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Abstract

Studies assessing novice programming proficiency have often found that many students coming out

of introductory-level programming courses still struggle with programming. To address this, some

researchers have attempted to find and develop ways to better help students succeed in learning to

program. This dissertation research contributes to this area by studying the programming processes

of students trained through a specific program design curriculum, How to Design Programs (HTDP).

HTDP is an introductory-level curriculum for teaching program design that teaches a unique systematic

process called the design recipe that leverages the structure of input data to design programs. The

design recipe explicitly scaffolds learners through the program design process by asking students

to produce intermediate artifacts that represent a given problem in different ways up to a program

solution to the problem. Although HTDP is used in several higher-education institutions and some

K-12 programs, how HTDP-trained students design programs towards problems, particularly ones with

multiple task-components, has not been thoroughly studied.

The overarching goal of this dissertation is to gain an understanding and insight into how students

use the techniques put forth by the design recipe towards designing solutions for programming

problems. I conducted a series of exploratory user studies with HTDP-trained student cohorts from

HTDP course instances across two different universities to collect and analyze students’ programming

process data in situ. I synthesized findings from each study towards an overall conceptual framework,

which serves as a data-grounded theory that captures several facets of HTDP-trained students’ program

design process. The main contribution of this work is this theory, which describes: (1) the program

design-related skills that students used and the levels of complexity at which they applied these

skills, (2) how students’ use of design skills evolve during a course, (3) the interactions between

program design skills and course contexts that influenced how students applied their skills, and (4) the

programming process patterns by which students approached the programming problems we gave and

how these approaches relate towards students’ success with the problems. Using insights from the

theory, I describe recommendations toward pedagogical practices for teaching HTDP-based courses, as

well as broader reflections towards teaching introductory CS.
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Chapter 1

Introduction

Problems in introductory computing courses are well-documented, ranging from high attrition rates to

students coming out of introductory courses with inadequate programming proficiency as shown by

generally dismal performance in assessments [84, 89, 121]. Researchers have found various factors

that contribute to these problems: some students finish their introductory courses without even at least

a mastery of the language constructs they’ve learned [89]; some concentrate on (code) implementation

activities and skip planning or design activities when solving programming problems [84, 89]; a

pervading notion that “CS is hard”, leading to lack of interest and motivation [70, 71]; the experience

of students of CS classroom environments as unwelcoming, leading to feelings of isolation and

disconnect from the domain [54, 71]; and ineffective learning contexts due to curricula or tools that

focus heavily on language constructs and lack explicit instruction of program design techniques and

strategies [35, 50, 127], to name some . Program design (among others) has been, and continues to be,

a significant challenge in computing education [73, 90, 122, 126], and researchers continue to study

ways to create learning contexts that utilize effective methods, tools, and assessments that improve

learning, engagement, diversity, and instruction.

Many computing education researchers and practitioners study novice programmers and introductory-

level computing courses, with the goal of finding and developing ways to better help students succeed

in learning programming. Some of these efforts are focused towards designing tools to aid in teaching

programming [76,109], studying motivational constructs such as self-efficacy and their links to success

in learning to program [33, 83, 111], understanding how to improve retention rates in introductory-CS

courses [61, 70, 74, 104], or designing activities to use in programming classes [65], among others.

A smaller subset of researchers study how students design programs, or how to effectively teach

students program design1. Researchers in this subset have studied ways to explicitly teach program

design techniques and how explicit instruction affects student programming performance. This is

done often by augmenting or redesigning curricula or programming activities with additional material

on design techniques. For example, de Raadt studied how to design a curriculum to include the

explicit instruction of programming strategies for introductory programming courses [35]. Keen and

1We say program design to mean a systematic approach to creating programs through planning [48].
1
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Mammen [68] report on the outcomes of explicitly teaching students program decomposition through

a course-length programming project. Some work discuss introducing students to design patterns in

courses teaching with an object-oriented approach [63, 113, 143]. Other work in this area touch on

other aspects of program design, such as tools that enhance error messages to aid debugging [8], or

programming environments that constrain program structuring to a puzzle-like mechanism to do away

with syntax errors and focus on semantic logic, as in the case of work on blocks-based languages [138].

My work differs from these in that I study how students use a specific design process, the HTDP design

recipe, that involves the systematic use of a specific set of design techniques. I discuss the design

recipe and the design techniques involved in the following subsection.

1.1 How to Design Programs

How to Design Programs (henceforth HTDP) is an introductory computing curriculum [48] that has

been adopted in higher education institutions and some K-12 programs [12, 50, 112]. HTDP uses a

unique pedagogy for teaching program design through a multi-step process (called the design recipe)

for designing programs based on the structure of the input data [48].

Given a programming problem, students are taught to work through a progression of steps:

1. Data definitions: Identify and define the structure of the input data.

2. Examples of Data: Write examples of the input data (as executable code).

3. Signature and Purpose Statement: Write the name, input types, and output type (the signature

or contract) for a function that will solve the problem and a brief summary of the function’s goal

(the purpose statement).

4. Input–Output Examples: Write concrete examples (as executable code) of what the program

should produce on specific inputs, written previously in step 2 (the test cases).

5. Function Template: Using the data definitions as a reference, write a skeleton of the function

body (the template) that fully traverses the input data. The template is specific only to the type

of the input data, not to the computations within a given problem, allowing the same template to

be reused across multiple functions on the same type.

6. Function Definition: Fill in the template with problem-specific details.

7. Testing: Run the function on the test cases, adding tests as necessary and refining the function(s).

We illustrate the use of the HTDP design recipe steps in the following example. The code in the

example is written in Racket (a variant of Scheme). In the code snippets, semicolons (;) denote single-

line comments and hash signs with vertical bars (#| ... |#) denote block comments. Racket naming

conventions use hyphens to separate words (e.g. function-for-something) rather than camel-casing
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(e.g. functionForSomething).

Example Problem: Design a function sum-nums to sum a list of numbers. If the input list is empty,

simply return 0.

Recipe step 1 | Data definitions: Identify and define the structure of the input data.

The input in this example is a list of numbers that can either be: (1) an empty list or (2) a

non-empty list composed of a number and a list of numbers. Here, cons is an operator for

building lists from an element and an existing list. Note that the data definition shows the

recursive structure of the list input data (in the non-empty list part).

; A list -of-number is one of
; - empty, or
; - (cons number list -of-number)

Recipe step 2 | Examples of Data: Write examples of the input data (as executable code).

Here, students write concrete examples of the input data. Students are taught to think about

different examples of input for the specific problem domain, as well as to leverage the structure

of the input data defined in Step 1 when writing examples (e.g. What does an input of an

empty list look like? What would different instances of non-empty lists look like?).

(define no-element empty)
(define one -element (cons 8 empty))
(define even -nums (cons 12 (cons 4 (cons 6 empty))))
(define odd -nums (cons 11 (cons 5 (cons 3 (cons 7 empty)))))

Recipe step 3 | Signature and Purpose Statement: Write the name, input types, and output type (the

signature or contract) for a function that will solve the problem and a brief summary of the function’s

goal (the purpose statement).

Students begin to articulate a proposed program or function by naming the function and speci-

fying its classes of input data and its class of output data through the type signature/contract.

The purpose statement is a brief description of the program’s goal. The central idea in this

step is that it invites students to summarize the key high-level details from the given problem

statement.

; sum -nums : list -of -numbers -> number
; Produces the sum of all numbers in the list
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Recipe step 4 | Input–Output Examples: Write concrete examples (as executable test cases) of what

the program should produce on specific inputs, written previously in step 2.

Students write examples of function calls on specific inputs and their respective outputs,

building on the input data examples they have written in step 2, as well as using the type

signature they described in step 3 as a guide when identifying the input and output types for

the examples. In the following code snippet, check-expect captures a test case, with both the

expression to run and its expected answer.

(check -expect (sum -nums no-element) 0)
(check -expect (sum -nums one -element) 8)
(check -expect (sum -nums even -nums) 22)
(check -expect (sum -nums odd -nums) 26)

Recipe step 5 | Function Template: Using the data definition(s) as a reference, write a skeleton of

the function body (the template) that fully traverses the input data. The template is specific only to the

type of the input data, not to the computations within a given problem, allowing the same template to

be reused across multiple functions on the same type.

Here, students begin to write their program by first writing a function template for the program.

A template is essentially skeleton code that provides a traversal of the input and reflects the

shape of the input. This example illustrates the use of a template for list-type data. In the

following code snippet, cond is the construct for a multi-armed if-statement and the ellipses

are “holes” in the template which get filled in later with problem-specific details.

#|
(define (list -function list -input)

(cond [(empty? list -input) ... ]
[(cons? list -input) ... (first list -input)

(list -function (rest list -input)) ... ]))
|#

In this step, students write a template for any combination of tupled and recursive data. This

specific example illustrates the use of a list template, which has a conditional that checks

whether the list is empty. If it is, the list template simply contains a hole for the function’s

result in that case. Otherwise, the list must have both a first element and the subsequent

elements (the rest or the tail of the list); the template therefore includes a recursive call on

the rest of the list. The template has holes in place of concrete code for combining the result

of processing the first element, with the result from the recursive call.

Recipe step 6 | Function Definition: Fill in the template with problem-specific details.

Students build on the template by replacing the template names with appropriate function

names (using the signature written in step 3 as a reference) and filling in the ellipses with

problem-specific operations. Here, students can use the information that they have defined,



1.1. HOW TO DESIGN PROGRAMS 5

written down, or articulated from prior steps, as well as retrieve functions and operations

previously-learned from prior lessons, to guide them in selecting and combining appropriate

operations to carry out the necessary problem computations.

(define (sum -nums nums -list)
(cond [(empty? nums -list) 0]

[(cons? nums -list) (+ (first nums -list)
(sum -nums (rest nums -list)))]))

Recipe step 7 | Testing: Run the function on the test cases (Step 4), adding tests as necessary and

refining the function(s).

The last step invites students to iteratively refine their program to debug potential errors

encountered in the development process and to also examine where their program may fail, by

adding test cases that may cover interesting cases and refining their program further to cover

new cases discovered.

The worked example for the HTDP steps to solve the problem of summing a list of numbers is

summarized in Figure 1.1, which illustrates what a typical submission from an HTDP-trained student

might look like.

; STEP 1: DATA DEFINITION
; A list -of-number
; - empty
; - (cons number list -of -number)

; STEP 2: EXAMPLES OF DATA
(define one -element (cons 8 empty))
(define even -nums (cons 12 (cons 4 (cons 6 empty)))
(define odd -nums (cons 5 (cons 3 (cons 7 empty)))

; STEP 3: SIGNATURE AND PURPOSE STATEMENT
; sum -nums : list -of -numbers -> number
; Produces the sum of all numbers in the list

; STEP 4: INPUT -OUTPUT EXAMPLES
(check -expect (sum -nums one -element) 8)
(check -expect (sum -nums even -nums) 22)
(check -expect (sum -nums odd -nums) 26)

; STEP 5: FUNCTION TEMPLATE
#|
(define (list -function list -input)

(cond [(empty? list -input) ... ]
[(cons? list -input) ... (first list -input)

(list -function (rest list -input)) ... ]))
|#

; STEP 6: FUNCTION DEFINITION
(define (sum -nums nums -list)

(cond [(empty? nums -list) 0]
[(cons? nums -list) (+ (first nums -list)

(sum -nums (rest nums -list)))]))

Figure 1.1: The HTDP design recipe steps on a problem to sum a list of numbers.
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As illustrated, the steps alternate between thinking abstractly (data types, contracts, templates) and

concretely (examples of data, examples of program behavior, and completed function code) within

the context of a problem. Each step builds on at least one previous step. The recipe thus scaffolds the

process of program design, while also serving as a diagnostic for instructors: if a student is struggling

to write a function but can’t describe the input or the output, the student likely hasn’t yet understood

the problem. In particular, the HTDP template is a programming pattern that is especially suited to

problems with single tasks2, i.e. a single computation applied over a single datatype; the worked

example for summing a list of numbers (Figure 1.1) illustrates this. Additionally, the multiple levels of

abstraction reflected in the steps—from contracts, to examples of function behavior (test cases), to the

structure of the input data (templates), to the completed code—gradually provides students more detail

for a program solution as they work through the process. Understanding what relationships students

see between these different levels of abstraction is one of our goals in studying design processes in the

HTDP context.

Due to its emphasis on recursively-defined data structures, the curriculum is particularly well-

suited to functional languages (though some instructors have adapted it to imperative settings). It

emphasizes data structuring (through tuples, lists, and trees) more than variations on control flow

(beyond recursion). An HTDP course shows how to apply the recipe to increasingly rich data structures:

it starts with programs over atomic data (numbers, strings, images), then progresses to compound data

(structs/records), lists of atomic data, lists of structs, binary trees, and n-ary trees (mutual recursion).

All design steps, including testing and template design, are reiterated throughout this progression.

After trees, the curriculum discusses higher-order functions (e.g. maps and filters), functions that

accumulate partial results in parameters (i.e. accumulators), and introduces stateful variables.

1.2 Studying Program Design Within the HTDP Context

My work is an analysis of how HTDP-trained students use the design practices put forth by the

curriculum when solving programming problems. For example, an aspect I focus on is students’ use of

datatype-driven templates3 and how students adapt these templates to programming problems that do

not directly fit the template, such as problems with multiple task components. As we’ve mentioned

in Section 1.1, the HTDP template is particularly suited to problems with single tasks. Problems with

multiple tasks, however, need design decisions that require planning around template-appropriate

functions, such as through problem decomposition, by way of multiple template instances that each

handle a single problem task/computation; we illustrate this in the following code snippet with an

example for the problem of averaging a list of numbers: the overall average/divide task is decomposed

over the sum and count tasks, and each task is delegated into their own template functions (we assume

returning a zero for an empty list).

2Problem tasks refer to problem components that need to be addressed in order to complete a solution; for example, a
problem that asks to compute the average of a list of numbers would have the following tasks: (1) sum the list-values, (2)
count the list-values, and finally (3) divide the sum by the count.

3In particular, the template for list-type data, as the problems we used in our studies are list-based
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(define (average list -input)
(cond [(empty? list -input) 0]

[(cons? list -input) (/ (sum list -input)
(count list -input))]))

(define (sum list -input)
(cond [(empty? list -input) 0]

[(cons? list -input) (+ (first list -input)
(sum (rest list -input)))]))

(define (count list -input)
(cond [(empty? list -input) 0]

[(cons? list -input) (+ 1 (count (rest list -input)))]))

Other ways that the tasks for average may be allocated to code (in terms of the concepts covered in

HTDP-based courses) include using additional parameters (termed accumulators) to track task-related

values (i.e. tracking sum and count) or by using higher-order functions like fold. Appendix A further

illustrate the use of these constructs for an averaging problem. Students may also leverage information

from the intermediate artifacts (e.g. data definitions, data examples, input–output examples, signatures,

purpose statements) produced at various design recipe steps to help them plan their programs. For

example: do students write and analyze examples to figure out the task-components of the problems

they’re solving? Do they use data definitions to capture the characteristics of a problem’s input data?

We’re interested in understanding how students apply or use these design techniques in their program

design process. I engage with this research problem by adapting methods from human-factors research:

my data comes from semi-structured interviews, think-aloud protocols, and field observations, collected

from students enrolled in HTDP-taught introductory-level (CS14) courses as they solve multi-task

programming problems (in one case, I use video recordings of students’ work to explore their process).

I analyze these data qualitatively through protocol analysis, card sorts, and grounded theory methods,

for example, to capture and synthesize observations.

1.2.1 What Do We Know About Research on HTDP So Far?

In an entry for the Communications of the ACM [59], Mark Guzdial, a computing education researcher,

wrote:

Kathi Fisler beat the Rainfall Problem in 2014. [...] But we’re still not really sure why. Is it

because of her curriculum, because she’s using functional programming, because of the data

structures she’s using, or because she’s teaching higher-level functions? We don’t really know

what makes programming so hard, and we don’t yet have enough theory to explain why it works

when we get it right.

4An introductory-level CS course at the college level in the United States is typically termed CS1. All student cohorts in
the studies for this dissertation are from CS1-level courses.
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Guzdial was referring to Fisler’s 2014 ICER5 paper where Fisler described the high-level solution

structures that HTDP-trained students produced towards the multi-task Rainfall problem6, the language

constructs students used to implement their solutions, and the errors that students had committed. She

also raised some questions about what potentially could have contributed to students’ success (or the

failures of some) on the problem and suggested looking at possible factors such as: extent of coverage

of HTDP, planning around design principles (e.g. cleaning data, reducing traversals), use of test cases

to identify sources of errors, and use of higher-order functions. In my own discussions with Fisler

(my doctoral advisor), we questioned the claim of "beating the Rainfall problem" because we did

not have concrete explanations about why the HTDP students in her study were successful with the

problem (or otherwise). She had only shown what students came up with as solutions, but not how

they had approached the infamous Rainfall problem (e.g. Did they, in fact, use the design techniques

put forth by the curriculum they had learned in? How do students’ processes look like in light of the

techniques that they were taught?); she did not have the data to come up with these explanations. She

thus could not make concrete connections between the curriculum’s claimed benefits and the outputs

of her studied student-cohorts.

Earlier research reports of HTDP have mostly focused on introducing HTDP’s design method into

the field of computing education. For example, Felleisen et al.’s article [50] introduced the three

"components" of their work, which include a program design method (the design recipe), a series

of sublanguages of Scheme, and support software (the DrRacket development environment [44]).

They also report on some preliminary findings: teachers who were trained in using the design recipe

anecdotally reported finding value in the curriculum in improving students’ general problem solving

skills and that female students preferred an HTDP-based programming course over one based on

a conventional AP curriculum. A set of papers from researchers in Germany report designing an

introductory-CS curriculum based on HTDP, but mostly focus on their experience of designing such a

curriculum [12, 32, 128]. One of these papers report some observations with students’ use of HTDP-

inspired design practices, though more as a set of (potentially anecdotal) experience reports rather

than as planned studies towards exploring these specifically: some students did not use the design

recipe in exams even when they said that they "might come in handy", some did not find signatures

useful, and some were "shocked" to find that the design recipe helped them when they used it [12].

Ramsey also reports a "personal, qualitative case study" [112], citing observations of students’ use of

the design recipe techniques: students were careless about writing signatures and purpose statements;

some students learned to value writing input–output examples/test cases, but some were also haphazard

about writing them (e.g. writing multiple examples that essentially illustrated the same test scenario,

just with different values); and many students didn’t use templates to structure their functions (although

it was not clear whether this led students to write ineffective code). Ramsey also proposed some

pedagogical practices towards improving the teaching of HTDP-based courses, notably: focusing on

5ACM International Computing Education Research conference
6The problem essentially asks students to compute the average of a sequence of numbers that appear before a sentinel
value; we describe this problem and its viable solutions further in Section 4.2.2. This problem is infamous: decades of
research have repeatedly shown that CS1-level students fail to solve the problem [59, 126].
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teaching students how to review their work (an explicit "review and refactor" step) and developing a

clear, principled way of assessing students’ work.

More recent work by Fisler et al. [53] proposed problems that required students to produce

programs that addressed data-processing problems, as well as asked students to evaluate the programs

they produced (this study was published around the same time I was running my own studies, so some

of the problems in this work are used in my work as well). They suggested that more modern planning

studies should also consider how to teach problem decomposition, and the factors that influence

how students structure their code, such as curricula, pedagogy, and linguistic features. Ren et al.’s

work [115] used the design recipe (among other additional factors such as reviewing past homework)

as a framework towards assessing the use of teaching assistant (TA) office hours, finding that the design

recipe can be used to categorize students’ questions during TA hours. Wrenn and Krishnamurthi took a

tool route and developed Examplar [146], a tool that provides students with feedback on the examples

they wrote (independent of how much code they’ve written). They found that with the use of the tool,

students’ quality of test suites generally improved, but they were inconclusive about whether the tool

helped students improve their own solutions.

Overall, much of the current work around HTDP are in their early stages, although the findings

seem promising. Fisler has generally found that HTDP-trained students produced working solutions for

programming problems, although it remains unclear how students’ use of the design recipe techniques

contributes to this success. Others have reported more concerning issues around students’ use of design

techniques: some students don’t even use them or if they do, were haphazard and undirected in their

use. The methods I employ in my studies (think-alouds, semi-structured interviews, field observations)

enable me to dig deeper into students’ design processes and develop descriptive frameworks that are

grounded in what students actually do during their program design sessions and can be used to explain

the factors that contribute to students’ design processes.

1.2.2 Research Goal

My work is an exploration of how CS1-level students design programs towards multi-task problems

that require processing lists, with a specific focus on their use of the HTDP design recipe.

My overall goal for my dissertation is to develop a conceptual framework that captures and

describes students’ use of the HTDP design recipe in their overall program design process. In other

words, I am creating an explanatory model (i.e. a system of ideas and constructs) of how novice

programmers work as they program, when they have been taught the HTDP design recipe in their

formal classroom instruction on program design. At the completion of my dissertation project, the

resulting conceptual framework should provide a data-grounded theory on how the design techniques

put forth by the HTDP curriculum are used by students "in the wild" (i.e. when tasked to design a

solution for a programming problem on their own).

The conceptual framework is envisioned to describe students’ use of the HTDP design techniques,

the techniques’ interactions with other aspects of students’ program design process (aspects such as
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students’ task- and code-level thinking of problems), and how these interactions contribute or relate to

students’ success in developing code for multi-task programming problems. This dissertation is an

initial effort towards creating a theoretical grounding to HTDP in how students use the HTDP design

recipe, in the hopes of refining how the curriculum is taught in practice, or informing the design of

learning or teaching artifacts (e.g. learning activities, tools, assessments) that are based on, or informed

by, the curriculum.

Research that helps us understand how students use the HTDP design recipe in practice is valuable

because this informs us how well the design recipe meets our expected/intended goals for it, what we

are missing in the design of the curriculum, and how we might improve on the teaching or design of the

curriculum. Insights drawn from this research will be helpful for educators who use HTDP or draw on

HTDP’s design practices to design CS courses or curricula, or educators in general who are designing

their own CS curricula and assessments by, for example, enabling educators to assess instructional

material to concretely identify content that can support the development of particular design skills and

offering insight on how educators could teach these content well.

1.2.3 Dissertation Research Questions

At a high-level, this dissertation project focuses on understanding how HTDP-trained students use

the design practices put forth by the HTDP design recipe, particularly when solving programming

problems with multiple task components. These problems invite students to make design decisions

which may be informed by their use of the design recipe practices as they analyze the problem towards

crafting a solution. We started this project with the broad research question:

How do HTDP-trained students use the design recipe to solve multi-task programming problems?

As we conducted our studies, we iteratively refined this broad question based on our synthesis

of our findings, resulting in the following specific research questions. Each research question has

a research activity that illustrates how to address the research question, and the data to gather and

analyze to investigate them.
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Research Question Data
DRQ1. What program design skills
do HTDP-trained students exhibit when developing
solutions for multi-task programming problems?

Research activity:
Identify program design skills and practices
observed in students’ program design process

• Video captures of student programming
sessions while solving a multi-task
programming problem

• Student interview and think-aloud
transcripts, written code solution,
scratch work, and field observation notes
on multi-task problems

DRQ2. What interactions do we observe between
students’ program design skills and how do these
contribute to their development of solutions for
multi-task programming problems?

Research activity:
Describe (1) relationships between program
design skills and aspects and (2) their role in
students’ design processes

• Student interview and think-aloud
transcripts, written code solution,
scratch work, and field observation notes
on multi-task problems with familiar
components

DRQ3. How do HTDP-trained students’ use of
program design skills evolve during a CS1-level
course?

Research activity:
Describe how students’ use and understanding of
program design skills and aspects evolve

• Student interview and think-aloud
transcripts, written code solution,
scratch work, and field observation notes
from study sessions at multiple points
within a CS1 course

DRQ4. How do HTDP-trained students approach
multi-task programming problems with novel
components?

Research activity:
Describe how students apply program design
skills and aspects in novel problems

• Video captures of student programming
sessions while solving a multi-task
programming problem

• Student interview and think-aloud
transcripts, written code solution,
scratch work, and field observation
notes on two multi-task programming
problems, each of varying degrees of
novelty





Chapter 2

Related Work

My work covers 3 main themes around the learning and pedagogy of introductory-level program

design in computer science, specifically:

1. Models of how novice programmers design programs, particularly in introductory-level computer

science (CS1) courses

2. Explicit instruction of program design strategies and techniques and their integration into

curricula

3. Models of the evolution of program design-related skills

We discuss each of these themes by describing existing work within each theme and how HTDP

relates to each theme.

2.1 Models of Program Design in Introductory CS

2.1.1 Top-down Program Design

Early research on program design mostly focuses on comparing differences in programming knowl-

edge structures between novice programmers and expert programmers [34], with a perspective of

program design as a generally top-down process [117]. Top-down program design conceptualizes the

development of a program similarly to a tree structure, starting with an abstract idea of a solution at

the top of the tree, which is progressively refined and expanded in greater detail (usually breaking it

down into constituent components) until a concrete solution is implemented in program code.

Jeffries et al. [67] have pointed to both novices and experts exhibiting a top-down strategy when

designing programs, but with differences in how this is carried out (Figure 2.1). Top-down design by

experts is done by decomposing problems in a breadth-first pattern with a similar level of abstraction

at each iteration until a problem is reduced into manageable operations. Novices likewise decompose

problems, but in a depth-first pattern as they fixate on an identified subproblem and focus on imple-

menting an immediate solution to the subproblem before moving on to other subproblems. These
13
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differences in design strategies between novices and experts are attributed to several factors such as

a lack of programming experience among novices, leading to a more limited repertoire of program-

ming knowledge versus experts, and novices having ineffective strategies for retrieving programming

knowledge, in contrast with experts’ years of experience, which enable the automatic recall of relevant

knowledge.

(a) Experts exhibited a top-down, breadth-first pattern

(b) Novices exhibited a top-down, depth-first pattern

Figure 2.1: Top-down design observed by Jeffries et al. [67] from experts and novices

Interaction of Top-down Design with Knowledge Representation and Domain Knowledge

Schneiderman and Mayer [124] also observe the use of top-down design by expert programmers.

They describe experts as developing a complex multi-level body of knowledge stored in long-term

memory. One part of this knowledge is semantic knowledge, which refers to general programming
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concepts independent of specific programming languages. They also have syntactic knowledge that is

more precise and detailed than semantic knowledge, focusing on details concerning the formatting

of language constructs. They report that in experts’ processes of encoding or converting a program

to an internal semantics or "chunking" [92], experts recognize the collective function of groups of

statements to form comprehensible chunks, instead of absorbing a program merely on the basis of a

low-level representation (e.g. individual language constructs).

Novices, on the other hand, organize knowledge syntactically using knowledge structures that are

mostly based on surface features; elements of this organization are usually not related to each other

in a strongly organized manner [1, 2]. This difference between novices and experts in the level of

knowledge representation explains the difference in their top-down design strategy. Novices mostly

have low-level, mostly concrete representations of programming knowledge. This imposes limitations

on their use of abstract design and constrains them to design at detailed levels; in turn, this leads

to their use of a more localized, depth-first strategy. Experts, due to the development of expertise

through experience, develop functionally-based schemata and have representations at both abstract and

concrete levels, which support their use of breadth-first design [1, 2, 46, 117].

Support for the top-down and depth-first design patterns by novices is also shown in the works

of Anderson, Farrell, and Sauers [6] and Pirolli and Anderson [106] in their studies of novices

learning to write recursive programs. They describe novices’ early efforts towards writing recursive

programs as heavily guided by analogies using examples of recursive functions [6, 105, 106]. Novices

rely heavily on known solutions and primarily spend time looking at examples when developing

new programs [106, 107], modifying and adapting already-learned solutions to fit the context of

new problems. They also explain that novices’ problem-solving is data-limited (i.e. they have

limited knowledge) and additionally, that a major limiting factor in their learning is working memory

capacity [5]. As novices grow in experience writing programs, they develop more efficient ways to

chunk information.

Expert programmers, however, do not always exhibit a top-down, breadth-first design pattern,

as argued by Adelson and Soloway [3]. They studied novice and expert programmers designing in

familiar and unfamiliar domains. They observed that when designing in familiar domains, experts

start with an abstract solution which they expand systematically through increasingly more detailed

models, showing top-down, breadth-first design (similar to Jeffries et al.’s [67] findings). This changes

however, when they start to design in unfamiliar or new domains. In this situation, the experts revert to

a more localized process, expanding and simulating partial solutions, showing a depth-first pattern,

similar to novices.

The breakdown of top-down design among expert programmers was also observed by Guindon

et al. [58]. They found evidence of experts exhibiting a process of successive refinement when

working on familiar problems. When working on unfamiliar problems, however, they employed a more

exploratory and serendipitous design process, characterized by creating solution pieces at different

levels of detail without a clear decomposition of the problem or clear connections between the pieces,

which is similar to previously-observed behaviors of how novices program in prior work.
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2.1.2 Program Plans

The top-down model of program design draws on the concept of programming knowledge retrieval.

Differences in expertise spell out differences in the repertoire of programming knowledge and the level

of abstraction or representation of this knowledge, which in turn affects design strategies exhibited by

programmers (e.g. breadth-first vs. depth-first).

Soloway describes the knowledge used to write programs as being embodied in plans [127]. Plans

are organizations of groups of code that work together to achieve a specified goal [127,129]. Plans may

be composed of sub-plans to achieve multiple sub-goals. Depending on a programmer’s experience or

level of expertise, plans may be stored at different levels of abstraction. Literature on programming

knowledge representation often use the terms plans, schemas, (language-independent) templates, and

canned solutions interchangeably. The concept of a plan draws from cognitive psychology on the idea

of "chunking" knowledge into schemata, or the mental organization of knowledge [92, 127]. Plans can

be viewed as having both deep structure and surface structure. The deep structure of a plan describes

the actions and the dependencies between the actions that collectively achieve the overall goal. The

surface structure of a plan refers to the artifact implementation of the plan (e.g. language constructs),

without regard to the semantic dependencies that describe the workings of the plan [120, 129].

Most of what causes major difficulties in programming among novices is their inability to compose

and coordinate components of a program due to them having mostly a surface structure knowledge

of plans [120, 129]. Experts, on top of their knowledge of the syntax and semantics of language

constructs, have built libraries of stereotypical solutions to problems and strategies for coordinating

and composing these solutions. A hallmark of expertise thus is the ability to view a current problem in

terms of old problems and strategically transfer solutions from old to new problems. According to

Soloway, when programmers do not have the relevant plans or plan knowledge to solve a problem,

they simply flounder and use knowledge or techniques inappropriately [127].

2.1.3 Bottom-up Program Design

Rist [117, 119] expanded on existing models of program design to account for situations in which

(novice) programmers lacked knowledge or similar solutions on which to build. His model describes

two paths programmers take when writing code:

1. Plan Retrieval: When a programmer knows a viable schema or a solution to a similar problem,

they will retrieve it (from memory) and implement the code in a top-down fashion, with smaller-

scale modifications to address problem subtleties.

2. Plan Creation: When a programmer has no schema in memory or does not know a solution

to a problem, they identify a core computation called a focus or focal computation. A focus

is usually a major computation required in the problem. For example, in a problem requiring

the computations of the average of a sequence of numbers, there are three potential focal

computations: one for each of the required tasks of summing the elements, counting the elements,
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and dividing the sum by the count. Rist’s model does not address which focal a programmer

would handle first, rather, it claims that an expression related to one of the tasks would be written

and expanded upon first. Programmers would start by writing code to implement the focus,

and then expands or builds around that code bottom-up until a working solution is achieved, or

integrates the new code into the rest of the program.

When a known solution applies to a more difficult problem, the model predicts that students switch

to bottom-up creation mode after retrieval. As a programmer’s experience increases, they make heavier

use of retrieval. Rist developed this model from watching students produce code in Pascal for problems

such as calculating the volume of a box-like house or sorting weights into ascending order. The essence

of the model lies in: (a) new plan creation starting from a focal computation, and (b) the construction

of code being either top-down or bottom-up, depending on whether a plan is being created or retrieved.

Rist also described how the decomposition of problems take place [117, 119]. When the overall

plan is too complex and matching schema cannot be retrieved for it, Rist describes that the plan must

be decomposed and that this decomposition may be any of the following two types (or potentially a

combination of these):

1. Decomposition based on "slots" in a schema:

This involves the identification of component tasks in a schema, for example, identifying the

"sum", "count", and "divide" tasks for an "averaging" goal. Once the component tasks are

identified, each task-component is filled with detailed plans one at a time.

2. Decomposition based on the generalization of plans or the repetition of events:

A plan for summing a large set of input can be decomposed into a simpler goal of summing

two initial values. The simpler goal has a simpler plan that may be retrieved, providing a focus

which can then be extended to achieve the larger goal. For example, retrieving the simple sum

plan (adding two values) and then extending it by adding code for a loop to repeat the sum plan

achieves the overall goal of summing a set of input.

In general, the implementation of the components of an overall plan is dependent on the availability

of schema. In cases where plan components have no retrievable schemas, a programmer will initiate

the development of code through a pattern of bottom-up development from an identifiable computation.

For plan components with retrievable schemas, programmers will generally follow a top-down, forward

development after retrieval of applicable schemas (from memory). The plan components are then

extended by adding code either for expansion or to merge or combine plans together. The knowledge

retrieved by programmers can be abstract or specific.

2.1.4 Interplay of HTDP and Models of Design and Planning

HTDP both draws on and challenges the existing models of program design we discussed in prior

sections. We assume a novice programmer for points made in this section.



18 CHAPTER 2. RELATED WORK

An implicit assumption in the top-down model is that after identifying relevant information from a

programming problem, the programmer maps the information to some implementation. Note here, that

the "relevant information" may be for an entire problem, for example, when a problem is small enough

(such as summing a set of numbers), or when the problem is big or has several task-components,

but the programmer has already seen the problem—or components of it—and thus has knowledge

of how to implement the problem. The information may also just be for familiar sub-components

of a problem. The mapping from information to implementation is easy when there are retrievable

schemas, in which case, these schemas are implemented and combined in some way (depending on

problem constraints and requirements) to achieve a solution. When there are no retrievable schemas,

the mapping is primarily done bottom-up, by way of operations for tasks and then extending and

combining these towards a solution.

HTDP challenges this direct mapping from problem to implementation. As a programmer goes

through each step (as outlined in Section 1.1), information about the problem is also made more

concrete in step-by-step fashion. Students first describe a problem’s input data by articulating its

structure and identifying concrete examples of the input. At this point of the process, the programmer

is not dealing with defining a solution yet. Rather, the programmer is concretizing an important piece

of information from the problem, the input data, which is processed by the (proposed) solution later

on.

The next steps start to deal with describing a solution by first describing an expected behavior,

independent of an implementation that mechanizes this behavior. This is done by first writing out a

contract, which names the program (or function) and describes the type of the input and the type of the

output. This is followed by writing a purpose statement, which invites the student to summarize an

expected behavior relative to the program’s goal. These steps provide a representation of a proposed

program; there is no implementation yet, but these steps ask the student to concretely capture or

describe an expectation of the program’s behavior relative to the possible space of inputs derived from

the problem or the input examples identified in an earlier step. This representation of the program’s

behavior is further developed through the next step of writing input-output pairs, or test cases. In this

step, the student is asked to describe concrete output for specific inputs, both from the examples of

input identified earlier and potentially, additional concrete inputs the student may identify.

The next steps are when the student actually starts implementing a concrete solution in code. Using

the identified input type as a reference, the student retrieves and writes a template for that input type

(top-down retrieval of the template), which serves as a program skeleton. This template provides

a traversal of the data, and this traversal provides a context in which operations on the data can be

defined. Note before this template step, information about the problem has been distilled into concrete

instances: the type and structure of the input data have been identified, concrete examples of the input

are described, the expected type of the output has been identified, and the expected behavior has been

articulated through input and output pairs. These are all concrete information that has become available

(in addition to the usually more abstract problem statement) and can be leveraged by the student for

the next step of building the implementation.
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The student can leverage the concrete information at hand to identify operations that will transform

the input into the expected output. While the template provides the data traversal mechanism, at this

point, the student needs to develop an understanding of the computations that need to be addressed

within the traversal of the data. In other words, a student, when combining operations with the template,

has to be able to understand how an output is built up from repeated application of an operation over

the data. We discuss the use of the template in further detail later.

The HTDP process serves as a scaffold and also aids design in two ways:

1. It has been designed to help novices create a more concrete understanding of the problem-space

by systematically concretizing information about a problem.

Here, HTDP uses the concept of top-down design, but instead of in terms of an increasingly more

detailed implementation of a program (as the original top-down design prescribes), provides

increasingly more detailed and explicitly described information about the problem. Concrete

information helps provide more actionable insight about the problem. Identifying the type of

the input, for example, tells the student what the structure or shape of the code should be (e.g.

Does it require a list traversal? Does it require a tree traversal?). Students are also directed to

identify the space of input, which can concretely illustrate tasks or special behavior that may

otherwise have remained hidden in an abstract problem statement (e.g. Are all the elements in

the input relevant to the problem? Does a computation need to be applied to all of the elements

in the input?). The use of explicit strategies and examples has been cited by early studies [127]

as a critical need for effective instruction and in more recent research has been proven to be an

effective method of program design instruction [35] (we discuss this more in Section 2.2).

2. It provides several representations of a program at various levels of abstraction: a general

description of the program (contract and purpose), a model of the behavior of a program

(input-output examples or tests), and a datatype-driven program structure (template).

One of the motivations for our research is what we can learn about how students use concrete

information and the relationships between the program representations put forth by the design

recipe to inform and build their solutions. Findings around this can be used to inform the design

of instruction and interventions for programming instruction, for example, tools and material

that help students design better tests, or tools for visualizing relationships between program

components (the design of these, however, is beyond the scope of this work).

The use of the template also essentially challenges bottom-up creation, or at least delays it. The

bottom-up model predicts that a student will identify and implement a problem-related operation

(related to a problem task) and then build on that focus towards an overall solution. HTDP however,

provides the student at least a retrievable schema through the template, which the student fills with

relevant operations. In the traditional bottom-up model, the identified operation provides the context

on which to build the program; in HTDP, the template, in essence, the structure of the data, provides

a context for the operations. This way, HTDP seems to embody both top-down and bottom-up
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patterns in its approach. Another motivation for our work is understanding how this concept of the

datatype structure providing programming context helps students in planning programs. This is an

interesting question as it challenges the traditional practice of matching constructs to problems and

provides curricular and instructional designers an alternative approach that can be used in introductory

computing curricula.

2.2 Explicit Instruction

A pedagogical practice gaining increased attention in CS education is explicit instruction. De Raadt et

al. [38] note that novice programmers have traditionally been expected to practice problem-solving

skills implicitly in their programming, developed by repeated attempts on practice problems. Hermans

and Smit argue that explicit direct instruction is more effective than exploratory approaches, even in

programming education [62]. Prior studies have revealed the presence of problem-solving strategies

used by experts, yet similar strategies (or ones that are appropriate for students who are just starting to

learn to program) are generally not explicitly incorporated into introductory programming curricula

[35, 127]. Programming strategies refer to the understanding of how to apply programming knowledge

appropriately to solve problems. Traditional programming instruction and texts focus on providing

programming knowledge which consists of language constructs and facilities, and the rules on how

to combine them. A systematic framework or methodology for choosing appropriate solutions or for

building strategies to do this, however, has mostly been absent, even when implicit problem-solving

instruction has been shown to result in poor learning. While there are studies showing that implicit

learning may improve learner performance (perhaps due to repeated practice), it does not create

understanding of the underlying systems used [35].

2.2.1 Explicit Instruction in non-CS contexts

The idea of explicit instruction and its reported beneficial affordances is not new. Researchers from

other fields have shown differences in performance between learners in implicit and explicit instruction

contexts. A study by Biederman and Shiffrar [11] has shown a quantitative difference between teaching

explicit and implicit approaches in chick-sexing (determining the sex of day-old chicks). Their results

showed that an experimental group of inexperienced sexers outperformed a control group. The control

group underwent the traditional training in chick-sexing, which involves standing alongside an expert

instructor, making observations during the sexing process, and finally attempting the task through trial

and error. The experimental group studied an instruction sheet with explicitly described key visual

aspects from an expert professional sexer.

A study on language learning by Reber [114] showed that implicit-only learning did not promote

the understanding of underlying systems of knowledge (i.e. the conceptual knowledge of the languages

being learned), even when language patterns (e.g. syntax and grammar rules) may be recognized. In his

study, an experimental group was shown sequences generated from an artificial grammar, without being
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shown the rules used to build the sequences, while a control group was shown randomly generated

sequences. In a post-test where both groups were shown a new set of sequences, the experimental group

was able to identify grammatically correct sequences but were unable to express an understanding of

the rules for the sequences. Berry and Dienes [42] shared a similar finding in their study on simulated

transport systems: participants who learned the workings of a transport system through implicit

instruction were subsequently able to operate the system, but were unable to show any understanding

of the underlying rules of the system.

2.2.2 Explicit Instruction in CS Pedagogy

Bailie [7], working on the idea that the process of planning can be facilitated through decomposition,

ran a study that involved having students explicitly write a collection of small functions ("modules")

as a treatment and then have them practice building programs that make use of the already-existing

functions in a posttest. While the work admits the absence of a control group to compare results with,

preliminary results show some performance improvement among students in the posttest as compared

to the pretest (the pretest and posttest had the same setup, with different problems of comparable

difficulty). Bailie attributes the improvement to the explicit writing and availability of the functions.

De Raadt et al. [37] tested a curriculum with programming strategies explicitly incorporated in

course materials, exercises, and assessments. The work considered the dimension of instruction

delivery. Implicit instruction expects students to undertake new learning or extend prior learning

without being given the full context for what they are to learn and how. For example, when taught

looping constructs, students are expected to generate different types of loop implementations such as

sentinel-controlled loops or using it to repeat computations. Explicit instruction openly describes the

subject to be learned and how to go about learning the subject, and is usually documented in some

form. They wanted to explore (a) if explicit strategy instruction can be successfully incorporated in

an introductory programming curriculum and (b) the effects of incorporating explicit instruction in

an introductory programming curriculum. Explicit instruction of strategies in this work involved (1)

naming programming strategies, (2) explaining the benefits of specific programming strategies, and (3)

providing examples of the applications of the strategies.

The researchers compared the performance of students in an experimental group who learned

through an introductory CS curriculum with explicit programming strategy instruction, with students in

a control curriculum (implicit instruction). They found that while the added content required additional

lecture time and decreased the time for students’ practical work, students still completed exercises

within scheduled time. The researchers attributed this to the instruction easing the burden on students

when working on exercises. Even with explicit instruction, some of their students still forgot or

neglected the plans they learned, but (in subsequent interviews) seemed to express more confidence

in their own solutions, compared to students in the control group. Students from the experimental

group also demonstrated the use of, or attempted to use, planning vocabulary in their explanations,

but would still resort to using syntactic descriptions of code. They also observed that students who



22 CHAPTER 2. RELATED WORK

underwent explicit instruction were more likely to understand and use the strategies they learned than

their counterparts in the control group.

Muller et al. [95] described guidelines for pattern-based instruction that can be used for creating

sets of problems around specific "design patterns". The "patterns" described in this work seemed to

draw on object-oriented design and imperative programming (with emphasis on initialization, control

flow, and variables) and focused on problems such as counting, accumulation, computations of extreme

values, searching, criterion-matching, and identifying most frequent elements, to name some. Their

guidelines consisted of 9 points:

1. Representative example: Provide a simple concrete example to illustrate the pattern

2. Pattern definition: Define a pattern abstracted from analogous problems by describing the

pattern’s components

3. Pattern name: Define a name for the pattern that captures and illustrates its essence

4. Similar patterns and similar problems: Identify similarities and differences to related patterns

and problems these solve

5. Comparison of solutions: Identify and compare alternative solutions to a given problem with a

focus on differences in algorithm efficiency

6. Typical uses: Identify representative contexts in which the pattern is commonly utilized

7. Common mistakes and difficulties: Identify common misuses and difficulties with the pattern

8. Pattern composing: Identify problems with solutions that require compositions of several

patterns, or multiple uses of the same pattern

9. Entry and turning point: Practice modifying solution patterns for similar problems to satisfy

varying constraints

The main idea around these guidelines was to introduce patterns to students through sets of prob-

lems. Recognizing similarities and differences between problems and their solutions may encourage

the reuse of ideas from previously solved problems. Their idea was that looking for common character-

istics between problems supports the understanding of the behavior of the solutions for these problems

and the analysis of similar solutions. They called their approach pattern oriented instruction: their

approach involved attaching labels to algorithmic patterns and presenting various problems to students

(designed with the 9 guidelines described above), while encouraging students to look for common

patterns across problems. They found that their students were successful at applying the patterns at the

end of their courses [94].
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2.2.3 HTDP: Explicit Design Strategy via a Step-by-step Process

The current trend of research around explicit instruction in CS pedagogy involves teaching mappings

of problem types to implementation-focused strategies. My work frames the idea of a "strategy"

differently. Explicit strategies in prior work [35,95] mostly leverage the use of programming constructs

and language features and focus on the application and merging of these constructs to satisfy problem

goals and constraints. We instead look at the step-by-step HTDP design process (i.e. the design recipe),

and its data-centric focus, as the "explicit strategy" for designing programs. The design pattern at the

heart of HTDP, the program template, is based on datatypes and is driven by data definitions (recipe

step 1) rather than language-construct-centric strategies.

Drawing on the idea that experts are characterized with having a vast repertoire of programming

knowledge and strategies [67], prior work on explicit strategy instruction work towards increasing a

novice’s collection of programming strategies. This is useful for novices when they are able to achieve

a direct mapping between problems and their known strategies [117, 119]. The retrieval of schemas

may fail when a mapping cannot be done from a novel problem to a schema. Without a direct mapping,

it brings a novice back to Rist’s focal expansion model, even when their solution-tinkering would be

on a more abstract level of chunks of strategy implementations.

Instead of working on direct mappings between problems and schemas of solution implementations,

HTDP’s design recipe works towards illuminating more information about the problem domain as a

novice works through the recipe steps. The main retrievable schema here is the template, which is

retrievable mainly with the knowledge of a problem’s input type (topics in the latter parts of HTDP-

based courses add more schema for functions that map, filter, or fold computations). The concrete

information provided by artifacts developed in each recipe step helps inform the expansion of the

template towards a solution. This presents interesting questions to explore around (1) whether students

recognize relationships between the different components of the HTDP design process and (2) how

they use these relationships to inform and structure their solutions.

2.3 Models of Skill Evolution in Introductory CS

One of our goals in this work is to understand how HTDP-trained students’ use (and understanding) of

program design skills evolve within an introductory CS course (CS1). We describe in this section, a

model called the SOLO taxonomy, which describes the increasing complexity of how concepts are

learned or understood. We also discuss the extent to which the SOLO model has been used in CSEd

research.

