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Abstract

A challenge in fundamental physics and especially in thermodynamics is to un-

derstand emergent order in far–from–equilibrium systems. While at equilibrium,

temperature plays the role of a key thermodynamic variable whose uniformity in

space and time defines the equilibrium state the system is in, this is not the case

in a far–from–equilibrium driven system. When energy flows through a finite sys-

tem at steady-state, temperature takes on a time–independent but spatially varying

character. In this study, the convection patterns of a Rayleigh–Bénard fluid cell

at steady–state is used as a prototype system where the temperature profile and

fluctuations are measured spatio–temporally. The thermal data is obtained by per-

forming high–resolution real–time infrared calorimetry on the convection system as

it is first driven out–of–equilibrium when the power is applied, achieves steady–state,

and then as it gradually relaxes back to room temperature equilibrium when the

power is removed. This work provides new experimental data on the non–trivial

nature of thermal fluctuations when stable complex convective structures emerge.

The thermal analysis of these convective cells at steady–state further yield local

equilibrium–like statistics as the temperature manifold bifurcates into regions of

emergent order (sources) and disorder (sink). These localized domains which co-

exist together, reveal equilibrium–like fluctuations for the temperature scalar. We

extend these experimental results to derive a thermodynamic equation of state for

a driven system with emergent order from the first principles. We present a field

theoretic formalism by defining the Lagrangian density as a function of a generic

thermodynamic scalar. Our definition of the thermodynamic Lagrangian density

involves two components, the internal work or the coherent part which gives rise to



emergent order, and the internal dissipation or the incoherent part which acts as the

internal sink. The salient feature of this formulation is that it takes into account the

spatial and temporal gradients of the thermodynamic scalar as the system is driven

out–of–equilibrium, similar to the Rayleigh–Bénard system. The action functional

defined on this scalar manifold connects local equilibrium–like domains. On mini-

mizing the action and solving the Euler–Lagrange equation, we obtain a generalized

thermodynamic equation of state for a driven system with emergent order. In con-

clusion, these results correlate the spatial ordering of the convective cells with the

evolution of the system’s temperature manifold.
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Chapter 1

Introduction

We live in a beautiful world, surrounded by objects and life–forms that continually

evolve, adapt, and exhibit tremendous complexity as they steadily consume en-

ergy [1, 2, 11, 12]. Therefore, thermodynamics plays a crucial role in understanding

how nature works. If one traces the development of classical thermodynamics back

to antiquity, one will realize that we have been extremely successful in describing

the thermodynamics of systems and processes at equilibrium. An isolated system

in a state of complete equilibrium is ‘dead’ and is completely indistinguishable from

its surrounding media, whereas an open system allows for a constant supply of en-

ergy that not only creates a state of dynamic equilibrium but also prevents the

system from collapsing into a state of complete thermodynamic equilibrium [13,14].

Therefore, it is apparent that most of what we see around us are thermodynamically

‘open’, and we lack sufficient tools to understand the origins of this emergent com-

plexity. These systems, that are thermodynamically open are therefore ‘alive’ and

are far–from–equilibrium as they continually exchange matter and energy with the

surrounding media. The hallmark of such systems is their ability to spontaneously

give rise to intricate patterns through local interactions. These emergent patterns

1



Figure 1.1: Examples of far–from–equilibrium phenomena: (left to right) molten
glass freezing into a solid, high–strength light–weight nickel foam, styrofoam,
swarming schools of fish, swirling storms, and far–from–equilibrium growth in
snowflakes [1, 2]

not only alter the material properties but also redistribute energy across a hierarchy

of nested structures ranging from the microscopic to the macroscopic scale. One

can find numerous examples in condensed matter physics, ranging from complex

fluids such as, polymers, gels, colloids, liquid crystals, even biological materials and

ensembles to granular systems [1,2,15,16]. While the spectrum of condensed matter

systems those exhibiting emergent phenomena is fairly broad, it is important to

understand the underlying processes as well which drive a system from a state of

equilibrium to a state of stable dynamic equilibrium. Therefore, it is not surprising

to know that far–from–equilibrium processes, that drive systems out–of–equilibrium

also span a wide range of time–scales. From processes at macroscopic scale to molec-

ular processes at the microscopic level; from processes as fast as electronic transition

between states to processes as slow as glassy relaxation, one can find a wide spec-

trum of processes confined within these bounds. Some dramatic examples that span

such a broad spatio–temporal scale include, turbulence in thermo–fluid convective

phenomena, crack propagation in media, or the ever–changing weather patterns,

see examples in Figure 1.1. Given the large phase–space of spatio–temporal scales,

it is therefore, a challenging task to define a general framework that describes the

dynamics of such a broad class of systems. Quite naturally, the study of such sys-

tems and processes lie at the intersection of complex systems science and condensed

matter physics [12, 15,17].
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The complexity in these systems arises from the fact that they have numerous

components that interact with each other in multiple ways. While these interactions

are often random and stochastic, they lack a global control. From a thermodynamic

perspective, a system as such is difficult to theorize. As one starts to formally

describe such a system, one easily encounters numerous epistemological troubles.

The first of which is to do with the concept of entropy, as the system is driven

out–of–equilibrium it is natural to assume that a driven system will dissipate more

and hence will have greater entropy (than a system at equilibrium). However, the

origin of complexity implies that equilibrium structures representing global min-

ima are replaced by higher–order organizational states consisting of various local

metastable minima of different structures, see Figure 1.2 [3, 4, 18, 19]. Therefore,

emergent order should reduce local entropy. Digging deeper leads to a more cen-

tral problem in non–equilibrium thermodynamics, i.e. the definition of temperature

for non–equilibrium states. Temperature, as an easily measurable thermodynamic

quantity holds a prominent position in the canonical description of equilibrium ther-

modynamics. Therefore, its interpretation holds an equally important significance

in the far–from–equilibrium description. In fact, in order to develop a ‘good’ theory

for emergent order in far–from–equilibrium systems from first principles we need

‘good’ definitions for the underlying physical variables. Also, a theory that is phys-

ically sound must abide by the fundamental laws of nature, i.e. the first (the law

of conservation of energy to be specific) and the second law(s) of thermodynamics.

Therefore, one must exploit the symmetries present in the system leading to the

origins of conserved quantities [20–23]. Classical and quantum physics has already

mastered this approach through the description of space and time as a continuum

and developing a field–theoretic framework around it using the principle of sta-

tionary action. Proceeding along those lines brings us to our final problem: the

3



Figure 1.2: a) Classical concept of a global minimization of a system’s free–energy,
F that dictates the equilibrium (observed) value of some order–parameter φeq. b)
A system driven out–of–equilibrium in which F has multiple local minima but no
global minima, and thermal energy is enough for many co–existing φi. c) A system
driven far–from–equilibrium where F(r, t) varies such that the thermal energy also
exhibits a gradient in r and t revealing a dynamically driven minima at φloc. The
directional derivative of the temperature manifold, ∇T tells us how the system
collapses into a state governed by φloc [3, 4].

definition of the system: dissipative or conservative and the constraints: holonomic

and non–holonomic present in the system [24,25].

We try to tackle these problems in this work, a step at a time. We start with our

current understanding of the thermodynamics of equilibrium and non–equilibrium

phenomena in the first chapter of the thesis. In the section, “Non–equilibrium

Thermodynamics” we discuss the broad challenges and our state of knowledge in

approaching such problems. We get into the details of two special cases in the

study of non–equilibrium phenomena: “The Non–equilibrium Steady–state” and

“The Case of Local Equilibrium”. We discuss them in detail along with the gen-

eral class of fluctuation–dissipation theorems, the Onsager–Machlup formulation,

Onsager’s reciprocal relations, and the Jarzynski equality. We proceed from there

into the more central parts of the thesis that describe the actual work done during

the doctoral research. In the chapter, “A Prototypical Complex System” we de-
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scribe the general properties of a complex system, or what is meant by a complex

system. We briefly discuss the process of self–organization in complex systems and

how it is related to pattern formation in the section, “Self–organization and the

Origin of Order”. One of the most commonly used complex system, the Rayleigh–

Bénard convection is studied as a part of this doctoral work. We discuss the brief

history and the wide range of contributions from the fluid mechanics community

in the next two chapters: “The Rayleigh–Bénard Convection” and “Perspectives

from Fluid Mechanics”. We discuss the setup used in this experimental study in

great detail and the types of experimental studies done in the section, “Experimen-

tal Methodology”. Following which we present our results in the section, “Results

and Discussion”. In sub-section, “Temporal Analysis” we discuss the results as the

Rayleigh–Bénard system is driven in time from a room temperature equilibrium

state to an out–of–equilibrium steady–state. While, in sub-section, “Spatial Anal-

ysis” we discuss the results as the stable patterns are analyzed to obtain insights

about the nature of thermal fluctuations. We use our experimental results and move

towards theoretical formalism in the chapter, “Theoretical Formalism of a Complex

System”. In the section, “Broken Symmetries” we revisit the experimental results

from the Rayleigh–Bénard study and derive inspiration to build a theory based on

the definition of temperature under the conditions of local equilibrium hypothesis.

In the following sections, we present our theoretical formalism in detail by first defin-

ing a thermodynamic Lagrangian and then solving the Euler–Lagrange equation to

obtain a thermodynamic equation of state for driven systems with emergent order.

In the chapter, “Future Directions” we present the various possible directions the

research can be extended. In the chapter, “Further Theoretical Considerations”

we discuss the possible extensions of the proposed theoretical formalism into Rie-

mann geometry and fluid mechanics. Similarly, in “Equilibrium Thermodynamics:
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Extended Discussion” we extend our understanding of temperature and its connec-

tions to ‘thermodynamic time’ through an action functional approach. Finally, we

look for connections between our results with other systems which include driven

Ising system, a system of Kuramoto oscillators and turbulent convection. We dis-

cuss these connections in detail in the section, “Ising Model, Kuramoto Oscillators,

and Turbulent Convection”.
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Chapter 2

Thermodynamics

Classical thermodynamics is perhaps one of the oldest and the most extensively

studied branches of natural science and engineering. The laws of thermodynam-

ics although being phenomenological in essence have never been found to violate

any physical phenomena in nature. For reversible processes under the conditions

of thermodynamic equilibrium, the first law of thermodynamics proposes that the

energy must always be conserved, while the second law sets an upper bound to the

practically realizable efficiency of a process [13, 26–28]. Due to their universal ap-

plicability, the laws of thermodynamics not only have consistently stood the test of

time but also have become one of the cornerstones of classical and modern physics.

2.1 Equilibrium Thermodynamics

Thermodynamics of equilibrium phenomena is an extensively studied area in clas-

sical physics. A state of equilibrium is achieved when all the interactions present

within a system are completely balanced. The best, as well as the most trivial ex-

ample of such a system is the one in which the system is completely isolated from

its surrounding media. As the system is completely isolated from its surroundings,
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Figure 2.1: Figure shows a one–to–one correspondence between a thermodynamic
process macroscopically driven along an arbitrary path in a P − V phase–diagram
such that the work done, δW =

∫
PdV (left) and the microscopic representation in

a n–dimensional phase–space where work is given by, δW =
∫

dqiṗi [5].

the total energy of the system and the number of particles present inside the sys-

tem remain constant over time. In the language of statistical mechanics, such a

system is known as a micro–canonical ensemble. The micro–canonical ensemble is

defined by assigning an equal probability to every micro–state whose energy falls

within a range centered at 〈E〉 [29,30]. All the other micro–states have a probability

of zero. Since the probabilities must add up to 1, the probability ρ is the inverse

of the number of micro–states Z, or ρ = 1/Z. According to the second law of

thermodynamics, the entropy of a micro–canonical ensemble must always increase,

therefore, S = kB lnZ or in terms of probability S = −kB ln ρ [14]. Since, all the

physical variables describing a micro–canonical ensemble are conserved in time, the

system never evolves although its constituents are always in motion. Since, classi-

cal mechanics and statistical physics are very intimately connected, one can invoke

the phase–space description of a physical system by defining a suitable Hamilto-

nian H(p1, ..., pn; q1, ..., qn) in a n–dimensional phase–space [5,31]. In Figure 2.1, we

present a pictorial representation of the connection by comparing a macroscopically
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driven process in the P − V phase–diagram with a phase–space interpretation be-

tween a pair of arbitrary micro–states. The pair (pi, qi) here denote the momenta

and position of any arbitrary particle in the system. The distribution of the micro–

states can be defined by a function (centered at 〈E〉), say f(H−〈E〉) then the total

number of micro–states is given by,

Z =
1

hnC

∫
...

