Modular Self-Driving and Sensor

Packages for R/C Cars

A Major Qualifying Project Report:
Submitted to the Faculty of the:
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the degree of Bachelor of science
by
Thomas Kim (RBE/ME)
Anthony Marge (ECE/ME)
Joshua Rondon (ME)
Kyle Wood (ECE)
Date: May 18th, 2020

Approved by:
Professor Pradeep Radhakrishnan (RBE/ME)
Professor Kaveh Pahlavan (ECE)

Copyright Notice

The work presented in this document is copyrighted by students Thomas Kim, Anthony
Marge, Joshua Rondon, and Kyle Wood and Professors Pradeep Radhakrishnan (Department of
Mechanical Engineering, Worcester Polytechnic Institute) and Kaveh Pahlavan (Department of

Electrical and Computer Engineering, Worcester Polytechnic Institute)

Table of Contents
Copyright Notice

List of Figures

List of Tables
Abstract
Nomenclature
Authorship
Acknowledgements
Executive Summary
1 Introduction

2 Background
2.1 Al Application
2.2 Available Self-Driving Kits
2.3 Available Sensor Kits
2.4 Cars Tested on
2.5 Summary

3 Project Goals and Requirements
3.1 Sensors
3.2 Self-Driving
3.3 User Guides
3.4 Level 5 Autonomy
3.5 CMG

3.6 Summary

4 Self-Driving Implementation
4.1 Test Cars
4.2 Self-Driving Module Required Components
4.3 Training Data
4.3.1 Driving Style 1: Accurate Laps
4.3.2 Driving Style 2: Small Oscillation Laps
4.3.3 Driving Style 3: Extreme Laps
4.3.4 Driving Style 4: Fast Laps
4.4 Training Tracks

10
11
12
13
17

21
21
25
30
31
35

36
36
39
40
41
42
42

44
46
48
53
53
54
54
55
55

4.5 Tests Performed on Self-Driving System:
4.5.1 Tests on Track 1
4.5.2 Tests on Track 2
4.5.3 Tests on Track 3
4.5.4 Tests on Track 4
4.5.5 Tests on Track 5
4.5.6 Tests on Track 6
4.5.7 Tests on Track 7
4.5.8: Summary of Tests
4.6 User Guide and Manuals
4.7 Self-Driving Implementation Summary

5 Sensors Implementation and Combining Self-Driving & Sensor Kits
5.1 Sensor Module
5.1.1 Sensor Testing
5.1.1.1 Thermal Sensor Testing
5.1.1.2 IMU Testing
5.1.1.4 Hall-Effect Sensor Testing
5.2 Integration of Self-Driving and Sensors into a single kit
5.3 User Manuals
5.4 Summary

6 Creating Testing Mechanisms for Subcomponent Testing

7 Results and Discussion
7.1 Self-Driving Module
7.1.1 Testing with Students
7.1.2 Issues Faced and Future Work
7.1.2.1 Issue: Non-Transferrable Neural Networks

7.1.2.2 Future Work: Recommendations to Make Neural Networks Transferrable

7.1.2.3 Issue: Degradation of Steering Performance

7.1.2.4: Future Work: Mitigate Degradation of Steering Performance

7.1.2.5: Future Work: Improving Self-Driving Performance
7.1.2.6: Future Work: Improving Training Data

7.1.2.7: Future Work: Testing with Multiple Cars Self-Driving

7.1.2.7: Future Work: Obstacles and Level 5 Autonomy
7.1.2.8: Future Work: Improving User Guide
7.2 Sensor Module
7.2.1 Potential for Expansion and Future Work

67
67
68
68
68
69
69
70
70
71
72

73
75
76
76
79
80
81
82
83

84

86
87
89
89
89
89
90
90
91
91
92
93
93
93
94

7.2.2 Potential for Live Webpage

7.2.3 Issues and Areas for Improvement
7.3 Combined Sensor and Self-Driving Box
7.4 Summary

8 Conclusion
8.1 Social, Economic, Environmental, and Ethical Aspects of Our Project

8.2 Reflection on Our Project
9 References

10 Appendices
10.1 Self-Driving User Guide
10.2 Sensor User Guide
10.3 IMU Bump Test Data
10.4 Steering Linkage Testing Platform Arduino Code
10.5 Arduino Sensor Reading Code
10.6 Raspberry Pi Data Collection Code
10.7 Raw Temperature Test Data
10.7.1 Temperature Test 1
10.7.2 Temperature Test 2
10.7.3 Temperature Test 3
10.8 Raw IMU Test Data

94
95
95
96

97
97
98

100

103
103
163
188
191
192
197
199
199
207
216
226

List of Figures

Figure Page Number
Figure I: ME4320 Mechatronic Diagram once the Self-Driving/Sensor Kits 14
Become Integrated into the Class.

Figure II: Scale Car with Combined Self-Driving and Sensor Package 16
Figure 1.1: Images of Typical Cars Designed in ME4320 (Student Built Cars). 18
Figure 1.2: Images of End of Year Race for ME4320. Full Face Capture above 19
Can be Found at https://youtu.be/vthj4nv6odo

Figure 1.3: ME4320 Mechatronic System Diagram that Represents the RC Cars | 19
that Are Driven Manually in ME 4320.

Figure 2.1: Image Masking Example 24
Figure 2.2: Work Flow of the Al System from Last Year 24
Figure 2.3: A Clip of Code from Last Year. Epoch Stands for One Cycle through | 25
the Full Training Data Set.

Figure 2.4: Last Year’s Car (2019) and Testing Track 23
Figure 2.5: The Above are Examples of Training Data Collected Using 22
DonkeyCar Software.

Figure 2.6: Future ME4320 Mechatronic Diagram once the Self-Driving/Sensor | 27
Kits Become Integrated into the Class.

Figure 2.7, This image is an example of a DIYRobocars Races that took place in | 30
May 2017. Competitors come together to see which of their car designs and Al
models work the best. This is image was taken from the Donkey Car Website:
https://www.donkeycar.com/examples/may-2017-diyrobocars-race

Figure 2.8: Picture of the Mission D car. The Donkey Car Kit is assembled onto | 32
the HobbyKing Mission D car.

Figure 2.9: Example Student-Made Advanced Engineering Design Car 33

Figure 2.10: Example 3D Printed RC Cars 33
Figure 2.11: CAD Render of a 3D Printed RC Car 34
Figure 3.1: Render of Sensor and Self-Driving Housing 37
Figure 4.1: Flowchart of Self-Driving Kit Development 45
Figure 4.2: Picture of Mission D Car, Source [§] 47
Figure 4.3: Example Student-Made Advanced Engineering Design Car 47
Figure 4.4: Example 3D Printed Scale Cars 48
Figure 4.5: Self-Driving Kit System Diagram 52
Figure 4.6: Picture of Track 1 55
Figure 4.7: Schematic of Track 1 56
Figure 4.8: Pictures of Track 2 56
Figure 4.9: Schematic of Track 2 57
Figure 4.10: Picture of Track 3 58
Figure 4.11: Schematic of Track 3 58
Figure 4.12: Pictures of Track 4. 59
Figure 4.13: Schematic of Track 4 59
Figure 4.14: Pictures of Track 5 60
Figure 4.15: More Pictures of Track 5 61
Figure 4.16: Schematic of Track 5 61
Figure 4.17: Horseshoe Turn Modification 62
Figure 4.18: Pictures of Track 6 63
Figure 4.19: More Pictures of Track 6 64
Figure 4.20: Schematic of Track 6 64

Figure 4.21: Pictures of Track 7 65
Figure 4.22: More Pictures of Track 7 66
Figure 4.23: Schematic of Track 7 67
Figure 5.1: Flowchart of Project Plan 74
Figure 5.2: Arduino and Sensor Wiring Diagram 76
Figure 5.3: 3D Printed Car Driving Over a Bump 81
Figure 5.4: Self-driving and Sensor Kit Mounted on Rc Car 82
Figure 6.1: Steering Linkage Testing Platform 84
Figure 6.2: Wiring Diagram for Front Suspension 85

List of Tables

Table Page Number
Table 2.1: Specificationations of Jetson Nano Dev Board vs. Raspberry Pi 3B+ 28
Table 2.2: Self-Driving Kits 26
Table 2.3: Car Specifications for Figures 2.10 and 2.11 34
Table 4.1: Table of Required Components for Self-Driving Package 49
Table 4.2: Table of Self-driving Package Tests 71
Table 5.1: Thermal Test 1: Temperature at 20°C (Room Temperature) 78
Table 5.2: Thermal Test 2: Temperature at 35°C (Warm Operating Temperature) | 78
Table 5.3: Thermal Test 3: Temperature at 85°C (Critical Temperature) 78
Table 5.4: IMU Individual Axis Rotation Test Data 79
Table 5.5: Hall-Effect Sensor Test Results 80
Table 7.1: Cost of Self-Driving and Sensor Kits 87
Table 7.2: Table of Self-driving Package Tests 88

Abstract

Mechatronic systems are an amalgamation of mechanisms, sensors, controls, and
actuators. Self-driving cars are a growing class of mechatronic systems and research into related
areas has been surging. Many companies are investing large sums of money into the research and
development of autonomous vehicles. The next generation of mechanical engineers must be
capable of handling these developments and should be able to design systems around them. In
this paper, we describe our efforts to develop a modular self-driving and sensors kit that can be
integrated into any scale or remote-controlled car as a way to provide students in mechanical
engineering exposure to autonomous driving and real-time data collection. Details on the related
research, selection of appropriate self-driving models and sensors, testing and validation of these
kits, development of user-guides for use in a course and evaluation with test users will be
discussed in this paper.

Keywords: Artificial Intelligence, Remote Controlled Cars, Scale Cars, Self-Driving

Scale Cars, Self-Driving Kits, Sensors, Neural Networks

Nomenclature

Al
AWS
CMG
CSV
ESC
IMU
MQP

PWM
RasPi

RC

WPI

Artificial Intelligence
Amazon Web Services
Control Moment Gyroscope
Comma Separated Value
Electronic Speed Controller
Inertial Measurement Unit
Major Qualifying Project
Neural Net

Pulse-Width Modulation
Raspberry Pi

Remote Controlled

Rotations Per Minute

Worcester Polytechnic Institute

10

Authorship

Chapter Primary Author(s) Editor(s)
Introduction Joshua Rondon Anthony Marge
Background Joshua Rondon Anthony Marge,
Kyle Wood
Project Goals and Requirements Joshua Rondon, Thomas Anthony Marge,
Kim Kyle Wood

Self-Driving Implementation

Anthony Marge

Joshua Rondon

Sensors Implementation and Combining
Self-Driving & Sensor Kits

Kyle Wood, Thomas Kim

Joshua Rondon

Creating Testing Mechanisms for
Subcomponent Testing

Thomas Kim

Joshua Rondon

Results and Discussion

Anthony Marge, Kyle Wood

Thomas Kim

Conclusion Anthony Marge Kyle Wood,
Thomas Kim
References Anthony Marge Joshua Rondon
Appendices Thomas Kim, Joshua Anthony Marge,
Rondon Ky1€ Wood

11

Acknowledgements

We would like to thank our two advisors: Professor Pradeep Radhakrishnan and Professor
Kaveh Pahlavan. Without their support and direction, we would not have been able to achieve as
much as we did. We would like to thank Michael DeFrancesco, Michael Pierce, Alex Boggess,
Julia Davenport, Richard Mohabir, and Zack Orbach for making the 3D-printed RC cars for us to
test our sensor and self-driving packages on. We would also like to thank Jessie Kablik and Brian
King for testing out our user guides. We would also like to thank Worcester Polytechnic Institute,
most importantly all of the faculty and staff who have helped with advice, planning, and
purchasing of crucial parts of our MQP. Specifically, Ms. Payton Wilkins, Ms. Barbara Furhman,

and Mr. Peter Hefti who all were always there to help and support us.

12

Executive Summary

Mechatronic systems are an amalgamation of mechanisms, sensors, controls and
actuators. Self-driving cars are a growing class of mechatronic systems and research into related
areas has been surging. Many companies are investing large sums of money into the research and
development of autonomous vehicles. The next generation of mechanical engineers must be
capable of handling these developments and should be able to design systems around them. It is
therefore important to develop laboratory exercises that can augment content in existing courses
in order to equip students to handle these fast-changing technological advancements.
Autonomous driving involves neural network models and sensors. In order to develop laboratory
exercises around this theme, it was decided to investigate the use of open source self-driving
packages that could be integrated into scale (or remote-controlled) cars. Scale cars are cheaper,

and the technology required is also low-cost.

At Worcester Polytechnic Institute, there is a senior-level capstone design course called
Advanced Engineering Design where student teams design and develop a scale-car with a
custom-gearbox and a steering linkage. The teams must test their car at the end of the
seven-week course. While the mechanical design of the system may be robust, the sensors and
control are all manual. Given that the students may not have enough practice driving scale-cars,
the end-of-term race might not fully evaluate the car’s ability to tackle varied driving conditions.
So, for our project, we created a self-driving package and a sensor package that can be integrated
into any scale or remote-controlled car as a way to provide students in mechanical engineering

exposure to autonomous driving and real-time data collection (Figure I).

13

‘ Mechanism

?I’Sltctjt?)trc;; (Drive-train and
Steering Linkage)
Electronic
Device Sensor

(Self- (Self-Driving/Sensor Kit)
Driving/Sensor
Kit)

Figure I: ME4320 Mechatronic Diagram once the Self-Driving/Sensor Kits Become

Integrated into the Class.

To develop a modular self-driving kit, we first had to select a commercially available
self-driving platform for us to use, and we selected DonkeyCar. Next, we had to test this
self-driving platform. Our first goal with the self-driving package was to have a remote
controlled car drive four laps around a track without human intervention using our self-driving
package, and to achieve this goal, we tested our self-diving package on seven different tracks.
First, we tested the self driving package on a recommended car on simple tracks. Next, we tested
the self-driving platform on a student-made car on simple tracks. Next, we tested the self-driving
platform on a 3D printed car on simple tracks. Next, we tested the self-driving platform on a
student-made car on complex tracks. Lastly, we tested the self-driving platform on a 3D printed
car on complex tracks. With each test, we gained experience creating neural network models and
learned techniques on how to make a better neural network model, which in turn improved the
self-driving performance of the remote controlled cars we tested on until we were able to achieve

our goal of a remote controlled car self-driving four laps around a track.

After running tests on the self-driving platform, we needed to create a user guide that is
easy for students in ME 4320 and ME/RBE 4322 to follow so that they can implement our

self-driving kit on a scale car to create a self-driving scale car. We created a first draft of our user

14

guide by buying all of the components necessary to make a second self-driving kit and taking
notes as we constructed the second self-driving kit. We formalized these notes to make our user
guide. Next, we tested our user guide on two Mechanical Engineering students, Jesse Kablik and
Brian King, so we could evaluate our guide. We used the feedback that they gave us to improve
our guide, completing our development of the modular self-driving kit and user guide. The kit is
now ready to be deployed in ME 4320 and ME/RBE 4322.

We had to make a sensor package and a user-guide on how to use the package. As per our
objective on the modular sensor kit, we needed to determine what sensors should be used for
data collection, as well as how we should go about implementing the sensors in an easy to
understand and follow manner. This was accomplished with an Ardiuno Mega and RasPi; both
fairly common and simple to use electronics. For our sensor package, we wanted to provide
students with various sensors that could record useful data about the function of their scale cars.
To do this, we had to wire various sensors into an Arduino, and then program that Arduino to
send the data to a Raspberry Pi where the data could be saved to a useful filetype for later
analysis.

The authors also developed a modular sensor kit that could be integrated into any
scale-car to record speed of drive shafts, rotations around pitch and roll axes, and temperatures of
motors, batteries and sensor boards. The sensor kit records data as the car is being driven around
the race track. The sensor kit and the collected data can provide students exposure to real-time
data collection and enhance their learning and understanding of the behavior of mechatronic
systems, as well as serve for analysis of their cars performance. As with the self-driving package,
the sensor kit was also tested on the same two Mechanical Engineering students, Jesse Kablik
and Brian King, so they could evaluate our guide. With their limited experience in using an
Arduino and Raspberry Pi, they provided valuable feedback for this second user guide, and like
the self-driving user guide, this one is also ready to be deployed in ME 4320 and ME/RBE 4322
(Figure II).

15

Figure II: Scale Car with Combined Self-Driving and Sensor Package

In the end, we were successfully able to create our self-driving and sensor packages to
our specifications and were able to create user guides and test them on Mechanical Engineering
graduate students, who were able to implement the self-driving and sensor packages on a car that

they built. The total cost of the kit costs just over $400.

16

1 Introduction

Level 5 autonomy as defined by the SAE J3016 specification is an objective that
automakers like General Motors, Ford, Tesla, Honda, Toyota, Renault-Nissan, and others hope to
achieve within the next 10 years. Recent advancements in wireless technologies has enabled
communication between vehicles and the surrounding infrastructure [1]. Semi-autonomous
vehicles like the Tesla Model S, Cadillac CT6, and Audi A8 are already on the market [9]. The
shift towards autonomy is not only due to the novelty of it all, but also with the possible benefits
that come with it. 94% of car crashes nationally are due to driver error [2]. According to the
National Vital Statistics Report, Motor Vehicle accidents were the highest contributor to accident
related deaths [3]. Higher levels of autonomy have the potential to create safer road
environments by reducing risky behavior behind the wheel like impaired or drunk driving. The
world is heading towards a new era of vehicle navigation; therefore, the next generation of
mechanical engineers must be capable of handling these developments and should be able to
design systems around them.

Mechatronic systems are an amalgamation of mechanisms, sensors, controls and
actuators. Self-driving cars are a growing class of mechatronic systems, and it is evident that
many companies are investing large sums of money into the research and development of
autonomous vehicles. It is therefore important to develop laboratory exercises that can augment
content in existing courses in order to equip students to handle these fast-changing technological
advancements. Autonomous driving involves neural network models and sensors. In order to
develop laboratory exercises around this theme, it was decided to investigate the use of open
source self-driving packages that could be integrated into scale (or remote-controlled) cars. Scale
cars are cheaper, and the technology required is also low-cost. At Worcester Polytechnic
Institute, there is a senior-level capstone design course called Advanced Engineering Design
(ME4320) where student teams design and develop a scale-car with a custom-gearbox and a
steering linkage. The remote-controlled cars that the students design in the course are about

1/10th the size of a normal car. They are made from plastic and metal components that are either

17

custom made or prefabricated at the students’ discretion. An electric motor allows the cars to
drive forwards and backwards; and a steering servo allows the cars to turn left and right.

The teams must test their car at the end of the seven-week course in an end-of-term race.
A demonstration of this event can be found in the following link:
https://youtu.be/vFhJ4NV60Do.While the mechanical design of the system may be robust; the
sensors and control are all manual. Given that the students may not have enough practice driving
scale-cars, the end-of-term race might not fully evaluate the car’s ability to tackle varied driving

conditions.

Figure 1.1: Top and Bottom of Typical Cars Designed in ME4320 (student built cars).

The boxes house their custom made transmissions.

18

Figure 1.2: Images of the End of the Year Race for ME4320. This is where students test their
driving ability along with their car design. The race can be found at

https://youtu.be/vthj4nv6odo. This image is reproduced from[5].

For our project, our goal was to enhance the Mechatronic System Design Education at
WPI. We wanted the final product that students create to be one that could be driven either
autonomously or manually. In order to remove the human (manual) element, Figure 1.3, we
wanted to develop a kit that would be integrated into any scale car; especially considering that
student’s mechanical designs varied. We also wanted students to be more familiar with sensor

capabilities in analyzing mechatronic systems.

Actuator Mechanism
(Motor) (Drive-train and
Steering Linkage)
Electronic Device Sensor
(Controlier) (Human/Student)

Figure 1.3: ME4320 Mechatronic System Diagram that Represents the RC Cars that Are
Driven Manually in ME 4320. In this System the Students are The Sensors that Navigate the

track.

19

To meet our project goal, we created three main objectives. Our first objective was to
develop a modular sensor package. Our second objective was to develop a modular self-driving
package. Our third objective was to design an installation procedure for the system.

Our first goal with the self-driving package was to have an RC car drive 4 laps around a
track without human intervention using our self-driving package. To achieve this goal, we tested
our self-diving package on seven different tracks. With each test, we gained experience creating
neural network models and learned techniques on how to make a better neural network model,
which in turn improved the self-driving performance of the RC cars we tested on until we were
able to achieve our goal of an RC car self-driving 4 laps around a track.

The small knowledge gap needed to use the application allows students to be able to
acquire a high-level/working understanding of how the system functions in order to create a
working product, possibly within a day if their vehicle is already assembled. This is especially
helpful for ME4320 since a vast majority of the students that take the class do not have
experience coding or working with Al. The knowledge gap is small enough to be integrated into
the class without overwhelming students with extra information on top of their current
coursework.

The mechatronic system of the RC car can be broken down into the following
components actuator(motor), mechanism(drive- train and steering linkage), sensor(student), and
electronic device(Raspberry Pi). In this project our goal was to build on ME4320 to better equip
Mechanical Engineering students to deal with mechatronic systems. This takes the student out of
the equation and replaces them with sensors to navigate the track, and collect car data.

The paper will be organized as follows: background, implementation, results, conclusion,
and acknowledgements. In the next chapter, we will describe the necessary background

information related to the project.

20

2 Background

This chapter will describe the necessary background information related to the project. In
this section Al Application, Available Self-Driving Kits, Available Sensor Kits, and the scale

cars that we tested on will be discussed.

2.1 Al Application

The type of software that can give a car the ability to drive autonomously is called
Artificial Intelligence (Al). Al is the name given to any technique that enables a machine to
mimic human behavior. Neutral Networks (NNs) are an application of AI[19]. They are a
weighted system that takes inputs and then puts those inputs through a black box, also known as
the hidden layers, to get an output [6]. In order to set the weights of the working NN model; the
system must go through multiple iterations of running through data collected from the
environment that the Al system would be operating in. After each iteration, the weights are
adjusted in order to improve performance. When the NN’s performance starts to plateau, the
training is complete. This means the final weights that will be used during operation of the
working NN model are set. The performance of a NN is heavily dependent on the training data
used to create the working model [19]. If the training data does not properly represent the
operating conditions, then the working model is more likely to have an undesirable outcome
once it must navigate the target environment. [6] In our case the desired outcome is a

remote-controlled car navigating a track without human intervention.

21

{"cam/image array": "36586_cam-image_array_.jpg", "user/angle": 0.0, "user/throttle": -

0.09485152745139927, "user/mode": "user", "milliseconds": 2485334}

Figure 2.5: The Above Images are Examples of training data Collected Using DonkeyCar
Software.

This project we are undertaking is the second iteration of this project. The previous
team’s project statement was broken down into five components [35]. First, test the feasibility to
manufacture a 1: 10th scare car that is equipped with front and rear suspension. Second, test the
performance of a modular sensor package capable of producing live data updates. Third, test the
ability of a trained RC car to drive itself around an indoor track without the use of mapping.
Fourth, the car will navigate the track while racing against other human driven manually
controlled RC cars. The fifth goal was for the team to create a modular Al system that could

provide RC cars with autonomous ability just by attaching the system to the vehicle[35].

22

Figure 2.4: Top and Bottom of a Previous Iteration of the Projects’s Car (2019) and

Testing Track

The Al created by the previous iteration of the project operated under the workflow
represented in Figure 2.2. Image data is collected from the camera and then processed by the
Raspberry Pi. The image data goes through an OpenCV masking function that reduces the
dimensionality of the image in order to improve the performance of the Neural Network The
masked data is input into the Neural Network that is on the Raspberry Pi. The output of

processed image data going through the Neural Network are driving instructions sent to the

Arduino through a serial connection. The Arduino then sends those instructions to their specific

mechanical systems. A flow chart of the workflow is shown in Figure 2.2.

23

Processed

I l Camera Data C Dt
Camera ‘ — 1 Raspberry Pi —_— OpenCy —_— Neural Network
Pre-Processor

Driving
Instructions
Spesd
Instructions

: o dad #
Instructions
Motor — ESC | Arduino

Tuming
Instructions

Servo

L Al Data Flow

A
Figure 2.2: Work Flow of the Al System from Previous Iteration of the Project. Reproduced as
in from [35].

Figure 2.1 shows an example of a car camera image going through masking in order to
reduce the complexity of an image. The right side is the raw image data and the left side is the

masked image. This mask function converts the pixels that are the color of the wall to be white

scale, and all other colors are filtered to be black.

Figure 2.1: Image Masking Example. This particular masking function is meant to highlight the

borders of the track to help the Neural Network find a pattern in the data.

Their team collected training data by driving the car using a radio controller while the
Raspberry Pi camera collected video. Their video frames were labeled with the ESC and servo

values that were sent from the radio controller. It took between 5 to 20 minutes to train their

24

models. In the end of their project their car was only able to navigate 50% of the track. This can
be attributed to the fact that their models took such a short time to train. Meaning, the Neural
Network model was not able to go through enough iterations to get the optimum performance. In
his code the training goes through 25 epochs. An Epoch is one cycle through the full training
data set. Software that we used to train our NN had 100 epochs. We think added cycles of
training would have improved their performance.Their NN was also never trained for vehicle
avoidance.

Train Model

model.fit(training X, training vy,

epochs=25,

batch size=512)

Figure 2.3: A Clip of Code from Last Year. Epoch Stands for One Cycle through the Full

Training Data Set. Reproduced as in from [35]

2.2 Available Self-Driving Kits

AWS Deep Racer [10], OSOYOO Robot Car [9], and Yahboom [11] are all self-driving
kits that are currently on the market. The issue with some of these kits is that they come designed
as standalone products for creating a self-driving car rather than add-ons to an already built scale
car. Cost is also a contributing factor for these kits. The AWS Deep Racer has a list price of
$399.00 along with the additional cost that is added on for the amount of time that one trains the
model using AWS [9]. The OSOYOO Robot Car achieves self-driving in its line tracking mode
but cannot avoid obstacles when it is in this mode, since that feature is in a separate mode. This
is because it uses an Arduino for its processing, which can only run one program at a time [9].
Apart from the market, there are currently many DIY self-driving projects that are showcased
online. Websites like Medium and YouTube have content that guide individuals through the
process of building a self-driving RC car. Some examples of this are DEEPPICAR Series [12],
Ryan Zotti: How to Build Your Own Self Driving Toy Car [13], and I built my own Self-Driving

25

(RC)! [14]. The common electronics that can be found in both market kits and DIY projects to
give their system autonomous ability are Raspberry Pi’s, Raspberry Pi camera modules, and
Arduinos [9][11][12][13]. Python and its packages were commonly used in developing
autonomous models. According to GitHub, python is the most popular language when it comes
to machine learning [15].

Looking at Table 2.2, cost was a hard factor to determine because these companies
offered different products that had self-driving ability, and the cost would change per product.
Also, for open source applications ones cost changes depending on where they buy materials and
what materials the user currently possesses. This creates a large range of possible pricing that
makes it difficult to generalize. Open source was important because it allowed for collaboration
outside the community at hand. This is important when it comes to troubleshooting, because
odds are someone has faced a similar problem that a user may be facing. That added resource on
top of solid documentation is what our team found helpful in the past when we are getting

acquainted with new software.

Table 2.2: Self-Driving Kits

Donkey® Car Osoyoo® LEGO® Yahboom AWS Deep

Robot Car | MIND SgORMS Racer

Cost - - - - $349

Open Source Yes Yes No No No

Modular: Yes No No No No

Can easily go

from one

custom

designed car

to the next

Documentation Yes Yes Yes Yes Yes

26

Ultimately, we decided to use Donkey Car software. It is a free open source software that
assists in collecting training data and developing NN models. The primary factors that drove our
decision was that it was well documented, had an active community, and small knowledge gap to
overcome. The Donkey Car website has many guides that navigate students through the process
selecting hardware and electronics. It also has in-depth instructions into how to install/utilize the
Donkey Car software along with suggestions as to how to optimize it. There is an active Discord
and multiple blog posts that can serve as resources for students to get a better understanding of
the software. Donkey Car is the first part of our Self-Driving/Sensor Kit that will be integrated

into the ME 4320 course as shown in Figure 2.6.

‘ Mechanism

?I':ltct]ti’)tr(:; (Drive-train and
Steering Linkage)
Electronic
Device Sensor

(Self- (Self-Driving/Sensor Kit)
Driving/Sensor
Kit)

Figure 2.6: Future ME4320 Mechatronic Diagram once the Self-Driving/Sensor Kits

Become Integrated into the Class.

When it came to deciding which development board to choose the two options were the
Raspberry PI and the Jetson Nano Dev Board. The specifications of the two side by side can be
found in Table 2.1. The Jetson Nano has a more powerful GPU which is very pivotal when it
comes to processing and training Neural Network Models. They are specialized in matrix
operations, and these repetitive operations are used in Neural Network Models[19]. They also
have higher Al performance. GFLOPs is a standard measure of computing power [21]. However
the Jetson Nano does have some down sides. It cannot connect to the internet Wifi without an

add on. It also has much larger board dimensions than the Raspberry Pi. This could create a

27

challenge to design around. It is also more than doubles the price of the Raspberry Pi. Another

factor we considered is that many of the students in the ME4320 class would be novices when it

came to using these electronics; meaning the possibility of one of these card-sized computers

breaking due to misuse is a substantial factor. Ultimately, we ended up choosing the Raspberry

Pi because the most heavy GPU activity would have been training the Neural Network models.