Biggs and Collis proposed the Structure of Observed Learning Outcomes (SOLO) taxonomy model

in 1982 [13]. This taxonomy captures the complexity of learning outcomes, looking at which aspects

of an overall task students have mastered. Each taxonomy progresses through five levels of complexity:

• Pre-structural: Little to no understanding of the topic

• Uni-structural: Understand one aspect of the task
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• Multi-structural: Understand several aspects of the task, but the aspects are understood inde-

pendently of one another

• Relational: Understand several aspects of the task and how they inter-operate

• Extended Abstract: Can generalize understanding of aspects to a new domain

A single taxonomy is intended to detail a progression of outcomes within a single conceptual task.

Biggs and Collis proposed the model as assisting in both assessment of student learning and in creating

"constructive alignment" between assessments and curricula.

Within computer science, SOLO taxonomies appear to have first gained traction in the mid-2000s

in the work of CSEd researchers in Australia and New Zealand. Papers that use SOLO in CS education

generally focus on assessment of student work on a single assessment: researchers identify a skill that

they plan to assess, articulate a SOLO taxonomy relative to that skill, apply the taxonomy to student

work on an assessment (exam or exercise), and report student performance relative to the taxonomy.

The papers present the final SOLO taxonomy, without discussing how it was designed. Such papers

include Whalley et al. [141] (code reading, comprehension, and summarization), Lister et al. [86]

(code comprehension), Shuhidan et al. [125] (writing code to calculate max/min integers), Ginat et

al. [55] (algorithm design), and Izu et al. [66] (code design).

Ginat’s emphasis is on selection and composition of high-level design patterns [55]. Ginat’s

unistructural level captures solutions that translate a specification into a straightforward use of a

single design pattern. By the relational level, Ginat expects students to compose plans through the

interleaving of code. Ginat has generally expressed a preference for interleaved code on the grounds of

efficiency [94]. The HTDP curriculum, in contrast, does not emphasize efficiency, but teaches students

to think about readability and maintainability as code is adapted to different contexts. Their project

and the HTDP-based courses we study thus have different values regarding composition skills.

Izu et al. (who respond to Ginat et al.) focused on code design rather than pattern selection and

integration [66]. Their taxonomy is in terms of combining building blocks, which may or may not

arise from previously-learned general patterns. Izu et al. looked at how students combined code

fragments into solutions, although this combination focuses on the syntactic merging of code (akin to

Ginat’s interleaving of code) and it is not clear how or whether a semantic understanding of this code

merging plays a role in students’ understanding of combining code. Both Ginat and Izu conflate issues

around decomposing problems and composing code. In addition, neither considers testing, which is

considered an equally-important design skill in our work.

Thompson’s SOLO taxonomy for grading programming assignments (which he also used to design

exam questions) captures multiple components of activity. He weaves these into a single programming

skill progression (that requires certain behaviors from each component) [135]. For example, the

multistructural level captured students who were "making the standard in more than one aspect of the

project", where aspects included code not crashing, code meeting a baseline of required features, and

following programming and user-interface standards.
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Design skills evolve throughout a course, fostered through repeated application of language

constructs and development of program schemas. We would expect students to approach program

design differently, and perhaps more systematically, as they gain in experience and confidence.

Understanding how program design skills evolve in novice learners provides valuable input to those

who design curricula and pedagogy. Such understanding requires both assessments that explore design

skills from various perspectives, but also rubrics for summarizing design skills across assessments.





Chapter 3

Study: Interplay of HTDP with Rist’s Focal
Expansion Theory

Background and Context: Most models of how novices program suggest that they use previously

learned examples or solutions as starting points for new programs. Rist’s focal expansion model, in

particular, suggests that novices program bottom-up from a statement or expression that captures the

essence of an identified program task. In contrast, HTDP aims to be more systematic by teaching

students to first write scaffolding code that exploits the structure of input data as part of an overall

design process towards generating programming solutions.

Objective: We sought to explore the interplay of bottom-up programming and datatype-driven design,

using Rist’s model and HTDP as concrete instances of each, to gain insight into how Rist’s idea of

bottom-up programming play out in the context of data-traversal schemas (Section 3.1).

Method: We gave HTDP-trained students a multi-task programming problem that required program

structures they had not yet learned. We video-recorded their programming sessions and coded the

videos by looking for how students used each of focal-expressions and HTDP scaffolds in attempting

to solve the problem. Students filled out a survey that asked them about their thought-processes as

they wrote their solutions for the programming problem (Sections 3.3 and 3.4).

Findings: We found that students largely worked through core problem tasks, either through task-

related focal operations or as entire functions, but generally struggled with problem decomposition

and solution composition (Sections 3.5 and 3.6).

A version of this chapter is published in the following venue:

[19] Francisco Enrique Vicente Castro and Kathi Fisler. 2016. On the Interplay Between Bottom-Up

and Datatype-Driven Program Design. In Proceedings of the 47th ACM Technical Symposium

on Computing Science Education (SIGCSE ’16), 205–210. DOI: https://doi.org/10.1145/2839509.

2844574
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3.1 An Exploratory Study

Most models of how novices program suggest that novices draw on prior knowledge of learned

examples or solutions as starting points for new programs [106, 107, 130]. An interesting point of

exploration, thus, is when novices face a new problem that is sufficiently different that previously-

learned examples don’t apply. In particular, Rist’s focal expansion model [117] (Section 2.1.3) suggests

that novices enter a "creation" state when they do not have existing plan knowledge for a given problem:

they start from a code fragment called the focus, which they expand in a bottom-up pattern towards a

working solution. In contrast, HTDP suggests a design recipe to follow to systematically elicit problem

details, written as concrete artifacts that can be used to inform the development of a solution to get

beyond a blank page when starting a programming problem. Step 5 of the design recipe directs students

to write scaffolding code (the template) that exploits the structure of the input data, as described by the

data definitions produced in a prior recipe step (step 1).

The HTDP templates are at the heart of the difference between HTDP and Rist’s model: in essence,

the templates defer entry into Rists’s creation state by providing a retrievable schema (based solely on

the type of input to a function), which provides the context for writing code for computations. This

process should direct students to place focal computations either in template holes or in auxiliary

(i.e. helper) functions. Additionally, the artifacts produced in prior design recipe steps (e.g. data

definitions, examples, signatures, explanations, test-cases) should help inform the novice on how to

appropriately fill in the template. In Rist’s model, an identified focal code provides the context for

building a solution instead. Seeing what HTDP-trained students do after writing templates should give

insights into whether and how Rist’s model, and the general idea of bottom-up programming, play out

in the context of data-traversal schemas.

In this first study, we sought to explore and understand the interplay of bottom-up programming

and datatype-driven design, using Rist’s model and HTDP as concrete instances of each. We gave

HTDP-trained students a programming problem over a familiar input datatype (a list of numbers), but

which required programming techniques they had not yet seen, for example: reshaping a list input

with an underlying structure into a list of lists, recurring on a modified suffix of the list, or detecting a

sentinel pattern to terminate a computation. This combination should essentially push students into

Rist’s creation state (perhaps after retrieving the list template). We sought to address the following

research questions in this study:

STUDY-RQ1. When do HTDP-trained students use templates?

STUDY-RQ2. How does Rist’s idea of focal computations manifest in HTDP programs?

STUDY-RQ3. How and when do HTDP students integrate focal computations into existing code?

Our questions attempt to avoid bias in favor of either Rist’s model or HTDP’s claimed benefits.

While we expected students to follow the HTDP design recipe process (as this was a key part of the

course we studied), we did not assume that students had internalized that process enough to actually

do so. This is an exploratory study, asking whether: (a) Rist’s focal-expansion theory applies to a
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programming process that is directed by the HTDP design recipe, and (b) the design recipe provides

useful scaffolding to students on problems that require significantly different programming techniques

than what they have already seen.

3.2 The Adding Machine Problem

In this study, we used a programming problem called Adding Machine1. The exact wording for the

problem follows, along with viable solution approaches:

Design a program called adding-machine that consumes a list of numbers and pro-

duces a list of the sums of each non-empty sublist separated by zeros. Ignore input

elements that occur after the first occurrence of two consecutive zeros.

Example:

(adding-machine (list 1 2 0 7 0 5 4 1 0 0 6)) should produce (list 3 7 10)

The Adding Machine problem involves four tasks:

1. Ignoring data after the double-zero sentinel pattern

2. Identifying sublists separated by single-zero delimiters

3. Summing the elements in each sublist

4. Building the output list from the sums of the sublists

Viable approaches for solving Adding Machine include:

1. Reshape the data first.
The sublists in the input are embedded in a flat list of elements delimited by zeros. The input

could be reshaped into a list of lists that omits the zeros. For example, the input (list 1 2 0

7 0 5 4 1 0 0 6) could be reshaped as (list (list 1 2) (list 7) (list 5 4 1)). Separate

functions could recur over the outer list to compute the sum of each inner-list.

2. Accumulate sums in a parameter.
The recursive function could take an additional parameter for the sum of the current sublist.

When a 0 is detected at the front of the input list, this parameter would be concatenated onto the

result of processing the rest of the input list with the sum parameter (re-)initialized to 0.

3. Recur on a new (modified) list containing the sublist sum.
The first position of the list can be used to store the running sublist sum. For example, the

call (adding-machine (list 1 2 0 5)) would generate the call (adding-machine (list 3 0 5)).

Special care is required, however, if a sublist can sum to 0.
1We thank Mike Clancy for pointing us to the Adding Machine problem.
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4. Recur on a new list that skips the first sublist.
A function could recur on the suffix of the list without the first sublist, using a separate function

to produce the sum of the prefix corresponding to the first sublist.

Detecting the consecutive-zero sentinel pattern adds a bit of complexity, as solutions must check

both the length of the remaining input (an input that doesn’t contain the 0 0 pattern might have only

one element) and the values of the first two elements. Solutions can either truncate the input data at

the double-zero pattern in a separate pre-traversal, or integrate checking for the pattern into the core

computation.

Adding Machine is a reasonable problem choice for exploring the interactions between Rist’s focal

expansion model and the HTDP design recipe. At the point at which we collected data (Section 3.3), lists

of numbers would have been a familiar datatype to the students: many will have already internalized

the schema for flat lists. Each of the high-level solution approaches outlined previously, however,

uses more advanced programming concepts that the students have not yet seen before in the course:

parameters that accumulate data (accumulators) or recurring on something other than the rest of the

list. While basic mastery of lists would suffice to reshape the input data, students would not be exposed

to the idea of doing so until much later in the course. Thus, if HTDP-trained students are given this

problem after a couple of weeks of programming with lists, they will have a schema that appears

to apply (the basic list template), but no experience with solutions that draw on the more advanced

concepts used in the Adding Machine solution approaches. We expect that many students should end

up in the plan-creation state while working on the problem, even if they initially retrieve the basic

template for lists.

3.3 Study Design and Data Collection

3.3.1 The HTDP Course Instance

We collected data in the Spring 2015 offering of CS1101: Introduction to Program Design2, taught

using HTDP in the Racket programming language [110]. We conducted the study five weeks into the

7-week academic term, after students had roughly 16 lectures (50-minutes each), 4 labs (50-minutes

each), and 4 multi-exercise programming assignments for homework. Before this point, the course

had covered defining and calling functions, composing functions, conditionals, recursive functions

over lists, and the HTDP design process (as described in Section 1.1). The students had written several

functions over lists of numbers, strings, and records prior to doing the study. The course had not

yet covered trees, accumulating results of computations in additional parameters (accumulators), or

recursive calls on an argument other than the rest of the list.

2We thank WPI Professor Joe Beck for letting us collect data in his course.
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3.3.2 Participants

We ran the study during a weekly lab session. In total, 138 students submitted data; we randomly

sampled 25 students to analyze in this study. In terms of final course grades, the sampled population

earned 5 As, 13 Bs, 3 Cs, 3 fails, and 1 incomplete (Table 3.2). We thus had a good mix of students

relative to mastery of the material and likelihood of needing help.

3.3.3 Logistics

Students were given roughly 40 minutes to work on Adding Machine during a weekly lab session.

Each student used the SnagIt video-capture tool [134, 145] (pre-installed in the lab computers) to

record all activity within the window for the course IDE (DrRacket [44]). Students uploaded both the

video and their final source-code file at the end of the lab session. The problem statement for Adding

Machine, instructions for using SnagIt to capture their programming activity, and instructions for

submitting their code were provided online. The web page for the Adding Machine problem statement

is shown in Figure 3.1; we provide the full screenshots of the web pages relevant to this study in

Appendix B.

Figure 3.1: Screen view for the Adding Machine problem statement

After submitting their video captures and code, we also asked students to fill out an online survey

(see Appendix B.5 for the Qualtrics survey instrument used) that invites them to recall their thought-

processes as they wrote their solutions for the Adding Machine problem. The survey asked students

the following questions:

1. How did you get started with the problem? Provide 1 to 2 sentences describing the process of

how you got started with the problem.

2. At any point during the programming session, were there instances when you looked at notes? If

yes, what did you have to look up?

3. Were there any points in the problem when the design recipe was useful? If yes, describe in a

sentence or two when you used it.
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4. Was there a time when you were trying to use the design recipe but felt you didn’t know what to

do next? If yes, describe in a sentence when that happened.

3.4 Analysis

3.4.1 Coding the programming session videos

We analyzed the videos by qualitatively coding the video events. Our coding focused on recording the

following events:

1. Template use
Students wrote an HTDP-prescribed template for a function.

2. Task-specific computation
Students wrote code related to one of the problem’s four problem tasks. We recorded the actual

code written, the task it belongs to, and the function in which students put the code. The tasks

were recorded with the following labels:

• singlezero: Handling single-zero delimiters

• doublezero: Handling the double-zero sentinel pattern

• sumelts: Summing the elements of a sublist

• buildsumlist: Building the list of sublist sums

• listoflist: Reshaping the main input into a list of lists, excluding the zero delimiters

3. Writing input-output examples/test-cases
Students wrote input-output examples/test cases for a specific function. We recorded the function

name and number of tests written for the function before the next event occurred.

4. Other
Students made edits that did not fall into one of the above categories.

The coding procedure involved watching the programming videos of each sampled student and

recording events, based on the event list above, in the order that they appeared in the video. We

illustrate the result of this process in the example coding summary in Figure 3.2, which shows (a) the

coding summary and (b) the corresponding state of the Racket program; the program shows the code

as of step 3 in the summary. In the summary, AM refers to the Adding Machine function. The student

wrote another function named findzero, replaced with the alias, helper1, in the summary. Names for

helper functions were replaced with aliases with the format helper<number> to facilitate consistency in

the coding as the students would sometimes change the names of helper functions as they programmed

their solutions. We produced a summary such as in Figure 3.2a for each of the 25 sampled students.
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(a) Coding summary (b) Corresponding code state at step 3

Figure 3.2: (a) Sample coding sequence and (b) the actual Racket program code for student
WPI1-STUD1 at the 9-minute mark

3.4.2 Coding the survey responses

We open-coded [28, 69] the survey responses to look for themes within each survey question, as they

relate to how students got started with their solution, what they looked up in their notes (if ever),

whether and how they found the design recipe useful, and what they did when they got stuck.

3.5 Results and Interpretation

None of the sampled students produced working solutions for Adding Machine, even when we

observed them use HTDP list templates, develop focals, and attempt to decompose the problem. Plan

composition was the main hurdle, particularly when students tried to reuse the list template code

inappropriately in multiple smaller-scale plans. All but one student (24 of 25) used the list template

for the list-of-numbers input ( WPI1-STUD7 did not use the list template). From there, students took

many approaches.

3.5.1 Writing Focal Code After Templates

We hypothesized that students would enter Rist’s creation state after retrieving the list template. As

such, we looked at what code students wrote immediately after writing the list template and where

they put the code, checking whether it captured focal computations. Table 3.1 shows that all but 3

students ( WPI1-STUD14 , WPI1-STUD19 , WPI1-STUD20 ) wrote expressions that took on specific

problem tasks. 19 of the students put this new code into the template for the Adding Machine function.

This matches the focal-expansion theory, as well as HTDP pedagogy. Most template holes get filled by

focal-like expressions, though some decomposition through helper functions also goes there.

What isn’t clear, however, is whether students had entered creation mode. Summing a list is

a standard HTDP programming problem; as such, students may have retrieved the summing code.

The single- and double-zero tasks are about the termination of computations; as such, they resemble

base-cases of recursive functions (even though the usual base-case of a recursive function on a list

handles the empty-list case). Students may have retrieved the pattern of terminating a traversal and

adapted it to recognize patterns of zeros.
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Table 3.1: First tasks coded by students, with location

Adding Machine Task Within the Adding
Machine function Within a helper function

Summing a sublist
(sumelts)

Within list template:
0

1. WPI1-STUD3
2. WPI1-STUD10
3. WPI1-STUD11

4. WPI1-STUD13
5. WPI1-STUD17
6. WPI1-STUD21

Building the output list
(buildsumlist)

Within list template:
0

1. WPI1-STUD1
2. WPI1-STUD16
3. WPI1-STUD23

Handling single-zero
delimiters
(singlezero)

Within list template:
0

1. WPI1-STUD4
2. WPI1-STUD5
3. WPI1-STUD6
4. WPI1-STUD8
5. WPI1-STUD9

6. WPI1-STUD18
7. WPI1-STUD22
8. WPI1-STUD24
9. WPI1-STUD25

Not within list template:
1. WPI1-STUD7

Handling double-zero
sentinel pattern
(doublezero)

Within list template:
1. WPI1-STUD2

Within list template:
1. WPI1-STUD12
2. WPI1-STUD15

None/Other
1. WPI1-STUD14
2. WPI1-STUD19
3. WPI1-STUD20

Overall, 21 students who started with templates immediately filled in template holes with focal

expressions for a specific problem task. Two students ( WPI1-STUD12 , WPI1-STUD15 ) began to

decompose the problem by creating a helper function: in both cases to handle the double-zero task. Of

the remaining 4, one wrote a focal computation for handling the single-zero task within a non-template

function ( WPI1-STUD7 ), and 3 wrote something not clearly linked to a problem task ( WPI1-STUD14 ,

WPI1-STUD19 , WPI1-STUD20 ).

3.5.2 Difficulties with Plan Composition

Whether students retrieved or created plans for the problem tasks, they still had to compose them into

an overall program. Here, students displayed significant difficulties. We illustrate these challenges

with sample code from our data in our discussions below. Table 3.2 also summarizes the tasks that

students wrote and their location in their code.

The solution in Figure 3.3 attempts to integrate the plans for the sum and double-zero tasks by

sharing template code. The template base-case (the empty? check) returns a 0 as in the sum plan, while

the “new" base case for double-zero returns a list (the output type of the overall function). In attempting

to share the recursive call, which would be syntactically identical in both the sum and truncate-at-00

plans, the student created an inconsistency in the output type of the program. Only 5 students wrote
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Figure 3.3: Code from student WPI1-STUD18 interleaved function calls within one function without
decomposition

both the sum and double-zero tasks (Table 3.2: students superscripted with [00+]); 3 of these put these

tasks in the same function ( WPI1-STUD2 , WPI1-STUD5 , WPI1-STUD8 ). Six students put both the

single-zero and double-zero tasks in the same function (Table 3.2: students superscripted with [0-00]),

missing that each terminates a different other task (processing a sublist and identifying input to process,

respectively).

In the solution in Figure 3.4, the student tried to decompose the problem via a helper function. The

output task (building the output list of sums) stayed in the main template (the adding-machine function),

while the sum and single-zero tasks moved into the helper. This approach was on the right track, but

had two key errors (aside from the missing double-zero plan): the single-zero detection needed to be

a base-case (and return 0) in the helper, and the recursive call in the main adding-machine function

needed to take the suffix of the list without the first sublist as input (rather than the entire rest of the

list). Despite these flaws, this student at least had a largely consistent view of the output type of each

function (the erroneous single-zero base case answer notwithstanding). This reflects an understanding

that one use of template code can return only one type of output (missed in the solution in Figure 3.3).

Figure 3.4: Code from student WPI1-STUD1 pulled identified tasks into a separate function

Eleven students (Table 3.2: students who had either HLP or BOTH entries under sumelts) moved

the sum-sublist task into a helper function, as in the solution in Figure 3.4. None modified the portion

of the list passed on the recursive call, instead using the recursive call verbatim from the template.

Overall, 16 students created a helper function (Table 3.2: students with at least one instance of either

HLP or BOTH in any of the tasks) that took a list of numbers as input and included some program

tasks.

Even when students realized to create helpers, they often failed to effectively decompose the

problem around those helpers: 12 of 25 students created helpers that they never called from their
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Table 3.2: Tasks students wrote code for and their location (AM: within the Adding Machine function,
HLP: within a helper function, BOTH: within both the Adding Machine function and a helper function),
with students’ final course grade (NR is WPI’s version of a non-passing grade); bottom sub-table
indicate counts of task appearances in locations

Student Tasks Final course
gradesingle-zero double-zero sumelts buildsumlist

WPI1-STUD1 BOTH - HLP AM A
WPI1-STUD2 [00+] - AM AM AM A
WPI1-STUD3 - - AM - NR
WPI1-STUD4 [00+], [0-00] BOTH AM HLP AM C
WPI1-STUD5 [00+], [0-00] BOTH AM BOTH AM B
WPI1-STUD6 BOTH - HLP - B
WPI1-STUD7 BOTH - BOTH - B
WPI1-STUD8 BOTH - BOTH AM A
WPI1-STUD9 AM - BOTH - B
WPI1-STUD10 - - AM - NR
WPI1-STUD11 AM - BOTH - B
WPI1-STUD12 [00+], [0-00] HLP BOTH HLP - A
WPI1-STUD13 AM - AM - NR
WPI1-STUD14 BOTH - AM - A
WPI1-STUD15 [0-00] HLP HLP - - B
WPI1-STUD16 HLP - - AM B
WPI1-STUD17 AM - AM - B
WPI1-STUD18 [00+], [0-00] AM AM AM - B
WPI1-STUD19 - - - - C
WPI1-STUD20 - - - - B
WPI1-STUD21 AM - AM - I
WPI1-STUD22 [0-00] AM BOTH - AM C
WPI1-STUD23 BOTH - HLP AM B
WPI1-STUD24 BOTH - BOTH - B
WPI1-STUD25 BOTH - AM - B

Counts of task appearances in locations
Just in main
(Adding Machine
function)

7 4 9 8

Just in helper
function 3 1 5 0

Both in main and
helper function 10 2 6 0

main function (Table 3.3: students with a ‘U’ entry). These helpers attempted combinations of the

single-zero, double-zero, and sum tasks. This seems a different manifestation of thinking through

focals: rather than integrate a focal computation into an existing function (their original template),

students tried to put them in separate functions. This is not unreasonable, as each of these three tasks

involves traversing a list, and students had been taught to use recursive functions to traverse lists. Of

the students who created helper functions, 8 used templates in writing all helper functions while 2

more did so sometimes (Table 3.3), again suggesting a strong HTDP influence. These observations
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Table 3.3: Status of helper functions students wrote

Student Helpers in templates /
Total no. of helpers

Composition of
helpers into main:

[C]omposed,
[U]ncomposed

No. of uncomposed
helpers and

tasks involved

WPI1-STUD1 1 / 1 C -
WPI1-STUD2 - - -
WPI1-STUD3 - - -
WPI1-STUD4 1 / 2 C -
WPI1-STUD5 0 / 1 U 1 - singlezero, sumelts

WPI1-STUD6 4 / 4 U
4 - singlezero, sumelts,
listoflist

WPI1-STUD7 0 / 2 U 1 - singlezero
WPI1-STUD8 2 / 2 U 2 - singlezero, sumelts
WPI1-STUD9 1 / 1 C -
WPI1-STUD10 - - -
WPI1-STUD11 1 / 1 U 1 - sumelts
WPI1-STUD12 0 / 3 U 1 - doublezero, singlezero
WPI1-STUD13 - - -
WPI1-STUD14 1 / 1 U 1 - singlezero
WPI1-STUD15 0 / 1 U 1 - doublezero, singlezero
WPI1-STUD16 0 / 2 U 1 - singlezero
WPI1-STUD17 - - -
WPI1-STUD18 - - -
WPI1-STUD19 - - -
WPI1-STUD20 - - -
WPI1-STUD21 - - -
WPI1-STUD22 1 / 1 U 1 - doublezero
WPI1-STUD23 2 / 3 U 1 - singlezero
WPI1-STUD24 0 / 1 C -
WPI1-STUD25 1 / 1 U 1 - singlezero

No. of students who
wrote helpers: 16

No. of students with
helpers uncomposed

into main: 12

suggest that upon entering the creation state (after setting up the templates), students resort to building

their functions with a characteristic tinkering behavior [9] by patching up the holes in the template with

familiar constructs and function calls, even when these result in output inconsistencies and essentially,

plan composition problems.

Several students put the same tasks in both the main and helper functions (Table 3.2: last row of

sub-table). Task-replication seems to depart from Rist’s focal model, which suggests that students

would write the focal computations once within their existing code, then build around them. This again

reflects students’ difficulties in decomposing the problem around the tasks.
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3.5.3 Use of Advanced Techniques

Both accumulating intermediate data in parameters and reshaping the data into a list of sublists

are advanced patterns that students had not seen in the course (and thus could not have retrieved).

Only 1 student attempted to add a parameter for the running sublist sum ( WPI1-STUD6 ). Only 3

attempted to reshape the data, but none did so successfully (Figure 3.5: WPI1-STUD6 , WPI1-STUD8 ,

WPI1-STUD14 ). The coding sequences for the latter suggests that as soon as students pulled out tasks

to attempt to reshape the data, they proceeded into tinkering in and around these helpers. Students

who tried this step (which would have been valuable had it worked) were clearly not thinking through

focals, as data reshaping is not a computational task suggested in the problem statement, even though

the problem hints at the flattened state of the data.

(a)

(b)

(c)

Figure 3.5: Attempts to write reshaping code by students (a) WPI1-STUD6 , (b) WPI1-STUD8 , and
(c) WPI1-STUD14

3.5.4 Findings from the Survey

We had hoped that the survey responses would augment our observations from our analysis of the

programming video data. Our analysis of the survey responses, however, revealed that most of the

responses were too vague. We thus could not use the survey responses to add meaningful insights

towards our findings from our video analysis. Nonetheless, we summarize the survey responses in the
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following discussions and present some responses that seem to support our findings from our video

analysis. The full set of short-response answers to the survey are in Appendix B.

Question 1: Describe the process of how you got started with the problem

When asked how they started with the problem, most of the participants mentioned starting by following

some of the design recipe steps, but did not elaborate why they did so or whether or how they connected

one recipe step to another. Only two students said they started by writing data definitions, five wrote

signatures and/or purpose statements, nine wrote input-output examples/test cases, and ten wrote list

templates. One specifically noted that they only used the list template as a starting point, and then

defaulted to using a trial-and-error approach:

WPI1-STUD23 : I started with the template for a list function, but ended up abandoning that

approach. Im [sic] not a fan of the templates other than just a very very basic starting point. I

never adhere strictly to the template. I just use trial and error and hope that my logic works.

Six other students mentioned jumping directly into code; this and WPI1-STUD23 ’s response

suggests that some students may not have absorbed the idea that the design recipe may be used as a

guided, systematic approach in designing programs, rather than going on an undirected path towards a

solution. It also suggests that students’ use of the design recipe is primarily mechanical. Three students

mentioned thinking about using helper functions, but were not specific about what the roles of these

helpers might be in their solution. Four students thought about looking at their notes for examples or

previously-seen problems, but were also not specific about what they looked for. Only one student

( WPI1-STUD6 ) described writing a function that reshaped the input into a list of lists.

Question 2: What did you have to look up in your notes?

12 students said that they looked at their notes at some point. Three mentioned searching their notes

for templates to use. Six searched their notes or the Racket documentation for built-ins to use and

three looked for previous examples or problems, but none of these students were specific about exactly

what they looked for or why.

Question 3: Describe when the design recipe was useful.

For this survey question, most students simply wrote about which design recipe step they wrote (e.g.

writing templates, signature/purpose statements, test-cases, etc.), but did not elaborate on how helpful

these steps were to them. Four mentioned using the design recipe to "setup" or "layout" their functions,

but were not specific about whether they were referring to setting up their code with templates, or

their overall plan for a solution. One mentioned that they realized to write the signature and purpose

statement after having already started their code, but did not explain further what prompted the

realization.
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Question 4: Describe a time when you got stuck even when using the design recipe.

14 students said that they felt stuck even when using the design recipe. The responses to this question

were overly varied and we could not find even a high-level categorization with which to group the

responses. Some of these responses mentioned: stopping the use of design recipe (no explanation

why); that the template "didn’t work very well", which may suggest a recognition of the limits of the

template relative to the needs of certain problem tasks; not being sure when to use a helper function; or

could not figure out how to "combine certain parts of a list".

3.6 Discussion

This study was motivated by an apparent underlying tension between HTDP templates and Rist’s model

of bottom-up programming (focal expansion). Rist’s work suggests a cognitive process that students

follow on new programming problems: write a core computation for a problem task (the focus), then

augment the program to produce the data needed for the focal computation. The potential tension with

HTDP lies in the sub-expressions that templates introduce: these provide a context into which students

will place focal computations. That context could either help or interfere with students’ thinking as

they integrate focals into a larger program. The following subsections summarize our observations

from our data.

3.6.1 Students Work Through Core Problem Tasks

Our data suggests that students largely work through problem tasks: they write task-related focal

computations on the front elements of the input list, or create new functions for problem tasks. They

often appear to retrieve plans, in the form of individual recursive functions for individual tasks (such as

summing a list). As such, our students often introduced focals as entire functions, not small expressions

(as in Rist). This process of retrieving and reusing familiar plans may have deferred students’ entry

into creation mode, shifting more burden to plan composition as students attempt to figure out how to

compose the code for their retrieved (and implemented) plans.

3.6.2 Students Lacked Schemas and Struggled with Plan Compositions

Our students struggled to compose plans: some failed to adjust the portion of the list being recurred

over, others tried to perform multiple tasks with different output types (e.g. summing a list and building

lists) within the same recursive traversal (rather than accumulating the sum or creating a helper that

dealt with a separate ask). In both cases, our students used template expressions verbatim, rather than

adjust them to the need of the computation at hand. Given that they had not seen programs that adjusted

template code, this behavior is not particularly surprising. More generally, they lacked schemas for the

more advanced programming patterns (such as accumulators and reshaping lists), which seems to have

affected their ability to compose the plans they were attempting to write, instead retrieving insufficient

plans.
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This does not necessarily mean that the templates, and the context they provide, interfere more

than help students. The recursive calls are still needed, even if on slightly different inputs in some

(but not all) cases (e.g. an adjusted suffix of the list to recur on). The students in our study had not

learned when to decompose problems into multiple instances of templates, or when to adjust certain

parts of the template (such as adding a parameter for accumulating values, modifying the terminating

case, or adjusting the list to recur on), and the templates failed to help them discover or resolve the

issue. Given prior work on the importance of retrievable schemas, HTDP’s templates fit squarely within

known results on how people program.

3.6.3 Students Decompose Problems On-the-fly

Arguably, one key issue is that students are decomposing the problem on the fly around the code they

have already written. This arises whether students use HTDP (which prescribes a context for code

to live in: the template) or bottom-up programming (in which students’ existing code provides the

context). If the prior context isn’t well-suited to the problem at hand, students will struggle with

composition. We hypothesize that decomposing the problem up front, into tasks that can be composed

cleanly into a solution, should make the actual coding less error prone.

The question then is: can we teach students to effectively decompose problems? Both Rist’s work

and ours show that students think in terms of core problem tasks. Decomposing problems (rather than

code) is about grouping the tasks of a problem into chunks that can reasonably be handled together.

What if we could teach students to use concrete examples (which HTDP-trained students write in steps

2 and 4 of the design recipe) to work out problem decompositions? In the case of Adding Machine, for

example, a student could start with

(adding-machine (list 1 2 0 7 0 5 4 1 0 0 6))

then write that this should produce the same answer as

(list (+ 1 2) (+ 7) (+ 5 4 1)).

Realizing this might suggest specific functions that a student could write to transform the first

expression into the second. Something systematic such as this seems preferable to expecting students

to just keep experimenting until their bottom-up process hits on a workable solution. Just as students

currently internalize schemas for writing code, we might expect they can learn to internalize schemas

for decomposing problems through concrete examples.

3.6.4 Tension Between Rist’s Focal Expansion Model and HTDP

We suspect that some tension between Rist’s model and HTDP arises from differences between func-

tional and imperative programming. Deciding what Rist’s model might mean within functional

programming took us considerable discussion. Rist’s description of “bottom up” references code orga-

nization typical of imperative programs: variable declaration and initialization at the top, computation
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in the middle, and results and output on the bottom. Functional programs are organized differently:

variables are initialized when functions are called, and outputs are typically composed from nested

expressions within the middle of a function.

For this study, we chose to interpret "bottom up" as "write contextual code after the focus".

Functional programs also tend to decompose problems into several functions, whereas imperative

solutions for CS1-level programs often live within a single procedure. This changes the decomposition

patterns that students need for problems such as Adding Machine. This suggests that cognitive behavior

in creation mode may differ based on the affordances of the programming language at hand.

3.7 Status of Dissertation Research Questions

Our findings from this study provide some answers towards two of our research questions:

DRQ1. What program design practices and skills do HTDP-trained students exhibit when de-
veloping solutions for multi-task problems?

1. Students work through core problem tasks.
Students wrote code for tasks they elicited from the problem statement. Some students also

identified problem-relevant tasks that are not explicit in the problem statement itself, such as

reshaping the input, which may be inspired by aspects of the problem: in the case of Adding

Machine, this could be the flattened state of the input.

2. Students retrieve code-level plans.
Students retrieved code structures that they have seen or used. Students retrieved the list template

when writing functions that operated on lists and also seemed to retrieve entire functions for

familiar tasks, such as the summing function.

3. Students apply some of the HTDP-prescribed design practices.
Students applied some of the design recipe steps as they wrote their solutions, specifically:

writing signatures, purpose statements, input–output examples/test-cases, and templates.

DRQ4. How do HTDP-trained students approach multi-task programming problems with novel
components?

When solving multi-task programming problems, our observations suggest that the students in this

study are primarily driven by the following approaches:

1. Students decompose the problem on-the-fly around code they have already written.

2. Students retrieve and use code-level plans verbatim without adjusting them to the need of
the computation at hand.

3. Students use HTDP-prescribed design practices mechanically.
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Each of these approaches contributed to the students’ failures to produce correct solutions for

the multi-task Adding Machine problem. On-the-fly problem decomposition and the verbatim use of

code-level plans often went hand-in-hand: when students decompose the problem on-the-fly around

code they have already written, they seem to fail to factor in the limits of the code they are composing

into their current implementation. Instead, they compose plans (such as templates and functions) into

their code verbatim without considering the impact of these compositions (e.g. output inconsistencies

within functions) or the changes that may need to be applied onto a plan to correctly implement a

computation (e.g. adjusting the recursive calls). The latter could partly be explained by the students’

lack of schemas for the programming techniques (e.g. accumulators and reshaping lists) they needed

to implement some of the tasks; they were thus limited to retrieving the plans they were familiar with,

which were not sufficient for the needs of the tasks.

From our limited observations from the video and survey data, how the students used the design

recipe to approach the problem seemed to not be helpful to them in overcoming the hurdles they

encountered; their use of the design recipe appeared to be primarily mechanical. For example, some

students wrote only some of the steps, some wrote only a couple of input–output examples that mostly

mirrored the example provided in the problem statement and thus did not explore the potential space

of inputs that could have informed the design of their functions, and some started with the template

and abandoned its use later on, opting for a "trial-and-error" approach. None of the students discussed

(in the posttest survey) about how the design recipe steps informed the design of their solutions (or at

least, none of them talked about it concretely, if any). We hypothesized that if students used concrete

examples to work out problem decompositions (as in the example in Section 3.6.3), doing so may help

them identify tasks or functions that could help solve the problem.





Chapter 4

Study: Understanding How Program Design
Skills Evolve During a CS1 Course

Background and Context: Our prior study (Chapter 3) lacked richer data on which we could

draw more nuanced observations around HTDP-trained students’ thought-processes when designing

solutions for multi-task programming problems. We thus shifted our methodology towards collecting

qualitative student data in situ to capture students’ design processes at a more granular level.

Objective: Our main goals for this study are to explore students’ design processes when solving

multi-task problems (building on our prior study), as well as to understand how their program design

skills evolve through a CS1 course (Section 4.1).

Method: We conducted a longitudinal study by interviewing students about their design practices

every two weeks during a CS1 course. Two sessions reviewed students’ homework submissions,

while the third asked students to solve the Rainfall problem while thinking-aloud. We then coded

their data to develop a framework for assessing the evolution of program design skills (Section 4.2).

Findings: We developed (1) a multi-strand SOLO taxonomy that captured students’ performance

levels within a set of design skills and (2) a collection of factors that students raise when discussing

designs of programs (Section 4.3). We also conducted an initial validation of the taxonomy by

using it to categorize data from students beyond the pool used to develop the taxonomy, as well as

checked whether our taxonomy aligned with how other HTDP instructors assessed student design

skills (Section 4.7).

A version of this chapter is published in the following venue:

[20] Francisco Enrique Vicente Castro and Kathi Fisler. 2017. Designing a Multi-faceted SOLO

Taxonomy to Track Program Design Skills Through an Entire Course. In Proceedings of the 17th

Koli Calling Conference on Computing Education Research (Koli Calling ’17), ACM, New York,

NY, USA, 10–19. DOI: https://doi.org/10.1145/3141880.3141891
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4.1 Building on the Adding Machine Study

One of the challenges from the previous study (Chapter 3) was that it lacked richer data on which

we could draw observations about how students were thinking around the multi-task programming

problem (i.e. Adding Machine) they were solving, why they struggled during their programming

process, or how they tried to get unstuck. Our data limited our interpretations to what we saw the

students do and did not enable us to identify why they did so, or how they went about their process

cognitively. While the survey responses provided some supporting data towards our interpretations,

these did not add any more meaningful insight about how the students were thinking about the problem

or their use of the HTDP design recipe.

We thus decided to shift our methodology for this study to one that enabled us to collect data

on what students did, alongside what they were thinking. One of the main goals of this project is to

understand students’ thought-processes around how they approached multi-task programming problems

when they have been taught a systematic process of doing so through the design recipe. We turned

towards using think-alouds, which has been used in early computing education studies [3, 14, 117],

and continue to be used in more recent studies to access students’ thought-processes in situ, or while

engaged in computing-related activities [41, 97, 132, 133]. Additionally, we decided to track students’

progression over multiple study sessions throughout an entire CS1 course, instead of just one. We

envisioned that this would give us some insight towards how students’ thinking around the program

design techniques they are taught might evolve over time; for example, we wanted to see whether

students’ use of the design recipe became more insightful over time, or if they remained mechanical in

its use.

4.2 Study Design and Data Collection

Our goal was to study how students evolved in their program design skills, as framed by the HTDP

design recipe and planning literature, over the duration of a CS1 course. We were also interested in

identifying underlying factors that might impact how effectively students were using the recipe.

4.2.1 Study Logistics

We collected data from study sessions conducted with volunteer CS1 students. Three sessions were

conducted individually with each of the volunteers. In sessions 1 and 2, we used an interview protocol

to draw out students’ knowledge and ideas about their program design process by asking students to

describe how they had approached specific homework problems that they had recently submitted. We

also showed students an alternative solution to what they submitted for homework and asked them to

discuss the differences (alternatives might move some functionality to a helper function, or use an or

statement in place of an if statement that returned booleans, for example). In session 3, we gave them

a multi-task programming problem to try writing from scratch while thinking aloud. After solving

the problem, we had them reflect on their work, similar to the activity in sessions 1 and 2 asking
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Table 4.1: Topics and activities for each study session.

Session 1

Topic Homework on lists of structs (sum cost of ads
for a political candidate)

Activities (1) Interview on homework solution
(2) Compare alternative solutions

Session 2

Topic Homework on n-ary trees (check oxygen levels
on system of rivers)

Activities (1) Interview on homework solution
(2) Compare alternative solutions

Session 3
Topic Open coding - Planning (Rainfall)

Activities (1) Think-aloud while writing code from scratch
(2) Interview on Rainfall solution

students to describe their approach (but without having them compare their work to an alternative

implementation). The design of session 3 — a think-aloud followed by a retrospective interview — was

partly adapted from Whalley and Kasto’s research design [140] to help clarify researcher observations

during the think-aloud portion in addition to the interview questions used in sessions 1 and 2. Table 4.1

summarizes the topic and activities done in each session. We discuss the specific problems used for

each session and our rationale for selecting the problems in the following subsection (Section 4.2.2).

Appendix C.1 lists the questions through which we asked students to reflect on their approaches and to

compare solutions.

I conducted all of the sessions, each lasting roughly an hour. Sessions occurred every two weeks

starting after the first exam1. The instructor for the course was not part of the research team. Sessions

were individual for each participant. Each received USD 15 per session and an additional USD 20 upon

completing the study. We audio recorded all sessions and collected students’ solutions and scratch

work.

4.2.2 Problem Selection Rationale

When selecting problems to include in each session, we wanted problems that (a) would reflect the

various design practices taught in HTDP, while (b) having at least two identifiable subtasks (so that

there were plausible alternative solutions to discuss). For the first two sessions, we discussed problems

that involved traversing a data structure and building up an answer based on data from each element

(i.e. each list element or each tree node). In the first session, a function that computed part of the

per-element data had been assigned as an earlier problem on the same homework. In the second

session, students were left to consider the per-node task on their own, without scaffolding from prior

problems. Following are the exact wordings for the specific programming problems used in each

of the first and second sessions wherein students were asked to describe their approach to solving

1Courses at WPI run at intense pace for 7 weeks
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each problem; Appendix C.2 shows the full homework problem sets from which these problems were

drawn.

• Session 1 interview problem: Campaign air cost
Write a function campaign-air-cost that consumes a list of ads and the name of a politician and

produces the total air-cost of all political ads for that politician.

• Session 2 interview problem: Dissolved oxygen (DO) warning
Cold-water fish such as trout and salmon are more vulnerable to low DO levels than are warm-

water fish. Although they can survive for a short time in water with a DO level of less than 5

mg/L, they will die in water below 3 mg/L. Develop a function cold-water-fish-warning that

consumes a river system and produces a string. If all rivers in the system have DO levels at 5

mg/L or above, the string produced is "OK". If any of the rivers in the system have a DO level

below 3 mg/L, the function produces the string "Deadly". Otherwise, the string produced is

"Marginal". You’ll need to use helpers here. Think about where you’ll want to use the templates.

Rainfall [127] (session 3) was different in having multiple traversal-based subtasks (e.g. counting,

summing, and eliminating some elements): the default traversal patterns students had learned did

not apply naively to Rainfall, thus letting us see how students employed their design skills when

decomposing richer problems. The exact wording for Rainfall follow, along with its most common

solution approaches.

Rainfall: Design a program called rainfall that consumes a list of numbers repre-

senting daily rainfall readings. The list may contain the number -999 indicating the

end of the data of interest. Produce the average of the non-negative values in the

list up to the first -999 (if it shows up). There may be negative numbers other than

-999 in the list (representing faulty readings). If you cannot compute the average for

whatever reason, return -1.

Example: (rainfall (list 1 -2 5 -999 8)) should produce 3.

Common solution structures for solving Rainfall include:

1. Clean first
Produce an intermediate data structure of non-negative values truncated at the sentinel; sum and

count the cleaned data, check for zero-division, and finally compute the average.

2. Process-multiple
Traverse the input twice, once to sum and once to count, ignoring negatives and halting at the

sentinel (or the empty-list); then check for zero-division and compute the average.
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3. Single-traversal
Traverse the input once, updating sum and count on each non-negative input, then check for

zero-division and compute the average upon reaching the sentinel (or the empty-list).

The discussions of alternative solutions to problems in sessions 1 and 2 were designed to let us

gauge what students notice about solutions: did they talk only about code, or did they see tasks and

structure within or driving code? We were curious about which additional criteria (such as efficiency,

readability, or shapes of code) students might bring to their design work. Different alternatives for

the same problem would cluster subtasks differently: a function to check whether any list element

met a criterion, for example, could either check the criterion while traversing the list, or could extract

elements that met the criterion then check whether the list is empty. Students had been exposed to

functions similar to each subtask in earlier problems, so this design let us explore what they had picked

up from that prior exposure. Session 2 used the same problem as the interview problem to talk about

alternative solutions, while session 1 used the following problem (from the same homework problem

set as the campaign air cost problem):

• Session 1 alternative solutions problem: Find ads
Write a function any-ads-for? that consumes a list of ads and a String representing a product

name or politician’s name, and produces a Boolean. The function returns true if the list contains

any ads for the given product or politician.

The problems also embodied different suggestions towards testing: the first session problem,

Campaign air cost, looked for a specific name, which suggests covering data with and without the

name; the second, Dissolved oxygen warning, had three possible outputs, each of which should be

covered. Rainfall had some tests implicit in the problem description (such as those involving negative

numbers), but testing for Rainfall is more subtle as the position of negative numbers within the list can

be important.

4.2.3 Participants

The participants came from the Fall 2016 offering of CS1101: Introduction to Program Design,

taught using HTDP in Racket. We requested volunteers before the first exam. In a recruitment survey

(Appendix C.3), interested students provided information on their intended major, whether they would

take CS2 the following term, their prior programming experience, programming languages they had

used, and a self-evaluation of their performance in the course so far. We separately got their first exam

grades from the instructor.

From an initial pool of 15 volunteers, we recruited 13 for the study (one dropped out before the

study began and another wasn’t planning to take CS22). We had six males and seven females (all

2The full study extended over both courses. The study described in this chapter is the first phase. The second phase
was conducted with students as they took CS2 in the following school term with the goal of understanding how design
practices transferred to succeeding programming courses; the second phase is beyond the scope of this dissertation.
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self-identified). In terms of first-exam performance, 6 students received a grade of A (3 male, 3 female),

3 received a B (2 male, 1 female), and 4 received a C (1 male, 3 female).

We used data from a sample of 6 students to develop the rubric for assessing students’ design

skills. We randomly selected 2 student volunteers from each of the first exam grade bins (for a total

of 18 session transcripts). All 6 students were freshmen (3 male, 3 female), 5 majoring in computer

science and one in bioinformatics. Of the 6 randomly selected students, 1 self-reported having no

programming experience prior to CS1. In terms of self-evaluation of their course performance, 1

reported understanding the topics very well (with an easy time working on assignments), 4 understood

the topics well enough (assignments were a bit challenging), and 1 found both the topics and course

assignments fairly challenging. Appendix C.4 shows the full student survey responses.

4.3 Developing an Analysis Framework

To assess the development of student design skills, we needed to identify which skills students draw

on, based on their narratives during the sessions. Developing a rubric for scoring students’ design

skills was thus the main task for this study.