∫
dp1...dqnf(H − 〈E〉) (2.1)

The constant, C takes care of the double counting of states while h is the Planck’s

constant [32]. The total number micro–states, Z is also known as the partition

function. Although, the micro–canonical ensemble sets the stage for a one–to–

one correspondence between a phase–space description of matter and statistical

interpretation of energy states, it however is not a physically realistic system. If a

system is allowed to be driven in such a way that energy can penetrate through the

system’s boundary thus resulting in work generation, we have a system with closed

boundaries (closed to exchange particles). Such a system is known as a canonical

ensemble in the language of statistical mechanics [30]. The distribution of micro–

states in a canonical ensemble follows a distinctive distribution, the Boltzmann

distribution such that the probability, ρi of finding a micro–state with an arbitrary

energy, ei is given by,

ρi =
1

Z
e−βei , Z =

∑
i

e−βei with β = 1/kBT (2.2)

The canonical partition function is denoted above by Z also known as the trace of

the density matrix in quantum statistical mechanics [28]. The canonical description

of a thermodynamic system allows us to define measurable ensemble averages of

physical variables, energy functions and the inter–relationships between them. In
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an equilibrium process it is assumed that the system is driven from one equilibrium

state to another equilibrium state quasi–statically. The free–energy of a canonical

ensemble is given by, F = −kBT lnZ and the first law can be written as,

F = 〈E〉 − TS, S = −∂F
∂T

= −kB〈log ρ〉 (2.3)

Generally speaking, any fluctuation in an extensive variable, X in a canonical en-

semble can be quantified by considering its conjugate intensive pair, Y . Let us

imagine a scenario where the temperature is fixed however the energy of the system

fluctuates. Since, energy is extensive, and temperature intensive we can compute

the mean energy of the system by,

〈X〉 = ± 1

β

∂ lnZ

∂Y
(2.4)

The fluctuation in X is then expressed by the variance in the distribution of X,

〈(∆x)2〉 = 〈(X − 〈X〉)2〉 and

〈(∆x)2〉 =
1

β

∂〈X〉
∂Y

=
1

β

∂2 lnZ

∂Y 2
(2.5)

The fluctuations arising in a system at equilibrium are due momentum exchange

through collisions which are purely random in nature [28]. Therefore, the standard

deviation in X decays as 〈∆X〉/
√
n, where n is the size of the system. In the

thermodynamic limit, n → ∞ one recovers the central limit theorem [33]. At this

point, it is imperative to note one key aspect for a system at equilibrium: symmetry.

Since, the collisions are completely random, the system is spatially homogeneous

(q → −q); and since a thermodynamic process is quasi–static in nature the system

is also temporally homogeneous (t → −t; q̇ → −q̇). In Figure 2.2, we present
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Figure 2.2: Figure depicts space and time–reversal symmetry in a system at equi-
librium when subjected to a quasi–static process of mixing. Two types of particles
(red and green) are allowed to mix once the partition is quasi–statically removed
(A→ D). As the system goes through the states B, C. and E it is not only impos-
sible to distinguish between the states but it is also equally impossible to predict
the chronology of the events (temporal ordering of states).

pictorially a mixing of two types of particles (red and green) once the partition

separating them is removed quasi–statically (A→ D). As the system goes through

the states B, C. and E it is not only impossible to distinguish between the states

but it is also equally impossible to predict the chronology of the states.

In the context of non–equilibrium thermodynamics, studying the fluctuations of

thermodynamic observables in a system allows one to not only predict how far a

system has been driven out–of–equilibrium but also estimate the non–equilibrium

work done as the system is driven between two non–equilibrium states. In the

following section we discuss some of the key ideas in this context, like the general

class of fluctuation–dissipation theorems and the case of local equilibrium in non–

equilibrium thermodynamics.
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2.2 Non–equilibrium Thermodynamics

Non–equilibrium thermodynamics deals with systems that are not at equilibrium.

As these systems are open to the surrounding media, they allow for external flows

and fluxes to cross the system boundary and allow them to be driven out–of–

equilibrium. Therefore, non–equilibrium thermodynamics is mainly concerned with

transport processes, flows and fluxes. If we look around, we will find that we sur-

round ourselves with systems which are thermodynamically open as they are con-

stantly being fed with energy. Numerous examples of such actively driven systems

include self–assembly in biological systems, reaction–diffusion process in chemical

and ecological sciences, thermal–convective phenomena in fluid dynamics, geophys-

ical and atmospheric sciences, fracture propagation in material sciences to name a

few [2, 15, 16, 34–36]. The unifying theme across all of the above examples, from

nanoscale to macroscale, is the staggering complexity that emerges spontaneously.

Typically, far–from–equilibrium thermodynamics is treated as a natural extension of

equilibrium thermodynamics [13,37]. Although given the wide spectrum of phenom-

ena and the inherent complexity associated with them, equilibrium thermodynam-

ics becomes insufficient in explaining the underlying dynamics anymore. Successful

modelling of non–equilibrium phenomena therefore primarily relies on its degree

of closeness to its equilibrium counterpart, while extrapolating the thermodynamic

variables used to quantify the system if it were in thermodynamic equilibrium. Some

of the recent approaches include modeling non–equilibrium phenomena through

stochastic Langevin dynamics (Wiener processes) or considering the statistical evo-

lution of the time–dependent probability density function using the Fokker–Planck

equation [34, 38]. However, in reality a simple theoretical Carnot engine, C that

exchanges heat between two reservoirs maintained at different temperatures and
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generates work, becomes incredibly difficult to visualize in practice, see Figure 2.3a.

Even in order to maintain the heat baths at a constant temperature, a steady heat

influx is mandatory. Thus, a practical Carnot engine, C ′ no longer remains as effi-

cient as a theoretical Carnot engine, and its efficiency is now expressed as a function

of steady–state non–equilibrium temperature of the baths and subsequent far–from–

equilibrium correction, as shown in Figure 2.3b [3, 4]. Moreover, unlike equilibrium

thermodynamics time–reversal symmetry is broken in the case of systems that are

driven out–of–equilibrium. Therefore, non–equilibrium processes are entropy pro-

ducing processes that follow irreversible trajectories in the phase–space. This leads

to the objection that it should not be possible to formulate irreversible processes

from time–symmetric dynamics, also known as the Loschmidt’s paradox [5,31,39,40].

Therefore, two special scenarios are explored in the subsequent sections where we

discuss how macroscopic irreversibility appears naturally in systems that obey time

reversible microscopic dynamics [37, 41,42].

2.2.1 The Non–equilibrium Steady–state

A non–equilibrium steady–state is a self–sustaining steady–state which is achieved

when the system has been driven and is constantly being kept at an out–of–equilibrium

state. Standard examples include, bio–chemical reactions, material transport, cell

signalling, turbulence in thermo–fluid media etc. The presence of a driving field

implies that the system should be open to flows and currents. Therefore, thermody-

namically open systems fall in this category. Classical thermodynamics allows us to

quantify energy balance and material transport in open systems as they are excited.

A typical example of an open system is shown in Figure 2.4. As thermal fluxes

cross the system boundary, the system dissipates this flow of energy through it by

generating entropy. Since, the system boundary does not move, net work done by
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Figure 2.3: a) Figure shows a theoretical Carnot engine, C, operating between the
thermal reservoirs T1 and T2 (T1 > T2). It derives heat Q1 from the reservoir kept at
T1, rejects heat, Q2 into the reservoir kept at T2 while performing work, W . b) Figure
shows a practical Carnot engine, C ′, operating between two thermal reservoirs θ1
and θ2 kept at a steady–state by the constant heat influxes, q1 and q2. It derives
heat Q′1 from the reservoir kept at θ1, rejects heat, Q′2 into the reservoir kept at θ2
while performing work, W ′ (W ′ < W ) [4].

the system is zero. The first law is preserved and in conjunction with the second law

the total entropy generated is balanced by the net energy flux. A thermodynamic

analysis as such, is reserved for either quasi–equilibrium or steady–state processes.

Under such conditions, the system can be described like any other system which

is at thermal equilibrium with its surroundings [11, 27, 32, 43, 44]. Since, an equi-

librium state is often described as a special case of steady–state non–equilibrium

thermodynamics. Therefore, using the right definitions of the thermodynamic vari-

ables and driving terms one can formulate the thermodynamics of non–equilibrium

steady–states identically under the framework of equilibrium thermodynamics. One

way is to generalize the Onsager–Machlup path integral approach for systems in
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Figure 2.4: Figure shows a typical open thermodynamic system (canonical ensem-
ble), for example, a plate with a thin film of fluid when heated from the bottom
along z–axis. The rate of change in the energy (ė) of the system is balanced by the
entropy (ṡgen) generated by it. As the system boundary does not move, the work
done by the system is zero. T0 is the temperature of the surrounding.

an equilibrium state. The Onsager–Machlup function describes the dynamics of

a continuous stochastic process by predicting the most probable path between a

two metastable states [45, 46]. For a stochastic process, Xt the Onsager–Machlup

function is effectively a stochastic Lagrangian function L(q(t), q̇(t)) such that,

ρ(|Xt − q1(t)| ≤ ε)

ρ(|Xt − q2(t)| ≤ ε)
→ exp

(
−
∫ T

0

dtL(q1, q̇1) +

∫ T

0

dtL(q2, q̇2)
)
∀t ∈ [0, T ] (2.6)

In the above equation, if q1 represents one trajectory (smooth and differentiable)

and q2 the other in the generalized phase–space coordinates then the Onsager–

Machlup approach allows us to understand the stochastic evolution of the system
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macroscopically as the stochastic process, Xt converges to either of the curves at

all times for ε→ 0. The Lagrangian contains in itself trajectory–dependent entropy

and non–equilibrium work terms. The Onsager–Machlup integral can be extended to

understand the nature of non–equilibrium fluctuations and how they dominate the

direction of microscopic evolution of the system in the context of entropy production.

The second law when proposed in terms of path probabilities assumes the form,

σ(〈q(t)〉, 〈q̇(t)〉) ≥ 0 where σ denotes the rate of entropy production. The fluctuation

theorem embodies in itself the rate of entropy production in order to dictate the

directionality of a process in the thermodynamic phase–space [45–47].

ρi→j
ρj→i

= exp(σt) (2.7)

In the above equation, the ratio of ρi→j to ρj→i is the relative probability that the

entropy of a system which is currently away from thermodynamic equilibrium will

increase or decrease over a given amount of time if it is driven from a state i to j (i to

j denotes forward direction and j to i denotes reverse). In simple terms, if i to j is an

entropy producing trajectory then according to Equation 2.7, the probability that

the system follows the trajectory that takes it from j to i decreases exponentially

as the entropy production along that trajectory is opposite to that dictated by the

second law of thermodynamics. Equation 2.7 can be rewritten to include the effects

of non–equilibrium work, Wi→j between a pair of states with free–energy difference

∆F ,

ρi→j
ρj→i

= exp[β(Wi→j −∆F )] (2.8)

Equation 2.8 is also known as the Crook’s fluctuation theorem [42, 48]. Given

the general nature of irreversibility in thermodynamics, the free energy difference

∆F = Fj−Fi between states i and j is connected to the work done, W on the system
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through the inequality, ∆F ≤ W . The equality holds for the case of quasi–static

processes, however Jarzynski showed that no matter how fast the system is driven

between the states the ensemble average of the work applied on the system is equal to

the free–energy difference between the states, or 〈exp(−βW )〉 = exp(−∆F ) [48,49].

The second law of thermodynamics is statistical in nature, and the fluctuation theo-

rem allows one to quantitatively predict the possibility that entropy might decrease

in an isolated system.

2.2.2 The Case of Local Equilibrium

An approach based on the local equilibrium hypothesis formulates a macroscopic

system as a collection of ‘cells’ (domains) in which rules of classical equilibrium ther-

modynamics are fulfilled to good approximation. This particular viewpoint dates

several decades back when Milne, from an astrophysical perspective defined local

thermodynamic equilibrium in a local ‘cell’. He proposed the condition that the ‘cell’

will continue to be at local thermodynamic equilibrium as long as it macroscopi-

cally absorbs and spontaneously emits radiation as if it were in radiative equilibrium

in a cavity at the temperature of the matter of the ‘cell’ [50]. If these ‘cells’ are

well–defined, then they allow for transport of matter and energy in between them.

This however has to follow under the strict constraint that the flows and currents

between the ‘cells’ do not disturb the respective individual local thermodynamic

equilibria with respect to the intensive variables. Therefore, one can think of two

‘relaxation times’ that are separated by order of magnitude: the longer relaxation

time responsible for the macroscopic evolution of the system and the shorter relax-

ation time responsible for local equilibration for a single. If these two relaxation

times are not well separated, then the classical non–equilibrium thermodynamical

concept of local thermodynamic equilibrium loses its meaning [35, 37, 43, 51–54]. If
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the notion of local equilibrium holds, one can propose a formalism that describe the

equality of certain ratios between flows and forces in thermodynamic systems when

driven out–of–equilibrium, also known as the Onsager reciprocal relations [55–57].

−→
Jα =

∑
β

Lαβ∇fβ (2.9)

Here,
−→
Jα is a current vector and fβ represent thermodynamic forces. In a simple

fluid system that allows diffusion (ρ) and heat transport (u), fβ takes the form fu =

(1/T ) and fρ = (−µ/T ), and the matrix, Lαβ is the Onsager matrix of transport

coefficients. It is a matrix of phenomenological coefficients which is positive semi–

definite (in agreement with the second law), and symmetric (Lαβ = Lβα) when time–

reversal symmetry is preserved. Onsager’s approach makes it possible for us to study

the thermodynamics of irreversible processes, such as chemical kinetics, diffusion,

conduction of heat etc. by considering linear approximations near equilibrium as it

follows from the local equilibrium hypothesis and is closely connected to the principle

of detailed balance.
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Chapter 3

A Prototypical Complex System

Complex systems are systems that are composed of numerous components or parts

which interact with each other in a way that often gives rise to non–trivial emergent

properties. The interactions between the parts is non–linear, thus small changes in

physical interactions or stimuli can lead to significant changes in response/feedback.

The presence of a feedback loop implies that these systems are adaptive and they

operate at far–from–equilibrium conditions. Due to the presence of emergent prop-

erties and rich collective interaction, these systems are difficult to model as the

macroscopic evolution of the system can not be predicted by simply observing the

microscopic behavior of its building blocks. Therefore, complex systems science is an

inter-–disciplinary area of research overarching the natural and exact sciences mostly

applicable to the physical, biological and bio—chemical world to data-–driven social

sciences which involves society, social networks and urban landscape [58–63].