Which we did on our personal computers. The boards would either be collecting data or running

the H5 file of the finished Neural Network model. The Raspberry was also the most cost

effective in terms of creating a class set to get them aware of this new technology.

Table 2.1: Specificationations of Jetson Nano Dev Board vs. Raspberry Pi 3B+

Jetson Nano Dev Board

Raspberry P13B+

Al Performance

472 GFLOPs

21.4 GFLOPs

CPU 1.4 GHz 64-bit Quad- Core 1.4 GHz 64-bit quad core
Arm Cortex-A57 MPCore ARM Cortex-AS53

GPU 128-Core Nvidia Maxwell Broadcom VideoCore IV

RAM 4GB LPDDR4 1GB LPDDR2 SDRAM

GPIO Header 40-pin 40-pin

Board Dimensions 100 X 79mm 85 X 56mm

Wireless None Dual-band 802. 11ac wireless

LAN, Bluetooth 4.2
Ports Ports 4X USB 3.0, 4 USB 2.0, Wired Ethernet up
wire ethernet to 330 Mbps
10/100/1000Mbps
Multimedia 2160p30 (H.264) 1080p30 (H.264)

28

Video Output HDMLI, Displayport HDMLI, Display Serial
(4K) Interface (DSI)

Camera Serial YES YES

Interface

M.2 Key E Slot YES NO

Price $99 $35

*Kimari, K. (2019, June 24). Nvidia Jetson Nano vs. Raspberry Pi. Retrieved May 18,

2020, from https://www.maketecheasier.com/nvidia-jetson-nano-vs-raspberry-pi/

Apart from our MQP WPI has other projects that are connected to autonomous driving
taking place on campus. A MQP from 2019 developed a modular system that used mapping
software to give off-road vehicles Level 3 autonomy according to SAE’s standard[22]. A MQP
from 2015, created an in-depth recommendation packet for the use of subsystems against the
real-time challenges required for driving an autonomous, wireless, and vision-based system[23].
Apart from WPI, the growing interest in autonomy has created opportunities elsewhere. DIY
Robocar races are planned and scheduled by Donkey Car community members. In these events
Donkey Car hobbyists come together and race their AI’s head to head[11]. The Figure #, shows a
snapshot of one of those races. Amazon also has a self-driving league. Developers , novices and
experts, train their own self-driving model for the AWS DeepRacer. Once a Developer thinks
they have a strong model that can enter the model into virtual races and scheduled real time

competitions[11].

29

Figure 2.7, This image is an example of a DIYRobocars Races that took place in May

2017. Competitors come together to see which of their car designs and Al models work the best.

Reproduced from [11].This is image was taken from the Donkey Car Website:
https://www.donkeycar.com/examples/may-2017-diyrobocars-race

2.3 Available Sensor Kits

There are a wide variety of sensor kits that are currently on the market. Examples of this
are the Elegoo Sensor Kit[16], Elec Freaks Sensor Kit[17] and the Hiletgo Sensor kit[18]. We
wanted students to be able to acquire information on the orientation, speed, and temperature
variance on their custom designed vehicles. These kits come with unnecessary sensors for our
needs; these kits do contain a plethora of valuable sensors, however we did not find a need for
extra impractical sensors. We only needed sensors to record the orientation, speed, and
temperature variance that was taking place in the scale vehicles. Many of the kits we found
required some prior knowledge to assemble into a system [25][17][18]. We wanted to create a kit
that could be plugged into any of the systems that students designed so that they could acquire
data in a matter of minutes rather than spending an excessive amount of time trying to install the
sensors. By working on developing a modular system that incorporates simple-to-install

individual sensors, the goal of reinforcing the skills in mechatronic systems learning will be

30

applied across the ME 4320. Additionally, buying sensors individually is significantly cheaper
than purchasing them in kits, as we need many duplicates, we would have to buy at least 20 kits,
as each kit contains one of each sensor. To add on, many sensors from the kits would go to waste
on our project, we would never need to utilize a water level sensor [25], flame sensor [25], or
heartbeat sensor [18]. As the kits are a great learning tool, they should not be completely
dismissed, however for our application where it was known to us what we wanted to record, it

made no sense to purchase a commercially available kit.

The sensors chosen for implementation in the sensor package for the purposes of the
project were thermal sensors, hall-effect sensors, and an inertial measurement unit. The previous
MQP team that had been working on the project before us had worked on implementing these
sensors in the years prior, with the exception of the hall-effect sensor. The inclusion of these
sensors accomplishes a few tasks; the sensors have varying degrees of complexity for the users
to work with when developing the sensor package, as well as monitor the most important key
statistics of remote travel: orientation and velocity. With the combination of these sensors, and
their compatibility with Arduino software, it made deciding which sensors to implement on the
first iteration of the sensor package quite simple. The BNO055 9-DOF Absolute Orientation
IMU Fusion Breakout Board, Hall Effect Magnetic Sensor Module for Arduino, and ASAIR
AM?2302 Temperature and Humidity Sensors all serve the purpose of being Arduino accessible,
simple electronic sensors that will work in tandem to accomplish the task of monitoring the

vehicle during travel.

2.4 Cars Tested on

There were three types of cars that we used in our development of our modular kits: The
Mission D car, student-made cars, and 3D printed cars. The Mission D car is a commercially
available car that costs about $95 from the DonkeyCar store. The kit comes with 3D printed laser
cut chassis, screws, OV5647 camera for Raspberry Pi or a IMX219 for Jetson Nano, Servo
Driver, and jumper cables. The kits do not come with an RC car, Raspberry Pi, SD card, or

battery. It is designed for 1/10 Scale cars; specifically HobbyKing Trooper Pro, Tamaya TTO1,

31

and HobbyKing Mission D. The student-made cars are scale cars that were made by students in
previous years of the Advanced Engineering Design course at WPI. The 3D printed cars are cars
that incorporate many 3D printed parts. The assembly is pretty straight forward, but can take 3
hours total to make sure everything is assembled correctly. This time can go up or down
depending on the skill of the assembler. The end product should look something like the cars in

Figure 2.8.

Figure 2.8: Top and Bottom Pictures are of the Mission D car. The Donkey Car Kit is
assembled onto the HobbyKing Mission D car. Top image is reproduced from[11].

32

Figure 2.8 is a picture of a Mission D car. As previously mentioned, this is a scale car that
is commercially available for purchase. It has rubber wheels, has a plastic chassis, and is made of
mostly aluminum and plastic parts. It has a brushed DC motor to drive forwards and backwards
and has a servo to steer left and right. We first used the Mission D car so we could learn how the

Donkey Car platform and Neural Network implementations work on a scale car.

Figure 2.9: Example Student-Made Advanced Engineering Design Car

Figure 2.9 is a picture of a car that a student made in a previous Advanced Engineering
Design course at WPI. Student made cars are made using mostly plastic and aluminum parts.
They have rubber wheels, a brushed DC motor, and a steering servo. After testing our
self-driving system on the Mission D car, we started testing on the student-made cars. Student
made cars are not commercially manufactured, meaning their designs can vary greatly from one
another. This way, if we could get the self-driving system to work on a student-made car, then it

would be possible for students to be able to get the cars that they build to self-drive.

Figure 2.10: Example 3D Printed RC Cars

33

Figure 2.11: CAD Render of a 3D Printed RC Car

Figures 2.10 and 2.11 show 3D printed RC Cars. These cars were made by our partner
MQP team who designed these 3D printed RC cars to be used in WPI’s Advanced Engineering
Design course. They are made using mostly plastic 3D printed parts, with some aluminum
elements. They have rubber wheels, a brushed DC motor, and a steering servo. So, we tested our

self-driving package and sensor package on these 3D printed cars as these cars would also be

used in the Advanced Engineering Design course.

Table 2.3: Car Specifications for Figures 2.10 and 2.11

Part Name
Wheels PRO1190-013
Brushless DC Motor JUSTOCK 3650SD G2 Brushless Motor
Steering Servo SAV-SC-1256TG

The previous iteration of the project’s MQP team was not able to create an Al that could

navigate a track completely on its own. They were also not able to find a way to successfully

34

display the sensor data that they acquired. There were a lot of possible options for components to
use to achieve our objectives of creating a modular self-driving/sensor package. However, after
weighing our needs we were able to narrow down the options to our current software and
electronic components. Next, is the Project Goals and Requirements chapter where we will go

into our processes of how we are going to achieve those goals.

2.5 Summary

This chapter we described the necessary background information related to the project.
We discussed Al Applications, Available Self-Driving Kits, Available Sensor Kits, and the scale
cars that we tested on.

In the next chapter, we will discuss our project goal, the objectives we made to meet that

project goal, and requirements for each objective for us to evaluate our progress.

35

3 Project Goals and Requirements

In this chapter, we will discuss our project goal, the objectives we made to meet that
project goal, and requirements for each objective for us to evaluate our progress.

The goal of our project is to design and implement a modular self-driving system with
sensors that can be integrated onto any scale RC car. This will allow students in the ME4320
course, who build their own RC car as part of that course, to turn their RC cars into self-driving
RC cars with sensors. To meet this goal, we have five main objectives. Our first objective is to
develop a modular sensor package. Our second objective is to develop a modular self-driving
package. Our third objective is to design an installation procedure for the system (the two
packages). Our fourth objective is to improve the self-driving package to the point that it

qualifies as level five autonomous. Our fifth objective is to integrate the CMG into our system.

3.1 Sensors

To develop a modular sensor package, we will first select the sensors that will be part of
our sensor package and the location that the sensor will be on the car. The first type of sensor that
we have selected are thermal sensors. There will be a thermal sensor on the ESC and the motor
of the car, but also one in the sensor box. The sensor box, as seen below in Figure 3.1 will be a
box that contains the Raspberry Pi and arduino, as well as the extra wiring from the sensors.
These three locations were chosen for the thermal sensor as it is important to know if the motor,
ESC, or Raspberry Pi are overheating as that will degrade the performance of the car. The second
type of sensor that we have selected is a tachometer/hall effect sensor. If we attach this sensor to
the rear axle, we will get a reading of how fast the rear axle and therefore how fast the motor and
the wheel are rotating. This sensor can be useful for determining the velocity, torque, and
acceleration of the car. The third sensor that we have selected is an IMU. The IMU will go on the
sensor box, and will be useful for determining the speed, acceleration, and direction of the car.
The fourth sensor will be a strain gauge attached to the center of the chassis to measure the flex
of the car’s chassis, and the last sensor will be a camera on the back of the car that will be used

for the self-driving package.

36

- -
| [

E 5=

Figure 3.1: Render of Sensor and Self-Driving Housing

After selecting the sensors for our sensor package, we will have to choose the data that
we want to collect from each sensor. The thermal sensor will be used to collect temperature data
of the Raspberry Pi, the electronic speed control (ESC), and the motor on the car. The IMU will
be used to collect data on the roll, pitch, yaw, acceleration, and velocity of the car. The
tachometer will be used to collect data on the RPM of the wheel and motor, and the velocity and
acceleration of the car. The strain gauge will be used to determine the flex of the car’s chassis,
and the camera will be used to send images to the Raspberry Pi for the neural network used in
the self-driving package.

After determining the data that we will collect from each sensor, we will then have to
figure out how to connect all of the sensors and determine if we can add more sensors to the
system. The sensors will be connected to the Arduino, which will then send the data to the
Raspberry Pi, which will display the data on a web server. This web server will be locally hosted
on the Raspberry Pi, which can be reached by connecting to the Raspberry Pi remotely. As
mentioned earlier, there will be a sensor box that will hold the Raspberry Pi and Arduino. This
box will be a 3D printed enclosure that will protect the microprocessors. To make the sensor
package modular, we will pre-code the sensor package to support all of the selected sensors, but
also to run with a fewer number of sensors. Each sensor will have its own code package,

allowing each sensor to work independently from the other sensors, allowing for

37

interchangeability. The webpage will be displayed on a Flask web server, allowing students to
get real-time updates on their cars. We will also create an option for the students to download a
csv file of all of the data from the current run of the sensors.

Next, we determined the best way to go about getting the data from the sensor package.
As previously mentioned, the data will be displayed on a local host (the Raspberry Pi), and can
be connected to remotely using any laptop. After that, we determined how to display the data on
the dashboard. On this webserver, we can graphically display all of the data from the sensors that
are plugged in, and display it in a manner that is easy to visualize. The data can also be
downloaded from a csv file too. Lastly, we will program the car to stop if the Raspberry Pi, ESC,
or motor’s manufacturer’s maximum specified temperature is exceeded.

After we have made our sensor package, we will test it to make sure it operates as
expected. The first set of tests are designed to make sure that we get the data that we expect from
the sensors. For the thermal sensors, this means verifying that each of the three thermal sensors
accurately and quickly responds to rapid changes in temperature and that they can send the
temperature information to the Raspberry Pi. This test can be done by placing each of the sensors
in an extreme thermal condition and checking the responses as relayed to the server. For the
IMU, we will need to make sure that the IMU properly displays the roll, pitch, yaw, and
acceleration of the car. One way to do this is to move the sensor to easily defined angles, such as
90 degrees and 180 degrees to verify the direction of the IMU. Then, to test acceleration, we can
drop the IMU from a short height to make sure that the acceleration is 9.8 m/s”. If these tests are
successful, we will then design a test where we drive the car around a set turn at a set speed, and
then measure the data from the IMU. We will do theoretical calculations to verify that the roll
sensor is working correctly. We can also drive the car on a sloped surface to make sure that the
roll of the car is equal to the slant of the slope. Lastly, we can put the car on its side (a 90 degree
angle) and verify that the IMU reads a roll of 90 degrees.

For the tachometer, we will verify that the sensor can detect the changes that coincide
with the rapid rotation of the magnet attached to the axle. First, we will test that the tachometer
can record and react to simply the presence of the magnet. Second, we will test that the magnet

can be detected repeatedly by rotation that axle at varying speeds and recording that the

38

tachometer can detect each passing of the car. Finally, we will attach the sensor/axle combination
onto the car itself. Then, we will have the car drive a set distance and record the time it takes to
travel said distance. Lastly, we will compare the recorded data with the theoretical calculations
by dividing distance over time to ensure that the Tachometer is working as expected.

For the strain gauge, we will verify that the strain gauge can detect and report changes in
strain on the chassis so the operator can know the flex in the car’s chassis. We can ensure that the
strain gauge has the correct readings by adding known weights to a chassis and performing
theoretical calculations as to what the strain gauge should read. We can also look up the force
required to break the car’s chassis and then monitor the strain gauge to make sure the chassis
does not break during operation.

The next test will be to ensure that the sensor package is truly modular. We can verify this
by trying to run the system with only one sensor at a time, or with various subsets of all of the
available sensors. The goal is to make each sensor independent of one another so as to allow the
students in the ME4320 course to choose what sensors they want on their car.

The third test will be to verify that a CSV file of all of the data can be downloaded, and
that the data is properly displayed to the web server. This involves recording through the use of
the camera on the car, and transmitting that data successfully from the Raspberry Pi. The last
test for the development of the sensor package is to ensure that the camera works by capturing
some of the video that the camera takes. After this test, the development of the sensor package

will be finished.

3.2 Self-Driving

While we are developing the sensor package, we will also develop a modular self-driving
package. The first step in this process is to obtain a working RC car that has no mechanical
issues. Currently, we have a small 1/16th scale car that was built by one of the students in last
year’s ME4320 course, but we still have to add some parts before the car can drive. After we
have a working car, we will need to attach a Raspberry Pi and a camera to the car so the car can
see and react to its surroundings as it drives around a track. The next step will be to ensure that

the system can utilize neural networks, machine learning, and computer vision to drive the car

39

around a track. Then, after we can get the car to do a full lap around one track, we will design
different tracks for the car to drive on and to test the results. We will also determine various
driving conditions that we will want the car to drive in.

After we build the self-driving package, we will run tests on the system. The first test will
be to make sure that the car can go around a track without bumping into the sides of the track.
We will video record the tests with our own cameras from a vantage point in the testing location
that have a good view of the whole track. This way we can verify that the self-driving system
works. The next test will be to test the neural network using the Python unit test library. We will
check the loss functions (which measure our model’s performance) that our model runs to make
sure that the loss functions are appropriate for our self-driving system and that the loss functions
are properly scaled. We can also check the intermediate outputs and connections of our neural
network, as well as the design parameters to make sure the system is behaving as expected.
Then, we will check our documentation to make sure that all of our code is documented. The last
test that we will do on our self-driving package will be to compare the performance of our
self-driving RC car to the performance of other self-driving RC cars, such as the donkey car. We
will have to create comparison tests that make sense between the different RC cars in order to
highlight which RC car performs best under different conditions. This comparison test will
conclude the development of the self-driving package.

For our self-driving package, we wanted to show that we could get a car that would be
used in the Advanced Engineering Design course at WPI to self-drive at least four laps around a
track. We thought that this goal would demonstrate that a car made in the course could
consistently self-drive itself around a track. To meet this goal for our self-driving system, we
decided to learn how to use the Donkey Car platform by trying to get scale cars to self-drive on

various types of tracks.

3.3 User Guides

After making the self-driving and the sensor packages, we will design an installation
procedure for the system. This objective is aimed at designing a process that the students from

ME 4320 can follow to install the self-driving and sensor packages onto the cars that they build

40

within one or two class periods. First, we will have to obtain IRB Approval as we will perform
user experience testing using the students from the ME 4320 and ME 4322 course as human
subjects. This step can be done in advance to streamline the process. The next step will be to
develop a procedure for installing our systems on an RC car. This procedure will include a list of
all of the parts required for installation and a list of all the tools required. The first step in this
procedure will be to attach the sensors to the car (with specific locations), and the next step will
be to wire all of the sensors to the Raspberry Pi. We will add more steps to this procedure
depending on the final design of our sensor package.

After making the installation procedure, we will identify aspects of our installation
procedure that can be optimized by performing the procedure ourselves. We will look at which
steps take the longest and which steps are worded in a confusing manner and edit our procedure
to adjust these steps. Then, we will give the installation procedure to students in the ME4320
class and see if they can install the system within one class period. If they can, then we have
successtully completed this objective. If they can’t, we will take notes on how they followed the
procedure, what questions they asked, what steps took them the longest, and what steps were
hardest for them to complete. Then, we will use this feedback to optimize the Installation
Procedure. We will repeat this user experience testing cycle until the entire procedure can be
performed by a student in the ME4320 class within one or two class periods. Once a student can

complete the procedure in one to two class periods, then we will have fulfilled this objective.

3.4 Level 5 Autonomy

The next objective will be to make the RC self-driving package satisty level five
autonomy. This first requires the self-driving package to be developed. Next, we have to define
what level five autonomy is. For our purposes, this means that the car can drive over bumpy
surfaces, the car is capable of handling any conditions we put it in, and the car can drive around
the track without any human input. To accomplish this, we must program the code to be robust
enough to handle all of these different cases. To test that our car is level five autonomous, we
will make multiple tracks to test the car on with ramps, tunnels, and hills. We will also change

the tracks during runs to try to confuse the car. When issues present themselves, we will fix them

41

by improving our self-driving code. We can also test conditions that are outside of the basic
expectations for our self-driving package. This would include throwing objects at the car actively
trying to cause a collision with the self driving car and another car, loosening one of the wheels
of the car, forcing the sensors to malfunction, and other ideas that we can come up with. If an RC
car running our self-driving package can withstand all of these obstacles and pass all of these

tests, then we will have achieved level five autonomy.

3.5 CMG

Our last objective will be to integrate the CMG as part of our self-driving and sensor
packages. The CMG, a control moment gyroscope, is used to apply torques to a vehicle. This
could be used to maintain the balance of a car as it drives on slopes, goes up ramps, or even
makes the car flip over after wiping out. First, we will need a CMG small enough to fit onto the
car. Team 2 of our project will work on that. After the CMG is built, we will connect the CMG as
another sensor for the sensor package. Because we want the CMG to be able to course correct, it
will need to be able to take input from the Arduino that the IMU is connected to. Another code
package will be devised to allow for direct communication of the car’s orientation and the CMG
to maintain balance. To test that the CMG is behaving properly, we will first make sure that the
CMG can correct orientation. This will involve placing the CMG chassis in different positions
and having the CMG move to correct the orientation of the car. Then, the CMG will be
connected to the Arduino, and a code package for the CMG will be used to dictate what
direction and speed the CMG will reposition to based on the orientation data from the IMU. The
same tests from the IMU will be performed again with the car at various degrees of incline so we
can verify the accuracy of data from the IMU. Then, the CMG will be monitored to see if it is
reacting in the proper manner. After completing this test, we will have accomplished our final

objective.
3.6 Summary

In this chapter, we discussed our project goal, and the five objectives that we made to

meet that project goal. Our first objective and requirements for each objective for us to evaluate

42

our progress. Our first objective is to develop a modular sensor package. Our second objective is
to develop a modular self-driving package. Our third objective is to design an installation
procedure for the system (the two packages). Our fourth objective is to improve the self-driving
package to the point that it qualifies as level five autonomous. Our fifth objective is to integrate
the CMG into our system.

In the next chapter, we will go over how we implemented the self-driving kit, the tests we

did on the self-driving kit, and how we made the user guide for our self-driving kit.

43

4 Self-Driving Implementation

In this chapter, we go over the overall self-driving kit development process. Next, we
review the cars that we tested our self-driving kit on and go over the components required to
make our self-driving kit. Then, we cover how we collected training data when using our
self-driving kit and what tracks we tested our self-driving kit on. After that, we go over the
various tests that we performed on our self-driving kit. Lastly, we go over how we made the user
guide for our self-driving kit.

To meet our project goal, we had to make a self-driving package and a user-guide on how

to use the package. Our overall process is shown in Figure 4.1.

44

Project Goal:

Completion of Objectives

Fulfills Goal
Enhance Mechatronic System Design |«
Education at WPI
Achieve Goal
through
Objectives

Objective 2: DEYEI_OP Objective 3: Design
Modular Self-Driving User Guide <

Kit Objectives

Complete
Begin Developing
Modular Self-Driving Kit (
Select Sl Diiving Test SelE-Deiing Create User Guide for Test User Guide for
Platform Platform

Y

Y

Self Driving Kit

Self Driving Kit

Research Available
Platforms

!

Select Platform with
best ease of use

To meet our objective of developing a modular self-driving kit, we first had to select a

Test Self-Driving
Platform on
Recommended Car and
Simple Track

v

Buy Components to
Construct a Second
Self-Driving Kit

v

(]

Test Self-Driving
Platform on
Student-Made Car and
Simple Track

Take Detailed Notes
while Assembling
Second Kit

!

y

Test Self-Driving
Platform on 3D-Printed
Car and Simple Track

Formalize Notes into
User Guide

L]

Test Self-Driving
Platform on
Student-Made Car and
Complex Track

L]

Test Self-Driving
Platform on 3D-Printed
Car and Complex
Track

Y

Give Two Students the
User Guide and All
Necessary Materials to
Make and Implement
Their Own Kit

Y

Take Detailed Notes of
Issues the Students
Run into and What
Steps they run into

issues on

Y

Ask Students for
Feedback after they
finish making their

own kit

v

Use Notes and
Feedback to Modify
User Guide

Figure 4.1: Flowchart of Self-Driving Kit Development

commercially available self-driving platform for us to use (Figure 4.1). As previously mentioned,

we researched the available self-driving platforms, and selected a platform based on various

factors such as ease of use. Next, we had to test this self-driving platform. Our first goal with the

self-driving package was to have an RC car drive four laps around a track without human

45

intervention using our self-driving package, and to achieve this goal, we tested our self-diving
package on seven different tracks. First, we tested the self driving package on a recommended
car on simple tracks. Next, we tested the self-driving platform on a student-made car on simple
tracks. Next, we tested the self-driving platform on a 3D printed car on simple tracks. Next, we
tested the self-driving platform on a student-made car on complex tracks. Lastly, we tested the
self-driving platform on a 3D printed car on complex tracks. With each test, we gained
experience creating neural network models and learned techniques on how to make a better
neural network model, which in turn improved the self-driving performance of the RC cars we
tested on until we were able to achieve our goal of an RC car self-driving four laps around a
track.

After running tests on the self-driving platform, we needed to create a user guide that is
easy for students in ME 4320 and ME/RBE 4322 to follow so that they can implement our
self-driving kit on a scale car to create a self-driving scale car. We created a first draft of our user
guide by buying all of the components necessary to make a second self-driving kit and taking
notes as we constructed the second self-driving kit. We formalized these notes to make our user
guide. Next, we tested our user guide on two Mechanical Engineering students, Jesse Kablik and
Brian King, so we could evaluate our guide. We used the feedback that they gave us to improve
our guide, completing our development of the modular self-driving kit and user guide. The kit is

now ready to be deployed in ME 4320 and ME/RBE 4322.

4.1 Test Cars

There were three types of cars that we used in our development of our modular kits: the
“Mission D” car (Figure 4.1.2), student-made cars (Figure 4.1.3), and 3D printed cars (Figure
4.1.4). As previously mentioned, the Mission D car is a commercially available car. The
student-made cars are scale cars that were made by students in previous years of the Advanced

Engineering Design course (ME 4320) at WPI. The 3D printed cars use many 3D printed parts.

46

Figure 4.2: Picture of Mission D Car, Reproduce into [8]
Figure 4.2 is a picture of a Mission D car. This is a scale car that is commercially
available for purchase that we used in our first tests on our self-driving system as it was a scale
car recommended by the Donkey Car website. We first used the Mission D car so we could learn

how the Donkey Car platform and Neural Network implementations work on a scale car.

Figure 4.3: Example Student-Made Advanced Engineering Design Car

Figure 4.3 is a picture of a car that a student made in a previous Advanced Engineering
Design course (ME 4320) at WPI. After testing our self-driving system on the Mission D car, we
started testing on the student-made cars. These student-made cars are not commercially
manufactured, so we suspected that there could be challenges in getting our self-driving system
to work well on these cars. This is why it was important for us to test our system on these cars.
Also, if we could get the self-driving system to work on a student-made car, then it would be

possible for students to be able to get the cars that they build to self-drive.

47

Figure 4.4: Example 3D Printed Scale Cars

Figure 4.4 shows 3D printed scale cars. These cars were made by our sister MQP team
(Michael DeFrancesco, Michael Pierce, Alex Boggess, Julia Davenport, Richard Mohabir, and
Zack Orbach) for use in the Advanced Engineering Design course (ME 4320). We tested our
self-driving package on these 3D printed cars as these cars would also be used in ME 4320 and

ME 4322.

4.2 Self-Driving Module Required Components
Our self driving kit is made up of both hardware and software components, each with

their own purpose and specifications (Table 4.1).

48

Table 4.1: Table of Required Components for Self-Driving Package

Component Purpose Tvpe Specifications Source Alternatives
Raspberry Pi 3 B+ Save Traiming Data, Hardware 1.4GHz 64-bit Quad-Core 21 Nvidia Jetson Nano
Implement Neural Processor. Dual-Band
Nerwork Wireless LAN. Bluetooth
4.2/BLE. Fast Ethernet
Servo Convert Signal froon Hardware 16-Channel 12-Bit 22 Arduine
Shield/Servo Raspberry Pi into PWM/Servo Driver - 12C

Dnver (PCA9685) Pulse Width

Anker PowerCore Power Raspberry Pi

1I 6700 Power
Bank

USB-A to USE
Mini B Cable
Raspberry Pi
Camera Module
V2

Camera cable
Monitor
Keyboard
HDMI Cable

Xbox One
Controller

Raspbian

AnyDesk

Python 3

Modulated Signals

Hardware
while Driving Car
To Connect Hardware
Raspberry Pito
Power Bank
Record Images Hardware
To Connect Camera Hardware
to Raspberry Pi
For Raspberry Pi Hardware
Software Setup
For Raspberry Pi Hardware
Software Setup
To Connect Hardware

Raspberry Pito

Monitor

Used to Drive Car for Hardware
Collecting Training

Data

Operating System for Software
Raspberry Pi
Remote Desktop Software
Client to Access

Raspberry Pi

Runs Neural Network Software
Code on Raspberry Pi

Donkey Car Code Handles Collection of Software

Training Data and
Making Neural
Network Models

Interface

6700mAh Power Bank. USB
Type A Output, USB Type B
Input

Cable with Male USB Type
A Connector to Male USB
Type B Mini Connector
Sony IMX219 8-Megapixel
Sensor. Supports 1080p30.
720p60 and VGA90 Video
Modes

15¢m Ribbon Cable for CSI
Port on Raspberry Pi

Generic Monifor with VGA N/A

or HDMI Connector
Generic Keyboard

Generic HDMI Cable

Bluetooth Controller with
3.5mm Stereo Headset Jack.
Button Mapping. and
Textured Grips
Debian-Based Operating
System with Python. Scratch,
Sonic Pi. Java. and More
Remote Desktop Software
that Works on Raspbian

Program Language Designed
to Make System Integration
Fast and Efficient

Open Source DIY Self
Driving Platform for Small
Scale Cars

23 Generic Power Bank with
=5000mah Rating

23 Any Generic USB-A to USB
Mini B Cable

24 Raspberry Pi Camera
Module V1

24 Generic 15cm Ribbon Cable
for Raspberty Pi
NIA

N/A

N/A

25Logitech F710 Controller.
Generic Bluetooth
Controllers

26 Any Linux-Based Rasperry
Pi Operating System

27 Any Remote Desktop
Service with FTP

28C. Java. Would Require
Significant Re-programming
of Neural Networks

11 AWS Deep Racer [10].
OSOYOO Robot Car [9].
and Yahboom

As you can see in Table 4.1, our self-driving kit is made of many components. A

Raspberry Pi 3 B+l is used to save training data and to implement the neural network model.

