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Abstract

Most classification rules can be expressed in terms of a distance (or dissimilarity)

from the point to be classified to each of the candidate classes. For example, linear

discriminant analysis classifies points into the class for which the (sample) Ma-

halanobis distance is smallest. However, dependence among these point-to-group

distance measures is generally ignored. The primary goal of this project is to in-

vestigate the properties of a general non-parametric classification rule which takes

this dependence structure into account. A review of classification procedures and

applications is presented. The distance profile nearest-neighbor classification rule is

defined. Properties of the rule are then explored via application to both real and

simulated data and comparisons to other classification rules are discussed.
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Chapter 1

Background

1.1 Introduction

1.1.1 Classification

The statistical problems of discrimination and classification are concerned with char-

acterizing differences between groups and constructing rules for assigning objects of

unknown origin to the correct group. While the two terms are sometimes used in-

terchangeably, discrimination refers to methods for characterizing group separation,

and classification refers to methods for assigning objects to groups. Additionally, it

is important to emphasize that in problems of classification, knowledge is available

about group divisions and the characteristics associated with each group prior to

the analysis. That is tosay, groups are predetermined. This factor distinguishes

classification from clustering, a class of techniques sometimes referred to as unsu-

pervised classification, in which no knowledge is assumed a priori about the groups.

In fact, the goal of clustering is to identify a grouping for these unlabeled objects.

For a review on clustering, see the following references, [Banks et al., 2004] and

[Gnanadesikan et al., 1989].



Methods for classification are generally viewed in two ways. The first view con-

siders a function which maps the multidimensional feature vector X to the classes.

Under this view, the sample space is partitioned into regions and a class is associated

with each region. The second approach is based on estimating the probability that

an object with feature vector X belongs to each of the classes. With prior probabil-

ities of group membership specified (or a assumed equal), classification is based on

posterior probabilities of group memebership [Hand, 1997]. An associated loss or

cost of misclassification can also be incorporated in a decision-theoretic approach.

In all cases, the construction of classification rules requires objects for which the

group is known. These objects are commonly divided into two subsets, the training

set (or training data) which is used to define the rule and the test set (or test data)

which is used for validation.

1.1.2 Notation and definitions

In the g-group classification problem there are g ≥ 2 well-defined groups denoted

by G1, G2, . . . , Gg. A new object is classified into one of these groups based on p

relevant predictor variables (or features) which are denoted by the feature vector

X = {X1, X2, . . . , Xp}. The observed p-dimensional feature vector will be denoted

x and its group by G (x) ∈ {G1, G2, . . . , Gg} [Johnson & Wichern, 2002]. When

the distribution of X for the population defined by each of the g groups can be

assumed to follow a known distribution form, parametric techniques can be used to

allocate new objects into each of the groups. The distribution of x for Gi will be

denoted fi (x), the likelihood of observing x in group Gi.

In order to classify objects of unknown group origin, classification rules are con-

structed which define how objects are to be allocated. As was mentioned previously

these rules can be considered a partitioning of the sample space, where each non-

2



overlapping region is associated with a mutually exclusive group. Thus a classifica-

tion rule Ĝ : X → {1, . . . , g} attempts to estimate the function G : X → {1, . . . , g}

which maps points on the sample space to their correct group.

For example, if the distributions are known, then for the g = 2 case, a common

allocation rule is to classify the object into G1 if f1 (x) > f2 (x) (assuming equal prior

probabilities and cost of misclassification for each group). As a result, parametric

techniques can generally be investigated through the likelihood ratio.

Letting c (1|2) be the cost associated with assigning an object to group 1 that is

really in group 2 and c (2|1) be the cost associated with assigning an object to group

2 that is really in group 1, as well as p1 and p2 be the prior probabilities for each

group, then an object is classified into G1 if f1 (x) ∗ p1 ∗ c (2|1) > f2 (x) ∗ p2 ∗ c (1|2).

This reduces to the classification rule mentioned above for equal costs and equal

priors, by taking the ratio between costs to be 1 and the ratio between priors to be

1. This is all an example of the second approach to classification discussed above

[Johnson & Wichern, 2002].

This can be generalized for a g-group classification. Letting pi denote the prior

probability of objects in group Gi, P (j|i) be the probability of classifying an object

from Gi into Gj, and c (j|i) be the cost associated with classifying an object from

group Gi into Gj, then the density ratio can be utilized where an object is classified

into group i if fi(x)
fj(x)

≥ pj

pi
∗ c(i|j)

c(j|i) for all competing groups j.

Errors

In constructing classification rules, the common objective is to identify a rule which

minimizes the probability of misclassification. That is to say, assigning an object to

an incorrect group. When costs of misclassification are not equal, a the choice of

classification rule should take this into account by attempting to minimize expected
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cost of misclassification, ECM =
∑g

i=1 pi
∑g

j=1j 6=i P (j|i) c (j|i). If the prior proba-

bilities are unknown or complete knowledge is not available, it is common practice

to assume that they are equal. When the cost of misclassification is equal this is

equivalent to minimizing the total probability of misclassification, TPM , or actual

error rate.