3.1 Self–organization and the Origin of Order

The intersection of complex systems science and non-–equilibrium thermodynamics

gives rise to a rich field of exploration that encompasses many fascinating systems
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and real-–life phenomena, all of which contribute to the diversity and complexity

in the world around us. The connection between the two is not new, the idea that

order can emerge through fluctuations has been long studied by Prigogine [64, 65].

The key aspect about the process of self–organization is that it is a process where

external control is absent, the effect of the environment is minimal, and the devel-

opment of new complex structures takes place primarily in and through the system

itself [12,66,67]. Due to emergence of order, the entropy of a self–organizing system

also decreases. However, in order to maintain its structure it must dissipate or ex-

port entropy to its surroundings, as noted by von Foerster and Prigogine [35,64,66].

In fact, Prigogine called systems which continuously export entropy in order to

maintain their order, dissipative structures. Several model systems that have been

actively studied to understand the spontaneous emergence of order include, clus-

tering of bacterial colonies and self–assembly in actomyosin motility assays, phase

ordering in liquid crystals, synchronization of Kuramoto oscillators, oscillatory be-

haviors in reaction–diffusion systems such as the Belousov–Zhabotinsky reaction, or

turbulence and pattern formation in thermal–convective systems like the Rayleigh–

Bénard convection [15, 16, 68–72]. In an attempt to predict the steady–state dy-

namics and structures of such systems as they are driven out–of–equilibrium, ideas

concerning energy dissipation and entropy production extremal principles have been

proposed [34,41,73]. Primarily these ideas are based on Onsager’s definition of ther-

modynamics forces, f ∝ ∇T and are applicable in the scenarios where local equi-

librium is maintained. Further, as Prigogine and Glansdorff note these principles

apply only to systems that can be described by known thermodynamical variables

in which dissipative processes dominate iff large deviations from statistical equilib-

rium are excluded [35, 64]. However, as Kondepudi and many others note, there is

no general rule that provides an extremum principle that governs the evolution of a

20



far–from–equilibrium system to a steady–state [73,74].

Certain dynamical systems can evolve towards an attractor or a critical point

purely through self–organization. This property is known as self–organized critical-

ity, where the macroscopic behavior of the system displays spatio–temporal scale–

invariance, a characteristic feature of a phase–transition. Self–organized criticality

is observed in systems with strong non–linear interactions while being slowly driven

out–of–equilibrium. Bak, Tang and Wiesenfeld using cellular automaton in 1987

showed that complexity is an emergent property which arises from local spontaneous

interactions between ‘agents’ [75,76]. They also noted that several characteristic fea-

tures of this emergent complexity, such as scale–invariant behavior, fractal geometry,

pink (1/f) noise and power–laws that could be linked to critical–point phenomena

in the larger scheme of things. These observations by Bak et. al. paved the way

for numerous exciting areas of research in complex systems science over the decades

such as, scale–free networks in the context of societal connections and infrastruc-

tures (like, transportation, energy distribution, internet etc.), studying the nature

of fluctuations in financial markets (econophysics), statistical distribution of earth-

quake sizes (Gutenberg-–Richter law), landscape formation. forest fires, neuronal

avalanches in the cerebral cortex, spreading of epidemics (contagions and rumor)

etc. [58, 60,62,73,77,78].

3.2 The Rayleigh–Bénard Convection

The Rayleigh–Bénard convection holds a place of special interest in the scientific

community [15,70,79]. It is one of the oldest and most widely used canonical exam-

ples to study pattern formation and emergent behavior [1, 12, 15, 71]. When a thin

film of liquid is heated, the competing forces between viscosity and buoyancy gives
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Figure 3.1: Cartoon illustrates the experimental configuration of the current study.
The Rayleigh–Bénard system at steady–state is set up by heating a thin film of
viscous liquid from the bottom (Q̇). The temperature difference between Tbottom
and Ttop gives rise to convection rolls. While at steady–state, Tbottom is constant,
real–time thermal imaging of the top layer is performed to extract the spatial and
temporal distribution of Ttop. The line cut of the thermal profile Ttop(r, t) is also
shown [6].

rise to convective instabilities. This convective instability creates a spatio–temporal

non–uniform thermal distribution on the surface of the fluid film (see Figure 3.1).

The advantage of this system lies in its simplicity, wherein a dimensionless quantity,

the Rayleigh number (Ra), determines the onset of convective cell patterns,

Ra =
gβl3z
να

(Tbottom − Ttop) (3.1)

In the above equation, lz denotes fluid film thickness, ν kinematic viscosity, α

thermal diffusivity, β compressibility, and g acceleration due to gravity. The critical

Rayleigh number of 1708 marks the onset of convection for a no–slip boundary
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condition was obtained by Jeffreys in 1929 [15, 71, 80]. Under the approximations

of an ideal incompressible fluid that is thermally driven one can write the following

set of equations also known as the Boussinesq approximations,

∂ρ

∂t
+∇ · (ρ−→u ) = 0

∂−→u
∂t

+ (−→u · ∇)−→u = −1

ρ
∇p+ ν∇ · (∇ · −→u )− gβ∆T

∂T

∂t
+−→u · ∇T = α∇2T +

−→
J

ρcP

(3.2)

For a packet of fluid with local convective velocity, −→u incompressibility implies, ∇ ·
−→u = 0; the density is assumed to vary linearly with temperature, ρ = ρ0(1−β∆T ),

and the specific heat of the fluid is denoted by cP .

3.3 Perspectives from Fluid Mechanics

Due to its conceptual richness and an easy experimental methodology, the Rayleigh–

Bénard convection remains one of the most actively and extensively studied physical

systems. The dynamics of a Rayleigh–Bénard convection system connects funda-

mental ideas from both thermodynamics and fluid mechanics [15, 69, 71, 79, 81, 82].

It is in fact one of the simplest complex systems’ that can be easily recreated in a

laboratory with minimal efforts. One can find numerous studies on the empirical

relationships between the various dimensionless numbers (specially, Nusselt number

(Nu), Reynolds number (Re), Prandtl number (Pr) and Rayleigh number (Ra))

under conditions of laminar and turbulent flows [83,84]. The process of heat trans-

fer specially in a turbulent convection over the years have resulted in the devel-

opment of many state–of–the art temperature measurement techniques which were

tested on the Rayleigh–Bénard convection system [85–87]. In this relation, numer-
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ous boundary–layer studies have been carried out to estimate the effect of geometry

on the efficiency of convective heat transfer and on the role of plumes. Similarly,

numerous studies on calorimetric measurements of thermal fluctuations under tur-

bulent flow conditions have played an important role in our general understanding

in the process of convection cell formation [65,88–93].

Furthermore, the onset of convection cell patterns in relation to thermal and hy-

drodynamic boundary layer models is an active area of interest in the fluid mechanics

community, especially in understanding the phenomena of turbulence. Turbulence,

although quite ubiquitous in nature, still remains one of the many unsolved problems

in physics today. Not only as a tabletop experiment, but also through numerical

simulations, the Rayleigh–Bénard convection cell system serves as a very convenient

prototypical model that has provided insights into the physics and hydrodynam-

ics of turbulence. Noteworthy among them are studies on the effects of rotation

and magnetic fields on Rayleigh–Bénard convection cells, turbulent convection at

very high Rayleigh numbers with cryogenic He gas as the working fluid to probe

velocity and thermal statistics, and measurements of the mean temperature and

variance profile as a function of boundary layer thickness [81, 94–97]. Although,

the current state of the art experimental setups, data logging techniques, numeri-

cal and mechanistic simulations have provided numerous critical insights about the

fluid mechanical aspects, a lot of the thermodynamical interpretations still remain

unresolved [84,86,89,90,93,95,98,99].

3.4 Experimental Methodology

In this work, we primarily focus on the non–turbulent Rayleigh–Bénard convection

as a prototype for a far–from–equilibrium system that exhibits emergent order. It
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Figure 3.2: Figure illustrates the experimental setup with the copper pan (2R =
0.225 m), the three thermocouples (T1, T2, T3), inlet and outlet ducts for the forced
convective heat transfer, and the infra–red camera for real–time thermal imaging.
The inlet and the outlet ducts are present on the top cover and the copper pan
sits on a wooden bottom rest and a polyurethane foam foundation which acts as an
insulator [6].

should be noted that our study of the Rayleigh–Bénard convection is motivated

solely from a thermodynamic point of view and not from a fluid mechanics per-

spective. To elaborate, we focus on broad questions such as, can multiple local

equilibrium states coexist in an otherwise far–from–equilibrium system, or how the

statistical mechanics of a far–from–equilibrium system differs from that of a system

at equilibrium? What are the limitations of the local equilibrium hypothesis, or

under what conditions do thermal gradients in a system dominate and allow for
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the spontaneous emergence of ordered structures [4, 15, 22, 37, 98–101]? While we

experimentally explore the far–from–equilibrium behavior of temperature, these re-

sults sheds light on the fundamental questions mentioned above. These questions,

answers to which are yet unknown or inconclusive, are important for the broad

scientific community, but are also of significant general interest.

In Figure 3.2 and Figure 3.3 we illustrate the experimental setup in detail. The

top cover is made up of wood and has inlet and outlet ducts for forced convective

heat transfer. The two thermocouples T2 and T3 measure the temperature of the

incoming and outgoing gas respectively. The bottom rest, also made up of wood

has a cavity with a recess on which the copper pan sits snugly. The wooden base

rests on top of a block of polyurethane foam. A resistance heater is attached to the

base of the copper pan and the thermocouple, T1 (also connected to the base of the

copper pan) measures the bottom temperature of the pan, Tbottom (see Figure 3.1).

An infra–red camera (with a precision ∼ 10−3K), placed concentrically above the

copper pan captures the real–time thermal images from a height (≥ 0.7 m). Each

thermal image has its own temperature scale. In order to calibrate the infra–red

camera with the base thermocouple (T1), the empty copper pan is heated and the

temperature of five randomly chosen points on the copper pan are recorded at dif-

ferent power settings of the resistance heater at steady–state. The thermocouple

temperature recorded by T1 is then compared with the infra–red camera recorded

temperature for the five spots. The thermocouple data can be viewed in the NI Sig-

nal Express software while the infra–red camera data is viewed in the FLIR software.

The FLIR software allows remote accessibility like, real–time display, region/point

selection and spatial statistics. In Figure 3.4, we present the calibration curves for

the five spots comparing the infra–red camera–recorded temperature with the base

thermocouple temperature. The calibration error thus estimated is used to adjust
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Figure 3.3: Figure shows Rayleigh–Bénard Convection setup: Top View (left) and
Side View (right). All dimensions are in meters. The three thermocouples used to
record the temperature of the pan, the inlet and the outlet of the heat–exchanger
are denoted in blue (T1, T2 and T3). The heater attached to the bottom of the
copper pan is denoted in red. The thermal images are recorded from the top using
an infra–red camera [7].

the infra–red camera temperature scale in accordance with the base thermocouple.

A thin layer of silicone oil (lz = 4.7 − 5.0 mm) is heated in the copper pan whose

average diameter is 0.225 m. Due to small varying thickness of the base of the

copper pan, the film thickness and the surface temperature of the top is averaged

over the entire exposed area. The system is heated by regulating the power input

through the heater. The resistance of the electric heater is 37.5±0.5 Ω. At a specific

power, the system is let to evolve over time such that the mean bulk–temperature

stops fluctuating. Once the system reaches a steady–state (after approximately two

hours), the mean temperature of the top surface is denoted by Ttop (see Figure 3.1).

The thermal and material properties of the oil is outlined in Table 3.1. A sample

of the raw images that were recorded by the infra red–camera are shown in Fig-

ures 3.5a and 3.5b. These raw images (I), in grey–scale are then converted into a

matrix of temperature, where each entry of the matrix element (Iij) corresponds
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Table 3.1: Table outlines thermal and material properties of the silicone oil sample
that was used to perform the current study [10]. The units for viscosity (ν) is cSt,
for density (ρ) kg/m3, for thermal conductivity (α) W/m − K, for specific heat
(cpoil) (J/kg−K), for thermal diffusivity (α) m2/s, and for thermal compressibility
(βT ) m2/N .

Viscosity Density Conductivity Sp. Heat Diffusivity Compressibility
ν ρ k cpoil α βT

150 970 0.16 1500 1.099× 10−7 9.5× 10−4

to the temperature of each pixel (Tij) on the image. The infra–red camera detects

radiation emitted from an object and converts it into bits. Thus, every pixel has an

allocated bit value between 0 and 255. The bit value determines the intensity of the

pixel with 0 being the ‘coldest’ pixel in the image and 255 being the most intense

or the ‘hottest’. The FLIR T62101, used in this study has a resolution of 320× 240
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Figure 3.4: Figure shows the steady–state relationship between the infra–red camera
recorded temperature and the base thermocouple temperature at different power
settings for the five randomly chosen spots on the empty copper pan [7].
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Figure 3.6: a) Figure illustrates the temporal analysis of an arbitrary region of
interest on the images as a function time as the system evolves from room tem-
perature equilibrium to an out–of–equilibrium steady–state. b) Figure shows the
regions of interest for the spatial analysis on the steady–state image of a Rayleigh–
Bénard convection. The complete image is denoted by I, the annular region without
any structures by R, the circle at the center by P , the upward (bright spots) and
downward plumes (dark spots) by Phot and Pcold respectively [6, 7].

pixels (= 76, 800 pixels) with a sensitivity less than 0.045◦C. Therefore, every image

(I) is a M × N 2D array of 320 × 240 elements with 256 bit values distributed in

between them. Each of these bit values can be converted to respective temperature

values through a linear interpolation as shown in the equation below,

Temp (◦C) =
Max Temp (◦C) - Min Temp (◦C)

255− 0
× bit + Min Temp (◦C) (3.3)

These images are then statistically analyzed both spatially and temporally. In Fig-

ure 3.6 we depict the two types of analysis that are performed on these images. In

Figure 3.6a, we perform a temporal analysis of the images as the system evolves to

a steady–state. A region of interest at the center is chosen and is then followed in

time. The statistics that are obtained, are then analyzed as a function of time or

are averaged over time. In Figure 3.6b, we spatially analyze the steady–state images

as obtained from the thermal camera. The analysis of this type gives us insights

about the spatial aspects of the system once steady–state has been achieved and
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structures have emerged. The two primary regions of interest in this type of analysis

are the patterned region, P and the non–patterned region (or the ring region) R.