4.3.1 Identifying Skills and Skill Progressions

After the first session, we open-coded [28, 69] the student transcripts from Session 1 as the other

sessions were ongoing. To facilitate this, we literally cut transcript printouts into phrases and iteratively

used card sorting3 to cluster student comments into themes (Figure 4.1). Given the questions that we

asked students about their work (Appendix C.1), which reflected both HTDP and planning literature,

we expected certain themes to arise in students’ responses (e.g. testing, working with templates, use

of learned schemas). Some themes emerged independently of the curriculum, while one arose as we

sought to align the emerging codes with the curriculum. Table 4.2 summarizes the resulting themes.

Comments on some themes suggested a progression within a core skill (Table 4.2a) resembling

increasing levels of conceptual complexity akin to SOLO levels [13]. To capture these observed

progressions, we defined a SOLO taxonomy for each of these themes by mapping the comments within

each theme to a corresponding SOLO level. This produced the multi-strand SOLO taxonomy; each

theme identified became a skill strand in the overall taxonomy. This was likewise done iteratively to

help us refine the concrete definitions of each skill’s SOLO level. In one case (leveraging multiple

representations of functions), a SOLO taxonomy arose more top-down, as we tried to make sense of a

collection of seemingly related comments within the context of the overall curriculum. We also found

other themes that had comments of varying depth, but no core skill that could give rise to a taxonomy

(Table 4.2b — we discuss these in Section 4.8.4). Figure 4.2 summarizes our iterative open-coding

and taxonomy development process. The actual taxonomies for SOLO-amenable themes appear in

Table 4.3; we discuss each theme in turn.

3Psychologists originally employed card sorting to study how people organize knowledge [144]; it has become a popular
user-centered design method for discovering optimal organizations of information for websites or software [116, 144].
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Figure 4.1: Open-coding student transcripts facilitated through thematic card sorting

Figure 4.2: Process summary for iteratively developing the multi-faceted SOLO taxonomy. Discussions
between authors during each iteration refined the themes and descriptions for the taxonomy levels.
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Table 4.2: Emergent themes from open-coding student transcripts

(a) SOLO-amenable themes: these became the core skill strands in the multi-strand SOLO taxonomy

Theme Description
Methodical choice of
tests and examples

Knowledge of writing tests; understanding the individual/collective
purposes of the tests

Composing expressions
within function bodies

Knowledge of writing functions and the composition of expressions
(i.e. built-in/user-defined functions) to build function bodies
(code-level perspective of programs)

Decomposing tasks and
composing solutions

Knowledge of identifying tasks in a given problem, the decompositions
of a program into relevant tasks, and the composition of solutions to
tasks (problem-level perspective of programs)

Leveraging multiple
representations of
functions

Knowledge of the various representations of functions and how they
interact, through the components of the HTDP design recipe

(b) Non-SOLO themes

Theme Description
Quality attributes
("-ilities")

Qualities, properties, or criteria that is expected of or characterizes
code or coding practice (eg readability or maintainability of code)

Knowledge recalled
References to knowledge used in programming; this could be course
knowledge (i.e. learned from the course) or pre-course knowledge
(i.e. learned prior to taking CS1)

Metacognition References to one’s cognitive processes or metacognitive behaviors
such as self-regulation

Value judgments Value judgements towards aspects of the programming process,
experience, or learning
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Skill strand: Methodical Choice of Tests and Examples

Our study questions (Appendix C.1) asked students about their choice of test cases and examples of

data. The students talked about the kinds of tests and data examples they were writing, as well as their

reasoning around why they chose them. Some examples of our observations include instances when

students would simply enumerate one test after another without identifying an inherent purpose for

their choices. There were also instances when students justified why some tests and examples were

interesting cases for the problem context. The progression around this skill describes the extent to

which students are writing tests to cover a given problem space; for example, the possible input, output,

and interesting corner cases. Here are two sample answers, both from session 1:

WPI2-STUD3 : I don’t think there was any specific reason [for choosing] these [tests]. Oh, one

of these is political and one of these isn’t. That’s why. (question was about political ads)

WPI2-STUD13 : [This program] didn’t really have any bounds, like it didn’t have an if greater

than, if less than [...] I did one for each condition, so if there’s empty, I satisfied that with this test

case. I did [a list that matches] in the first (element). I realize now I probably should’ve done

another one where [the first list item] isn’t matching the name.

While WPI2-STUD13 talked about the space of tests in the context of the problem (seeing a

collective purpose for the tests), WPI2-STUD3 spoke only about individual purposes of tests. Our

progression for testing captures the depth at which students see tests collectively.

Skill strand: Composing Expressions Within Function Bodies

Students described how they wrote their functions in response to our question about the approach their

code takes to solving the problem. The main distinction among comments lay in whether students

described their code syntactically or with an understanding of the underlying semantics. Differences

in semantic understanding is reflected in the following samples:

WPI2-STUD3 : If [the list is not empty], then you go through the if statement and it checks to see

if the ad’s political. And if that’s true, then it adds the cost of the ad to just the thing, the output,

and it’ll go back to the list and look at the next value and put it back to the beginning, and if it’s

not political, then it’ll just keep going to the rest of the list until it reaches empty.

WPI2-STUD3 fails to concretely articulate mechanisms around the helper function (extracts a

boolean value from the data structure) and the results of the recursive call. Additional prompting

further revealed a knowledge gap in the use of selectors in the student’s function:

WPI2-STUD3 : we didn’t think we could pull out the one value from the [data structure] from the

original function. We had to move that into a helper function, or else it wouldn’t work.

Contrast this with WPI2-STUD6 ’s comment, which concretely explains how the return value of

the helper function relates to the calling function:
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WPI2-STUD6 : if we are [given] a list, then we need to process it with a helper function. [my

function] checks if the politician’s name is equal to the [input string]. And essentially [if it is] we

want to add the cost of that politician’s ad to the rest, keep it as a rolling sum. [...] it’s going to

add the air cost of the first [list element] to the rest of the list. And we call the function on itself,

so it would go through the entire list.

Skill strand: Decomposing Tasks and Composing Solutions

None of our questions directly asked about how students decomposed the problem into subtasks, but

students typically commented on individual problem tasks in the context of the code. For example:

WPI2-STUD13 : so the first thing I did with the list of names, I run it through this program [...]

which takes this name and this list and it gives me another list of ads containing only [ads that

match the name]. So, that list of ads is then acted on by this [other] function [...] which takes a

list of ad [...] and produces the number of the total cost of that list.

While the narrative resembled composing expressions within function bodies in discussing code, it

differed in the kind of abstraction it employed; instead of a focus on language-specific components of

a program, WPI2-STUD13 ’s narrative focused on tasks captured around the functions, as well as the

compositions of those tasks. The articulation of how tasks are composed is critical: it establishes the

logical relationship between identified tasks and how tasks can be effectively put together to produce

output. The alignment of tasks and code structure thus became a core skill for a SOLO taxonomy.

The following excerpt from WPI2-STUD4 (when comparing two solutions for a problem) shows a

lower-level variation of this:

WPI2-STUD4 : I notice that you don’t have a helper function for this one, it’s just like all in one

function. [...] And then you also have an or statement, but like within the or statement, you also

have like a string=?, but I have a helper function for that, so I think that’s like that only main

difference.

While the student described the presence of a helper function, she does not identify either an

explicit task that connects to the helper function, or an explicit purpose for the helper. This was more a

sense of decomposition for the sake of decomposition, and less about the delegation of identified tasks

to helpers.

Skill strand: Leveraging Multiple Representations of Functions

Given the design recipe, we were not surprised to see comments on HTDP templates. At first, we

were unsure what to do with them: students spoke of templates with different depth, but a unifying

core skill was not immediately apparent. Only after reviewing many unclustered comments from a

top-down perspective based on HTDP did a unifying skill emerge: how students worked across the

multiple representations of functions inherent in the design recipe.
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The design recipe steps exploit and relate multiple representations of functions: students describe a

function through its input and output types (a.k.a. domain and range), samples of input/output pairs

(examples and test cases), and the symbolic code that captures the detailed implementation. Ideally,

the design recipe helps students learn how to leverage these different representations, as well as the

template that bridges the types and the symbolic code, to help think through how to develop a function.

Some students, such as WPI2-STUD6 in the excerpt below, worked through the recipe repre-

sentations mechanically, while others, such as WPI2-STUD13 , conveyed relationships among the

representations:

WPI2-STUD6 : because it’s processing a list of ad, [we used] a cond statement [...] because

earlier when we defined the list of ad, we said it had to be either empty or it had to be a cons

statement (a list).

WPI2-STUD13 : I realize I was writing the check-expects (tests) to satisfy the function that I

wrote rather than writing the function I wrote to satisfy the check-expects which I think sometimes

you can write a bad program and then just have the check-expects satisfy that program.

WPI2-STUD13 ’s higher-level reflection about tests driving function design suggests a more

cohesive understanding of the knowledge and use of HTDP components. Most template-related

comments thus clustered under a SOLO progression about interactions between the information from

different representations. Without reflecting on the practices of the curriculum top-down, we are not

convinced we would have identified this progression just from the data.

4.3.2 Calibrating the SOLO Levels

We later adjusted some of our SOLO-level definitions so that each skill drew a consistent boundary

between syntactic and semantic understanding: syntactic understanding is at most multistructural

within each skill; each relational level requires some semantic understanding of the corresponding

concept. For example, in methodical choice of tests and examples, there is an increase in the so-

phistication of the mechanical application of testing from prestructural to multistructural. Initially,

knowledge of how to write or use tests is absent (prestructural); then, at unistructural, there are

instances of writing tests, yet no deeper understanding of the purpose of doing so (e.g. writing tests

because the problem description says so — this shows testing merely as the idea of applying a construct

without any meaningful intent); at multistructural, there is a recognition of the purpose of each test,

but without a cohesive understanding of what the collection of tests achieve in the context of the

problem. This cohesive understanding is achieved in the relational level, where the collection of

tests and examples are understood in the context of satisfying, for example, the space of possible

input-output pairs for the problem. The relational level for each skill establishes logical connections

between the conceptual artifacts or schemas from prior levels. This distinguishes our taxonomy from

others, such as Izu et al. ’s [66], which does not require semantic understanding to reach a relational
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Table 4.4: Analysis of Student Skill Progressions. The abbreviated headings correspond to the 4
design skills in the taxonomy: MTE = Methodical choice of tests and examples, CFB = Composing
expressions within function bodies, DTC = Decomposing tasks and composing solutions, and LRF =
Leveraging multiple representations of functions.

Student Session MTE CFB DTC LRF

WPI2-STUD3
1 U M U U
2 R R M U
3 U M M U

WPI2-STUD4
1 R M U M
2 M M - U
3 U R M M

WPI2-STUD6
1 R R R R
2 R R R -
3 R R R R

WPI2-STUD7
1 M R M M
2 R R U M
3 M R M M

WPI2-STUD11
1 R M U U
2 R R R U
3 R R R M

WPI2-STUD13
1 R R R R
2 M R R M
3 R R R M

level. A principled alignment such as this seems an important step in developing a multi-strand SOLO

taxonomy. Otherwise, separate taxonomies per strand would suffice.

4.4 Assessing the Taxonomy With Other Student Data

The taxonomy in Table 4.3 arose from our trying to make sense of isolated comments that students

made during session 1. We did not look at transcripts from sessions after the first one while developing

the taxonomy. We had also considered data from only 6 of the 13 students when developing the

taxonomy. These raise a key question about the applicability of the taxonomy:

Does every session transcript from each student yield a meaningful SOLO rating in

each of the taxonomy strands?

This question captures one form of validity for our taxonomy. Our study protocol asked students

about their approach to testing, so we expected every transcript to address testing. The other three

strands, however, were not directly discussed, meaning that there was the potential for students to omit

discussing those issues.

Table 4.4 shows the results of applying the taxonomy to the 18 transcripts in the original sample (6

students, 3 sessions each). The letters in each cell refer to SOLO levels ([P]restructural, [U]nistructural,

[M]ultistructural, [R]elational); a dash (-) means the student never mentioned that strand. The three-

letter column headings abbreviate the separate skill strands of the taxonomy from Table 4.3.
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My doctoral advisor (Kathi Fisler) and I coded the 18 transcripts individually. We then discussed

all of the table entries in detail, refining our interpretation of the SOLO levels as needed. As we

discussed all scorings as a team, we did not compute inter-coder reliability. When a student made

comments at different SOLO levels for the same skill strand (for a single session), we made a holistic

judgment about the student’s level, weighing frequency and depth of the comments at each level. We

also checked the taxonomy against the transcripts from the remaining 7 study participants and found

that the taxonomy applied similarly to those transcripts.

4.4.1 Assessing Our Multi-Strand Approach

Reflecting on the table—both its immediately visible patterns and our interpretations of those pat-

terns—yielded observations about using multi-strand taxonomies to track design skills.

Observation 4.4.1. Students can be at different levels for different skills at a given time.

While the design skills are interrelated, our analysis suggests that students do not necessarily

progress through them simultaneously. For example, WPI2-STUD3 exhibits knowledge of decompos-

ing tasks and composing solutions at the multistructural level by session 3, but still struggles with

relating design recipe components. Her data suggests a mechanical use of the design recipe, without

reflecting or leveraging recipe components to inform the design of her programs.

This is part of the argument supporting a multidimensional taxonomy: students improve in some

skills while staying flat in others. Our taxonomy gives us a much more nuanced reading than previous

taxonomies would that conflate multiple aspects.

Observation 4.4.2. Skill strands vary in the nature of mechanical application and requirement of

abstract-level thinking.

Composing expressions within function bodies (CFB) is the only strand in which no student was

ever at the unistructural level. There are several plausible explanations for this. By the time we

started interviews (week 3 of the course), students had already taken (and passed) the first exam,

which covered programming over lists of atomic data. Correct solutions to both the exam and the

homework that students completed prior to the first session would have required code that satisfied the

multistructural criteria.

One can also argue that composing expressions within function bodies is the most mechanical of the

design skills, at least up through the multistructural level. Assuming cognitive theories about copying

code schemas are correct [117, 119], then a student achieves multistructural performance simply by

retrieving and reproducing an applicable schema (perhaps with the help of documentation or APIs).

This requires less thought about the specific problem than does thinking about test coverage or task

decomposition, and less synthesis about the design process than the multiple-function-representations

strand. In decomposing tasks and composing solutions, for example, multistructural requires seeing

features of a problem in “chunks” that manifest in code: this cannot be achieved by simple recall.
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The progression from multistructural to relational in composing expressions within function bodies

does have some depth, as students must shift from working with nested expressions syntactically to

doing so with semantic understanding. This goes beyond recall and reproduction of code patterns, and

hence requires some real understanding. But shifts at the earlier levels don’t seem to require more

from the student than having learned richer code patterns to copy. A similar criticism applies to Izu et

al. ’s taxonomy [66].

One takeaway from this is that we (as a research community) should articulate the actual (cognitive)

skills that underlie our progressions, and make sure new skills are actually required to progress through

levels. Another is that we need to use research protocols that look beyond students’ final solutions to

include their thought processes. While we can accurately determine failure to achieve a higher level

through solutions alone, evidence that witnesses a level can be more elusive with solutions alone.

4.5 Assessing Students’ Design Progression with the Taxonomy

We developed this taxonomy as part of a larger project (see footnote in Section 4.2.3) to study how

students’ design skills evolve over a sequence of courses. We envision two broad uses of this taxonomy

to this end:

• Fix problems that students will attempt at multiple points in a course, apply the taxonomy to

gauge students’ levels at each point, then check whether there is a linear progression (or at least

no regression) in student skills over time.

• Give a sequence of increasingly difficult problems across the course, apply the taxonomy to

gauge students’ levels at each point, then examine whether students can scale their skills to new

problems, or whether their skills break down at a certain level of problem complexity.

This study was of the second type. We can thus examine Table 4.4 for insights into how students’

skills evolved across our study problems.

Table 4.4 shows that students do sometimes lose ground in later sessions. There are several

plausible reasons for this. Students may not have internalized the skills they seemed to display in an

earlier session. For example, a student might have described test cases as covering a problem space

in one week without explicitly internalizing this as good practice, so such comments don’t arise in a

later session. Another is that the study problems themselves (not to mention the interview questions)

might bias students towards answers that appear to justify a level. We discuss the latter concern in the

following section.
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4.6 Designing Problem Progressions Around the Taxonomy

Reflecting on the data in Table 4.4 illustrated ways in which our selection of study problems could

impact where students end up on the taxonomy. For example, in session 1 we had students discuss

a problem for which an earlier problem provided a useful helper function. This may have prompted

some students to make comments that rated higher on task-decomposition than had students solved the

problem unscaffolded (though we note from our data that some students were still unistructural despite

this scaffolding).

Testing is another interesting case: several students received a lower testing rating in session 3

(open-ended Rainfall) than in session 2 (a graded homework). In the course that our participants

were in, testing is a significant factor in homework grades, leading students to include it in homework

solutions. The lack of discussion of testing in the open-ended session, however, suggests that some

students do not yet see testing as part of their design process, even though they can write good tests

when asked (based on session 2). Put differently, students may have skill with a design technique, but

not the inclination to apply that skill. The strand on methodical choice of tests and examples conflates

these issues, but the strand on leveraging multiple representations of functions can help tease these

issues apart, as the relational level requires students to make insightful connections across the different

design practices towards informing the design or structure of their solution. This capability to tease

out mechanical versus intentional use of design practices is another advantage that our multi-strand

taxonomy provides. Additionally, assessment designers should create problem sets that also tease apart

these differences.

Overall, the data in Table 4.4 humbled us about the subtleties of designing sequences of problems

that would allow us to draw conclusions about students’ design progress using our (or we suspect

others’) taxonomy. Problem statements should be reviewed for bias relative to taxonomy levels: do

aspects of the problems steer students towards particular levels? Do other questions remove this bias,

to help the instructor gain a clearer assessment of the students’ skill level? The issue of designing

problems that lend towards particular SOLO levels has been raised in other SOLO papers [85, 139],

though these works mostly focused on categorizing students’ code responses and don’t tease out the

more specific skills that drive students’ development of their code.

4.7 Validation Study with Experienced Instructors

Our initial effort towards validating our taxonomy (Section 4.4) involved checking the taxonomy

against the work of students beyond the sample used to develop the taxonomy. Our primary goal for

this validation study is to further validate the taxonomy with other HTDP instructors. We then refine

the taxonomy descriptions based on findings from the instructor validation.
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4.7.1 Validation Rationale

One of our goals with our program design skills taxonomy is to validate it with experts, specifically,

with other HTDP instructors. We wanted to check whether our taxonomy captures the same things that

other HTDP instructors look for when assessing how HTDP-trained students applied their design skills.

In explaining our approach towards the validation of our work, I describe our use of "validation"

in this study, and whenever we use the terminology throughout this document. I’ve approached this

dissertation qualitatively, and more specifically, from an interpretivist paradigm, meaning that our goal

with our studies is to generate an understanding of our object of study (i.e. how HTDP-trained students

approach multi-task programming problems) through narratives whose meanings and explanations are

emergent from, and grounded on, the data we collect and the processes we observe (for a more in-depth

discussion of qualitative research, the interpretive paradigm, and grounded theory, we defer to the work

of Bhattacharya [10], Charmaz [28], Glaser and Strauss [56], Leung [77], Lewis [78], and Whittemore

et al. [142]). Our taxonomy is a product of our iterative process of coding and triangulating data from

the multiple programming artifacts that we collected from the students and developing and presenting

thick descriptions of our observed constructs.

Validation in qualitative research can be approached through a variety of methods (Liao and

Hitchcock provide an extensive list [79]). We approach our validation study primarily through three

methods: triangulation (converging evidence from multiple data sources), audit trails (comprehensive

documentation of all our procedures and data), and a form of expert checking (using outside experts to

assess our student data). In particular, we use the data we collect from expert checking to understand

how our descriptions of the program design skills that we observed (and their various levels of

conceptual complexity) align with what actual HTDP instructors (the experts) look for when assessing

student design work. We triangulate across the instructors’ explanations, comments, and transcript

annotations, as well as detail our data collection and analysis process to develop a comprehensive

audit trail. Findings from this validation study could lend evidence towards the taxonomy’s usability

as a skill-assessment rubric by other instructors, even potentially by those who don’t teach with HTDP

(since the skills in the taxonomy aren’t unique to HTDP). The use of the taxonomy as a skill-assessment

rubric in actual CS1 courses is beyond the scope of this work; we discuss future work on the potential

use of the taxonomy and the use of intercoder reliability to evaluate its usability as an assessment

scheme in Section 8.5.3. Lastly, as we used the taxonomy, we noted that there are cases wherein we

found it difficult to use the taxonomy to capture why some students failed to correctly solve Rainfall.

We discuss this in more detail in Section 4.7.4.

4.7.2 Data Collection and Logistics

We sent a call-for-participants in a mailing list for HTDP instructors to invite volunteers for our

validation study. Interested instructors filled out a survey (Appendix C.5) where they provided

information on their experience in teaching HTDP (number of years teaching HTDP courses, levels of

education taught, HTDP topics taught). Ten instructors initially volunteered for the validation study.
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Validation instruments

We sent each of the ten volunteer instructors two sets of validation materials; each set had one student

think-aloud transcript (with the accompanying code submission and scratch work) and one worksheet.

We designed a worksheet for the instructors to use for rating HTDP-trained students’ program design

skills. We pilot-tested the worksheets with three past HTDP teaching assistants (who were also part of

our research group) and used the pilot-testers’ feedback to revise the worksheets (the full worksheet

is in Appendix C.7). We selected three students from the pool of students that we used to design

our SOLO taxonomy (Section 4.2.3), based on their first-exam performance ( WPI2-STUD11 - A,

WPI2-STUD6 - B, and WPI2-STUD3 - C) and assigned each instructor two students. We distributed

the assignment of students to the instructors so that we could get an almost equal number of responses

for each student. Table 4.5 lists the assignment of students to instructors.

The instructors were asked to read the transcripts and code of each student assigned to them and

use the worksheets to assign a score from a five-point scale (0: None, 1: Little to none, 2: Fragmented,

but present, 3: Strong, 4: Applies beyond current problem) to each of the four design skills in the

taxonomy, with justification. In the worksheet, the instructors were given a description of the skills, but

not the full taxonomy (i.e. the SOLO levels of conceptual complexity). The instructors were also asked

to describe skills or factors they would have considered in their rating that were not covered by the

four design skills. From our initial pool of 10 instructors, 7 instructors followed-up and submitted back

their filled-out worksheets. The recruitment survey responses of the 7 instructors who followed-up are

in Appendix C.6. All the instructors who submitted responses indicated having taught HTDP for more

than 3 years; four attended an HTDP workshop in the past and 2 are self-taught.

Table 4.5: Students assigned to each instructor; 2 students are assigned to each instructor, indicated by
check-marks

Instructor WPI2-STUD11 WPI2-STUD6 WPI2-STUD3
INSTRUCTOR1 X X
INSTRUCTOR2 X X
INSTRUCTOR3 X X
INSTRUCTOR4 X X
INSTRUCTOR5 X X
INSTRUCTOR6 X X
INSTRUCTOR7 X X

Total 5 5 4

4.7.3 Analysis and Coding

We wanted to understand whether our skills taxonomy captured the same skills or factors that HTDP

instructors looked for when assessing students’ design skills. We thus coded the instructors’ responses

to identify whether or not their rating descriptions for each skill were covered by, or similar to, our

taxonomy descriptions. We iteratively analyzed the rating descriptions by marking the descriptions

with the following codes:
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• C: Covered - descriptions don’t deviate from the current description of the skill

• U: Uncovered - Descriptions are not within scope of the skill, but specific about a concept that is

currently not in the overall taxonomy

• P: Partial - Descriptions are about or related to the skill, but not clear about the skill level being

talked about (i.e. vague, but related description)

• M: Mismatch - Descriptions match another skill’s descriptions

• ND: No data - No data/description/justification provided

For example, INSTRUCTOR5 ’s description of WPI2-STUD11 ’s application of the decomposing

tasks and composing solutions skill below is coded as C, citing her delegation of tasks into separate

functions and their appropriate composition to solve Rainfall:

INSTRUCTOR5 : The student has correctly composed functions to solve subproblems. Three

useful subproblems/tasks are identified: summing a list of numbers, shortening the input list to

rainfall, and getting the length of a list of numbers. The functions to solve these subproblems are

effectively used in the rainfall function.

INSTRUCTOR3 ’s description (also for task-decomposition) for WPI2-STUD3 is marked as C with

a U (with a note on what construct is uncovered). He comments on how the student did not decompose

the problem in the first place and relates this to the student’s lack of a clear sense of the limitations of

the pattern she used (the student overused the list template):

INSTRUCTOR3 : This student makes little or no attempt to decompose the problem, with a faint

hint of “oh we need a helper” right at the end. It seems that this student doesn’t yet have a clear

sense of the scope or boundaries of the patterns that he/she is learning. I feel that a successful

student will use patterns like tools in a toolbox, and say “oh, I need one of these and two of these,

and then staple it together,” where this student is still in the phase of trying to figure out which

end of the hammer to hold, and whether it can do the whole job. Until you know the patterns well,

you don’t know their limitations.

Table 4.6 shows the results of our analysis of the instructors’ worksheet responses; the full verbatim

responses are in Appendix C.8. Table 4.6’s abbreviated headings for the design skills follow that of

Table 4.4: MTE = Methodical choice of tests and examples, CFB = Composing expressions within

function bodies, DTC = Decomposing tasks and composing solutions, and LRF = Leveraging multiple

representations of functions. In our analysis, we did not focus on the numeric ratings (see Section 4.7.2)

the instructors provided as the instructors may attribute their own meaning to the numeric ratings: for

example, instructors may have different numeric ratings for the skills, but have similar justifications,

or conversely, have similar numeric ratings with different justifications. Instead, we are interested

in whether our skill (and skill level) descriptions capture what instructors look for when assessing
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Table 4.6: Analysis of instructor responses

Instructor Student MTE CFB DTC LRF

INSTRUCTOR1
WPI2-STUD3 C C P P
WPI2-STUD6 C C P P

INSTRUCTOR2
WPI2-STUD3 C

U: Lacks
understanding of
accumulator pattern

P C

WPI2-STUD11 C
U: Conceptual
understanding of
language constructs

C
U: Pattern
selection in
the context
of a plan

C

INSTRUCTOR3
WPI2-STUD3 C

C
U: Lacks insight on
limits of template
pattern used

C
U: No clear
sense of scope
or boundaries
of patterns
learned

C

WPI2-STUD11 C
U: Conceptual
understanding of
language constructs

C C

INSTRUCTOR4
WPI2-STUD6 C M: DTC (P) P P
WPI2-STUD11 C M: DTC (P) ND P

INSTRUCTOR5
WPI2-STUD6 C C C ND

WPI2-STUD11 C C C

U: Code style
choice
U: Conceptual
understanding
of language
constructs

INSTRUCTOR6
WPI2-STUD6 C

C
U: Mechanical use
of accumulator
pattern

C C

WPI2-STUD11 C
U: Code style
choice

C C

INSTRUCTOR7
WPI2-STUD3 C P

P
U: Used
accumulator
pattern

P

WPI2-STUD6 C
P
M: DTC (P)

P P

students’ design skills; our analysis thus focuses on a description-level comparison. Some cells have

multiple codes attached to them: this means that the instructor’s descriptions touched on multiple

factors. For example, INSTRUCTOR3 ’s descriptions for CFB for WPI2-STUD3 were already covered

by our taxonomy descriptions (C), but also mentioned something related to DTC (M: DTC (C)), and

described an uncovered aspect that involves template patterns (U: Lacks insight on limits of template

pattern used). Mismatch entries such as M: DTC (P) means that the description matched another skill’s

descriptions that would have been covered "Partially" (P) within the appropriate skill.
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4.7.4 Validation Study: Results and Discussion

Overall, the instructors’ descriptions for the MTE skill do not deviate from our taxonomy’s skill de-

scriptions. Most of the instructors’ descriptions for CFB were captured by our taxonomy’s descriptions,

though there are a few instances (three) of instructors also describing aspects that were more related

to our descriptions in DTC. Two of these cases were from INSTRUCTOR4 who talked about using

helper functions, which is partially related to DTC; the instance from INSTRUCTOR7 just vaguely

mentioned "decomposing the problem" in their description. These descriptions were too vague and

uninformative (hence the additional (P)-codings) to tease out why the instructors mentioned these in

their justifications. Finally, our taxonomy also captured most of the instructors’ descriptions for DTC,

and almost half of the instructors’ descriptions for LRF were also within our descriptions. We discuss

the U-, P-, and ND-coded items in the following subsections.

Developing a Skill Strand on Pattern-use

Common across CFB and DTC are instances of U-coded descriptions relating to the use of patterns,

for example, the use of the list template and accumulator patterns. The instructors’ descriptions talked

about the selection of appropriate patterns and recognizing the limitations of the selected patterns

relative to a plan. As we discussed the refinement of our skills taxonomy based on our observations

from the instructor descriptions, we recognized that the descriptions on the use of patterns could

be added as a skill strand. Using the pattern-related descriptions as our framing, in addition to the

SOLO levels of conceptual complexity, we developed a new skill strand bottom-up (Figure 4.3) by

developing explanations towards the erroneous Rainfall cases from our student data. Our resulting

SOLO taxonomy for the skill, Meaningful Use of Patterns (MUP), is in Table 4.7.

Figure 4.3: Developing a skill strand on pattern-use from instructor and student data
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Table 4.7: The SOLO taxonomy for the skill strand on the Meaningful Use of Patterns

SOLO level Meaningful Use of Patterns
Prestructural Does not know what code pattern to retrieve

Unistructural Blindly retrieves and writes a list-traversal pattern (list template,
accumulator), without insight about how the problem tasks fit the pattern

Multistructural
Recognizes the need for multiple traversals for multiple tasks, but doesn’t
recognize/understand the limits of the pattern relative to the tasks and
inappropriately conflates the patterns used

Relational
Can separate traversal-tasks in a meaningful way through an appropriate
assignment of tasks to patterns (multiple templates) or parts of patterns
(multiple accumulators)

As we’ve mentioned earlier, there were erroneous Rainfall cases for which we found it difficult to

use the taxonomy to explain why the students failed to solve Rainfall. A specific case of this is with

students who generated the following Rainfall code (or some similar variant):

(define (rainfall input)
(cond [(empty? input) ... ]

[(cons? input) (/ (+ (first input) (rainfall (rest input)))
(+ 1 (rainfall (rest input))))]))

Our observations suggested that the students who came up with this code were thinking about

the problem’s task-components and recognized that the tasks needed their own traversals (relational:

decomposing tasks and composing solutions). Additionally, the function body itself is syntactically

correct (relational: composing expressions within function bodies). While it is clear that the function

is incorrect, neither of these two skills clearly explains why, or more so, why the student got stuck

thinking along this line of work. This scenario is captured by the multistructural level for the MUP

skill: students recognized the need for separate traversals for each task, yet fails to recognize the limit

of the list template pattern relative to the tasks that they identified.

Having developed the new skill strand, we re-coded the instructor responses to determine how

many of the previously U-coded (Uncovered) entries are now captured by the new skill. Table 4.8

shows our re-coded analysis. All of the previously U-coded entries relating to pattern-use have been

replaced with a C code under the new MUP column for the new meaningful use of patterns skill; empty

cells under this column simply denote that the skill was not mentioned by an instructor for a particular

student, which shouldn’t be surprising as this was a new skill that we had not asked about in the study

worksheets. Comparing the re-coded analysis with the previous analysis, it was reasonable for the

instructors to have entered their descriptions about code patterns under the CFB skill as this was the

only skill in the taxonomy that talked about code. Prior descriptions about code patterns that were

previously under DTC related how the selection of patterns influenced the composition of tasks; we

discuss this further in our follow-up study in Chapter 5.
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Table 4.8: Re-coded analysis of instructor responses with the MUP skill

Instructor Student MTE CFB DTC LRF MUP

INSTRUCTOR1
WPI2-STUD3 C C P P
WPI2-STUD6 C C P P

INSTRUCTOR2
WPI2-STUD3 C ND P C C

WPI2-STUD11 C

U: Conceptual
understanding
of language
constructs

C C C

INSTRUCTOR3
WPI2-STUD3 C C C C C

WPI2-STUD11 C

U: Conceptual
understanding
of language
constructs

C C

INSTRUCTOR4
WPI2-STUD6 C M: DTC (P) P P
WPI2-STUD11 C M: DTC (P) ND P

INSTRUCTOR5
WPI2-STUD6 C C C ND

WPI2-STUD10 C C C

U: Code style
choice
U: Conceptual
understanding
of language
constructs

INSTRUCTOR6
WPI2-STUD6 C C C C C

WPI2-STUD10 C
U: Code style
choice

C C

INSTRUCTOR7
WPI2-STUD3 C P P P P

WPI2-STUD6 C
P
M: DTC (P)

P P

Other Design Factors Instructors Identified

Other design factors that instructors identified in their responses (remaining U-coded entries) include:

1. Code style choices: Factors pertaining to coding "best practices" that may be tied to quality

attributes of code such as readability or conciseness. Instances mentioned by instructors include:

a) Defining helper functions within a local vs. globally ( INSTRUCTOR4 )

b) "Bad style" because of "too many" cond cases ( INSTRUCTOR2 )

c) Avoiding magic numbers ( INSTRUCTOR2 )

d) "Too much" deep nesting of function calls ( INSTRUCTOR6 )

e) Calling a function multiple times instead of creating a local variable to store the result of

the function call for reuse ( INSTRUCTOR5 )

2. Metacognition or self-regulation: Practices or skills related to metacognition or self-regulation.

Several (vague) instances of this were mentioned by one instructor ( INSTRUCTOR6 ):

a) Communication skills
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b) Organization skills

c) Proofreading and revision

3. Conceptual understanding of language constructs: Whether students knew what a built-

in function was for. Instances of this primarily mentioned about a student not knowing or

not being able to explain when to use the list* vs. cons ( INSTRUCTOR2 , INSTRUCTOR3 ,

INSTRUCTOR5 )

These design factors are the same ones we’ve found students describing or mentioning in their

think-alouds or interviews (described in Non-SOLO themes: Table 4.2b). Quality attributes (i.e.

code style choices) seems likely an instructor-specific or subjective criterion; for example, different

instructors (and even students) may have different outlooks on what constitutes readable code (e.g.

helper functions defined globally vs. locally). If this is to be part of a rubric for assessing student work,

instructors must be specific about how they are rating for this particular aspect (and generally, other

quality attribute aspects) so that students’ skill ratings actually reflect how they are applying a skill,

rather than a failure to subscribe to "best practice" rules in class.

Other Observations from the Instructor Data

We classified some instructor entries/responses as ND (No data) or P (Partial). An example of a

(P)artial-coded response is: "Wrote contract and purpose for main function, but not examples or test

cases." ( INSTRUCTOR1 on WPI2-STUD3 ’s application of the LRF skill). This is P-coded because

while there was a mention of the use of specific design recipe components, there were no concrete

explanations or descriptions of the extent to which the student connected these artifacts to each other or

their relationship to the student’s overall solution. We interpret this as a research instrument problem,

similar to the response problems we encountered with our Adding Machine study survey in Chapter 3

(Section 3.5.4). If the validation study was instead conducted with a semi-structured interview protocol

(even possibly a think-aloud), we expect that missing responses or problems with the lack of detail in

some of the instructors’ descriptions could have been addressed with additional prompts; this is one

of the main reasons we shifted towards think-aloud and interview approaches, as we wanted deeper

insight into our study participants’ thought-processes (in situ).

Finally, there are a few M-coded entries of instructors whose descriptions did not seem to align

with the skill they wrote them in. All three cases were from 2 instructors who wrote more DTC-related

descriptions within CFB; these two instructors had other descriptions on other skills that were coded P

because of the vagueness and incompleteness of their entries (one of them also did not write in any

explanation under DTC). As it stands, these two instructors’ data were not as useful to our overall

analysis (including INSTRUCTOR1 whose data also had many P-codings) due to their lack of detail.

On closer inspection, it’s not evidently clear what their entries (see Appendix C.8) suggest about the

CFB skill: on both student cases, INSTRUCTOR4 simply mentions the use of helper functions, while

INSTRUCTOR7 simply mentions that the "student should try more ways of decomposing the problem".

Both of these clearly relate to DTC, but given the lack of detail in their entries, we can’t draw on any
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deeper conclusions about what the impact of this is with our current descriptions for the CFB skill.

If we look at the worksheet that the instructors were given (Appendix C.7), the description for the

composing expressions within function bodies skill did not mention anything about helper functions

(although it does mention the composition of expressions). These findings may point to two things: (1)

the instrument may need to have a clearer distinction between the syntactic composition of helpers

vs. the allocation of tasks to helpers, or (2) that the instructors’ descriptions may actually just have

been referring to the syntactic compositions of the students’ helper functions, in which case (had the

explanations been more detailed), the descriptions would have been coded as Covered.

Overall, these gaps in our validation study also means that our validation work through expert-

checking with instructors was not as extensive as we would have liked, so whether the current state of

our taxonomy indeed captures what HTDP instructors look for when assessing HTDP-trained students’

program design work is still an open problem. We do find, however, that the instructors who provided

detailed responses had explanations and descriptions that largely aligned with our own taxonomy

descriptions, suggesting that our taxonomy is at least on the right track. In fact, it is these detailed

descriptions that enabled us to capture and describe the new MUP skill, which we had not captured

in our prior analyses. Future work on refining the taxonomy should consider the use of think-aloud

or interview protocols with instructors to delve deeper into the instructors’ reasoning or thought-

processes as they assess student work. We discuss these threats to validity and open questions further

in Sections 8.5 and 8.6.

4.8 Discussion

This study has yielded two artifacts: (a) a multi-strand SOLO taxonomy capturing different perfor-

mance levels within a set of design skills, and (b) a collection of factors that students raise when

discussing designs of programs. The idea of a multi-strand taxonomy is one of the main contributions

resulting from this study. A multi-strand taxonomy is valuable because it (1) captures inter-related

nuances while respecting that (2) different skills develop in different ways. Exploring how and when

a curriculum prepares students to work at the various levels of each skill strand drives home these

nuances. A student could perform at a relational level in testing from very early in a course (even

simple programs over numbers can have interesting boundary conditions), whereas the relational level

in task decomposition requires more complex (multi-task) problems that would appear only later in a

course. Contrasting when students can versus do achieve various SOLO levels is an interesting and

important analysis for future work.

4.8.1 Meaningful alignment of skills through syntax vs. semantics

A multi-strand taxonomy needs to align or relate the strands in some way, otherwise it is no more than

a collection of independent taxonomies organized into a table. In our work, we utilized one factor

for aligning strands: all of our relational levels require students to display some understanding of
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the semantics underlying the corresponding strand concept, rather than just working with the skill

syntactically. Given that this taxonomy deals with producing programs, syntax versus semantics is

a useful concept around which to align strands. We suspect there are similar opportunities to align

strands based on cognitive factors; this warrants further study to explore what these might look like for

program design.

4.8.2 Using a SOLO taxonomy for longitudinal skill assessments

Our work also raises questions about how to use a SOLO taxonomy to assess progress over a longer

period (i.e. throughout a course) than a single assessment (prior SOLO papers report only on single

assessments). While one could give (essentially) the same problem multiple times and see whether

students achieve higher performance levels, in our overall study, the problems we give the students

either rise in complexity or remove some of the scaffolds present in earlier problems. Under this model,

drops in SOLO level from one problem to another highlight the limits of students’ skills. We suspect

that some of the drops observed in our data reflect which design skills students have internalized, while

others reflect the problem complexity at which students can apply the skills.

4.8.3 Constructing a data-grounded theory for program design

Our SOLO taxonomy largely emerged from the data we gathered in the first session of our study, as we

tried to organize and code comments from students’ design interviews (we filled in some gaps based

on our understanding of HTDP). Building our taxonomy from student data fundamentally makes our

taxonomy descriptive rather than normative. The described progressions are not a prescriptive standard

around how program design skills should evolve, however, it provides a conceptual framework with

which to (1) evaluate how students evolve in the identified skills in practice, (2) construct assessments

that witness to various skill levels, and (3) evaluate curricula that teach these skills (while the taxonomy

is influenced by HTDP, the skills identified are certainly not limited to HTDP or curricula that use

functional programming). We have begun to validate the taxonomy, reporting here on the results

of using it to categorize data from students beyond those from whose comments we derived the

taxonomy. We have also validated the taxonomy with other HTDP instructors, finding that most of their

descriptions largely aligned with the taxonomy descriptions we defined. We also refined the taxonomy

through the addition of a new skill strand on pattern-use that we were not able to previously capture in

our initial development of the taxonomy. The gaps in our validation study (Section 4.7.4), however,

suggests that the taxonomy still needs further work in the refinement of its definitions.

4.8.4 Other factors that may affect program design

Finally, we want to account for issues that students raised during the study sessions which did not

lend themselves to SOLO-esque progressions. Table 4.2b summarizes these issues, which include

concepts such as readability, efficiency, and value judgments about the design techniques covered in
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the course; the HTDP instructors in our validation study also raised similar aspects. Some of these

issues could affect which SOLO level students demonstrate in some of our skill strands (a student who

has a negative perception of testing, for example, seems less likely to take testing seriously enough

to demonstrate a higher SOLO level on open-ended assessments). We expect that these non-SOLO

factors will be important to interpret drops in demonstrated skill levels across multiple assessments.

4.9 Status of Dissertation Research Questions

Our findings from this study provide new answers to some of our research questions, as well as updates

towards our previous answers (Section 3.7):

DRQ1 What program design practices and skills do HTDP-trained students exhibit when devel-
oping solutions for multi-task problems?

We found in our previous study that HTDP-trained students primarily demonstrated the following

design practices and skills when solving a multi-task programming problem:

1. Students work through core problem tasks.

2. Students retrieve code-level plans.

3. Students apply some of the HTDP-prescribed design practices

Our collection of richer data in situ through think-alouds and semi-structured interviews with students

allowed us to describe the extent to which students demonstrated the above design practices and skills:

1. Working through core problem tasks
Some students start their programming process by describing problem-related tasks they identify

and articulating an overall plan around those tasks; these students usually write their code in

the context of their task-level plan. Some do so on-the-fly as they write code; some of these

students seem to eventually focus solely on their code and lose sight of the tasks or their overall

plan. When asked to describe their program, some students would describe the tasks embodied

by their code and how these tasks inter-operated with each other; others fail to articulate the

delegation of tasks into the different pieces of code they wrote, instead focusing on the code-

specific mechanisms of their program. We captured the differences in complexity with which

they described working on problem-tasks in our taxonomy’s decomposing tasks and composing

solutions skill strand.

2. Retrieving and using code-level plans
When asked to describe their program, some students focused primarily on the code-specific

mechanisms of their program. In general, all the students were able to correctly describe the

low-level syntax structure and evaluation mechanisms of the expressions and function calls in

their code. Student behaviors relating to the writing and composition of expressions to build



72 CHAPTER 4. EVOLUTION OF PROGRAM DESIGN SKILLS

functions are captured in the composing expressions within function bodies skill strand.

When working with a multi-task problem such as Rainfall, most students retrieved the list

template and populated the template with code for problem-tasks. Some, however, failed to

recognize the limitations of the template pattern in the context of the traversal tasks they are

working with, inappropriately conflating multiple traversal tasks in a single template. Some

students who struggled to use an accumulator pattern for their functions seemed not to realize

that tasks can be allocated to multiple accumulators. How students worked with the patterns

they retrieved are captured in the taxonomy’s meaningful use of code patterns skill strand.

3. Applying HTDP-prescribed design practices
Some students simply copied the example/test-case in the Rainfall problem statement, while

some explored a broader range of inputs and attempted to write interesting test-case scenarios. A

few explicitly mentioned designing their functions based on potential behaviors they identified

from their suite of test-cases (as opposed to just writing multiple test-cases that illustrated

essentially the same scenarios, just with different values). The different levels with which

students wrote and used examples and test-cases in the design of their programs are described in

the taxonomy’s methodical choice of tests and examples skill strand.

Some students immediately jumped into writing their code (usually starting with the list template)

and did not follow or use the design recipe at all. Some used some of the design recipe steps

and articulated some relationship between the programming artifacts produced from each step,

such as how test-cases relate to some expected behavior of the program or some part of the

template code that implements a task. How students talked about the interactions between the

different components of the design recipe is described in the leveraging multiple representations

of functions skill strand.

DRQ3 How do HTDP-trained students’ use of program design skills evolve during a CS1-level
course?

• Students applied the skills at different levels of conceptual complexity.
We were able to capture, at a more nuanced detail, the gradations at which students were

applying the program design skills that we observed them demonstrate. Our synthesis of the data

suggested progressions within each skill resembling increasing levels of conceptual complexity

akin to SOLO levels. We thus mapped our observations within each skill to a corresponding

SOLO level, resulting in the set of SOLO-based skill taxonomies described in Table 4.3. In

the case of the skill, leveraging multiple representations of functions, we developed this skill

taxonomy more top-down as we synthesized design recipe-related observations in the context of

the overall HTDP design recipe process.

• Students evolve in different skills at different paces.
We applied our multi-faceted skills taxonomy to assess students’ use of their program design

skills at multiple points during their CS1 course. We found that students can be at different levels
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for different skills at a given time; they do not necessarily progress through skills simultaneously.

This suggests that our skills framework captures the different ways in which different skills

develop.

• Some students show non-monotonic progression of skills.
Some students demonstrated some skills at a lower level than they have previously demonstrated.

One reason for this might be that students may not have internalized the skills they displayed at

earlier sessions. For example, students may not have explicitly internalized their use of certain

skills as good practices (like writing test cases to cover a problem space), so they may not be

consistent in applying them intentionally as they solve programming problems. It is also possible

that the problems in our study may have pushed students towards particular skill levels. In study

session 1, for example, students described their design process on a homework problem for

which an earlier problem (on the same homework) provided a usable helper function. This could

have prompted students to make comments at a higher task-decomposition skill level than they

would have if they solved the problem unscaffolded. Lastly, the drops in skill level may reflect

the level of problem complexity at which students can apply their skills.

Other lessons learned

While not necessarily skills or practices, we also found factors that students seem to raise/consider

in their programming process; these factors could potentially affect the level at which students

demonstrate the skills we identified:

1. Quality attributes ("-ilities"): Properties or criteria that characterize code or coding practice

(e.g. readability of code: breaking down code to make it easier to read)

2. Knowledge recalled: References to knowledge recalled/used in programming that were either

learned from the course or before the course (e.g. recalling primitives from other languages and

looking for its equivalent in the current language)

3. Metacognition: References to one’s cognitive processes or metacognitive behaviors (e.g. self-

regulating behaviors such as rewriting templates to reinforce mastery)

4. Value judgments: Value judgments towards aspects of the programming process, experience, or

learning (e.g. dislike towards writing tests because it feels repetitive; finding purpose statements

helpful for knowing what a piece of code does)





Chapter 5

Study: Exploring How Novice Programmers
Navigate Viable Schemas

Background and Context: Prior planning studies of Rainfall have not explicitly discussed the

pedagogic contexts and schemas that inform how students plan for Rainfall, but have observed

students produce a common high-level structure. In contrast, students in our HTDP-based courses are

typically exposed to multiple viable solution structures for Rainfall. Our context thus provides an

opportunity to explore how novices navigate multiple applicable schemas.