However, the distribution of x in each group is assumed to be known for these

criteria, or equivalently that the size of the training and test sets are infinite. The

expected value of this error rate over the sample of fixed size is referred to as the

expected error rate [Hand, 1997]. And the apparent error rate is defined as the

fraction of objects in the sample of known objects that are misclassified by the

classifier and this is commonly used instead because it does not depend on the

distributions [Johnson & Wichern, 2002].

Methods for counting errors, and in particular how to count them for the nearest-

neighbor method, have been investigated thoroughly. Because simple counting may

not be possible if all observations are used in the training data set in order to

determine the best rule possible, other methods have been proposed.

Letting LG be the probability of error for classifier G, then the best classifier

denoted G∗ is defined to be G∗ = argmin
G:X→{1,...,g}LG. G∗ is known as Bayes

classifier or Bayes Rule because G∗ depends on the distributions. When the mini-

mal probability is found denoted LG∗ this is known as Bayes error. Thus the risk

associated with Bayes error is denoted, R∗. As a result, Cover and Hart show that

for large samples where the risk associated with these probabilities is as follows, Rn

is the expectation of the incurred loss and for large samples R = limn→∞Rn, then

R∗ ≤ R ≤ R∗ (2− gR∗/ (g − 1)). The upper bound is important because it shows

that for any number of groups, the probability of error for the nearest neighbor rule

is bounded above by twice the Bayes error probability [Cover & Hart, 1967]
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When comparing the error associated with a single class to that of a group

classification analysis proves very difficult. Single class error depends mainly on

noise, class distribution and distributional dimensions, which tends to be rather

large, while the group classification error, although relying on similar properties,

has a lower error due to overlap [Fukunaga & Flick, 1984].

1.1.3 Common parametric classification methods

The most common parametric classification technique is linear discriminant analy-

sis (LDA). This technique is optimal when the data are multivariate normally dis-

tributed with equal covariance matrices and thus the log-likelihood ratio can be

expressed as a linear function of the x’s. It should be noted however that this

does not have to be the case for LDA to perform well, but it is the best technique

when given that type of data. Similarly quadratic discriminant analysis (QDA) is

the optimal rule for multivariate normal populations with unequal covariances. In

canonical discriminant analysis, or Fisher’s Linear Discriminant Functions (LDF),

common covariance matrices are again assumed and yields the same results as linear

discriminant analysis in the case where g = 2. All of these techniques will perform

reasonably well even if the assumptions about the population specified do not hold

[Johnson & Wichern, 2002]. However, when a parametric distributional form cannot

be assumed, non-parametric techniques for classification, such as nearest-neighbor

methods should also be considered.
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1.2 Nearest-neighbor methods

1.2.1 Initial development

Fix and Hodges are credited with being the first to propose the notion of a nearest-

neighbor classification technique [Fix & Hodges, 1951, McLachlan, 1992]. The nearest-

neighbor rule assigns an unclassified object to the group of the nearest set of already

classified objects. In nearest-neighbor classification an estimate to the posterior dis-

tribution for the classes is based on the proportion of neighbors with a certain class

located in the vicinity of the object under consideration [Hand, 1997]. To start,

consider the case where there are two distinct groups (g = 2), denoted G1 and G2

into which x can be classified. Each of the groups can then have an associated

p-variate probability distribution, say f1 (x) and f2 (x). Using the idea expressed

above that an object is classified into G1 if the probability is greater for it to land

in group 1 as opposed to group 2, f1 (x) > f2 (x), then this is simply an allocation

into a group based on a majority vote. So, parametric techniques can be used when

distributional assumptions are known [Fix & Hodges, 1951].

When the distributions are not known, one way to estimate them is to partition

the sample space into non-overlapping tolerance regions, resulting in data reduction

as in the first approach described above. Tolerance regions are found as functions of

the training set instead. This idea is similar to representing a population through

its sample parameters. By estimating the distributions through the training set, the

data are instead represented through the parameters of the tolerance regions. This

type of a nearest-neighbor method identifies the distance to the kth nearest object

in Gi and assigns the object to the group in which the distance is minimal or nearest

[Patrick & Fischer, 1970].

The major distinction between the two methods described in the previous two

6



paragraphs is as follows. First, Fix and Hodges made comparisons between the linear

discrimination rule to nonparametric discrimination, specifically for small samples.

Second, Patrick and Fisher investigated tolerance intervals (regions), specifically

nonparametric, where a region is defined as a function of the data to obtain the

probability of the next observation being in this region, free from distribution. This

resembles a generalized version of nearest neighbor.