Within the patterned region, P , the brighter spots represent upward plumes and

are denoted by Phot, while the darker spots represent downward plumes, and are

denoted by Pcold [6, 7].

3.5 Results and Discussion

In this section, we discuss the key results from our experimental study on the non–

turbulent Rayleigh–Bénard system at steady–state both in space and time domain.

3.5.1 Temporal Analysis

In Figure 3.7 we plot the mean of the top temperature (left axis) and its standard

deviation (right axis) as a function of time when the silicone oil sample is heated.

The sample, initially at room temperature is driven out–of–equilibrium by the ap-

plication of a constant heating power. Once the system reaches a steady–state, the

heating power is switched off and system gradually relaxes back to room tempera-

ture. The top temperature mean and standard deviation as a function of time for

the cooling process is plotted in Figure 3.8. The mean temperature of an arbitrary

region of interest on the image, 〈T 〉 = 1
N

∑
i,j∈I Tij and the standard deviation,

σT =

√∑
i,j∈I(Tij−〈T 〉)2

N−1 are calculated from the image matrix (Iij). We observe from

Figures 3.7 and 3.8 that the mean temperature follows a typical heat–conduction

trend for heating as the system achieves ostensibly a new high–temperature equi-

librium (non–equilibrium steady–state) as well as on cooling toward the original

room temperature equilibrium state. The maximum temperature reached by each

sample at steady–state increases as expected with increasing power based on the
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Figure 3.7: Figure shows on a semi–log scale the temperature mean and standard
deviation as a function of time of the top of the silicone oil film as it responds to
the applied heating power until steady–state is reached for various values of input
power. The left axis corresponds to the temperature mean in degrees Celsius (solid
blue circles) and the right axis corresponds to the standard deviation (solid red
triangles). Plots a, c, e show heating profiles for a film thickness of lz = 4.74 mm,
and plots b, d, f for lz = 5.02 mm. Note that the applied heating power in Watts
are labeled by the far left y–axis [6].

heat capacity for each film [6]. The plots for the standard deviation in temperature

as a function of time, however, show a markedly different trend during both heating

and cooling processes as can be seen from Figures 3.7 and 3.8, respectively. The

standard deviation, a measure of the distribution width and is related to the tem-

perature fluctuations in the system, generally increases with increasing temperature.

Although an increasing trend in standard deviation as a function of time is observed

on heating as expected since the temperature is increasing, this trend is broken at

a point in time when the first hints of convection cells appear t ≈ 200 seconds,

where σT begins to decrease. This decrease in σT continues as the convection cells
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Figure 3.8: Figure shows on a semi–log scale the temperature mean and standard
deviation as a function of time of the top surface of the silicone oil film as it relaxes
to room temperature after the applied heating power is removed. The left axis
corresponds to the temperature mean in degrees Celsius (solid blue circles) and the
right axis corresponds to the standard deviation (solid red triangles). Plots a, c, e
show cooling profiles for the film thickness of lz = 4.74 mm, and plots b, d, f for
lz = 5.02 mm. Note that the applied heating power in Watts are labeled by the far
left y–axis [6].

grow until they reach their maximum extent over the film, which is not the entire

film area due to the side heating produced by the cu walls. Once the convection

cell pattern has stabilized, σT reaches a minimum at t ≈ 900 seconds after which it

begins to increase again and only flattens as the mean temperature stabilizes. For

cooling, after the heating power is removed, both the 〈T 〉 and σT begin to decrease

with σT decreasing more rapidly as time progresses until the last vestiges of any

cell pattern disappears after which the decrease in σT abruptly slows and flattens as

〈T 〉 returns to room temperature. Over regions of the film where the temperature

appears uniform, σT is dominated by the spatial thermal fluctuations of the film
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but when convection cells are apparent σT contains additional contributions due to

thermal gradients across the film [6].

Figure 3.9: a), b) Figure shows the functional relationship between the stan-
dard deviation of the temperature for the non–pattern region with time as the
Rayleigh–Bénard system evolves from a room temperature equilibrium to an out–
of–equilibrium steady–state for lz = 4.74 mm and 5.02 mm at 42.2 W and 66 W .
In c) and d) the data is shown for the pattern region. In e) a comparison is done
between the two thickness at 66 W with the time windows identified: cyan for
5.02 mm and light grey for 4.74 mm [7].
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In Figure 3.9, we take our statistical analysis a step further by plotting the

standard deviation of the temperature as a function of time by isolating the pattern

and non–pattern regions for the two thicknesses at 42.2 W and 66 W . We can

see contrasting trends between Figure 3.9a and 3.9b. In Figure 3.9a and 3.9b,

the standard deviation increases with time till saturation as the system reaches a

steady–state. Whereas, in the case of the pattern region in Figure 3.9c and 3.9d, the

standard deviation first shows a decline when the pattern starts to form but is not

yet visible, followed by a dip at the point a stable visible pattern starts emerging

(similar to Figure 3.7). We further illustrate this in Figure 3.9e, where we compare

the temporal evolution of the standard deviation of the temperature for the two

thicknesses at 66 W . The shaded boxes in the plot identify the time windows when

the standard deviation starts to decline and then increasing again. With increasing

power we can observe that the standard deviation of the temperature grows in time

and the time window for the standard deviation shortens as Ra ∼ ∆T . For a thicker

fluid film the time window is observed to be shorter as, Ra ∼ l3. Thus, a critical local

Rayleigh number is achieved faster. One can also identify the beginning and the

ending of the time window with the thermal image snapshot labels from Figure 3.9.

The window in cyan identifies the transition from b → c for 5.02 mm, whereas

the window in light grey identifies the transition from f → g for 4.74 mm. The

images a and e are equilibrium snapshots (at t = 0) taken for both the thicknesses

respectively [7].

Figure 3.10 presents the time-averaged scaled thermal variation at steady–state

over a region of the film. This scaled thermal variation is calculated by the determin-

ing the difference between the temperature of a given pixel from 〈T 〉 of the region of

interest then scaled by the same mean, δT ? =
Tij−〈T 〉
〈T 〉 . Once at steady–state, a series

of images (a movie) is recorded at 30 frames/sec for 15 minutes. A fixed region
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Figure 3.10: Figure shows the histograms for the scaled–thermal fluctuations aver-
aged over time after the system has reached a steady–state on a semi–logarithmic
scale. The panels a) denote the hot regions (Phot), b) the entire region (P ), and c)
the cold regions (Pcold). The mean temperature, 〈T 〉 (in ◦C) of the various regions
of interest are also denoted. The histograms are fitted with normal distribution
functions all centered at zero [6].

of interest is then identified on the image, either one near the edge exhibiting no

pattern or one over a hot or cold part of a convection cell, and δT ? is then averaged

over 27, 000 frames,

δT ? =
1

T

∫ T

0

δT ?(t)dt (3.4)

In Figure 3.10a and 3.10c, the time–averaged distributions for the upward (hot)

and downward (cold) plumes denoted by, Phot and Pcold respectively, are shown.

Figure 3.10b presents the time-averaged distribution for the entire patterned region,

P . Each of these three histograms are fitted with a normal distribution function

centered at zero. The plots in Figure 3.10 are shown in a semi–logarithmic scale

to highlight the behavior in the tails where deviations from the fit would be most

apparent. For the histogram statistics on the hot regions in Figure 3.10a, the normal

curve describes the data very well over the entire range. However, in the cold regions

shown in Figure 3.10c, the normal curve does not reproduce the data, especially in

the tails, as well and would suggest the possible presence of higher moments to the
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distribution. The combined distribution is dominated by the hot regions and so

does not reveal the deviations from normal as well. As the chosen hot and cold

regions do not contain the pattern, they are not influenced by the thermal gradients

across a cell therefore, the statistics therein measure pure thermal fluctuations; while

the distribution over the whole pattern contains both gradients and fluctuations.

Normal distributions imply that the fluctuations are essentially random in nature

and that this indicates equilibrium–type fluctuations, which supports the notion

that the individual hot and cool regions are each equilibrium–like domains but at

different mean temperatures that coexist in a steady–state.

3.5.2 Spatial Analysis

In Figure 3.11, the space–averaged scaled–thermal variation density from the steady–

state images are plotted. A steady–state image is chosen in which structures are

clearly visible. The two regions of interest, the patterned region (P ) and the annular

non–patterned region (R) are chosen. A measure, µ is defined over the collection of

pixel-points in P and R such that,

δT ? =
1

µ(P )

∫
µ

δT ?(P ). (3.5)

The left panels (a and c) in Figure 3.11, report the histograms and the kernel den-

sity estimates for the patterned region for the two thicknesses. The salient feature

of the plots is the presence of a bimodal behavior. For the same sample under

same physical conditions, when a non–patterned region is chosen (right panels, b

and d), the histograms of the fluctuations are well fitted by a Gaussian distribution

function. This bimodal result of the patterned region has two important aspects:

i) the ergodicity is clearly broken, and ii) the ergodicity is broken spatially (or the

37



spatially–symmetry is broken). It is interesting to note that a similar bimodal dis-

tribution of local thermal fluctuations was reported earlier, but in a very different

context [82, 89]. In the convective cell region (P ), the distribution contains both

gradient and fluctuation contributions to the temperature spatial variation while

the hot or cool or ring regions (i.e. chosen regions without a pattern) have a nor-

mal distribution. Of course, the emergence of these modes can be attributed to

the steady–state patterns of convective instabilities arising due to the upward and

downward drafts [15,17,71]. As seen in Figure 3.11b and 3.11d, the peaks in the dis-

tribution are equidistant from the origin with a local minima close to the origin [6,7].

It is clear by now that the thermal profile of the top layer of the fluid film is non–

uniform. In order to visualize the modulation in the temperature as a function of

distance several line cuts are performed on the thermal images. These line cuts are

constructed from the image matrix by choosing 1D arrays of row/column data. In

Figure 3.12, we plot spatially averaged thermal profiles along six horizontal line cuts

aligned parallel to each other. As expected, the mean temperature in Figure 3.12a is

greater than the mean temperature in 3.12b. The modulation in the thermal profiles

describe the thermal–field heterogeneity. The flatness of the thermal profile allows

us to identify spatial correlation lengths of thermal fluctuations in the system. On

comparing Figure 3.12a and 3.12b, it can be observed that at higher power (66 W )

the thermal profiles tend to be more uniform over longer length–scales than at lower

power (42.2 W ). There are two reasons for this observation. One, at lower power the

pattern occupies a smaller area about the center while the majority of the peripheral

region being ‘cooler’ thus implying more thermal heterogeneity as one approaches

the periphery from the center, and two, at lower power the emergent patterns are

not fully developed yet and hence randomly oriented. Thus, the modulation is un-

even and hence chaotic. At higher power, the emergent patterns are fully developed
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and exhibit a closed packing thus being more homogeneous. In order to reconstruct

the complete geometry of the thermal field we need to extract the thermal profile

and integrate over the whole region. In order to execute this, thermal profiles of

normalized integrated intensities around concentric circles are plotted as a function

of distance from a point in the image. This point of reference is defined by the

center of the rectangle that bounds the region of interest. The position of this point

Figure 3.11: Figure shows the histograms for the scaled–thermal fluctuations aver-
aged in space after the system has reached a steady–state. The top panel shows
the distributions for lz = 4.74 mm and the bottom panel for lz = 5.02 mm. Panels
a) and c) plots the scaled–fluctuation frequency counts for the patterned region, P
with a kernel density estimate (dashed). Panels b) and d) plot the scaled–fluctuation
frequency counts for the non–patterned annular region, R with a normal curve fit
centered at zero (solid) [6].
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Figure 3.12: a) Figure shows the mean thermal profiles of six spatially averaged
horizontal lines for Lz = 5.02 mm (blue) and 4.74 mm (magenta) at 66 W . b)
Figure shows the mean thermal profiles of six spatially averaged horizontal lines for
Lz = 5.02 mm (blue) and 4.74 mm (magenta) at 42.2 W . The shaded bands about
the mean thermal profiles represent the standard deviation [7].

can be modified by user defined commands. The temperature at any given distance

from this point represents the sum of the pixel values around a circle, whose radius

is the distance from the point. The integrated intensity is then divided by the num-

ber of pixels in the circle thus yielding normalized density values. This profile is

plotted as a function of distance by defining a starting and an integration angle to

perform a radial averaging. The radial averaging allows us to identify the distance

between subsequent maxima and minima on the thermal field [6–8]. However, to

extract meaningful length–scales from the entire thermal profile we need a more
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Figure 3.13: a) Figure shows the two–point autocorrelation function, G2 as function
of distance, r with exponential fits, G2(r) ∼ exp(− r