Objective: We focused on a subset of our data from our second study (Chapter 4) to explore how

students navigate the schemas they have seen to solve the (multi-task) Rainfall problem. (Section 5.1)

Method: We constructed qualitative narratives that describe what drove students to select and switch

the schemas they used, focusing on interactions between students’ schema-use and how they think

about the task-components of Rainfall. (Section 5.3)

Findings: Our findings highlight interactions between how students use and think about about the

schemas they’ve seen and how they think about the task-components of Rainfall. We also describe

how the class examples and activities instructors choose to teach patterns may potentially affect how

students understand and use these schemas. (Section 5.4)

A version of this chapter is published in the following venue:

[52] Kathi Fisler and Francisco Enrique Vicente Castro. 2017. Sometimes, Rainfall Accumulates:

Talk-Alouds with Novice Functional Programmers. In Proceedings of the 2017 ACM Conference

on International Computing Education Research (ICER ’17), ACM, New York, NY, USA, 12–20.

DOI: https://doi.org/10.1145/3105726.3106183

5.1 Exploring How Students Navigate Multiple Schemas

This study continues our exploratory work on understanding students’ programming processes towards

solving multi-task problems, in the context of HTDP. Here, we explore the following research question:
75

https://doi.org/10.1145/3105726.3106183
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STUDY-RQ1. When novice programmers have seen multiple schemas (as part of a class)

that might apply to a problem, how does their solution emerge and evolve?

We approached this question by constructing qualitative narratives of four students’ attempts at

solving the Rainfall problem. We describe the factors that drove students to select, switch, and apply

the program schemas they know.

Our analyses in this study focuses on the Rainfall problem [127], which has become a benchmark

in computing education. Part of the motivation for this study is that Rainfall appears straightforward,

while having non-trivial underlying complexity. Most existing work on the challenges of Rainfall

was conducted in the context of imperative programming [122, 126, 127, 137]. Some researchers have

studied Rainfall with students who used functional programming [52] (similar to what the students in

our study use), but they have not reported specific challenges that arise when students attempt Rainfall

in this context. Given that different programming languages have different idioms and affordances,

a better understanding of how students solve—and struggle with—Rainfall in different pedagogic

contexts and programming languages will enhance our understanding of this deceptively interesting

programming problem.

The functional perspective is particularly interesting because students who learn functional pro-

gramming are typically exposed to multiple viable solution structures for Rainfall. Studying how

students approach Rainfall with functional programming thus provides an opportunity to explore how

novice students navigate multiple applicable schemas, each of which they may only partly understand

from CS1. Currently, none of the theories of how novice programmers construct their solution (dis-

cussed in Chapter 2) addresses what happens when novices have weaker knowledge of multiple viable

schemas, or how novices switch schemas mid-process.

5.2 Study Design

5.2.1 Participants

We selected four students from the participant pool of our second study (Chapter 4); we selected

these students to reflect variety in course performance (as of the first exam), prior experience, and the

structure of students’ final solutions. Table 5.1 gives an overview of the students we selected for this

narrative-based study1.

5.2.2 Analysis: Narrative Construction

My advisor, who is an experienced HTDP instructor (not the instructor for this instance of the course),

constructed the narratives from the typed think-aloud and interview transcripts2. I reviewed the

1See Appendix C.4 for the complete pool of students from Study 2
2See Section 4.2 for the full data collection process for the think-aloud and interview sessions
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Table 5.1: Participant overview. The first exam was in course week 3.

Student (Gender) Prior Programming Experience First Exam
WPI2-STUD3 (F) C++, Online courses 71 (C)
WPI2-STUD6 (M) Java, Python, Ruby, Self-study 87 (B)

WPI2-STUD7 (M)
Python, JavaScript, Java, HTML5,
CSS, PHP, Self-study, AP class,
High school class, Online courses

89 (B)

WPI2-STUD11 (F) None 93 (A)

narratives for accuracy, based on the transcripts, code, and my field notes collected from Chapter 4.

We divided the work this way so that the narratives would reflect the pedagogy and learning of HTDP

and the students’ programming process more than their personalities. My advisor does not know the

identities of the students.

The narrative methodology used in this study is influenced in part by the narrative analysis method

used by Whalley and Kasto in their investigation of novices’ code writing strategies [140]. They

developed descriptive accounts of how students used existing schema to write code from think-aloud

and interview data. We also draw on ideas from grounded theory [69], in terms of the narrative

reconstructions that describe how students varied in how they chose constructs, patterns, or techniques

to build their Rainfall solutions.

In the analysis (i.e. narrative constructions), we marked comments pertaining to choice of schemas,

choice of language constructs, discussion of design choices, mentions of problem tasks (whether or

not they were reflected in code), and rationale for editing previously-written code. We also marked

comments on how students perceived the Rainfall problem.

5.3 Programming Process Narratives

This section presents the narratives3 of each participants’ design process. We also summarize both

the correctness and the structure of each final solution. Possible correctness values are poor (far from

working), fair (in the right direction, but with many errors), and almost correct (very close and could

have been fixed easily after some straightforward testing to show the bugs). We also show the final

code produced by the students.

5.3.1 WPI2-STUD3

Correctness: Poor

Overall Structure: Accumulator, but role of parameter unclear

WPI2-STUD3 begins by writing the function name and input type. She proceeds to write the

list-of-numbers template. Inside the non-empty list case, she inserts a conditional to check whether the

first element of the list is positive.

3We follow Dziallas and Fincher [45] in calling these narratives, not case studies.
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She thinks of using an accumulator in order to track the running sum of positive numbers. She goes

back to her notes to check on how to write an accumulator function, then adds a local definition for a

function with an accumulator parameter. She recalls that accumulator functions return the accumulator

parameter in the base case; accordingly, she replaces the -1 she was originally returning in the base

case with the accumulator parameter.

She notes that “I can do the division at the end”, then goes back to working on the running sum. If

the first list element is negative, she calls the function recursively with the same parameter value. She

returns to thinking about where to handle the division: “I feel like the division should happen inside

the function. So I don’t want to be adding here ... I want to divide the rainfall - actually no wait I want

to add the rainfall” (at this point, she is wrestling with how to integrate the sum and average tasks

within the same area of code).

WPI2-STUD3 notices that her current code never returns -1 (by inspection, not by running it):

“So now my issue is nothing will turn up -1 if the average can’t be produced or if the list is just empty.

So somehow I have to work that in there.” She decides to try running the code. She tries an input of

all positive numbers, but gets back a negative average. She realizes this can’t be right. She correctly

articulates that an average is computed by dividing the sum by the count.

After this point, WPI2-STUD3 starts to thrash. She articulates a variety of possible edits involving

-1 and the accumulator parameter. Her comments include statements like “somehow I have to store the

divided value into the accumulator or to make that produce at the end.”. She continues to try to reason

out how her code works. She realizes that there are multiple subtasks: “somehow I have to get the

three of these things together without adding all three together”. She seems to keep switching the task

(addition, division, counting, or returning -1) to do around the recursive call on the rest of the list—her

final code (Figure 5.1) reflects this confusion. Just before time is up, she thinks of using a separate

helper function: “So maybe I need to make a helper function where I just add them all up and then

divide out later.”. Time runs out before she can try it in code.

During the interview after the coding session, WPI2-STUD3 remarks “I thought accumulator

would be useful because every time it finds another positive value [...] the average changes because

the bottom number would keep getting bigger. So the accumulator would keep adjusting to that.” The

student has associated some behavior with accumulators, but does not understand the pattern well

enough to get close to a working solution.

Figure 5.1: WPI2-STUD3 ’s final Rainfall solution
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5.3.2 WPI2-STUD6

Correctness: Fair (count of data inaccurate)

Overall Structure: Accumulator with parameter for running sum

WPI2-STUD6 begins by writing the function name, input type, and output type as he reads the

problem. The student starts to follow the template by creating a conditional, articulating that the

function should return 0 if the list is empty (this appears to be a pattern of habit, as the correct

answer on empty input would have been -1). As the student is thinking out what to do when the list

is non-empty, he articulates the algorithm for computing the average, and says “we want to divide

something by the length of [the input list]”, observing that only the non-negative values should be

considered.

The student realizes he needs a helper function that sums the values in a list. The student articulates

the type signature and writes a sum function following the HTDP template for lists of numbers. This

function does not account for negative numbers or the -999 sentinel. The student then goes back

to the original function and starts to handle the negatives, introducing a conditional that checks the

sign and value of the first number on the list. When -999 is encountered, the student notes that the

program should return the average (but doesn’t completely fill in the needed code). As the student

continues filling in the conditional, he starts to question whether the helper could be handled by built-in

primitives.

The student finishes filling in the conditional and tries running the program, but discovers it goes

into an infinite loop. At this point, the buggy program follows the pattern to recursively sum the

positive numbers, returning the average when the -999 is encountered: one branch of the conditional

within the recursion is implementing the sum task while another implements the average task (which

can’t work since this leaves no base case for the sum task). The student realizes that the code isn’t

“storing the value” of the running sum, and switches to an accumulator-based design, with a parameter

to hold the running sum.

The student then begins a cycle of editing the code, testing it, having the tests fail, then editing

again. As the student talks through the cycle, he begins looking for fragments of code to delete

or modify: for example, he tries removing various branches of conditionals, including the one that

terminates the recursion if the list becomes empty before reaching -999 (this branch never gets restored

before time is called).

Next the student tries to figure out where to return -1: “So this is still working but this is not

working. So it’s not producing -1. And so if the element’s negative it’s running the recursion on the rest

of the list. Maybe - no. Maybe the [accumulator] could be set to something else other than just [the

current accumulator value] or but I can’t think of what it needs to be set to.” The student hits on the

idea of a different helper function to handle the case in which all numbers in the original input list are

negative. He proceeds to write a straight-up (correct) recursive function to check whether all numbers

in a list are negative, then uses this to guard computation of the average once -999 is detected. That

said, the student never got the tasks and their code mapping straight in his head. He kept modifying



80 CHAPTER 5. NAVIGATING SCHEMAS

the in-progress code with Rist-like focals, rather than thinking about how to decompose the problem.

The final code (Figure 5.2) contains two major errors: it does not handle input lists that lack the

-999, and the average computation uses the wrong denominator (the length of the suffix that follows

the -999, not the count of non-negative numbers before the -999).

Figure 5.2: WPI2-STUD6 ’s final Rainfall solution

5.3.3 WPI2-STUD7

Correctness: Fair (conflates sum and average tasks)

Overall Structure: Accumulator with filter (latter not integrated)

WPI2-STUD7 starts by writing the function signature and purpose. He begins to write the list

template, filling in -1 as the answer in the empty-list case based on the problem statement. He wonders

whether he should be using local, which is part of the standard pattern for writing functions with

accumulators in the course. The student starts to write the inner accumulator function, again following

the template. But this time, the student returns the accumulator value in the empty-list/base case. That

is the standard usage pattern students have seen with accumulator functions to this point in the course.

To this point, WPI2-STUD7 has not articulated what the accumulator variable represents; his work

seems entirely syntactic.

The student talks about checking whether the first number in the list is negative, then about creating

a helper function to compute the average; this comes up more as a side comment than as part of the

flow of where this helper might get called from the overall Rainfall computation. The student realizes

that the average computation will need both the running sum and the count of items, and thinks about

how to obtain both values: “it almost seems like I would use an accumulator to show how many

times I’ve actually gotten through that. [...] so I guess we’ll use another local” (whether the student

is suggesting another locally-defined accumulator function or another parameter within the existing

accumulator is not clear at this point).
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The student notes the requirement to stop at the first -999 and to ignore negatives. The student

recognizes that filter could ignore the negative numbers, and would eliminate the need to check the

sign of individual list elements during the accumulator function. The student writes a helper function

that uses filter to remove all non-positive numbers from an input list. (The student does not, however,

call this helper function from the accumulator function. The helper remains uncalled in the final code).

Next, the student adds a conditional to check for a value less than -999 (incorrect logic, changed in

final). For the “then” branch, the student articulates calling the function recursively to process the rest

of the list, while adding the new value to the accumulator. As shown in the final code (Figure 5.3), the

student adds another parameter (times) to track the count of values. He tries to compute the average

and use it as a new parameter value (he never articulates a clear role for this parameter). The else case

of the conditional gets a recursive call to the function that takes the rest of the list and leaves the two

accumulator parameters unchanged.

The student then enters a testing phase, running his code on a single test case. The test fails. The

student correctly diagnoses that the execution never satisfies the -999 check and reverses the less-than

computation in his conditional check. The student adjusts initial values for his accumulator parameters,

but does not correctly trace the execution to isolate the actual errors in his code.

Figure 5.3: WPI2-STUD7 ’s final Rainfall solution

5.3.4 WPI2-STUD11

Correctness: Almost correct (sans two cond cases reversed)

Overall Structure: Clean-first with accumulator (for cleaning)

WPI2-STUD11 begins by writing the function name, input type, and output type as she reads the

problem statement. She proceeds to start writing the template, inserting -1 as the answer in the base

case based on the problem statement. She instinctively questions whether the base case answer should

instead be 0, but decides to follow the problem statement and see where it goes. She does not appear to
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write the non-empty case of the template blindly, but instead talks through what might need to happen

in this case.

She fairly quickly ponders whether she will need an accumulator, but she isn’t entirely sure why

this would be necessary. She thinks she should have a function that “goes through each number in

the list just to make sure it’s not -999”. She goes on to say that “with every number that it passes

that is not -999, it’s gonna add those all up”. So at this point, WPI2-STUD11 has decided to write a

function that traverses the list and adds up all the relevant data.

WPI2-STUD11 begins to change course once she thinks about what to do upon finding the -999:

“so then I would need another helper function. Once it hit the -999, it would divide it by the [...] number

of terms it went through but I don’t know how I would do that yet”. As she tries to write the base

case of her accumulator function, she realizes that summing and the overall rainfall problem require

different base-case answers: “if it’s empty, that would return either–it would return -1 for the rainfall

purposes, but for this one I don’t know if it would return 0 [or] -1”. This prompts her to change her

accumulator to instead build a list of the relevant (clean) data, with separate functions to compute the

average of this list. Her final solution is a clean-first style, but with an accumulator in the function that

cleans the data. During the reflection interview, she remarks how accomplished she feels for solving

the problem.

Figure 5.4: WPI2-STUD11 ’s final Rainfall solution

5.4 Analysis and Discussion

Our focus for this study was to understand how novice programmers solved Rainfall (a multi-task

problem) when they have seen multiple viable schemas for solving the problem. As discussed in
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Section 5.1, we have not found existing theories about how novices navigate or switch between multiple

schemas. Observations from our data suggest possible elements of such theories.

5.4.1 What drove students to use the accumulator pattern?

All four students started saying they would use the list template and ended up using accumulators

in some fashion. Whether the students perceived these as different patterns, or whether they view

accumulators as a variation on the list template, is not evident in our transcripts. However, all four

students commented on the typical base cases of these patterns, suggesting that they had internalized

them separately.

The trigger to use accumulators differed across the students: WPI2-STUD3 and WPI2-STUD6

initially associated the accumulator with tracking the sum (though WPI2-STUD3 lost this association

once she started to thrash); WPI2-STUD7 switched to an accumulator-style pattern without a clear

justification and never stated a purpose for the accumulator (following the schema purely syntactically),

though his final code suggests that he may have associated this with the idea of tracking some

computation (tracking the count and the incorrect tracking of the average). WPI2-STUD11 explicitly

ruled out an accumulator at first, then found it useful for tracking clean data. Use of accumulators

could also likely be influenced by the timing of the study session involving Rainfall. At that time, the

course had just covered accumulators: the pattern was fresh and it is possible that students may have

assumed they should be using them. The lectures had shown the use of accumulators for summing a

list of numbers.

5.4.2 Interactions between pattern use and task-level thinking

Observation 5.4.1. Students who copy-and-paste the template (as HTDP recommends for beginners)

get more stuck than those who recall the template and write it down “as they go”.

WPI2-STUD3 mechanically wrote down the list-of-number template before thinking about the

details of Rainfall. The course teaches this practice, though once students have mastered the template,

they tend to interleave writing the template with filling in the holes (particularly in easy spots, such as

the base case). WPI2-STUD6 , WPI2-STUD7 , and WPI2-STUD11 all stated that they were going to

use the list-of-number template, but they proceeded to work in “write as you go” fashion, which meant

they started thinking about how they would fill in the holes around the recursive call to Rainfall before

they committed to calling their function on the rest of the list. These students generally introduced an

accumulator at this point, effectively switching their program schema mid-session. WPI2-STUD3 , in

contrast, struggled more with the schema change and ended up farthest away from a working Rainfall

solution.

Writing an incorrect schema could be correlated with several factors, including general program-

ming skill, semantic understanding, and so on. Students may struggle to adapt schemas because their

understanding of programming is syntactic more than semantic. If we can detect schema practices of

students who struggle with programming, we might be able to offer targeted instruction in schema
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selection and adaptation. The schema-switch seems to be associated with an insightful thinking about

the schemas (patterns) they were using; we discuss this further in the subsequent observations.

Observation 5.4.2. Students who articulated only the syntactic schema of accumulators, but not the

underlying concept, struggled to adapt them to the needs of Rainfall.

The mechanical use of accumulators was most evident in WPI2-STUD3 ’s process: while she

associated the accumulator pattern with the sum task (an application of accumulators they’ve seen

many times in the course), she does this completely mechanically. She copied the entire code for the

accumulator-style sum, without thinking about how the other tasks impact the use of the accumulator

pattern (e.g. she retains returning the accumulator in the base case), exhibiting a kind of functional

fixedness [88] with the pattern.

As instructors, it is easy to assume that once students have seen the idea of a parameter that

accumulates a running value, then they will add as many such parameters as a problem requires. This

assumes that students understood the underlying idea, however, rather than simply absorbing the

syntactic pattern. Students in our course had only seen examples with a single accumulator parameter,

and in each of those programs, the value in that parameter was returned in the base case of the recursion.

An accumulator-based Rainfall solution either needs two additional parameters (one for the running

sum and one for the running count) or one additional parameter for the running list of clean data.

Students had only seen examples that accumulated numbers up to this point in the course. Unless

students understood the point of the accumulator, adapting to multiple parameters could be a significant

challenge.

Interpreting this in an imperative context, it would be as if students had only ever seen programs

with a single numeric variable, and did not immediately realize that they could have two variables.

This is not a confusion that we have seen reported in other Rainfall studies. In functional programming,

additional “variables” become additional parameters—perhaps that seems more complex to novices

than additional standalone variables (which could be ignored while still allowing the program to run,

whereas additional parameters need values or a syntax error results). Perhaps students in the imperative

studies of Rainfall made different errors depending on whether they had seen programs with multiple

variables. The point here is simply that different linguistic constructs have different affordances

and pitfalls, and different courses prepare students for problems in subtle ways that we have likely

overlooked in reporting studies. We need to understand our benchmark problems in multiple contexts

to know what makes them challenging.

WPI2-STUD3 : I guess [the hardest part] was trying to figure out how to work in the -1 with the

accumulator there because I didn’t know where to put it because then all the examples we put the

accumulator after empty because I guess all the answers were stored accumulator so it would

produce the accumulator but in this one the answer wasn’t stored in the accumulator.

Observation 5.4.3. Students who connected accumulator parameters or parts of their code to specific

tasks, and maintained those connections through the schema switch, produced more correct code.
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The two students with clear roles for the accumulator were also the ones who more generally

connected specific problem tasks to parts of their code. One of these was the only student who

mentioned using filter to help deal with the negative numbers (though he never got that part integrated

with his accumulator-based program for computing the average). These observations reinforce the

idea that failure to decompose problems into tasks—not just failure to compose code—underlies

student challenges with multi-task problems (others’ work showing that students can handle similar

problems when explicitly taught strategies or patterns supports this [39, 94]). Had someone suggested

decomposing the problem into separate sum and count functions, we suspect the two weakest students

might well have done better, since their transcripts showed they did have basic facility with the list

template.

Observation 5.4.4. Students had not understood that each sub-task that traverses a list needs its own

function or accumulator parameter.

Both HTDP and the host course explain that a single recursive function can perform only one

traversal-based operation. The host course used for this study did not, however, reinforce this via

assignments. Accumulator parameters enable a single function to track outputs of multiple tasks in a

single traversal, but the course does not currently teach the explicit link between traversal-tasks and

parameters. Our narratives show students struggling to integrate multiple traversal tasks (e.g. summing

and counting) in a single function, even once they introduce accumulators. The connections between

tasks, parameters, templates, and traversals are not (or have not been made) clear enough to these

students, yet they seem critical to producing a correct Rainfall solution in any programming language.

Students similarly struggled to handle the sentinel. All prior problems in the course terminated a

list recursion at the end of the list, not at a particular value. Most students recognized the sentinel as

another base case for recursion, but they struggled to reconcile the return values in the empty-list and

sentinel cases, especially in light of the -1. This is again a failure to separate tasks in their code. HTDP,

in theory, is designed to help students think about how to create small programs for focused subtasks.

For students who hit on problem decomposition, this works smoothly; for others, not so much. Our

findings point towards the idea that the course curriculum needs a specific and directed emphasis on

problem decomposition (in addition to the design recipe), for example, by teaching students how to

identify and map tasks to each of functions or parameters/variables as part of the overall program

design process.

5.4.3 The Complexity of the Rainfall Problem

Observation 5.4.5. Students thought the problem was complex just from the problem statement.

Our version of Rainfall4 has more constraints and detail than Soloway’s original phrasing [127],

which read:

4See Section 4.2.2 for the full Rainfall problem statement, including common solution structures
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Write a program that will read in integers and output their average. Stop reading

when the value 99999 is input.

Later versions of the problem have included negative numbers, but even compared to those, our

problem description has additional details such as: (a) -999 may never appear, (b) -999 may appear

more than once, (c) an explicit instruction to return -1 if the average cannot be computed, and (d) use

of the term “faulty readings” to contextualize the other negative numbers.

Prior versions of the problem typically omitted instructions on what to return if there is no data to

average (detail (c)). We agree with Seppälä et al. [122] that this omission makes it hard to interpret

students’ mistakes. While throwing an error would be better than returning -1, the students in our study

had not yet learned error-handling.

Details (a) and (b) regarding the sentinel are necessary because the input comes as a list rather than

being entered interactively. Requiring the list to contain -999 actually complicates the problem for

one who follows HTDP (or any datatype-based discipline) strictly. A list with a guaranteed sentinel

would have a different data type definition (in which the base case is a list with the sentinel as the first

element, not the empty list); this would lead to a different template. The current wording retains the

schema that students already know. Taken together, however, all of these details have a price in terms

of how students perceive the problem complexity:

WPI2-STUD7 : From what we’ve learned in class we generally use just simpler problems, and

we rarely [...] put them all together. So when you are approached with a problem such as this,

you almost struggle to figure out how to put it together ’cause you’ve never done it before. [...]

[usually] it would be more in a Part A, Part B, Part C, Part D style.

Future research should explore relationships between the level of detail in the problem statement,

whether examples are provided [122], and when students perceive sub-tasks in more complex problems.

5.4.4 The Need for Finer-grained Analyses of Course Contexts

Our study data allowed us to ask a unique question in the context of Rainfall: how do novice students

manage having seen multiple viable schemas for a programming problem? Students do not yet know

the limitations of these schemas well (unlike experts). We would expect, then, to see students switching

schemas or perhaps trying to merge them. We are not aware of theories of how novices switch schemas.

We need to understand this, however, so we can teach students how to handle such situations more

effectively.

Our data drive home the power—and hold—of previously-seen patterns for novice programmers.

Instructors may think they are teaching a general approach (such as using an accumulator), but if

students have only seen examples that use that approach in a single way (such as a single parameter

that is returned as the final answer), they may struggle to adapt patterns to new situations. Approaches

such as subgoal labeling [27] might help counter the syntactic power of a pattern. A key takeaway in

this study is that the class examples instructors choose may inadvertently complicate problems like
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Rainfall for students. If we want to know what makes Rainfall hard or easy, we need to consider the

course context at a finer granularity than has been reported in previous studies.

Our students did not seem to perform as well as those in Fisler’s study [51]. Our host course was

shorter (8 weeks instead of a semester), so perhaps students needed more time to develop their skills

before solving Rainfall. Our participants had only just started working with higher-order functions,

which many students used in Fisler’s study. Perhaps curricular differences addressed our observations

for Fisler’s study courses. It would be interesting to run similar think-alouds with students at the

schools from Fisler’s study to tease out these differences. Guzdial claimed that Fisler “beat the Rainfall

problem” [59, 60], yet our study shows that even with mostly similar course curricula, the students in

our study did not replicate the same success that students in her study did (for the potential reasons we

mentioned prior). The research community can’t claim to have “beaten the Rainfall problem” until

we have findings that we can explain and reproduce across courses. This needs studies that report on

finer-grained curricular details and how students draw on them when selecting designs; this study is an

early effort towards this goal.

5.5 Status of Dissertation Research Questions

Our findings from this study highlight the interactions we’ve observed between how students use and

think about the schemas they’re taught, and how they think about the task-components of a multi-task

problem (Rainfall):

RQ2. What interactions do we observe between students’ program design skills and how do
these contribute to their development of solutions for multi-task programming problems?

Interaction: Meaningful pattern use and task-level planning

The students in this study started by retrieving the list template, as prompted by the input (a list

of numbers) in the Rainfall problem statement, but then shifted to an accumulator pattern later on.

There’s a clear difference, however, between (a) students who retrieved patterns mechanically without

task-level insight, and (b) students who, in the process of retrieving the patterns, thought about how

the problem-tasks would impact the use of their retrieved pattern.

The student who retrieved patterns mechanically did so, prompted by tasks (e.g. summing) that

she has seen the patterns used with in prior examples (from their course). She then proceeded to

populating the patterns with other task-related code without any clear plan/direction and without

concretely thinking about how the tasks would impact her use of the patterns. She seems to only copy

the syntactic structure of a pattern, without articulating its underlying concept. She generally got

stuck in her process, with code that conflated different task-related code in ineffective ways within the

patterns she retrieved.

Students who retrieved patterns while also relating the problem-tasks to specific parts of the patterns

they retrieved generally ended up with mostly correct solutions. Two students concretely articulated a
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task-level plan in advance: they used the insight from their plan to guide their use, or restructuring,

of the patterns they retrieved (e.g. decomposing their code into multiple instances of templates that

each dealt with a different task, concretely associating accumulator parameters with tasks and adding

parameters for new tasks). One student engaged in on-the-fly decomposition of the problem, but still

managed to get to a fairly-working solution (though not as close as the solution produced by students

who concretely planned in advance). He also concretely associated parts of patterns with tasks as he

wrote his solution, rather than straight-up copying a pattern without any task-level insight. Both types

of students (students who planned in advance and those who decomposed the problem more on-the-fly)

exhibited an awareness of the limitations of the patterns they’re using (though the student who did

on-the-fly decomposition did so later in his process), while also guided by the task-level plans they

articulated.

RQ4. How do HTDP-trained students approach multi-task programming problems with novel
components?

Our previous studies suggest that HTDP-trained students approach new multi-task problems by:

1. Decomposing the problem on-the-fly around code they have already written.

2. Retrieving code-level plans without adjusting them to the need of the problem.

3. Using HTDP-prescribed design practices mechanically.

In this study, we observed some students approach Rainfall by:

• Articulating a task-level plan in advance.

Students who approached the problem this way identified concrete problem-tasks and articulated a

task-level plan for solving the problem early in their process. They used the insight from their plan to

guide their use of the patterns they retrieved: for example, they identified which tasks they allocated to

separate template instances or which tasks they tracked in parameters (for accumulator-style solutions).



Chapter 6

Study: Movements Between Task-level and
Code-level Thinking

Background and Context: Existing theories of how novices design solutions are primarily plan-

based, but do not describe how novices move between task-level and code-level plans. Our own

prior studies have shown that students think in terms of a problem’s core tasks, but struggle with

decomposition and compositions issues around their solutions. (Section 6.1)

Objective: We explored how HTDP-trained students from two different universities transition between

thinking about high-level tasks and low-level code when solving multi-task programming problems.

Method: We conducted think-alouds with CS1 students at two universities (both used the HTDP

curriculum) as they solved multi-task programming problems of varying degrees of novelty. We

analyzed how students used the HTDP design techniques they’ve been taught and describe how

patterns of high- and low-level thinking relate to their success on the problems we gave. (Section 6.2)

Findings: We developed a conceptual framework that captures students’ task- and code-level think-

ing and identified three approach patterns students took towards solving multi-task programming

problems. We also found interactions between how students applied their program design skills, and

the variety of problems they have previously engaged with in class. (Sections 6.3 and 6.4)

A version of this chapter is published in the following venue:

[22] Francisco Enrique Vicente Castro and Kathi Fisler. 2020. Qualitative Analyses of Movements

Between Task-level and Code-level Thinking of Novice Programmers. In Proceedings of the

51st ACM Technical Symposium on Computer Science Education (SIGCSE ’20), Association

for Computing Machinery, Portland, OR, USA, 487–493. DOI: https://doi.org/10.1145/3328778.

3366847
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6.1 Exploring the Interplay of Task- and Code-level Thinking

Most theories of how novice programmers design solutions for programming problems draw from

plan-based models of programming (Chapter 2). None of these theories, however, describe how

novices move between a problem’s high-level tasks and the tasks’ low-level code implementations,

especially when faced with programming problems that have both familiar and unfamiliar components.

In these contexts, novices would need to navigate their use of prior plans and new tasks, both of which

they need to build code for. In our prior studies, we have developed a concrete framework of the

various program design skills that students are using (Chapter 4) and how students approach multi-task

problems (Chapters 3 and 5); we have also began to describe specific interactions between certain

design skills as students approached problems (Chapter 5). This study extends these prior works by

exploring the interplay between task- and code-level thinking among novice programmers within the

context of two CS1-level courses from two different universities that teach the HTDP design recipe.

This context means that when students struggle with problems, they have design techniques to fall

back on, which may, in turn, have an impact on how students think around the problem’s tasks and

their code. We thus focus on the following research questions for this study:

STUDY-RQ1. What patterns of movements between high- and low-level thinking do we

see among our students?

STUDY-RQ2. How do students’ patterns of task- and code-level thinking relate to their

success on our programming problems?

STUDY-RQ3. When students get stuck on a problem, what do they do and how do they

use the HTDP design recipe as part of getting unstuck?

6.2 Study Design and Data Collection

We chose two programming problems with multiple subtasks and had students from HTDP-based CS1

courses at two universities work on each one. The first problem (Rainfall) consisted of subtasks that

students had previously coded in other contexts, but not previously composed in this way. The second

problem (Max-Temps) was harder, involving subtasks that students had not previously seen but that

were solvable (though challenging) using the HTDP process as covered to date in each course. Problem

details are provided in Section 6.2.4.

6.2.1 The HTDP Course Instances

The two HTDP courses in our study varied in topic orderings and concept emphasis. We collected data

from CS1-level courses at WPI in Spring 2018 (WPI-CS1) and from Northeastern University (NEU) in

Fall 2018 (NEU-CS1). At the time we ran our studies, each course had covered the basic design recipe,

structures, lists, trees, and higher-order functions. WPI-CS1 spent the week prior the study covering
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higher-order functions (map, filter) and was covering accumulator-style programming during the week

of the study sessions. NEU-CS1, in contrast, had spent at least three weeks with higher-order functions

(map, filter, fold) before the study and was scheduled to cover accumulator-style programming after

the scheduled study sessions; study sessions for WPI-CS1 were done about a week before final exams,

and sessions for NEU-CS1 about 2 weeks before final exams. WPI-CS1 ran at intense pace for about

8 weeks, while NEU-CS1 ran on a 14-week semester. Table 6.1 shows the topic sequences for each

course.

6.2.2 Participants

Instructors of both courses publicized the study to their students. Interested students provided informa-

tion on their intended major, prior programming experience, and an estimate of their current course

grade on a volunteer survey (Appendices D.1 to D.4). A total of 13 WPI students and 84 NEU students

signed up for the study. From each participant pool, we selected students based on their availability to

participate in study sessions (sessions were 2 hours total per student) and their self-reported course

performance (A, B, C, D), resulting in 12 WPI-CS1 and 10 NEU-CS1 participants. The following

table summarizes the number of students self-reporting each grade, for each course; (M/F) indicates

self-reported gender.

Course Self-estimated course grade
A B C D

WPI-CS1 2(M), 3(F) 1(M), 4(F) - 2(F)
NEU-CS1 3(M), 1(F) 4(M) 2(F) -

6.2.3 Logistics

Each participant did two 1-hour sessions, the first on Rainfall and the second on Max-Temps. Within

a session, students had 30 minutes to work on the problem in think-aloud fashion. A retrospective

interview followed, during which students described their process and responded to interviewer

observations from the think-aloud; this study protocol follows the same protocol in Study 2 (Chapter 4:

Section 4.2.1) that was adapted from Whalley and Kasto [140]. Students worked on their own

computer (they could open notes they deemed relevant to the problem) and used the course’s standard

programming environment (DrRacket [44]). We audio recorded all sessions and collected students’

solutions and scratch work. I conducted all of the sessions; I was not on the staff for either course, or

even affiliated with NEU. Each participant received USD 20 per session.
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Table 6.1: Topic sequences for the host courses in this study

(a) WPI-CS1 topic sequence (8 weeks)

Week Topic Assignments/Exercises

1
Arithmetic expressions and
functions Functions for arithmetic calculations, test cases

2
Helper functions, structures,
conditionals, the design recipe Functions over structs (online shopping data)

3 Lists of atomic data
Functions over lists of strings, functions
over structs (course enrollment data)

4 Lists of structures
Lists of structures (lists of donors, lists
of nonprofits)

5 Trees Binary search trees (taxpayer database)

6
Locals and higher-order
functions N-ary trees (system of rivers and tributaries)

7
Accumulators, variables,
mutation

Map, filter, and accumulators (revisit lists of
nonprofits), variables, mutation (email system)

8 Mutation None (end of course)

(b) NEU-CS1 topic sequence (14 weeks)

Week Topic Assignments/Exercises

1
Arithmetic expressions and
functions None

2
Booleans, conditionals, the
design recipe

Functions for arithmetic calculations, test cases,
composing images

3 Structures
Composing images, functions for arithmetic
calculations (currency and measurement
conversions), functions over structs

4 Unions
Functions over structs (midpoint game,
manhattan distance, planet data, time data)

5 Lists, lists of structures
Functions over self-referential data (pet rock
stored in layers of bags, natural numbers,
monkey chain)

6 Abstractions
Functions over lists of numbers, functions
over lists of structs

7 Abstractions, local Functions over lists of structs (video playlist)
8 Abstractions, I/O Local, map, filter, fold
9 Trees Local, map, filter, build-list, fold, file I/O

10 Graphs
N-ary trees (file system, family tree,
choose-your-own-adventure book)

11 Generative recursion Game of life simulation
12 Generative recursion Functions over graphs (friend network)

13 Accumulators, lambda
Generative recursion (k-means, string
manipulation)

14 Lambda Lambda, accumulators



6.2. STUDY DESIGN AND DATA COLLECTION 93

6.2.4 The Study Problems

We describe here the programming problems we used, as well as our rationale for including each in

our study.

Rainfall

The first problem we gave students was Rainfall (see Section 4.2.2 for the full problem description

and viable solution structures). Rainfall provides an interesting context for our study: students have

done most of the Rainfall tasks separately — summing, counting, and filtering lists (based on some

criterion); they have not done list-problems that terminated at a specific value (rather than the end of

the list) that may or may not appear. A main challenge in Rainfall is composition, as the problem is not

itself structurally recursive (i.e. each of sum and count are straightforward applications of the HTDP

template, but the rainfall function needs to decompose these computations into their own subtasks) and

students have not composed the task-components together in a solution.

Max-Temps

The exact wording for Max-Temps follows, along with its most common solution approaches.

Max-Temps: Imagine that we have lists containing a combination of numbers and

the string "new-day". The numbers represent temperature readings as taken by a

sensor or weather monitoring device. The "new-day" string is sent at the start of each

new calendar day.

Design a program max-temps that takes one of these lists and returns a list of numbers

representing the max temperature for each day. If the input list is empty, return empty.

Example: (max-temps (list 40 42 "new-day" 50 "new-day" 52 56)) would return

(list 42 50 56).

Common solution structures:

1. Reshape-first
Reshape the input into a list-of-lists that omit the delimiters, then recur over the outer list to compute

the max of each inner-list.

2. Collect-first
Collect sublist elements until the delimiter, then find the max of the collected elements before

moving to the next sublist.

3. Process-until
Find the max between consecutive list elements as the list is traversed. When a delimiter is found,

concatenate the max onto the result of processing the rest of the input.
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Max-Temps is more complex than Rainfall. Its viable solutions (which are similar to the Adding

Machine problem–Section 3.2) require tasks students have not coded—or even seen—in class. Reshape-

first requires restructuring the input into a list-of-lists. While nested lists are new to students, the

design recipe templates handle them in similar ways to other nested data structures that students had

used. Process-until requires keeping track of the current sublist’s max either in an additional parameter

(which WPI-CS1 students may have seen, given the study timing) or by modifying the head of the

input mid-traversal. Finally, while functions over lists typically recur on the tail of the list, Max-Temps

solutions may require recurring on a modified suffix (e.g. the one after the first sublist).

Overall, the plans for these tasks are largely unfamiliar to students, though the problems are on a

familiar datatype (lists), so they at least have a viable schema to retrieve (the list template) that would

extend to nested lists using techniques they had seen. These problems allow us to explore how students’

task–code transitions, or use of design techniques (i.e. the design recipe), look when faced with some

degree of novelty.

6.3 Analysis and Discussion

Our research questions (Section 6.1) revolve around understanding students’ transitions between

task- and code-level thinking as they solve problems, as well as how they navigate with their design

techniques to get unstuck when struggling with the problems.

6.3.1 Framework: Task- and Code-level Thinking

Our work aims to capture how students think around problem-tasks and code-implementations, and

their use of the design recipe within this dynamic. To do this, we randomly selected half the students

from each cohort, from each self-estimated course grade: 6 WPI-CS1 (2 As, 2 Bs, 2 Ds) and 5

NEU-CS1 (2 As, 1 B, 2 Cs) students. We then open-coded [28, 69] their transcripts, field notes, and

code by constructing qualitative narratives, similar to Whalley and Kasto’s descriptive accounts of

students’ programming [140] (Figure 6.1 shows a snippet of the narrative coding done for student

NEU1-STUD1 ), tagging student comments based on the following guide questions:

1. How did they interleave their thinking of tasks and patterns?

• What patterns did they retrieve first?

• What tasks did they identify first?

• How did they think through the tasks before starting to retrieve code patterns?

2. What tasks did they implement first and what pattern did they use to implement it?

3. How did they use the design recipe in their process?
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• What was the role of the different design recipe components in their work? (e.g. whether

they used them merely for documentation or to help them get an initial understanding of

the problem)

4. What dynamic do we observe in the way they think through the tasks and their implementations?

(e.g. whether they returned to thinking about the tasks after getting stuck in code, or whether

they stayed thinking entirely in code once they started implementing a task)

5. What tasks did they get stuck in?

6. What tasks were already implemented correctly when they got stuck?

7. What were they trying to do when they got stuck? (e.g. adding division operation to an add (+)

expression)

8. What patterns did they struggle using?

9. How did they try to get unstuck?

What emerged from our coding was a descriptive conceptual framework of what students did

pertaining to task- and implementation-level thinking. We describe each of these levels in turn.

Task-level thinking concerns the identification and description of a problem’s task-components and

involves the following actions:

• Identifying and describing tasks
Describing tasks in terms of their role in the overall problem; novices may elicit tasks from the

problem-statement or relevant plans they retrieve

• Describing relationships between tasks
Describing how tasks relate to each other, such as how tasks’ outputs relate to other tasks’ inputs,

or the ordering of the tasks (perhaps informed by their input-output relationships)

• Plan-retrieval for familiar tasks
Retrieving plans for familiar problem-tasks that novices have in memory, such as a general

formula for a computation or a strategy towards a task (e.g. to clean data, remove negatives until

a sentinel)

Implementation- or code-level thinking is concerned with concrete code or code patterns students

write to actualize the tasks and involves the following actions:

• Implementing code
Writing the code that novices retrieve, or modifying code to fit it within the problem context

• Composing code
Putting together relevant code in a way that solves or actualizes components of a solution
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Figure 6.1: A snippet of the narrative coding for student NEU1-STUD1

• Plan-retrieval of task-relevant code
Retrieving code patterns for familiar tasks that novices have in memory; may come as built-in

operations and functions, or entire code structures such as design recipe templates or previously-

implemented code

The following excerpt illustrates an NEU-CS1 student touching on both high-level tasks and the
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low-level code-patterns he retrieved. He describes an overall plan for Rainfall: he concretely describes

the tasks he identified from the problem, relates tasks to each other by describing the ordering of the

tasks and the output of some tasks, and retrieves concrete code patterns for familiar tasks:

NEU1-STUD4 : I’m thinking [the] best way to approach [Rainfall], you take your list of numbers,

you get all the numbers before minus 999, create a new list from that [then] take out all the

non-negative numbers and then [do] foldr with the average. Foldr to find the sum and then divide

that by the length

We used this conceptual framework in coding and describing how the rest of the students navigated

their program design process. We used the dot-bulleted items under each of task- and code-level

thinking to tag student comments as they related to each level. We then used our guide questions to

construct qualitative narratives that explain relationships between actions (e.g. how descriptions of

task-relationships led to code compositions), citing code changes captured in field notes and students’

own code and scratch work as supporting observations.

6.3.2 RQ1: Movements Between Tasks and Code

Our first RQ asks about patterns of student movement between high-level (HL) tasks and low-level

(LL) code as students solved our programming problems. We found three main patterns of task-code

transitions in our data1:

Cyclic

This pattern is characterized by a back-and-forth movement between task- and code-level descriptions

of the components of a solution. Cyclic students concretely describe problem-tasks (HL) and describe

code they will use to implement those tasks (LL). The composition of their code (LL) is guided by the

concrete relationships they establish between tasks (HL), for example, by describing how the output

of one task is used as input for another. Their descriptions of tasks are often within the context of

an overall plan for a solution (e.g. truncate at the sentinel first, then remove negatives, then compute

average); the connections they make between tasks fill the gaps between tasks, making a plan more

complete. They maintain these connections that they make—both between tasks and between tasks

and code (or parts of their code)—throughout their programming process. From the perspective of our

multi-faceted skills taxonomy (Chapter 4), their descriptions of tasks and task-relationships reflect the

relational level of the decomposing tasks and composing solutions skill.

Code-focused

These students primarily jump into writing code for the tasks they identify. They identify tasks

on-the-fly as they program, often without concretely describing how the tasks relate to each other, and
1Illustrating observed patterns of task-code movement requires excerpts across the entirety of transcripts; see Figure 6.1 for
a snippet of our narrative coding from which we drew task-code movement patterns.
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often without an overall plan for a solution. Instead, they focus on retrieving and implementing code

for a task at-hand, then add code for whichever tasks they shift their focus to next. Their descriptions

of plans are often fragmented; they have a list of tasks that they identified, but no concrete descriptions

of the connections between those tasks. They often exhibited, at most, a multistructural level of the

decomposing tasks and composing solutions skill.

One-way

Students who exhibit this pattern often identified a high-level plan for a solution early on in their

process, then focused on implementing code without going back to their high-level plan. Their process

often shows characteristics observed from code-focused students: they have fragmented descriptions

of plans later on as they fail to maintain the high-level insight of connections between tasks that they

described initially.

6.3.3 RQ2: Success on Programming Problems

RQ 2 asks how students’ movements between tasks and code relate to their success on our programming

problems. Tables 6.2 and 6.3 show the number of WPI and NEU students, respectively, who attempted

each solution approach per problem, the task–code movement they exhibited, and whether their code

was close to a working solution.

Observation 6.3.1. Students who followed the cyclic pattern generally developed more correct solu-

tions than those with other patterns.

Transcripts of cyclic students in both problems showed that they concretely described the tasks

they implemented, capturing both the role of each task and how the tasks connected to each other.

The descriptions of these connections were critical in informing the composition of their code. In

Rainfall, at least half the students in each cohort exhibited a cyclic movement between tasks and

code and were generally close to a correct solution. None of the code-focused or one-way students

developed correct solutions. Their transcripts reveal that while they identified problem-tasks, they

struggled to concretely relate these tasks, which seemed to influence their ability to implement these

tasks in code. Others revealed a dissonance between their high-level plan and the code-pattern they

retrieved, failing to recognize the limitations of their retrieved patterns in the context of the tasks they

identified (exhibiting, at most, a multistructural level of the meaningful use of patterns skill). Across

both courses, the number of cyclic students decreased in Max-Temps: of six students who were cyclic

in Rainfall (4 from WPI-CS1, 2 from NEU-CS1), three moved to code-focused and three to one-way

in Max-Temps. Their data also show that they struggled to concretely describe connections between

tasks they identified; we discuss this further in the next observation.

Observation 6.3.2. Some students struggle to capture identified task-level relationships at the code

level.
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Table 6.2: WPI students implementing solution approaches for Rainfall and Max-Temps, grouped by
task–code movement patterns. [C/F] indicates whether students’ final code were [C]lose (minor errors
on some tasks) or [F]ar from a correct solution (missing tasks, major implementation errors).

(a) WPI students’ implementation of Rainfall solution approaches

Rainfall solution
structure Cyclic One-way Code-focused

Clean-first

WPI3-STUD1
WPI3-STUD8
WPI3-STUD9
WPI3-STUD12

[C]
[C]
[C]
[C]

-
WPI3-STUD6
WPI3-STUD7

[F]
[F]

Process-multiple WPI3-STUD3
WPI3-STUD4

[C]
[C] - -

Single-traversal WPI3-STUD5 [C]
WPI3-STUD2
WPI3-STUD11

[F]
[F] WPI3-STUD10 [F]

(b) WPI students’ implementation of Max-Temps solution approaches

Max-Temps solution
structure Cyclic One-way Code-focused

Reshape-first - - -

Collect-first
WPI3-STUD5
WPI3-STUD8
WPI3-STUD12

[C]
[C]
[C]

WPI3-STUD9
WPI3-STUD11

[F]
[F]

WPI3-STUD1
WPI3-STUD4

[F]
[F]

Process-until - -

WPI3-STUD2
WPI3-STUD3
WPI3-STUD6
WPI3-STUD7
WPI3-STUD10

[F]
[F]
[F]
[F]
[F]

A prevalent factor in why students get stuck, particularly in Max-Temps, is that they fail to

concretely describe how tasks connect to each other. For example, some students who attempt the

Reshape-first approach can’t figure out how to keep track of the sublists: the missing relational glue

here is the data structure to keep track of the sublists (i.e. a list-of-lists). Without articulating the data

structure, students do not know what a reshaping function should produce and what code constructs to

use to implement reshaping. They also do not know what data to use as input for functions that process

the reshaped input. The interviews and an inspection of the course syllabi reveal that students have not

done problems involving list-of-lists or restructuring flat lists into nested lists; thus, they do not have

patterns to retrieve for reshaping the data. Similarly, students struggled to figure out how to track data

for Process-until (tracking the current max) and Collect-first (tracking the current sublist). All of these

approaches also require some form of recursion over a modified suffix of the list, but students lack a

previously-learned schema for modifying the suffix of the list to recur on.