49

The Raspberry Pi 3 B+ has a 1.4GHz 64-bit quad-core processor, dual-band wireless LAN,
Bluetooth 4.2/BLE, and fast ethernet. A possible alternative to the Raspberry Pi 3 B+ is the
Nvidia Jetson Nano as it is a micro computer designed to run neural networks.

A servo shield/servo driver (PCA 9685)? is used to convert the signal from the
Raspberry Pi into pulse width modulated (PWM) signals that the steering servo and electronic
speed control of scale cars used. This servo driver has 16 channels and can send 12-bit PWM
signals based on the communications with the Raspberry Pi using the I2C interface. A possible
alternative to this servo driver would be to use an Arduino to program and send PWM signals to
the electronics that control scale cars.

We used the Anker PowerCore II 67001 power bank to power the Raspberry Pi while
we were driving our scale cars. We could have used any generic power bank with more than a
5000 mabh rating, as this capacity was always enough to do an entire day’s worth of testing with
the Raspberry Pi. We used a USB-A to USB mini B cable that came with the power bank to
connect the power bank to the Raspberry Pi, but any generic USB-A to USB mini B cable could
have been used.

We used the Raspberry Pi Camera Module V224 to record video images at 160 by 120
pixels that would be sent to the Raspberry Pi. This camera module uses the Sony IMX219
8-megapixel sensor that actually supports video images of up to 1920 by 1080 pixels at 30
frames per second, but this was greater than the resolution that we needed. An alternative to this
camera module could be the V1 camera module, but this camera module worked for us without
any issues. The camera module came with a camera cable to connect the camera to the Raspberry
Pi, but any generic 15cm ribbon cable for Raspberry Pi’s would have worked as well.

We used an Xbox One controller to drive the scale cars while collecting training data for
our neural network models. The Xbox One controller connected to the Raspberry Pi via
Bluetooth. We used the Xbox One controller as we already owned some, but any generic
bluetooth controller could have worked. Additionally, we started using a Logitech F710
controller in C term as they are cheaper than Xbox One controllers and connect to the Raspberry

Pi via a USB dongle, removing the need to pair the controller with the Raspberry Pi.

50

We used a generic monitor and keyboard to set up the software on the Raspberry Pi. The
keyboard plugged into a female USB type A port on the Raspberry Pi, whereas the monitor
connected to the Raspberry Pi using a generic HDMI cable.

We used Raspbian as the operating system for the Raspberry Pi. It comes with python
already installed, which we needed to run the self-driving code, but we think other linux-based
Raspberry Pi operating systems could be used. Raspbian worked for what we needed it to do, and
it’s free, so we saw no need to test other operating systems. We used AnyDesk to remote desktop
into the Raspberry Pi so we would no longer need to use the keyboard and monitor to access the
Raspberry Pi. Any remote desktop service with FTP that works on Raspbian could be used.

In order to achieve autonomous driving, we used an open source software called Donkey
Carl'l. As previously mentioned, it is open source and designed for scale cars. Alternatives such
as AWS Deep Racer, OSOYOO Robot Car, and Yahboom could be used to achieve autonomous
driving.

To use the Donkey Car software, we first had to drive the car around the track manually.
As we drove the car, the software recorded images from the camera along with their
corresponding servo angle and throttle value. This data, called training data, is then used to
create a NN model. The neural network model will mimic the driving behaviors present in the
training data, allowing the car to navigate the track without human input.

The Donkey Car software runs on python 3, so we needed to install the necessary
dependencies in order to run the Donkey Car software. C, Java, and many other programming
languages could be used to create a self-driving scale car, but Donkey Car is not compatible with
these programming languages.

Figure 4.5 shows how all of the components connect together.

51

Raspberry Pi
Camera Module

Camera Remote (Xbox
—
Cable 2.4GHz One Controller)
o
Monitor & Connection . ;
|
Keyboard Raspberry Pi 3 B+ Connection
-
12C
s Power Bank
C.ommunlcatlo_ns USB A to
via Copper Wire USB mini B
cable
Servo Shield
Pulse Width Pulse Width
Modulation Modulation
Signal via Signal via
Copper Wire Copper Wire
Scale Car
Electronic Speed SC?'e R
Steering Servo
Controller

High Current

wurrer Mechanical
Electricity via Torque
Copper Wire

Scale Car

=tale Car Motor Steering Linkage

Figure 4.5: Self-Driving Kit System Diagram

As you can see from our system diagram, the Raspberry Pi 3 B+ is the center of our
self-driving kit. This is because it collects the training data and is then used to run the trained
neural network models to self-drive scale cars. A monitor and keyboard are connected to the

Raspberry P1 while setting up the software on the Raspberry Pi, but are disconnected for

collecting training data and self-driving the scale cars. The power bank is an external battery that
powers the Raspberry Pi independently from the battery used to power the scale car, adding to
the self-driving kit’s modularity. A remote (we mostly used an Xbox One controller) is used to
drive the car during the training data collection process by sending bluetooth signals to the
Raspberry Pi. The Raspberry Pi camera module is connected to the Raspberry Pi to collect
images for training data and to collect images for the neural network to process while the car is
self-driving. A servo shield is connected to the raspberry pi to control the steering servo and
electronic speed controller (ESC) of the scale car, which in turn control the scale car’s steering

linkage and motor, respectively.

4.3 Training Data

Before we started testing our self-driving package, we had to learn how to collect training
data. Training data is collected by manually driving the RC car around the track, during which
time the Raspberry Pi is saving pictures from the camera on the front of the RC car along with
the motor and servo levels, which control the car’s speed and steering angle, respectively. This
training data is then used to train a neural network model. When this neural network model is run
on a car, the Raspberry Pi will take images from the camera and then process them through the
neural network model to determine what speed and steering angle should be set, causing the car
to self-drive. The neural network model will cause the car to try and mimic behaviors present in
the training data, so the quantity and quality of training data used to create the neural network
model significantly impacts the self-driving performance of the RC car. Therefore, to improve
the likelihood that a neural network will perform well, we followed a procedure when collecting
training data, and worked to improve that procedure with each test.

As a starting point, we used the Donkey Car website to come up with our first set of
training data collection methods . We drove the car in four different styles while collecting

training data.

4.3.1 Driving Style 1: Accurate Laps

53

We called the first driving style “accurate laps”. For these accurate laps, when the user
drives the car, they are most concerned about driving the car in the center of the track as
accurately as possible, even if at a slower speed than when the user normally drives the car
around the track. The theory behind these types of laps is that it will teach the neural network
model that the car should try to stay in the center of the track, and that these accurate laps will
provide a baseline for the car’s behavior. Donkey Car''l recommends that these accurate laps
make up roughly 10% of a training data set. ut, in practice, these accurate laps made up about

20% of our data.

4.3.2 Driving Style 2: Small Oscillation Laps

We called the second driving style “small oscillation laps”. For these laps, as the user
drives the car around the track, make small oscillations around the center of the track. In other
words, the user drives the car such that it zigzags left and right as it goes around the track, but the
user makes sure the car stays mostly in the center of the track. The theory behind these laps is
that this data will let the car see other parts of the track and learn to correct itself back to the
centerline of the track. However, in practice, we found that the car would sometimes mimic this
zig-zag behavior as it self-drove itself. To fix this, we eventually used a button on the controller
we were using to drive the car when collecting training data to toggle when the car was recording
training data by changing a setting in the Donkey Car!'!! code. This way, we could control which
of our driving behaviors were recorded as training data. For these small oscillation laps, we only
recorded from when the car was closer to one of the edges of the track and drove back to the
center of the track. This way, the car would not learn to deviate from the center of the track if it
were driving in the center of the track. This second style of training data made up 20% of our

total training data.

4.3.3 Driving Style 3: Extreme Laps
We called the third driving style “extreme laps”. For these laps, the car was driven back
and forth between the extremes of the lanes. However, we were careful to not overcorrect the car.

We would have the car stay on one side of the track, and then drive it to the other side of the

54

track. The goal of this training data is for the car to learn how to drive back to the center of the
track after driving off course. However, similarly to the small oscillation laps, we believe that
this training data taught the car to drive away from the center of the track instead of training it
how to drive back to the center of the track if it goes off course. So, when we eventually changed
the system so that we could control when the car was recording training data, we made sure to
only record the car driving back to the center of the track from when it was at the side of the
track, or even when it was off of the track completely. This change significantly improved the
reliability and consistency of our car’s self-driving capabilities. This third style of training data

made up about 30% of our training data.

4.3.4 Driving Style 4: Fast Laps

We called the fourth and final driving style “fast laps”. For these laps, we would just
drive the car around the track normally, but briskly. The goal of this training data is for the car to
learn how to go around the track faster and not be too slow. This made up about 30% of our
training data. Although the Donkey Car website recommended 5k records of training data, by our

last test, we would try to get 20k records of training data before creating a neural network model.

4.4 Training Tracks

We tested our Self-Driving package on seven different tracks. Our first couple of tracks

were made out of brightly colored tape in a classroom (Figures 4.6, 4.7, 4.8 and 4.9).

Figure 4.6: Picture of Track 1

55

Figure 4.7: Schematic of Track 1

Figures 4.6 and 4.7 show the first track that we tested on. We made the track out of green
tape, and it had two 90 degree turns and two 180 degree hairpin turns, so there would be different

types of turns for the car to try and drive through.

Figure 4.8: Pictures of Track 2

56

Figure 4.9: Schematic of Track 2

Figures 4.7 and 4.8 show the second track that we tested on. It was also made out of tape,
but since we were running low on green tape, we used green tape, silver duct tape, some white
tape, and some pink tape. We made the track to be a simple oval shape in hopes that the simple
shape would increase the probability that we would be able to successfully train a neural network
model on this track.

One of the biggest issues with our first two tracks is that we had to remove the track at
the end of the day, as the track was in a classroom. This meant that we would have to collect
training data, train the neural network model, and then upload that model to the car to self-drive
it all in the span of one day. We wanted a track that could stay set up for long periods of time so
we could practice collecting different training data for the same track, which would allow us to
better analyze the best methods for collecting training data. It is important to note that the
training data and neural network models that we made were fairly track specific (we couldn’t
take the training data from one track and use it to self-drive a car on a different track), so each
time we created a new track, we had to collect new training data. This is another reason why we
wanted to have a permanent location for us to set up our track to test our self-driving package.
So, for our third track (Figures 4.10 and 4.11), we used a simple hallway as we could expect the
hallway to relatively maintain the same appearance from day to day, providing us with a place to

permanently train and test our self-driving package.

57

Figure 4.10: Picture of Track 3

Figure 4.11: Schematic of Track 3

Figures 4.10 & 4.11 show Track 3. As previously stated, this track was just a simple
hallway. This allowed us to test if a hallway could be used as a track to train self-driving cars.

Our tests on Track 3 were successful, so we decided to use a loop of hallways as our 4™
track. Track 4 was made up of four 90-degree right turns and had the shape of a rectangle
(Figures 4.12 & 4.13).

58

Figure 4.12: Pictures of Track 4.

Figure 4.13: Schematic of Track 4

As you can see from Figures 4.12 & 4.13, Track 4 was a simple rectangle shape.

59

We made our fifth track using brightly colored flagging tape in the same hallways as
Track 4 (Figures 4.14, 4.15 & 4.16). We theorized that with added visual cues for the boundaries
of the track, the neural network model would be more likely to identify the boundaries of the

track and stay within them.

Figure 4.14: Pictures of Track 5

60

Figure 4.15: More Pictures of Track 5

Figure 4.16: Schematic of Track 5

61

As you can see, Track 5 is in the same hallway as Track 4. It is made of four 90-degree
turns, and uses pink flagging tape as the boundaries to the edges of the track. The track is more
than five feet wide at some points, and as narrow as two and a half feet at other points.

After some tests, we modified track 5 to include a horseshoe-shaped turn to see if our
self-driving package had the capability to deal with turns more complex than a 90-degree turn
(Figure 4.17).

Figure 4.17: Horseshoe Turn Modification

Figure 4.17 shows the complex horseshoe turn modification that was made to Track 5. As
you can see, for this turn, the car would have to turn left by about 45-degrees, make almost a
180-degree turn, and then turn left again by about 45-degrees.

For our sixth track, we decided to make a more complex track to try and push the limits
of the self-driving package’s capabilities. This track consisted of many turns and was also
narrower when compared to previous tracks as we theorized that would help the neural network

identify the boundaries of the track (Figures 4.18 & 4.19).

62

Figure 4.18: Pictures of Track 6

63

Figure 4.19: More Pictures of Track 6

Figure 4.20: Schematic of Track 6

64

As you can see from Figures 4.18, 4.19, & 4.20, Track 6 was on the same hallway as for
Tracks 4 and 5. Track 6 was generally a narrow track with many complex turns, especially with
one section with an S-turn.

Unfortunately, we were unable to get a scale car to successfully drive around Track 6, so
we made Track 7 to be similar to track 5, but it was three feet wide at all points of the track and
had different color tape on the left and right sides of the track (Figures 4.21, 4.22 & 4.23). We
theorized that by having a different color for the left and right boundaries of the track, the neural
network model would correlate one color to turning left and the other color to turning right,
which would in turn improve the reliability of the self-driving performance. Additionally, we had
two horseshoe turns instead of one like we had in track 5 to see if the car’s neural network could

learn to navigate multiple complex turns on the same track.

Figure 4.21: Pictures of Track 7

65

Figure 4.22: More Pictures of Track 7

66

Figure 4.23: Schematic of Track 7

As you can see from Figures 4.21, 4.22 & 4.23, Track 7 was on the same hallway as for
Tracks 4, 5, and 6. Track 7 was three feet wide at all points of the track, had two 90-degree turns,
and two horseshoe turns, like the modification that was made to Track 5 (Figure 4.17).

Out of our seven tracks, our latter tracks were more complex than the earlier tracks. Our

latter tracks started to feature horseshoe turns to test the limits of the self-driving kit.

4.5 Tests Performed on Self-Driving System:
4.5.1 Tests on Track 1

For our first test, we used the Mission D scale car (Figure 4.2) on Track 1 (Figures 4.6 &
4.7). Our main goal was to practice collecting training data. We drove the Mission D car around
the track several times. We did some zigzags on the track, and had two examples of the car
driving back onto the track if it ever went off the track. The biggest issue that we had with Track
1 is that the hairpin turn in the bottom of the track picture was a tight turn, and so we had to back
up the car sometimes when we drove it through that turn. Additionally, since we were still new to
the Donkey Car system, we had to disassemble the track before we could finish training the
neural network. So, we were unable to test trying to have the car self-drive around Track 1 for

this first test.

67

4.5.2 Tests on Track 2

For our second test, we used the Mission D scale car (Figure 4.2) on Track 2 (Figures 4.8
& 4.9). Our goal with this test was to collect training data, create a neural network, and have the
Mission D car drive around the track by itself a few times. For this second test, we followed the
instructions on how to properly collect training data. We were able to get the Mission D car to go
around Track 2 a few times, but then the car stopped driving and we were unable to get the car to
self-drive again using the same neural network. For this first successful model, we only trained
the car using 5,400 records of training data, which took about an hour and a half to make the
neural network model, and we hypothesized that we did not have enough records of training data

for the car to reliably identify the track and self-drive around the track.

4.5.3 Tests on Track 3

For tests on Track 3(Figures 4.10 & 4.11), we tried collecting training data and training a
student-made car (Figure 4.3) from WPI’s Advanced Engineering Design course. The test on
Track 3 was mostly a proof-of-concept test; we wanted to see if the hallway was even a viable
track for us to train and self-drive cars on. We also wanted to see if it was possible to train a
student-made car to self-drive. So, we collected training data for driving the car halfway down
the hallway. After collecting 2,700 training data records, we trained the neural network model,
which took a little under an hour, uploaded the model to the car, and it self-drove. It drove down
the section of the hallway that we had trained it on, and then continued driving past where we

had trained it until it eventually crashed into a wall.

4.5.4 Tests on Track 4

After successfully demonstrating the ability for a scale car to be trained to self-drive
down a hallway, we decided to have Track 4 (Figures 4.12 & 4.13) be a rectangle. Our first three
tests on Track 4 were all done on the student-made car (Figure 4.3). The third test on track 4 was

a success as the car was able to go around the track twice without crashing into a wall or veering

68

off of the track. This model required over 30,000 training data records and took about two to
three hours to train the model.

We did a fourth test on track 4, this time with one of the 3D printed cars (Figure 4.4).
This car was a lot slower than the student-made car we had previously used (Figure 4.3), which
we theorized would make it better for self-driving as the neural network would have more time
to react to an obstacle (like a wall) if the car was veering off course. We collected 17,000 training
data records, but when we made the model and tried to use it to self-drive the car, the car was

only able to make it about halfway around one lap before it ran into a wall.

4.5.5 Tests on Track 5

For our tests on Track 5 (Figures 4.14, 4.15, & 4.16), we increased the amount of training
data that we collected as we hypothesized that a lack of training data for our fourth test on track
4 is what caused that model to be unsuccessful. Again, we used a 3D printed car (Figure 4.4) for
these tests. Our best neural network model on track 5 was trained on 40,000 records, which took
2.5 hours to train, and the car was able to self-drive for four and a half laps, which met our goal
of having the car self-drive for four laps. We then modified track 5 to include a horseshoe-shaped
turn to see if our self-driving package had the capability to deal with turns more complex than a
90-degree turn (Figure 4.12).

We were able to create a neural network model that caused the car to self-drive around
this modified Track 5 for 6.5 minutes straight without human intervention. This model used
35,000 records of training data and took 3 hours to train. Since the track is wide, we split up our
training data into thirds, one third in the center of the track, one third on the right hand side of the
track, and one third on the left hand side of the track. We hypothesized that since the track was
wide, giving the neural network data from different positions in the track would let it better

identify the boundaries of the track and learn behaviors to stay within these boundaries.
4.5.6 Tests on Track 6

We ran a single test on Track 6 (Figures 4.18, 4.19, & 4.20) using a 3D printed car

(Figure 4.4). We collected 60,000 records of training data, which took over three hours to train a

69

neural network model, and when put on a car, the car was not able to self-drive. The car was only
able to go around the track for one lap before hitting a wall and would sometimes drive outside
of the track boundaries. We took this to mean that the track was too narrow, so we decided to

make our next track wider.

4.5.7 Tests on Track 7

On Track 7 (Figures 4.21, 4.22, & 4.23), we performed tests using a 3D printed car
(Figure 4.4). Our first two tests on Track 7 were unsuccessful, even with collecting over 90,000
training data records and training the neural network model for over five hours. The car would
miss turns and was unable to self-drive around the track for four laps. This is when we set a
button on the remote that we were using to drive the car when collecting training data to toggle
when the car was recording training data. After implementing this change, we collected 18,000
training data records, which took one and a half hours to train a neural network model. The car
was able to self-drive for over four laps, which was our goal, with the smallest amount of

training data records.

4.5.8: Summary of Tests
We tested our self-driving kit on seven different tracks, and were able to get the total
number of training data records required to make a neural network that can self drive down to

18,000 records. Table 4.2 summarizes all of the tests that we did.

70

Table 4.2: Table of Self-driving Package Tests

Ability to Toggle

Number of Training Laps Self-Driven

Test TrackTraining Data Car Data Records Around Track
1 1No Mission D 16k 0
2 2 No Mission D 5k 2
3 3No Student-Made 3k 1
4 4 No Student-Made 16k <1
5 A No Student-Made 15k <1
6 4No Student-Made 31k 2
7 4 No 3D Printed 18k <1
8 5No 3D Printed 35k <1
9 5No 3D Printed 40k >4

10 5No 3D Printed 45k >4
11 5No 3D Printed 35k >4
12 6No 3D Printed 60k <1
13 7No 3D Printed 50k 2
14 7No 3D Printed 91k <1
15 7Yes 3D Printed 18k >4
16 7Yes 3D Printed 26k sq

As you can see from Table 4.2, we had five tests where we were able to create a neural

network model that would self-drive a scale car around a track four or more times. The number

of records required for these successful neural networks significantly reduced when we started

using a button to toggle when the scale car was recording training data. This makes sense, as this

toggling ability gave us more control over the behaviors that the neural network models would

learn.

4.6 User Guide and Manuals

After testing our self-driving kit on seven different tracks, we made a user guide on how

to use our self-driving kit. The purpose of this user guide is for students in the ME 4320 and
ME/RBE 4322 courses to be able to use the user guide to set up their own self-driving kit and

use it to make their scale-cars self-drive. Therefore, the user guide had to be clear, concise, and

require only a reasonable background in college-level Mechanical Engineering. The guide had to

be clear in the sense that if it were confusing, students would not be able to follow the user

71

guide. The guide had to be concise in the sense that the total process could not take too long as
the students would have a limited amount of time to set up the self-driving kit. The guide could
only require a college-level Mechanical Engineering background as that would be the target
audience of the user guide.

Our first step to making the guide was ordering the components to construct a second self
driving kit. After ordering the components, we took detailed notes of the process that we
followed to construct the second self-driving kit. We then formalized these notes into a user
guide.

Next, we gave the user guide to two students, along with all of the components of the
self-driving kit. We took detailed notes of the issues that they ran into while setting up and using
the kit. We also asked them for feedback on what steps they found to be hard and what issues
they felt they ran into, and other areas of the user guide that could be improved. We then used
these notes and feedback to modify the user guide. Now, our self-driving kit has an
accompanying user guide for students in the ME 4320 and ME/RBE 4322 courses to implement
the self-driving kit. The user guide can be found at http://tiny.cc/MQPUserGuide

4.7 Self-Driving Implementation Summary

In this chapter, we discussed the self-driving kit development process, we reviewed the
cars that we tested our self-driving kit on, and went over the components required to make our
self-driving kit. Then, we covered how we collected training data when using our self-driving
kit, tracks we tested our self-driving kit on, and the various tests that we performed on our
self-driving kit. Lastly, we went over how we made the user guide for our self-driving kit.

In the next chapter, we will discuss the development of our sensor kit and the integration

of the sensor kit with the self-driving kit.

72

5 Sensors Implementation and Combining Self-Driving &

Sensor Kits

In this chapter, we will discuss the implementation of the sensor package, how we
combined the self-driving and sensor packages, and the further development of our user guides.

To meet our project goal, we had to make a sensor package and a user-guide on how to
use the package. As per our objective on the modular sensor kit, we needed to determine what
sensors should be used for data collection, as well as how we should go about implementing the
sensors in an easy to understand and follow manner. This was accomplished with an Ardiuno
Mega and RasPi; both fairly common and simple to use pieces of hardware.

For our sensor package, we wanted to provide students with various sensors that could
record useful data about the function of their scale cars. To do this, we had to wire various
sensors into an Arduino, and then program that Arduino to send the data to a Raspberry Pi where
the data could be saved to a useful filetype.

A sensor user guide was developed by streamlining the process we used to create the
package. We then tested this guide on two Mechanical Engineering graduate students so we
could evaluate how effective our guide was and what changes needed to be made. As seen below
in Figure 5.1, we developed a plan to implement sensors, and verify that the sensors are

functioning appropriately.

73

Design Modular
Sensor Kit

Select Sensor to
Use

Hall-Effect

Develop Code Develop Code Develop Code
Package Package Package

3 Different
Temperature
Test

Laser

Axis Test Tachometer Test

Combine
Packages

New Car
Model

Develop

Installation Live Drive Test
Guide

Figure 5.1: Flowchart of Project Plan

74

The first step for developing a sensor kit is determining what sensors are needed. There
are only so many valuable pieces of data you can collect from a car, so we determined that we
wanted to collect the roll, pitch, and yaw of the car, from an IMU; a hall-effect sensor, to
determine velocity of the car; and a thermal sensor to determine component temperatures and the
ambient temperature of the surrounding area. There are many resources on the internet on how to
implement sensors, so utilizing our own knowledge, and internet resources, we got the three
sensors we selected working. To verify the sensors are working accurately, we developed tests
comparing our sensors to commercially available products which mesease the same data. There
are far more details on this process below in section 3.2. After the sensors were verified to be
working, we installed the package on a RC car, and did a live test drive. This worked flawlessly,
and by installing the module on a car, we were able to more successfully create the user guide for

ME4320 students to utilize in their course.

5.1 Sensor Module

The sensor package developed by the team consists of a variety of sensors; there is a hall
effect sensor to determine the velocity of the car, thermal sensors to monitor component
temperatures, and an IMU to record the roll, pitch and yaw of the car. Additionally, there is an
Arduino Mega and a Raspberry Pi to record the sensor data and save it to a CSV file so it can be
analyzed later. An exterior casing was designed and printed as an enclosure to house the
electronics, equipped with mounting holes and an external portable battery so that the sensors
can be powered independently from the car, increasing the modularity. See, the package
functions as an independent unit that can be mounted on any car that has the minimal space for
it. The sensors are also designed to be easily mounted and changeable, such that users can
relocate their sensor locations between testing. As seen below in Figure 5.2, this is the complete

wiring diagram for the Arduino and sensors.

75

Figure 5.2: Arduino and Sensor Wiring Diagram

The package was designed to be of simple construction for application in the ME 4320
class. Sensors were chosen with priority being compatibility with Arduino and ease of

installation, as the idea was not to over-complicate the sensor system.

5.1.1 Sensor Testing

With each individual sensor that was added to the package, there were multiple tests
performed on each sensor before it was incorporated fully. Each sensor was subjected to both a
verification test and an accuracy test in order to demonstrate the relative functionality of each
sensor as it was being added into the design. The verification test was a much more binary test,
being conducted immediately following setup of the sensor in order to ensure that the device was
functioning within a reasonable range before moving forward with accuracy verification. Once
the selected sensor was verified to be worth testing, the test evolved from a verification test to an
accuracy test, in which the electronic sensors were tested against various other instruments to
identify how accurately the data was being detected. Of course, with each sensor, a different test

needed to be designed.
5.1.1.1 Thermal Sensor Testing

For the thermal sensors, each device was individually verified using simply the

thermostat in the room in order to verify the temperature and the currently unused feature of

76

humidity. With the device connected into the Arduino script, the data collection script was run in
order to store the temperature as perceived by the sensor. This number, averaged over the five
minute it was held operational, was then compared against the temperature as displayed by the
thermostat of the room. When comparing the five-minute average to the thermostat setting, a
sensor was considered verified if the average were within the range of tolerance for the
thermostat itself, being about plus or minus a degree. So, with the temperature of the room set to
be 20°C, the target of verification was in the range of 19°C-21°C. Once a thermal sensor was
observed to report data in the appropriate range, it would then move on to accuracy testing.

The accuracy test for the thermal sensors involved the use of a known, constant and
controlled heating source as the baseline, with and having the thermal sensors simultaneously run
for an extended period of time and compare the recorded values as such. Below, in Tables 5.1,
5.2, and 5.3, are the average temperatures as recorded by the sensors over the testing period of
five minutes, the temperature that the constant heating source was set to, and the average
accuracy of the sensors during the test in registering the correct temperature. The full data from

this test can be found in Appendix 10.7.

77

Table 5.1: Thermal Test 1: Temperature at 20°C (Room Temperature)

Sensor Number [Sensor Average Temperature (°C) |Source Temperature (°C) |Accuracy (%)
1 20.5 20 97.4
2 20.5 20 97.3
3 20.5 20 97.4

Table 5.2: Thermal Test 2: Temperature at 35°C (Warm Operating Temperature)

Sensor Number |Sensor Average Temperature (°C) |Source Temperature (°C) [Accuracy (%)
1 354 35 98.7
2 354 35 98.7
3 355 35 98.4

Table 5.3: Thermal Test 3: Temperature at 85°C (Critical Temperature)

Sensor Number |Sensor Average Temperature (°C) |Source Temperature (°C) [Accuracy (%)
1 85.6 85 99.2
2 85.7 85 99.2
3 85.8 85 99.1

The baseline temperatures of 20°C, 35°C and 85°C were chosen as specific targets: 20°C

being average room temperature, 35°C being an estimated operating temperature of the car in

extreme cases, and 85°C is the reported temperature at which the Raspberry Pi is said to

shut-down or suffer operational damages as a result of heat. With these three sensors tested at

these temperatures, we were confident that the sensors would be more then well equipped at their

target of monitoring temperatures. The goal of these sensors is not to be constantly measuring

high temperatures, but rather, to be able to make note of potential high-temperature hazards. The

heating source temperature is verified by its own internal thermocouple used to monitor the

heating source’s temperature. Further, temperature data in the future would be truncated to the

78

nearest whole degree, as the decimals are more a product of electrical noise than they are a

representation of accuracy for temperature..