ξ
) where ξ is the correlation

length on a log–log scale. The data shown in grey filled–circles with a single fit is
for the non–patterned region of interest (R), whereas the data shown in white–filled
circles with two fits is for the region of interest that shows emergent structures (P ).
The shown analysis is run on a steady–state image for a 4.74 mm, 95 W sample at
steady–state. b) Figure shows the time–dependence of the correlation length for a
4.74 mm sample at 23.8 W (green triangles) and 95 W (red and blue triangles) as it
evolves from room–temperature equilibrium to an out–of–equilibrium steady–state
on a semilog scale [6–8].

sophisticated technique. Therefore, we employ a spatial two–point autocorrelation

to extract useful information about the emergent length scales from the system. It

is done by comparing the frequencies of values in the temperature matrix, and then

finding the most dominant frequencies. In this case, the autocorrelation function

analyzes the 2D temperature profile matrix and finds correlations based on length,

at an arbitrary delay, r away from each element in the matrix. The program is

written following the Weiner–Khinchin theorem which relates the autocorrelation

function to the power spectral density via the Fourier transform [8, 102]. The 2D

spatial autocorrelation is executed using Python’s numpy library. We make use of

its 2D fast Fourier transform and its complex conjugate functions, fft.fft2 and

conj. The matrix is normalized to a range of values {0, 1}. Numpy provides an-
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other useful function called fft.fftshift which moves the zero coordinate to the

center of the domain. Implementing this outputs a much smoother autocorrelation

function as output. In order to convert the 2D autocorrelation function into a 1D

radius based autocorrelation, all the elements inside the circle of arbitrary radius r

around the center of the matrix are averaged and the normalized G2(r) is plotted as

a function of this delay. In Figure 3.13, the pattern of convective cells were charac-

terized spatially by a tracking typical length–scales that emerge in the patterns as

the system evolves on heating to an out–of–equilibrium steady–state. Length–scales

were extracted from each image using a spatial two–point autocorrelation function,

G2, analysis on the thermal images. The spatial correlation function is defined as,

G2(r) = 〈T (R) · T (R + r)〉 − 〈T (R)〉〈T (R + r)〉, where T (R) represents the tem-

perature at an arbitrary location on the image, R, and T (R + r), the temperature

at a distance, r from R. A typical two–point autocorrelation function is shown in

Figure 3.13a for a patterned and non–patterned image, P and R. The white filled–

circles show the correlation data for the non–patterned region, R, described by a

single exponential decay fit of the form, G2(r) = C1 exp(− r
ξ
) + C0. A correlation

length (ξ) of 33 mm is estimated from the exponential fit for the 4.75 mm sample

at 95 W in the non–patterned region, R. Whereas, for the patterned region, P ,

two correlation lengths are obtained, ξ = 18.5 mm and 9.3 mm. These lengths

characterize the average length and width of the observed structures that appear

worm–like in nature. Smaller correlation lengths imply increased heterogeneity, the

thermal surface of the film becomes progressively structured in time. This is clearly

visible from the thermal images shown in Figure 3.5b [6–8]. In particular, it was

observed in Figure 3.13 that there are atleast two dominant length–scales. When

the Rayleigh–Bénard system is at room temperature equilibrium, it is thermody-

namically homogeneous over large length–scales. Once, visible patterns emerge due
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Figure 3.14: a) Figure shows the spatial autocorrelation data along with exponential
fits for 4.74 mm sample at steady–state. b) Figure shows the distribution of the
two correlation lengths as the 4.74 mm sample evolves into an out–of–equilibrium
steady–state from room temperature equilibrium. The two distribution functions:
normal (in magenta) and lognormal (in red) are also shown in the figure [6–8].

to the system being driven out–of–equilibrium, finer length–scales start emerging

on top of the intrinsic larger length–scale, as shown in Figure 3.13 and 3.14a. A

question that naturally follows is how these typical length–scales are distributed

(in time) as the system evolves from a room temperature equilibrium to an out–

of–equilibrium steady–state. The spatial autocorrelation script is implemented on

all the 481 temperature matrices (or snapshots of the thermal images) while simul-

taneously fitting the spatial correlation data with exponential fits. The first data

point of the spatial correlation dataset is always equal to one hence this point acts

as an anchor for the first exponential fit. In order to obtain the second charac-

teristic length, a search algorithm is implemented on the spatial correlation datset

to search for a local minima followed by a local maxima. The local maxima acts

as the anchor for the second exponential fit. It is also made sure that the second

exponential fit undercuts the first exponential fit. The correlation length from the

first exponential fit gives an estimate of the finer length–scales whereas, the second
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exponential fit gives an estimate of the larger (equilibrium or close to equilibrium)

length scales in the system. The frequency histograms are then plotted as shown in

Figure 3.14b. It is interesting to note that the larger length scales are lognormally

distributed thus implying a positive skewness. Therefore, as the system ages (driven

to a steady–state) finer length–scales emerge and a symmetrical normal distribution

shifts towards the left. To put things into perspective of the system’s physical di-

mension, the smallest length–scale is estimated to be never less than 20 mm and

the largest length–scale is never greater than 120 mm which is slightly greater than

the radius of the copper pan [7, 8].
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Chapter 4

Theoretical Formalism of a

Complex System

Traditionally, science has followed a reductionist approach, where a system that is

composed of numerous interacting parts is assumed to behave the way its individual

constituents would behave if those interactions were absent. The origins of this

approach lies in the mechanistic viewpoint of this universe. Surely, it has proven to

be successful in helping us understand better the universe, yet it falters time and

again in providing an explanation for the ubiquitous emergent complexity around

us. Therefore, in the context of complex systems science it is rightly said that ‘a

(complex) system is always greater than the sum of its parts’. As discussed in

the previous sections, interpreting complexity from a mechanistic view point is a

difficult subject, but a subject of great general interest. Therefore, in this context,

one must first identify the physical concepts/laws/principles that are of paramount

importance. Our experimental studies have provided us a basis to identify some of

these underlying concepts in order to build a theory.
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4.1 Broken Symmetries

Symmetry breaking is one of the most important phenomena in the study of com-

plex systems’ science. The process of symmetry breaking involves driving a system

from a state of random disorder (symmetry) to a state of order during pattern for-

mation (symmetry–breaking) [17, 75]. In deeper sense, symmetries in a system is

directly related to conservation laws, also known as Noether’s theorem [5, 39]. For

example, time–reversal symmetry implies conservation of energy, while translational

and rotational invariance imply conservation of momenta, linear and angular. In the

Rayleigh–Bénard system we observe symmetry breaking as a result of pattern forma-

tion. In Figure 4.1a, we show the histogram distribution when our region of interest

falls over the patterns in the thermal images. We identify the two peaks and perform

two independent Gaussian fits, N (µk, σ
2
k) on the data: N (89.25 ± 0.089, 1.25) for

the ‘hot’ region (in red) and N (86.21 ± 0.13, 1.24) for the ‘cold’ region (in blue).

The shaded region enclosing both the Gaussian fits is a cumulative fit function. We

have shown in the earlier section that a kernel density estimate provides a better

description of the shape of the frequency data, f̂(T ) = 1
nh

∑
iK(T−Ti

h
). However,

a kernel smoothening with Gaussian kernels (K(·)) does not present any intuitive

understanding of the physics beyond the shape of the estimate function. We identify

the point where the two independent Gaussian fits intersect each other. We set the

temperature at the point of intersection of the two curves as a threshold (Tth) to

slice the frequency data into two regimes: ‘hot’ and ‘cold’. Two independent 1D

arrays are created and the temperature frequency data is binned accordingly: if

Ti ≤ Tth then the list of all Ti is in ‘cold’ region and if Ti > Tth then the list of all Ti

is in ‘hot’ region. We look at their independent statistics in Figure 4.1b and 4.1c.

The histograms are clearly normally distributed with N (89.48, 0.64) for the isolated
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Figure 4.1: a) Figure shows a bimodal distribution of the temperature frequency
distribution over a region of pattern. Two independent Gaussian fits are performed
which are identified as ‘hot’ (in red) and ‘cold’ (in blue). The shaded region is
the cumulative function obtained from the two independent fits. In b) and c) a
threshold temperature, Tth is used to slice the data into two separate 1D arrays and
their frequency histograms are plotted with the respective Gaussian fit functions.
The normality is further tested in d) and e) by plotting the respective Q–Q plots at
95% CI [7]. 47



‘hot’ region and N (86.49, 0.96) for the isolated ‘cold’ region. One can see that the

descriptive statistics of the isolated regions is well within one standard deviation of

the continuous region with 95% CI. To further elucidate the normal behavior we

show the Q–Q plots for the isolated regions in Figure 4.1d and 4.1e. One can clearly

note that at Ti ∼ Tth the curves depart from normality whereas everywhere else they

are in agreement with the normal nature of the frequency distribution. We consider

this result important, as it allows for the coexistence of multiple ‘equilibrium–like’

domains in an out–of–equilibrium steady–state system [4,6]. Likewise, the temporal

statistics from the fluctuation distribution are plotted in Figure 4.2. The time–series

data is shown in Figure 4.2a. To obtain robust temporal statistics, regions of interest

were selected on the thermal images and were spatially averaged across frames. In

Figure 4.2b, 4.2c, and 4.2d we plot the frequency histograms for the ‘hot’ (in red),

‘cold’ (in blue) and the whole region (in light grey). These histograms are clearly

normally distributed: N (90.16 ± 0.0036, 0.30) (red), N (72.91 ± 0.007, 1.36) (blue)

and N (81.47, 0.11) all at 95% CI. The statistical mean of the whole region is found

to be very close to the average of the statistical means of the respective ‘hot’ and the

‘cold’ regions. To further ascertain the normality of the frequency histograms, Q–Q

plots are shown for the each of the regions of interest in Figure 4.2e, 4.2f, and 4.2g.

The descriptive statistics presented above show that the spatially symmetry is bro-

ken as patterns emerge while temporal symmetry is preserved, thus the energy of

the system is conserved. One may argue that the system is dissipative, and therefore

the Hamiltonian can not be explicitly written and extremal principles can not be ap-

plied. However, one can supersede these criticisms under certain constraints: when

the local equilibrium hypothesis holds true and large deviations from equilibrium are

excluded, extremal principles can be applied to a dissipative system [35]. Therefore,

in this regard the non–turbulent Rayleigh–Bénard system is of special interest to
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Table 4.1: Table shows the calorimetric data from the steady–state images at dif-
ferent powers for the two thickness (lz = 4.74 mm and 5.02 mm). The numbers
listed in the first column denote the specified points in the plots shown in Fig-
ure 4.3. The top temperature (Ttop) is recorded by the thermal camera, bottom
temperature (Tbottom) by the thermocouple T2, the hot and cold spot temperatures
(TPhot

and TPcold
) are obtained by spatially averaging regions of interest (Phot and

Pcold) from the thermal images, conduction temperature (Tcond) is calculated from

Equation 4.1, and the Rayleigh Number (Ra = gβl3z
να

(Tbottom − Ttop)) from the listed
values in Table 3.1 [6].

lz # Power Ttop TPhot
TPcold

Tbottom Tcond Rayleigh Number
(mm) (W ) (◦C) (◦C) (◦C) (◦C) (◦C) Ra

1 23.8 39.4 −− −− 53.2 46.8 831
2 42.2 48.4 61.5 54.8 71.7 61.7 1410

4.74 3 66 59.9 78.2 69.7 89.5 76.1 1790
4 95 70.9 100.9 91.1 115 96.4 2670
5 130 89.8 124.8 114.1 147 122.2 3464

1 10.5 30.3 −− −− 37.9 34.5 535
2 23.8 38.1 43.1 39.7 53.4 46.9 1080

5.02 3 42.2 47.2 63.5 56.7 70.9 60.9 1670
4 66 58.8 84.4 73.6 91.8 77.7 2330
5 95 73.1 101.3 90.1 115 96.4 2960

derive insights about far–from–equilibrium thermodynamics, and quantify pattern

formation in complex systems based on our basic understanding of thermodynamics.

We ask ourselves a not so obvious question, what would have been the theoretical

temperature of the top surface of the fluid film if the mechanism of heat transport

had been through pure conduction? In order to calculate the theoretical conductive

temperature, Tcond, the steady–state heat conduction equation is used along with

the available calorimetry data from Tables 3.1 and 4.1,

Q̇ =
(mCucpCu

+moilcpoil)(Tbottom − Ttop)
2× 60× 60

= −kA∇T = −kA
(Tcond − Tbottom

lz

)
,

(4.1)

Here, A is the area of the copper pan, the material properties are given in Ta-

ble 3.1, and the measured temperature values of the theoretical expected temper-
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Figure 4.3: Figure shows the temperature plots (TPhot
, TPcold

, Tcond and Tbottom) for
the steady–state images at different values of input power for a) lz = 4.74 mm and
b) lz = 5.02 mm. The inset plots capture the variation in the plume temperatures
(TPhot

and TPcold
) about the theoretical conduction temperature (Tcond) as a function

of power. For details about the specific points denoted in the plots, refer Table 4.1.
Also, note that ε is arbitrary [6].

ature (Tcond) and the temperature of the upward and downward drafts (TPhot
and

TPcold
) from Table 4.1. The resulting values of all the temperatures are listed for

both the thicknesses in Table 4.1 and plotted as a function of applied power in

Figure 4.3. The critical Rayleigh number for structures to emerge is 1708 and for

experiments beyond this critical value (see Table 4.1 last column, after third row),

the theoretical conduction temperature is close to the weighted average of the hot

and cold plume temperatures denoted by, TPhot
and TPcold

. In the inset of Figure 4.3,

the variance of the plume temperatures about the conduction temperature (Tcond+ε

and Tcond− ε) as a function of the applied power is shown. Interestingly, the nature

of this variation does not follow a linear relationship, but rather oscillates above and

below Tcond almost anti–symmetrically. Although macroscopically the system is at

steady–state, the regions in space corresponding to Phot and Pcold can be realized
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as localized heat baths with equilibrium–like statistics confined within them. The

dissipation from the equilibrium fluctuations within these localized regions man-

ifests as a spatial variation of the temperature manifold, the curvature of which

indicates how far one is from the equilibrium state, Tcond (see Figure 4.3). The

upward and downward drafts at these localized regions perform internal work to

maintain the convection (structure and internal gradients) while resisting sponta-

neous equilibration. An intuitive understanding of this mechanism is the bifurcation

of the theoretical conduction temperature beyond the critical Rayleigh number (see

Figure 4.3). Therefore, in order to interpret temperature far–from–equilibrium we

must consider, temperature not as state variable but as a functional on the en-

ergy landscape [4]. This energy landscape consists of local equilibrium–like points

(domains), and within each of these regions the macroscopic equilibrium thermo-

dynamics ideally holds true. A theory that would encompass this idea must have

to preserve the first law while modifying it to include the emergence of internal

gradients [3, 6–8,21,22,78,101,103,104].