Observation 6.3.3. Some students who got stuck failed to adapt patterns to new contexts.

In Rainfall, some students got stuck on handling the -999 sentinel. Students mentioned in the

interviews that they have not worked on problems that terminated list-computations prematurely at a
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Table 6.3: NEU students implementing solution approaches for Rainfall and Max-Temps, grouped by
task–code movement patterns. [C/F] indicates whether students’ final code were [C]lose (minor errors
on some tasks) or [F]ar from a correct solution (missing tasks, major implementation errors).

(a) NEU students’ implementation of Rainfall solution approaches

Rainfall solution
structure Cyclic One-way Code-focused

Clean-first

NEU1-STUD1
NEU1-STUD2
NEU1-STUD4
NEU1-STUD6
NEU1-STUD7

[C]
[C]
[C]
[C]
[C]

- -

Process-multiple NEU1-STUD3 [C] - -

Single-traversal - -
NEU1-STUD9
NEU1-STUD10
NEU1-STUD5

[F]
[F]
[F]

No clear plan - - NEU1-STUD8 [F]

(b) NEU students’ implementation of Max-Temps solution approaches

Max-Temps solution
structure Cyclic One-way Code-focused

Reshape-first NEU1-STUD4
NEU1-STUD6

[C]
[F]

NEU1-STUD1
NEU1-STUD3

[F]
[F]

NEU1-STUD10
NEU1-STUD5

[F]
[F]

Collect-first NEU1-STUD2
NEU1-STUD7

[C]
[C] - -

Process-until - - NEU1-STUD9 [F]
No clear plan - - NEU1-STUD8 [F]

specific element rather than the end of the list (the empty-list). They get stuck because they fail to see

the similarity of roles between -999 and the empty-list as base-cases. The following excerpts illustrate

this struggle with the list sentinel element.

WPI3-STUD11 : The first thing that really stood out to me was may contain the number -999

indicating the end of the data of interest. We’ve never done anything like that in class, so for me at

least, that was something new. [...] it was pretty unique in the whole -999 terminates the function.

I’ve never done anything like that before [...] I’ve never done anything like that so I didn’t know

how to go about doing it.

NEU1-STUD5 : maybe that’s kinda why I was having a hard time – I think that’s why this function

was – I was having so much trouble with it, was that we never did that in class before where we

would take some value in the list and cut off the rest of the list. I know we’ve filtered the list by

looking at the whole thing. But, again, we’ve never [terminated at a list value] [...] I think there’s

definitely a way to do it, but I couldn’t come up with it on the spot.

Observation 6.3.4. Some students who got stuck failed to identify the limitations of the pattern they

retrieved.
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A prevalent mistake among students who got stuck in Rainfall is that they started mechanically

from the list-template and wrote code for the average formula within the recursive-case of the template,

as in student WPI3-STUD2 ’s code in Figure 6.2.

Figure 6.2: WPI3-STUD2 ’s Rainfall solution

From the perspective of the problem, this makes sense: the list-type input prompts the retrieval of

the list-template, which students filled in with code for average. This, however, overuses the template.

Students with similar code to WPI3-STUD2 did not decompose the average code around the sum and

count subtasks into their own recursive templates, missing that the average task itself is not a recursive

computation, and thus requires a slight modification to the template (i.e. no recursive call). They did

not concretely think about how the retrieved average formula’s task-components impact the use of the

template code. Courses explain that a single template function can only perform one traversal-based

operation; our data suggests that this task-level decomposition needs more emphasis, and that students

may need to be taught how to recognize apriori when a problem requires them to modify the schemas

they know.

6.3.4 RQ 3: How Did Students Get Unstuck?

RQ 3 asks what students do when they get stuck on a problem. Our analysis, however, pointed to an

obvious pattern: when students got stuck, they remained stuck. We hoped students would fall back

on appropriate design recipe steps to uncover gaps in their understanding of the problem or of the

tasks. They didn’t recognize to use the design recipe techniques to get unstuck. In general:

Observation 6.3.5. Even when students started with the design recipe steps, they did not come back

to them when they got stuck.

Missed opportunities in Rainfall

Writing examples of the input or test cases would have helped students see the base-case role of -999;

none of those who got stuck did this. The following code shows examples of data, which all produce

the same rainfall average result.
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; Examples of data
(define data1 (list 1 2 -7 3 -999 4))
(define data2 (list 1 2 -7 3 -999))
(define data3 (list 1 2 -7 3))

; Examples of input -output pairs/test -cases
(check -expect (rainfall data1) 2)
(check -expect (rainfall data2) 2)
(check -expect (rainfall data3) 2)

Students mostly wrote examples and test cases at the start of their process and often just copied the

example given in the problem statement. When they wrote test cases at the latter parts of their process,

it was only to check if their code ran. They rarely, if ever, wrote examples and test cases to concretely

illustrate their current understanding of the problem or of the tasks and task-relationships at hand.

The average-formula problem is trickier: students could identify each of the task-components first,

then follow the design recipe for each of the inner-tasks (i.e. sum and count). Doing so should lead

students to simply call sum and count within average. This, however, requires a more explicit task-level

decomposition step before working on the design recipe, to identify task-components that may require

their own template-based traversals, or modifications to the list template (i.e. the non-recursive divide

task of average). None of the students who got stuck did this, instead modifying code in trial-and-error

fashion.

Students could also expand examples/test-cases to identify tasks or task-decompositions. For

example, they could expand test-cases to say that this call to rainfall:

(rainfall (list 1 2 3)) 2

is similar to this:

(/ (sum (list 1 2 3)) (count (list 1 2 3)))

which more explicitly shows a decomposition of the code relative to the tasks.

Missed opportunities in Max-Temps

Some students wrote data definitions, motivated by the novelty of a list with both numeric and string

elements. Their data definitions, however, were either incomplete or incorrect. For example, student

NEU1-STUD3 wrote a data definition for the elements of the input list, but missed writing a data

definition for the actual list; this led her to use a template that was only good for a list element, but not

the input list itself:
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She then incorrectly uses the above template to write a function for processing a list:

She eventually realizes that she used a template that was inappropriate for the input, but proceeds to

use a basic list template for her functions regardless, without appropriate modifications for the data in

the problem.

An appropriate input data definition and template for the list data in the problem would have been:

; A list -of-element is
; - empty, or
; - (cons string list -of -element), or
; - (cons number list -of -element)

; (define (func input)
; (cond [(empty? input) ... ]
; [(string? (first input)) ... (first input)

(func (rest input)) ... ]
; [(number? (first input)) ... (first input)

(func (rest input)) ... ]))

Even when students got stuck writing their code using a template that was not appropriate to the type

of input they were working with, many never went back to reexamine and correct their data definitions

(or template). The student ( NEU1-STUD3 ) who wrote the template that was inappropriate for the

input later on realized that the data definition and template did not fit the input she had to work with,

so she attempted to go back to her data definition to identify how to structure the template correctly,

but this was done late into her process so she ran out of time before finishing her solution. Students

whose Max-Temps code was close to correct wrote their functions using list-traversal templates with

appropriate modifications, i.e. they modified their templates based on the data in the problem. The

reshaping function by NEU1-STUD4 below uses a list-traversal template that is similar to the template

given above:
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6.3.5 Analyzing the Course Contexts

We conducted our studies towards the latter part of the courses; we thus expected students to have

had a significant amount of practice with using the design recipe to solve programming problems. As

we’ve discussed in the prior sections, some students did not use the techniques put forth by the recipe

when working on our study problems; those who did, did not use them mid-process to get unstuck,

or simply followed the recipe blindly. Many students used the design recipe in a mechanical manner,

seemingly without insight into how the different techniques (and artifacts produced from the use of

each technique) informed their solutions.

To understand our observations of students’ use (or non-use) of the design recipe, we conducted

a document analysis of the instructional materials used in our host courses. Document analysis is a

qualitative research method of systematically reviewing and evaluating documents in order to elicit

meaning to develop an understanding and knowledge of a phenomenon or subject of study [15].

Similar to other qualitative research methods, document analysis involves the organization of excerpts,

quotations, or passages into major themes, categories, or case examples through content analysis and

provides a context within which actors in a research project (e.g. participants) operate. In our specific

case, we analyzed the course materials produced by the instructors, which include the web pages

and electronic documents (e.g. PDFs, text files) used to disseminate homework problems, laboratory

exercises, course lectures, and course notes. We also informally interviewed the instructors to ask

about their practices in teaching the use of the design recipe to their students.

Ideally, a deeper study of the course contexts would have involved an ethnographic observation

of the classes to identify and understand the cultural and social interactions between the instructors

and their students; this would have helped us more deeply understand how classroom practices may

have shaped how students used or understood course topics (e.g. the design recipe). We were not able

to conduct this kind of study for a couple of reasons: our IRB proposals for both universities were

limited to only observing students during our designed study sessions and did not involve classroom

observations; in addition, it was our analyses of the student data we collected from the sessions that

prompted us to the need to analyze course contexts, by which time the courses had already finished

lectures and laboratory sessions.

Our main focus in this document analysis was to understand students’ use of the design recipe

from the perspective of the course context in which they learned to use them: in what ways were

students asked to use the design recipe and in what ways were they shown to use it? In other words:

how did they practice the use of the design techniques put forth by the recipe, given the activities

that students were asked to do in their courses? We also looked at what problems students had been

asked to work on (e.g. had they written accumulator-style functions with more than one accumulator?).
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These questions guided our collection and analysis of the course materials.

Data Collection: Course Materials

We collected the following course materials from each course website:

• Overall course syllabus and topic outlines

• Homework problems

• Laboratory problems/activities

• Course handouts and lecture notes

• Sample exams (from previous course offerings)

A summary of the course syllabi and the general topics covered by homework and labs in each

course is in Table 6.1 (page 92). The course handouts and lecture notes we retrieved contained

information such as: the design recipe, design recipe templates, rules on course submissions (e.g.

homework and lab exercises), vocabulary used in the course (e.g. definition of value/expression, how

to evaluate functions, etc.), and course policies. The homework and laboratory exercise documents

contained programming problem descriptions, instructions on submissions and logistics (e.g. setup

of programming environments, naming conventions for functions and data, etc.), and the goals or

expectations for the homework or lab.

Analysis of Course Materials

We focused our analysis on identifying the kinds of activities that students engaged in wherein they

used techniques from the design recipe. Our goal is to find and describe the connections between our

observations of the activities that students engaged in, and our earlier findings of students’ use of the

design recipe. I iteratively read through the course materials we extracted from the course web pages to

find common themes of activities students engaged in. In my analysis, I found that the course handouts

primarily served as quick reference notes, such as providing the list of the design recipe steps or the

recipe templates that were covered in the lectures. I thus focused my analysis on the homework and

lab exercise materials, as these provided more information on the actual activities students were asked

to do. I looked at what the homework and lab instructions asked students to do, the kinds of problems

students were asked to solve, and how students were asked to use the design recipe techniques.

Findings from the Document Analysis

A common theme across the homework problem sets were that students were generally instructed to

"Develop/Write a function to do <task>", where <task> is a computation that has an input and an

output, and may or may not have task-components (for example, homework given in the earlier parts

of the course only had students write functions with one task, whereas homework problems at the latter

parts of the course had multiple tasks). The following problem descriptions (Figure 6.3), both from the

first homework of each course, illustrate this.
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(a) WPI Homework 1 problem

(b) NEU Homework 1 problem

Figure 6.3: Problem descriptions from the first homework of the host courses

The examples in Figure 6.3 generally ask students to follow the design recipe to solve the pro-

gramming problems given. Furthermore, note that in addition to the problem descriptions, there are

supplementary instructions that remind students about writing artifacts related to certain design recipe

steps. For example, Figure 6.3a reminds students to "document" their functions with a signature and

purpose statement (recipe step 3) and to write test cases (recipe step 4); Figure 6.3b explicitly asks

students to write three test cases, as well as the input scenarios that two of these test cases should

cover. Other problems in the source homework of the sampled problems in Figure 6.3 also ask or

remind students to explicitly apply specific design recipe steps when solving a problem (Figure 6.4);

nonetheless, the problems in these homework 1 problem sets are all of the "Develop/Write a function

to do <task>" form.

(a) From WPI homework 1

(b) From NEU Homework 1

Figure 6.4: Homework 1 text of the host courses that remind students to apply the design recipe

Given that the source homework is the first homework of the course, it’s reasonable that the students

are further scaffolded (in addition to the design recipe itself being a scaffolded approach to program

design) by explicitly asking or reminding them to apply specific recipe techniques, as doing so may

help them get into the habit of using the design recipe. The rest of the homework for both courses

still retain the additional scaffolding of asking students to write specific recipe artifacts for problems

before writing code (e.g. writing data definitions and templates), but to a lesser extent. Most of the
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problems in the homework at the latter parts of the courses have more "Develop/Write a function to do

<task>" problems, with brief reminders to follow the design recipe. This is illustrated in Figure 6.5,

which shows excerpts from an NEU homework on writing functions for lists. In the case of the WPI

homework on the same topic of writing functions for lists (Figure 6.6), the homework provides the

data definition for a list-of-string and asks students to write a template based on the list-of-string data

definition, and functions over lists of strings.

(a) Reminder at the beginning of the homework problem set to follow the design recipe

(b) Problem descriptions involving writing functions for a list of booleans

Figure 6.5: NEU Homework 7 text on writing functions for lists

Figure 6.6: WPI Homework 2 text on writing functions for lists of strings

The NEU lab exercises are similar in nature to the homework given in the course: the labs are also

problem sets on specific topics (e.g. writing functions over lists) that are meant to, according to the

"General Information" page of the course, "explain some of the principles from lecture with hands-on

examples". On the other hand, the WPI labs seem to serve as an extension of the homework: the

activities in the lab ask students to write down the earlier steps of the design recipe for the problems in

the corresponding homework. For example, the lab activities shown in Figure 6.7 ask students to work

on the signatures, purpose statements, and examples/test cases for the problems in the corresponding

homework 2 in Figure 6.6.
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Figure 6.7: WPI Lab 2 text on writing functions for lists

We also looked at which patterns students had been asked to use, or had been exposed to, in their

course material. From our analysis of students’ solutions to our study problems (Section 6.3.3), two

WPI students attempted to use the accumulator pattern to solve Rainfall by accumulating the sum in

a parameter, but their transcripts show that they struggled to figure out how to generate the count:

a viable solution would have been to use two additional parameters to track each of sum and count.

WPI3-STUD5 noted in his interview that he had not used multiple accumulator parameters before,

hence he did not think of the idea while developing his solution for Rainfall. WPI3-STUD11 also

didn’t figure out to use separate accumulators for sum and count. In our analysis of the WPI lecture

notes, we found that students had only been shown examples of accumulator-style functions with

only one accumulator parameter, and in most cases, the accumulator was returned in the base case.

Students were shown accumulator-style examples of summing numbers, producing a list of words

that meet specific criteria, and producing the largest number in a list. Only one example showed an

accumulator-style function that did not return the accumulator in the base case; this example showed a

context-preserving accumulator-style function. These examples (Figures 6.9 and 6.10) followed the

steps that students were taught for defining accumulator-style functions (Figure 6.8).

Figure 6.8: WPI lecture notes on defining accumulator-style functions

The homework also had students write accumulator functions that only needed single accumulators.

The NEU students had not encountered accumulator functions at the time that we ran our study sessions,

so a similar analysis of NEU material on accumulator programming is not meaningful. None of the

NEU students had used accumulators in their solutions.

Other ways that students struggled with the problems is with adapting parts of the basic list template

to new contexts. In particular, students struggled to figure out how to recur over a modified suffix
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(a) Accumulator-style summing function

(b) Accumulator function that produces a list of words that meet specific criteria

(c) Accumulator function that produces the maximum value in a list

Figure 6.9: Accumulator function examples with one accumulator parameter returned in the base case
that WPI students were shown in lecture

Figure 6.10: A context-preserving accumulator function that does not return the accumulator in the
base case that WPI students were shown in lecture

of the list (other than rest) for Max-Temps, and how to handle the -999 sentinel for Rainfall (we

discussed these in Section 6.3.3). We found from our document analysis that students were only shown

(list-based) examples and problems that required terminating computations at empty and recurring on

the tail (rest) of the list.
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Takeaways from the Document Analysis

One takeaway from this document analysis is that the design recipe is consistently reinforced and

deeply woven into all the course materials: in lecture handouts, notes, homework, and exercises.

Students thus had significant exposure to, and are consistently reminded about, the design recipe

process. In our description of the curriculum (Section 1.1), we explained that HTDP courses show

how to apply the design recipe to increasingly rich data structures, starting from designing programs

over atomic data, to compound data (structures), to lists of atomic data and structures, to trees. Our

document analysis further illustrates this repeated reiteration of the design recipe and shows the effort

towards training the students in the design recipe process.

Another takeaway is that students primarily engaged in activities that asked them to follow the

design recipe when solving problems. Many of the students in our study did, in fact, follow the design

recipe when working on our problems, but did so mechanically. As we’ve discussed in Section 6.3.4,

even when these students followed the recipe, they failed to solve our problems and often got stuck,

missing opportunities to use their design techniques to get unstuck. Our recommendations about

using the design techniques to get unstuck requires going beyond a mechanical use of the recipe:

these require a meaningful and insightful reflection of how the recipe techniques informs and shapes

a solution (and other design recipe artifacts) in order to use them meaningfully. In contrast with the

students who struggled with the problems we gave, the students who were more successful described a

more meaningful use of the recipe techniques, in addition to exhibiting a cyclic approach toward the

problems. They explained how the input impacts the template to be used (instead of just mechanically

using the basic list template, as prompted by the list-type input), or how the space of examples touched

on certain tasks of the problem or connected to specific parts of code (rather than just using the example

provided in the problem statement).

None of the homework or lab exercises from our host courses had activities that focused on getting

students to reason about their use of the recipe, or explain how different recipe steps connect to each

other. The design of the homework and exercises mainly prompted students to use or follow the design

recipe, or even prompted them to write design recipe artifacts, which still remains in the activity space

of "following" the design recipe. This current design of the course activities may have driven students

to develop a habit of going through the motions of the design recipe steps; taking into consideration

the difference between students who demonstrated an insightful use of the recipe versus those who

didn’t, our findings suggest that a habitual, mechanical use of the recipe may not be enough to solve

our multi-task problems. In other words, developing a habit around using the design recipe may not

necessarily imply an insightful use of it. As we did not (and could not) do a class observation in either

of the host courses, we cannot make claims about whether or not the instructors only tried to teach the

students to use the recipe mechanically, or whether or not (or to what extent) they aimed to prepare

students for reasoning with the recipe. Our findings, however, suggest that students may potentially

benefit from activities that not only directs them to follow the recipe process, but also to practice

reasoning about their use of the recipe techniques and how the techniques connect to or inform each

other; our recommended ways of using the design techniques fall into this space of activities.
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Our observations about the kinds of problems that students have seen also point to the need for

students to do a wider variety of data design activities. Students seem to develop a form of functional

fixedness over the patterns they use, having only been exposed to examples and problems that don’t

require designing beyond the basic list template, or, in the case of accumulators (for the WPI students),

accumulator functions that only used single accumulators. Our findings suggest that students seem

to have just absorbed the syntactic structure of the patterns they’ve seen, rather than the underlying

concepts around the patterns. Having students practice designing for problems with a wider variety of

data contexts may help drive home the concepts underlying the patterns they retrieve and move them

beyond a mechanical use of their patterns.

6.4 Insights and Takeaways

We developed a conceptual framework that captures the task- and code-level thinking students engaged

in as they solved our programming problems. Our findings suggest that students who exhibit a cyclic

pattern of task- and code-level thinking had the most success with the problems we gave. These

students concretely described relationships between tasks, made concrete connections between tasks

and code, as well as maintained these connections throughout their programming process. Students

who struggled failed to capture how the tasks in the problems interconnected, could not transfer

patterns to new contexts, or overused the patterns they retrieved.

6.4.1 Insights on Teaching the Design Recipe

Our observations of how students used the design recipe suggests that they see the recipe as a process

to start with and follow, but not as a set of techniques to return to when they get stuck. Discussions

with the course instructors corroborated this hypothesis: lectures had not emphasized using the recipe

steps when debugging. These suggest that the students may have built a habit of following the design

recipe, but not necessarily an insight around how each recipe step is a technique towards building a

concrete understanding of the problem-space. Students may need additional instruction that focuses

on how to use the design recipe steps mid-process (not only to start with) when they get stuck. For

example, students might be given code with errors and explicitly asked to reason about the causes of

the errors using specific design recipe steps, like examples and test-cases. Targeted exercises such as

this might help students practice a more insightful use of the design techniques rather than just as a

mechanical habit.

6.4.2 Insights on Task- and Code-level Thinking

Our observations confirm findings from our previous study (Chapter 3) that students think in terms of a

problem’s core tasks. Where they struggle is in concretizing relationships between tasks, which affects

their ability to compose tasks’ code implementations, especially for tasks they have not seen before.

Students could be taught to use techniques from the design recipe to help uncover some of these
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relationships, for example, by teaching them how to expand examples to identify task decompositions

of the code. Some task-relationships required new patterns students have not seen, for example, doing

a recursion on a modified list suffix or prefix, or keeping track of lists using another list. This suggests

that just because students have seen an instance of a pattern (e.g. a list of numbers; recursion on the

tail of the list), does not mean that students can generalize those patterns to other contexts (e.g. a list

of lists; recursion on a modified suffix of the list). As instructors, we should be careful not to assume

that students have understood the underlying idea behind a pattern, simply because we’ve shown them

an instance of it. Focusing on enforcing students’ understanding of patterns they’re taught may help

them navigate between tasks and code better in new situations. This highlights the need for students

to engage in learning activities that lets them practice the use of their design techniques in wider and

more varied contexts, such as doing data design activities with a wider variety of data. Our analyses

also highlight the importance of teaching task decompositions explicitly, as we have found that the

more successful students used their task-level plans to guide the compositions of their code. One

way to go about this is by having students do more activities around identifying and planning around

problem-tasks, but without expecting them to write code; for example, students might be given several

multi-task problems where they identify tasks and concretely describe how the tasks relate to each

other, perhaps by using type signatures to relate how the tasks’ outputs connects to other tasks’ inputs.

Overall, our findings indicate that students need to be explicitly taught techniques for navigating

back to high-level plans when they get stuck, how to identify when current code has diverged from

a plan and needs to be rethought, and how to leverage their design techniques when rethinking their

solutions.

6.5 Status of Dissertation Research Questions

Our findings from this study points to particular interactions between how students applied their

program design skills, and the variety of problems they have previously engaged with in class. We also

identified three approaches students took towards solving multi-task programming problems. Based

on our findings, we also propose some activities that can be done in class that leverage some design

recipe steps towards teaching task-level planning explicitly.

DRQ2 What interactions do we observe between students’ program design skills and how do
these contribute to their development of solutions for multi-task programming problems?

In our previous study (Chapter 5), we identified the following interaction between two program

design skills:

Interaction: Meaningful pattern use and task-level thinking

Students who applied the above skills at a relational level were more successful towards writing a

correct (or close to correct) solution for a multi-task programming problem. They used the insight

from their task-level plan to guide their use, or restructuring, of the patterns they retrieved. Those
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who applied the skills at lower levels (at most multistructural) struggled to write a working solution,

often retrieving and using patterns mechanically without any clear plan towards a solution.

Our analyses in this study allowed us to tease out certain interactions between (a) the variety of

problems with which students have practiced their design techniques and (b) their application of their

design skills on multi-task problems. While these are not skill-to-skill interactions (which is what

DRQ2 is about), these interactions seemed to have a critical influence in how students applied their

design skills towards solving our multi-task programming problems.

Interaction: Problem variety and leveraging multiple representations of functions

Some students who got stuck in Max-Temps struggled because they used data definitions and/or

templates that were inappropriate for the type of input they were writing functions for. Some struggled

to figure out how to write a data definition (or template) for the Max-Temps data.

We inspected our host courses’ syllabi, homeworks, and exercises to understand why students

struggled to design data definitions and templates for Max-Temps. Our analyses revealed that the

students had only practiced using their design techniques on a limited repertoire of data. Specifically

with lists, students have only experienced designing for data that used the basic list data definition

(and template), so they did not have experience using their design techniques for data such as the

one in Max-Temps; while the problem’s input data was a list (for which they at least had the list

template schema to start with), manipulating their known schema to design a template for a list that

had elements that played specific roles (i.e. delimiters that indicated sub-parts of the list that need to

be processed separately) seemed to be a significant design challenge for students. This suggests that

students may need to do a variety of data design activities that would expose them to various data

situations they might encounter, as well as drive home the idea of how to design data definitions (and

templates) for different data beyond the basic lists they’ve seen in class.

Interaction: Problem variety and meaningful use of patterns

Some students also struggled with adapting the patterns they’ve learned to new contexts. In Rainfall,

for example, students got stuck figuring out how to handle the -999 sentinel; in Max-Temps, they got

stuck figuring out how to recur over a modified suffix of the list, and not just the tail (rest) of the

list. None of the students had worked on list problems that terminated prematurely at an element,

rather than at the end of the list (empty); they also have not worked on list problems that recurred on

anything other than the rest of the list. This suggests that these students may have attributed some

form of functional fixedness [88, 96] over parts of the template (i.e. the base-case and recursive-call

parts), having not seen or practiced on problems that required a use of these template parts beyond the

basic empty base-case or recursion on the rest of the list. This suggests that students may need to be

exposed to (and practice on) problems that require manipulating the base-case and recursive-call parts

beyond their typical use. Such problems may help illustrate the "malleability" of parts of the template
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beyond just the template "holes" that are typically considered the "malleable" parts, i.e. filled in with

problem-specific computations.

DRQ4. How do HTDP-trained students approach multi-task programming problems with novel
components?

In our prior studies, we found that students approached multi-task problems by:

1. Decomposing a problem on-the-fly around code they have already written.

2. Retrieving code-level plans without adjusting them to the need of the problem.

3. Using HTDP design practices mechanically.

4. Articulating a task-level plan in advance.

In this study, we further synthesized the above practices we found into the following programming

process patterns:

1. Cyclic
Cyclic students move back-and-forth between task- and code-level thinking throughout their

process. They concretely describe relationships between tasks in the context of an overall plan

for a solution and use their insight from task-relationships to guide the composition of their

code. They apply the decomposing tasks and composing solutions skill at a relational level

consistently throughout their process.

2. Code-focused
Code-focused students primarily work at the code-level throughout their process. They focus

on retrieving and implementing code patterns and constructs relative to the tasks (which they

often identify on-the-fly), but do not concretize how the tasks integrate with each other. Their

descriptions of plans are thus fragmented and lack an overall task-level plan towards a solution.

They often use the patterns they retrieve mechanically and without thinking about how a

problem’s task-components impact the code patterns they use.

3. One-way
One-way students exhibit a relational application of the decomposing tasks and composing

solutions skill by identifying a task-level plan for a solution early on in their process, but do not

remain consistently at this level throughout their process. Once they move on to implement tasks

in code, they regress to a code-focused process and fail to maintain the connections between

tasks, and between tasks and code.

These programming process patterns that we found also suggests that it is not enough for students

to exhibit their skills at the relational level, but that they must consistently remain at this level

throughout their programming process to be successful in solving multi-task problems. This might be

one explanation for the non-monotonic skill progressions we found in our second study (Chapter 4):
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the lack of consistency in applying skills at certain levels may indicate the fragility of a student’s skills.

This could be a good indicator of when students might need help or interventions towards helping

them practice applying their design skills; some of our proposed activities within this section could

potentially be used towards this.

Other lessons learned

One of our takeaways from this study was that it was not enough to teach students to use the HTDP

design techniques to plan solutions in advance. Students also needed to be explicitly taught how to

leverage the design techniques they know mid-process or when they get stuck, as well as engage in

activities that help them practice their design techniques on a variety of problems.

1. Using examples
We observed that some students just copied the example provided in the problem-statement,

suggesting that they are using the technique mechanically. Giving students code with errors and

having them reason about the causes of the errors using specific examples may help students

practice a more insightful use of examples.

We had also hoped that students would expand examples to work out the task decompositions of

their code; this was a similar hope we had way back in the first study (Section 3.6.3). None of

the students across all our studies did this and none of our host courses taught students how to

use examples in this way, yet this seems a potentially valuable practice given that most students

struggle with (or do not even practice) task-level planning, and end up getting stuck while

working purely in code.

2. Teaching task-level planning explicitly
Building on the above point and as highlighted by our findings in this study, students need to

be explicitly taught how to plan at the task-level, as we have found that the more successful

students used their task-level plans to guide the design and composition of their code. One

way this could be done is by having students do more activities that involve identifying and

planning around problem-tasks, but without expecting them to write code. For example, students

might be given several multi-task problems where they identify tasks and concretely describe

how the tasks relate to each other, perhaps by leveraging design recipe steps such as the type

signatures to relate how tasks’ outputs connect to other tasks’ inputs. One student in this study,

NEU1-STUD9 , did something similar by using purpose statements to describe connections

between helper functions. This at least suggests that the practice may be promising.





Chapter 7

Study: Impact of a Lecture on Program
Plans in First-Year CS

Background and Context: One critical finding from our prior studies is that task-level planning

needs to be made an explicit part of instruction. Some researchers have made notable efforts at

teaching students high-level strategies or plans from the onset, but this requires a concerted effort to

make planning a central part of the introductory curriculum. (Section 7.1)

Objective: We were interested in whether a lightweight approach to teaching planning could have

any effect, or whether only a comprehensive overhaul of the courses—which may be impossible

given a department’s other needs—would suffice.

Method: We ran studies with first-year students at two universities. In a pre-assessment, we assigned

students multi-task programming problems and leveraged those to give a single 50-minute lecture on

plans and tradeoffs. In the post-assessment, we gave students a new set of programming problems

and asked them to produce two solutions to each problem, each embodying a different plan. We also

asked students to preference-rank their solutions to see what criteria they were learning to apply to

plans. (Section 7.2)

Findings: Results suggest that lightweight instruction in planning can have significant impact,

assuming students can produce correct solutions for the pre-assessment questions. Many students

produced two different plans in the post-assessment, often choosing a general plan that was first

introduced in the planning lecture. When preference-ranking their solutions, many students chose

solutions with a different general structure than what they wrote on the pre-assessment. (Section 7.3)
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7.1 Study Context: Cognitive Foundations of Planning

As we discussed in Chapter 2, the landscape of first-year programming courses tends to focus in-

struction on low-level programming constructs, with the expectation that students implicitly build

their knowledge base of problem solving and programming strategies from trial-and-error through

extensive sets of exercises [36]. Some recent studies show students succeeding at plan composition

in specific contexts [51, 122], but the pedagogic choices that help students with planning remain

poorly understood. Some researchers have looked at improving planning skills through pedagogical

frameworks and practices that explicitly teach systematic problem solving strategies in programming:

Porter and Calder suggests a process for building a pattern vocabulary for guiding students through

problem decomposition [108]; Muller, Haberman, and Ginat developed pattern-oriented instruction that

involved attaching labels to algorithmic patterns [94]; and de Raadt, Watson, and Toleman incorporated

programming strategies in an introductory programming curriculum and required students to apply

specific strategies in their solutions [39].

Different strategies for teaching planning build on results of how people construct programs at

a cognitive level. Given a programming problem, programmers (subconsciously) identify solutions

to similar problems and adapt them to the constraints of the problem at hand [106, 107, 117, 130].

Repeated application of a pattern helps programmers form a mental schema for that problem (which

could be recalled later for solving other problems); repeated use of a schema strengthens later recall

of that schema [87, 99]. This basic architecture underlies curricular approaches to teaching patterns

explicitly.

How much exposure students need to a solution schema before they can apply it to new problems

remains an open question, and one that depends on a student’s experience level. We would not expect

a truly novice programmer to internalize a solution that used constructs (such as iteration) that the

student had simply been shown in class: internalizing code patterns requires practice with actually

using them. But what if a student had written several programs that traverse lists (for example),

then saw a program that traverses a list to accomplish a slightly different goal than before? It seems

plausible that the student could subsequently produce a program that handles the latter goal, even

without separate practice (by virtue of having internalized both list traversal and any other constructs

required for the latter goal). Given that there are differences between knowledge schemas and strategy

schemas (as both de Raadt et al. and Caspersen cite [16, 39]), students may require less direct practice

to internalize a new pattern that built on already-internalized schemas.

These results frame our experiment for this study: our intervention, a lightweight planning

lecture, shows students new ways to cluster subtasks of planning problems (Section 7.2.3). All of

our participants had been learning and practicing writing list traversals prior to the experiment. The

planning lecture showed new (relative to the course contents) high-level ways to decompose a planning

problem into (potentially multiple) list traversals. This explicit planning instruction had not been

incorporated into any of our host courses in our studies in the previous chapters and we were interested

to see whether students would apply these high-level strategies to new problems based just on the
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single lecture (without us telling them which solution style to produce, as other pattern-based studies

have done [39]). Building on the cognitive literature described (and more extensively covered in

Chapter 2), as well as our findings on task-level planning from our own studies, our project explores

the following research questions:

STUDY-RQ1. Can planning be taught at all in the first year? Or is it a topic that can only

be covered after students have had significant experience with programming, software

engineering, and/or computer science?

STUDY-RQ2. Assuming it can be taught, what are the differences between groups of

students in their ability to construct multiple plans, rank different plans, and talk about

programs with a plan-oriented vocabulary?

STUDY-RQ3. Assuming students can engage in these plan-oriented activities, how much of

an intervention is necessary before they can do so? Does the class need to be restructured

to make planning a focus, or can it be done with a lightweight intervention?

7.2 Study Design

At a high level our study had three components, which we applied slightly differently in each of two

courses (Section 7.2.1). Sections 7.2.2 and 7.2.4 discuss the specific problems used on the assessments.

The three components were:

1. A pre-assessment (Section 7.2.2) in which students were asked to produce solutions to 2–3

programming problems. In one course, which had more time for this, students were also given

2–3 solutions to different problems and asked to rank them (with justification) in order of their

preference between these solutions.

2. A single 50-minute lecture (Section 7.2.3) on planning and design tradeoffs. The lecture used

the pre-assessment problems to frame the discussion, showing different high-level ways to

decompose a planning problem into a collection of list traversals. The same instructor gave the

same lecture in both courses.

3. A post-assessment (Section 7.2.4) in which students were asked to (a) produce two solutions

with different plans to each of 4 programming problems and (b) to preference rank between their

solutions (with justification).

Ideally, we would have asked students to write multiple solutions with different structures in

both the pre- and post-assessments. This would have let us gauge whether students could construct

different plans even before the lecture, and also given us insight into which planning strategies students

already knew. Unfortunately, we were unable to find a way to phrase this task that was not either

extremely frustrating to students (because they could not understand the required task) or that did not

essentially give away the answer. We still gain some insight into their background from their rankings
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(Section 7.3.3), but determining how to establish a baseline more authoritatively remains an open

question.

The questions in the pre- and post-assessment were carefully chosen to introduce some broadly-

applicable strategies in multitask programming problems. In particular, we exposed students to

problems with the following features:

• Noisy data that could be cleaned prior to performing the main computation.

• Flattened data that could be reshaped to a structure that was better suited to the main computation.

• Overly-long data that could be truncated to a prefix of interest for the main computation.

In addition, the posttest included computations that targeted a projection of the data (say to a

specific field within an object). We did not emphasize projection in the pre-assessment as students

had experience with this idea from other assignments in both courses. We used the lecture to discuss

cleaning, reshaping, and truncating in the context of the pre-assessment problems. We also discussed

various design tradeoffs that these offered, including impact on run-time efficiency, ability to adapt the

solution to a different dataset, and readability and maintainability of the resulting code.

7.2.1 The Host Courses

We conducted the study in two first-year CS courses at different universities. Each course was taught

by a different instructor. Students in both courses had some prior programming experience, but the

nature of that experience differed both across and within the populations. We describe each course in

turn.

• CRS-BROWNU is an accelerated CS1 course that compresses much of the first year into a

semester. Students test into the course after one month in the department’s regular CS1 course.

Though it is open to all, most students in the course have some prior experience, usually with

imperative or object-oriented programming in Java or Python. The course is taught in Pyret, a

functional language with syntax reminiscent of Python.

• CRS-WPI is a CS2 course on object-oriented programming and data structures, taught in Java. Stu-

dents feed into the course from one of two introductory courses taught in functional programming:

one feeder (CRS-WPI-NVC) course is for novice programmers, while the other (CRS-WPI-EXP)

is for students with prior programming experience. Students from CRS-WPI-NVC have seen little

to no imperative programming prior to CRS-WPI, while students from CRS-WPI-EXP have prior

experience similar to that of CRS-BROWNU.

These descriptions indicate that we actually have three student populations within our two courses,

with interesting overlaps among them. Table 7.1 summarizes these populations. “Prior Experience”

estimates students’ programming experience prior to the current course: courses are 7 weeks long

at CRS-WPI, while most students in CRS-BROWNU and CRS-WPI-EXP may have had a year or more
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of prior programming. “Prior Imperative” indicates whether students had previously programmed

imperatively. “Used Iterators” says how much students had worked with higher-order functions (such

as map and filter) before the pre-assessment. These constructs featured heavily in CRS-WPI-EXP and

CRS-BROWNU, but were introduced more lightly in CRS-WPI-NVC.

Table 7.1: Student populations in the study

Course Course
Language

Prior
Experience

Prior
Imperative

Used
Iterators

CRS-BROWNU Pyret maybe more yes yes
CRS-WPI-NVC Java 7 weeks no a bit
CRS-WPI-EXP Java maybe more yes yes

Both the CS1 course that preceded CRS-WPI and the CS1 course from which students placed into

CRS-BROWNU followed a similar program design curriculum, How to Design Programs [48], taught

in functional programming with Racket. While the overall assignments and lectures in these two CS1

courses were not identical, they taught largely the same concepts and the same method for developing

programs and writing good test suites. While we cannot control for differences in the pre-university

programming background of students participating in this study, the common CS1 foundations provide

some degree of a shared baseline.

Prior to the pre-assessment, CRS-WPI had covered both kinds of for-loops for iterating over Java

linked lists. In-class examples of for-loops consisted of simple list traversals that accumulated answers

(such as summing a given field across a list of objects) or filtering out a subset of elements. The

pre-assessment was the first assignment in the course on programming with lists and for-loops.

Sampled Populations

All in all, there were 75 students in CRS-BROWNU and 290 in CRS-WPI. While all students completed

the study, our (manual) analysis uses a sample based on final course grade. Acknowledging that

overall course performance (as indicated by formal course grade) could be a relevant factor, we aimed

for a sample of 10 students from each passing grade (A, B, and C) in each course. Since CRS-WPI

had two different feeder populations, we sampled separately from both feeder populations. Some

subpopulations had fewer than 10 students in a grade band who submitted both assessments working

individually (CRS-WPI allowed pair work). We had seven C-range students in each course, eight

B-range students in CRS-WPI-EXP, and a full 10 students in each other population. In total, our sample

included 27 CRS-BROWNU students, 27 CRS-WPI-NVC students, and 18 CRS-WPI-EXP students. The

different grade bands did not manifest meaningfully in our analysis, so we do not discuss them further.

7.2.2 Pre-Assessment

The pre-assessments for both courses contained 2 or 3 programming problems; in CRS-BROWNU,

students were also asked to preference rank among solutions to 3 additional problems. For the pre-

assessment, we used the problems from Fisler et al. ’s recent study [53], as they had been designed for
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multi-linguistic contexts such as ours. We reproduce here the statements of problems that feature in

our analysis, but defer descriptions of the other study problems to their paper or to Appendix E, which

shows the problem statements and the solutions given in the ranking questions.

In CRS-BROWNU, the pre-assessment consisted of the Palindrome, Sum Over Table, and Adding

Machine problems. Our analysis looks at Adding Machine, which features flattened data that could

be reshaped into a list of sublists and a prefix of data (prior to the consecutive zeros) that could be

truncated.; the full problem description and typical solution structures are described in Section 3.2

(page 29). For the purpose of discussion, we briefly revisit the solution structures here (we use these

solution structures to bin students’ solutions in our analysis, which we discuss further in Section 7.3.1):

Single Traversal: Traverses the input data once, accumulating (a) the sum of the current

sublist and (b) the output, returning the output when the consecutive 0s are detected.

Nested Traversal: Like Single Traversal, but an extra inner loop re-traverses the sublists

to compute their sums.

Reshape: One traversal converts the pre-00 input into a list of sublists; a second traversal

produces the list of sums of each sublist.

Clean: One traversal truncates the data prior to 00; subsequent traversals follow one of

the other solution structures.

We did not give the same programming problems in CRS-WPI because the instructor felt they were

beyond what the students were prepared to do. Students did not know the string- or array-operations

needed for Palindrome. The consecutive-position delimiter in Adding Machine would also have been

new to the students from CRS-WPI-NVC. For CRS-WPI, we instead used two different problems from

the Fisler et al. study, specifically the classic Rainfall problem and Length of Triples. Rainfall involves

noisy data (negative numbers that should not be averaged) and a delimiter for the relevant data. Length

of Triples asks for the longest concatenation of three consecutive elements from a list of strings.

For the questions that asked students to rank solutions in CRS-BROWNU, students were given

multiple solutions to three programming problems, asked to state their preferences among the solutions,

and told to justify their decision (we did not suggest criteria for the comparison). For this component,

we used the same ranking problems as in the Fisler et al. paper [53] (their paper includes a link to

their detailed problem statements; we simply adapted their solutions to the programming languages

used in our courses). The specific problems were the Rainfall and Length of Triples problems given to

the CRS-WPI students as programming problems, as well as the Shopping Cart problem that asked

students to compute the total cost of a shopping cart after applying discounts when certain volumes of

items were being purchased.

We did not include a ranking problems portion in CRS-WPI due to time constraints within that

course. The programming problems were given within a larger assignment in that course, and the

instructor did not feel the students could handle the additional work of the ranking problems in the

time available for the assignment.
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7.2.3 The Lecture Intervention

Within two days after the pre-assessment was due, one of the course instructors (from CRS-WPI)

lectured about the problems in each course (guest lecturing in the course for which she was not the

regular instructor). The lectures were not identical since the pre-assessment questions were different,

but they covered similar content.

In CRS-BROWNU, the lecture started with a discussion of the ranking problems and the tradeoffs

students considered. The instructor moderated discussion among the students, making sure that each

of efficiency, aesthetics, maintainability, and code structure were given due attention. The instructor

showed possible solutions to Adding Machine, explicitly discussing reshaping the input and truncating

the input at the sentinel pattern as applicable strategies.

In CRS-WPI, the instructor showed multiple solutions to each of Rainfall and Length of Triples.

The former was used to point out cleaning and truncating as strategies; the latter was used to point

out reshaping. These solutions were posted for later reference. Again the instructor moderated a

class-wide discussion among the students of the tradeoffs across these solutions to both problems.

In both lectures, the instructor described planning as the general task of allocating subproblems to

traversals of the data. While this is a somewhat more code-focused definition that we might otherwise

like, it was designed to give students a way to assess whether their two solutions would be “different”

from the perspective of the post-assessment, though at this point they did not know what they would

be asked to do on that assignment. However, the emphasis of the lecture was not on this definition but

on concrete strategies, to help them build a vocabulary of planning operations.

7.2.4 Post-Assessment

For the post-assessment, we sought problems that were amenable to the reshaping, cleaning, and

truncating strategies discussed in the lecture. We wanted problems that resembled, but were not

identical to, the pre-assessment problems. The post-assessment contained four problems; students

were required to (a) submit two solutions (with different structures) for each problem, and (b) state a

preference between their two solutions (with justification). Teaching assistants in both courses were

instructed not to give students much help in figuring out what a second solution would look like, but

rather to refer them to their notes from each lecture.

We focused our analyses on two of the problems, due to their particular similarities with the

pre-assessment problems:

Data Smoothing: Given a list of health records with a numeric heartRate field, design

a program dataSmooth that produces a list of the heartRates but with each (internal)

element replaced with the average of that element and its predecessor and successor.

For example, given a list of health-records with heart rates [95, 102, 98, 88, 105], the

resulting smoothed sequence should be [95, 98.33, 96, 97, 105].

This problem, like the Length of Triples problem which both courses saw in the pre-assessment,

looks at three-element windows within an input list. This problem is a good candidate for reshaping.
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Other viable strategies include first extracting all the heart-rates from the health records (resulting in a

list of numbers to smooth), or simply doing the entire computation in a single traversal of the input

data.

Earthquake Monitor: Write a program that takes a month and a list of readings from

an earthquake sensor. In the input, 8-digit numbers are dates and numbers below 500

are readings for the preceding date. Produce a list of reports containing the highest

reading for each date in the given month. For example, given the list 20151004 200

150 175 20151005 0.002 0.03 20151207 and 10 for the month, the program should yield

[report(4, 200), report(5, .03)].

This problem resembles Adding Machine in having sublists within the data, which makes it a

candidate for reshaping. Like both Adding Machine and Rainfall, it has a sentinel (in the form of data

from a later month). It could be approached with a single traversal that accumulates the max value per

date, a cleaning phase that restricts the input data to the desired month, or reshaping prior to computing

the reports.

7.3 Analysis and Findings

In discussing our findings, we find it useful to organize our results by course, first discussing what

we observe from CRS-BROWNU, then contrasting those results to the data from CRS-WPI. A direct

comparison of the results from the two courses is not meaningful due to differences in the students’

backgrounds and the smaller set of questions used with CRS-WPI. We still find value, however, in

seeing how two groups of students with some similarities in their backgrounds fared in this experiment.

The analysis will show interesting differences across the two courses; this gives a much more realistic

picture of the proposed intervention than if we had reported on one course alone, despite the differences

in the details of problem selection.

7.3.1 Coding Analysis of the Data

Coding the Solution Structures

We coded individual solution structures by (a) enumerating the subtasks for each programming problem,

and (b) writing a regular expression to capture the clustering and sequencing of subtasks within the

solution. We grouped the regular expressions into larger bins based on how they handled the main

strategies (reshaping, cleaning, truncating) covered in this study. For Data Smoothing, for example,

the subtasks were (E)xtracting the heart-rate, (S)moothing the data, and optionally (R)eshaping the

data. A code of R;(E+S) captures a solution that reshapes the data then extracts the heart-rates and

computes smoothed values in a subsequent traversal. This solution would be classified as “Reshape

First”. Section 7.2.2 outlined four larger bins that arise for Adding Machine; similar terms describe

bins for the other problems.
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Coding the Preference Criteria

Ranking criteria were processed through open-coding. Four main themes emerged:

1. Efficiency: Mentions runtime, performance (e.g. Big-O), memory use, or efficiency of opera-

tions used

2. Structure: Discusses use of specific operations, constructs, or clusterings of subtasks

3. Aesthetics: Readability, comprehensibility, or reflecting the problem statement in the code;

often positive tone

4. Maintainability: Mentions ability to maintain, debug, or adapt the solution to new data

7.3.2 The view from CRS-BROWNU

The data from CRS-BROWNU suggest that our intervention lecture had a noticeable impact on students’

planning behavior. Figures 7.1 and 7.2 show the structures that CRS-BROWNU students used in Adding

Machine on the pre-assessment and Earthquake Monitor on the post-assessment, respectively. We

contrast these two problems because they have similar attributes: flattened sequences of structured

data, with a computation (sum or max) to be performed on a delimited subsequence of relevant data.