5.1.1.2 IMU Testing

For the testing of the IMU, again a preliminary verification test was performed prior to
moving forward with more formal testing. The verification test involved establishing x-, y-, and
z-axis using these to observe pitches, rolls, and yaws in varying directions. After establishing our
axes, we fitted the IMU into a fixed location inside of the sensor box module. Once fixed, the
data was recorded as the box was rotated 90° in each direction, standing on each exterior face of
the box. This test was performed that the IMU would respond in the desired directions and would
have corresponding changes in angle measurement in the data provided. The IMU tested to have
an accuracy of 98% to the expected rotations. However, something to note is that the IMU has
been coded specifically to only report angle measures of a whole degree, in the range of [0, 359].
For the purposes of calculating the average IMU reading, the rotation period recording was set to
be 10 times, once every three seconds, for thirty seconds after each rotation to ensure IMU had
time to settle before being recording data. Below in Table 5.4 are the results of this axis
verification, demonstrating how well the IMU performed. The full data from this test can be
found in Appendix 10.8.

Table 5.4: IMU Individual Axis Rotation Test Data

Y-Axis Z-Axis
X-Axis Rotation Rotation Rotation
IMU Actual IMU Actual
IMU Recording [Actual Rotation |Recording Rotation Recording Rotation
0 0 0.1 0 -0.2 0
89.8 90 89.9 90 89.5 90
180.1 180 179.6 180 180.4 180
269.2 270 269.9 270 269.5 270
0.2 0 0.1 0 0.7 0

79

5.1.1.4 Hall-Effect Sensor Testing

The hall-effect sensor is the last sensor tested and implemented into the sensor package.
However, with the structure provided by the user manual and accompanying testing procedures,
there is room for students in the ME 4320 to branch out and include more sensors.

The hall-effect sensor was originally verified using a basic electric motor, a magnet, and
the sensor. Having the electric motor set to run at 60 RPM, the magnet was glued to a wheel
attached to the motor, and the hall-effect was held firmly in place such that the magnet was on
path to pass by the sensor, as it would be in practice on the car. Once it was verified that the
hall-effect sensor was able to keep passing with the motor at roughly 60 RPM, the test moved
from verification to accuracy. By refixing the setup in front of a laser tachometer, the hall-effect
could be compared in real time to what was being detected by a laser tachometer. The results of

the test below, shown in Table 5.5, calculate an accuracy of 98.902%.

Table 5.5: Hall-Effect Sensor Test Results

Trail| Hall-Effect RPM Laser Tachometer RPM Error Difference %
1 57.34 56.0 2.337
2 56.12 55.7 0.748
3 56.13 55.5 1.122
4 56.11 55.7 0.731
5 56.01 55.7 0.553

| Average Error| 1.098% |

Each of the sensors was originally tested individually before being connected on the car
to be run for a live data run test. During the live data test, the car would be driven in a straight
line with all sensors recording, stopping to have the exterior temperature sensor disconnected
intentionally during operation, before continuing driving over a small-scale speed bump to
purposefully disrupt the car and tilt it in its position while driving. The bump was designed to
bump the car roughly 22° in the x-direction based on the collision path of the car. The

temperature sensor was intentionally disconnected to demonstrate that the script will not quit if

80

something disconnects or goes wrong during operation. The data from this test can be viewed in

Appendix 10.3, and a picture of the car driving over bumps can be seen below in Figure 5.3.

Figure 5.3: 3D Printed Car Driving Over a Bump

The live drive test was able to demonstrate that our car can operate with a variety of
sensors installed and can record and save accurate data in a CSV file for future analysis. The car
was able to detect the change in the x-direction caused by the bump in the road through the CSV,
was able to monitor the interior temperatures and exterior temperatures of the car, was able to
record the RPM of the car during operation and was even able to continue operation after one of

the sensors was disconnected from the package.

5.2 Integration of Self-Driving and Sensors into a single kit

In order to have uniformity in the implementation of both the self-driving and sensor
systems into the Advanced Engineering Design course, the team took upon themselves the task
of designing and manufacturing a containment box to hold all the electronics necessary in a well
laid out and organized way. The kit is fully 3D printed and does not require any support material

to print successfully, or hardware to assemble. This aids to the systems modularity; anyone with

81

a 3D printer and basic computer skills can fully implement our self-driving and sensor packages.
There is a need for two M2.5 bolts if one wants to utilize the internal mounting holes for the

IMU and thermal sensor, as a user would want these sensors mounted as rigidly as possible.

Figure 5.4: Self-driving and Sensor Kit Mounted on Rc Car

As seen above in Figure 5.4 the kit has four integrated mounting holes located on the
bottom surface which allows the users to early mount the kit to their car. This example in Figure
5.4 1s a fully 3D printed RC car provided to us by another project team at Worcester Polytechnic

Institute.

5.3 User Manuals

When the team was creating the sensor package for the ME4320 course, it was
imperative to create a user guide so that any student, regardless of experience levels, could begin
the process of assembling this sensor package. We developed a user guide, full of detailed
images and instructions so that the steps can be followed by most students with little effort. As
previously mentioned, we gave an earlier version of the user-guide to two Mechanical

Engineering graduate students, who were able to follow the given user guide and end up with

82

their own self-driving RC car. Now, students in the Advanced Engineering Design course can use
our self-driving package to implement their own self-driving systems on the scale cars that they
build. The guide also includes a list of required hardware, wiring diagram, and short tutorials on
how to install and operate the required Arduino and Raspberry Pi code for the sensor package.
The sensor user guide can be found in Appendix 10.2, Arduino Code can be found in Appendix

10.5, and the RasPi code can be found in Appendix 10.6.

5.4 Summary

In this chapter, we discussed the implementation of the sensor package, the combination
of the self-driving and sensor packages, and the further development of our user guides.

In the next chapter, we will discuss the work we did to aid our sister MQP team with the

construction of Testing Rigs.

83

6 Creating Testing Mechanisms for Subcomponent Testing

In this chapter, we will discuss the work we did to aid our sister MQP team with the
construction of Testing Rigs.

Our project team worked closely with our sister MQP team to assist them with the
creation of testing rigs. This was primarily used for the teams steering linkages, and can be seen
below in Figure 6.1. The test rig was set up so that a front suspension can be mounted to a base

plate.

Figure 6.1: Steering Linkage Testing Platform

To run the steering test, a simple Arduino script (Appendix 10.4) which was
created turned the wheels back and forth 250 times. Then a video was taken of the range of
motion of the wheels, finally, the test was repeated 8 times in total, for a sum of 2,000 cycles of
left and right. This Arduino code can be seen in Appendix 10.5. The code utilizes an Arduino to
control the servo position, and an external power supply to provide the servo with 7.2 Volts. Our
team helped this MQP team with the development of this testing platform, and after the data was
collected, the MQP team utilized a point tracking application to determine the degradation of the

steering linkage at each stage of usage, from new to 2,000 cycles.

84

™

‘.
wxmm ARDUINO

Figure 6.2: Wiring Diagram for Front Suspension Test

As seen above in Figure 6.2, this is the wiring diagram for the servo test rig. It was
necessary to use a power supply to provide 7.2 Volts compared to the 5 Volts out from a USB
port. The positive from the power supply goes to servo power, and the ground from the power
supply goes to the Arduino so that we have a common ground. Then ground from the Arduino is
sent to the servo along with a PWM signal from a digital pin.

In this chapter, we discussed the work we did to aid our sister MQP team with the
construction of Testing Rigs. In the next chapter, we will talk about the results of our tests on
our self-driving and sensor modules. We will also discuss issues with our implementations, and

areas where our work could be expanded on by future MQP teams.

85

7 Results and Discussion

In this chapter, we talk about the results of our tests on our self-driving and sensor
modules. We also discuss issues with our implementations, and areas where our work could be
expanded on by future MQP teams.

We were successfully able to create our self-driving and sensor packages to our
specifications and were able to create user guides and test them on Mechanical Engineering
graduate students, who were able to implement the self-driving and sensor packages on a car that
they built.

The total cost to buy all of the parts required for the self-driving and sensors kits is
$401.13 as of May 2020 (Table 7.1). This cost also includes a full kilogram of Hatchbox PLA.
The print settings utilized during our iterations were: 0.10 mm layer height, 20% fill density, and
support on build plate only. With these settings, at 100% print speed all of the components would
take 19.66 hours to fully print. If the layer height is increased, infill density decreased, or print
speed is increased, the time to print all components would be reduced. Additionally, printing all
of the components uses 157 Grams of PLA, or 15.7% of the spool. This comes out to $3.13 of
PLA.

86

Table 7.1: Cost of Self-Driving and Sensor Kits

Item Description Qty Unit Price Total Price
RasPi 3B+ 2 $51.99 $103.98
Arduino Mega 1 $14.99 $14.99
Micro SD (2-Pack) 1 $24.03 $24.03
Servo Driver 1 $9.99 $9.99
Jumper Wires (Variety Pack) 1 $9.88 $9.88
Hall-Effect Sensor (5-Pack) 1 $6.59 $6.59
Thermal Sensor 3 $8.59 $25.77
MU 1 $36.00 $36.00
Xbox Controller 1 $74.95 $74.95
Micro USB (2 -Pack) 1 $6.99 $6.99
Hatchbox PLA 1 $19.99 $19.99
Breadboard 1 $8.99 $8.99
Portable Battery 1 $31.99 $31.99
RasPi Carmera Module 1 $26.99 $26.99
| Total | $401.13 |

It takes around 3 hours to set up the sensor kit on a scale car, three to four hours to set up
the self-driving kit on a scale car, and then three hours to get the scale car to self-drive. The 3
hours for the sensor kit assumes that the user has already 3D printed the necessary components

for the enclosure.

7.1 Self-Driving Module

We ran tests on our self-driving system and were able to get cars made in the Advanced
Engineering Design course at WPI to self-drive as well as 3D printed cars made by a project
similar to ours to self-drive. We tested our self-driving package on 7 different tracks. The latter
tracks were more complex than earlier renditions, featuring added turns. Table 5.2 shows a
summary of the various tests that we ran on our self-driving package. As the tests progressed, so
did the amount of images required for the training data, however, by test number fifteen, we had
devised an optimal method for training the NN, and drastically cut down the number of images
required to train the NN, and it had the ability to drive for many more laps than the early

iterations.

87

Table 7.2: Table of Self-driving Package Tests

Ability to Toggle

Number of Training Laps Self-Driven

Test TrackTraining Data Car Data Records Around Track
1 1No Mission D 16k 0
2 2 No Mission D 5k 2
3 3No Student-Made 3k 1
4 4 No Student-Made 16k <1
5 A No Student-Made 15k <1
6 4No Student-Made 31k 2
7 4 No 3D Printed 18k <1
8 5No 3D Printed 35k <1
9 5No 3D Printed 40k >4

10 5No 3D Printed 45k >4
11 5No 3D Printed 35k >4
12 6No 3D Printed 60k <1
13 7No 3D Printed 50k 2
14 7No 3D Printed 91k <1
15 7Yes 3D Printed 18k >4
16 7Yes 3D Printed 26k sq

Our goal was to figure out how to consistently create neural network models that when

implemented, self-drove an RC car around a track for at least four laps. Our first successful

neural network models had 35-40 thousand records in their training data sets and took 2-3 hours

to train. With each new track, we learned techniques to improve the quality of the training data.

This improved the robustness of the car’s self-driving ability and reduced the number of images

required for our training data sets. Our final models only required 20,000 records of training data

and only took one and a half hours to train. We were able to significantly reduce the number of

training data records by enabling the ability to toggle when the car is collecting training data

during the training data collection process. This makes sense, as it gave us more control over

what driving behaviors are present in the behavior, causing the resulting neural network to better

replicate the behavior that we want it to have.

88

7.1.1 Testing with Students

After meeting our goal of verifying that our self-driving package could be used to make
an RC car self-drive four laps around a track without human intervention, we made a user guide
to teach students how to use our self-driving package. We gave this user-guide to two
Mechanical Engineering students, Brian King and Jesse Kablik, to test and see if they could
follow the user guide and create their own self-driving RC car. It took them about three and a
half hours to set-up the self-driving kit on their RC car, and then another three and a half hours to
get their car to self-drive. We noticed that they had the hardest time with connecting the
Raspberry Pi to the internet due to the security on WPI’s Wi-Fi network, but in ME 4320 and ME
4322, this step would be taken care of by WPI’s IT department and the class TA’s. Aside from
that step, Brian and Jesse were able to easily connect all of the necessary hardware for the
self-driving kit, download all of the necessary software, collect training data, and create a neural
network model. In the end, they got their own RC car to self-drive! We used feedback from Brian
and Jesse and notes we took on their experience to improve the user-guide. Now, we are
confident that students in the Advanced Engineering Design course can use our self-driving kit to

implement their own self-driving systems on the scale cars that they build.

7.1.2 Issues Faced and Future Work
7.1.2.1 Issue: Non-Transferrable Neural Networks

There are some issues with the self-driving kit that also present themselves as areas for
future work. First, neural network models are non-transferrable: they only work on the car that
they were trained on, and on the track that they were trained on. If these NN models were
transferable, that would significantly help the students in the ME 4320 and ME 4322 courses as
they would only have to put the self-driving kit onto their car before they could start self-driving

their car and would not be required to train their own car.
7.1.2.2 Future Work: Recommendations to Make Neural Networks Transferrable

One way to make the neural network models transferable between cars could be to ensure

that all of the scale cars used in the ME 4320 and ME 4322 courses have exactly the same

89

steering behavior and throttle behavior. Currently, the neural network models take in a “servo
level” and a “throttle level”. The servo level is a value from negative one to one that is based on
how close the steering servo is to being fully rotated in one direction or another. The throttle
level is a value from negative one to one that is based on how close the motor is to full power in
the forward or negative direction. These servo and throttle levels correspond to different steering
angles and speeds on different cars, which is why the neural network models are non-transferable
from one car to another. However, if all of the cars in the ME 4320 and ME 4322 courses had the
same servo level for a given steering angle and the same throttle level for a given speed, then a
neural network model trained on one car could likely be used on the other cars too.

Alternatively, additional sensors could be incorporated into the self-driving kit so the
neural network would know the car’s current steering angle and speed to make the neural
network models transferable between cars. An IMU or another sensor could be used to detect the
current steering angle of the car, and a tachometer could be used to get the speed of a car. Then,
the neural network model could learn to react to situations with a certain steering angle and
speed instead of the car-dependent metrics “servo level” and “throttle level”. Then, if a working
neural network was put on another car, it would likely still work as the neural network would
know what speed and steering angle it wants the car to be at instead of using “servo level” and

“throttle level”.

7.1.2.3 Issue: Degradation of Steering Performance

Another issue with the self-driving kit is that when we had a scale car self-drive for more
than four or five laps, sometimes the scale car would appear to be less responsive to turns. Our
sister MQP team, which made the 3D printed RC cars, ran tests on steering servos and saw that a
servo’s torque would significantly decrease with continuous use, which could account for this

observation.
7.1.2.4: Future Work: Mitigate Degradation of Steering Performance

Since the neural network model is currently set up to set the servo to a specific level with

no controls feedback on the actual position of the steering servo (and the wheels of the car), it is

90

possible that giving the neural network more accurate information on the current steering
position would improve the self-driving performance. This could then allow scale cars with our

self-driving kit to self-drive around tracks for longer before they drive off of the track.

7.1.2.5: Future Work: Improving Self-Driving Performance

One area of future work that would likely improve self-driving performance would be to
improve the neural network models that are created by the self-driving kit. One way to do this
would be to use PyTorch®! to design a model more specific to our use case. The Donkey Car
platform currently uses the Keras library™ to create neural network models, but the PyTorch
library is more customizable, giving us more control over how the neural network models are
made and how they function. A behavioral model could also be implemented to improve neural
network performance. Currently, the neural network models try to mimic the behaviors present in
the training data, but a behavioral model rewards the neural network model based on whether it’s
behavior is deemed to be “good” (like driving in the center of the track) or “bad” (like driving off
of the track). This could potentially train the cars to stay on the track for longer, improving

self-driving performance.

7.1.2.6: Future Work: Improving Training Data

The quality and quantity of training data used to train the neural network models also
impacts the self-driving performance of the cars and could be improved upon. A simulation
could be created to collect a lot more training data. This would make it easier to collect large
amounts of training data and could be used to prepare the cars for a much wider variety of
situations, and possibly even make it such that the cars could self-drive on many different tracks.
The quality of training data could be improved by writing a program to better edit the set of
training data. This could be used to select which frames should be used in the training data set to
make sure the neural network models do not learn small mistakes that were left in the training
data set. Another use for a training data editing program could be to mark frames as “good” or

“bad”, which could be useful in making a behavioral neural network model where the cars are

91

explicitly taught what “good” behavior they should do and what “bad” behavior they shouldn’t
do.

7.1.2.7: Future Work: Testing with Multiple Cars Self-Driving

Our self-driving kit could also be improved to make it such that multiple cars could
self-drive on a track at the same time. We had done some testing with having multiple cars on the
same track and we were able to have a self-driving car stop behind a manually driven car or to
pass a manually driven car. More extensive testing could be done to determine how well our
current kit could be used to have multiple cars driving on the same track. However, one flaw that
exists with our kit is that each car would have to be trained individually with multiple cars on the
same track. This would take a lot of time as multiple people would have to drive their cars on the
track at the same time. This problem could be solved by using a simulation to create training data
as it could be easy to simulate multiple cars at the same time to create training data with multiple
cars. This could also be solved by making the neural network models more transferable between
cars using the methods previously mentioned. But, before either of these solutions are
implemented, thought needs to be put in to determine what the ideal behavior is for a self-driving
scale car if there is another car in its path. Should the car be trained to drive aggressively, and
exhibit behaviors like cutting off other cars and passing other cars, or should the car be trained to
drive defensively exhibit behaviors like stopping whenever it gets within three feet of another
car? Additionally, if a car is trained to sometimes drive around other cars and sometimes to stop
behind other cars, how does one differentiate between the two situations? If there is no
distinction between when a self-driving scale car should stop behind another car or drive around
another car, then it would be up to chance as to which action the car will make, making the
self-driving car’s behavior less predictable, which could make it harder to train the other
self-driving cars on the track. These questions and this discussion could be used to teach students
in the ME 4320 and ME 4322 courses about what decisions go into making a neural network and
a self-driving car, further improving their experience with this type of automated vehicles. One

solution to having multiple cars on the same track could be to have a track with several lanes.

92

Slower cars could be trained to stay in the right-most lanes, and faster cars could be trained to

pass these slower cars.

7.1.2.7: Future Work: Obstacles and Level 5 Autonomy

More testing could also be done on the self-driving kit to observe how the self-driving
cars react to obstacles and to understand what kind of training data is necessary to train a neural
network model that avoids obstacles. This could also be used to implement stop signs and go
signs to tell the self-driving cars when to start and stop.

Additional future work could be done to make the self-driving cars created using our
self-driving kit to qualify as Level Five Autonomous. This would mean that the self-driving cars
could operate on any track with any conditions, which for our case would mean that the car
would have to be able to drive around any track without first being trained on that specific track.
This would require a lot of training data, which, as previously mentioned, could be created using
simulations. More tests would need to be done to improve the self-driving performance on tracks

that the cars were not already trained on.

7.1.2.8: Future Work: Improving User Guide

Improving the user guide could be another area of future work. The user guide is able to
teach students how to install and how to use our self-driving kit, but additional user-experience
testing could be done to make the user guide easier to understand and reduce the amount of time
it takes to set up and use the self-driving kit. This could also be used to make the self-driving kit

more accessible to a much wider audience beyond engineering students in college.

7.2 Sensor Module

The objective involving the sensor package was to design and implement a data recording
package that could store all of the data as perceived by the sensors in a readily available file for
users to then be able to access and analyze. With the conclusion of C-Term, we were able to
come to a fully functioning sensor package that can sense and record the three different types of

data that we originally set out to record: temperature, 3D orientation, and RPM. The package,

93

through serial communication, then stores the data as recorded by the sensor package in the
on-board Raspberry Pi. The package, in combination with the developed user guide, can allow

for completed assembly in about two hours from start to finish.

7.2.1 Potential for Expansion and Future Work

This project serves as a strong jumping off point for both future project work as well as
future classroom application. With the completion of a step-by-step setup guide and multi-car
testing, the sensor package can be expanded upon in both depth and breadth. Because the sensor
package is designed with expansion in mind, future iterations could include many more sensors,
including a current sensor to be used to measure battery usage during operation, strain gauges to
measure the strain on the chassis of the car that the sensor package is connected to, and many
more. The idea of having the students work alongside mechatronic systems is to offer them the
tools and skills necessary such that they can make the improvements they want to see on their
mechatronic devices, and the interwoven relationship between the electronic and mechanical
components of a device or system.

In combination with the work performed by our sister MQP when working on the
controlled-moment gyroscope, one of the next potential project-based improvements could
involve the collaboration of the IMU in the sensor package with the CMG to create a vehicle
capable of balancing and self-righting itself independent of user interaction. By integrating both
of these devices together, the self-driving package portion of the project could also be expanded

to create a more versatile, all-terrain self-navigating vehicle.

7.2.2 Potential for Live Webpage

With the preliminary work done towards developing a real-time tracking website, the
next step in this department would be to finalize the data storage and begin working on
implementing a real time update system to the website. In its current stages, the website is
nothing more than a locally hosted webpage that can be used to display data. However, with
further work, the end goals of having all the data that is stored in the CSV file be on display in

real-time for all students to use during driving can be accomplished.

94

7.2.3 Issues and Areas for Improvement

In terms of area for improvement, more precise and complicated sensors can be installed
and used to replace the existing sensors as needs arise. The current sensors are implemented with
the premise of being simple to install and monitor, with only the basic data being returned and
stored. By using newer and more precise sensors, the project can take in and provide more data
for analysis. The code package could also potentially be compressed down onto significantly
smaller printed circuit boards, which would allow the package to decrease in size and increase its
modular application to even smaller vehicles and more universal application. More calibration
tests could be performed alongside these new sensors to ensure even stronger precision and
accuracy from data, should the current package serve insufficiently. The user manual could
always see improvements as well, where they could provide more detailed analysis, and even a
section on how to the process of adding in new sensors alongside the current instructions. This
way, it can offer insight on how to move forward should a team or user decide they want to take
what they have learned and expand on it for the purposes of their project.

With our own objectives met, and the framework for further development firmly laid in
place, the sensor package portion of the project was able to successfully demonstrate the
connection between electrical and mechanical components. In combination with the self-driving
package, the combination of the two developed code and hardware packages met nearly all of the
target objectives of the term, and even with the complications caused by the COVID-19

pandemic, left a strong foundation and framework for future progress to continue in this field.

7.3 Combined Sensor and Self-Driving Box

In order to better serve the Advanced Engineering Design course, a containment box was
designed and built to house both the self-driving and the sensor packages that the students will
use. Early iterations of the box did not include the bottom mounting holes nor the battery holder.
This was quickly revised to include these critical features. The battery holder on the back side is
specifically designed with the Anker Portable Battery listed in the parts list, but can easily be
modified in SolidWorks to accommodate most batteries. The mounting holes on the bottom of

the box are 0.17 inches in diameter, meaning they can accommodate M4 and smaller bolts, and

95

the holes width wise are 3.5” apart on center, and length wise, the holes are 3” apart on center.
These relatively simple numbers will help the students in ME4320 to create a mounting location

on their cars for our sensor and self-driving box.

7.4 Summary

In this chapter, we talked about the results of our tests on our self-driving and sensor
modules. We also discussed issues with our implementations, and areas where our work could be
expanded on by future MQP teams.

In the next chapter, we will summarize our results, and discuss the social, economic,
ethical, and environmental aspects of our project. We will also discuss how various courses at

WPI have helped us with this project.

96

8 Conclusion

In this chapter, we will summarize our results, and discuss the social, economic, ethical,
and environmental aspects of our project. We will also discuss how various courses at WPI have
helped us with this project.

In this project, our goal was to enhance the Mechatronic System Design Education at
WPI by creating a modular sensor package, a modular self-driving package, and an installation
procedure for the system for the scale cars that students build in the course. We created,
designed, implemented, and analyzed this system to ensure a successful implementation into the
Advanced Engineering Design course in the 20/21 academic year. Our package is easy to
assemble and implement making it ideal for a classroom environment. This package will allow
students in the course to make their scale cars autonomous and will familiarize students with

sensor capabilities, improving their understanding of mechatronic systems.

8.1 Social, Economic, Environmental, and Ethical Aspects of Our Project

Our project has social, economic, environmental, and ethical aspects. Our project is
ethical because we are trying to help students learn more. Additionally, we are crediting all
authors whose work we are using in this project. As for the artificial intelligence present in our
project, we are creating something that is not destructive. A lot more has to be done with our
self-driving kit in order to make it into a danger. The course this kit will be used will not teach or
encourage students to use artificial intelligence for destructive purposes. Our self driving kit will
not harm students nor pose a risk to their safety while using it: the worst case scenario is that a
self-driving scale car runs into a student, but these scale cars have very little mass, so an impact
with a self-driving car does not cause bruises.

From an environmental standpoint, our self-driving and sensor kits are reusable, reducing
environmental impact as these kits can be reused many times to teach students about mechatronic
systems. Also, our project will help students learn about mechatronic systems and how
manufacturing can be improved if there are improved sensing capabilities. This would reduce

energy waste and loss of productivity as sensors can alert people about possible issues in

97

machines. Increased energy efficiency and productivity efficiency benefit the environment by
reducing fossil fuel usage.

Lesser loss of productivity also means lesser job losses since downtime can be reduced,
helping society from an economic standpoint. Additionally, these self-driving and sensor kits
require parts that need to be bought, slightly benefiting the economy by slightly increasing GDP.
Because our kits are reusable, our project helps WPI economically as the kits only have to be
bought once before they can be reused in many courses.

From a social standpoint, students will be working in teams to implement these
self-driving packages, improving and creating social bonds between the students. Additionally,
our project exposes new engineers to self-driving and sensors concepts. Eventually, these
engineers will go into the working world where they will benefit from their experience with
self-driving cars and mechatronic systems as these systems are a growing field of engineering. In
other words, we are preparing them for the eventuality that they will have to work with

autonomous and mechatronic systems.

8.2 Reflection on Our Project

This project required us to use knowledge from many different courses that we have
taken throughout our time at WPI. We used knowledge of how to create and model parts from ES
1310 (Introduction to Computer Aided Design), to create a camera mount for the self driving
system and to create the housing for the sensor and self driving system. We used knowledge
learned in ME 4322 (Modeling and Analysis of Mechatronics Systems), ES 2503 (Intro to
Dynamic Systems), and ES 2501 (Intro to Static Systems) to do force analysis and analyze the
motion of the car to design tests for the IMU as part of the sensor kit performance verification.
When wiring the sensors for the sensor kit, we used knowledge from ME 3901 (Engineering
Experimentation) and ECE 2010 (Introduction to Electrical and Computer Engineering). When
we used python in modifying files used as part of the software of the self-driving kit, knowledge
from CS 2301 (Systems Programming for Non-Majors) and CS 1004 (Introduction to
Programming for Non-Majors) was useful as we learned Python and programming in general in

those courses. Lastly, in ECE 2049 (Embedded Computing in Engineering Design) and RBE

98

1001 (Introduction to Robotics), we gained experience programming in C and programming
embedded systems, which was useful for programming the Arduino used in the sensor kit.

We learned many new skills while working on this project. For the self-driving kit, we
had to learn about neural networks and how they worked despite the fact that none of us have
ever worked with machine learning and neural network systems. We learned that neural network
models mimic the behavior present in the training data that the neural network was trained on,
and so we also learned techniques on how to collect training data such that the neural network
would self-drive the car around the track instead of self-driving the car off of the track. Some of
these techniques, as mentioned in the Self-Driving Implementation chapter, were to only record
the car driving back onto the track such that the car would learn to drive towards the center of the
track if it ever strayed off course.

We learned new software while working on this project. The development of the
self-driving kit required us to learn about how the Donkey Car platform worked so that we could
incorporate it as part of our self-driving kit. We also had to learn how to use a computer running
the Linux operating system as the Raspberry Pi runs a modified version of linux and we had to
use terminal commands to pair the xbox one controller we used to control the car to the

Raspberry Pi.

99

9 References

[1] Center for Automotive Research. (2015). Contribution of the automotive industry to
the economies of all fifty states and the United States.

[2] Singh, S. (2015). Critical reasons for crashes investigated in the national motor
vehicle crash causation survey (No. DOT HS 812 115).

[3] Heron, M. P. (2017). Deaths: leading causes for 2015.

