coefficient = 16'b00101_1111_100_00_1_0; 

 assign EQ_Matrix[12].coefficient = 16'b11111_1011_010_00_0_0; 

 assign EQ_Matrix[13].coefficient = 16'b01101_0011_101_01_0_0; 

 assign EQ_Matrix[14].coefficient = 16'b00001_0010_001_00_0_1; 

 assign EQ_Matrix[15].coefficient = 16'b10100_0111_100_11_0_1; 

     

 //XOR all coefficients together 

 wire [15:0] EQ_XOR = (EQ_Matrix[0].coefficient ^ EQ_Matrix[1].coefficient ^ 

EQ_Matrix[2].coefficient ^ EQ_Matrix[3].coefficient ^ 

                       EQ_Matrix[4].coefficient ^ EQ_Matrix[5].coefficient ^ EQ_Matrix[6].coefficient 

^ EQ_Matrix[7].coefficient ^ 

                       EQ_Matrix[8].coefficient ^ EQ_Matrix[9].coefficient ^ 

EQ_Matrix[10].coefficient ^ EQ_Matrix[11].coefficient ^ 

                       EQ_Matrix[12].coefficient ^ EQ_Matrix[13].coefficient ^ 

EQ_Matrix[14].coefficient ^ EQ_Matrix[15].coefficient); 

     

 //AND all coefficients and terms together 

 wire [14:0] EQ_AND = EQ_XOR[15:1] & term_string; 

     

 //XOR EQ_AND together 
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 wire EQ_SUM = (EQ_AND[14] ^ EQ_AND[13] ^ EQ_AND[12] ^ EQ_AND[11] ^ 

EQ_AND[10] 

                  ^ EQ_AND[9] ^ EQ_AND[8] ^ EQ_AND[7] ^ EQ_AND[6] ^ EQ_AND[5] 

                   ^ EQ_AND[4] ^ EQ_AND[3] ^ EQ_AND[2] ^ EQ_AND[1] ^ EQ_AND[0]); 

     

 //Check to see if sum = RHS of XOR'd equations 

 wire solution = (EQ_SUM == EQ_XOR[0]) ? 1'b1 : 1'b0; 

     

 assign led = (solution) ? {1'b0,Terms[4:0]} : 6'b1_00000; //display the solution on the 

LEDs 

     

 //Used for Simulation Purposes (working on a way to do this on FPGA) 

   /*initial begin 

     $display("Solving System of Equations"); 

     $display("Equation 1: %b", EQ_Matrix[0].coefficient); 

     $display("Equation 2: %b", EQ_Matrix[1].coefficient); 

     $display("Equation 3: %b", EQ_Matrix[2].coefficient); 

     $display("Equation 4: %b", EQ_Matrix[3].coefficient); 

     $display("Equation 5: %b", EQ_Matrix[4].coefficient); 

     $display("Equation 6: %b", EQ_Matrix[5].coefficient); 

     $display("Equation 7: %b", EQ_Matrix[6].coefficient); 

     $display("Equation 8: %b", EQ_Matrix[7].coefficient); 

     $display("Equation 9: %b", EQ_Matrix[8].coefficient); 

     $display("Equation 10: %b", EQ_Matrix[9].coefficient); 

     $display("Equation 11: %b", EQ_Matrix[10].coefficient); 

     $display("Equation 12: %b", EQ_Matrix[11].coefficient); 

     $display("Equation 13: %b", EQ_Matrix[12].coefficient); 

     $display("Equation 14: %b", EQ_Matrix[13].coefficient); 

     $display("Equation 15: %b", EQ_Matrix[14].coefficient); 

     $display("Equation 16: %b", EQ_Matrix[15].coefficient); 

 end 

     

 always @(*) begin 

     if(solution) begin 

         $display("Solution Found: X1 = %b, X2 = %b, X3 = %b, X4 = %b, X5 = %b", Terms[0], 

Terms[1], Terms[2], Terms[3], Terms[4]); 

     end 
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     else begin 

         $display("Solution not found at this state"); 

     end 

 end*/ 

     

endmodule 
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Appendix H: Exhaustive Search Simulation Code 

`timescale 1ns / 1ps 

 

 

module exhaust_sim(); 

 reg [4:0] terms; 

 wire [5:0] good_out; //showing what terms work 

     

 exhaustive_search uut( 

 .sw(terms), 

 .led(good_out) 

 ); 

     

 initial begin 

     terms <= 5'b00000; 

      repeat(31) begin //go until 5'b11111 

             if(terms == 5'b11111) begin 

              $stop; 

             end 

             #10 terms <= terms + 1'b1; 

      end 

 end 

endmodule 
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Appendix I: Weight of Three Lookup Table 

 

module weight3_lut( 

 input [4:0] counter, 

 output reg [6:0] coeff 

 ); 

     

 always @ (counter) begin 

     case(counter) 

         5'd0: coeff <= 7'd7; 

         5'd1: coeff <= 7'd11; 

         5'd2: coeff <= 7'd13; 

         5'd3: coeff <= 7'd14; 

         5'd4: coeff <= 7'd19; 

         5'd5: coeff <= 7'd21; 

         5'd6: coeff <= 7'd22; 

         5'd7: coeff <= 7'd25; 

         5'd8: coeff <= 7'd26; 

         5'd9: coeff <= 7'd28; 

         5'd10: coeff <= 7'd35; 

         5'd11: coeff <= 7'd37; 

         5'd12: coeff <= 7'd38; 

         5'd13: coeff <= 7'd41; 

         5'd14: coeff <= 7'd42; 

         5'd15: coeff <= 7'd44; 

         5'd16: coeff <= 7'd49; 

         5'd17: coeff <= 7'd50; 

         5'd18: coeff <= 7'd52; 

         5'd19: coeff <= 7'd56; 

         5'd20: coeff <= 7'd67; 

         5'd21: coeff <= 7'd69; 

         5'd22: coeff <= 7'd70; 

         5'd23: coeff <= 7'd73; 

         5'd24: coeff <= 7'd74; 

         5'd25: coeff <= 7'd76; 

         5'd26: coeff <= 7'd81; 

         5'd27: coeff <= 7'd82; 

         5'd28: coeff <= 7'd84; 

         5'd29: coeff <= 7'd88; 

         5'd30: coeff <= 7'd97; 
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         5'd31: coeff <= 7'd98; 

         5'd32: coeff <= 7'd100; 

         5'd33: coeff <= 7'd104; 

         5'd34: coeff <= 7'd112; 

         default: coeff <= 7'd3; 

     endcase 

 end 

endmodule 
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Appendix J: Parametrized Binary Weight Code 

 

module weightfinding#(parameter length = 7, parameter weight = 3)(  

 input [length-1:0] counter, //arrays start @ 0 

 output flag 

 ); 

     

 integer i; 

 reg [length -1:0] weight_count; 

     

 always @ (counter) begin 

      weight_count = 0; 

      for(i = 0; i <= length; i = i + 1)begin 

           if(counter[i] == 1'b1) begin 

               weight_count = weight_count + counter[i]; 

           end 

      end 

 end 

     

 assign flag = (weight_count > (weight-1) && weight_count < (weight+1) ) ? 1'b1 : 1'b0; 

     

endmodule 

 