Students took a variety of approaches in the pre-assessment, with some using reshaping. Usage of

reshaping jumps significantly (p < .006 with a McNemar’s test) in the post-assessment: about 70%

of CRS-BROWNU students used reshaping in one of their two Earthquake Monitor solutions. Even in

Data Smoothing, roughly the same number of students chose to reshape as did a single data traversal.

Thus, there is evidence that CRS-BROWNU students learned and applied the reshaping strategy from

the single lecture.

Figure 7.1: Structures of Adding Machine solutions in CRS-BROWNU from the pre-assessment

Significant contrasts also arise when we examine CRS-BROWNU students’ ranking preferences

between the two assessments. Figure 7.3 shows the criteria that students used when ranking the Rainfall

and Shopping Cart problems from the pre-assessment, alongside those for Earthquake Monitor on

the post-assessment (these are for the entire population of 75 students, not just the sampled subset).

The three most common categories (efficiency, structure, and aesthetics) are the same in the two

pre-assessment problems, though aesthetics is more prominent on Shopping Cart, which involves
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Figure 7.2: Structures of Earthquake Monitor solutions in CRS-BROWNU from the post-assessment

more subtasks than Rainfall. In the post-assessment, efficiency is cited significantly less often (p <

.0001) while maintainability grows significantly (p = .02). Maintainability is a potential issue for

both Rainfall and Shopping Cart, but particularly the latter (as the store could begin to offer more

or different discounts). Table 7.2 shows the evolution of these criteria on a per-student (rather than

aggregate) level, summarizing numbers of CRS-BROWNU students who raised various criteria in each

of the assessments. The table shows that many students both dropped and gained criteria over the

course of the study.

Figure 7.3: Criteria CRS-BROWNU students cited while ranking solutions to Rainfall (pre), Shopping
Cart (pre), and Earthquake Monitor (post)

All in all, the lecture had the impact we hoped for in CRS-BROWNU: students showed their ability

to produce solutions with multiple plans (only 4 students had the same high-level plan on Earthquake

Monitor and only 5 had the same high-level plan on Data Smoothing; only one student overlaps these

two groups), most students raised more issues when discussing tradeoffs among solutions, and many
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Table 7.2: Criteria raised by CRS-BROWNU students across pre- and post-assessment rankings

Criterion Pre, not post Post, not pre Pre and post
Efficiency 31 - 36
Structure 24 9 15
Aesthetics 14 1 35
Maintainability 7 20 3

students changed the solution structures that they preferred in the post-assessment (which is merely a

sign that the lecture impacted their thinking, not that their analyses necessarily grew more accurate).

7.3.3 The view from CRS-WPI

Contrasting the CRS-BROWNU data with those from CRS-WPI paints a more nuanced picture of the

impact of the single lecture. In particular, taken as a whole, the lecture’s impact is less significant; we

also see interesting differences between the CRS-WPI-NVC and CRS-WPI-EXP subgroups of CRS-WPI.

We also see differences between CRS-BROWNU and CRS-WPI-EXP, who had been working in different

programming languages despite a fairly common curriculum (and common programming language)

just a month or two prior to the study.

Figure 7.4 contrasts the Earthquake Monitor solutions across all three populations in the post-

assessment. Two observations jump out. First, a significant percentage of students in CRS-WPI were

unable to solve the problem at all (the “No Code” group): of the 45 students sampled, 11 turned in

no solution for Earthquake Monitor (9 from CRS-WPI-NVC, 2 from CRS-WPI-EXP), while another 6

students turned in only one solution. Of those who turned in only one solution, half used reshaping

while the others did a straightforward loop-based traversal or nested traversal. In contrast, there was

only one case of a “No Code” solution in CRS-BROWNU. We suspect that the “No Code”s came partly

from the lack of programming experience in CRS-WPI-NVC and partly from students running out of

time (Earthquake Monitor was the last problem on the assignment, which was due just before students

left campus for Thanksgiving, a mid-course holiday.)

Setting aside the “No Code” students, the dominant solution structures differ across the three popu-

lations: “Reshape First” dominates in CRS-BROWNU, “Single Traversal” dominates in CRS-WPI-NVC,

while these two are fairly even in CRS-WPI-EXP. This suggests that reshaping strategies may be harder

for students to adopt with only novice programming experience.

On Data Smoothing (Figure 7.5), the two CRS-WPI populations are more similar to each other, with

much heavier use of “Single Traversal” solutions, especially compared to the dominance of “Extract

First” solutions in CRS-BROWNU. Here, we strongly suspect that programming language constructs

were a factor. Most of the CRS-BROWNU students used a built-in map function to extract the heart rates

from the health records. While Java 8 provides map, it is somewhat clumsy to use and only a handful of

CRS-WPI students had been exposed to it by the class (in an optional lab for students who wanted a

challenge assignment). A basic Java for loop is straightforward for Data Smoothing, so we should

hardly be surprised that students used it.
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Figure 7.4: Structures of Earthquake Monitor solutions from the post-assessment

Figure 7.5: Structures of Data Smoothing solutions from the post-assessment

Of the 45 CRS-WPI students, 16 produced two Data Smoothing solutions with the same high-level

structure. This suggests that many CRS-WPI students didn’t really understand the idea of multiple

program plans just from the single lecture, or perhaps that the alternate plans for Data Smoothing

were too subtle for many students. Of the strategies provided by the lecture (cleaning, reshaping,

and truncating), only reshaping applies to Data Smoothing; if reshaping was indeed too hard for

students, they would have been left without named strategies to apply to the problem. Instead, they

would have to have understood the more general point about different structures allocating tasks
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differently to traversals of data. The pre-assessment data did not shed light, as all but one student

used a “Single Traversal” structure to program Rainfall. Prior experience is not the explanation either:

these 16 students were roughly evenly split between CRS-WPI-NVC and CRS-WPI-EXP. Whether

CRS-WPI students would have understood this idea better had they also done ranking problems on the

pre-assessment is a question for future studies.

7.3.4 Preference Ranking of Own Post Solutions

Recall from Section 7.2.4 that students were asked not only to generate two different plans for the

solutions, but also to state a preference between the two. Here, we study the outcome of this activity

from both courses (CRS-BROWNU and CRS-WPI).

All the CRS-BROWNU students submitted preferences and mentioned some criteria. Figure 7.6

shows their preferences for Earthquake Monitor solutions. For now, we ignore the colors and look at

each bar as a whole. In so doing, we notice that students have a significant preference for reshaping first,

which suggests at least the ability to recognize the lecture’s views on structures that better decomposed

plans. The Earthquake Monitor bars of Figure 7.3 also show the variety of criteria that the students

mentioned.

Figure 7.6: Comparing individual CRS-BROWNU students’ Adding Machine structures (pre) to that of
their preferred Earthquake Monitor solution (post)

We now contrast this to CRS-WPI. Figure 7.7 shows which of their solutions students preferred. Of

the 34 students who submitted a solution for Earthquake Monitor, all but 5 had at least one “Single

Traversal” or “Nested Traversal” solution, yet half preferred a reshaping- or cleaning-based solution.

When we now focus on their criteria, however, we see something more disturbing. Of the 45 students

sampled: only 15 mentioned any criteria at all; 9 didn’t submit a ranking; the other 21 just described

the implementations (6 of these were from CRS-WPI-EXP, the rest from CRS-WPI-NVC). Among the

15 CRS-WPI students who did describe criteria, code structure and aesthetics came up most often (9

and 10 instances, respectively), while efficiency got only 3 mentions.
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Figure 7.7: CRS-WPI students’ preferred Earthquake Monitor structures (post)

The contrast between the courses in students’ ability to discuss solutions by attributes is striking,

and not readily explained. Neither course had practiced this skill, either explicitly or implicitly that the

instructors can recall. Both courses had covered rudimentary big-O prior to the pre-assessment, so

students at least had “efficiency” in their vocabulary. Therefore,we do not yet have a proper explanation

for these differences.

7.3.5 Changes in Solution Structures

Changes in the solution structures that students wrote from the pre- to the post-assessment might

indicate that the planning lecture had impact. Because students were asked to write two solutions in the

post-assessment, it might not be clear which one to compare. However, given that students were asked

to rank their two solutions, we believe it is reasonable to compare the structure of the pre-solution with

that of the preferred post- one.

We present this comparsion for CRS-BROWNU, using Adding Machine from the pre-assessment and

the preferred Earthquake Monitor solution from the post-assessment. This is a meaningful comparison

due to the similarities in tasks between these two problems: both involve flattened data, a numeric

calculation on subsegments of the data, and consideration of only a subset of the data.

Figure 7.6 shows this information. Now we can consider the colors. Each row shows a structure for

the preferred post- solution binned by their pre- solution structure. The comparisons are per student.

Perhaps the most interesting feature of this graph is its lack of a clear internal pattern: students from

each Adding Machine structure are dispersed across the Earthquake Monitor bins, and each Earthquake

Monitor bin is populated with students from multiple Adding Machine structures. Our key takeaway

from this graph is that the lecture got CRS-BROWNU students to think about plans and tradeoffs, with

many reconsidering choices that they might have made reflexively during the pre-assessment.

A similar graph for CRS-WPI is not meaningful, since all but one student produced the same
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structure for Rainfall on the pre-assessment. However, we do see diversification in students’ pre-

ferred solutions in the post-assessment. While “Single Traversal” solutions remain the most popular

among CRS-WPI students in both the Earthquake Monitor and Data Smoothing problems on the

post-assessment, there is considerable diversity in the Earthquake Monitor preferences (which admits

more interesting plans). Whether this diversification was caused by the lecture, or by the relatively

greater difficulty of Earthquake Monitor compared to Rainfall, is open to question.

7.4 Threats to Validity

Students’ prior programming experience, including the kinds of problems they have been exposed

to and in which programming languages, is a significant factor in studies of planning (Section 7.1).

We have a rough characterization of our participants’ prior experience: students in CRS-WPI-EXP and

CRS-BROWNU all took courses designed for students with non-trivial programming experience prior to

starting at university (for CRS-WPI-EXP, that course was the one preceding CRS-WPI itself; novice and

experienced students feed into a common CRS-WPI as a second course). The nature of that experience

could vary significantly across students (in practice, most students had experience in at least Java).

More careful accounting of the details of prior background would help refine conclusions in planning

studies.

Student motivation to master programmming could affect how seriously they engage in the task

of writing two solutions. All students in our study courses were likely interested in majoring in

computer science, or at least studying it in some depth. This might give them greater motivation

for understanding the planning concepts we discussed, and they might also have more aptitude for

computational problem composition and decomposition. It would be interesting to perform similar

studies on non-major populations, in particular exploring how much training they require before they

appreciate planning. Data on this question will likely evolve in the next few years, given the growing

adoption of computing in middle- and high-schools in many countries, which might prepare students

for this material.

As noted in Section 7.2.2, we did not use the same questions in both courses. The questions we

gave to CRS-BROWNU reflected the richness and parallel structures across pre and post that we would

ideally like to explore, but some of these questions were beyond what the CRS-WPI-NVC students

would be able to handle based on the problems presented in class (for example, they had not yet done

any string manipulation, so Palindrome would not have been approachable). The extent to which this

is a problem depends a bit on the nature of the conclusions one wishes to draw. Had the study results

been positive with all three groups of students and we drawn conclusions about relative performance,

the variations in questions would confound the results. As it were, however, the CRS-WPI students did

not fare as well, despite having arguably easier questions. In this context, the difference in questions is

not as significant.

In a prior review of this work (for a submission for publication), one reviewer posited that our

questions were biased in favor of functional programming. We drew our questions from a collection
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of planning problems [53] that had been curated by multiple instructors, some of whom vastly prefer

functional programming and some who vastly prefer imperative programming. Given this curation,

we were confident that our problems were reasonable ones to pose of students working in various

programming styles.

7.5 Discussion

We now discuss in some depth the many questions we have raised throughout our discussions of this

study.

1. The studies we conducted were roughly near the end of the first semester (in US terminology). If

we could wait another semester and get students at the end of the first year, we might find that even

those without prior computing are much more sophisticated programmers. It would be especially

interesting to see whether, at that point, the CRS-WPI-NVC group performs like the CRS-BROWNU

and CRS-WPI-EXP populations did in our first-semester study.

2. What if we were to do the same study in an imperative setting? Would students who have primarily

been exposed to for loops, and not seen higher-level constructs like mapping and filtering, readily

grasp the idea of planning? Clearly, exposure to such constructs helps students understand planning

concepts; but while sufficient, is it also necessary? This is a topic that needs further study.

In addition, programming classes may also start changing in flavor to keep pace with languages.

Increasingly, imperative and object-oriented languages have adopted some of the basic features of

functional programming, such as higher-order functions and higher-order operators (whether in

the form of functions like map or filter or as syntactic constructs such as comprehensions). The

pedagogy is also catching up: new (editions of some) Java books provide a thorough discussion

of using higher-order functions and functional style [123]. Therefore, it is no longer necessary to

switch to a functional language to teach a more functional style of programming. This removes

a significant source of friction that introductory course instructors sometimes feel. Nevertheless,

this does require adopting a new style of programming, which may be considered a significant

intervention in some departments, far removed from our view of it as a “lightweight” one.

3. What do students already understand about planning before our intervention? Can we phrase our

“construct two different plans” task (Section 7.2.4) in a way that meaningfully measures student

knowledge and ability?

4. The fact that students changed their ranking criteria in the post-lecture assessment does not mean

they genuinely changed their preference: they may be reflecting what they believe the course

staff want to hear. We can probe their true beliefs by giving them significant problems that they

can decompose in different ways and checking whether their decompositions match their stated

preferences. In turn, creating multi-part exercises where they have to create an initial solution and
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later modify it—so that issues like maintainability come to the fore—can help reinforce the value

of some plans over others.

5. When are students ready to understand and adopt a planning strategy like reshaping? There are many

reasons why several CRS-WPI-NVC students were unable to use it: maybe they didn’t understand it

in the first place; maybe they understood it but didn’t see its value (especially if they have had no

experience building larger systems, it can be hard to see the benefit of an abstraction); or, having

passed both hurdles, they may have been unable to implement it.

6. We find puzzling the contrast between CRS-BROWNU and CRS-WPI students when it comes to

ranking their own solutions. Do the CRS-WPI students not appreciate tradeoffs at all? Do they

appreciate them but lack the vocabulary to articulate them? Perhaps they simply did not understand

what the problem was asking for?

There is one important factor that may have played a part. The CRS-BROWNU students had

to preference-rank in their pre-assessment, and discussed this during the intervention lecture.

Therefore, it is possible they had already had “training” to think about this issue. However, given

that they already mentioned several criteria—instead of just describing implementations—in their

rankings, this cannot be the whole explanation. Having the CRS-WPI students preference-rank in

the pre-assessment would clearly help shed light on this phenomenon.

Going beyond these questions, future studies could include control groups or find ways to determine

what kinds of solutions students can imagine as part of the pre-test. Given the relationship between

planning and prior exposure to similar problems, control groups would likely need to come through the

same sequence of courses as study participants. Naturally, this requires a different intervention design

than ours, which covered planning as one of the regular lectures within the participating courses.





Chapter 8

Discussion and Conclusions

We started this project with the following broad question:

How do HTDP-trained students use the design recipe to solve multi-task programming problems?

Our overall goal with this dissertation is to develop a conceptual framework that describes how

HTDP-trained novice programmers design programs to solve multi-task programming problems. We

concretized this goal along four research questions, asking (1) what specific program design skills

we observed students apply in their programming process, (2) what interactions exist between these

design skills and what the impact of these interactions are on how students solved programming

problems, (3) how do students’ design skills evolve over a CS1 course, and (4) how do students

approach novel multi-task programming problems. Overall, the project aims to create a theoretical

grounding for how students use the design recipe, which can be used towards refining the practice of

teaching the curriculum, or informing the design of learning activities and teaching artifacts (e.g. tools

and assessments) that are based on, informed by, or towards the teaching of, the curriculum.

In the following sections, we synthesize our findings around our research questions and describe

how our findings inform the teaching of HTDP, and our broader reflections toward practices in teaching

introductory CS. Section 8.1, revisits each of our dissertation research questions: we summarize

and synthesize our findings from our studies as they relate to each question. Our discussions within

each research question synthesize the discussions we made in the "status update" subsections at the

conclusion of each of our study chapters (Chapters 3 to 6). In Sections 8.2 and 8.3, we discuss how

our findings inform the teaching of HTDP-based classes/curricula and introductory CS in general, as

well as discuss concrete recommendations for teaching program design. Sections 8.5 and 8.6 discusses

the threats to validity of our work and several paths toward continuing our research on planning and

program design.

135



136 CHAPTER 8. DISCUSSION AND CONCLUSIONS

8.1 Answering the Dissertation Research Questions

8.1.1 Students’ program design skills

DRQ1. What program design skills do HTDP-trained students apply/practice when

developing solutions for multi-task programming problems?

We distilled three main design skills that students practice, from our observations of students solving

multi-task programming problems. We also found that students varied in the way they demonstrated

these skills: we captured these variations using the SOLO levels of conceptual complexity (Chapter 4).

The following are the broader-level skills that we found from our data, and the more specific subskills

within each that we found students apply:

1. Working through core problem tasks

a) Decomposing tasks and composing solutions

2. Using code-level plans

a) Composing expressions to build function bodies

b) Meaningful use of patterns

3. Applying HTDP-prescribed design practices

a) Methodical choice of tests and examples

b) Leveraging multiple representations of functions

Skill: Working through core problem tasks

Students decomposed problems into tasks and composed task-solutions at different levels. Supporting

Rist’s findings, students generally started their programming process by eliciting tasks from problem

statements. Depending on the familiarity of the problem, students may identify tasks that are familiar

from knowledge they’ve gained outside of class (e.g. averaging), they may identify tasks they’ve seen

from their class exercises or homework (e.g. summing elements), or they may identify tasks, driven by

particular characteristics of a given problem (e.g. reshaping the input based on windows of data in the

input).

Some students apply this skill at a relational level: they concretely describe the relationships

between the identified tasks and use the insight from the described relationships to articulate an overall

plan around the tasks. These students often write their code in the context of the task-level plan they

articulate: they delegate tasks into appropriate functions or expressions, and the composition of their

code is guided by the task-relationships they described. When describing their program, they describe

the tasks embodied by their code and the inter-operation of the tasks.

Some students focus solely on the implementation of the identified tasks in code without articulating

an overall plan around the tasks. They often do not concretely identify how the tasks relate to each
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other as they instead focus on the code-specific mechanisms of their program, even when describing

their overall program. Some of these students do not delegate tasks into appropriate functions or

expressions (unistructural level); others attempt to delegate tasks to separate traversals (multistrucrural

level). These students, however, still fail to concretize task-relationships, which often leads them to

struggle (and fail) in composing their code.

Skill: Using code-level plans

Two subskills are involved in students’ application of code-level plans. Firstly, students compose

expressions to build function bodies. Most of the students in our studies applied this at a relational

level: when describing the code-specific mechanisms of their programs, they are able to correctly

describe the low-level syntax structure and evaluation mechanisms of the expressions and function calls

in their code. They are also able to correctly write syntactically-correct functions and expressions. This

is not surprising given the timing of our studies: students had been writing functions and expressions

for at least three weeks and have taken at least the first exam by the time we collected data. We expect

that had we assessed students from the start of their course, students would be applying this skill

at lower SOLO levels as they begin to learn the syntax and semantics of the course’s programming

language. In general, this skill is the most mechanical of the design skills we identified.

To solve our multi-task programming problems, students also need to use code patterns meaning-

fully. This is where students often struggle in their work: students blindly retrieve the list template (by

virtue of the list-type input) and populate the template with code for problem-tasks without thinking

about the limitations of the template pattern in the context of the traversal tasks they are implementing.

They thus inappropriately conflate multiple traversal tasks in a single template (multistructural). The

more successful students (relational) think about how the tasks impact the use of the patterns they

retrieve and separate the traversal tasks in a meaningful way, for example, by appropriately delegating

tasks to patterns (e.g. multiple templates) or parts of patterns (e.g. multiple accumulators).

Skill: Applying HTDP-prescribed design practices

We found two subskills that students applied in their use of the HTDP design recipe. Students varied in

how they methodically selected and wrote tests and examples. Many students simply copied and worked

off of the example provided in the problem statements, or wrote multiple examples and test-cases,

but which illustrated essentially the same scenarios, without thinking about how the consideration

of different input and output scenarious might impact the design of their code (unistructural). Some

students explored different scenarios for the input examples, but only mechanically and did not use

these to guide the design of their code (multistructural). A few explored a broad range of inputs and

attempted to write test cases that captured different input-to-output scenarios. They explicitly describe

how their functions’ execution relate to the different scenarios illustrated by the examples and test

cases they wrote (relational).

Students also varied in how they described or reasoned about how the different steps of the design
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recipe related to each other. Many students jumped into writing their code and did not use the design

recipe at all. Some blindly followed the design recipe without any insight about how the recipe steps

informed their work (unistructural), describing the recipe simply as a static process to follow. A few

talked more concretely about how different recipe steps captured different details about the problem,

but still lacked an insight about how the steps relate to each other (multistructural). Few students

concretely articulated relationships between the programming artifacts produced from each step (e.g.

how the data definition drives the structure of the template; how the execution of their program connects

to a test space); this usually happened when students attempted to solve a multi-task problem that was

mostly new to them (i.e. Max-Temps), which shows some evidence of students falling back on certain

design recipe steps when rethinking their solution.

Students reflected less about how to use the design recipe as an inter-operating set of steps towards

developing a solution, than they did writing examples or test cases independent of the overall process.

Given that our host courses graded students heavily on the thoroughness of their test cases and don’t

engage students in class activities that directly practice and focus on explaining how the different

design recipe steps inter-operate (which we ask them to do in our semi-structured interviews), this

isn’t surprising. Overall, students seem to develop a mechanical habit around following the design

recipe as a series of steps, but not necessarily an insight around how each recipe step is a technique

towards building an understanding of the problem-space and which they can use as a guide towards

the design of their solutions; even the HTDP instructors who participated in our validation study

(Section 4.7) confirm this mechanical and uninsightful use of the design recipe. These issues raise

potential deficiencies in how the recipe is taught in our host courses; we discuss these issues at various

points in the succeeding sections.

8.1.2 Interactions between program design skills

DRQ2. What interactions do we observe between students’ program design skills and

how do these contribute to their development of solutions for multi-task programming

problems?

We found a critical interaction between students’ use of patterns and their task-level planning. Interest-

ingly, other important interactions we found instead involved interactions between students’ use of

their design skills and the variety of problems students have seen in class. Our findings suggest an

important influence of these interactions on how students applied their design skills towards solving

multi-task programming problems.

Interaction: Meaningful pattern-use and task-level planning

All of the problems we gave students were list-based problems. Students thus retrieved the list template

pattern, the accumulator pattern, or list-abstraction patterns, as prompted by the input type or by tasks

they identify that they’ve seen previously (e.g. summing a list via a template-based summing function,
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an accumulator-style summing function, or by using fold). Our findings suggest an interaction between

students’ understanding and use of patterns and their task-level planning. We found that students

who are applying both skills at the relational level generally developed correct (or close to correct)

solutions. Even when students realize that specific tasks need their own traversals, they still need

to identify the limits of the patterns they’re using relative to the tasks. In other words, they need to

identify how the problem-tasks would impact their use of their retrieved patterns (such as the need for

separate traversal functions). We illustrate these findings below.

Students who retrieved the list template pattern mechanically only copied the syntactic structure of

the pattern, without articulating its underlying concept. They would blindly populate the template with

task-related code without concretely identifying the limits of the pattern relative to the tasks they are

implementing. This often leads students to get stuck with code that ineffectively conflates different

task-related code within the template. A recurring example of this is in Rainfall, where students

ineffectively combine the code for divide, sum, and count:

(define (rainfall input)
(cond [(empty? input) ... ]

[(cons? input) (/ (+ (first input) (rainfall (rest input)))
(+ 1 (rainfall (rest input))))]))

Some students who implement code similar to the above recognize that the sum and count tasks

each need their own traversals. Because they don’t identify the limit of the list template relative to the

tasks they’re implementing, they ineffectively combine them within the same template. Students who

concretely identify the template’s limit recognize that a template only handles one task and address

this by pulling each of sum and count into their own separate template functions. They then use their

task-level plan to inform the composition of the functions into the overall average function.

Some students use the insight from their task-level plan, along with an understanding of a pattern’s

underlying concept, to guide the modification of the patterns they retrieved. For example, some

students who use the accumulator pattern to implement average recognize that they need to track

the results of two tasks (i.e. sum and count). The students in our courses have typically only seen

accumulator functions that used only one accumulator. Students who articulate the accumulator’s

underlying concept, however, recognize that they can use an additional accumulator to keep track of

multiple tasks. In this case, students concretely associate tasks with separate accumulator parameters,

and their understanding of the accumulator pattern’s underlying concept enables them to go beyond

the typical structure of accumulator-style functions that they have seen.

Interaction: Problem variety and leveraging the design recipe

In Max-Temps, some students got stuck because they used data definitions and templates that were

inappropriate for the type of input they were writing functions for. In general, students struggled to

figure out how to write a data definition (or template) for the input data in the Max-Temps problem. Our

findings reveal that this difficulty is related to the limited repertoire of data that students had practiced
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their design techniques on. Students had only experienced designing functions for which the basic list

data definition and template sufficed; they had not experienced using their design techniques for data

such as the one in Max-Temps. Students also mentioned that they had not encountered problems that

had the kind of data that Max-Temps had.

Given Max-Temps’ list-type input, the students had at least the list template schema to start with,

but manipulating the schema they know to design a template for a list with elements that had specific

roles (i.e. delimiters indicated windows of elements to be processed separately) was a significant

design challenge for the students. This suggests two things: firstly, that the limited set of list problems

that students practiced on in class (i.e. examples, labs, or homework) may have constrained students’

knowledge or understanding of how to write data definitions and templates for lists. They may have

instead developed a mechanical habit of writing the basic list data definition and template from which

they struggled to deviate from, or that they potentially did not develop the idea that the basic list data

definition and template can be manipulated based on the context of the input (beyond changing the type

of the individual list elements). Second, this suggests the need for students to do various data design

activities to practice designing functions for various data situations they might encounter beyond those

requiring the basic list data definition and template. This seems critical to drive home the idea that the

practice of designing data definitions and templates does not just lead to one form of data definition

or template, but that these are malleable constructs that can be manipulated based on the context of

the input (e.g. lists with significant elements, i.e. elements with distinct roles such as sentinels or

delimiters).

Interaction: Problem variety and meaningful use of patterns

Some students also struggled with adapting the patterns they’ve learned to new contexts. In Rainfall,

for example, students got stuck figuring out how to handle the -999 sentinel; in Max-Temps and

Adding Machine, they got stuck figuring out how to recur over a modified suffix of the list and not just

the tail (rest) of the list. None of the students had worked on list problems that terminated prematurely

at a specific element (-999 for Rainfall) or element pattern (0 0 for Adding Machine) rather than at

the end of the list (empty), or list problems that recurred on anything other than the rest of the list (as

indicated by specific delimiter-role elements). This suggests that students may have attributed some

form of functional fixedness over parts of the template (i.e. the base-case and recursive-call parts),

having not seen or practiced on problems that required using or modifying these template parts beyond

the basic empty base-case or recursion on the rest of the list; this is in a similar vein as the habitual,

mechanical writing of the design recipe steps in the previous interaction. This likewise suggests the

need for students to be exposed to, and practice on, problems that require manipulating the base-case

and recursive-call parts beyond their typical use. Such problems may help put forth or drive home the

idea of the malleability of all parts of the template, beyond the typical template "holes" that students

fill in with problem-specific computations.
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8.1.3 Evolution of students’ program design skills

DRQ3. How do HTDP-trained students’ use of program design skills evolve during a

CS1-level course?

Students applied program design skills at different levels of conceptual complexity.

An important benefit to collecting students’ programming process data in situ through think-alouds and

semi-structured interviews is that our data enabled us to capture the gradations at which students applied

the program design skills that we observed them demonstrate. Through a grounded theory-based

synthesis of both student and instructor data, we found five core design skills that students practice

when solving multi-task programming problems, and that students applied each skill at different levels

of conceptual complexity. We used the SOLO taxonomy as a framework to capture the skill variations

in conceptual complexity: the multi-strand SOLO taxonomy of design skills is a key contribution of

this work. We have also begun to qualitatively validate this taxonomy in two ways: firstly, we used the

taxonomy to categorize data from students beyond the pool we used to design the taxonomy; second,

we checked with other instructors to see whether the taxonomy captures the same things they look for

when assessing how students apply their design skills. We have also used the taxonomy as a descriptive

framework to describe our findings in our other studies of students’ program design work.

Students evolve in different skills at different paces.

We assessed how students used their design skills at multiple points throughout their CS1 course. We

found that they can be at different levels for different skills at a given time; students do not necessarily

progress through the different skills simultaneously. We’ve described some of the effects of students

applying the skills at different levels in DRQ1 and DRQ2 (Sections 8.1.1 and 8.1.2); one example

is that even when students are relational for building function bodies, they struggle to write correct

solutions for multi-task problems if they apply task-decomposition at the multistructural level or lower

because they fail to make concrete connections between the tasks they’re implementing, which is

critical to informing the composition of their code.

Students may show non-monotonic progression of skills.

In addition to a non-simultaneous evolution of skills, we also found some students demonstrate some

skills at a lower level than they have previously demonstrated. We have some hypotheses that may

explain this:

• Students may not have internalized the skills they displayed at earlier sessions.

Some students may not have explicitly internalized their use of certain skills as good practices, so

they may not be consistent in applying them intentionally as they solve programming problems

(e.g. writing examples and test cases to develop an understanding of a problem space). This
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is related to the value judgments that they may attribute to the use of certain design skills or

practices.

• The problems used in our study may have pushed students towards particular skill levels.

The problems we selected for our study may have affected how students performed the skills;

this could thus be an instrument or study design problem. For example, in one of the study

sessions we conducted, students described their design process on a homework problem for

which an earlier problem on the same homework provided a usable helper function. This may

have prompted some students to make comments at a higher task-decomposition skill level than

they would have if they solved the problem unscaffolded.

• The drops in skill level may reflect the level of problem complexity at which students can apply

their skills.

This is a useful construct for assessing when a curriculum prepares students to work at various

levels; in other words, this idea can be used for contrasting when students can versus do achieve

certain skill levels relative to the curriculum. For example, problems in earlier parts of the course

don’t require students to perform at higher levels for task-decomposition and may instead focus

on getting students to first understand the course’s programming language, or the concept and

purpose of writing examples and test cases. Latter parts of the course invite students to apply

their skills towards more complicated multi-task problems. Under this model, assessing students’

skills with our taxonomy may be directed towards examining whether students can scale their

skills or break down at a certain problem complexity.

8.1.4 Approaches to solving multi-task problems

DRQ4. How do HTDP-trained students approach multi-task programming problems

with novel components?

We found three programming process patterns by which students approached solving the multi-task

problems we gave:

1. Cyclic
Cyclic students move back-and-forth between task- and code-level thinking throughout their

programming process. They often apply task-decomposition and composition at the relational

level consistently throughout their process: they concretely describe relationships between tasks

in the context of an overall plan for a solution and use their insight from task-relationships to

guide the composition of their code. At the same time, they use the insight from their task-level

plan to guide their use, or restructuring, of the patterns they retrieved. Their meaningful use of

the patterns they retrieve enables them to concretely describe how to appropriately delegate and

connect the tasks they identify to specific code or parts of code.
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2. Code-focused
Code-focused students primarily work at the code-level throughout their programming process.

They focus mainly on retrieving and implementing code patterns and constructs relative to

the problem-tasks (which they often identify on-the-fly), but do not concretize how the tasks

integrate and inter-operate with each other. Their descriptions of plans are fragmented and

lack an overall task-level plan towards a solution; their code implementations are thus often

haphazardly done and lacks any concrete direction, leading to difficulties in appropriate code

decomposition and composition. They often use the patterns they retrieve mechanically and

without thinking about how a problem’s task-components impact the code patterns they use.

3. One-way
One-way students apply task-decomposition and composition at the relational level and identify

a task-level plan for a solution, but only at the beginning of their programming process. They do

not remain consistently at this level throughout their process. Once they move on to implement

tasks in code, they regress to a code-focused process and fail to maintain the connections between

tasks, and between tasks and code.

These programming process patterns suggest that it is not enough for students to exhibit their skills

at the relational level; they must also be consistent in applying their skills at this level throughout

their programming process. Students who do so (i.e. cyclic) tend to be more successful in solving the

multi-task problems we gave. The process that students engage in may be another explanation for the

non-monotonic skill progressions we found: the lack of consistency in applying skills at certain levels

may indicate the fragility of a student’s skills and could be an indicator of when students might need

help or interventions towards helping them practice their use of their design skills to consistently apply

their skills at relational levels.

8.2 What did we learn about teaching program design with HTDP?

This dissertation is an exploratory project towards understanding how students who are taught the

HTDP design recipe use the process when solving multi-task programming problems. Our discussions

in the following sections describe what we learned about how our students used the design recipe for

solving multi-task problems and what we learned about, as well as concrete recommendations for,

teaching HTDP-based classes/curricula.

8.2.1 What did we learn about how students use HTDP?

We wanted to understand how students use the design recipe for multi-task programming problems.

For list-based problems, we saw that the design recipe works particularly well for problem-tasks that

are list-template-instantiable. For example, our findings suggest that many of our students did not

struggle with following the recipe to write functions for single traversal tasks like sum, count, or
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finding the max (even when they had to recreate them from scratch sometimes). Giving the students

multi-task programming problems is what makes this an interesting project: one main challenge for

students, given our problem contexts, is figuring out how to decompose multi-task problems into

component subtasks that can be directly implemented using the template, and then recomposing their

sub-solutions into an overall solution.

Many of the students in our studies struggled with our multi-task problems. Even when some

started (successfully) with single-task, template-instantiable functions, many started to thrash when

they had to figure out how the different task-related code needed to fit together, or when they attempted

to populate their single-task functions with code for other tasks. There’s an expectation (or a hope)

that the students will use the design recipe to understand the problems better toward the goal of writing

effective solutions (problem comprehension is one of the underlying motivations for the recipe steps,

after all [48, 49, 146]). Instructors hope that in working with the design recipe, students won’t just

follow the recipe blindly or mechanically (although this may be how many students initially start),

but learn to use the techniques put forth by the recipe meaningfully. For example, students might

describe the concrete relationships between input data, the data definition that describes the structure

of the input, and the template that concretizes this structure in code; students might describe how the

examples drive function design or even the design of the other artifacts within the recipe (for example,

in Rainfall, a list with a guaranteed sentinel would have a different data type, which in turn leads to a

different template). These relationships between recipe steps, in fact, are what the curriculum teaches

students to internalize as they use the recipe: the curriculum teaches to reason about programs with the

steps, as each step is a comprehension technique (with concrete artifacts that concretize these steps)

towards understanding a problem. Even the examples in the HTDP book [48] walk a reader carefully

through the problems by explaining how each step informs other or succeeding steps and artifacts until

a solution program is achieved.

Going beyond a mechanical use of the design recipe is critical to solving multi-task problems.

Our findings, however, reveal and highlight a disconnect between the expectations about using the

design recipe, and how students used the design recipe in practice. There’s a clear difference between

students who followed the recipe mechanically and those who reasoned about their work using the

recipe steps. Many students simply followed the recipe without reasoning about how the steps connect

to each other and these students often failed to solve the problems we gave, even struggling to fix

smaller issues that could have been addressed with techniques from the recipe; for example, output

inconsistencies within functions could have been addressed by using the signatures and examples to

analyze or reason about the behavior of an erroneous function. From the perspective of our skills

taxonomy (Table 4.3), many of these students are rated at most multistructural or below for the

leveraging multiple function representations skill. In other words, the way they internalized the recipe

is syntactic at best. Some skipped using the recipe entirely and jumped to writing code (if anything,

they at least used the template), showing a lack of appreciation and understanding of the use the recipe

techniques; most of these students often got stuck and failed to solve our problems.
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Some students who were more successful on our problems exhibited a more meaningful use of

the design recipe techniques (among other factors; we discuss these in succeeding subsections). For

example, some concretely discussed how different examples they have written illustrated the tasks

they needed to be addressed, which in turn drove how they designed the structure of their solutions.

Some concretely described how particular characteristics of the input data had to be reflected into

the design of the template. There were a few cases of students who were not successful in solving

Max-Temps, but exhibited a meaningful use of the recipe: for example, some realized during their

programming process that the function template that they were using did not fit the input they had

to work with, so they went back to their data definition to identify how to structure their function

(these often happened later in their design processes, however, so they ran out of time before finishing

their solution). These illustrate a more intentional and thoughtful use of the recipe steps, and provide

some evidence that achieving a relational-level use of the process may lead to more success in solving

multi-task problems. One instructor who participated in our validation study explained "inducing"

their students to follow the recipe even when students didn’t completely understand why. While this

may be fine at the onset of an HTDP-based course (perhaps, to build familiarity while practicing the

process), our findings suggest that this practice may not be effective (or loses its efficacy) for when

students need to solve more complex problems such as the multi-task ones that we used in our studies.

8.2.2 Make problem decomposition an explicit early step of the design recipe

Advanced task-level planning (+ HTDP) worked for successful students.

Many students did not explicitly describe task-level plans in the process of developing their solutions.

Some of them did follow the design recipe as part of their programming process, but they did not

use the design recipe steps to figure out task-decompositions. Students who did (or attempted to)

decompose the problem did so usually at the beginning of their process. They then applied the design

recipe steps on the individual tasks they have identified, and used their articulated task-level plan to

guide the composition of their task-implementations. This at least shows some evidence that task-level

planning in advance helps HTDP-trained students in solving multi-task problems.

"One function per task" does not seem to be enough to encourage consistent planning.

When we examined the curriculum and learning activities (i.e. homework, exercises, class examples)

of our host courses to understand why students did not plan in advance, we found that task-level

planning was not a fundamental part of instruction, or was at least given only a light treatment. Both

the WPI and NEU CS1 host courses first teach the idea of task-level decomposition in the second week1

of their respective school terms by teaching students a recommended rule from section 2.32 of the

HTDP textbook [48]: "Define one function per task". This section of the textbook presents the rule as a

"slogan", motivated by the ideas of writing "reasonably small" and "easy to comprehend" functions,

1Course syllabi are in Table 6.1; the topic sequence for all WPI courses are the same.
2Second Edition of How to Design Programs [48]
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and followed by a sample problem on implementing a formula with sub-computations (subtasks).

Other WPI course materials revealed no additional treatment of task-decomposition beyond the given

textbook rule. In the NEU course web page on the design recipe, the instructor had added one guide

question in the function definition step (step 6) of the design recipe: Can what I’m trying to achieve be

broken down into multiple steps (i.e. should I use helpers)? (Appendix F.1). The lab exercises and

homework for both courses are all directed towards using the design recipe to solve problems, with

brief reminders to "use helper functions".

Given how the students in our studies performed on our problems, the "one function per task"

rule doesn’t seem to be enough to habituate task-level planning in advance among students. Some

students explained that they struggled with the multi-task problems because their homework problem

sets already provide the decomposition for them, e.g. earlier problems in the problem set served as

helper functions for latter problems in the set (e.g. Section 5.4.3 and appendix C.2).

Have students do more activities on task-level planning.

Our work highlights the importance of teaching task-level planning explicitly. One way to do this

is by having students do more activities that involve identifying and planning around problem-tasks,

but without expecting them to write code. For example, students might be given several multi-task

problems where they identify tasks and concretely describe how the tasks relate to each other. Students

could also be taught to leverage specific design recipe steps to facilitate this. We had already observed

some students practice a form of this with purpose statements, where they described where a helper

function is being called within an overall program (e.g. Chapter 6). We further illustrate an example of

this in Section 8.2.3.

In Sections 3.6.3 and 6.3.4, we described a way of expanding concrete examples to work out

task-decompositions. For example:

;; Adding Machine
(adding -machine (list 1 2 0 7 0 5 4 1 0 0 6)) -> (list 3 7 10)
(adding -machine (list (+ 1 2) (+ 7) (+ 5 4 1))) -> (list 3 7 10)

;; Rainfall
(rainfall (list 3 -8 -1 2 -2 1 -999 5)) -> 2
(rainfall (/ (sum (list 3 2 1))

(count (list 3 2 1)))) -> 2

No student across all of our study cohorts did this and none of the courses taught students how

to use examples in this way. A systematic way of using examples to identify task decompositions,

such as this, might suggest specific functions that a student could write as it can be used to illustrate a

decomposition of the code relative to the tasks as well as their composition. Understanding whether or

not these planning exercises help students practice task-level planning merits future exploration.
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8.2.3 Focus on teaching how to use the design recipe steps

Many students developed a blind habit of following the design recipe.

One of our main findings is that many students primarily followed the HTDP design recipe mechanically

and without an insight towards how the recipe steps connect to each other, or how the steps connect

to an understanding of a problem (Section 8.2.1). Students developed a blind habit of following the

design recipe, but did not necessarily gain any insight around how each recipe step is a technique

towards building a concrete understanding of a problem at hand. For example, when explaining

their use of the techniques, many students describe "following the recipe" but don’t make concrete

connections about how the different steps/techniques guide the design of their code. Students also

sometimes skipped over some of the recipe steps (these students just jumped into writing code). When

they struggled with the problems, they did not seem to think about using their design techniques to

figure out where or why they may be stuck, further suggesting a mechanical and shallow understanding

of their design techniques. Students also struggled to figure out how to use their design techniques (e.g.

writing data definitions and templates for Max-Temps) towards the novel aspects of the problems we

gave.

These observed behaviors illustrate several problems: (a) there’s a disconnect between expectations

about using the design recipe and how students use it in practice, (b) students have only used their

design techniques towards template-instantiable problem-tasks, and (c) students have not understood

that their design techniques can be used for debugging mid-process, and not only at the earlier stages

of their programming (i.e. when they start writing their functions after following the early steps of

the recipe). I argue that practicing the techniques shouldn’t just be focused towards activities that ask

students to use them to write programming solutions for problems; students should also engage in

activities that help them learn and practice to reason about and explain plans and programs using the

techniques. The latter does not seem to be implemented as activities in our host courses given that the

lab exercises and homework given are primarily geared towards using the recipe to write solutions

for programming problems. We discuss in the next sections, recommendations towards concrete class

activities for addressing these problems, which also provide opportunities towards further research.

Students may need targeted exercises towards an insightful use of the design techniques.

While the recipe suggests writing examples of data and input–output pairs (i.e. test-cases) early, many

skip this and write them after they have written their functions. This is unfortunate, as the goal of

writing examples is to have students concretely think through and write down the space of program

inputs (and the expected output for each) before writing any code [51]. Doing so can help illustrate

whether or not a student has understood the problem, at least within the context of the problem’s

input; for example, if a student can’t explain what output is produced from a specific input, or why a

specific output is produced from a given input, the student likely hasn’t understood the problem just yet.

One activity towards teaching an insightful use of examples would be expanding concrete examples

to illustrate task-decompositions, as we’ve previously described in Sections 3.6.3, 6.3.4 and 8.2.2.



148 CHAPTER 8. DISCUSSION AND CONCLUSIONS

Another activity leveraging examples would be to give students problem implementations with errors

and to have them reason about and explain the errors using concrete examples. For example, given the

Rainfall problem statement and the following implementation:

(define (rainfall list -input)
(average (get -data -of-interest list -input)))

(define (get -data -of -interest list -input)
(filter positive? list -input))

(define (average list -input)
(/ (foldr + 0 list -input)

(length list -input)))

students may be asked to both identify and explain the errors using examples. Students will have to

think concretely about the tasks of Rainfall and illustrate, using concrete examples, input scenarios

that will pass and fail the implementation (possibly with brief descriptions/explanations). The given

code above fails because of the following:

• Does not terminate at the sentinel

• Does not include zeros in the average computation

• Does not account for an empty-list input

• Does not account for a list input with all-negative elements

From a tool perspective, Wrenn and Krishnamurthi developed Examplar [146], a tool that provides

students with feedback on whether they have correctly and thoroughly explored a problem with their

examples. Students can use Examplar to develop and assess their examples independent of how far

along they have written code [146]. A tool such as this, when used as part of a class, may encourage

students to be more reflective and intentional about the examples they write towards understanding

the problems they’re given. Indeed, in assessing students’ use of Examplar in an accelerated CS1

course, the authors found that students used the tool even when it was not required for some course

exercises and that the quality of students’ test suites generally improved, although they remained

inconclusive about whether the tool helped students improve their solutions. Nevertheless, it remains

an open question whether this tool, in addition to the class activities towards writing examples that

we recommend in this dissertation, may help students towards a more meaningful use of examples

towards developing programming solutions.

A meaningful way to use purpose statements would be using them to relate tasks or functions

to each other. Suppose that students had been asked to identify and describe the problem-tasks in

advance (as we recommended in Section 8.2.2). As it stands, purpose statements are meant to be

brief descriptions of functions [48] (e.g. Appendix F.1), but there are no guidelines around what

constitutes a good (or useful) purpose statement. Our findings highlight that students who had concrete
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explanations and descriptions about their task-level planning of the problems were more successful

towards their solutions. What if we leveraged purpose statements further to be more concrete about

task-level decompositions and compositions? For example, purpose statements could be slightly

expanded to include: (a) a list of the problem-tasks that a function is addressing, and (b) how the

function relates to other functions. The first item (a) could be used as a concrete descriptive tool

towards task-decomposition; if the list of tasks that a function is addressing has too many task-items

(instructors may define "too many" using rules, such as the "one task per function" rule), then that

may signal to a student, opportunities for further task-decomposition. The second item may be used

to illustrate task-compositions, by indicating, for example, what other functions the current function

uses/calls, and which other functions use/call the current function. We have already observed some

students (Section 8.2.2) do this with their purpose statements, which suggests that it may be reasonable

to have students practice writing purpose statements in this way. We illustrate a possible version of

this in the following code snippets (type signatures added for clarity):

; sum: list[numbers] -> number
; Sum a list of numbers up to -999, ignoring negatives
; Tasks: sum, sentinel, ignore -negatives
; Called by: average function
; Calls: none

Compare the above purpose comments with the following purpose comments:

; sum: list[numbers] -> number
; Sum a list of numbers
; Tasks: sum
; Called by: average function
; Calls: truncate and rem -negs functions to clean list data

; truncate: list[numbers] -> list[numbers]
; Produce a list of numbers until the -999
; Tasks: sentinel
; Called by: rem -negs function
; Calls: none

; rem -negs: list[numbers] -> list[numbers]
; Produces a list of numbers with negatives removed
; Tasks: ignore -negatives
; Called by: sum function
; Calls: truncate function to get list data before -999

In practice, either version works for the problem, as students can certainly weave multiple tasks

together in a single function, or pull them apart into separate functions. Students who might struggle

with writing functions that integrated multiple subtasks, however, may benefit from the version that

further separates the tasks into their own functions. The parts of the purpose comments that indicate

where a function is used/called (Called by) and what other function it uses/calls (Calls) illustrate the
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compositions of the functions and requires students to concretely articulate these relationships. This

is another activity that may help practice task-level planning, as we recommended in Section 8.2.2.