[4] Coalition for Future Mobility. (n.d.). Highly automated technologies, often called
self-driving cars, promise a range of potential benefits.

[5] Radhakrishnan, P. (2020). Mechatronic Systems [PowerPoint slides]. Retrieved from

https://onedrive.live.com/view.aspx?resid=166BB6671C27C8D1!8468&ithint=file%2cpp
tx&authkey=!AFOIBSO7RttUoAc

[6] Kim, P. (2017). Matlab deep learning: with machine learning, neural networks and
artificial intelligence. Apress.

[7] Donkey Car (2020). Train an autopilot. Retrieved May 11, 2020, from
https://docs.donkeycar.com/guide/train_autopilot/#collect-data.

[8] Donkey Car (2020). How to Build a Donkey. Retrieved May 11, 2020, from

https://docs.donkeycar.com/guide/build hardware/#choosing-a-car

[9] OSOYOO. (n.d.). OSOYOO Robot car kit Lesson 1: Basic Robot car. Retrieved May

11, 2020, from https://osoyoo.com/2018/12/07/new-arduino-smart-car-lessonl/

[10] Amazon. (n.d.). Developers, start your engines. Retrieved May 11, 2020, from

https://aws.amazon.com/deepracer/
[11] Donkey Car. (n.d.). Donkey® Car. Retrieved May 11, 2020, from

https://www.donkeycar.com/

[12] Tian, D. (2019). DeepPiCar-Part 1: How to Build a Deep Learning, Self Driving
Robotic Car on a Shoestring Budget. Retrieved May 11, 2020, from
https://towardsdatascience.com/deeppicar-part-1-102e03¢83f2¢

[13] Ryan Zotti: How to Build Your Own Self Driving Toy Car | PyData Dc 2016. (2016).
Retrieved May 11, 2020, from https:/www.youtube.com/watch?v=0QbbOxrR0zd A

100

[14]Cava, R. (2019). I built my own Self Driving (RC) Car! Retrieved May 11, 2020,
from https://medium.com/@rodrigocava/i-built-my-own-self-driving-rc-car-1b269fc02e6¢

[15]The Github Blog(2019). Retrieved from May 11, 2020,

https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning/

[16] Elegoo. (n.d.). ELEGOO Upgraded 37 in 1 Sensor Modules Kit V2.0. Retrieved
May 11, 2020, from

https://www.elegoo.com/product/elegoo-upgraded-37-in-1-sensor-modules-kit-v2-0/

[17] Home Science Tools. (n.d.). ElecFreaks micro:bit Tinker Kit. Retrieved May 11,
2020, from https://www.homesciencetools.com/product/elecfreaks-microbit-tinker-kit/

[18] Hiletgo. (n.d.). HiLetgo. Retrieved May 11, 2020, from

http://www.hiletgo.com/ProductDetail/2169787.html

[19] Aggarwal, C. (2018). Neural Networks and Deep Learning A Textbook (1st ed.
2018.). Retrieved May 11, 2020, from https://doi.org/10.1007/978-3-319-94463-0
[20] Pietschmann, C. (2020, April 28). Raspberry Pi 4 Vs NVIDIA Jetson Nano

Developer Kit. Retrieved May 11, 2020, from

https://buildSnines.com/raspberry-pi-4-vs-nvidia-jetson-nano-developer-kit/

[21]Raspberry Pi(2020) Buy a Raspberry Pi 3 Model B — Raspberry Pi. Accessed May

17, 2020. https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

[22] Adafruit Industries (2020) Adafruit 16-Channel 12-Bit PWM/Servo Driver - 12C

Interface. Accessed May 17, 2020. https://www.adafruit.com/product/815
[23] Anker (2020) PowerCore 11 6700. Accessed May 17, 2020.

https://www.anker.com/products/variant/powercore-11-6700/A 1220011

[24] Raspberry Pi (2020) Buy a Camera Module V2 - Raspberry Pi. Accessed May 17,

2020. https://www.raspberrypi.org/products/camera-module-v2/

[25] Xbox (2020) Xbox Wireless Controller - Black. Accessed May 17, 2020.

https://www.xbox.com/en-US/accessories/controllers/xbox-black-wireless-controller

[26] Raspberry Pi (2020) Download Raspbian for Raspberry Pi. Accessed May 17, 2020.

https://www.raspberrypi.org/downloads/raspbian/

101

[27] AnyDesk (2020) The Fast Remote Desktop Application - AnyDesk. Accessed May
17, 2020. https://anydesk.com/en
[28] Python (2020) Python 3.0 Release | Python.org. Accessed May 17, 2020.

https://www.python.org/download/releases/3.0/
[29] PyTorch (2020) Pytorch. Accessed May 18, 2020. https://pytorch.org/
[30] Keras (2020 Keras: the Python deep learning API. Accessed May 18, 2020.

https://keras.io/
[31]GFlops, G-hours, and CPU hours. (n.d.). Retrieved May 18, 2020, from

http://www.gridrepublic.org/joomla/components/com mambowiki/index.php/GFlops. G-hours,
and CPU_hours

[32] Entov, G., Mao, L., Pepicelli, C., Tai, J., White, S., Wolanin, C.: Major Qualifying

Projects, https://www.wpi.edu/academics/undergraduate/major-qualifying-project/project-search.

[33]Mlller, E. A. (2015, March). Robocart.: System Design for the First Generation
Autonomous Golf Cart. Major Qualifying Project.
https://digitalcommons.wpi.edu/mqp-all/1140/.

[34] Kimari, K. (2019, June 24). Nvidia Jetson Nano vs. Raspberry Pi. Retrieved May 18,
2020, from https://www.maketecheasier.com/nvidia-jetson-nano-vs-raspberry-pi

[35]Curbelo, M., Darnley, R., Karet, A., Madhurkar, K., McKillip, D., Schutzman, E., &
Scillitoe, C. (2019, June 15). Major Qualifying Project. Retrieved May 17, 2020, from
https://digitalcommons.wpi.edu/mgp-all/7103/

[36]LEGO Education. (n.d.). Make a Driverless Car - EV3 Real-World Vehicles - Lesson
Plans - LEGO Education. Retrieved May 18, 2020, from

https://education.lego.com/en-us/lessons/ev3-real-world-vehicles/make-a-driverless-car

102

10 Appendices

10.1 Self-Driving User Guide

Self-Driving Package User Guide

Project Team Members
Anthony Marge(ECE & ME)
Joshua Rondon(ME)

Adyvisor

Prof. Pradeep Radhakrishan(ME/RBE)

103

Introduction

This is a guide for how to set up and use the self-driving package, which is based on
Donkey Car. Donkey Car is an open-source DIY self driving platform for scale cars, and was
made by and belongs to Donkey®. We made our own guide by following the steps from

Donkey®’s website: http://docs.donkeycar.com/.

104

Table of Contents

Introduction 104
Table of Contents 105
List of Figures 106
Parts List 111
1: Hardware Setup 114
2: Software Setup 128
Quick Linux Commands 128
Raspberry Pi SetUp 129
Machine Preparation 146
Setting Up Joystick Xbox One 150
Calibrating Car 153
Driving Car 154
Collecting Training Data 156
Installing Software for Training Car on Host Computer 157
Training Al: 159

105

List of Figures

between the Raspberry Pi and the Servo

Driver

Figures Page Numbers
Figure 1. Raspberry Pi 114
Figure 2. Serve Driver PCA 9685 114
Figure 3. Anker External Battery Power Bank | 115
Figure 4. Micro USB Cable 115
Figure 5. Raspberry Pi Camera Module 115
Figure 6. Raspi Camera Extension Cables 116
Figure 7. Example Camera Mount that can be | 117
purchased at DonkeyCar.com

Figure 8. CAD Model of Predesigned Camera | 117
Mount. It can be downloaded at this

GrabCAD. Feel free to make alterations to

match your needs.

Figure 9. Example of Raspberry Pi on Car 118
Figure 10. Pinout of Raspberry Pi 3 B+ 119
Figure 11. Servo Driver PCA 9685 Pin 119
Highlighted

Figure 12.Example of finished Connection 120

106

Figure 13. 2nd Example of the connection 121
between the Raspberry Pi and the Servo

Driver

Figure 14 Figure 14. The User Design’s ESC | 122
will go in Pin 0 and the Servo will go in Pin 2.
Figure 15. Example of Raspberry Pi and 122
Servo Driver on Car

Figure 16. Example camera in camera mount | 123
Figure 17. How to connect camera wire to 124
camera. For further assistance you can use

this video as a reference.

Figurel8: Camera wire connected to 125
Raspberry Pi

Figure 19: Example of Battery on Car 125
Figure 20. The object in the red box is where | 126
the User connects their Micro USB cable.

Figure 21. Example of Battery connected to 127
Raspberry Pi

Figure 22. Completed Self-Driving Package 127

107

Figure 23. Above image of an microSD card
to SD card adapter. This is all that is
necessary if your computer has an SD card

slot

130

Figure 24. Example of an SD to USB adapter
which is needed if your computer does not
have an SD card slot. For this specific adapter
you can insert the microSD(or the microSD
in the adapter from Figure 23) into the side of
this adapter. And then plug the usb directly

into the USB port into your computer.

130

Figure 25. Example of finding Windows

selection on SDCard.org

131

Figure 26. Example of selecting Accept after

Window’s selection

131

Figure 27. Example of Zip Folder

131

Figure 28. Example of Files downloaded onto

Personal Computer

132

Figure 29. This is an example of the SD
adapter that is present on the computer used

for creating this manual

133

Figure 30. SD Card Formatter

133

Figure 31. Example of balenaEtcher
Operating System

134

108

Figure 32. Example of balenaEtcher buring 135
the Raspbian operating system onto SD card

Figure 33. Raspberry P1i initial set-up using 136
HDMI to VGA connector, monitor, mouse,
keyboard, and Raspberry Pi.

Figure 34. microUSB with wall power supply | 137
Figure 35. Example of Raspberry Pi settings 138
Figure 36. Raspberry Pi Password Set-Up 139
Figure 37. AnyDesk Logo 140
Figure 38. Anydesk navigating to Settings. 140
Also note the 525 183 812 number in the

window. That number will be different in your
window. Make sure to note that number

because it is part of the process that allows the

User to have remote access to the Raspberry

Pi.

Figure 40. AnyDesk on Window 141
Figure 41. Terminal Icon 142
Figure 42. Example of finding wireless ip 143
address

Figure 43: Raspberry Pi Config GUI 143

109

Figure 44: Example of a device’s System 144
specifications

Figure 45. Accessing Raspberry Pi terminal 145
through PuTTY

Figure 46. Windows Remote Desktop 146
Figure 47. Sudo apt-get upgrade and update 147
Figure 48. Sudo raspi config screen 148
Figure 49. Activating and deactivating virtual | 149
environment

Figure 50. Terminal exiting virtual 151
environment

Figure 50.2: MAC Address Example 152
Figure 51: Snapshot of DonkeyCar web 155
application that shows the camera at a ground

view

Figure 52: Example of controller indication 156
running on DonkeyCar.

Figure 53: Example of the usage of some 158

basic windows terminal commands

110

Parts List

Part Specifications

Possible Purchase Location

Cost Estimate

User Designed RC Car

Cost Varies depending on

User Design

Anker External Battery
Power Bank w/ Micro USB
Cable

Amazon

$20

Raspberry Pi 3b+

Amazon

$40

MicroSD Card
*Note - Most SD cards will work

but the one link is recommended by

Donkey®

Amazon

$20

Raspberry Pi Camera Module

Amazon

$27.00

Raspi Camera Extension

Cables

*Note - This is optional, however,

we suggest getting it because it
allows the User to not be limited by
the length of the camera cable that

the RasPi comes with

Amazon

$9.99

Female to Female Jumper

Cables

Amazon

$7.00

Servo Driver PCA 9685

Amazon

$9.99

111

Fasteners

This depends on the User
design when assembling the
components we used duct
tape as an adhesive to quickly

assemble

Xbox Wireless Bluetooth

Controller for Training

Amazon

$74.95

Logitech Gamepad F710

*Note - This is just another option

for a controller that can be used to

train the car on the Self-Driving.

Amazon

$39.00

USB Keyboard

Amazon

Any Keyboard will work

$18.99

HDMI to VGA Connector

*Note - The Raspberry Pi has an
HDMI port. The VGA connector is
Jor the monitor we used. If the User
has a monitor w/ a different port
that they should get a cable that is
HDMI to the port on their own

monitor.

Amazon

$11.59

Monitor
*Note - Any monitor that allows

connectivity through a cable will

work

Amazon

$172.86

Mouse

Amazon

$6.99

112

*Note - Any mouse will do

SD Card Reader Amazon $6.99
*Note - This is not need if your
computer has an SD card reader

Amazon $6.99

USB wall power supply

113

1: Hardware Setup

Figure 1. Raspberry Pi

2C Address

ALAT & E =
(éiﬂlﬂ/tlml) SCL d
EBEREES

"R 91911 1R2IIAE . o

Figure 2. Serve Driver PCA 9685

114

Figure 4. Micro USB Cable

Figure 5. Raspberry Pi Camera Module

115

Figure 6. Raspi Camera Extension Cables

Instructions:

1. Build your car

a. It should have space for a camera mount between the front wheels angled
downwards from the front plane at a 30°. The camera mount criteria varias per
User Design; users should consider that the camera has enough height from the

ground so that it can clearly see the desired track. It shou And a camera mount is

shown below.

116

Camera Mount

Y 2;‘

Figure 7. Example Camera Mount that can be purchased at DonkeyCar.com

Figure 8. CAD Model of Predesigned Camera Mount. It can be downloaded at this GrabCAD.

Feel free to make alterations to match your needs.

b. It should also have a place to attach the Raspberry Pi, Servo Driver, and Power
bank.

2. Attach raspberry pi to car

117

Figure 9. Example of Raspberry Pi on Car

. Attaching Raspi to Servo-Shield

a. Don’t be overwhelmed by Figure 10. just use it as a reference for attaching the
Servo shield to the Raspberry Pi. The most important aspect of Figure 10 is that it
shows you the orientation of the Raspberry Pi with the GPIO(General Purpose
Input/ Output) Diagram next to it. The GPIO diagram shows all the Raspberry Pi
pins numbered. Use Figure 11. For the next step of attaching the pins to one

another.

118

GPIO Pinout Diagram

21 28

] n -
: i 3
s 8
4 Squarely Placed 40 GPIO SMSC LAN9S514 USB
Mounting Holes Headers Ethernet Controller

Run Header Used
to Reset the PI

""" 2x2 USB-A
Ports to PC

Broadcom BCM2833

MicroSD Card Slot
(Undemeath)

DSI Display Connector

Switching Regulater for
Less Power Consumption

3.5mm Audio and
Composite Qutput Jack

5V Micro USB HDMI Out Port
Power

CS1 Camera
Connector

Figure 10. Pinout of Raspberry Pi 3 B+

.__POMER +
‘_"lu .

-

F'Cﬁ8695 -
16 x 12=bi1t PHM

Figure 11. Servo Driver PCA 9685 Pin Highlighted

119

b. This is connecting the GPIO Pins to the Servo Driver. The VCC, SDA, SDL, and
GND pins are highlighted in the Figure 11 diagram. Example end products can be
seen in Figures 12 and Figure 13. Use Female Connectors for the followings
steps:

1. Pin 1 to Pin Vce on Servo Driver

ii. Pin 3 to Pin SDA on Servo Shield
iii. Pin 5 to Pin SCL on Servo Shield
iv. Pin 9 to Pin GND on Servo Shield

Figure 12. Example of finished Connection between the Raspberry Pi and the Servo Driver

120

- Ea3iE

'3
i
=

Figure 13. 2nd Example of the connection between the Raspberry Pi and the Servo Driver

c. Connecting Servo and ESC to Servo Shield as shown in Figure 14 an example of

the Raspberry Pi and Servo Driver on the Car is shown below.

121

ESC

A
PCASs&85 ;
16 % 12=-bit PWM

Servo

Figure 14. The User Design’s ESC will go in Pin 0 and the Servo will go in Pin

Figure 15. Example of Raspberry Pi and Servo Driver on Car

4. Attach Camera to car

122

a. First, put the camera in the camera mount as seen in Figure 16. The tolerancing

may be tight; users should feel free to make the needed alterations.

Figure 16. Example camera in camera mount
b. Then, connect the camera wire to the camera. The following figures show how to
attach the wire to the camera. The leads on the wire should line up with the leads

on the connector.

1) Cable wire lead

123

2) Back of Cable Wire

“ -
3)Open Camera Module without Cable

4) Go to CSI Camera Connector, if you have trouble finding it go to Figure 10 it will show you
the location. Same as the prior photos match the cable lead with the connector lead. A good rule
of thumb is that the shine side of the cable and connector should match up.

Figure 17. How to connect camera wire to camera. For further assistance you can use this

video as a reference.

124

c. Then, connect the camera wire to the Raspberry Pi. Figure 17, gives information

about connection cable leads to Raspberry Pi. A finished attachment is shown in

Figure 18.
p—

Figure 18: Camera wire connected to Raspberry Pi

5. Then, put the battery on the car.

125

Figure 19: Example of Battery on Car
a. Figure 20. shows how to connect the raspberry pi to the battery for when you
want to turn on the raspberry

4 Squarely Placed 40 GPIO SMSC LANS314 USE
Mounting Holes Headers Ethernet Controller

Run Meader Used

to Resat the Pl
252 USB-A
Ports to PC

Broadcom BCM2B833

MicroSD Card Slot
(Undemeath)

D51 Display Connactor

Switching Regulator for
Less Power Consumption

3.5mm Audio and
Composite Dutput Jack

5V Micro USB
Power

CS1 Camera
Connector

Figure 20. The object in the red box is where the User connects their Micro

USB cable.

126

Figure 21. Example of Battery connected to Raspberry Pi
6. The below images are examples of the Self-Driving Package completely set up on a User

Designed RC car

Figure 22. Completed Self-Driving Package

127

2: Software Setup

The software set up instructions are done on a Windows operating for the User’s personal

computer and Linux instructions for the Raspberry Pi. The Linux instructions on the

Raspberry Pi is because Raspbian, the operating system that is run on the Raspberry, uses a

Linux operating system. Windows is for the User’s personal computer; because that was the

operating we were using when we were developing the User Guide. If the Users wants to explore

using a different operating system they can look into it at http://docs.donkeycar.com/.

Some notes for this section is that when Host Machine is mentioned it is referencing your

personal computer.

Below are Quick Linux commands for novices that want to have a better understanding of the

commands they are entering into both their personal computers and Raspberry Pi.

Quick Linux Commands

Is

Allows User to see files that are in directory

ifconfig

Allows User to see ip-address

cd(FileName or FileName\FileName?2)

Allows you to change directories and cd typed

by itself brings the User back to the root

directory
cd.. Allows the User to go up one directory
mkdir(FileName) Allows the User to make a file in the directory

that the User is currently in.

sudo poweroff

This command shuts off the pi

128

sudo reboot This commands reboots the pi

Nano (.txt, .py, etc.) Allows the User to open a file in the terminal

and see its contents

Raspberry Pi SetUp

1. First, we want to set up the micro SD card that will be put in the Raspberry Pi. To do this,
first insert the microSD card into the SD card reader on your computer. If your computer
only takes full size SD cards, then first put the microSD card into the microSD card to SD
card adapter and then insert it into the SD card reader. If you have an external SD card

reader, connect it to your computer using a USB port. Look to Figure 23.

129

Figure 23. Above image of an microSD card to SD card adapter. This is all that is necessary if

your computer has an SD card slot

Figure 24. Example of an SD to USB adapter which is needed if your computer does not have

an SD card slot. For this specific adapter you can insert the microSD(or the microSD in the

130

adapter from Figure 23) into the side of this adapter. And then plug the usb directly into the

USB port into your computer.

Format SD card
2. Click the link below and continue to follow the instructions in this manual.

https://www.sdcard.org/downloads/formatter/

3. Scroll down to the very bottom of the website page and click for Windows, as shown in

Figure 25.

e

SD Memory Card Formatter Download for Windows/Mac

Developed by Tuxera

llear'e Manunal Aaf CN Mamanrs MCard Earmatéar far WMlindaAuae IMas

Figure 25. Example of finding Windows selection on SDCard.org

4. Then scroll down to the bottom of the page and select accept, as shown in Figure 26.

YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE READ THIS AGREEMENT AND
INTEND TO BE BOUND AS IF YOU HAD SIGNED THIS AGREEMENT IN WRITING. IF YOU
ARE ACTING ON BEHALF OF AN ENTITY, YOU WARRANT THAT YOU HAVE THE
AUTHORITY TO ENTER INTO THIS AGREEMENT ON BEHALF OF SUCH ENTITY AND
BIND SUCH ENTITY TO THE TERMS OF THIS AGREEMENT.

Figure 26. Example of selecting Accept after Window’s selection

5. You should have a zip file like the one in Figure 27.

SDCardFormatterv...zip

131

Figure 27. Example of Zip Folder

6. Extract the files that were downloaded from the SD Memory Card Formatter to a

location on your computer and run the set up.

v T » ThisPC » Blade S5D (C:) » Users > jeron » Downloads » SDCardFormattervs_ WinEM » SDCardFormattervd_WinEN

~

sness_spanish ™ Name Type Compressed size Password p.. Size
I_link = e e

[®5 SD Card Formatter 5.0.1 Setup Application 8171 KB Mo
| submission

Figure 28. Example of Files downloaded onto Personal Computer

7. Now run the SD card formatter app on your computer

8. Select the drop down arrow and choose the drive that you would like for formatting
*** Note that many times the correct drive will be chosen automatically. However to be sure

that you are selecting the correct drive click File Explorer< This PC, and it’ll you’ll be able to

figure out what drive it is. ***

132

T
L1}

i . Blade SSD (C2)
w Local Disk (D)
. USE Drive (E)

we USE Drive (E2)

Figure 29. This is an example of the SD adapter that is present on the computer

used for creating this manual

9. Knowing the drive name and with an empty SD card inserted into your computer, and

Quick format selected you should have an image like Figure 30. below.

B 5D Card Formatter x b
File Help
Select card]
E:\ v
Refresh

Card information

Type SDXC s-‘
Capacity 119,08 GB
Formatting options

(®) Quick format

() Overwrite format

CHS format size adjustment

Volume |abel

Format
5D Logo, SDHC Logo and SDXC Logo are trademarks of SD-3C, LLC.

Figure 30. SD Card Formatter

10. Now press format; and you have a SD card that is ready for the Raspberry Pi operating

system, Raspbian.

133

11. Keep SD card plugged into the computer

12. Installing Raspbian operating system images onto SD card

13. Click the the following link, https://www.raspberrypi.org/downloads/raspbian/

14. Download the zip file of the latest version of Raspbian Buster with desktop and
Recommended software onto your host computer. This file is the Raspbian Operating
with a Graphic user interface with some pre-installed software packages that you may
find useful later; depending on what else you want to do with the Raspberry Pi.

15. Run balenaEtcher SetUp - click the following link,https://www.balena.io/etcher/. You may

get a warning just press continue. This software is what we will use to burn the Raspbian
operating system.
16. When you arrive at the site. Click download for Windows, since you should have been on

your personal computer for all the steps leading up to this one.
Run the Set-Up for balenaEtcher
17. Run balenaEtcher and put the zip file into the Select Image
18. Select the SD drive that you are going to burn the Raspbian operating system onto.

19. Once the previous 17 and 18 have been completed you should have an image similar to

Figure 31.

Q‘i balenaEtcher

O — A

2019-09-2...fullimg Generic- ...SB Device

134

Figure 31. Example of balenaEtcher Operating System

20. Select Flash; you may get a warning. Make sure you select the correct drive letter when
formatting. Many times, it will automatically select; but just make sure to check. It
should take no more than 5 minutes to burn the operating system on the SD.

21. Once you get a completed message, your SD card is ready for going onto the raspi. If it
has not already, go to your PC and eject the drive that you have burned the operating
system onto. An example of balenaEtcher burning the Raspbian operating system onto

your SD card is shown in Figure 32.

Etcher — 96% Validating — X
.” balenaEtcher

2019-09...ull.img

| Generic... Device

,

96% Validating [x)

Bring your old speakers back to life!

Figure 32. Example of balenaEtcher buring the Raspbian operating system onto SD card

22. Setting Up SD card onto Raspberry Pi, please read the note that is emphasized below
23. Once the SD card has been set up do not worry about ejecting the SD card

***Note: Do not remove the SD card from the Raspberry Pi while it is turned on. Only remove

the SD card once the Raspberry Pi has been properly shutdown***

24. For setting up the Raspberry Pi the first time you need a set up as shown in Figure 33.

135

Monitor

HDMI to VGA

connector

Figure 33. Raspberry Pi initial set-up using HDMI to VGA connector, monitor, mouse,

keyboard, and Raspberry Pi.

Raspberry
Pi

Mouse

Keyboard

25. Once you have the set up in Figure 33, power the Raspberry Pi with the microUSB

power supply as shown in Figure 34.

136

Figure 34. microUSB with wall power supply

26. While the Raspberry Pi is booting you will see berrys show up on the screen and then you
will be brought to a welcome screen that looks like the image in Figure 34, once you see

it press next.

8 @ B Brecomenrosme

137

Figure 34. Raspberry Pi welcome screen

27. Enter in your settings it should match the screen below in Figure 35, once you finish the

set up press next

Figure 35. Example of Raspberry Pi settings

28. Now you can change the password to whatever you want but remember to not forget it!

Once you have shown click next. An example is shown in Figure 36 below.

138

Figure 36. Raspberry Pi Password Set-Up

29. If there are no black borders click next, if there are black borders check the box in the
monitor

30. Select the WPI-Open wifi network

31. Skip Update software

32. At Setup complete restart the Raspberry Pi.

33. Wifi Set-Up. WPI changes the set-up procedures periodically google “WPI its raspi wifi”

and follow the instructions that are shown on that webpage.

AnyDesk SetUp
34. Downloading AnyDesk to remote desktop to the pi
35. Download AnyDesk to your personal computer in the following link,
https://anydesk.com/en?gclid=Cj0KCQiApt xBRDXARISAAMUMu-WTENQjUIU76rB

VOwJ8H4Gonzfc7vhfzZN xLIXvD3IN8v_Y3aM29QaAsGOEALw_wcB&path=en%2F
36. Download Anydesk to your Raspberry Pi at the following link

https://anydesk.com/en/downloads/raspberry-pi

37. Once any desk is downloaded onto the Raspberry Pi make sure to reboot the Raspberry
Pi.

139

38. Click the Anydesk symbol that should be in the upper right hand corner of your monitor
for the Raspberry Pi, the AnyDesk symbol is shown in Figure 37.

Figure 37. AnyDesk Logo

39. You should be brought to an image as shown in Figure 38. Click the upper right hand

corner of the window that has three lines and select settings.

Sett

B Addr

- 3 Session Recordings

Thi j
s Desk e

@ About AnyDesk

X Exit

Youir Desk can be accessed with this address. Ar

More information @

Remote Desk

Figure 38. Anydesk navigating to Settings. Also note the 525 183 812 number in the window.
That number will be different in your window. Make sure to note that number because it is

part of the process that allows the User to have remote access to the Raspberry Pi.

40. Once in settings select Security

140

41. You should be in AnyDesk settings in the Security section . There under Interactive
Access make sure Allow always is selected.

42. Next make sure both Enable unattended access and Allow other computers to save login
information for this computer are checked under Unattended Access. You may be asked
to re-enter your Raspberry Password during this step. When you select Unattended
Access you will be told to make a password; make sure to remember this password
because it will allow computers to remote access your computer.

43. Scroll to the bottom of the page and make sure the Standard Permissions of Remote
Users is selected as in Figure 39. Once this is complete, AnyDesk on Raspberry Pi

should be set up on your computer.

Security

9 Draw on computer's screen

Discovery

1 Search local network for other AnyDesk clients
1 Exclude this device from discovery

=

Figure 39. Standard Permissions of Remote User

44. Now that AnyDesk is set up on your Raspberry Pi you can now access it from your
personal computer.
45. On your personal computer open AnyDesk wherever you have it stored. Then enter in the

number ,that is referenced in Figure 38 to take a note of, into the Remote Desk box as

141

shown in Figure 39. Then press connect. It will ask you for a password in order to access

the Raspberry. This will be the one you created in step 42.

- x

9 B2

AnyDesk Status

Your AnyDesk version is
up-to-date.

Figure 40. AnyDesk on Windows

Putty SetUp on Raspberry Pi

The following steps you can do directly plugged into the Pi or on your personal computer

through remote access by AnyDesk. Putty is good if you only use the terminal. Anydesk is good

if you want to use the graphic User Interface.

1. Select the terminal icon, which is shown in Figure 40.

142

[

Figure 41. Terminal Icon

2. Type ifconfig into the terminal

3. Check your wireless connection address which can be found in wlan0 next to inet address

and seen in Figure 41.