4.2 Foundations of a Theory

The definition of temperature like any other state variable in non–equilibrium ther-

modynamics remains a subject of great difficulty even to this day [43, 105]. As the

Rayleigh–Bénard system is driven, the emergent complexity observed on the top

layer of the fluid film are observed to be stable thermal gradients which last as long

as the system is driven, and disappear the moment the power is switched off. For

every ‘hot’ spot (plume), it is observed that there exist a ‘cold’ spot (plume). We

describe this through an illustration in Figure 4.4. The collection of all the ‘hot’ do-

mains (εi) signify local order in the medium whereas the collection of ‘cold’ domains
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Figure 4.4: Figure shows a typical Rayleigh–Bénard convection with emergent order.
When the fluid film is heated from the bottom (z–axis), regions of order (εi) and
disorder (εj) emerge on the top–layer of the fluid film (xy–plane). The presence
of the internal gradients leads to internal currents, jji that converts heat (Q) into
work (W), and jij dissipates order back to disorder. These local internal fluxes exist
because the system as a whole is driven far–from–equilibrium, and one exists as long
as the other does hence, jij = −jji. The distribution (ρ(X)) in the insets represent
the statistical distribution of the temperature in the domains εi and εj. Since, local
equilibrium hypothesis holds true, one can see that the distribution is normal and
centered around the mean, 〈X〉.

(εj) act as local sinks. At steady–state, the thermal fluctuations in these localized

domains are studied [6, 7, 42]. We have seen in the earlier sections, that it is both

surprising and remarkable that the descriptive statistics obtained from these locally

distributed regions of stable–in–time thermal gradients exhibit equilibrium–like fluc-

tuations while spatially coexisting in a far–from–equilibrium state. The partitioning

of the total internal energy of the system into entropic part (disorder) and coherent

work (order), as shown in Figure 4.3, is maintained by the flow of internal currents,

jij ∝ (〈Xi〉−〈Xj〉) and jij = −jji (note that X = temperature). These internal cur-
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rents dictate the time–scale responsible for local equilibration of these domains, and

is much faster than the macroscopic evolution of the system at steady–state [6, 7].

As these two relaxation times differ significantly, and the statistical results from the

domains show normal trends one can readily conclude that the local equilibrium

hypothesis holds true in this scenario [35,37,43,51–54].

Therefore, we can envision a manifold on which the temperature scalar is em-

bedded, the curvature of this manifold indicates how far one is from an equilibrium

state [3,4,6]. This idea, as we shall see in the next sections, is extended to derive an

equation of state for a driven far–from–equilibrium system from the first principles.

4.3 Thermodynamic Lagrangian

Let Ω, a finite thermodynamic system with a well–defined boundary, ∂Ω be driven

by an external field. The system is free to exchange heat with its surroundings. In a

convective system like the Rayleigh–Bénard, the spatial dependence of temperature

can be effectively computed using the Navier–Stokes equation with Boussinesq ap-

proximation [54, 79]. As temperature is our thermodynamic observable (X), it will

have well defined values at each point in space (xµ) inside the system (and on the

system boundary), and therefore can be expressed as a tuple (X, xµ). In a simple

Rayleigh–Bénard setup (as in our case [6,7]), the system is excited by actively driv-

ing it along one axis say, z–axis while structures emerge on the plane orthogonal

to the axis of the driving field, the xy–plane. Therefore, we constrain the index, µ

to take only the following values, µ = (−t, x, y). In a two–dimensional R2 space,

we can construct arbitrary sequences of temperature values corresponding to real

coordinates in space, {Xk} bounded above and below by the finite boundary values,

Xmin ≤ {Xk} ≤ Xmax. The boundary values for the system, Xmin and Xmax are
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determined by the bath and the driving field. For a system which is thermodynam-

ically homogeneous, this sequence is convergent, |Xi − Xj| < ε where Xi and Xj

belong to the sequence {Xk}. For large N , this sequence converges to the canonical

temperature of the system, or limk→N{Xk} → 〈X〉 (Central Limit Theorem). In

a system that has been driven out–of–equilibrium one can only comment on the

convergence and boundedness of the sequence, {Xk} under special circumstances.

One such situation arises when the local equilibrium hypothesis is satisfied. For

example, in a non–turbulent Rayleigh–Bénard system at steady–state (Ra . 104),

emergent behavior is manifested as structural ordering in form of patterns of varying

complexity. For low Rayleigh numbers these patterns are stable in time as the fluid

flow is non–turbulent. Under this circumstance one can conclusively state domain–

wise convergence of sub–sequences of {Xk}. A domain, εi ⊆ Ω consists of a tuple

({Xik}, xµ) ∀xµ ∈ εi ⊆ Ω (at steady–state one can ignore the time component). The

elements of the sub–sequence {Xik} can either be experimentally measured through

real–time infra–red imaging, through thermal probes that flow with the convection

currents or computationally through the simulation of the Navier–Stokes equation

with the Boussinesq approximation [54, 65, 86, 93, 98, 99, 106]. We saw in the earlier

sections that the two well–defined domains – ‘hot–spots’ and ‘cold–spots’ – were

observed to follow normal distributions. Therefore, one can conclusively state that,

{Xik}εi → 〈Xi〉 where the sub–sequence {Xik} of the sequence {Xk} converges to

the domain mean, 〈Xi〉 for large n ∈ εi ⊆ Ω [4, 6, 7]. Under the circumstances

when the Rayleigh–Bénard system is driven in the turbulent regime (Ra & 105),

due to dominating dissipative effects sequences as such, of velocities and temper-

ature will not converge with the system mean and hence these structures are not

stable in time rather they are strongly time–dependent and often chaotic [86, 99].

As Chandrasekhar notes, the symmetry–breaking instabilities in a Rayleigh–Bénard
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convection is maintained through the interplay between the kinetic energy dissipated

through viscosity and internal energy released due to buoyancy [94]. The kinetic

energy dissipated due to fluid friction is the incoherent part while the buoyancy man-

ifested internal energy comes at the expense of moving a volume of fluid through

a convective cycle, therefore being coherent in nature. Thus, the driving potential

bifurcates the internal energy of the system into coherent and incoherent parts (see

Figures 4.3 and 4.4). Under the condition that the local equilibrium hypothesis

holds, we can define a thermodynamic Lagrangian density, LT for such a system as

the difference between the incoherent heat (Q = TS) and emergent work (W).

LT = Q−W = TS −W (4.2)

Similarly, we can define the Hamiltonian density, H as the sum total of the incoher-

ent and coherent parts due to the driving field:

H = Q+W = TS +W (4.3)

Both the Lagrangian and Hamiltonian densities are extensive properties and can

be expressed as functions of the intensive variables, X (where X denotes the class

of intensive thermodynamic variables, X = (P, T, µ, ...)). This definition of the

thermodynamic Lagrangian is in–line with many previous authors [25, 107, 108].

Based on our discussion above, we can assign a mathematical structure to our ther-

modynamic system. As each point in the system can be expressed as a tuple,

(X, xµ) we can define a functional dependence of X on the space–time coordinates,

X : xµ ∈ Ω → {Xk} ∈ R or X = X(xµ) ∀ xµ ∈ Ω. Due to finiteness of the

system the function X can be non–arguably assumed to be continuous, or C0, and

for the sake of generality, we assume that X is analytic and hence C∞ continuous.
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Therefore, the Lagrangian density in Equation 4.2 can be rewritten as,

LT (X, ∂µX) = Q(X, ∂µX)−W(X, ∂µX) = TS(X, ∂µX)−W(X, ∂µX) (4.4)

As temperature is our thermodynamic observable (X), the system has well–defined

boundary conditions, Ttop ≤ X ≤ Tbottom and we can expand X as an analytic

function (in one dimension) in the neighborhood of an arbitrary point in space,

Ttop ≤ X(x) =
∑∞

k=0 ak(x − xk)k ≤ Tbottom < ∞. If we refer to Figure 4.4, we will

note that the locally coexisting equilibrium–like domains are denoted by (εi, εj). As

these regions are equilibrium–like domains, they are bounded, and one can math-

ematically view them as compact subsets of the system, εi, εj ⊆ Ω where sub–

sequences of {Xk} converge. These compact subsets consist of sequences of space–

time coordinates and sub–sequences of {Xk}, such that ({Xik}, {xµ}) ∈ εi ⊆ Ω and

ξT ≤ {xµ} ≤ `µ. The bounds on the size of the set is defined by the thermal corre-

lation length at equilibrium ξT and emergent characteristic length `µ whereas from

Central Limit Theorem, {Xik} → 〈Xi〉 for large n. For such compact sets (εi, εj) in

which sub–sequences ({Xik}, {Xjk}) converge to (〈Xi〉, 〈Xj〉) we can define a func-

tional, S such that, S : (εi, εj) ⊆ Ω → (〈Xi〉, 〈Xj〉) ∈ {Xk}. This functional traces

trajectories on the thermodynamic manifold which connects one locally equilibrated

region to the other in a driven system. This functional thus takes on the role of

action and is expressed as,

S[X] =

∫
d3xµLT (X, ∂µX) (4.5)
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4.4 Equation of State with Emergent Order

On minimizing the action functional from Equation 2.2, δS[x] → 0 we obtain the

Euler–Lagrange equation,

∂LT
∂X
− ∂µ

( ∂LT
∂(∂µX)

)
= 0 (4.6)

For the case, xµ = (−t, x) with c = 1, and the Lagrangian density, LT = LT (X, ∂xX, ∂tX),

∂LT
∂X

=
d

dx

( ∂LT
∂(∂xX)

)
=

d

dt

( ∂LT
∂(∂tX)

)
(4.7)

On solving Equation 4.7 for the spatial and the temporal case independently we

have the following set of equations of motion,

δQ− δW =
d

dx

( ∂Q
∂(∂xX)

− ∂W
∂(∂xX)

)
dX =

d

dt

( ∂Q
∂(∂tX)

− ∂W
∂(∂tX)

)
dX (4.8)

We substitute the spatial and temporal derivatives of X in the above equation by

the functions, ∂xX = f(Xi, Xj;x) and ∂tX = g(Xi, Xj; t). These functions, f(·)

and g(·) denote the spatio–temporal gradients along paths that connect two local

equilibrium–like domains, (εi, εj) with the mean values of the fluctuating intensive

variables as, (〈Xi〉, 〈Xj〉). Substituting the functional form of the gradients into

Equation 4.8 we have,

δQ− δW = ∂x

(∂Q
∂f
− ∂W

∂f

)
dX = ∂t

(∂Q
∂g
− ∂W

∂g

)
dX (4.9)

Using the chain rule,

δQ− δW = ∂x

((∂Q
∂x
− ∂W

∂x

)
× ∂x

∂f

)
dX = ∂t

((∂Q
∂t
− ∂W

∂t

)
× ∂t

∂g

)
dX (4.10)
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As f = ∂xX and g = ∂tX therefore, ∂f/∂x = ∂2xX and ∂g/∂t = ∂2tX. For a driven

system that gives rise to emergent structures which are stable, Chandrasekhar points

out that the gradient of the intensive scalar assumes a minima [94]. Therefore,

the second derivative of the intensive variable vanishes, and Equation 4.10 becomes

undefined. In order to proceed further, we treat the problem differently by exploiting

the mathematical structure of the underlying coordinate system. The functions that

define the manifold are analytic, and as our system is finite, these functions are

bounded by well defined boundary conditions. As discussed earlier, the system is

heated at the base and convection patterns emerge on the top layer of the fluid film.