Since purpose statements are about describing functions, leveraging this description to further capture

relationships across tasks/functions may be beneficial to students. It would be interesting to explore

whether such a use of the purpose statements may help students with task-level planning, particularly

for multi-task problems.

Students need to practice using their design techniques in more varied data contexts.

Having students practice on a wider variety of data design activities exposes them to various data

situations they might encounter and provides opportunities to apply their design techniques towards

different data situations. We discussed in Section 8.1.2 that there is an interaction between the variety

of problems students have seen and their skill towards adapting the patterns they’ve learned. In

particular, students struggled with adapting the patterns they’ve learned to the novel aspects of our

programming problems, even when the problems used a data type (lists of numbers) that were largely

familiar to them.

An interesting characteristic of our study problems (on top of having multiple tasks) is that they

use significant list elements (i.e. list elements with distinct roles). For example, Rainfall has the -999

sentinel, which serves the role of terminating a computation, akin to the empty-list base-case; similarly,

Adding Machine has a sentinel pattern (the double zeros). Both Adding Machine and Max-Temps have

delimiters that are indicators to the windows of elements within the list to be processed separately. At a

problem-level perspective, our study problems involving these significant elements are data-processing

problems that require students to cleanse noisy data or address data with underlying structure [53].

The significant elements add additional complexity to traversing lists and were significant design

challenges for some students. For example, students got stuck figuring out how to handle sentinel

tasks, how to recur over a modified suffix of the list beyond the usual recursion on the tail (rest) of

the list, or how to design data definitions (and templates) for lists with significant elements. These

highlight a functional fixedness that students may have attributed to the parts of the template (i.e. the

base-case and recursive-call parts) or even to the use of their design techniques.

Engaging students in design activities through problems of various data contexts or data-processing

needs, as well as teaching them concrete techniques for such situations (e.g. identifying significant

elements in a list and how they may impact the use of template parts like the base-case and recursive-

call parts), may benefit students by helping them further understand the malleability of all parts of

the template beyond the template "holes". Data design activities with varying data contexts/scenarios

may also help students understand how to leverage their design techniques beyond basic list template

scenarios. For example, another reason students struggled in Max-Temps is because they got stuck

trying to figure out how to write a data definition or template for the problem’s input data (Sections 6.3.4

and 8.1.2); this suggests that they only see data definitions in the context of the basic list definitions

that they’ve seen. While the students recognized the roles of the delimiter elements (based on the

problem statement), they did not know how to design or manipulate the data definitions they know for
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basic lists in a way that accounts for these significant elements, thereby affecting how they wrote their

function template later on. The critical point here is to expose students to a variety of design problems

that can be used to illustrate (and practice) how their patterns and techniques are malleable constructs

that can be manipulated based on the context of the input (e.g. significant elements) and that what they

already know do not just lead to a single way of applying these constructs. Data-processing problems

with significant elements seem to be a class of problems that are good candidates for such design

activities. Thinking about significant elements and the tasks embodied by these elements fit into the

idea of "data-thinking" that motivates the HTDP design recipe, as students would have to think about

how pieces of the data (i.e. the specific roles of certain list elements), and the tasks these represent,

impact how they might design functions for processing such data.

Teach the underlying concept of patterns through varied contexts of use.

Even when having associated some behavior with accumulators (e.g. "storing" values), some students

retrieved and used the accumulator pattern mechanically when they attempted to use it for Rainfall.

They struggled to adapt the pattern to the needs of Rainfall (e.g. adding parameters to track additional

values); an accumulator-based Rainfall solution either needs two parameters (one for each of the

running sum and count) or one to keep track of data (for a list of clean data). Some students explained

not understanding why accumulator functions were structured the way they were, even when they

describe using the pattern for previously-seen tasks in class, such as summing or finding the max,

and replicating the code during their study sessions. These suggest that they had only understood the

syntactic schema of accumulators, rather than its underlying concept. The WPI students in our courses

had only seen examples with a single accumulator parameter, and in each of those programs, the

parameter value was returned in the base case of the recursion (NEU had not yet reached accumulators

when we ran our studies). This drives home the power and hold of previously-seen patterns on novice

programmers and suggests that the examples instructors choose may inadvertently constrain how

students understand the use of the patterns they’re learning.

This further supports the need for students to practice on problems that require them to use their

patterns in various contexts. Instructors may think they are teaching a general approach (i.e. using

accumulators), but if students have only seen a limited set of examples that apply the approach in a

single way, they may struggle to adapt the patterns to new situations. Our findings suggest that teaching

the concept that underlies accumulators requires showing students varying scenarios for which the

pattern applies. The students who used accumulators and produced more correct code used the pattern

beyond the ways that they had seen in their course, articulated clear roles for their accumulators,

connected accumulator parameters to specific tasks, and maintained those connections throughout their

programming process. Giving students activities and exercises on multi-task problems that requires

concretely articulating the connection between (traversal) tasks and accumulators seem critical not

only to producing effective solutions using the pattern, but also for understanding the pattern’s general

concept.
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8.3 On teaching program design in general

The limited range of problems and activities that students engaged in in their courses seem to
have constrained students’ understanding of how to apply their techniques and patterns.

Our findings highlight an interaction between how students learn to use the HTDP design recipe and the

examples and learning activities that instructors teach the curriculum with. Many students generally

followed the design recipe process top-down, and would even use (or reproduce) the code patterns

they know, but they still ended up struggling to solve our programming problems. Our findings show

that this is related to their mechanical use of their techniques and patterns. While they retrieve the

knowledge of their techniques and write the artifacts relevant to the techniques (e.g. data definitions,

examples, templates, etc.), they don’t articulate how the techniques relate to, or inform, each other, or

the patterns they retrieve (e.g. templates) as part of the recipe process. Their following and use of the

recipe thus becomes just another set of artifacts to be written down with their code. In other words,

they applied their techniques syntactically (e.g. "Write a list data definition then the list template...")

rather than with a relational understanding (e.g. "How do I capture characteristics of the input in the

data definition and how does this translate into a template?"); this highlights the disconnect between

instructional goals with the curriculum and the students’ actual use of the techniques within HTDP.

Our analyses of the course contexts reveal that the students mostly applied the design recipe towards

writing solutions for programming problems and that they have only seen their patterns applied to a

limited set of problems (those that could be directly implemented with templates). The limited range of

problems and activities that students have seen thus seems to have also limited their understanding of

how to use their techniques and patterns. Students who struggled also primarily focused their thinking

on retrieving and writing code constructs, without thinking about the task-level decomposition of the

problem and how this task-decomposition impacts their code implementations and compositions. This

suggests that the activities and problems used to teach the HTDP program design techniques matter as

much as the program design techniques being taught.

Our recommendations of activities and problems in Section 8.2 are directed towards explicitly

teaching, and having students practice, (1) task-level planning, (2) how to use their design techniques

to reason about and explain their task-level and code-level plans, and (3) how to apply their design

techniques and patterns towards more varied data contexts. These are informed by our own findings:

the students who had more success on our programming problems concretely described task-level

plans, reasoned about their work using their design techniques and plans, and adapted their use of their

techniques and patterns to the needs of our problems. Being able to explain and reason about plans,

techniques, and patterns, and going beyond a syntactic use of these seem to be the critical ingredient

that differentiates our more successful students from the less successful ones when solving multi-task

problems. Our recommendations also align with recommendations from prior work on teaching

students to integrate and organize program design knowledge. Work by Linn and Clancy [80–82]

found that concrete and explicit descriptions, explanations, and narratives of how to select plans and

relationships among plans encouraged students to focus on the central aspects of examples and plans
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rather than their superficial features, as well as use plans towards new contexts; getting students to

make similar descriptions and explanations of plans (with their design techniques as tools towards this)

is an explicit goal of our recommendations.

Our work shows that even a carefully-designed curriculum for teaching design techniques (i.e.

HTDP) can be absorbed by students at a superficial or syntactic level (even when a primary goal for the

design recipe, at least at the collegiate level3, is to relate steps to each other during the design process);

prior cognitive science work on how students retrieve programming plans and processes corroborate

this [6, 57, 118]. While there are ways in which the design recipe techniques can be used syntactically,

our findings show that this is not enough to get our students to solve the multi-task problems that we

gave. We should also note that the curriculum was designed around a specific set of problems for

which it is suited, that is, problems for which structural recursion is a natural approach [48, 49]. While

none of our multi-task problems are directly template-instantiable, most of our problems’ subtasks are,

making problem decomposition (or task-level planning in general) a critical step alongside the use of

HTDP (and pushing students just a little beyond their training with HTDP). This further supports the

need for interventions and activities that drive students to practice using their skills and techniques

beyond a syntactic and mechanical use.

In the broader sense, studying how other program design curricula help students solve programming

problems, such as the Pattern-Oriented Instruction approach by Muller et al. [94] and de Raadt’s work

on explicit strategy instruction in CS1-level courses [35] must be considered alongside a closer analysis

of their respective course contexts to truly understand how students are integrating their knowledge

around the techniques, skills, and patterns put forth by their curricula. In his dissertation [35], de

Raadt showed an example of an exam question that asked students to explain their strategy towards a

problem in prose, rather than asking them to generate code, for example, by asking novices to identify

or describe strategies, relate strategies, or identify how a strategy is incorrectly applied. Rather than

use similar questions in exams (which are primarily used for summative assessment; at this point,

it may be too late for students to practice or learn skills), such questions can be used towards class

activities for students to practice explaining and reasoning about plans and programs. Additionally,

instructors should be aware of their own biases and blind spots around designing curricula or learning

activities. Instructors must closely examine the activities and assessments they use towards their

teaching to understand whether or not these truly help them achieve their curricular goals. As Ramsey

put it: "Plenty of problems (in teaching program design) are still open, of which the most difficult is

assessing whether students can do what we think they can do" [112].

3In Bootstrap (an early-programming curriculum for middle- and high-school math and computing classes in the USA),
the design recipe is used to aid in a syntactic exercise of creating functions by abstracting over examples (Personal
communication with Kathi Fisler, Bootstrap Co-Director)
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Developing a data-grounded theory for program design curricula helps create a critical under-
standing of their use by students in real-world contexts.

In her study of students’ solutions for Rainfall, Fisler found that HTDP-trained students generally did

well on the problem; they produced a diverse set of high-level structures and made fewer low-level

errors (compared to students from prior Rainfall studies) [51]. While she identified the language

constructs that students used (e.g. higher-order functions) to structure their solutions, she did not

identify the underlying processes that describe students’ movements toward a solution structure, or

how they used the techniques they had at the time to solve the problem (her data did not allow these

kinds of analyses). In other words, her work answered the question of what HTDP-trained students

did, but misses out on critical details about how students approached the problem and why they did

so. Even more recent Rainfall studies focus on the what: the number of students who get it right, the

kinds of errors they commit, the details that students miss out, the solution structures they use, or the

code constructs they use [51, 122, 126]. Answering these questions certainly gives clues towards what

may or may not work, but being able to explain why things do or do not work or how they work are

critical towards understanding how to teach program design better. As Guzdial puts it, "we don’t yet

have enough theory to explain why [CS teaching contexts] works when we get it right [59]."

We did not find the same level of success among our students as Fisler found with hers, but we

were able to tease out how students were using their design techniques and how they were thinking

through the problems we gave. In addition to Rainfall, we also used two other multi-task programming

problems that required different techniques than what Rainfall required. We were thus able to see

student work with the design recipe in new problem contexts. Beyond students’ code submissions, we

also collected think-aloud, interview, field observation, and scratch work (whenever students did this)

data which allowed us to analyze students’ work at a finer level of detail than what just a final code

submission would allow. This enabled us to concretely identify and describe programming process

patterns (cyclic, code-focused, one-way) that we found were indicative of whether or not a student

would be successful in designing an effective solution. We were also able to identify and describe

the varying levels of complexity at which students were applying their skills and techniques, specific

interactions between skills, as well as interactions between skills and the kinds of examples and class

activities that students have seen or engaged in in their courses. These findings and observations became

components to our theoretical framework that describes how HTDP-trained novice programmers design

programs toward multi-task programming problems.

Developing theoretical frameworks for the curricula we teach is essential to understanding them

better. Theories can explain observed phenomena (e.g. how students use techniques to program)

or predict occurrences (e.g. whether students succeed in writing programs) [100]. Data-grounded

theories on curricula (such as ours) help explain what works or doesn’t when used by learners in the

real world and provides critical insight for instructors to understand how to teach skills, techniques,

patterns, or other components of curricula better. For example, in her Rainfall study, Fisler found

that the students who failed to write working Rainfall solutions used the template naively; our own

theory explains that students who do so engaged in a code-focused programming process, did not
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engage in task-level planning, and did not explicitly describe the limits of their retrieved patterns in

the context of problem-tasks. From Pai et al.’s [102] perspective, the theoretical framework we’ve

developed in this dissertation both provide ‘How’ theories and ‘Why’ theories. Computing education

researchers have recently called on others in the field to develop theories for CS teaching and learning,

citing the unique challenges faced by both CS educators (in teaching CS) and learners (in learning

CS concepts and within CS contexts) [59]. Xie et al. noted that prior theories on programming skills

did not translate to concrete instruction for supporting skill development; they proposed a theory

for structuring and sequencing programming skills in a way that can be translated to instruction that

scaffolds the development of these skills [147]. Our own theory highlighted gaps in how courses taught

HTDP and we proposed instructional activities that can be used to address these gaps (that also leverage

techniques from the design recipe). Theory development for CS education connects research and

practice on how to teach CS and how people learn to program, and is becoming increasingly necessary

to address the needs of the growing number, and diversity, of learners enrolling in CS courses or

wanting to learn programming.

Using formative measures of programming skills may be valuable for students as they work
towards developing their skills during their CS1 courses

One of the contributions of this dissertation research is a framework towards assessing students’

program design skills. While we found many students fail to solve our programming problems, our

analyses did not focus on rating the code they produced with some numeric grade. Rather, we focused

on understanding why they failed to write effective code (or why the successful ones do) and how

they had approached the problems. This focus on students’ processes and the interactions of factors

within these processes (e.g. planning, knowledge of design techniques) is important when assessing

students’ program design skills. Grading students’ final code can only say so much about students’

design process toward their solution (they could, for instance, do a trial-and-error and still get a correct

answer without truly understanding how or why their solution works). A student who failed to write

a working solution will also not know what they could have done better if the assessment of their

work that they receive from their instructor is a single numeric rating. Numeric/summative ratings

can also have arbitrary meanings associated to them; for example, different students who get a B for

their work may have received them for completely different reasons. This lack of granularity does not

have actionable components that reflect how to go about with progressing in one’s development of

their skills, which may affect learners negatively. Students use grades differently and they may feel

demotivated or see the grades as a reflection of their programming ability, or even a reflection of their

(in)ability to learn, shaping their self-efficacy and beliefs about their intelligence and identity [72, 98].

HTDP-based courses approach grading student work by considering each design recipe step, that is,

each recipe step counts in grading. For example, functions that produce correct answers but deviates

from the data definition (or the "shape" of the input), or lacks signatures, purpose statements, or test
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cases only get a fraction of credit4. This seems preferable to simply assigning a grade only to the

final code, for example: missing data examples and test cases may suggest that a student did not think

through the space of input, or functions with output inconsistencies may suggest that a student did

not consider the signatures/contracts they wrote in their design. Our findings, however, suggest that

many students don’t even engage in reasoning about their work with the recipe steps, which we’ve

mentioned may be due to several reasons, such as the value judgments they attribute to the use of the

techniques, that they didn’t know how to use the techniques towards novel data scenarios beyond what

they’ve seen in class (e.g. list problems with particular data-processing challenges, see Section 8.2.3),

or that they’ve only understood the use of the techniques superficially.

Our studies teased out some of the nuances of how students approached the problems and the

skills they used during their programming process. In particular, our SOLO-based skills taxonomy

captured the skills that students used and the levels of complexity at which they applied their skills.

It helped us identify the extent to which they reasoned about their examples and test cases and the

inter-operation of the different techniques put forth by the design recipe. It also captured how students

think about the problems at the task-level and how they understood the use and limits of the patterns

they retrieved; these cannot easily be assessed with just the techniques from the recipe alone (although

we have begun to recommend possible ways of using the techniques towards thinking about tasks,

as we’ve described in Sections 8.2.2 and 8.2.3). We’ve used the taxonomy in a couple of ways:

we used it to assess students’ design work at multiple points during a CS1 course, and as a lens

towards a descriptive analysis of how students from other HTDP-based courses approached multi-task

programming problems.

Our taxonomy is in a similar vein as de Raadt’s work of assessing students’ use of their strategies;

he explained that assessing students only by the code they generated may be a poor measure of their

actual programming skills and that assessing students’ comprehension of programming strategies

through explanations may be more meaningful [35]. More broadly, it may benefit learners to have

formative measures that help both learners and teachers understand what the learners do and do not

know, or can and cannot do, and more concretely identify what problems need to be addressed or what

concepts need to be strengthened, rather than a vague and less helpful, "your code is worth a B". Our

SOLO-based skills taxonomy is our contribution towards the goal of developing a formative measure

for program design skills; the skills we described in the taxonomy are certainly not limited to HTDP

and future work can look at how the taxonomy can serve as a rubric in other curricula. When assessing

student design work with the taxonomy, the level that a student falls within a skill may be used for

more concrete feedback to the student on what they may need to practice on (e.g. they may need to

practice thinking about how tasks relate to each other to guide their code composition).

So far, however, the use of our taxonomy is contingent on having/collecting data from which

students’ understanding of skills can be concretely drawn, such as explanations of how they perceive

relationships between design techniques, plans, or program representations. This is not always

4This is based on Fisler’s description of HTDP-based courses (she is a long-time HTDP instructor) [51], discussions with
the instructors of our host courses, and my direct experience as a teaching assistant for HTDP courses.
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practical especially in courses with hundreds of students; yet it seems that this kind of data is critical

to understanding at a granular level why students struggle in their learning of programming and can

be the basis of meaningful feedback for students. This highlights the importance of the activity

recommendations we made in Sections 8.2.2 and 8.2.3, which leverage the design recipe techniques

towards having students explain and reason about their plans, techniques, and programs. Future work

could look at designing formative assessments around these activities that can be used within CS1

courses to give concrete and meaningful feedback to students about how they are progressing in their

learning during a course. Such formative assessments could help educators (even those teaching with

different curricula) better understand where students are in their learning and have a more concrete

basis of where and how to focus their teaching better to help their students.

8.4 Bricolage, Planning, and the HTDP Design Recipe

Researchers describe bricolage as an exploratory trial-and-error approach for solving problems, a

form of experimental tinkering that involves a "dialogue" and "negotiation" with artifacts to develop a

solution for a problem at hand [9, 30, 43, 131, 136, 148]. Turkle and Papert suggest that bricolage is the

opposite of planning, but that there is value to both ways of thinking [30, 136]. What do our findings

suggest about the design recipe as a way of thinking about problems?

As we’ve described in Section 1.1, the systematic process of the design recipe leads a novice

through different representations of a problem, which suggests that the recipe is primarily a planning

approach. Our data, however, suggests a more nuanced use in practice of the design recipe as a way

of thinking about (programming) problems. Our observations and findings show that the students’

use of the recipe reflects elements of both planning and bricolage; we illustrate this in the following

discussions.

8.4.1 Productive bricolage among HTDP-trained students

Some of the students who used the design recipe at the relational level made concrete connections

across the different recipe steps and artifacts. In doing so, they used their understanding of the recipe

techniques to reflect novel characteristics of data into the structure of their code (e.g. data definitions

and templates), or identify problem tasks through the analysis of concrete examples in relation to

the problem prompts (i.e. planning using the design recipe). Other students followed the recipe

mechanically and would tinker around their code based on feedback from their test cases (i.e. through

error messages), even when this response to feedback is more about figuring out how to edit the code

structure "to make it run", rather than concretely making connections about what errors the test cases

are highlighting and how this relates to the design of their code (i.e. bricolage with a focus on tinkering

around code).

The design processes we observed weren’t always clean, straightforward, well laid-out processes,

and this can be attributed to the nature of our study problems. Our selected problems were designed to
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push students slightly beyond what they know and what they have seen in their classroom instruction,

and this manifested in our students’ design approaches. In a few cases, some students approached

problems systematically through task-level planning and the design recipe process (students who

demonstrated a cyclic design process), but the unfamiliar components of the problems drove them to go

back to the recipe artifacts that they wrote to analyze how they might refine artifacts to accommodate

the novel aspects of the problems.

When components of the problems are unfamiliar to some students, they would go back to the

techniques that they have learned and attempt to discover ways to use or adapt their techniques (or their

associated artifacts) to accommodate the new contexts that they’re discovering. For example, some

students thought about how they might modify the template structure to capture significant elements

that had a direct impact on how a list is traversed (e.g. the -999 or double-zero sentinels in Rainfall

and Max-Temps, respectively) or used examples to ask about how their functions should account for

computations that need to be addressed (e.g. choosing whether to integrate removing negatives with

summing for Rainfall, or what input might look like for input with empty sublists in Max-Temps); we

have illustrated these observations further in the previous chapters and sections detailing our studies

(Chapters 3, 4 and 6 and section 8.2). These illustrate a form of bricolage negotiation that students are

engaging in with their design teachniques and artifacts to capture the problem aspects they identified

into their currently evolving solution. This behavior reflects what Perkins et al. [103] and Berland et

al. [9] call a cautious tinkering approach and which, similar to our own findings, seemed beneficial

to students when developing solutions for more novel problems. Unfortunately, our studies also

highlighted the fact that the use of the design recipe as a way of productive tinkering wasn’t a frequent

occurrence among the students in our studies. Many students instead used the design recipe in a less

productive, mechanical, and superficial manner; we discuss this use of the recipe from the perspective

of bricolage next.

8.4.2 Haphazard bricolage among HTDP-trained students

Some students jumped into writing their code and proceeded to tinker with their code without any

concrete plan (code-focused approach pattern). Their use of the design recipe techniques and artifacts

(if they ever used them) was primarily ad hoc and without concrete connections across the steps or

artifacts. In these instances, the students’ negotiations with artifacts primarily revolved around the code

that they wrote and the feedback they were getting about the status of their code (e.g. errors), and our

findings showed that these students often ended up getting stuck. For example, some students jumped

immediately into writing functions without making use of any of the design recipe techniques; other

students simply copied the examples provided in the problem prompts and then completely ignored

them throughout the rest of their design process. These students would then proceed with writing

their functions, with a back-and-forth process of writing code and running the code until they hit on a

solution. Without recipe artifacts that capture problem aspects and on which concrete descriptions

or explanations can be anchored onto to explain what logic or tasks are missing from the solutions,
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students are forced to reason about their code using only the code that they have written. At best, the

error messages provide some insight about what’s wrong with the implementation (e.g. syntax errors

or output inconsistencies), but beyond that, the problem tasks or interesting aspects about the problem

such as sentinels and delimiters are not articulated in the error messages; students have to concretely

capture these through data definitions, examples, signatures, or purpose statements). Perkins et al. and

Berland et al. described this bricolage approach as a haphazard tinkering behavior and their findings

seem to align with our own: when students are tinkering haphazardly, that is, a purely experimental

trial-and-error and not a purposeful tinkering, the tinkering has a negative impact on students’ progress.

8.4.3 Supporting productive bricolage through HTDP

These findings suggest that the design recipe may be used to support productive bricolage [9] (as

opposed to Yeshno and Ben-Ari’s characterization of bricolage as a purely "aimless" process [148]).

Our observations (as described in Sections 8.4.1 and 8.4.2) suggest that the different recipe artifacts

can provide students with a language for negotiating between their understanding of a problem and

how they manifest this understanding into code. These negotiations between a student’s cognitive

representations of a problem’s elements, the recipe artifacts that concretely illustrate or capture these

elements, and the code that implements these elements, are possible provided that there are meanings

attributed to the recipe artifacts in relation to the code (or as Fisler describes it, the recipe artifacts

provide an explanation of the code [51]). This also explains why students who used the recipe

mechanically get stuck even when using the recipe: when students merely copy or follow the recipe

without insight, the recipe process and artifacts lose their value as vehicles for negotiating students’

understanding of the problem with the code they hope to produce. The recipe thus does not serve any

purpose other than being another set of artifacts to write without any meaning-making [149] involved.

Overall, these provide further evidence for the benefits offered by tools, scaffolds, or systematic

approaches to design (not only for program design) as providing a language for negotiating the

discovery of insights and solutions and supporting learning through productive bricolage. What we

have articulated here is a concrete characterization of the role that the design recipe plays from a

bricolage programming perspective; this is akin to the description of McLean and Wiggins [91] of

bricolage programming as a creative feedback loop between concepts, algorithms, outputs, and a

programmer’s perceptions and reactions to output or behavior. Interesting future work along this line

could focus on the negotiating affordances that each design recipe artifact provides and the specific

negotiating and meaning-making mechanisms that novices practice in relation to the techniques taught

by HTDP. This could further explore the ways in which the design recipe may facilitate further

bricolage, or whether it just gets in the way for students who otherwise are going to just tinker with

code.
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8.5 Threats to validity

8.5.1 Improving the contextual grounding for our taxonomy design

Our taxonomy was initially designed based on the data from one homework that a subset of our

students in our longitudinal study (Chapter 4) worked on. As a team, we then used the taxonomy to

collaboratively code the program design work by the sampled students in succeeding study sessions,

and the program design work in all study sessions by students outside the initial sample, refining our

taxonomy based on new data. While this iterative refinement of the taxonomy was meant to deepen

and strengthen the descriptive power of the taxonomy, the genesis of the taxonomy is still deeply

rooted in the contexts of the CS1 course that we studied, the programming problems that the students

designed solutions for (thus exposing their design process), as well as the individual contexts of the

students that participated in the study.

This contextual limitation is partly mitigated by our use of the taxonomy as an explanatory

framework for describing the design work of students in our later studies. As we used the taxonomy as

an analytical lens in our subsequent studies, we found that it helped us concretely explain how students

approached our multi-task problems, even enabling us to identify concrete relationships between our

articulated program design skills (Sections 8.1.1 and 8.1.2). Unlike the original study session which

produced the data on which the taxonomy was designed from, the succeeding studies used different

student cohorts, from different HTDP course instances, from two different universities, and focused on

more than one multi-task problem that the students had not seen in their course. This at least illustrates

that the taxonomy is not strictly contextually-bound to the original study.

The contextual grounding of our taxonomy could, however, still be improved in several ways, some

of which include: (a) replicating the study and the analyses conducted on a different HTDP-based CS1

course, student cohort, and set of programming problems (we also discuss this in Section 8.6.1), or

(b) varying the study in small ways (such as using the taxonomy as an interpretive lens to understand

focused observations during programming labs, for example) on new student cohorts to determine

how well the taxonomy makes sense outside of our own study contexts (a form of ecological or

external validity5). These could help refine our taxonomy descriptions through the identification of the

persistent aspects and the contextual limits of its theoretical constructs.

We also attempted to broaden the contextual grounding of our taxonomy through expert-checking

[77, 78, 142] with other HTDP instructors to understand how well the taxonomy reflects how other

instructors assess student design work (Section 4.7). This allowed us to tease out and capture

another program design skill that we did not capture in our previous iterations of taxonomy design.

A limitation in this regard was that some of the instructors only gave very vague descriptions or

explanations of how they rated students’ design skills, or that some instructors completely skipped

writing explanations (Section 4.7.4). This limits the extent to which our taxonomy actually captures

5Note, however, that qualitative research does not primarily or necessarily aim for broad generalizability of findings, but
rather, deep and close understanding of phenomena and the contexts on which they are grounded. Caution should be
exercised when interpreting constructs and observations from similar studies towards generalizability.
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the authentic constructs and practices that HTDP instructors look for when assessing students’ program

design work or processes. We suspect that had we conducted this instructor study with a semi-

structured interview or even a think-aloud protocol (rather than with a free-form survey/worksheet),

we could have addressed the lack of detail in their descriptions with additional prompts to delve

deeper into the instructors’ reasoning or thought-processes as they assessed student work. Future work

on expert-checking should take into consideration designing similar studies that prompt for richer

responses from experts. This would allow for a more grounded refinement of the taxonomy based on

experts’ narratives, so long as the methodology and analytic process is concretely explained in detail

to account for audit trails [77, 78, 142].

8.5.2 Problem context limitations

One of our motivations with our choice of study problems was that we wanted to understand how

students used the design recipe techniques "in the wild", on problems that are slightly more challenging

(while still having components or aspects that can be addressed with the design recipe), especially

since the design recipe was meant to be a scaffold to get students beyond a blank page when solving

(new) programming problems. Using the problems in our studies helped us understand the nuances

of how students used the design recipe; our findings gave us insight into how we might improve on

the teaching or design of the curriculum. These insights are embodied in the conceptual framework

we developed for HTDP (Section 8.1), as well as our recommendations for improving the teaching of

HTDP-based courses and introductory-CS in general (Sections 8.2 and 8.3).

Our findings, however, are based on a limited set of problems, all with list-type input and sharing

some similar characteristics across the problems: sentinels that denote a prefix of data to process,

delimiters and noise in the data, and underlying structure in the data. Ideally, we would have liked to

test students on a variety of multi-task problems, varying input type and viable plans, for example.

Doing so would have helped us tease out and understand constructs such as: what planning issues

persist across different multi-task problems, how the students may have applied the program design

skills we identified in our taxonomy, as well as identify potential hierarchies of complexity among

plans (or problems that embody these plans), which may be useful in designing course activities. As it

stands, the limited range of our problems suggests a potential limitation in the contexts in which our

findings may apply, as well as our own descriptions of students’ design skills and processes.

Part of why we were not able to run more studies with a broader set of multi-task problems was due

to the time demand (and monetary cost) of study sessions: a think-aloud session on a single multi-task

problem, followed by a retrospective interview already consumed a full hour, and our study design

already had students work on two problems each (two hours total per student). We had begun to run

studies wherein we gave students two versions of either Adding Machine or Max-Temps, with one

version in a reshaped form (i.e. list-of-lists), and another in the original form, to explore whether

students could solve the problems in their already-reshaped forms, and whether having seen a reshaped

version first helps them solve the problems in their original form. We sought to understand whether
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giving the students these problems in a "leveled-down" form might suggest to them certain tasks that

they can apply to the original forms of the problems, and whether they can recognize to apply the

design recipe to the "leveled-down" versions of the problems (as these versions would be directly

template-instantiable). Articulating findings from this study will be part of the future work on this

project.

8.5.3 Computing intercoder reliability for our skills taxonomy

My advisor and I iteratively developed the taxonomy, revisiting our taxonomy definitions several times

after its initial development to refine them as we collected new data. Whenever we used the taxonomy

to score or assess student work (with transcripts, code, scratch work, and field observations as data

sources), we discussed scorings as a team and thus did not compute intercoder reliability. Teams of

instructors or researchers could replicate our studies (or use our existing data) and use the taxonomy to

code the design work of students to determine the taxonomy’s usability as an assessment scheme based

on computed reliability scores. Such a study could be used as another basis for refining the taxonomy

or understanding better how instructors use the taxonomy.

8.5.4 Mitigating short-term learning gains

One major factor that we had to work with when running studies with our students cohorts was their

schedule and availability. Some students were only available to do successive study sessions (e.g. two

1-hour sessions one after the other), while some were able to do separate days. It is likely that students

who did successive sessions could have benefited from solving one multi-task problem after another;

in the case of solving Max-Temps after solving Rainfall, for example, working on the sentinel-task in

the first session could have given them practice working with the task and influenced how they worked

with similar tasks in the second problem (such as handling delimiters). Distractor tasks, similar to

what Xie et al. [147] have done, could be used to occupy students’ working memory with unrelated

content to mitigate short-term temporary learning gains. This may help us better tease out how students

performed on the problems independently.

8.5.5 Teasing out workload factors of our study sessions

Think-aloud protocols are widely used in many fields as a way of accessing study subjects’ thought-

processes in short-term working memory [29, 31, 47]. They are used for studies such as those

that concern problem-solving, usability, process-analysis, and is particularly popular in computing

education research for understanding how people learn programming, among many other uses [41,

86, 97, 109, 140]. One concern about this methodology is the potential overload it may impose on a

subject’s working memory, which is usually mitigated by having participants practice thinking-aloud

first on a (usually unrelated) practice activity before engaging in an actual study protocol; this is the

same approach we’ve taken in our own studies. Nevertheless, our own study protocols require students



8.6. OPEN QUESTIONS AND FUTURE WORK 163

to: solve our multi-task problems (which are already designed to be challenging for them), think aloud

to verbalize their thought-processes during their design process, recall relevant knowledge from their

CS1 course or other prior knowledge, and engage in other activities they deem necessary for solving

our problems (e.g. sketching their solutions on paper, looking up notes, etc.). This combination of

activities may have imposed a workload on our students that could have affected how they performed

on our problems. A potential way of teasing out how the workload impacted students’ performance

is with the use of the NASA Task Load Index (NASA-TLX), a validated workload assessment tool

developed by the Human Performance Group at NASA Ames Research Center, to assess students’

workload during the study sessions [4, 75]. The NASA-TLX has been used in several computing

studies (particularly those that require usability studies) and by a few in computing education, such

as in DesPortes’ physical computing work [40]. Using the NASA-TLX as part of our assessment of

students’ programming processes could help us further identify the factors that contribute to students’

planning and design work.

8.6 Open Questions and Future Work

Research towards theory-development for HTDP can continue along several paths. This dissertation has

focused on developing a descriptive conceptual framework of HTDP-trained students’ program design

skills and skill levels, the interactions between design skills and course contexts, and observed patterns

of program design processes. The conceptual framework was developed from a grounded-theory-based

analysis of about 180 hours of think-alouds, interviews, and observations of students from several

HTDP-based CS1 courses from two universities, as well as data from some HTDP instructors.

8.6.1 Further validation of the SOLO-based program design skills taxonomy

We have begun to validate our SOLO-based skills taxonomy in a couple of ways: first, by using it to

categorize data from students beyond those from whose data we derived the taxonomy, and second,

by checking the taxonomy with other HTDP instructors to see whether their descriptions of what they

look for when assessing student design work were captured by the taxonomy descriptions we defined

(the latter refined the taxonomy through the addition of a new skill strand on pattern-use that we were

not able to previously capture). Validating the taxonomy further will not only refine our conceptual

framework for program design, but also provide evidence and refinement to the taxonomy as a potential

tool for assessing student design work. We envision several ways of validating this taxonomy:

• Run studies with CS1 courses that will fix the same problems that students will attempt at

multiple points in a course, apply the taxonomy to gauge students’ skill levels at each point,

and then check whether there is a linear progression in student skills over time. Because

students may gain familiarity with the problems and potentially "learn" the solution, the problem

cover story could be changed to mitigate short-term temporary learning gains (this is similar

to Morrison’s methodology on varying example cover stories in her experiments on measuring
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cognitive load [93]). We’ve done a preliminary study using this methodology (Chapter 7 [23]),

although our goals for that study was to understand whether students learn high-level plans with

a lightweight lecture intervention. Applying the taxonomy to such studies could better tease out

how students were thinking around the plans they have seen.

A variation of the above would be to give students a sequence of problems of varying familiarity

(reflecting the growing complexity of topics covered in a course), apply the taxonomy to gauge

students’ levels at each point, then examine whether their skills break down at certain levels of

problem complexity; this is what we’ve done in our own studies (Chapter 4).

• Our taxonomy descriptions are not purely specific to HTDP-based courses, so running the studies

described in the previous bullet with multiple courses that use different curricula can help further

identify the extent to which the taxonomy can capture how students from different curricular

contexts apply their skills, or the extent to which the taxonomy is curriculum-specific.

One other challenge that we encountered in using our taxonomy has to do with the skill on

composing expressions to build function bodies. We often found that this skill strand often did not lend

a strong discriminating power in our analyses of our students’ work. We explained that this skill strand

emerged from our students’ discussions of their design work at the code level, but that oftentimes, we

found the students always at the relational level given the timing of our studies. We argued that this

skill strand was the most mechanical of the design skills in our taxonomy, and that it did not seem to

require more from the student than having learned richer code patterns to write. It would be interesting

to see whether potential findings from the studies described above would further enhance or deepen

our definitions for this skill strand.

8.6.2 Using our skills taxonomy as a framework for designing assessments

Our SOLO taxonomy provides a framework for constructing assessments that witness to various

skill levels. Earlier topics within a CS1 course aren’t likely to witness to the higher skill levels in

the taxonomy, but as the course progresses, students need to be assessed on whether their skills are

improving as concepts increase in complexity. The taxonomy can be used as a framework towards

designing assessments that require students to demonstrate skills at specific skill levels. How to design

such assessments and whether the use of these assessments are, in fact, accurate in determining whether

a students is performing a specific skill at a specific level, remains an open question.

8.6.3 Student performance with new instructional activities

We have several recommendations (Section 8.2) for activities aimed at getting students to practice

using their design techniques to reason and explain their (task-level and code-level) plans, as well as

to use them towards novel problems of varying data scenarios. How would the implementation of

such activities in HTDP courses impact how students perform on the multi-task programming problems
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used in our studies? For example, do they develop task-level plans earlier in their programming

process; in other words (using the programming process patterns we found), will more students exhibit

a cyclic vs. a code-focused process? Do students use the design techniques put forth by the recipe

more meaningfully rather than in a mechanical way (which is what we observe among many of our

students)? Do activities that require students to solve programming problems by developing multiple

solutions of varying high-level structures, or having them compare or explain preferences between

multiple solutions with different structures, drive or encourage them to engage in planning?

8.6.4 Impact of programming language on students’ planning

Most existing work on the challenges of planning (particularly with the Rainfall problem) was

conducted in the context of imperative programming [122, 126, 127, 137]. Fisler studied how students

who used functional programming (also through HTDP) performed on Rainfall [51]. Given that different

programming languages have different affordances and linguistic idioms, a better understanding of

how students solve or struggle with multi-task programming problems in different pedagogic contexts

and programming languages will enhance our understanding of students’ planning towards multi-task

programming problems.

All of our host courses taught HTDP through functional programming in Racket. The high-level

structures produced by our students are similar to the ones produced by students in Fisler’s study,

although there were some differences in the language constructs that students used: for example, some

of the students from WPI used accumulator-style functions and very few attempted to use higher-

order functions; many NEU students used higher-order functions and none used accumulator-style

functions. These differences were related to the amount of exposure students from each school had

to the constructs. At the time we ran our studies, WPI students had only about a week’s exposure

to higher-order functions (and mostly focused on filter and map) and had used accumulator-style

programming in their course more; NEU students, on the other hand, had been working on higher-order

functions for at least three weeks by the time we ran our studies with the cohort and were scheduled to

discuss accumulator-style programming after the study.

Planning studies (for Rainfall) done in imperative contexts have often assumed a default high-level

structure, that is, one that took a single pass over the input sequence (usually with for or while loops)

and keeping track of the sum and count in variables [122, 126, 127, 137] (we call this single-traversal

in our codings for our studies). We’ve found students from our own study cohorts attempt this: some

used the list template naively and failed to decompose the problem over the sum and count, thus

incorrectly composing the code for the tasks within a single list template. We observed an interesting

difficulty/confusion with some of the students who attempted this solution structure with accumulator-

style functions: they did not realize to adapt the accumulator pattern to have multiple parameters to

track multiple tasks/values. Interpreting this in an imperative context, it would be as if students had

only ever seen programs with a single numeric variable; this is not a confusion that we have seen

reported in prior planning studies, particularly with the ones done in imperative settings. We also



166 CHAPTER 8. DISCUSSION AND CONCLUSIONS

found that this was related to the examples and course exercises that students have seen (examples and

exercises only showed/required the use of a single accumulator parameter).

Many of the prior planning studies also focused on students’ errors, rather than their programming

processes. It would be interesting to replicate our studies in CS1 courses with imperative contexts to

conduct a more granular analysis of those students’ design processes to understand better the interplay

between design skills and linguistic factors. Do students in those courses struggle with our multi-task

problems in similar ways to our students? What specific aspects of the languages have an impact on

how students from these different contexts design programs? In discussions with Michelle Craig and

Jennifer Campbell from the University of Toronto6, we discussed that they had adapted the HTDP

design recipe in their CS1 course that used Python. They haven’t formally evaluated their approach,

but have anecdotally described the approach to be "very helpful". Their HTDP-based CS1 course would

be a good candidate on which to replicate our studies.

6Email communication with Michelle Craig (October 2018) and Jennifer Campbell (June 2019)
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A.1 Rainfall: Clean-first

Figure A.1: Rainfall solution using the Clean-first approach
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A.2 Rainfall: Process-multiple

Figure A.2: Rainfall solution using the Process-multiple approach
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A.3 Rainfall: Single-traversal

Figure A.3: Rainfall solution using the Single-traversal approach
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A.4 Max-Temps: Reshape-first

Figure A.4: Max-Temps solution using the Reshape-first approach
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A.5 Max-Temps: Collect-first (accumulator-style)

Figure A.5: Max-Temps solution using the Collect-first approach (accumulator-style)
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A.6 Adding Machine: Reshape-first

Figure A.6: Adding Machine solution using the Reshape-first approach
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A.7 Adding Machine: Accumulator-style

Figure A.7: Adding Machine solution using an accumulator-style approach
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B.1 SnagIt setup web page

Figure B.1: Instructions for setting up SnagIt to capture programming sessions.
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B.2 Adding Machine problem statement web page

Figure B.2: Adding Machine problem statement used for the study.
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B.3 SnagIt video save web page

Figure B.3: Instructions for saving the SnagIt programming video capture (SnagIt12 version).
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B.4 Code and programming video submission web page

Figure B.4: Instructions for submitting the Adding Machine code and SnagIt programming video.
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B.5 Adding Machine post-programming survey

Figure B.5: The survey students filled out after working on the Adding Machine problem (administered
through the WPI Qualtrics [64] distribution).
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B.6 Post-programming survey question 1 responses

Table B.1: Student responses (verbatim) to post-programming survey question 1.

Student
How did you get started with the problem? Provide 1 to 2 sentences
describing the process of how you got started with the problem.

WPI1-STUD1

I started the problem by defining the definition of the list, and then creating

the template for the function. From there, I planned to use the template along

with a helper function to do the legwork of the problem.

WPI1-STUD2 I started with data definition first, then template, then actual function

WPI1-STUD3

I started with check expects. Then i tried to find a template to hopefully move

off from on the coursera site. I wasnt aware we could use our notes for the

whole period.

WPI1-STUD4

I stared at it before I started recording, thinking of different ways to tackle the

problem. I then began to write a general body of the code, realizing I was

confused still I wrote out a signature/purpose and kept working.

WPI1-STUD5 I did most of the problem off the top of my head

WPI1-STUD6
I tried writing a function that took 2 lists as an argument and built one list with

each element that wasn’t a zero and appended all theses sub-lists together.

WPI1-STUD7
understood what the concepts needed to do the problem, got confused in what

i should put in which function.

WPI1-STUD8 I wrote a description of what I wanted my function to do

WPI1-STUD9

I tried to rush a bit earlier on thinking that I had less time. I did not actually

write the template although I had them in my mind. At the very end it struck

on my mind that we should use local.

WPI1-STUD10
I tried to recreate a definition that we had done in class before because we

have been doing similar exercises throughout the course.

WPI1-STUD11
I tried to write the main function first, but quickly realized that I needed to

write some helper functions before continuing.

WPI1-STUD12
Started with a main function and then relized needed several helper functions.

started to work on those

WPI1-STUD13
i first started with writing out the purpose of what the function should do,

then wrote the check expects then went into writing the function.
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Table B.1 continued from previous page

Student
How did you get started with the problem? Provide 1 to 2 sentences
describing the process of how you got started with the problem.

WPI1-STUD14

I followed the design recipe. I started with the signature of ListOfNumbers ->

ListOfNumbers and a brief description of what I wanted my function to do.

Afterwards, I wrote a couple check expects again to know what I wanted my

function to do. I didn’t recall ever having to write a function that consumed a

list of numbers and produce a list of numbers, but I did remember in the last

project we had something that consumed a list of ancestors and produced a list

of strings. I wrote the template for a list of numbers and worked from there.

WPI1-STUD15 Basic HtDF, Signature, Purpose, Stub, Test Cases, etc

WPI1-STUD16 I started with writhing the check expect, and understant the question.

WPI1-STUD17

I started with the check-expects and after that tried to write a template. After

I had the template, I tried to think of a way to change the template to get

what i needed to solve the problem.

WPI1-STUD18 I created check expects and then tried to follow the list template.

WPI1-STUD19 I recalled similar examples from class but after I looked up in my notes.

WPI1-STUD20

I first read the problem, then started looking on my notebook to look for the

appropriate function for this problem. And also I checked on the brozser for

some other function that could help me in this problem

WPI1-STUD21 I followed the HtDF Recipe, and found a list template from my notes.

WPI1-STUD22
I tried to use the recipe. I wasn’t clear on which template I needed, so that

gave me some trouble when I tried to write the problem.

WPI1-STUD23

I started with the template for a list function, but ended up abandoning that

approach. Im not a fan of the templates other than just a very very basic

starting point. I never adhere strictly to the template. I just use trial and

error and hope that my logic works. I also use check expects to see where

the program is going wrong so I can understand how to fix it.

WPI1-STUD24

I started with a template, then moved onto the function. When I got

stumped on the function, I moved on to check-expects to help me break

down my thinking.

WPI1-STUD25 tried to write out the template and starting HTDP stuff
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B.7 Post-programming survey question 2 responses

Table B.2: Student responses (verbatim) to post-programming survey question 2.

Student

At any point during the
programming session,
were there instances when
you looked at notes?

If yes, what did you have to look up?

WPI1-STUD1 No

WPI1-STUD2 No

WPI1-STUD3 Yes i looked up add list template

WPI1-STUD4 Yes
Racket directory for a few functions to

make sure I was using them right

WPI1-STUD5 No

WPI1-STUD6 No

WPI1-STUD7 No

WPI1-STUD8 No

WPI1-STUD9 Yes the racket documentation

WPI1-STUD10 Yes

I had to look up what expressions to

use and went to the how to design

functions page.