[T
apr

File Edit T

30.215.11.96

[AnyDesk] Bllvi@rasp.. g

bs

ER

Figure 42. Example of finding wireless ip address

4. Take note of that wireless ip address

5. Now type sudo raspi-config into the terminal, and you should get a pop up like the one

shown in Figure 42.

m—)

e T

1 Change User Password
2 Hostname

3 Boot Options

4 Localisation Options
5 Interfacing Options
6 Overclock

7 Advanced Options

8 Update

9 About raspi-config

<Select>

' Raspberry Pi Software Configuration Tool (raspi-config) F———

Change password for the default u
Set the visible name for this Pi
Configure options for start-up
Set up language and regional sett
Configure connections to peripher
Configure overclocking for your P
Configure advanced settings
Update this tool to the latest ve
Information about this configurat

<Finish>

143

Figure 43: Raspberry Pi Config GUI

6. Select Interfacing options and enable SSH

7. Now once it is enabled hit finish

8. Go to the following website website below,
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

9. And download the latest version of putty that fits your personal computer. You can find
this by right clicking the windows icon and then selecting system. An example of this a

pop-up you could see is shown in

Device specifications

Blade

Device name LAPTOP-4M3VBVOO

Processor Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz 2.20
GHz

Installed RAM 16.0 GB

Device ID E1946ECE-EC17-4958-9D5A-1D7FDOFE20D4

Product ID 00325-80000-00000-AA0EM

System type 64-bit operating system, x64-based processor
Pen and touch No pen or touch input is available for this display
Rename this PC

Figure 44: Example of a device’s System specifications

10. Once putty is downloaded you just enter in the Raspberry’s IP address as shown in

Figure 44 , and then press open.

144

ﬁ PuTTY Configuration ?
Category:
[=-Session Basic options for your PuTTY session
I ~Logging Specify the destination you want to connect to
= Terminal
Keyboard Host Name (or IP address) Port
f - Bell [13021511.99 | [22
.;E"W-‘-n:e:‘:lres Connection type:
1 R P — ORaw OTelnst ORlogin @8SH () Serial
-~ Behaviour Load. save or delete a stored session
- Translation :
o E}- Selection Saved Sessions
- Colours | |
! | & Connection
| | Default Settings
- Data s1 9 Load
- Proxy
- Telnet Save
- Rlogin Delete
E-SSH
Senal
Close window on exit
(O Aways () Never (®) Only on clean exit

Figure 45. Accessing Raspberry Pi terminal through PuTTY

11. When you press Open, and the connection goes through, you will be asked for the
Username and Password you created for the Raspberry Pi. When you start typing and you

do not see anything showing do not be alarmed. Keep typing, it is just a privacy feature.

Windows remote Desktop

1. Go to the terminal of your Raspberry Pi and type in the following commands:

sudo apt-get install tightvncserver

sudo apt-get install xrdp

2. Once those commands are typed you can now remote Access to the Raspberry Pi

through the Windows remote desktop. This is shown in Figure 46.

145

.r_ Remote Desktop Connection = x

L, Remote Desktop
“»¢ Connection

Computer. | ENPAEREIED v

Username None specified

ou will be asked for credentials when you connect.

* Show Options Help

Figure 46. Windows Remote Desktop

Machine Preparation

The purpose for setting up all that remote desktop software in the previous sections is so that you
have options as to how you interface with the Raspberry Pi. In our experience with dealing with
issues connecting to the WPI wifi we found that Anydesk worked best in initially connecting to
the Pi to get the ip address, and for transferring files from our personal computer to the Pi and
vice versa. Putty is good if you are only interested in inputting terminal commands. Windows

Remote Desktop allows you to have a bigger GUI than is offered by Anydesk.

The following instructions you can follow using any of the remote desktop software that we have

set up in the manual.

1. Update and upgrade the Pi by entering the following commands into the terminal. If
prompted, reboot the RasPi. An example of entering these commands is shown in Figure
47.
sudo apt-get update
sudo apt-get upgrade

146

g? pi@raspberrypi: ~ = O X

Figure 47. Sudo apt-get upgrade and update

2. Type sudo raspi-config in the terminal and you will be brought to the screen in Figure

48.

147

22 pi@raspberrypi; ~ — [m] x

Raspberry Pi Software Configuration Tool (raspi-confiq)

Network Options Configure network settings

2

3 Boot Options Configure options for start-up

4 Localisation Options Set up language and regional settings to match your
5 Interfacing Options Configure connections to peripherals

€& overclock Configure overclocking for your Pi

7 Advanced Options Configure advanced settings

g Update Update this tool to the latest wersion

9 Bbout raspi-config Information about this configuration teool

<Select> <Finish>

Figure 48. Sudo raspi config screen
3. Use the arrows to navigate
Use the up and down arrow to navigate to 5, Interfacing Options.
Once you select Interfacing Options use the left arrow and right arrow and select Finish to enter
into Interfacing options.
Using the navigation above, enable:
a. Interfacing Options - 12C
b. Interfacing Options - Camera
c. Advanced Options - Expand Filesystem (use the whole sd-card storage). Once
you have these parts enabled, reboot
4. Install dependencies
Copy and paste the text below into you terminal; once you have copied the text just right click in

the terminal to paste the text then press enter

sudo apt-get install build-essential python3 python3-dev
python3-pip python3-virtualenv python3-numpy
python3-picamera python3-pandas python3-rpi.gpio i2c-tools
avahi-utils joystick libopenjp2-7-dev libtiff5-dev gfortran
libatlas-base-dev libopenblas-dev libhdf5-serial-dev git
ntp

5. Install OpenCV dependencies

sudo apt-get install libilmbase-dev libopenexr-dev

libgstreamerl.O-dev libjasper-dev libwebp-dev libatlas-base-dev

148

libavcodec-dev libavformat-dev libswscale-dev libgtguié
libgtd-test
6. SetUp Virtual Env

Copy and paste into terminal

python3 -m virtualenv -p python3 env --system-site-packages
echo "source env/bin/activate" >> ~/.bashrc

source ~/.bashrc
7. Install Donkeycar Python Code

mkdir projects

cd projects

git clone https://github.com/autorope/donkeycar
cd donkeycar

git checkout master

pip install -e .|[pi]

pip install tensorflow==1.13.1

You should be in the coding environment right now, but to activate coding environment type
source ~/.bashrc when you are in the root directory. To make sure you are there type cd and
when you want to exit that environment type deactivate all of this take place in the terminal as

shown in Figure 49.

Figure 49. Activating and deactivating virtual environment

8. In the environment type the following command and press enter after every line
mkdir projects
cd projects
9. Download the latest donkey car code from Github; after every line press enter
After entering the code below you can check tensor flow by typing python -c¢ “import

tensorflow”

git clone https://github.com/autorope/donkeycar

149

cd donkeycar
git checkout master
pip install -e .[pi]

pip install tensorflow==1.13.1

10. Install OpeCV
sudo apt install python3-opencv
If that fails try:
pip install opencv-python

11. Create Donkeycar application

Copy code below and paste it into terminal:
donkey createcar --path ~/mycar

12. Configure Options

Copy and paste the code below into the terminal:

cd ~/mycar
nano myconfig.py

The myconfig.py file is the file used to be able to edit the default values such as steering PWM

values. This will come in handy in the calibration section of this module.

Setting Up Joystick Xbox One
Establishing a connection can take anywhere from 2 - 30 minutes; do not be discouraged just

keep troubleshooting if your connection is not being established.

For the Logitech Gamepad F710 just plug in the dongle into the Raspberry Pi, and you should

be able to start driving without following these steps.

The following instructions are for a Xbox controller.
1. You should use one of the remote desktop top software with a GUI for this step. Navigate

to your file system on the Raspberry Pi. Go to myconfig.py and find

150

CONTROLLER_TYPE. There will be a list of string identifiers after that line of code;
make sure to leave those commented out meaning keep a # in front of them. The string
identified will have a list of controllers, but in your case you are either selecting ‘Xbox’
or ‘F710°. Type the string that represents the controller you selected after
CONTROLLER_TYPE. Make sure to include the ** for whatever item you selected. The
before CONTROLLER TYPE should be removed. Finally save your changes and exit.
Reboot the Pi. Below is this step broken down into smaller chunks.
a. Open the “myconfig.py” file in /home/pi/mycar
b. Find the line that starts with “#4 CONTROLLER_TYPE="ps3’” (should be line
120)
c. Replace ‘ps3’ with ‘xbox’ and get rid of the # symbol at the beginning of the line.
Make sure there is no space in front of
i. CONTROLLER TYPE=’xbox’
d. Save the file, and reboot the pi
2. A linux driver for Xbox Wireless Controller should come pre-installed on Raspbian
3. Ifyou’re in the environment(“(env)” is at the beginning of the terminal), then type

“deactivate” and then hit enter

Exiting the environment

Figure 50. Terminal exiting virtual environment

4. Type “cd” and hit enter
5. sudo nano /etc/modprobe.d/xbox_bt.conf

6. In the nano file paste:

options bluetooth disable ertm=I

151

7. The press ctrl + x and then y and then enter

8. Then reboot the pi

9. Check that disable ertm is set to true by pasting this into the root terminal
a. First, deactivate the environment

b. Then, Paste this command if it returns “Y’ then you did it correctly
cat /sys/module/bluetooth/parameters/disable ertm
10. Now type the following command into the terminal
sudo bluetoothctl

11. Then type in the following commands
a. Agent On
b. default-agent
c. Scan on
12. Turn on the Xbox one controller and Press the sync button on the front of the controller
Pictures

13. Should see a MAC address similar to the one below
[NEW] Device B8:27:EB:A4:59:88 XBox One Wireless Contreller

Figure 50.2: MAC Address Example

a. Once you see the xbox one wireless controller pop up, type “scan off” to stop the

pi from scanning for more addresses

14. Type “connect YOUR_MAC_ADDRESS”

15. The big X button (the home button) on the controller should be solid white
16. Enter in the command “trust YOUR_MAC_ADDRESS”

17. Then type quit

18. Joystick is connected!

152

Calibrating Car

1. Make sure the car is turned on not just the raspi, also make sure the car wheels have no
contact with the surface so that the car does not drive off during calibration
2. At the root of the path you can edit car values one you enter the command
Nano ~/mycar/myconfig.py
3. Steering Calibration:
a. Find the servo cable on your car and see what channel it's plugged into on the
arduino shield
b. Enter the command
Donkey calibrate --channel <your_steering_channel> --bus=1 (your steering
channel which is either 1 or 0)
c. Enter 360 and you should see the wheels on the car move slightly
d. Enter values +/- 10 for your starting value to find the PWM settings that mak your
car turn all the way left and all the way right. Take not of those values
e. Enter the myconfig.py file and enter in the values to the
STEERING_RIGHT PWM and STEERING LEFT PWM

1. Make sure to uncomment these lines of code

Also, if you try to drive your car, and the steering is reversed, set the Joystick Steering Scale to

be negative in the myconfig.py file

Throttle Calibration
1. Repeat the same a -b excepted us the channel that you did not use last
time(so if you used 0 go to 1 or vice versa)
2. Enter 370 when prompted for a PWM value; you should hear the ESC

beep indicating that it’s calibrated

153

3. Enter 400 and you should see the car’s wheel move forward; if not its
likely in reverse so enter 330 instead

4. Keep trying different values until you have found a reasonable max speed
for the car

5. Once you have your values open myconfig.py and enter the PWM values
for the car into the throttle controller part:

THROTTLE FORWARD P = PWM value for full throttle forward

THROTTLE sTopPED P = PWM value for zero throttle

THROTTLE REVERSE Pwv = PWM value at full reverse throttle

Driving Car

1. Navigate to the mycar directory
2. Enter this command into the terminal command 1 is if you want to drive without a
joystick and command 2 if you want to drive with a joystick
1.Python manage.py drive
2.python manage.py drive --j§
a. Note: Make sure you turn on the car’s esc after entering this command
3. Driving without the Joystick:
a. Enter ip address of your car:8887 into a web browser. If should bring you into a

window like the image below

154

Control Mode [Max Throttle Throttle Mode

Joystick Garnepad Devlcem Select Max Throttle v = User

Angle &
Throttle

-

Mode & Pilot

User(d) v Click/touch to use joystic.

Start Vehicle

Figure 51: Snapshot of DonkeyCar web application that shows the camera at a ground

view

b. In modes you can switch between different ways of driving whether you want the
user to drive the whole car, or the car does all the steering, or you want to drive
from the computer. If you want to drive from the computer you can use the
joystick pad or used the following keyboard shortcuts

1. space : stop car and stop recording
1. r:toggle recording
iii. 1:increase throttle
iv. k: decrease throttle
v. j:turn left
vi. 1:turn right

4. Driving with the joystick:

a. Turn on your joystick(Xbox 1 controller) and you should be able to start driving

b. The controls should be listed in the terminal

155

Figure 52: Example of controller indication running on DonkeyCar.

1. Set_throttle is for the throttle
ii. Set steering is for steering
iii. erase_last N_records is for getting rid of some of the training records that
you just took - say you drive off of the track, press this button so the car
doesn’t save that as part of your training data

Note: DonkeyCar automatically collects training data when the throttle is not 0

Collecting Training Data

Tips
I. 10-20 laps
2. Divide training data into 4 different styles
2.1. Accuracy not worried about speed roughly 10% of data - 2 laps
2.2. Small oscillations around the center so that the car can see other parts of the track
and learn to correct itself - 2-3 laps
2.3. Balance back and forth between the extremes of the lanes, don’t overcorrect, stay

on one side, and then go to the other - 2-3 laps

156

2.4. Drive normally, so the model learns to drive faster - 4 laps

3. Try to get 5k to 10k records

3.1. Note: Donkey car takes a photo about every 3- 5 seconds when driving

4. When driving if you crash or run off the course tap Y on the joystick and the last 5

seconds of records will be erased. During the drive the data is saved to a data folder(the

most recent tub folder)

5. Goto Training Al if you are ready to start training the Donkey Car.

Installing Software for Training Car on Host Computer

Basic Windows Terminal Commands:

cd (FolderName) Changes to the folder that you desire to go to
in the desired directory(file path).

cd.. This allows you to back one level in your
directory.

mkdir This makes a new folder in the directory that
you are currently working in.

dir This command lists the files that are in the

current folder that you are in.

157

Figure 53: Example of the usage of some basic windows terminal commands

Install miniconda Python 3.7; choose the installer that matches your machine. For
example, if your computer has a Windows computer with 64-bit operating system then
you would choose Miniconda3 Windows 64-bit.

o https://docs.conda.io/en/latest/miniconda.html
Once downloaded open the Anaconda Prompt via Start Menu
Type git in the prompt, if the command is not found then install git

o https://git-scm.com/download/win

In the anaconda terminal type
o mkdir projects
o cd projects
Get the latest donkey from Github by typing

git clone https://github.com/autorope/donkeycar

cd donkeycar

158

git checkout master

o If this is not your first install type:

conda update -n base -c defaults conda

conda env remove -n donkey

6. Create the python anaconda environment:
conda env create -f install\envs\windows.yml
conda activate donkey
pip install -e .[pc]
7. create your local working directory
donkey createcar --path ~/mycar
8. Your Host Computer should be all set!
Training Al:
1. Once you have finished recording data go hit crtl+C in the donkey car terminal to get it to
shut off
2. The get into the pi through Anydesk

a. Click the button in the figure below

b. Go to the home/pi//mycar/data directory

159

1. And select the recent tub files that you would like to transfer
c. On your host computer navigate to the folder where your car is located and enter
into the data folder
d. Once navigated in the correct locations of both your host computer and the raspi;

with raspi files selected press upload

#> AnyDesk [Donkey CarRasPi % + - X
% B 017676572 2u T B E & =08 /2 9 B8 =
Anthi 218118517, t (917676572)
“ -mw ’ X B 2 Upload ¥ Dosinked E X = e
i temote device
« N A ¢ cwusersanthonyymycandata v & N A ¢ \homepimycandata v
Name Type Size Modified v Name Type size Modified v

1wb_120_20-02-16 2/17/2020 12:25:37 AM tub_128.20-02-23 2/28/2020 229:40 AM

t
t
b
t
t
t
t
[
t
[t
t
b
t
[
#
t
i
t
t
t
t
t
b
t
t
t
t
[
[

3. Once the files are uploaded onto your home computer
a. Navigate to the location of your mycar folder on your host computer and type the

following command into the terminal:

python manage.py train --tub C:/Users/ --model models/mypilot.h5
You can use multiple tubs comma separated.

b. You then should have a screen that showing the NN training that looks like the

images below:

160

\Anthony>conda activate donkey
(donkey) C:\Users\Anthony>cd mycar
python manage.py train --tub ers/Anthony/mycar/data/tub_128_ E - /models /my,

\mycar\config.py

: FutureWarning: Pas ¢ 1) or 'ltype’ z F by in a future version of nump;

: Futurekarning: ng (“Ttyp ynony is deprecated; in a future vers

erstood as (typ

np.dtype([(

y\Miniconda \ 528: FutureWarning si or 'ltype' a: Vi type is deprecated; i future versio
erstood as (type, (1,)) /

np.dtype([("qint16"

FutureWarning; Passing (type, 1) or 'ltype’ f type is deprecated; in a future version of nump
FutureWarning ng (type, 1) or 'Itype’ as a synonym of type is deprecated; in a future version of numpy,

FutureWarning: Passing (type, 1) or 'Itype’ as a synonym of type is depr in a future version of numpy,
(ty)))
“resource”, np.ubyte, 1)1)
/core/platform/cp _guard. r CPU supports instructions that this TensorFlow binary w: mpiled to use: AVX AVX2
ating new thread pool with default inter op setting: 8. Tune using inter_op_parallelism_threads
\python\ops\resour riable ops.py:435 ate with (from tensorflow.python.framework.ops) is deprecated and will
s for updating:
Colocations handl
\ker \core.py:143: calling dropout nn_ops) with keep_prob is deprecated and
will be removed
ctions for updating

Please use “rate’ instead ep_prob’. Rate should be set to “rate = 1 - keep_prob’ .
WARNING: tensorflow: F ers\Anthony\Minic \donkey\1ib\site-packages\tensorf n _utils.py:170: to_float f y s.math_ops) is deprecated and will be remoy
ed in a future version
Tnstructions for upd
Use tf.cast instead.
training with model < s Y .parts.keras.KerasLinear®>

M Anaconda

Prompt (Minicon hon managepy train -~tub C/Users/Anthony/my b_128 20-02-23

model /models/mypilot 2 2345 ol

dropout (Dropout) (None, 58, 0 conv2d_1[6][
(Conv2D) (None, 5 32) 32 dropoute][e]
dropout_1 (i t) (None, conv2d_2[e][0]
conv2d_3 (ConvaD) (None, 12,) dropout_1[@][0]
dropout_2 (Dropout) (None, 12, - onvad_3[@][0]
con (llone, 10, 15 3 iropout_2[0][8]
dropout_3 (Dropout) (None, 1@, 15,) 2d_a[e][e]
2d 5 (Convab) (Nore, 8, 13,
(None,
(None, 0 dropout_4[e][e]
(None, 100) flattened[0][0]

(None, 0 dense[0][0]

(None, 5 dropout_5[@][0]

(None, 0 dense_1[0][0]

(None, i o][e]

6le1re]

Trainable params:
Non-trainable param

None
@ pickles writing json recor
/Anthony/mycar/data/tub_128_26
collating 50014 records
: 40011, val: 10003
totel records: 50014

thon\ops\: y:3 3 ted and will be removed in a fuf
ure version.
Instructions for updating
tf.cast instead.
Epoch 1/100

c. Once it is training the terminal will let you know when it is finished expect
anywhere between 1 - 2 hours for 30 min - 1 hours worth of training data.

d. Once it is complete go to the models folder and upload the mypilot.h5 file onto
the Pi’s model folder; following the previous steps that download the data onto

your computer.

161

In a terminal on the raspi (in the environment), enter:

i. cd ~/mycar

ii. python manage.py drive --model ~/mycar/models/mypilot _2.h5

1. Change mypilot 2.h5 to the model that you just trained

Then enter the web controller:

i. Enter the raspberry pi’s ip address followed by :8887 into your web

browser

ii. Ex: 130.215.221.24:8887
. Under mode and pilot, select local pilot, and watch it drive!
Once back on the Raspberry Pi enter into theRaspberry Pi terminal the command
below:
Please note that the below command will automatically get the car to start driving
on its own: make sure that the car is on the ground and have the car’s webpage
car’s ipaddress:8887 ready to press the stop driving button, and be ready to

catch/ turn of the esc in the car in case it rams into a wall.

python manage.py drive --model ~/mycar/models/mypilot.h5

162

10.2 Sensor User Guide

Modular Sensor Package
User Guide

Team Members
Thomas Kim (RBE/ME)
Kyle Wood (ECE)

Adyvisors
Professor Pradeep Radhakrishnan (RBE/ME)
Professor Kaveh Pahlavan (ECE/CS)

163

Table of Contents

Table of Contents
Introduction

Parts List

Printing the Enclosure

Arduino Setup
Wire up the Circuit

Arduino IDE

Raspberry Pi Setup:

164

165

166

169

170

170

175

187

164

Introduction

Hello! Welcome to the Sensor Package Setup Guide. Following these instructions will
allow you to complete the Arduino and electronic sensor setup for the modular sensor package.
This includes the wiring setup for the sensors, and a brief introduction in running and installing
the software and code onto your Arduino board to begin the collection of data of five total

sensors: three thermal sensors, one inertial measurement unit (IMU), and one hall-effect sensor.

165

Parts List

Module for Arduino

Part Quantity Picture Purchasing Link
Arduino Mega 1 Amazon Link
Raspberry Pi 3B+ 1 Amazon Link
Micro USB Cable 1 Amazon Link
ASAIR AM2302 3 2 Amazon Link
Temperature and Humidity S

Sensors /

Hall Effect Magnetic Sensor 1 Amazon Link

166

BNOO055 9-DOF Absolute 1 Amazon Link
Orientation IMU Fusion

Breakout Board

Arduino Jumper Wire 20+ Amazon Link

(assort connection types:
Male-Male, Female-Male,

Female-Female)

Solderless Breadboard

Amazon Link

Portable Battery Bank

Amazon Link

167

PLA for 3D Printing

Amazon Link

168

Printing the Enclosure

The enclosure is fully designed to be 3D printed, and STL’s of the sensor box can be
found here. The parts list includes one kilogram of Hatchbox PLA, but does not include a 3D
printer, or instructions on how to utilize a 3D printer. If this kit is being completed, but you do
not own or have access to a 3D printer, try looking for a local maker space that has printers that
can be used. This website has a vast network of makerspaces in the world, and hopefully one is
close by. During our testing, we used a 0.10mm layer height with 20% infill, with support over

built plate for only the bottom piece.

169

Arduino Setup

Wire up the Circuit

As demonstrated by the diagram below, wire the circuit as shown.

Figure 1: Arduino Sensor Wiring Guide

Red wires are +(positive) power in from the 5V port of the Arduino. The red wires are
connected together in parallel, so they all receive the 5V. The 5V wire goes into the
board, and branches off to power all of the sensors.

Black wires are —(negative) from the GND port of the Arduino.

Yellow wires are the signal output wires of the thermal sensors, which are sent to
individual channels on the Arduino (in this case, the thermal sensors are sent to channels
7, 8, and 9)

Green wires are signal output wires of the Hall-Effect sensor

Pink wires are the SCL wires, which connect the SCL port on the Arduino with the SCL
on the IMU

Purple wires are the SDA wires, which connect the SDA port on the Arduino with the
SDA on the IMU

170

The three objects labeled TMP are representative of the thermal sensors and their

corresponding pin layouts

Figure 2: Thermal Sensors in Wire Diagram

The object with the circle in the middle represents the Hall-Effect sensor and its

representative pin layout

171

Figure 3: Hall-Effect Sensor in Wire Diagram
The long bar of 8 ports represents the IMU, (although the BNOO0S55 actually has 10 ports,

the ones we need are specifically labeled)

Figure 4: IMU Representation in Wire Diagram

172

e R N e N e AR

Orientation

0
T
n
"o
X
L4
|
(0))

1:3vo 6

Figure 5: IMU Pins and Corresponding Wire Colors

To wire up IMU, there needs to be at least 4 pins wires soldered on:

Vin

+ GND

SDA

SCL
Vin connects in parallel along the red powerline from above, as are the other
Sensors
GND, similarly, connects to the GND black wires
SDA gets plugged directly into the SDA pin on the Arduino board
SCL gets plugged directly into the SCL pin on the Arduino board

173

DC Power Jack

=7~ USB Port

wERa X

ONINAYY

1.1

SHENW RO

& 3 (~hhd) TYAIDIO

1+

Arduino Uno Pinout

www.TheEnginee ringProjects.cam)

Figure 6: Reference for Arduino Pin Diagram

174

Arduino IDE

a. Download the Arduino IDE from this link: https://www.arduino.cc/en/main/software

Gowgle arduino ide X & Q

Q Al E) Images [Videos ¢ Shopping [E News i More Settings Tools

About 22,800,000 results (0.55 seconds)

www.arduino.cc » main » software ¥

Arduino Software (IDE)

Mar 16, 2020 - The open-source Arduino Software (IDE) makes it easy to write code and upload it
to the board. It runs on Windows, Mac 0S X, and Linux.
You've visited this page 3 times. Last visit: 2/13/20

Figure 7: Finding Arduino IDE through Search Engine

Arduino - Software X +

&« { & @ arduino.cc/en/main/software

STORE SOFTWARE EDU PRO RESOURCES COMMUNITY HELP

Download the Arduino IDE + o vews

Windows Installer, for Windows XP and up
Windows ZIP file for non admin install

ARDUINO 1.8.12 Windows app Requires Win 810r10
The open-source Arduino Software (IDE) makes it easy to Get 58 |

write code &nd upload it to the board. It runs on —
Windows, Mac OS X, and Linux. The environment is
written in Java and based on Processing and other open-
source software.

This software can be used with any Arduino board Linux 32 bits
Refer to the Cetting Started page for Installation Linux 64 bits

instructions Linux ARM 32 bits
Linux ARM 64 bits

Mac OS X 10.8 Mountain Lion or newer

©. O

Release Notes
Source Code
Checksums (sha512)

Figure 8: Arduino IDE Download Page

2.) Download the Sensor_Package.ino into the Arduino IDE from Github

3.) Install these libraries:

175

a. BNOOS5S5 Libraries
b. dhth
i. Libraries should be linked in GitHub, this is just in case the download

does not work
To add libraries:

In the Arduino IDE, click “Sketch”

& Sensor_Package | Arduino 1.8.12 (Windows Store 1.8.33.0)

File Edit Sketch Tools Help

S
il

@ Magnifi... =
e

200% Views o)

Sensor_Package

nitialise the sens

if (1bno.begin ()
Serial.print ("Ooops, no IMU detected ... Check your wiring or I2C ADDR!");
while(1);

}

delay (1000) ;

bno.setExtCrystalUse (true);

void setup sensors() {
// Serial.println("Setting Up Thermal Sensors"):;
// Serial.println(""):

*Temp Sensor Init

dhtl.begin();
dht2 .begin();

Figure 9: Finding Sketch Option

Click “Include Libraries”

176

Sensor_Package | Arduino 1.8.12 (Windows Store 1.8.33.0)

File Edit Sketch Tools Help

Verify/Compile Ctrl+R
Upload Ctrl+U
Upload Using Programmer Ctrl+Shift+U

Export compiled Binary Ctrl+Alt+S

Show Sketch Folder Ctrl+K

Add File...

delay(1000) ;
bno.setExtCrystalUse (true);

void setup_sensors () (
// Serial.println("Setting Up Thermal Sensors");
// Serial.println(™");
Temp Sensor Init?
dhtl.begin () ;
dht2.beain () ;

Figure 10: Finding Library Manager in IDE

Click “Manage Libraries”

= 71iri Py -
Include Library)Fd ... Check your wiring or I2C ADDR!");

Sensor_Package | Arduino 1.8.12 (Windows Store 1.8.33.0)

File Edit Sketch Tools Help

Verify/Compile Ctrl+R
Upload Ctrl+U
Upload Using Programmer Ctrl+Shift+U
Export compiled Binary Ctrl+Alt+S

200% Views ™

Show Sketch Folder Ctrl+K
Include Library) 2
AddEiles Manage Libraries.. Ctrl+Shift+|
ie;ay (1000) ; Add .ZIP Library...
bno.setExtCrystalUse (true) ; Arduino libraries
} Bridge
EEPROM
Esplora
void setup sensors() { Ethernet
// Serial.println("Setting Up Therma Firmata
// Serial.println(""): GSM
HID
Temp Sensor Init* Keyboard
dhtl.begin(); LiquidCrystal
dht2.beain(); MaAiica

¥ I2C ADDR!");

177

Figure 11: Managing Libraries in IDE

Alternatively, you can press the combination CTRL + SHIFT + I to open the “Manage Libraries”
window directly from the working environment.