We can define a metric connecting any two points in the space (on the top layer of

the fluid film) as our underlying vector space has a well defined norm, ||xµ|| ≥ 0,

and a complete normed vector space is a Banach space (as sequences converge). Our

coordinate system is therefore, a Banach space in R2 [109]. The partial derivatives

of Q and W with respect to the functions f(·) and g(·) can then be expressed as

Fréchet derivatives, or ∂Q/∂f = δQ/δf and ∂Q/∂g = δQ/δg [109, 110]. Rewriting

Equation 4.10 below,

δQ− δW = ∂x

(δQ
δf
− δW

δf

)
dX = ∂t

(δQ
δg
− δW

δg

)
dX (4.11)

The variation of a function can be expressed as, δf(Xi, Xj;x) = εη(Xi, Xj;x) and

δg(Xi, Xj; t) = εη′(Xi, Xj; t) where ε is infinitesimal and (η(·), η′(·)) are arbitrary

functions. Also, note that ∂x(δQ) =
∫
∂x(∂Q/∂x)dx = δ(∂xQ). Upon rearranging,

Equation 4.11 takes the form,

δQ− δW = δ(∂xQ− ∂xW)
dX

εη(x)
= δ(∂tQ− ∂tW)

dX

εη′(t)
(4.12)
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Since X is analytic, the functions, f(·) and g(·) are also analytic. Therefore the

functions, η(x) and η′(t) can be expanded as infinite series in the neighborhood of

some arbitrary point, x0 ∈ εi at time, t0 or (x0, t0) → (x0 ± h; t0 ± k), such that

η(Xi, XJ ;x) =
∑∞

k=0 ck(x − x0)k and η′(Xi, XJ ; t) =
∑∞

k=0 c
′
k(t − t0)k. One of the

useful properties of Banach space that can be exploited is that, Cauchy sequences

always converge in a Banach space to a well defined limit. As the system is finite,

the Taylor series is a bounded Cauchy–type sequence which converges within the

neighborhood of (x0, t0). For the linear approximation, η(Xi, XJ ;x) = c0+c1(x−x0)

and η′(Xi, XJ ; t) = c′0 + c′1(t− t0). On multiplying the infinitesimal quantity, ε and

rewriting Equation 4.12,

δQ− δW = δ(∂xQ− ∂xW)
dX

ε(c0 + c1(x− x0))
= δ(∂tQ− ∂tW)

dX

ε(c′0 + c′1(t− t0))
(4.13)

Since, ε is infinitesimal, the pair (εc0 , εc′0)→ 0, while ε(x−x0)→ dx, and ε(t−t0)→

dt (from the definition of calculus). Equation 4.13 therefore becomes,

δQ− δW = δ(∂xQ− ∂xW)
dX

dx
c−11 = δ(∂tQ− ∂tW)

dX

dt
c′
−1
1 (4.14)

This leads us to the one–dimensional derivative of the intensive variable, dX/dx =

f(Xi, Xj;x) and dX/dt = g(Xi, Xj; t). Since, f(·) and g(·) are both analytic, we can

expand them as an infinite series in the neighborhood of (x0±h; t0± k). Therefore,

f(Xi, XJ ;x) =
∑∞

k=0 αk(x − x0)k and g(Xi, XJ ; t) =
∑∞

k=0 α
′
k(t − t0)k. Using first–

order linear approximation for f(·) and g(·) we rewrite Equation 4.14 as,

δQ− δW = δ(∂xQ− ∂xW)
(α0 + α1(x− x0)

c1

)
= δ(∂tQ− ∂tW)

(α′0 + α′1(t− t0)
c′1

)
(4.15)
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The constant, |α0/c1| has the dimension of length (`) and the constant, |α′0/c′1| the

dimension of time (τ). Whereas, the constants, |α1/c1| = k and |α′1/c′1| = k′ are

dimensionless scaling coefficients. Also, δ(∂xQ)(x − x0) = ∂x(δQ)(x − x0). As,

|x − x0| < ε one can write ∂x(δQ)(x − x0) = ∂x(δQ)δx = δ(δQ). Rearranging

Equation 4.15 and substituting the characteristic constants, (`, τ) we get,

(δQ+ kδ(δQ))− (δW + k′δ(δW)) + δ(`∂xQ+ τ∂tQ)− δ(`∂xW + τ∂tW) = 0 (4.16)

Equation 4.16 lays out the one–dimensional equation of state for a driven system far–

from–equilibrium with emergent scales, (`, τ) when the local equilibrium hypothesis

holds true. At steady–state, the time–dependence goes away and the equation of

state then follows as,

(δQ− δW) + (kδ2Q− k′δ2W) + `δ(∂xQ− ∂xW) = 0 (4.17)

At equilibrium, the system is thermodynamically homogeneous therefore not only

the gradients vanish, but the pair of constants (k, k′) also become irrelevant as they

originate from the series expansion of the gradients. Therefore, δQ− δW = 0, and

one recovers the first law of thermodynamics from Equation 4.17 at thermodynamic

equilibrium.
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Chapter 5

Future Directions

The results presented in this paper and the nature of our theoretical formalism

allows us to draw connections to other stochastic systems. In this chapter, we first

extend our theoretical discussions in relation to the geometry of the spatio–temporal

fluctuations in equilibrium and out–of–equilibrium scenarios. Following which, we

ponder on the connections between time, Loschmidt’s paradox and thermodynamics.

Finally, we look for connections between our results presented in this work with

stochastic simulations on driven coupled systems and turbulent convection.

5.1 Further Theoretical Considerations

Since, Q and W are path dependent one can also express Equation 4.17 in integral

form. Therefore, rewriting Equation 4.17 as,

∫
dx(∇Q−∇W)+δ

∫
dx(k∇Q−k′∇W)+`

∫
dx∇·(∇Q−∇W)+τ

∫
dt(Q̈−Ẅ) = 0

(5.1)

If we consider a circulation of the fluid volume during convection, the first two

integrals vanish as Q and W are path–dependent. Therefore, Equation 5.1 can be
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rewritten after making the substitution, `/τ = u as,

u

∫
dx∇ · (∇Q−∇W) +

∫
dt(Q̈ − Ẅ) = 0 (5.2)

At steady–state, the time–dependence goes away and we are left with the following

form,

u

∫
dx∇ · (∇Q−∇W) =

∫
dx

∫
dV∇ · u(∇Q−∇W ) = 0 (5.3)

Using Gauss theorem, one can transform the volume integral in Equation 5.3 into a

surface integral over the boundary of the volume element.

∫
dV∇ · u(∇Q−∇W ) =

∫
ds(∇Q−∇W ) · un̂ (5.4)

Since, the right–hand side of Equation 5.3 is zero, (∇Q − ∇W ) · −→u = 0. If one

computes the gradients, ∇Q and ∇W on the top layer of the fluid–film, say the xy–

plane, the velocity, −→u then has to be directed perpendicular to them along the z–axis

as they are mutually orthogonal to one another. Therefore, the velocity vector, −→u is

the fluid flow velocity between the system boundaries, bottom to top and vice–versa.

Also, in order for an incompressible fluid to preserve continuity, ∇·−→u = 0. One can

develop these ideas in fluid mechanics to extend one’s understanding about angular

momentum and rotational effects in fluid–flow by defining for example, vorticity

−→ω = ∇×−→u . Let us consider Equation 5.2 at steady–state,

u

∫
dx∇ · (∇Q−∇W) = 0 (5.5)

Both, u and ∇·(∇Q−∇W) are scalars and |u| 6= 0 therefore, from Equation 5.5 one

can conclude that ∇ · (∇Q−∇W) = ∇2Q−∇2W = 0. Substituting Q = TS and

W = φ and expressing the Laplacian in a generic form of second–order derivatives
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and rearranging the terms we have,

−∂µ∂νS +
1

T
∂µ∂νφ = 0 (5.6)

The quantity, −∂µ∂νS has long been known as the Ruppeiner metric, gRµν which is

the negative Hessian of the entropy function [42,111]. It is a symmetric tensor, the

elements of which can be used to determine distance between two equilibrium states,

ds2 = gRµνdx
µdxν . The other quantity, ∂µ∂νφ is known as the Weinhold metric, gWµν ,

and one can relate both as follows,

ds2R =
1

T
ds2W (5.7)

Being able to define a metric allows one to imagine the thermodynamic phase–space

as a geometric entity. If one intends to understand how the surface profile appears

or how far one equilibrium domain (source) is from the other (sink) one uses the

metric to quantify the undulations on the manifold. The greater the curvature of

the temperature manifold, the further one is away from equilibrium. As a trivial

case, we expect a flat manifold for a system at thermal equilibrium.

5.2 Equilibrium Thermodynamics: Extended Dis-

cussion

The Hamiltonian of a system is related to its Lagrangian by the following Legendre

transformation, pq̇ − H(p, q) = L(q, q̇). The Maupertuis’ action or abbreviated

action is given by,

S0 =

∫
pdq and

∂S0
∂t

= pq̇ (5.8)
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Substituting Equation 5.8 into the Legendre form we have,

∂S0
∂t

= L(q, q̇) +H(p, q) and

∫ q2

q1

dS0 =

∫ t2

t1

dt(L+H) (5.9)

For a system at equilibrium the Hamiltonian, H(p, q) is the total energy of the

system and it is conserved in time (q(t1) = q1 and q(t2) = q2). The two action

functionals are therefore equal to each other,

S(q, q̇) =

∫ t2

t1

dtL ≡ S0 (5.10)

If a system is quasi–statically driven from a state q(t1) to q(t2) then the spatially

averaged momenta of the system’s micro–states can be written as,

〈p〉q =

∫ q2
q1
pdq∫ q2

q1
dq

(5.11)

Substituting Equation 5.8 in the above equation and rearranging the terms, ∆q〈p〉q =

S0, where ∆q = q2 − q1. The action functional and the Hamiltonian are connected

to each other by the Hamilton–Jacobi equation,

∂S(q, q̇)

∂t
+H(p, q) = 0 (5.12)

If the system goes through a (reversible) cyclic process, q(t1) = q(t2) then from

the first law of thermodynamics we have, δQ = δW . Substituting the Hamiltonian

H(p, q) by Q and cycle time t by τ we can rewrite Equation 5.12 as,

∂S(q, q̇)

∂t
+H(p, q)⇒ S0 + τQ = 0 (5.13)
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From the equipartition theorem we know, Q = nfkBT where n is the number of

particles, f the degree of freedom, kB the Boltzmann’s constant and T the canonical

temperature [30]. Therefore,

S0 + τQ = S0 + τ(nfkBT ) or T = − ωS0
nfkB

= −〈
−→p 〉q · −→u
nfkB

(5.14)

In the above equation, the cycle frequency ω = 1/τ and −→u = ∆q/∆t [22, 24, 104].

Let us consider a simple example where a piston compresses a gas confined inside

a cylinder quasi–statically and then allows it to expand. The process is cyclic

as q(t1) = q(t2), and the micro–states (ei) distributed inside the piston–cylinder

system is given by the Boltzmann’s distribution, ρ(ei) = exp(−βei)/Z. The inverse

temperature, β = 1/kBT = nf/(〈−→p 〉q · −→u ) from Equation 5.14. The work done by

the piston–cylinder during compression is given by,

W = −P∆V = −
∫ 2

1

PdV = − 1

A

∫ 2

1

ṗ(Adq) = −−→u
∫ 2

1

dp (5.15)

From the ideal gas equation we have, P∆V = nfkB∆T . Therefore, Equation 5.15

can be written as, nfkB∆T = −−→u∆p which further reduces for to 〈T 〉 = (−→u ·

〈p〉q)/nfkB where 〈T 〉 is the canonical temperature of the piston–cylinder sys-

tem [112].

5.3 Ising Model, Kuramoto Oscillators, and Tur-

bulent Convection

We look for connections between the Rayleigh–Bénard convection system, the two–

dimensional square–lattice Ising model and the Kuramoto model as these systems
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when driven out–of–equilibrium give rise to emergent spatio–temporal order through

self–organization [8,9]. A common feature of these systems is that the entities that

self–assemble are coupled to one another in some way, either through local inter-

actions or through a continuous media [113, 114]. Therefore, the general nature of

non–equilibrium fluctuations of the intrinsic variables in these systems are found to

follow similar trends as order emerges. In Figure 5.1, we plot the scaled standard

deviation of the intrinsic variable and emergent order as a function of time for the

Kuramoto system and the Rayleigh–Bénard convection. The intrinsic variable in the

Kuramoto system is the angular frequency of the oscillators (ωi) which collapses to

a common frequency (Ω) as the system achieves synchronization. Similarly, in the

Rayleigh–Bénard system spatially–averaged temperature (〈T (t)〉) plays the same

role. As the system approaches a steady–state, 〈T (t)〉 → 〈T∞〉, where 〈T∞〉 is the

spatially–averaged steady–state temperature of the system. In Figure 5.1a, we plot

the scaled standard deviation for the Kuramoto model as a function of time for two

values of the coupling strength, κ = 1.5 and κ = 2. It is evident from the theory

and the plot in Figure 5.1e that order emerges faster (R→ 1) in the case of higher

coupling strength. At time–step, t = 100 one can observe that atleast more than

half of the oscillators present in the system are synchronized (from Figure 5.1e) and

therefore one observes a sharp decline in the scaled standard deviation plot in Fig-

ure 5.1a. Later one can notice that as t ≥ 110 there is a sudden spike in the standard

deviation as order increases further. The reason for this could be attributed to a mix-

ture of synchronized and unsynchronized oscillators as R < 1. As time progresses,

the natural frequencies of all the oscillators approach closer to mean–field common

frequency. However, due to their equally random phase orientations, some of the os-

cillators reach the common frequency and lock themselves in that state earlier than

the other. A situation like this although reduces the standard deviation when com-

68



pared to the randomized initial state it however increases the standard deviation at

an instant when these two groups of oscillators start oscillating simultaneously, one

with low fluctuations and the other with higher fluctuations. As one would expect,

this scenario appears to last longer in the case of lower coupling strength among the

oscillators because of more unsynchronized oscillators than synchronized ones at any

given instant in time. Following our results from the Kuramoto system we look at

the Rayleigh–Bénard convection in the remaining panels of Figure 5.1. We show

results from three different fluid samples: silicone oil, glycerol and glycerol–water

mixture (1 : 4 and 1 : 2 by volume). The three fluid samples allow us to explore

a wide range of Rayleigh numbers. There is no well–defined order parameter in a

Rayleigh–Bénard system, therefore we define one based on the thermal profile at

steady–state as,

R =
〈T (t)〉 − 〈T0〉
〈T∞〉 − 〈T0〉

, such that 0 ≤ R ≤ 1, when 〈T0〉 ≤ 〈T (t)〉 ≤ 〈T∞〉 (5.16)