WPI1-STUD11 Yes design recipe templates, example code

WPI1-STUD12 No

WPI1-STUD13 No

WPI1-STUD14 No

WPI1-STUD15 Yes Racket Documentation

WPI1-STUD16 Yes
I want to check is that a function that

is exist.

WPI1-STUD17 Yes Tried to look for previous examples.

WPI1-STUD18 Yes I looked up certain functions on racket help.

WPI1-STUD19 Yes notes i took from videos.

WPI1-STUD20 Yes

I looked at previous problems that

looks similar to this problem and

see how they were solved

WPI1-STUD21 Yes Templates for lists and helper functions.

WPI1-STUD22 No

WPI1-STUD23 No

WPI1-STUD24 No

WPI1-STUD25 No
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B.8 Post-programming survey question 3 responses

Table B.3: Student responses (verbatim) to post-programming survey question 3.

Student
Were there any points in the
problem when the design
recipe was useful?

If yes, describe in a sentence or
two when you used it.

WPI1-STUD1 Yes Using the template to operate on the list.

WPI1-STUD2 No

WPI1-STUD3 Yes when i started the code

WPI1-STUD4 Yes Clarity from signature/purpose

WPI1-STUD5 No

WPI1-STUD6 Yes signature and purpose statemnt

WPI1-STUD7 No

WPI1-STUD8 Yes when I started

WPI1-STUD9 Yes The basic template was useful

WPI1-STUD10 Yes
It helped me set up how to write

the function correctly.

WPI1-STUD11 Yes
i used examples to help me understand

the problem more clearly

WPI1-STUD12 No

WPI1-STUD13 Yes

started with the check expects helped

and also writing out the purpose of the

function.

WPI1-STUD14 Yes

I used it when I started the code and

tried to come up with possible helper

functions for my code. Additionally,

It told me what I wanted my output

to look like.

WPI1-STUD15 Yes
The entire code, untill I considered

helper functions

WPI1-STUD16 Yes I was kind of fallowing the recipe.

WPI1-STUD17 Yes
I used to start writing the functions

but got stuck.

WPI1-STUD18 Yes
When I started the code it was helpful

to understand what I was doing

WPI1-STUD19 Yes

I started the code without writing the

signature and purpose and started to

releaase i should do it with recipe



B.8. POST-PROGRAMMING SURVEY QUESTION 3 RESPONSES 199

Table B.3 continued from previous page

Student
Were there any points in the
problem when the design
recipe was useful?

If yes, describe in a sentence or
two when you used it.

WPI1-STUD20 Yes

As i mentioned before I checked on

my browser the design recipe to help

me in this problem

WPI1-STUD21 Yes
The check-expects got me thinking

about how to approach the problem.

WPI1-STUD22 Yes

Signature

Purpose

Stubs

Check-expects

were all the parts of the recipe that I used

WPI1-STUD23 No

WPI1-STUD24 No

WPI1-STUD25 Yes helper function layout
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B.9 Post-programming survey question 4 responses

Table B.4: Student responses (verbatim) to post-programming survey question 4.

Student

Was there a time when you
were trying to use the design
recipe but felt you didn’t
know what to do next?

If yes, describe in a sentence when
that happened.

WPI1-STUD1 No

WPI1-STUD2 No

WPI1-STUD3 Yes
When i was trying to figure out the

diction for the small details of the problem

WPI1-STUD4 Yes
I sort of started with it, but got lost because

I felt like the template didn’t work very well.

WPI1-STUD5 No

WPI1-STUD6 Yes
OI tried attacking the problem from another

angle.

WPI1-STUD7 No

WPI1-STUD8 Yes

WPI1-STUD9 Yes how to implement local made me thinking

WPI1-STUD10 No

WPI1-STUD11 No

WPI1-STUD12 No

WPI1-STUD13 Yes it was hard to get the function right

WPI1-STUD14 Yes

I just couldn’t think of a way I could combine

certain parts of a list. I should have checked

the racket site, but I felt too strapped for time

to look through the site. Looking back on it,

it probably would have been worth it.

WPI1-STUD15 Yes Defining the template

WPI1-STUD16 No

WPI1-STUD17 Yes Got stuck when I had to write the function.

WPI1-STUD18 No

WPI1-STUD19 Yes
I need to look in my notes to see if i was doing

it right

WPI1-STUD20 No

WPI1-STUD21 Yes
I didn’t know if I should use a helper function

or not.

WPI1-STUD22 Yes the template



B.9. POST-PROGRAMMING SURVEY QUESTION 4 RESPONSES 201

Table B.4 continued from previous page

Student

Was there a time when you
were trying to use the design
recipe but felt you didn’t
know what to do next?

If yes, describe in a sentence when
that happened.

WPI1-STUD23 Yes
I stopped using the design recipe ( except for

signatures and purposes)

WPI1-STUD24 No

WPI1-STUD25 Yes
got stuck on how to get the program to work

dispite trying to follow HTDP process





Appendix C

Program Design Skills Evolution Study:
Instruments and Data

203



204 APPENDIX C. PROGRAM DESIGN SKILLS EVOLUTION STUDY: INSTRUMENTS AND DATA

C.1 Interview Questions

C.1.1 Code-writing exercises and reviewing homework solutions

1. Was the problem statement clear to you when you read it? [ No ] What was unclear and how did

you go about figuring out what the problem asked for?

2. [ For your main function(s), or For each of your helper functions, ] why did you choose these

examples/test cases? (May expand on this with an example, perhaps using a different homework

problem as an example) Can you describe what scenarios your examples/test cases address? Do

you think you’ve covered all possible scenarios of the input in your examples/test cases? What

other examples/test cases do you think can you add and why would you add them?

3. We are interested in your thought processes when solving this problem. What did you think of

doing first? Were you reminded of a construct in general or a general structure of solution that

you thought would be useful?

4. Have you previously seen problems that resemble this one? In what way (if any) did solutions to

those problems influence your work on this problem? For example, they gave you ideas for how

to structure the code, which constructs to use, etc.

5. Did you feel stuck at any point while working on this problem? Did any aspects of the problem

stand out as more challenging than others? What were these and why were they challenging?

6. Describe the approach that [ your code takes or each of your solutions (for multiple solutions)

take ] to solving the problem. [ If they just read the code, re-prompt. ] Give a more general

description of how the code processes the input to produce the output.

C.1.2 Solution comparison or ranking multiple solutions

1. What differences do you notice between the solutions? Can you identify any strengths and

weaknesses in each of the solutions?

2. Given these solutions for this programming problem, which of these do you prefer and why?

3. Given these solutions for this programming problem, can you think of another way of solving

the problem? How would you do it?

4. Given these solutions for this programming problem, is there a solution that you find confusing

or difficult to understand? Can you identify/describe what makes the solution confusing or

difficult to understand: is it using constructs you haven’t seen used before, is the general structure

something you have not encountered before, or other issues that were not mentioned?
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C.1.3 Class, course content, curriculum

1. Are the program design techniques taught in class helpful to you when solving a programming

problem on your own? Were the program design techniques taught in class helpful to you

when solving this problem? What about these techniques have been helpful/not helpful in your

programming?

2. [ When you don’t use the program design techniques taught in class on a given problem, what

approach do you take instead? or Did you use other program design techniques that weren’t

taught in class? ] How is this approach helpful to you?

3. Are there particular programming problems you have been given in class that you have ex-

perienced a difficult time solving? What are these problems? For each problem, can you

identify/describe what makes the problem difficult to solve for you: is it using terminology/lan-

guage you can’t understand, is the input/expected output expressed vaguely, can you not recall

previous examples that can help you solve the problem, can you not recall constructs that can

help you solve the problem, or other issues that were not mentioned?

C.1.4 Programming language

1. Are there any constructs/commands of the programming language that you find difficult or

confusing to use? What are these?

2. What issues make programming constructs difficult to use: for example, the keyword used, the

syntax, the examples given in class that uses it, the documentation for the construct, or other

issues that were not mentioned?
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C.2 Full Homework Problem Sets

The problems used in the sessions are in red. For session 1, Problem 8 was used for the solution

interview and Problem 4 was used for comparing alternative solutions. For session 2, Problem 6 was

used for both the solution interview and for comparing alternative solutions.

C.2.1 Homework 3 problems

If you watch TV, you’re probably pretty sick of watching television ads, especially now that the

presidential campaigns are in full swing. The typical 30-minute TV program consists of 22 minutes

of programming and 8 minutes of commercials. In this assignment, you’ll create data to represent

information about television ads, and write programs that process lists of ads.

1. An Ad consists of whether or not the type of the ad is political (as opposed to a product ad),

the name of the product or politician the ad is for, the duration of the ad (in seconds), the cost

to produce the ad (in thousands of dollars), whether or not the ad is to be aired nationally (as

opposed to locally), the time of day that the ad is to be aired (either daytime, primetime, or

off-hour), and the number of times the ad is to be aired.

Write data definitions and provide examples of data for Ad and ListOfAd. The name of your

struct should be ad. Make sure you define the fields in your struct in the order given above. You

should use the data type Boolean to represent the fields for political/product and national/local.

2. Write the templates for Ad and ListOfAd.

3. Write a function count-political-ads that consumes a list of ads and produces the number of

ads in the list that are classified as political ads.

4. Write a function any-ads-for? that consumes a list of ads and a String representing a product

name or politician’s name, and produces a Boolean. The function returns true if the list contains

any ads for the given product or politician.

5. Write a function primetime-ads that consumes a list of ads and produces a list of all the ads

airing in primetime.

6. Write a function politicians-sponsoring-ads that consumes a list of ads and produces a list of

strings. The list that is produced contains the names of the politicians who have political ads

(it’s OK if the resulting list contains duplicate names).

7. Write a function air-cost that consumes an Ad and produces a Number. The number produced

is the cost of airing the ad, which is determined as follows: airtime is sold in 30-second-spot

blocks (so if the duration of the ad is 15 seconds, it would cost half the stated amount, etc.). The

cost of a 30-second primetime ad for a national market is $100,000. The cost of a 30-second

primetime ad for a local market is $5000. A discount of 20% is applied to the cost if the ad is
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aired in the daytime, and a discount of 50% is applied if the ad is aired during off-hours; the

discounts apply to both national and local ads. Finally, the air-cost is multiplied by the number

of times the ad is to be aired. (You may assume that all airings of an ad occur in the same market

and at the same time of day.)

8. Write a function campaign-air-cost that consumes a list of ads and the name of a politician, and

produces the total air-cost of all political ads for that politician.

9. Write a function total-ad-cost that consumes an Ad and produces the total cost of the ad. The

total cost is the sum of the cost of producing the ad and the cost of airing the ad.

10. Write a function expensive-ads that consumes a list of ads and a Number. The function produces

a list of those ads for which the total ad cost exceeds the given number.

C.2.2 Homework 5 problems

A river system can be represented as a hierarchy. For example, a list of some of the tributaries that

feed into the Missouri River includes the Jefferson, Sun, Yellowstone, Madison, and Gallatin Rivers.

The Jefferson, in turn, is fed by the Beaverhead and Big Hole rivers. The Yellowstone is fed by the

Gardner, Shields, and Boulder rivers, and so on. In this set of exercises you will create a data definition

for a river and its tributaries, and write programs that answer questions about the quality of the water

in the rivers.

Assume that for each river, measurements of the river’s pH and DO (dissolved oxygen) levels

are available. Such measurements are taken at the confluence of the rivers (the point at which the

tributaries converge). pH levels can range from 0 (most acidic) to 14 (most alkaline). The normal

range for bodies of water are 6.5 - 8.5. DO is measured in milligrams per liter (mg/L). DO levels

are dependent on many factors, including water temperature, salinity, atmospheric pressure, aeration,

and bacterial levels. Dissolved oxygen levels can range from less than 1 mg/L to more than 20 mg/L

depending on how all of these factors interact.

1. Provide data definitions for a river system. For each river in the hierarchy, you should record the

following information: the name of the river, the pH of the water, the DO in mg/L, and a list of

the tributaries (rivers) that feed into the river. The name of your struct should be river. Make

sure you define the fields for a river in the order given in the description.

2. Provide an example of a river system that starts with a single river and consists of at least two

levels in the hierarchy below that. You may use the example given above for the Missouri

River, if you wish. (You may make up numbers for pH and DO — for these exercises we’re not

concerned about the accuracy of the information, just that you can provide a correct model for

the information.)

3. Provide the templates for your data definitions.
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4. Develop a function list-acidic-rivers that consumes a river system and produces a list of

string. The function returns a list of the names of rivers in the system that have a pH level lower

than 6.5.

5. Acid rain can lower the pH of water in a river system. Develop a function lower-all-ph that

consumes a river system and produces a river system. The river system that is produced is the

same as the original, except that the pH of all the rivers in the system has been lowered by 0.1.

6. Cold-water fish such as trout and salmon are more vulnerable to low DO levels than are warm-

water fish. Although they can survive for a short time in water with a DO level of less than 5

mg/L, they will die in water below 3 mg/L. Develop a function cold-water-fish-warning that

consumes a river system and produces a string. If all rivers in the system have DO levels at

5mg/L or above, the string produced is "OK". If any of the rivers in the system have a DO level

below 3 mg/L, the function produces the string "Deadly". Otherwise, the string produced is

"Marginal". You’ll need to use helpers here. Think about where you’ll want to use the templates.

7. Write a function find-subsystem that consumes the name of a river and a river system and

produces either a river system or false. The function returns the portion of the original river

system that has the named river as its root. If there is no river in the system with the given name,

the function returns false.

8. Use find-subsystem to write a function count-acidic-tributaries-of that consumes a river

system and the name of a river. The function produces a count of the number of tributaries of the

named river which have a pH < 6.5. You may assume the named river exists in the river system.

You should count the acidic tributaries only, (don’t include the named river itself in your count).
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C.3 Study Recruitment Survey

Figure C.1: The survey that volunteer students filled out to express interest in participating in the study
(administered through the WPI Qualtrics [64] distribution).
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C.4 Student Survey Responses

Table C.1: Student responses to the participant recruitment survey (verbatim)

Student Intended major
Programming
languages used
before CS 1101

Programming
experience
prior to WPI

How is the
course going
so far for you?

WPI2-STUD1 CS
A little bit

of Java

AP class, High school

class, Online courses

(e.g. Coursera)

D

WPI2-STUD2
Computer Science/

Game Development
Python High school class B

WPI2-STUD3 Computer Science C++
Online courses

(e.g. Coursera)
B

WPI2-STUD4 Computer Science Java, C++
AP class, High

school class
C

WPI2-STUD5 CS
Javascript,

CSS, HTML
Programming clubs B

WPI2-STUD6 Computer Science
Java, Python,

Ruby
Self-study B

WPI2-STUD7 Computer Science

Python,

JavaScript,

Java, HTML5,

CSS, PHP

Self-study, AP class,

High school class,

Online courses

(e.g. Coursera)

B

WPI2-STUD8 Computer Science Python None A

WPI2-STUD9 Computer Science None None C

WPI2-STUD10 Computer Science
HTML, CSS,

PHP, Jquery

Self-study,

Programming boot

camps/workshops,

High school class

B

WPI2-STUD11 CS None None B

WPI2-STUD12 Computer Science Java, C++
Self-study, High

school class
B

WPI2-STUD13 Bioinformatics Racket High school class A
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Legend for the survey question, "How is the course going so far for you?" (rightmost column):

• A: I can understand the topics very well and have an easy time working on the course assign-

ments.

• B: I can understand the topics well enough and find the course assignments a bit challenging.

• C: I find the topics fairly challenging to understand and find the course assignments fairly

challenging.

• D: I have a difficult time understanding the topics and find the course assignments very challeng-

ing.
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C.5 Instructor Recruitment Survey

Figure C.2: The survey that volunteer HTDP instructors filled out for participation in the study.
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C.6 Instructor recruitment survey responses

Table C.2: Validation study recruitment survey responses of the 7 participating HTDP instructors

Instructor Affiliation1 No. of Years
Teaching HTDP

Education
level taught

How far (topic) do
you teach HTDP?

Previously
attended HTDP

workshop?

INSTRUCTOR1
College/
University

>3 years Postsecondary
Beyond mutual
recursion (generative
recursion, set!, etc)

No - self-taught

INSTRUCTOR2
College/
University

>3 years Postsecondary
Beyond mutual
recursion (generative
recursion, set!, etc)

Learned material
as a TA

INSTRUCTOR3
College/
University

>3 years Postsecondary Trees Yes

INSTRUCTOR4 High school >3 years
Grades 9-10,
11-12

Lists of structs No - self-taught

INSTRUCTOR5
College/
University

>3 years
Grades 11-12,
Tertiary

Beyond mutual
recursion (generative
recursion, set!, etc)

Yes

INSTRUCTOR6 Grades 6-12 >3 years
Grades 9-10,
11-12

Beyond mutual
recursion (generative
recursion, set!, etc)

Yes

INSTRUCTOR7
College/
University

>3 years Postsecondary Trees Yes

1Actual institution names redacted for anonymity
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C.7 Instructor worksheet

C.7.1 Page 1: Instructions and skill descriptions

Figure C.3: Page 1 of the instructor worksheet. This page provides instructions on how to complete
the worksheet and the descriptions of the skills to be scored.
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C.7.2 Page 2: Skill ratings and descriptions

Figure C.4: Page 2 of the instructor worksheet. Instructors fill this page in with their ratings of a
student’s design skills and their justification for their ratings.
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C.8 Instructor worksheet responses

Design skill shorthands are: MTE = Methodical choice of tests and examples, CFB = Composing

expressions within function bodies, DTC = Decomposing tasks and composing solutions, and LRF =

Leveraging multiple representations of functions

C.8.1 INSTRUCTOR1

Worksheet
Question WPI2-STUD3 WPI2-STUD6

Overall quality of
student’s work

The student didn’t create any
tests in advance. They seem to
know how to use the template
(though they refer to in-class
examples, rather than the HtDP
terminology). They seem to
have some ability to reason why
the program doesn’t give the
right answer, but they do not
explore this with more examples.
They eventually realized they
needed a help function ’average’,
but ran out of time before
exploring this

Good work in generating examples
and subtasks. But I can’t give them
a 3, since they didn’t solve the
problem :). This student seemed to
misunderstand the problem, since
they posited wrong values as the
desired answers for some of their
tests.

MTE

Tries an example with two
positive numbers first, but
doesn’t try a single positive
number or an empty list. I’d rate
this skill as present, but not
strong enough even to count as
’fragmented’. If you’d said
’rudimentary’ as the description
of a 2, I might have gone for that.

Good choice of examples. But did
not write them down as test cases.
Did not have a correct understan-
ding of the problem See paragraph
(1): "because 8 plus 5 is 13 plus 1
is 14, -2 is 12 and divide that by 4
is 3 okay."

CFB

Composes expressions plausibly.
Shows reasoning about relating
observed behavior to the program
text

The code they wrote mostly mirrors
their intentions.

DTC Eventually got to ’average’, but
ran out of time

Discovered the need for ’average’
early on, but gave up on it too soon.

LRF
Wrote contract and purpose for
main function, but not examples
or test cases.

Has contract and purpose statement
for main function, but no examples
or test cases. No contract or purpose
statement for local function.

Other skills/
factors you would
have considered

I would have required a contract
and purpose statement for the
inner function

I would have required contract and
purpose statement for the local
function.
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C.8.2 INSTRUCTOR2

Worksheet
Question WPI2-STUD3 WPI2-STUD11

Overall
quality of
student’s
work

1 - But this is giving no credit for the insight
at the end (par. 17) of the transcript, other-
wise it could be a 2. The student is doing
some of what they should be doing (signature,
purpose, eventually starting a helper function)
and shows some knowledge (how to traverse
a list), but doesn’t yet have the skeleton of a
solution written down, and isn’t applying all
the tools, in particular tests and examples, that
they should be.

3 - This is good, but there are (at least) two
function defects: 1) it keeps going past -999
because the negative check (line 27) comes
before the -999 check. 2) It crashes if the
input list contains 0, because that case is not
handled by the cond (line 26-28). Given a
finer scale, I would also deduct for incom-
plete test coverage (line 28 is unreachable)
and bad style (unnecessary accumulator,
too many cases in the main function).

MTE
1 - No examples in the code, but tries one
interactively (par. 8), and then reduces it
(par. 9).

2 - Tests cover a few edges cases, but omit
important cases, such as -999 followed by
more numbers, or a list that mixes negatives
and non- negatives. It’s clear from the tran-
script (par. 29-30) that testing was an
afterthought.

CFB

3 - Doesn’t seem to have any trouble with this.
Though some of the reasoning in par. 6 might
show a lack of understanding of accumulators?
And that may have led to passing (first alon)
as the accumulator (line 10).

3 - Doesn’t seem to have any trouble with
this. (I’m having trouble imagining why a
student would do what is required to score
a 4, though.) One low-level issue is not un-
derstanding the difference between ‘list’
and ‘cons’ (par. 26).

DTC

2 - Big problem here, and on the code alone,
this would rate a 1, not 2. But the transcript
shows the student figuring out the decompo-
sition (par. 17) before running out of time.

3 - The student right away goes to a flawed
recursive strategy (par. 7), realizes quickly
it won’t work, and then applies a not-very-
good strategy (accumulator, par. 10). But
somehow (maybe par. 13?) they figure out
that the list-traversing function has to be a
helper, which leads to a workable
decomposition.

LRF 1 - Writes a function signature (line 1, par. 2),
but otherwise doesn’t do this.

2 - Wrote signatures and purposes for helpers,
but the purpose for ‘check-number’ (line 22)
got out of date (par. 17). Didn’t actually leve-
rage examples/tests when designing the code.

Other skills/
factors you
would have
considered

My grading is more about applying process
than about the kinds of design skills in your
rubric; my goal is to induce students to follow
the process even when it feels mismatched
with their understanding (because they feel
they don’t need it, or because the problem
feels too forbidding). So I give points for:
meaningful function name, (correct) signature,
(correct, succinct) purpose statement, example
adequacy (this problem requires at least 4), test
coverage, an explicit strategy statement, and
correctly following a template (when that is the
strategy). I also grade for style, e.g., failure to
factor out redundancy, magic numbers, inap-
propriate choices of data types, etc.

In this case, the local helper ‘rainfall’ (line 7)
needs a better name and an accumulator state-
ment (loop invariant). Perhaps thinking about
an accumulator statement would have helped
the student understand that their approach is
sooner.

My grading is more about applying process
than about the kinds of design skills in your
rubric; my goal is to induce students to follow
the process even when it feels mismatched
with their understanding (because they feel
they don’t need it, or because the problem
feels too forbidding). So I give points for:
meaningful function name, (correct) signature,
(correct, succinct) purpose statement, example
adequacy (this problem requires at least 4), test
coverage, an explicit strategy statement, and
correctly following a template (when that is the
strategy). I also grade for style, e.g., failure to
factor out redundancy, magic numbers, inap-
propriate choices of data types, etc.

In this case, I would just want
the helpers to have better names.
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C.8.3 INSTRUCTOR3

Worksheet
Question WPI2-STUD3 WPI2-STUD11

Overall
quality of
student’s
work

I would give this student a score of 1.25 out of
4. I think my scores are probably drawn from
the context of the fourth-year college PL class
that I’m taking, where some students are having
almost exactly this kind of difficulty. A score of
1 is essentially a mercy score, suggesting that
the student clearly worked hard, but that the
ingredients of success are mostly missing.

I would give this student a 3.5. The student
fails to handle -999 correctly; specifically,
positive numbers after the -999 are not ig-
nored, because of the ordering of the ‘cond’
clauses. Code coverage testing reveals this
bug (and indeed, I would probably not have
spotted it if I hadn’t quite accidentally had
test coverage enabled). Other than this, the
final code looks very solid.

MTE

1 - The student failed to write down any test
cases at all. They did try the program on a few
inputs, but were missing test cases that were
*simple* enough to aid in the thinking process.
They were also completely missing the
complex test cases.

2 - The student produces reasonable test
cases, but the think-aloud makes it clear
that these were an afterthought , rather
than a part of the design process.

CFB

3 - The student doesn’t appear to have trouble
composing expressions; the code is syntactical-
ly solid, and code such as (/ (rainfall (rest alon)
(first alon)) (+ 1 acc)) is doing exactly what the
student wants, even if it isn’t actually helpful
in this case.

3 - The student seems to have no problem
composing expressions within function
bodies. There were some syntactic issues,
but the student largely overcame these,
though the use of ‘list*’ is a little unset
tling; a ‘cons’ would have been the simple
and correct choice here.

DTC

1 - This student makes little or no attempt to
decompose the problem, with a faint hint of
“oh we need a helper” right at the end. It seems
that this student doesn’t yet have a clear sense
of the scope or boundaries of the patterns that
he/she is learning. I feel that a successful
student will use patterns like tools in a toolbox,
and say “oh, I need one of these and two of
these, and then staple it together,” where this
student is still in the phase of trying to figure
out which end of the hammer to hold, and
whether it can do the whole job. Until you
know the patterns well, you don’t know their
limitations.

2 - The student did not immediately decom-
pose the problem into its parts, but got there
eventually. It was fascinating to see how the
student started out with a helper function
with a “random name”, and moved from a
function that adds numbers to one that just
returns a list of the non-negative ones. This
suggests that the mental cost of initiating a
helper function makes it easier to re-purpose
one than just to come up with another one.

LRF

2 - The purpose statement looks solid, and the
signature is there, and clearly the first informs
the second and the second informs the choice
of template, so that parts of the design recipe
are working. However, things fall apart in the
decision not to write test cases as a means of
thinking about the problem.

2 - This student uses the signature to drive
the template, but fails to develop test cases
as a means of understanding the problem.

Other skills/
factors you
would have
considered
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C.8.4 INSTRUCTOR4

Worksheet
Question WPI2-STUD6 WPI2-STUD11

Overall
quality of
student’s
work

2 - One huge untestable local function –
better to have access to inputs without
local

Stuck on 1 example

3 - It works, has check-expects of reasonable
coverage, signature [illegible], purpose –
one wrong

Should test helpers

MTE

2 - Sticks with same long example
throughout

Never goes smaller and introduces
features one by one

3 - See check-expects – small and build up

CFB 3 - Rainfall helper uses many helper
functions

3 - Uses helper functions

DTC 2 - Has accumulator, little evidence
of decomposition beyond that

3

LRF
1 - Connections seem very superficial

Did not affect results in my opinion

2 - Note purpose to check-number is wrong
and name choice is poor

Other skills/
factors you
would have
considered

Poor use of test cases is striking, #1
issue

Testing thoroughness – should have test with
two -999’s to demonstrate they work, or at
least data after -999: (list 12 -999 3 4 -999)
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C.8.5 INSTRUCTOR5

Worksheet
Question WPI2-STUD6 WPI2-STUD11

Overall
quality of
student’s
work

0 - Justification: The student has failed to follow the
design recipe in several ways. First, the student did
not write any tests in their program. Furthermore, in
the transcript the student failed to carefully choose
tests. For example, the student never considered what
the result ought to be if the list (i.e., alon0) is empty.
Second, the student chose to use an accumulator, but
never explicitly stated the role/invariant of the
accumulator nor explicitly stated in the transcript
how the accumulator is to be exploited. Third, the
student did not spend enough time analyzing the
problem in order to understand how to properly solve
it and to discover interesting tests. Fourth, the student
fails to truly grasp that if -999 is encountered then
what is left of the list need not be processed. Instead
of stopping the processing of the list at -999, the
student continues to use it to compute the answer.
Finally, the student is using programming constructs
that are not needed. Specifically, the student used
cond to in all-negative? despite the fact that no
decision needs to be made. Clearly, the student does
not clearly understand that cond ought to used only
when a decision is to be made.

3.7 - Overall, the student has successfully used divide-
and-conquer to find relevant subproblems/tasks that
need to be solved. The student has then successfully
put the pieces together to formulate an answer to the
rainfall problem. The solution could be improved,
but I consider that an optimization and, therefore, I
am more lenient in grading the lack of optimizations.

MTE
0 - Despite thinking out loud about a couple of
examples, the student never translated those thoughts
to actual tests in the code developed.

3.2 - The student failed to think of examples/tests that:
1. Contained faulty and non-faulty readings before -999
2. Contained readings after -999
3. Test the auxiliary functions: check-number and
add-number

Otherwise, the student used examples to guide the de-
velopment as seen in paragraphs 24, 27, and 29 of the
transcript.

CFB

1 - The student does have a program free of syntax
errors and does demonstrate some knowledge of
function composition. For example, they call the
length function to compute the returned answer.
They also demonstrate some understanding about
how to process a list when they recursively process
the rest of the list. This knowledge, however, is
incomplete given that they formulate no answer for
when the list is empty.

4 - The student has clearly leveraged problem analysis
and understanding of syntax to produce a program that
does not have syntactical mistakes and that is faithful
to their design decomposition of tasks. The output of
functions that solve a subproblem are effectively used
in the rainfall function as input to other functions such
as /, cons?, and add-number.

DTC

0 - The student did not formulate the tasks that need
to be accomplished, neither in their code nor in their
transcript. The student focuses on a single task: the
sum of nonnegative numbers before -999. This task,
however, is poorly done as the student did not care-
fully think about what is needed to compute the
average of these numbers.

4 - The student has correctly composed functions to
solve subproblems. Three useful subproblems/tasks are
identified: summing a list of numbers, shortening the
input list to rainfall, and getting the length of a list of
numbers. The functions to solve these subproblems are
effectively used in the rainfall function.

LRF 0 - See my answer to question 1.

3.5 - The student failed to properly analyze the quality
of he submitted solution. Specifically, (check-number
alon) is computed three times instead of using a local
expression to define a variable to compute this value
once and use the variable three times.

There is also the curious choice of using list* instead
of using cons. The transcript did not shed any light
on the rationale behind this choice other than some
misguided notion that adding a "*" has fixed things
in the past. Being unable to explain this choice
indicates that the student cannot fully explain how or
why their solution works.

Other skills/
factors you
would have
considered

None. None.
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C.8.6 INSTRUCTOR6

Worksheet
Question WPI2-STUD6 WPI2-STUD11

Overall
quality of
student’s
work

1-2 - The code is incorrect, inadequately
tested, and not structured well. However,
the student has written signatures and
purpose statements, and the definitions
are well-formed. I’d call it a 2 (= C or C-)
for a HS student, maybe 1 for college?

2.5 - Definitely at least 2 and at most 3. Good
decomposition, function form follows data,
and the main function is correct for many
inputs. My reservations about a 3 are the
incorrectness on lists with nums after -999,
the testing gaps that allowed it, and the
purpose statement and name in check-number.

MTE

1 - Student not using check-expect to
automate tests rules out 3 or 4. Student
knows about testing and uses it to observe
program behavior, but isn’t systematic.*

*See, e.g., pars. 6, 8, and my comments
on par. 11 of transcript.

2 - Student includes tests on the main
function, but not helpers. Tests address
some, but not all, cases.

CFB

2 - Student is making well-formed but
incorrect body expressions. Student
makes use of APS without a clear reason
and loses sight of expressions’ purpose.

2 (2.5?) - Mostly good skills here; higher
levels of nesting may still be too much (see
“check-number”) but the student has 2 clear,
sensible functions.

DTC

1 - Student misses the “obvious”
decomposition (average = sum/length of
list), but does recognize filtering as a
sub-task (even if not implemented right).

3 - Clearly recognized the main task divisions
in the problem, and the resulting program
structure makes sense.

LRF

2 - Little use of examples/tests –
especially for understanding the problem.
Accurate use of signatures and purpose
statements, but not fully realized.

2.5 or 3 - Student knows the design-recipe
steps but doesn’t get the idea that concrete
examples are a tool for understanding the
problem before coding.

Other skills/
factors you
would have
considered

See my notes on the source and transcript;
that should mostly cover this Q. I’m also
interested in the student’s communication
and organization skills, and try to
distinguish (and separately address) the
student’s awareness and understanding
of the design tools, and disposition
towards using these.

Same comment as I made re: student 6:
communication skills. Also, proofreading and
revision, this student could have eliminated
many of the remaining problems in the code
by making a proofreading pass, and checking
whether names, writing, and code all make
sense.
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C.8.7 INSTRUCTOR7

Worksheet
Question WPI2-STUD3 WPI2-STUD6

Overall
quality of
student’s
work

3 3+

MTE

2 - Not enough examples when
approaching the problem.
Interview parts 8, 9, 15.
Examples and tests used later
in reasoning.

3-4 - Student uses examples and
tests to analyze the problems.
(Interview 3, 5, 6, 8, 11)

CFB 2-3 - Good composition in
terms of syntax.

3 - Student should try more ways
of decomposing the problem.
Syntax is good.

DTC

3 - Rainfall function includes
the rainfall with accumulator.
Average function is defined as
a separate function, but it is
not used.

3 - All-negative function is placed
after the testing for -999.
Decomposing is partially used.

LRF

3 - Average function has a
wrong signature/contract,
but the explanation in
interview was good attempt.

3-4 - Good usage of purpose/
signatures. Have lots of examples.

Other skills/
factors you
would have
considered
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D.1 WPI Study Recruitment Survey

Figure D.1: The survey that volunteer WPI students filled out to express interest in participating in
study 5 (administered through the WPI Qualtrics [64] distribution).
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D.2 WPI Student Survey Responses

Table D.1: WPI student responses to the participant recruitment survey (verbatim)

Student Intended major
Programming
languages used
before CS 1101

Programming
experience
prior to WPI

How is the
course going
so far for you?

WPI3-STUD1
Robotic
engineering Robot c, c++

High school class,
Online courses
(e.g. Coursera),
AP class, Programming
clubs, Self-study

A

WPI3-STUD2 BME None None B
WPI3-STUD3 RBE none None B

WPI3-STUD4
Possible cs and
imgd double major Java

Online courses
(e.g. Coursera),
Self-study

A

WPI3-STUD5
Robotics
Engineering

Arduino, C,
Java

High school class,
Self-study A

WPI3-STUD6

Mechanical
Engineering
and Robotics
Engineering

C-based
programming
(Robot C)

High school class B

WPI3-STUD7 CS None None D
WPI3-STUD8 RBE none None D

WPI3-STUD9 Computer Science
C, & C++,
Java, Python None A

WPI3-STUD10 robotics c++, javaswift

High school class,
Online courses
(e.g. Coursera),
AP class, Self-study

B

WPI3-STUD11
Robotic
Engineering

Arduino, Robot c,
python, java

High school class,
Programming clubs B

WPI3-STUD12
Mechanical
Engineering

Java, Python,
Pascal

AP class, Programming
boot camps/workshops A

Legend for the survey question, "How is the course going so far for you?" (rightmost column):

• A: I can understand the topics very well and have an easy time working on the course assign-

ments.

• B: I can understand the topics well enough and find the course assignments a bit challenging.

• C: I find the topics fairly challenging to understand and find the course assignments fairly

challenging.

• D: I have a difficult time understanding the topics and find the course assignments very challeng-

ing.
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D.3 NEU Study Recruitment Survey

Figure D.2: The survey that volunteer NEU students filled out to express interest in participating in
study 5 (administered through the WPI Qualtrics [64] distribution).
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D.4 NEU Student Survey Responses

Table D.2: NEU student responses to the participant recruitment survey (verbatim)

Student Intended major
Programming
languages used
before CS 2500

Programming
experience
prior to NEU

How is the
course going
so far for you?

NEU1-STUD1 Computer Science
Java, C++, C#,
Python

Self-study, Classes
at prior community
college1

A

NEU1-STUD2
Computer Engineering
& Computer Science

Java, G-code,
Python, C++,
Matlab, SQL,
Visual Basic

High school class,
Online courses
(e.g. Coursera),
Self-study, internship

A

NEU1-STUD3
Computer Science and
Design none None A

NEU1-STUD4
Mathematics and
Physics

Python (only
very basic) None A

NEU1-STUD5
Computer Science and
Math Python

Programming boot
camps/workshop,
Self-study

B

NEU1-STUD6
Computer Science/
Design

java (not very
skilled) High school class B

NEU1-STUD7 Data Science none None B

NEU1-STUD8
Business admin and
political science
combined

HTML Self-study B

NEU1-STUD9
Computer Science and
Music Technology none None C

NEU1-STUD10 Chemistry
Beginner C++,
Basic Unix, and
Basic Matlab

Online courses
(e.g. Coursera),
Self-study

C

Legend for the survey question, "How is the course going so far for you?" (rightmost column):

• A: I can understand the topics very well and have an easy time working on the course assign-

ments.

• B: I can understand the topics well enough and find the course assignments a bit challenging.

• C: I find the topics fairly challenging to understand and find the course assignments fairly

challenging.

• D: I have a difficult time understanding the topics and find the course assignments very challeng-

ing.

1Actual school name redacted for anonymity.
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E.1 CRS-BROWNU Pre-Assessment Problems

E.1.1 Programming Problems

Palindrome Detection Modulo Spaces and Capitalization

A palindrome is a string with the same letters in each of forward and reverse order (ignoring capi-

talization). Design a program called is-palindrome that consumes a string and produces a boolean

indicating whether the string with all spaces and punctuation removed is a palindrome. Treat all

non-alphanumeric characters (i.e. ones that are not digits or letters) as punctuation.

Examples:

is-palindrome("a man, a plan, a canal: Panama") is true

is-palindrome("abca") is false

is-palindrome("yes, he did it") is false

Sum Over Table

Assume that we represent tables of numbers as lists of rows, where each row is itself a list of numbers.

The rows may have different lengths. Design a program sum-largest that consumes a table of numbers

and produces the sum of the largest item from each row. Assume that no row is empty.

Example:

sum-largest([list: [list: 1, 7, 5, 3], [list: 20], [list: 6, 9]]) is (7 + 20 + 9)

Adding Machine

Design a program called adding-machine that consumes a list of numbers and produces a list of the

sums of each nonempty sublist separated by zeros. Ignore input elements that occur after the first

occurrence of two consecutive zeros.

Example:

adding-machine([list: 1, 2, 0, 7, 0, 5, 4, 1, 0, 0, 6]) is [list: 3, 7, 10]
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E.1.2 Ranking Problems

Below you are given problem statements followed by multiple solutions to each problem. Assume that

the solutions are correct; ignore any small deviations in behavior. Also assume that any missing helper

functions are defined in the obvious way. Finally, ignore stylistic differences in naming. Instead, focus

on the structure of the solutions.

For each problem, rank the solutions in order (from most to least) of your preference. You are allowed

to have ties. Below the ranking grid, explain why you picked that ordering, mentioning briefly all

solutions in your response.

The solutions are labeled A, B, etc. Indicate your ordering by selecting the appropriate radio button for

each solution. For instance, selecting “1st” for B, “2nd” for A and C, and “3rd” for D means you liked

B the most, followed by A and C (tied), followed by D.

Remember to explain your choice!

Rainfall

Design a program called rainfall that consumes a list of real numbers representing daily rainfall

readings. The list may contain the number -999 indicating the end of the data of interest. Produce the

average of the nonnegative values in the list up to the first -999 (if it shows up). There may be negative

numbers other than -999 in the list (representing faulty readings). Assume that there is at least one

nonnegative number before -999.

Example:

rainfall([list: 1, -2, 5, -999, 8]) is 3

Solution A:
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Solution B:

Solution C:
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Length of Triples

Design a program called max-triple-length that consumes a list of strings and produces the length

of the longest concatenation of three consecutive elements. Assume the input contains at least three

strings. Also assume we are given:

data Triple: triple(a, b, c) end

Example:

max-triple-length([list: "a", "bb", "c", "dd"]) is 5

Solution A:

Solution B:

Solution C:
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Shopping Discount

An online clothing store applies discounts during checkout. A shopping cart is a list of the items being

purchased. Each item has a name (a string like “shoes”) and a price (a real number like 12.50). Design

a program called checkout that consumes a shopping cart and produces the total cost of the cart after

applying the following two discounts:

• if the cart contains at least 100 worth of shoes, take 20% off the cost of all shoes (match only

items whose exact name is "shoes")

• if the cart contains at least two hats, take 10 off the total of the cart (match only items whose

exact name is "hat")

Assume the cart is represented as follows:

data CartItem: ci(name :: String, cost :: Number) end

type Cart = List<CartItem>

Example:

checkout([list: ci("shoes", 25), ci("bag", 50), ci("shoes", 85), ci("hat", 15)]) is 153

Solution A:

Solution B:
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E.2 CRS-WPI Pre-Assessment Problems

Programming with Lists

Up until now, all of the programs you have had to write needed a straightforward traversal of the input

data. Often, we need to write programs that combine multiple tasks on the same data. Then we have to

think about how to organize the code. This organizational task is called planning.

For this part of the assignment, we’re asking you to write two programs that involve multiple tasks.

We will use these to set up upcoming lectures, so the goal is for you to think about how to do this, as

much as to produce code. These will be graded on the correctness of answers that they produce.

Create a class called Planning and put both of the following methods in that class.

• Write a program called rainfall that consumes a LinkedList<Double> representing daily rainfall

readings (double is the type for real numbers in Java). The list may contain the number -999

indicating the end of the data of interest. Produce the average of the nonnegative values in the

list up to the first -999 (if it shows up). There may be negative numbers other than -999 in the list

(representing faulty readings). If you cannot compute the average for whatever reason, return 1.

For example, given a list containing (1, -2, 5, -999, 8), the program would return 3.

• Write a program called maxTripleLength that consumes a LinkedList<String> and produces the

length of the longest concatenation of three consecutive elements. Assume the input contains at

least three strings.

For example, given a list containing ("a", "bb", "c", "dd"), the program would return 5 (for

"bb", "c", "dd").

You don’t have to actually concatenate the strings to solve this, but if you want to, you can do

this with +, as follows "go " + "goats"

Also provide an Examples class with up to four test cases for each of these two methods. We will not

run either of these for thoroughness against broken implementations, but we are interested in seeing

what cases you would choose to check within four test cases.
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E.3 CRS-BROWNU and CRS-WPI Post-Assessment Problems

Note: The post-assessment problems for both CRS-BROWNU and CRS-WPI are similar; the problems

were adapted to the programming language used in each course. Here we show the problems in

Pyret, the language used in CRS-BROWNU; a similar version in Java was used with CRS-WPI.

For each problem, write two solutions, where each solution solves the problem using a different

approach. You should also determine which solution structure you prefer. Specify your preference

with a brief discussion of why.

Approaches count as different if they cluster at least some subtasks of the problems differently (like

we saw for the Rainfall solutions); merely syntactic differences, such as replacing an element-based

for-loop with an index-based one, don’t count as different. It has to be a different decomposition of the

tasks (i.e. compositions of different plans).

In the end, if after racking your brain you simply can’t think of two truly different ways of doing one

of these problems, submit the two most different versions you can.

Programming Problems

A personal health record (PHR) contains four pieces of information on a patient: their name, height (in

meters), weight (in kilograms), and last recorded heart rate (as beats-per-minute). A doctor’s office

maintains a list of the personal health records of all its patients.

data PHR:
| phr(name :: String,

height :: Number,
weight :: Number,
heart -rate :: Number)

end

The BMI Sorter

Body mass index (BMI) is a measure that attempts to quantify an individual’s tissue mass. It is

commonly collected during annual checkups or clinic visits. It is defined as:

BMI = weight / ( height * height )

A simplified BMI scale classifies a value below 18.5 as “underweight”, a value at least 18.5 but under

25 as “healthy”, a value at least 25 but under 30 as “overweight”, and a value at least 30 as “obese”.

Design a function called bmi-report—

fun bmi-report(phrs :: List<PHR>) -> Report
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—that consumes a list of personal health records (defined above) and produces a report containing a list

of names (not the entire records) of patients in each BMI classification category. The names can be in

any order. Use the following datatype for the report:

data Report:
| bmi -summary(under :: List <String >,

healthy :: List <String >,
over :: List <String >,
obese :: List <String >)

end

Data Smoothing

In data analysis, smoothing a data set means approximating it to capture important patterns in the data

while eliding noise or other fine-scale structures and phenomena. One simple smoothing technique

is to replace each (internal) element of a sequence of values with the average of that element and its

predecessor and successor. Assuming that extreme outlier values are an aberration caused, perhaps,

through poor measurement, this averaging process replaces them with a more plausible value in the

context of that sequence.

For example, consider this sequence of heart-rate values taken from a list of personal health records

(defined above): 95 102 98 88 105

The resulting smoothed sequence should be: 95 98.33 96 97 105, where:

• 102 was substituted by 98.33: (95 + 102 + 98) / 3

• 98 was substituted by 96: (102 + 98 + 88) / 3

• 88 was substituted by 97: (98 + 88 + 105) / 3

This information can be plotted in a graph such as below, with the smoothed graph superimposed over

the original values.
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Design a function data-smooth—

fun data-smooth(phrs :: List<PHR>) -> List<Number>

—that consumes a list of PHRs and produces a list of the smoothed heart-rate values (not the entire

records).

Most Frequent Words

Given a list of strings, design a function frequent-words—

fun frequent-words(words :: List<String>) -> List<String>

—that produces a list containing the three strings that occur most frequently in the input list. The output

list should contain the most frequent word first, followed by the second most frequent, then the third

most frequent. Break ties by putting the shorter word (by length in characters) first. You may assume

that the three most frequent words will have different length. You may also assume that the input will

have at least three different words.

Earthquake Monitoring

Geologists want to monitor a local mountain for potential earthquake activity. They have installed a

sensor to track seismic (vibration of the earth) activity. The sensor sends measurements one at a time

over the network to a computer at a research lab. The sensor inserts markers among the measurements

to indicate the date of the measurement. The sequence of values coming from the sensor looks as

follows:

20151004 200 150 175 20151005 0.002 0.03 20151007 ...

The 8-digit numbers are dates (in year-month-day format). Numbers between 0 and 500 are vibration

frequencies (in Hz). This example shows readings of 200, 150, and 175 on October 4th, 2015 and

readings of 0.002 and 0.03 on October 5th, 2015. There are no data for October 6th (sometimes there

are problems with the network, so data go missing). Assume that the data are in order by dates (so a

later date never appears before an earlier one in the sequence) and that all data are from the same year.

Also, assume that every date reported has at least one measurement.

Design a function daily-max-for-month—

fun daily-max-for-month(sensor-data :: List<Number>, month :: Number) -> List<Report>

—that consumes a list of sensor data and a month (represented by a number between 1 and 12) and

produces a list of reports indicating the highest frequency reading for each day in that month. Only

include entries for dates that are part of the data provided (so don’t report anything for October 6th in
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the example shown). Ignore data for months other than the given one. Each entry in your report should

be an instance of the following datatype:

data Report:
| max -hz(day :: Number, max -reading :: Number)

end





Appendix F

Additional Files, Figures, and Entries

241



242 APPENDIX F. ADDITIONAL FILES, FIGURES, AND ENTRIES

F.1 NEU Design Recipe Course Web Page

Figure F.1: The NEU course web page on the design recipe
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F.2 WPI IRB Approval Letters

Figure F.2: WPI IRB approval letter for the original study
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Figure F.3: WPI IRB approval letter for modifications to the original study
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