Then, type into the search bar “BNO055” and select the “Adafruit BNOO055” Library, and click
install

include <Ada f[uit_Sensor -h>

e e

i |
include <Adafruit_BNOO055.h>

° - 2
v | |bno055

Allows to use the IMU MKR Shield Allows to use the IMU MKR Shield

Type All v | Topic |All
BNOOS55
by ROBERT BOSCH GMBH

More info

Adafruit BNO055

by Adafruit Version 1.1.10 INSTALLED

Library for the Adafruit BNO0O55 Absolute Orientation Sensor. Designed specifically to work with the Adafruit BNOO55 Breakout, and is based
on Adafruit's Unified Sensor Library.
Mare info

Select version v Install

BNOO55SimplePacketComs

by Kevin Harrington

Serve the BNo055 sensor using a SimplePacketComs Server. Serve the BNo055 sensor using a SimplePacketComs Server.
More info

BohleBots_BNO055

by Tobias "zischknall” Rath

Iihrarv for the RNNNSS ac sacv tn nee ramnace Marde far niea in Rahatire (RohaCnin Tuninr)

Figure 12: Searching Library in Library Manager

c. If any others are missing, check the #includes, copy and paste them into the

search menu in the library, and see what comes up

d. Don’t have to worry about any other header files
4.) Save the IDE script

178

- [o0) Sensor_Package | Arduino 1.8.12 (Windows Store 1.8.33.0)

File Edit Sketch Tools Help

& v

New Ctrl+N
Open... Ctrl+O
Open Recent >
Sketchbook >
Examples >

A P sor.h>
Close Ctrl+W 55 h>
Save Ctrl+S aths.h>

Save As... Ctrl+Shift+S

Page Setup Ctrl+Shift+P
Print Ctrl+P

/ Temperature sensor 1 is connected to GND, 5V, and PIN
/ Temperature sensor 2 is connected to GND, 5V, and PIN

W0 o -

Preferences Ctrl+Comma / Temperature sensor 3 is connected to GND, 5V, and PIN

Quit Ctrl+Q // DHT 22 (AM2302)

DHT dhtl (DHT1PIN, DHTTYPE); // Initialize DHT sensor for normal 16émhz Arduino
DHT dht2 (DHT2PIN, DHTTYPE) ;
DHT dht3 (DHT3PIN, DHTTYPE) ;

int x- box = 0;
Figure 13: Saving the IDE

Either save your file in the Arduino folder (usually found in Documents after installing the IDE)
or add the directory from download to the path. Similarly, once the project has been saved,

clicking “Verify” in the top left corner under “File” will save the code prior to checking it.

179

& Sensor_Package | Arduino 1.8.12 (Windows Store 1.8.33.0)

File Edit Sketch Tools Help

Sensor_Package
viagnifi —

200% Views ¥

lemperature a aple

int x_box = 0;

int y box = 0;

int z_box = 0;
emperature Variables

float templ;

float temp2;

float temp3;

*Hall Effect Variables
int rotations = 0;
double currentTime;
double laspedTime;
double initialTime;
double rpm = 0;

boolean newRotation = false;
Figure 14: Trying Verify in IDE

5.) Check PINS (or reassign if necessary)
a. Before you can collect data, make sure the pins are set up properly on the Arduino

in the PWM section of the board.

180

DC Power Jack

=7~ USB Port

Ground
Ground

1.1

| & 3 (~HhG) TVAIDIQ

1+
‘P“Nwlﬁ-‘ﬂﬁ‘i’

i
:
3
i
s
L
i
-
3
Ty .y

'S

Arduino Uno Pinout

www.TheEnginee ringProjects.com)

Figure #15: Arduino Pin Reference

b. The pins defined by the script are:
1. PWM 7, 8,9 are assigned to the temperature and humidity sensors
ii. PWM 3 is assigned for the Hall-Effect Sensor
iii. 12C Pins SCL and SDA are REQUIRED for the BNOO055 IMU (do NOT
change)
iv. 5V is the five volt output pin of the board.
v. Ground (GND) is the ground for all sensor connections

c. Ifyou need to reassign pin numbers, the location in the code is here:

181

I Search

Sensor_P

#include
#include
#include
#include
#include

hdefine
#define

#define

#define

emper

File Edit Sketch Tools Help

DHT dhtl (DHT1PIN,
DHT dht2 (DHT2PIN,
DHT dht3 (DHT3PIN,

int x_box

int y_box

20(

ackage

<Wire.h>
<Adafruit_Sensor.h>
<adafruit BNO055.h>
<utility/imumaths.h>
<DHT.h>

5V, and P
5V, and P
5V, and P

DHT1PIN 7 is connected to GND,
DHT2PIN 8

DHT3PIN 9

// Temperature sensor 1
// Temperature sensor 2 is connected to GND,
// Temperature sensor 3 is connected to GND,

DHTTYPE DHT22 // DHT 22 (AM2302)

DHTTYPE) ; // Initialize DHT sensor for normal 1lémhz Arduin
DHTTYPE) ;

DHTTYPE) ;
atur

Figure 16: Pin for Thermal Sensors Declaration Location

To remap the Temperature sensors, change ONLY the integers of 7, 8, and 9 respectively to

another integer on the PWM pins that you have open.

To reassign the Hall-Effect sensor, the location exists here:

182

float templ;
float temp2;
float temp3;

07
currentTime;

int rotations
double
double laspedTime;
initialTime;
0;

olean newRotation

B,

double

double
bo

int HE_PIN

rpm

char dataString[50]

Adafruit BNOOS5 bno

vold setup ()
{

Serial.begin(9600) ;
delay(5000);

setup_imu() ;
setup_sensors();
1

false;

//What we are serial-1

{0};

Adafruit_ BNOO55 (55);

// Let's the Pi catch up

& Magnif -
‘ — 200% Views ¥

ing to the RasPi

send

Figure 17: Pin Declaration for Hall-Effect Location

Again, to remap this pin, simply change the integer “3” to any of your available PWM pin

numbers.

6.) Click UPLOAD

183

Sensor_Package | Arduino 1.8.12 (Windows Store 1

File Edit Sketch Tools Help

Sensor_Package

ude <Wire.h>

ude <Adafruit_Sensor.h>
ude <Adafruit BNO055.h>
ude <utility/imumaths.h>
ude <DHT.h>

e A A W W
P e e e
o]

A 0 O A 0

#define DHT1PIN 7 // Temperature sensor 1 is connected to GND, 5V, and PIN
#define DHT2PIN 8 // Temperature sensor 2 is connected to GND, 5V, and PIN
9

#define DHT3PIN

O w

// Temperature sensor 3 1s connected to GND, 5V, and PIN
#define DHTTYPE DHT22 // DHT 22 (AM2302)
DHT dhtl (DHT1PIN, DHTTYPE); // Initialize DHT sensor for normal 1émhz Arduino

DHT dht2 (DHTZ2PIN, DHTTYPE)
DHT dht3 (DHT3PIN, DHTTYPE);

Figure 18: Uploading Code to Arduino

a. Arduino will keep the code stored locally, and when powered on it will run the
code once that was last uploaded.. We can view the data that eventually will be
sent to the Raspberry Pi via the USB-A to USB-B cable. For now, power the
Arduino from a computer USB so that the serial output can be read from the users
computer. Once the user wants to send the data from the Arduino to the Raspberry
Pi, simply take the USB cable from the user's computer and insert the USB cable
into any of the Raspberry Pi’s USB ports.

7.) Open Serial Monitor

To open the Serial Monitor and to see what is being said, first click on “Tools”

184

Sensor_Package | Arduino 1.8.12 (Windows Store 1.8.33.0)

File Edit Sketch Tools Help

Sensor_Package

#define DHTTYPE DHT22 // DHT 22 (AM2302)

DHT dhtl (DHT1PIN, DHTTYPE); // Initialize DHT sensor for normal 16mhz Arduino
DHT dht2 (DHT2PIN, DHTTYPE);
DHT dht3 (DHT3PIN, DHTTYPE) ;

Temperature Variables
int x_box = 0;
int y box = 0;

int z box 0;

Temperature Variables
float templ;
float temp2;

float temp3;

Figure 19: Using Tools Option

Then click “Serial Monitor”

Sensor_Package | Arduino 1.8.12 (Windows Store 1.8.33.0) — O X
File Edit Sketch Tools Help

Auto Format Ctrl+T
Archive Sketch
Sensor_Packa Fix Encoding & Reload

5;* nifi...
— 200% View:

Manage Libraries... Ctrl+Shift+l
tdefine DHT Serial Monitor Ctrl+Shift+M
Serial Plotter Ctrl+Shift+L
DHT dht1(DH \viri101 / WiFiNINA Firmware Updater f for mormal 1émhz Arduino
DHT dht2 (DH
DHT dht3 (DH Board: "Arduino Mega or Mega 2560 >
Processor: "ATmega2560 (Mega 2560)" >
*Temperatuy Port
int x_box = Get Board Info
int y box =
int z_box = Programmer: "AVRISP mkil” >

Burn Bootloader

Temperature Variables
float templ;
float temp2;

float temp3;

=1
H
H
I
1
)
L
1
)

185

Figure 20: Accessing the Serial Monitor

And then the Serial Monitor will open on your screen

a1

@ com3 = O X

| Send
IU.JU.2U.F91 JoTL TUZ IJUZUUUUUUULS

16:38:20.880 -> 35%1252270213020600000141
16:36:21.288 -> 3591252270213020600000144
16:38:21.628 -> 3581252270213020600000148
16:38:22.002 -> 3591252270213020600000150
16:38:22.341 -> 3591252270213020600000152
16:36:22.715 -> 3591252270213020600000154
16:38:23.055 —-> 3581252270213020600000155
16:38:23.462 ->» 3591252270213020600000156
16:36:23.802 -> 3591252270213020600000157
16:38:24.145 -> 3581252270213020600000158
]16:38:24.521 -> 3591252270213020600000158
16:38:24.863 —> 3591252270213020600000159
C16:38:25.2D2 —=> 359%1252270213020600000160
16:38:25.610 -> 3591252270213020600000160
16:38:25.950 -> 3581252270213020600000160 g

Cl
& []Autoscroll Show timestamp Newline ~ | 9600 baud [Clear output

Figure 21: Sample Data Stream in Serial Monitor

Make sure that your baud rate in the bottom right corner is set to “9600” or else the serial

monitor will produce unintelligible gibberish.

Alternatively, you can press SHIFT + CTRL + M to open the “Serial Monitor” directly from the

working environment.

8.) See results
a. What we see is just a string of integers, and each set of those corresponds to one
of the sensors and the raw data that they will be transmitting. The first 9 digits are
the coordinates for x, y, and z as gathered from the IMU, the next 9 are the
degrees in Celsius as detected by the temperature sensors (00.0° format for
temperatures <100°C), and the last is the rotation count as detected by the
hall-effect sensor.

b. This data is then sent over to the Raspberry Pi for data processing

186

Raspberry Pi Setup:

1) First, the Raspberry Pi should be set up with Raspbian and have internet capabilities. To
do this, follow the instructions from the user guide for the self-driving module.

2) From this step and onward, the steps should be completed by using AnyDesk from the
user's computer and accessing the RasPi remotely, rather than working directly with the
Raspberry Pi itself.

3) Download the python script from Github.

4) Create a new folder on the Raspberry Pi and place the python file that was downloaded
from the Github into that new folder that you just created

5) Create a text document, using Text Editor, and name it “data.csv” and place it in the same
folder as the python script. This file will be where all of the data that is sensed and sent
over by the Arduino gets saved to.

6) Open the terminal command window on the Raspberry Pi and locate the folder where the
python and csv files are located.

7) Raspbian comes by default with the program Python3 built in, and this will be used to
store the data. Simply ensure the USB cord from the Arduino is being powered by a USB
port on the RasPi, and then in the newly opened terminal window type “python3
RPI Store Data.py” without the quotations into the character display line and press the
enter key. Now, the data is being collected from any attached sensors. The sensors will
sense the data, report that data to the Arduino, which then sends it over to the Raspberry
Pi via serial communication along the USB cable, where it will then be stored and saved
in the data.csv file that you have created.

8) To end data collection, press “CTRL” + “C” to end the collection process.

187

10.3 IMU Bump Test Data

172

172

172

172

34

31

33

296

296

296

294

281

264

245

250

224

221

253

258

262

256

198

198

198

198

180

180

222

191

198

199

200

200

201

200

200

200

197

196

200

205

199

200

201

170

170

170

170

180

180

216

188

168

169

169

169

169

169

168

168

167

169

168

165

169

168

168

Templ
27
27
27

27

Temp2
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24
24

24

Temp3
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29
29

29

RPM

148

148

153

153

32

32

32

32

32

149

149

149

149

149

154

154

154

154

188

250

236

236

234

232

225

230

231

235

242

226

224

226

235

236

230

225

221

224

235

226

221

222

222

220

214

201

203

201

202

205

205

206

206

206

205

206

206

206

205

206

207

206

206

206

192

200

200

200

200

202

204

169

169

170

169

169

169

169

170

170

171

170

170

169

169

169

169

169

169

169

170

164

164

164

164

168

171

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

29

29

29

29

29

29

29

29

29

29

29

28

28

28

28

29

29

29

29

29

28

28

28

28

28

28

154
153
153
153
153
153
153
153
153
153
153
154
154
154
154
154
149
149
149
149
149
149
149
149
149

149

189

220

214

211

222

219

218

247

277

272

272

276

276

276

276

276

276

191

201

201

202

201

201

193

163

209

189

194

194

193

193

193

193

170

170

170

170

168

169

164

132

173

174

171

171

172

172

172

172

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

149
149
149
149
149
149
149
149
149
149
148
148
148
148
148

149

190

10.4 Steering Linkage Testing Platform Arduino Code

#include <Servo.h>

int servoPin = 5;
int count = 0;
Servo myservo;
int pos1 = 30;
int pos2 = 150;

void setup() {

Serial.begin(9600);

myservo.attach(servoPin);

while (count < 250){
myservo.write(pos1); //turn right
delay(1000);
myservo.write(pos2); //turn left
delay(1000);
count++;
Serial.println(count);
}

Serial.print("done");

}

void loop(){
delay(1000);

}

191

10.5 Arduino Sensor Reading Code

Link to Github

Code:

#include <Wire.h>

#include <Adafruit Sensor.h>
#include <Adafruit BNO055.h>
#include <utility/imumaths.h>

#include <dht.h>

dht DHT 1;
dht DHT 2;
dht DHT _3;

#define DHT11 PIN 17
#define DHT11_PIN 2 8
#define DHT11 PIN 39

/*Temperature Variables™*/
int x_box = 0;
inty box = 0;

int z_box = 0;

/*Temperature Variables™®/
float temp1;
float temp2;

float temp3;

192

/*Hall Effect Variables*/

int HE PIN =3;

unsigned long timeold = 0;
volatile byte rotations = 0;
unsigned int rpmilli = 0;
unsigned int rpm;

float speed,

char dataString[50] = {0}; /What we are serial-ly sending to the RasPi

Adafruit BNOO55 bno = Adafruit BNOO055(55);

void setup()

{
Serial.begin(9600);

delay(5000); // Let's the Pi catch up

setup_imu();
setup_sensors();

}

void loop()
{

loop_imu();

loop_sensor();

193

countRotations();

delay(250);
H

/***

*******************/

void setup_imu() {
//Serial.println("Setting Up IMU");
//Serial.println("");

/* Initialise the sensor */

if (!bno.begin()) {
Serial.print("Ooops, no IMU detected ... Check your wiring or 2C ADDR!");
while (1);

}

delay(1000);

bno.setExtCrystalUse(true);

/***
****************/
void setup_sensors() {

//Serial.println("Setting Up Hall-Effect Sensor");

//Serial.println("");

/*HE Sensor Init*/
pinMode(HE_PIN, INPUT);
attachInterrupt(digitalPinTolnterrupt(HE PIN), countRotations, FALLING);

}

194

/***

**********************/

void loop_sensor() {
int chkO = DHT 1.read11(DHT11_PIN_1);
int chkl = DHT 2.read11(DHT11_PIN_2);
int chk2 = DHT 3.read11(DHT11_PIN_3);

if (rotations >= 5) { //increase rpmCount for better RPM resolution, decrease for faster

update
rpm = 60.0 * 1000.0 * rotations / (millis() - timeold); //60*1000 is the factor to convert

ms to minutes
timeold = millis();
rotations = 0;

//Serial.println(rpm, DEC);
}

sprintf(dataString, "%03d%03d%03d%04d%04d%04d%04d", (int)(x_box), (int)(y_box),
(int)(z_box), (int)(DHT _1.temperature * 10), (int)(DHT 2.temperature * 10),

(int)(DHT _3.temperature * 10), (int)(rpm)) ;

//When adding more variables, make sure to leave RPM at the end so as to make it
"infinitely expand" incase RPM get to high

Serial.println(dataString);

}

/***

****************/

195

void countRotations() {

rotations++;

}

/***
*****************/
void loop_imu(void)

/* Get a new sensor event */

sensors_event t event;

bno.getEvent(&event);
x_box = event.orientation.x;
y_box = event.orientation.y;
z_box = event.orientation.z;
x_box += 180;

y_box +=180;

z_box += 180;

delay(100);

196

10.6 Raspberry Pi Data Collection Code

Link to Github

Code:

import serial

import csv

ser = serial.Serial(port="/dev/tty ACMO',
baudrate=9600,
parity=seria. PARITY NONE,
stopbits=serial. STOPBITS ONE,
bytesize=seria. EIGHTBITS,
timeout=0.5)

with open("data.csv", "w") as new _file:

csv_writer = csv.writer(new_file)

nn

csv_writer.writerow(["x", "y", "z", "temp1", "temp2", "temp3", "rpm"])

while True:
if (ser.in_waiting > 0):
line = ser.readline().strip().decode('utf-8')
x = int(line[0:3])
y = int(line[3:6])
z = int(line[6:9])
templ = int(line[9:13]) / 10
temp2 = int(line[13:17]) / 10
temp3 = int(line[17:21]) / 10
rpm = int(line[21:25])

197

print("T1="+ templ + ", T2=" + temp2 + ", T3="+ temp3 + ", rpm="+ rpm)
#updated in pycharm cause RPi editor is dog

csv_writer.writerow([X, y, z, templ, temp2, temp3, rpm])

198

10.7 Raw Temperature Test Data

10.7.1 Temperature Test 1

T1 T2 T3
20.99274534 19.50735859 19.99593948
20.52159956 % 19.85341927 21.56226443
19.63265783| 21.99953657 19.6469824
21.00992494 20.36394557 20.27725049
21.25592402 21.51283263 19.84796671
2192545792 21.46798502 21.21487238
19.21830626 21.77921843 20.64019809
21.471631567 21.65589843 21.18949265
21.66450576 20.28432874 19.7042289
20.09920488 21.23626819 21.93662301
19.26418121, 20.37212331 19.88302778
20.71370862 19.2078289 19.61048975
19.51070217 21.56959001 20.89715237
21.59869792 19.36793171 21.17607682
20.58409151 19.50543515 19.31661331
19.95682851| 19.70252272 21.06557122
20.12770462 20.4697221 19.44068048
19.14569353| 19.19619147 21.85540781
19.70422177| 20.37355774 21.58766058

19.0181597 20.6455625 21.88183589
21.69123024 21.74712036 20.34429371
20.68041598 20.95964116 21.12178235
20.97641653 19.7291207 21.26711799
20.27503834 19.90681241 21.43408164
21.30916449 20.9103778 21.57979693
20.03612198 21.20576188 19.88679672
20.86678408 19.19836931 19.05049196
21.69573177 20.65801767 20.03293425

19.5720147 19.75882093 20.95700644

20.8328615 19.35008116 | 19.17353507

199

21.5517287
21.82571806
20.66889343
19.71399893
21.26895312
20.40910045
20.60460657
21.85667879
21.21765049
20.89811688
19.09112298
19.77628501
20.18003491
20.45819639
19.14226071
21.81506132

20.4455417
20.21175796
20.50062686
21.35642773
20.05945403
20.38093731
21.58170323
19.73914354
20.88939677
21.68767197
19.73947659
21.05933701
20.50606483
19.84906461
19.30066409
19.54353676
21.40873392

19.2666887

21.89567443
19.49585324
20.67381359

20.6935031
19.03201871
20.19894082
20.32971124
21.50013522
19.11368006
21.25777933
20.66433878
20.56899111

21.5099517
21.03821581
19.89711023
19.09525495
21.63260577

19.1920121
19.11239679

19.5103463
20.71492238
21.71224347
19.43649607
19.41483023
19.20447691
20.84669406
19.12854395

20.6742713
21.09149138
20.92909399
19.97895553
19.23543434
20.08342652

21.0659737

19.11537084
20.03870269
20.13615097
21.48905064
21.42402591
19.49835409
21.00773064
19.41956785
20.90251973

19.5981199

19.7047554
21.40644228
19.10255087
21.50061064
20.57771764
21.20291004
20.15832361
20.69293587
20.55933018
20.83489863
20.58803157
21.81119036
20.47399214
19.99366456
21.75810271
19.02678745
20.00612463
19.67376441
19.62815578
19.48148619
19.23194757
20.53685902
19.72567196

19.9405755

200

21.98939075
21.95220806
19.69153265
19.05049161

20.0702317

19.5309154
20.84313213
21.34119315
21.77483312
20.36509735
19.00044099
21.49956907
21.34588458
20.61455977
20.63607257
19.11675207
20.33201706
20.00515866
21.34978076
19.96667428
19.59825702
21.13776164
21.15574032
21.97001756
19.87897183
20.63844499

20.4104786
20.96853063
21.59379512
20.91899883
21.31044278
20.61931351
21.07182716
19.34318226

21.26347129
21.23879201
20.40660574
21.52608834
19.13662919
21.55309965
20.16703087
19.61979782
19.76547412
19.93885744
21.63516648
19.82746521
21.70255803
21.65978036
20.53333593
19.93886719
21.97677773
20.50495431
21.39949068
19.99978988
21.14133848
21.85915859
20.37748101
21.92741222
21.06012328
21.66489327
19.34157307
20.75276049
20.53699167
20.85694979
21.10182549
19.57644455

20.9970218
21.11892311

20.84094928
20.93009214
20.16169392
21.79754851
20.42622932
21.71727676
21.89241472
20.80871349
20.5070751
19.09186571
19.35632652
20.46255841
21.26256326
20.33267396
19.07265344
20.69630178
21.30165498
20.03656284
20.774096
19.76092915
20.17318517
21.71678924
19.16547192
21.40613334
21.72832514
20.79146331
21.44963959
21.20794245
21.88852739
21.9035523
21.34314775
20.79443699
21.84364139
19.21210915

201

20.70361966
20.01066279
21.28545877
21.90178504
19.80630105
21.67431176
20.68247204
21.08842193

21.2940215
20.52339484
20.72362679
19.63810134

20.1448705
21.88120336
19.28274478
20.14197786
19.55381541
19.18279692
21.14736055
21.78431544
21.20834676
19.12977218
19.47030968
19.56155448
20.21869119
19.05798692
19.16618297
19.33849476
21.03001356

20.0387764
19.92137718
21.77297154
20.70946204
21.77619332

21.55705466
21.48306926
21.31445355
20.61086403
21.06348581
20.85014126
21.54908182
19.64832805
20.96980426
20.70897344
19.80109127
19.17537945
20.23318783
21.06801717
21.62381668
21.26766603
19.27601873
19.39323345
19.44465347
21.82648349
21.76934151
20.75554261

19.2363385
20.08080273
20.83674865
21.50207368
19.25405913
19.50153935
21.26124452
20.68586156

20.0083444
19.25089849
19.64775546
21.89782275

19.41635903
19.9388258
19.20781908
19.77389704
19.23634841
20.98426523
19.19500748
19.39532299
19.96568378
20.84117669
21.44125667
19.37658641
20.77625015
20.85543144
20.69775107
20.39319033
19.6745833
20.18464051
20.24639972
19.36445446
19.10373367
19.93990489
21.54900428
21.54441316
19.98648571
19.25174773
21.33144959
20.237472
20.70581374
19.60156732
20.02604435
21.48943956
20.8807577
20.22381766

202

19.69252882
20.49802033
20.09758834
19.6860442
20.30542324
19.98939331
19.44160502
19.64698571
21.03502249
21.76640665
20.28712217
19.79969047
19.84706502
20.97546612
19.59543443
21.43707874
21.31274002
20.08823458
19.27511006
20.47686001
20.07024797
19.410273
19.56956299
20.2371163
21.10061083
20.34110345
19.0264679
20.24640405
19.00990153
21.85300967
21.09030892
19.61184196
21.96611635
19.4635081

20.7794326
19.33943256
20.14531938
20.58526761

21.8958014
20.24450446
19.26560675
20.41288887
21.69779028
20.85615476

19.5482927
21.72509349
19.58673625
20.25992306
21.31891491
20.70272737

21.8207854
21.04098118
20.56122119
19.37266986

21.760537
20.49999052
20.98362692
21.22545559
20.09091706
21.40839687

21.6982704

19.824011
21.15017134
21.69943693

21.5512698
21.44577256
20.88261009
19.79092902

19.24806668
20.83404277
21.68945943

20.1292395

20.7667512
21.68577718
20.91590346
21.32583352
21.24638216
21.26193499
21.85296032
19.12188229
21.87983785
21.98989558
20.68163762
19.98419683
19.91486118
20.21025645
19.96499521
20.29488002
20.98251017
20.62212431
21.44498906
21.50126572
19.07767309
19.33387729
21.41156025
20.58631098
19.01321165
19.58095301
20.52559201
21.50058447
20.17222532
21.15170845

203

19.70603256
21.04189572
20.92621926
21.06528941
20.69970298
21.97506142
21.30744075

21.3475478
19.11124104
20.40139197
20.30671971
20.19398247
20.09475368
21.88080451
19.65323082
20.37537278
20.47364509
21.96034627
21.69124439
21.06849631
19.54062545
20.67209136
21.33412121
21.22827494
19.22691751

21.0540805
19.60504883
20.61640317
19.33038706
19.67871039
19.18618057
19.34732843
21.08900637
21.99622002

20.04415448
21.49088239
20.09872896
20.06697993
20.96905962
19.11083871
20.67457166

21.4080418
20.34414038
20.26490647
20.05169426
20.55230897
19.98077905

20.1957726

21.9098309
20.49624868
21.04052556
19.13136412
19.17635466
19.09811516
21.24733042
20.86642018

19.6098681
21.53559952
19.00949307
19.75534651
21.04975177
20.28732488

19.5758703
20.55705362
21.05923915
19.85769879
21.50225192
19.51291462

21.12091182
19.19211241
19.41711057
19.32313944
20.68531992
21.14671041
21.07951727

19.6502412
21.42668087
20.90904566
21.05198469
20.27603177
20.56741923
20.89354379
20.12996999
19.53375389
19.27931488
21.91436775

21.9121599
19.49851185
19.97029879
20.26506787
21.75738832
21.81259292
20.96600386
20.86111585
21.51815989
21.55696486
20.49113116
21.92240433
20.02371166
19.17093298
20.24924606
20.91791083

204

19.63514337
21.15132081
19.01398606
21.90541328
20.69643558

20.1744875

21.5560937
21.34950061
20.43503946
19.03695328
19.86910513
21.90193414
20.75062905
20.05304653
21.65601419
21.25535136
21.19305822
20.98119718
21.83655768
21.25623836
21.89336781
19.41636937

20.5587908
20.63866075
20.84935714
20.96422054
21.89287771
20.90240778
20.76081722
19.64379389
19.39194349
19.85413271
21.09683119
21.55441976

19.10658116

19.5456913
20.13643186
21.01065552
21.62710245
21.17041021
21.54436805
20.18992197
21.28844748
20.80990139
20.29494127
20.87944471
19.54205313
21.28440503
19.79719276
19.32115768
21.08587984
20.32135464
20.44153426
19.23330007
21.18667229
21.07670994
20.63529428
21.89246528
19.91451609
19.95576891

21.9430795
21.07373853
19.22819656
20.47641022
20.94379908

20.8784939
20.51685934

20.2487703

19.56972224
20.43268245
20.8244225
21.02109117
20.98720958
21.30542431
20.58421088
19.132186
21.20983716
21.02710503
21.75070659
21.61248925
21.63677809
20.17613195
20.82505349
19.24574756
20.99746618
19.58130973
20.60051972
20.59322295
19.86499403
21.86117376
19.568033885
20.84157258
19.43659546
19.07615027
20.72881301
20.45656221
19.70258224
20.45646368
19.12773092
19.45075137
21.65928142
21.42945478

205

21.58276093
20.18456849
21.09609813
21.71261811
20.35822699
21.09063743
21.951045
19.1161613
19.18401329
20.36826691
20.50754301
21.52507415
21.00345379
19.59996477
20.42435171
20.16321447
19.72766312
19.04070136
20.87996694
21.53919613
19.23205933
20.5663853
20.58935523
21.86178117
21.84589283
21.59121469
20.0991101
19.08248847
21.41806473
21.18342576
19.06687205
19.43702918
19.17044679
21.71345418