Here, 〈T (t)〉 represents spatially–averaged temperature at any instant in time, 〈T0〉

represents spatially–averaged temperature at initial equilibrium state (room tem-

perature) and 〈T∞〉 represents spatially–averaged temperature at a non–equilibrium

steady–state. For each of the fluid samples we look at the scaled standard deviation

plots as order emerges. In the case of silicone oil sample, the fluid being more stable

due to its high viscosity, ν = 150 cSt and low Rayleigh numbers we see a decline

in the fluctuations in Figure 5.1b. This decline can be mapped to the first instance

when convection cells start to appear in the system. The fluctuation reaches a min-

ima when a number of cells have fully formed and nucleated at the center of the

copper pan. As the system has not yet reached a steady–state for atleast another

∼ 103 time–steps (see Figure 5.1f) the temperature keeps on rising and hence, the
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standard–deviation. With Rayleigh numbers being almost in a similar range, we

see a different characteristic with glycerol as our working fluid. Glycerol being a

much lighter fluid with viscosity atleast a magnitude lower than silicone oil first nu-

cleates into convection cells which remain stable for sometime, but quickly divides

into smaller cells. This two–step nucleation results into two regions of decline in the

standard deviation plot as shown in Figure 5.1c. In Figure 5.1d, we look at thermal

fluctuations in glycerol–water mixtures. The standard–deviation appears to decline

much faster and earlier than the earlier plots (at around time–step, t = 102), but it

lasts for a much shorter duration. The reason for this appears to be lower viscosities

(∼ 10−2 cSt) and higher Rayleigh numbers for the glycerol–water mixtures. There-

fore, nucleation not only happens early but also spreads at a faster rate throughout

the pan. Following which, they break down into smaller and smaller domains which

dissipate heat rather chaotically as the system enters a turbulent regime. One can

observe this from the amount of noise in the standard deviation plots, the magnitude

of which keeps on increasing with time. Moreover, the system also does not reach

a steady–state as one can see in Figure 5.1h, where the order as a function of time

seems to be monotonic near R = 1 rather than being asymptotic [9, 113].

The similarities between the Kuramoto model and the Rayleigh–Bénard con-

vection are striking. If the extent of synchronization in the Kuramoto model is

considered as a measure of order then the Rayleigh–Bénard convection also shows

similar trends as it reaches a non–equilibrium steady–state. Since, matter does

not leave the system, the continuity equation is preserved. At room temperature

equilibrium state, the velocity vectors are randomly oriented, therefore the net di-

rectional component of the velocity field cancels itself out. While, a steady–state

leads to a well–defined (and directed) velocity field which transports heat from the

bottom of the copper pan (hot) to the top layer of the fluid film (cold). Therefore,
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emergent order in the Rayleigh–Bénard system corresponds to synchronization of

the frequencies of individual convection cells as the system reaches a steady–state

temperature. Thus, ω = dθ/dt = 2u∞/l where l/2 is the half thickness of the fluid

film and the steady-state velocity, −→u ∞ ∝ ∇T where ∇T is the thermal gradient

across the fluid film thickness. In Figure 5.2, we plot the probability densities of

the scaled fluctuation of the intensive variables for the initial randomized state and

compare them with the final synchronized state for the Kuramoto model and the

Rayleigh–Bénard system. Fluctuation in the Kuramoto system is measured by the

deviation of the natural frequency of an oscillator from the mean frequency of the

system, δω = ω(t)−〈ω〉. This deviation in the natural frequencies of the oscillator is

scaled by the mean frequency of the system, which we define as scaled fluctuation for

the Kuramoto system, δω? = δω/〈ω〉. Once the oscillators are fully synchronized,

〈ω〉 → Ω. Similarly, in the Rayleigh–Bénard convection we define thermal fluctu-

ation as δT = T (t) − 〈T 〉, and δT ? = δT/〈T 〉. At room–temperature equilibrium,

〈T 〉 → T0 and at steady–state, 〈T 〉 → T∞. As an equilibrium state corresponds

to symmetry conservation, one expects to obtain normal fluctuations in the initial

state. In Figure 5.2a and 5.2b, we plot the scaled fluctuation distribution for the

Kuramoto oscillators and the Rayleigh–Bénard convection respectively in their ini-

tial state. We can clearly see that the data obeys very well with the Gaussian fits

centered around the origin. For the final fully synchronized state of the oscillators

one would expect that a probability density function which would take the form of

a delta function sharply centered at the origin such that,

δ(x) =


0 x 6= 0

∞ x = 0

and

∫ +ε

−ε
dxδ(x) = 1 if 0 ∈ [−ε,+ε] (5.17)
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Note that in the above equation, x = δω?. A realistic approximation to such a

distribution when there are tails in the data is a Lorentzian function,

δ(x) = lim
ε→0

1

π

ε

x2 + ε2
(5.18)

Therefore, a Lorentzian function of the form as shown in Equation 5.18 when fit-

ted to the Kuramoto data for the final synchronized state, and we get a very good

agreement between the fit and the data as seen from Figure 5.2a. The tail present

in the data is captured by the functional part which decays as, 1/x2 in the neigh-

borhood of 0 ∈ [−ε,+ε]. In the case of the Rayleigh–Bénard convection we cannot

expect to see a single sharply peaked distribution centered around the origin for

the scaled thermal fluctuations. As we can see from Figure 5.2c and 5.2d, the data

shows the presence of two peaks (or bimodality). In Figure 5.2c, we plot the kernel

density estimates to determine the shape of the probability density function for the

two experimental trials with different Rayleigh numbers. In Figure 5.2d, we proceed

to fit the data piece–wise. We choose individual tails and fit them with a pair of

Gaussian fit functions (in black) and then with a pair of Lorentzian fit functions (in

red). As we can see from our plots in Figure 5.2d, both Gaussian and Lorentzian fits

superimpose over one another. The difference between the center of the two peaks

is about 0.04 units with one peaking in the positive domain and the other in the

negative. Therefore, one peak signifies the contribution of the upward plumes and

the other of the the downward plumes. We are still unsure of the fact that how the

fit functions from the two tails merge into one another. This is in agreement with

our previous discussions on the bimodal nature of the thermal fluctuations in the

Rayleig–Bénard system [4,6, 7].

To conclude, in the mean–field Kuramoto model the final synchronous state
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being unique allows for the existence of a sharply peaked delta–type distribution,

which in reality is best illustrated by a Lorentizian fit. In the case of a non–turbulent

Rayleigh–Bénard convection at steady–state we find that there exist two possible

states due to the existence of spatial thermal gradients which are stable in time.

These stable spatial gradients lead to the emergence of two local equilibrium–like

regions, fluctuations within which can be best represented by respective Gaussian

distributions [6, 7].
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Chapter 6

Discussion and Conclusion

The lack of a theoretical framework makes systems that are out–of–equilibrium

difficult to study. However, the Rayleigh–Bénard convection, with controllable sys-

tem variables and access to all measurable quantities is an attractive platform to

shed light that may guide theoretical development. In this study, the Rayleigh–

Bénard system is used as a prototype to gain insights about far–from–equilibrium

thermodynamics. Equilibrium behavior is typically easy to visualize, as at equilib-

rium, all macroscopic thermodynamic variables collapse into fixed points in phase–

space [27, 30, 32]. Temperature, which plays a key role in equilibrium thermody-

namics, is often quoted as a bad thermodynamic variable to characterize far–from–

equilibrium systems, and hence should not be used to describe out–of–equilibrium

behavior. This notion is technically sound, as macroscopic variables when far–from–

equilibrium are constantly changing in time and no descriptive state–function can

possibly be written. Although, when deviations are linear and relatively small,

the equilibrium description can be extended under the claims of local equilibrium

hypothesis. Nevertheless, even after 200 years of effort, a general theory of far–

from–equilibrium thermodynamics is currently missing, and is still quoted as “work

75



in progress” [37, 100]. The argument against the use of temperature as a measure

to theorize far–from–equilibrium thermodynamics although logically valid does not

provide a way to solve this long–standing problem. This work seeks to provide

experimental observations to stimulate theoretical progress.

A remarkable observation from our analysis of the steady–state thermal im-

ages is that local equilibrium–like regions appear to spatially coexist in an out-of-

equilibrium system driven presumably by the partitioning of the heat energy flow

into entropic and coherent work (the convection circulation). The system is there-

fore non–ergodic as a whole, but is ergodic in equilibrium–like sub–regions that do

not exhibit a pattern in time, but not over the entire film. Since, time translation

symmetry is preserved, any macroscopic description of the system should be found

to conserve energy (or have applicable the first law of thermodynamics). As trans-

lation symmetry is broken over the whole film, there must exist internal gradients

of temperature between adjacent regions, the internal coherent work that drives the

convective flow of fluid is also maintaining these internal temperature gradients.

The second law is well preserved for the macroscopic description of the system,

locally however it gets violated due to the emergence of structures and internal

gradients [11, 14, 26, 29, 57, 115, 116]. The translation symmetry, thus broken can

possibly explain the peculiar nature of the standard deviation plots during heating

and cooling. As the system is heated, local equilibrium–like regions start to emerge

which causes the system to start getting correlated. As the correlations get stronger,

the system starts behaving as collections of local equilibrium–like domains. As the

fluctuations between these domains get stronger they start dominating the fluctu-

ations elsewhere which gives rise to Casimir like effect [117–121]. Due to the finite

size of the system these effects propagate at a much faster rate than mere thermal

diffusion. This is readily observed in the sudden decline of the standard deviation
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during heating. While cooling, the domains disintegrate and the system becomes

weakly correlated, thus the strong fluctuations almost immediately disappear.

Moving on to the theoretical ideas presented in this paper, we attempt to derive

a thermodynamic equation of state from a first principles consideration. The coor-

dinate basis that describes the system is endowed with a metric and therefore can be

described as a metric space. Since, each point in the metric space has a well–defined

temperature associated with it, one can describe the temperature as a continuous

bounded function inside the system which maps each point in space (R3) to the real

field (R). We can comment on the mathematical nature of the temperature func-

tion with a considerable degree of certainty because of the experimental evidence

present before us. Our derivation thus rests on these crucial mathematical proper-

ties of sets and subsets of the state scalar such as, continuity and compactness. A

scenario where a sequence of the state-scalar fails converge, such as in a turbulent

flow system the current version of the theory will lose its significance. In our pro-

posed formalism, the thermodynamic Lagrangian density involves two components,

the internal work or the coherent part which gives rise to emergent order, and the

internal dissipation or the incoherent part which acts as the internal sink. The

salient feature of our theory is the description of the thermodynamic Lagrangian

in terms of a scalar–field unlike the conventional description based on coordinates

and velocities [22,23,25,107,122–126]. On minimizing the action functional on this

scalar manifold one determines the ‘trajectory’ that connects the local equilibrium–

like domains in space. The equation of motion actually describes the equation of

state for the system as it is driven out–of–equilibrium. In Equation 4.17, we present

the thermodynamic equation of state with small perturbations as a function of the

scalar–field and its gradients. One can see clearly that the characteristic constants,

(`, τ) emerge as a consequence (than a parameter) from our derivation. These con-
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stants will have contextual significance. For example, if the characteristic length is

fluid thickness and characteristic time, the time it takes to complete a circulation,

then we have a convective flow velocity, −→u . For an incompressible fluid the conti-

nuity equation yields, ∇ · −→u = 0. One can extend these ideas more specifically to

the Rayleigh–Bénard system by defining not one, but two thermodynamic scalars to

describe the mathematical nature of the manifold, Xα and Xβ. If we consider the

equation of state as derived in Equation 4.17 in some more detail. The heat and the

work differentials can be expressed in terms of the intensive variables of the system.

Since, δQ ∝ (〈Xα
i 〉 − 〈Xα

j 〉) and jij ∝ (〈Xα
i 〉 − 〈Xα

j 〉), we can state that δQ ∝ jij.

The proportionality constant gives the values for the transport coefficients during

reciprocal flows. Also, for a viscous fluid media one can express the work differential

as, δW = Xβ
ijdεij+ρ(−→u ·−→u ) where Xβ

ij is a second rank stress tensor and εij a second

rank strain tensor. In case of pure compression (or expansion) on takes the trace of

the stress tensor. Thus, δW = −Xβδijdεij + ρ(−→u · −→u ) = −Xβ + ρ(−→u · −→u ). To be

able to derive the equation of state that includes a combination of intensive state

variable is a significant challenge.

In conclusion, our experimental study on the Rayleigh–Bénard convection system

along with our field–theoretic formalism provides a novel way to understand pattern

formation in complex systems that have been driven out–of–equilibrium.
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anischen wärmetheorie. Annalen der Physik, 169(12):481–506, 1854.

[28] Richard P Feynman, Robert B Leighton, and Matthew Sands. The Feynman

lectures on physics, Vol. I: The new millennium edition: mainly mechanics,

radiation, and heat, volume 1. Basic books, 2011.

[29] Richard C Tolman and Paul C Fine. On the irreversible production of entropy.

Reviews of Modern Physics, 20(1):51, 1948.

[30] Josiah Willard Gibbs. The scientific papers of J. Willard Gibbs, volume 1.

Longmans, Green and Company, 1906.
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