19.09881472
20.70110349
19.65171435
20.00766539
19.88954926
21.83873787
19.83101585
19.02762333
19.72800133
20.53262001
20.51229582
20.17519308
21.66998188
19.54452162
21.51781783
21.30925756
21.76850544
20.71897292
19.97246135
21.727377
21.99363679
21.35958507
20.08773987
21.87474644
21.01520912
20.6570642
20.94139638
21.58215602
20.79619929
20.84692689
20.31901352
21.68039538
20.87716058
20.2466054

19.28495709
21.84965157
20.78695307

21.2119657
19.54810298
19.99847967
19.61034387
20.05668814
21.31349739
19.69049248
20.78746564
19.84586617
21.48922571
21.71800803
19.83136378
20.11148475
20.97081426
21.34858565
21.26007375

19.7280687

20.7191892

20.4114533
20.69164095
21.47245841
20.39284558
19.14313898
19.15400998
19.37442039
20.37971509
20.68637957
20.66376904
20.29269503
19.49902769
21.16274765

206

21.49940783
19.47730073
19.70909389
21.25426558
20.72354884
19.98703491
21.75417184

20.6206055

20.1952448
20.85681501
19.37110089
21.38215937
20.11429175
21.95804248
19.73834596
20.41510643
19.20584902
20.30055276
20.77146447
19.56729357
19.95466456
19.28494453
19.23845191
20.80424693
21.03398243
19.66830667
20.34810492
20.77648152
20.65841075
20.95089178

21.38231751
20.95085047
20.44598334
20.82456082
21.40834657

20.0155948
21.78236761
21.48820253
19.10439719
20.94508108
20.44276245
19.84284215
19.04565436
21.06759506
19.60914171
19.77058827
21.60565251
20.70193801
20.36385351
20.80602034
19.35420797
19.30335791
19.27289879
19.94465837
19.28320455
21.81255522
19.56136048
19.21067362
20.38760631

21.8286431

10.7.2 Temperature Test 2

20.94316492
20.44307278
21.59951505
21.54705437
19.991483
19.67833498
21.76761045
20.16045307
21.10481748
20.17438667
19.8778519
20.46928638
20.847436
19.81265064
20.76750339
21.02808586
19.41837227
21.96578476
20.39845964
21.8377508
19.82856156
21.59202628
19.98180875
20.10380023
20.30676067
20.52295969
20.1839785
21.37470889
20.38667765
21.59024572

T1

T2

T3

207

35.0516134

34.6839868
36.90680199
35.92072517
35.33010322
35.86808045
36.49066401

36.9217883
36.91430818
36.63024536
34.58250728
36.69191654
34.48239173
34.83925137
34.08214809
36.26574293
34.29601813
35.52210485
36.32864276
36.05229224
34.91120126
34.82957508
34.37633282
36.28456103
34.98296342
35.36653404
36.56680311
35.45044334
36.83143708
36.77617916

35.2357722
35.39436286
35.00637922
35.48185515

34.92887938
34.96949351
35.98717032
35.75965331
36.55603443
34.50519751
34.62883162
34.87153752
36.48953521
34.38855579
35.81164541

35.1484406
35.18626299
34.20701471
34.70993455
35.11459956
34.76764028
36.80509985
36.17625728
34.32317564
34.86896595
34.34938005
35.83945313
35.42536415
35.49261876
34.62222096
36.81014789
36.52440114
36.10722297
36.91215631
34.98141933
34.96305525
36.51514709
34.90679111

34.2005882
36.44912626
34.73464309
35.03384065
36.06760782

35.8141226
35.08424089
34.46870766
35.12056338
35.97613235

36.4571749
35.12494961
34.17954145
34.23867895
36.48786571
34.02208318
35.71636135
36.46831616
36.17700589
36.17816659
36.27203372
35.66173467
34.12158321
36.22625975
35.18017255
34.23643192
36.62332088
35.27845023
34.78205978
36.30754806
34.89980857
36.03002831
34.24777256
34.71249731

208

36.29139621
35.49674711
34.06265227
36.66109075

34.2041772
35.71250133
34.14106329
34.85361454
35.65862946
34.27991541
34.73703773
34.08851166
36.73306659
35.59795686
34.23394059
34.05533292
34.99633365
36.11268133
36.37844427
36.63986473
34.33902119
35.05251073
34.88217635
35.09741802
35.69165526
34.50740527
34.74696935
35.24489231

36.0235727
34.65847905
35.73036834
34.31751916
36.16364891
35.93238109

34.6457229
35.55940717

34.9472279
35.43848711
35.03882629
34.07817747
36.43638546
36.78366679
34.46739921
35.40357704

36.7708202
34.47340797

35.8790539
35.46461248
35.23275362
35.23608646
34.09202955
35.45499263

34.8902007
36.76216215
35.41636292
35.28724092
36.42703252
35.45678704
35.06928575
35.52433044
34.37061413
35.22775184
36.61473756
36.24212004
34.10657287
35.64437282
34.64028164
34.39207879

36.12943408
36.54854455
34.95274463
35.70029287

35.9743099
35.80088044
34.10034463
36.01399166
36.54472826
34.73611167
34.92851367
36.56245482
35.49426037
34.66284274
36.39221714

35.0016459
35.06645388
36.73683817
34.67342503
35.32596029
34.45216793
35.60817611
36.23654776

35.0066048
34.76092088
36.66679718
34.41971375
35.30681748
36.26021194
35.87122052
36.73098638
35.15274327
34.29361362
34.84734681

209

35.59363835

34.5570882
36.03775731
36.47878757
34.40635079
34.17560697
36.87780093
35.64962535

36.2197128
34.07174464
35.82336679

35.0951691
36.86513949
34.56705777
36.10951519
34.68492858
34.48515603

36.4748948
34.71292706
35.71026507
34.66055068
34.01702471
34.91359262
34.73095162
36.66078794
34.46143294

36.7204367
34.98941161
36.41402468
35.86937716
34.50673585
35.53414767
36.26866006
36.01069294

34.25677905
35.49725673
36.02435909
34.256249
34.83939171
35.88946698
36.44271689
35.51510861
35.1288467
36.49645124
36.21499042
36.28395272
36.28893858
35.54517627
34.20082342
35.21462859
34.66366942
35.38225044
35.21955395
35.40691557
35.0783124
36.22640226
34.38839478
35.42755527
34.62716129
36.83251799
36.85118382
35.19489632
35.2047101
35.33252769
34.60318083
36.85333029
35.47353042
35.46276492

35.10358043
34.34405298

36.4515188
35.80266755
36.35534627
35.94991751
36.13776023
35.81584671
35.99525386
35.45372282
34.65090838

36.2325413
34.32331675
36.58393258
35.28088813
36.22547364
34.48036047
36.79878198
35.70964116
34.06016886
36.72024687
36.07900742

35.1988966
35.24741724
36.69963075
36.02559042
34.64869876
35.55942186
35.00903257
36.25851883
36.61717714
34.83873778
34.50397476

36.7678399

210

34.50489504
36.0678926
34.5001849

34.33348853
34.0201096
36.0662909

35.80518182

35.85776624

34.33865308

34.89943959

34.71866451

34.00215526

34.32898877

35.53139341

36.99152968

36.64884165

36.66261658

35.87176096

34.47173088
34.2039267

36.41652529

34.00879202

36.94587037

35.01884613

34.56033398

35.36488126

36.71723996

36.30312835

35.47866439

36.28318494

35.42192897

35.57967056

36.23299945

35.67807142

36.50703248
36.03415548
35.05488846
34.73801136
34.14092797
35.07821601
34.47716555
36.88927293
36.82211523
34.88062622
34.82242085
36.04542182
34.00734681
34.00909926
35.07295767
36.70817145
34.28647157
36.64486041
34.8775287
36.54544118
35.35628851
34.69883738
36.83083774
36.41000071
35.68892619
34.16578025
35.390271
34.77837052
34.09241041
36.39517401
36.24031221
34.99929236
35.0007303
34.48026817

34.80512788
35.63751044
34.23613814
36.17980544
35.32831453
36.98916639
36.93195708
36.86868066
35.32597979
35.03561043
35.01978268
35.46881306
36.08589723

36.8101298
35.16670323
35.62183051

35.9043763
36.20960563
36.15232412
34.73036208
36.34397163

35.0792801
35.67926833
35.08244667
35.40223309
34.37922562
35.39887065
36.95981985
36.36166774
34.60381143
36.01549954
35.24854254
34.75417256
35.98386124

211

34.71645154
36.81085907
36.72724253
36.16240108

35.0084339

36.5572587
34.30740319
35.50115165
35.34623614
35.92024364
35.59829753
34.33368219
34.93396931
36.56584343
34.55885923
36.85594852
36.49520592
34.82922183
34.82262227
35.55925967
34.87176636
34.75760955

35.3811428
34.18368645

36.8132997
34.96415562
36.56559329
34.76200673
35.88896526
36.33606523
36.08546825
36.00409632
36.83435398
34.96753536

36.25787113
34.34166756

34.1266131

36.3952597
36.23077711
34.83869779
35.06236428
35.84562456
34.13696363
35.33804919
36.52252962
34.03780577
36.10339254
34.98719638
34.18678368
34.72192594
35.13154126
36.60868828
34.52234787
35.91490372
34.30029797
34.05191468
36.54238888
34.67131392

36.4373845
36.64603753
36.19024821
36.13554217
35.18695052
35.32308734

34.9290004
35.88124693
35.99375366
36.83081086

36.82415158
36.63195674
36.94253127
36.51584407
34.43342334
35.66372971
34.29715632
35.53333838
34.72967893
34.89276934
34.82809017
35.36315848
36.34818894
35.74206718
34.42036958
35.59193144

35.0332307
36.03005107
35.51518906
36.60855872
36.29159892
35.86579866
34.17988809
36.38389807
34.67268686
35.14849163
35.01662157
36.90114816
35.84325919
36.05675927
35.27265884
36.25881587

36.3662501
34.72508628

212

35.59330594
35.30194768
35.43487813
34.17140328
35.86053866
35.32202077
36.24119086
34.06306624
34.17204624
35.49440565
35.01278483
34.00613331
36.97569845
34.70729893
35.79275466
36.16141641
34.15813202

34.1705692
34.92979302
35.48926623
36.55922039
34.72371108
35.18282786
34.81990839
34.48515363

34.8312601
36.26929274

35.0273322
34.03375803
36.13276438
36.84985806
34.91943379
36.00564579
34.69468267

35.16173683
36.22285081
36.77336706
35.71169175
35.31012067
35.7687453
36.94312586
36.38765352
36.73715615
34.97710434
34.05005087
34.759287
34.21476394
35.8726613
35.44975755
36.20403333
34.3076542
36.38651689
34.36438543
34.73958868
34.87213481
35.99100548
35.17785389
36.40688168
35.85189332
34.41785778
34.01327485
36.62131122
35.69243777
36.27036027
36.4801263
34.34151932
36.99178031
36.26892078

36.8345927
34.23279794
35.74037779
35.77223289
35.51432647
34.00500259
35.81108177
35.47063664
36.16654157
36.84308936
34.12324591

36.1260419
35.71543568
36.74930125
36.15238493
34.67312396
36.11285635
34.48601193
36.62343049
34.58564924
36.60054144
35.93151126
34.30496482
35.94873625
35.40601306
34.42169762
36.75171103

35.9460557
36.16475862
34.59174667
35.45929939
36.07633057
35.93066796
34.24647338

213

34.98053847
36.19051325
34.04099484
35.04810139
36.50742653
35.67187408
35.39422207
36.68893674
35.72988786
36.16217202
34.43752166
35.96631233
35.91489113
35.32130778
35.56920297

36.1900745
35.90823013
35.47005783
34.69397305
36.34993249
36.15773253
34.65228527
34.83976855
34.05648349
35.93913439
34.98747089
34.77945461

36.1884057
36.45713734
35.16845334
35.73566773
35.26037633
36.78224944
35.94266657

34.97781373
34.41180782
36.45709778
35.70441231
36.09751973
36.34739437
35.84549812
36.41487722
34.47576693
35.15104049
36.3316742
34.24863451
34.92089023
34.47516667
35.66612173
34.53054513
34.75764071
36.575411
34.56474838
34.50814962
34.11541464
35.03966784
36.00409847
35.12060472
34.32212606
36.22098349
36.48606701
36.70580577
36.65851355
34.65326955
34.88187431
36.43979218
34.47669647
35.48563075

36.79279099
35.13127245
35.61228101
35.95900275

35.8541497

36.34111115
35.05423697

35.4245128
36.16381546
36.12415075
35.77140251
36.07921289
34.64774252
36.56330597
34.53749087
34.13436755
34.94372629
34.07534955
36.63057084
36.97107564
34.46955561
36.73762087
35.54470023
34.79366141
35.03048544
35.39222289
35.39000495
34.54793511
35.98473783
35.95925529
35.02285882
36.37522624
34.13319922
35.35840776

214

34.36329153
36.71279557
34.27834783
34.55480919
34.22651449
35.16716868
34.27648653
35.42478075
36.91613059

35.1900256
35.25730989
34.78686713
34.78770333

35.2635265
35.71751567
34.62455691
34.04242652
35.47242913
34.21515102
34.00001716
35.51997401
34.88486424
34.81410739
35.79815739
36.12634338
34.72839081
34.28001871
36.98235824
36.27965777

36.2430748
34.91785118
34.69233882
36.12310307
34.52986024

35.16722186
36.38749609
36.09206854
35.13419077
35.21894757
35.03510249
35.91914009
35.91963496
35.85814766
35.07175277
35.03971493
36.43427477
34.49563086
36.99203277
36.76580875
34.76427448
35.06271848
35.80064773
34.78999228
34.48076803
34.39380299
34.71689802
35.20236417
36.50792724
34.86672543
35.29903037
36.99613185
36.57663156
35.90293181
34.83724893
34.68280317
34.97922293
35.88151513
34.19913409

34.17340812
35.29399353

35.5531939
34.06225785
36.46951825
35.37796243
35.55617235
35.58489387
36.29430701
36.43313984
35.81536694
36.14600529
34.85876497

36.0657051
34.48192565

34.3433566
34.72154888
34.07867329
34.78674821
36.91558514
35.24487022
35.33737619
35.21020655
34.58253473
36.13848735
34.60220495

34.7931466
34.51186334
36.31314468
34.34170525
34.56002492
34.17843323
35.74038893
36.21001741

215

36.8858112
35.90428703
36.52663588
34.80527252
34.17078111
36.91927388
34.07781188
35.22252006
35.16733134
36.64812255
35.34704194
36.82433112
36.96544089
34.51930018
34.70379646
36.25438858
35.02139545
35.85104971
34.85773894
35.57199663
36.86191891
35.69987772
36.10247965
35.88863878
35.85342746
34.52466103

36.29326436
35.75391665
34.12964944
34.55242462
35.35254291
35.24677492
36.91657137
36.53758283

34.3838284
36.22473522
36.79916052
36.51627073
35.12134728

35.3450222
34.24432117
34.48182837
34.89196022
36.82435698
35.18676565
34.08405424
34.56187611
35.59571437
35.07044571
34.99305063
36.03764737
36.09096439

10.7.3 Temperature Test 3

35.32874862
34.25701804
36.897529
36.69979836
36.39174493
35.71913346
35.66459025
35.46516415
34.66899983
36.49132129
34.23445155
35.94883833
36.9562643
35.87499159
35.69793881
36.24359022
35.82033959
36.42694918
34.47248423
34.57019613
35.52831208
36.15500595
36.65604721
36.36255472
35.13882022
34.69460236

T1 T2
84.81573708 85.26525115 84.73167983
86.25608833 84.97892109 85.17282694
85.64501751 85.7006665 84.90142611
85.36581901 86.87118952 84.28051261

216

86.31050858
87.11190394
86.23803536
85.40006441
84.62894217
85.44371909
85.75709544
85.94862996
84.60609972
87.21651704
86.18925167
85.12958597
86.30129524

84.3938645

87.2073417
84.44936228
86.29395299
84.20433468
86.75549719
86.36338709
84.45716534
86.15290531
86.29775453
84.54951278
86.76029439
86.69916199
85.30821225
84.62636097
86.50694512
84.03927225
84.47522223
85.29041764
85.22274103
84.77195745

86.97702046
84.18628674
85.40668873

85.6478893
84.94519383
85.93028508
86.89023557
84.93291309
84.20163319
84.43659964

85.0216351
84.47030111
86.89884944
84.23106419
84.25847465
84.16689419
84.49186015
85.62523617
84.24905846
84.66332767
84.48735668
86.06185629
85.09928244
85.48278354
86.09680553

85.9950739
86.36000953
85.38916895
84.15305691
84.31967619
86.41654051
85.21480747
85.25110857
86.15603714

85.24605357
85.48965636
86.88904128
85.74069581
84.55071868
85.19971828
84.55042834
87.31327737
84.61477354
87.03547961
85.49465631
86.75942664
84.80935437

87.0255265
84.10831271
87.08388975
84.02641528
86.26665291
84.73855838
85.45236499
84.67827463
85.79132049

87.3833923
85.33477971
86.18127754
84.58830431
86.01566622
85.26993229
84.18658875
85.71666518
84.99112158
86.38084569
86.68392503
84.91363624

217

86.68927273

85.6655343
86.16856445
84.40007838
87.18451084

84.5564392
85.16927989
86.61895881
86.20727313
86.27393766
87.11543796

85.1702113
85.291563388
84.25367977
85.11606361
85.19558903
86.63084941
85.32269715
85.35436317
86.50927515
87.14916978

86.1783612
84.22503903
84.01903279
84.68880721

86.4329877

84.3118833
84.66677446
84.75289253
85.94401278
86.19742412
84.72737427
85.96182127
86.09448996

86.91441106
86.74927145
86.25287081

85.0431092
84.13651013
86.31565283
84.05310481
84.79050965

87.3553973
85.39836296
85.83915365
87.39261131
84.12171288
85.12746842
85.99066114

86.0125249
85.21470772

85.5686138
86.75717121
84.60196894
84.07418418
85.61475154
86.92132695

84.7342502
87.45452404
86.82618874
84.80333549
84.19193628
87.29099225
85.31888277

84.1884404
84.76828027

85.8461427
84.25745639

86.7675756
85.33219544
84.16995418
85.63558883

84.3923639
84.31130768
86.84212958
84.58793837
84.39825302
85.33248659
84.75089876
87.49467797

86.3842655
84.21081729
84.01851534
84.13117493
87.14721833
85.92610053

86.11110478
87.49494096

87.2722511
85.80021468
85.73217306
85.91828458
85.58623242
86.94195925
85.69042029
87.43408004
85.32665672
84.77232364
86.08250958
85.79133495
86.28050455
86.63013487

218

84.48263226
85.10092854
86.8084809
87.21160631
85.73404891
86.85818698
85.42547131
87.4119897
84.86817584
84.25150917
86.40907245
85.84178037
85.72857645
84.68446608
84.77938034
86.03676133
85.3098652
85.74209037
87.39382775
86.46329366
85.73461816
85.32079343
85.57222097
84.21437623
86.69421929
84.66210161
86.83546998
85.32684795
84.622761
85.68762717
85.50735491
84.75557611
86.88434983
87.45407591

85.06334211
87.11206389
84.10991128
86.66907549
85.42983132
86.26925569
84.66087212
86.15712071
86.42434899
85.35173592
84.75814061
86.65950658
85.51076144
84.99332188
86.32354632
85.16554155
86.13033787
85.93642995
85.19196001
86.27739248
85.88774181

84.7289444
85.05404454
84.17750814
84.62479819
86.10021611
86.39021227
84.94177688
84.58486913
86.62759579

84.3972089
86.71973264
85.79987549
86.30051131

84.32236329

84.1808134
85.00251619
84.97317487
87.44259853
85.97267192

86.0304362
86.03312112
86.69088479
87.08788691
86.27601589
87.45404847
86.74429667
85.02320471
86.48491604
85.94374461
85.86815533
84.52541724
85.82613395
86.29472611
86.55239258
85.46496665
85.29218208
85.78760543

85.5681421
84.59120604
86.16497931
84.47334381
87.00005309
87.06209297
85.82926684
84.14293946
85.12574096
86.42966626

219

86.97896607
87.18842208
85.21852065
86.79660513
85.18887214
84.11185206
85.10594683
85.3064818
84.82861475
84.84125655
86.08723675
84.69475347
85.44279442
84.61237029
87.39133785
85.32753081
86.45580747
84.79063015
85.00692638
86.78049106
84.22320962
87.29388473
85.56013888
84.15035145
85.47472714
84.94056871
84.5451104
84.07931978
86.48810167
87.13027713
84.59001064
86.49491903
86.008251
86.03662737

85.43950285
85.58779645
84.83932026
86.53783028
85.41654941
84.8693286
85.14612316
85.11610288
87.12400775
84.40618857
87.34764715
84.32126141
84.20212729
85.66054
84.67199953
84.94445885
84.10778056
86.62280807
84.41951121
85.50395801
86.71800784
84.80198733
86.83725055
85.78933921
84.17244843
85.57791857
85.72049903
86.99177498
86.88967269
86.40169454
87.11931822
87.30472472
85.34818826
86.74002238

85.19534668
84.43323496
85.53283254
87.12935594
84.42604047
84.98579062
86.08622969
84.46600108
86.04900212
85.87215613
84.28351137
85.61239786

85.8748683
86.62338649
85.66480791
86.23727641
87.43421599
85.65428352
84.77502884
86.55880282
86.89189781
87.15360514
86.21098913
86.87702709
85.59605837
86.12037398
85.52377581
84.97414789
87.07099099
85.16342605
84.18761106
84.18503767
84.86797184
87.44647807

220

84.03062921
85.94209226
85.30464256
86.34336642
86.10603731
86.58713321
86.84132293
86.48388588
85.08646276
86.50374674
85.31871141
86.35162538
87.09224207
85.21043321
84.33406092
84.53429852
86.26457127
85.11540013
86.59840659
86.28844852
87.30375656
86.54034171
86.04186512
84.71253862
85.19877146
84.33769025
84.23631634
85.396609
85.73315811
86.28732721
85.86479204
85.2244788
86.56666448
84.45825665

87.16065912
84.953134
84.20678249
86.27216459
85.70691611
85.13607817
86.15087367
84.16399716
84.36040106
84.34776936
84.99168077
84.26276781
87.18991201
86.97495417
86.01328312
86.77830301
86.00039694
86.95495552
84.8590288
86.94170899
85.98965883
87.11797297
84.3732599
86.26102573
86.73712676
84.62973096
86.76696343
87.32483929
85.14891373
86.19617397
84.25671454
86.63952374
86.24070695
85.39063536

84.99051386
84.93217343
86.24631739
86.75425418

87.0492291
86.08893855
86.66813875

86.0765979
86.20118487

87.1832152
84.05462388
85.35700902
84.77965927
84.17925752
87.16915766
84.62967975
86.23487824
86.88003603
84.36319652
86.67486818
85.72343576
86.87456833
86.74454417
84.55633167
87.15122039

84.4152004
87.10452999

87.4665568
85.72094896
86.14837589
87.17057327
86.19565713
85.30445285

85.2391313

221

87.47031327
87.48054711
85.85949206
84.54837698
85.42346169
86.96744729
87.02663097
87.37125251
85.95763936
85.47312971
84.78349355
84.14266959
86.23376098
85.13640116
86.17090875
85.03177626
84.21204555
85.54852145
85.22752506
85.08173906

86.6276115
85.79515615
85.91076922
85.57311499
84.58875319

84.0878101
86.25374523
86.69951992
86.74206523
85.65681579
87.08480721
84.04968978
85.57700122
86.67902309

87.43516737
86.22357811
84.97548699
86.11576433
86.06836095
85.62344135
84.28664404
85.31747356
84.78024272
84.15921047
87.40876048
85.62627828
86.17807548
84.05585678
84.20815316
85.61262458
86.39377908
85.66582614
85.85321642
85.30716385
85.26577109
85.24232862
85.39068289
87.05440876
85.96350611
85.17916532
84.59811783
87.13881053
84.26267623
85.29260757
84.86528583
85.94603105

87.4129213
85.08363772

85.93372078
85.75807333
85.43202949
84.62437926

84.9369769
86.75759575
84.36646378
86.40298929
87.49959909
85.44574223
86.10774413
86.72175295
87.39501415

85.1311603
87.25603916
86.94551593
84.99561523
87.12848388
85.94516883
84.40708723
84.84642844
85.79396268
86.04659912
86.61798142
84.03149701
85.88219313
86.03490428
86.48462787
84.05180774
84.47341722
87.29968518
87.31637653
87.24169212
87.06411621

222

86.42902445
85.34266515
84.77399573
87.19253783
85.95636118
85.14359312
86.03494679
84.20817989
85.04012278
84.39652632
87.07264855
85.56278107

84.6410781
86.54761024
86.87668252
87.47301768
85.33764584
85.29718799
85.51731764
87.24017097
84.88063949
86.61261312
86.09613848
84.62603307
87.16229521
85.05494533
86.00241345
84.56812673
84.45366388
86.22222025
84.88763256
84.12847873
85.18192678
85.68961692

84.31748014
85.19903549
85.10190926
84.48477822
84.43247656
86.0386137
85.90978414
85.36477855
86.51947551
86.90104293
86.36623973
84.03659705
86.62321763
85.78183599
87.26886631
86.6894096
86.68941021
86.0638726
85.79592566
86.04379218
84.67867316
85.13069529
87.14934972
86.6107695
86.24541513
84.98135255
84.9945191
87.22009016
84.105372
87.01190616
86.3222618
84.47087853
84.30099142
85.0305728

84.28610107
87.23145624
85.51186406
85.58501415
85.14646319
84.46499067
84.92161253
85.61011732
85.58875784
84.55924995
87.25014637
86.84805184
84.31450918
85.47051602
85.85769597
84.66272503
87.34805998
87.25926527
86.70070451
86.35422015
87.172142
84.74081779
86.8923002
86.74284952
84.40052371
86.76218133
84.67921761
84.23942406
85.73756975
86.63751264
87.13944531
86.05306113
85.69671036
85.2194471

223

87.22718762
86.37438877

85.8898016
87.23261034
84.99783592
84.77195746

86.3429355
86.85308311
84.86238054
85.13358848
86.02803701
87.19038188
86.31891908
84.69925251
84.01447953
86.28943978
86.04105661
87.04800012
85.83521421
84.91634979
84.10764333
84.73103603
84.67906125
85.65815921
84.99589443
87.29061526
87.27580227

84.4181677
87.09016485
84.18009562
84.39798016
86.12064774
84.54019527
87.02968205

85.54552962
85.94873611
85.73742012
86.92845159

86.1583396
86.94740463
84.60354989
85.23589413
84.12783642
84.53027187
87.11240314
87.05580406
86.36171279
86.06729593
87.39308685
87.07950928
85.59274014
86.88633868
86.34261997
84.55832986
86.84979682

87.3844449
85.80013572
87.22457023
87.34054425
85.85426958
84.03828767
86.22939428
86.05478576
84.89365009

87.2771351
86.19189918

87.2095577
84.08223718

85.79110445
86.98423957
86.4751147
86.60649441
85.64242068
84.37532052
87.01027881
87.08777187
87.00513066
84.74339145
84.57578286
86.10554927
86.139271
87.40105155
84.80813883
84.77339912
85.49602766
84.97964346
87.29444396
84.82319919
84.47717791
84.70644754
84.29147319
87.26780563
85.2346406
87.05249309
87.29088621
85.55791618
85.09175217
87.46090079
86.99239277
84.08146553
86.17911931
86.28705916

224

86.8989142
85.46966875
84.08731505
85.70972005
85.65517264
86.96559166
84.46487739
85.22884731
87.18359693
85.06981414
87.17012475
84.66788406
85.05795528
87.42348124
84.79872075
84.09204452
84.55840664
86.86914044
86.23035631
85.70387406
85.74818694
85.69570414

86.71435838
86.93368156
86.29713647
86.62814162
86.93235487
85.90629748
87.46540819
84.90972257
84.48758891
86.70524683
86.25643453
85.76293472
85.01051961

84.9034686
85.85355812
84.99307072
85.24550377
85.72981416
86.94003187

86.4212784
84.13927106
84.36357071

87.29701366
85.00184618
85.34225279
85.33144711

86.1859914
86.15731961
86.29566878
84.92355516
85.80744954
84.04818472
86.36874804
85.92111479
85.25256495
85.32059215
85.51237492
84.72273717
84.86581286
85.61634425
85.01223404
85.95406959
84.99976114
86.19659369

225

10.8 Raw IMU Test Data

Test 1 - X-Axis Test 2 - Y-Axis

0

1
359
359

o O o

90
91
90
89
88
89
91
92
90
88
180
182
177
182
179
181
179
180
180
181
270

1
359
359

o O O -

—_

92
91
88
87
90
90
89
91
92
89
181
181
180
178
178
179
179
180
179
181
271

Test 3 - Z-Axis

o O o

359
359
359

359
89
90
91
92
90
91
88
87
89
88

179

178

180

181

182

180

182

182

181

179

268

226

266
270
272
271
270
269
269
269
271

269
269
269
267
272
271
270
271
270

271
267
270
268
268
279
262
270
267

359

359
359

227