In addition, it has been shown that the nearest-neighbor rule can be modified to

no longer just classify based on the majority, but rather it is also possible to reject a

class instead of just accepting a plausible one through the use of a threshold factor

[Tomek, 1976]. In our study we do not consider a rejection option, but it is possible

to allow for it in further study.

So there are two basic approaches to nearest neighbor described so far. The

first identifies the k nearest objects to the unclassified object and fixes a radius

surrounding them, then allocates the object to the group which contains the largest

proportion of objects within the radius. The second identifies the distance to the kth

nearest object in each group, then allocates the unclassified object into the group

where the distance is the smallest. It should be noted that Goldstein was the one

to restructure the nearest neighbor rule to allow for such comparison of distances

of the test samples to the training samples and classifies based on this nearness

[Dasarathy, 1991].

1.2.2 Further methods

Further generalizations of the nearest neighbor method consider a weighting tech-

nique on observations where closer sample observations are more influential and

yields a smaller rates of misclassification. Thus each point has an associated in-

fluence based on its distance from the observation under consideration. Yet the
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application of this technique to properties involving large sample sets allowed for

further investigation [Dudani, 1976].

A suggestion was made for an alternative definition of neighborhood of a point

in the feature space. By adding a pair of distance and directional constraints, the

voting method can be updated within a contained sphere given a fixed radius, as

opposed to the usual fixing of the radius based on the selection of nearest neighbors

chosen [Dasarathy, 1991].

1.2.3 Selection of k

In estimation of any sort, there is always an issue with maintaining a balance between

variance and bias. Since over fitting to the data will lead to more bias, however under

fitting will increase the variance while decreasing the bias, it is preferable to find

the case that allows for an even trade off of both. In nearest-neighbor methods,

a larger k will cause less variance in estimating the probability but may lead to a

higher bias in estimating fi (x) [Hand, 1997]. Most work began with simply the

1-NN rule but with the introduction of the 2-NN rule, it was demonstrated that in

fact the 2-NN rule was much of an improvement in that it resulted in fewer errors

and further provided advances to 2k-NN rules and using more than just two classes

[Dasarathy, 1991].

Previously, Fix and Hodges’s method simply assigned classes arbitrarily when

ties resulted; however, a technique was developed to handle the allocation of ties

in a more systematic manner. Through exploration in the voting method under

the 2k-NN rule with two classes, the suggestion arose to choose a lower odd-

numbered (2k-1)NN rule that can provide results as good as those for large samples

[Dasarathy, 1991].

So, when the value of k is large, each individual sample observation within the
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training set has less influence, and leads to a robust design; however, k is restricted

and larger k require more computational time. It has been suggested that the best

way to find k, is to first test many possible choices and then compare to already

classified observations to observe how well it performs [Dasarathy, 1991]. While

many of these techniques focus primarily on the two group case, application of these

methods can be generalized to the multigroup case.

1.2.4 Sample size selection

Most of the techniques and properties mentioned hold when sample sizes are large.

In fact, after their initial publication, Fix and Hodges implemented their procedures

for smaller sample sizes, which called into question some of their initial assumptions

[Fix & Hodges, 1952]. Sample size selection is always an important task in that too

few sample observations will result in a poor rule, while obtaining a sample large

enough to employ the notions above may not be feasible. In terms of storage and

computational time, efficiency also needs to be considered. Certain constraints on

data sets and how to employ sample size selection have been investigated. It has

been suggested that how quickly the error rate converges to R and the loss associated

are both fundamental aspects to consider in the selection of sample size of data to

be used [Peterson, 1970]. The very specific case where small sample sets are drawn

from uniform distributions has been explored. In this case, the errors are close to R∗

even with small sample sizes, but results are best when sample sizes are nearly equal

[Dasarathy, 1991]. When considering unequal sample sizes for different classes the

bias created was considered and another weighting technique employed which in

essence changes the metric [Dasarathy, 1991]. The idea of applying penalties has

been seen for many other areas and not just classification on how to handle bias and

variance issues, so this idea expands across other areas of statistics.
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It was verified that in fact the training set should contain elements in direct pro-

portion as those found under the practical situations and thus deemed that the train-

ing set should be fully representative, which is somewhat obvious [Dasarathy, 1991].

That is to say, taking unrepresentative samples will lead to poor results.

1.2.5 Dimensionality

Because it becomes very difficult to conceptualize classification problems in higher-

dimensions and in many instances the groups cannot be easily separated, it is nec-

essary to reduce nearest-neighbor problems to a realm that can be handled more

easily and distinctly. Methods have already been inspected to estimate the re-

quired dimensions of the feature characteristics in order to determine the appro-

priate number of features to represent data and provide a possible reduction in

dimensions [Pettis & Dubes, 1979]. At higher dimensions finding the Bayes error

rate, R, may not be adequately performed simply by increasing the sample size.

Instead, it has been suggested that the relationship between the bias and sample

size should be used to estimate the error by first finding the mean error for sev-

eral sample sizes and then extrapolating the Bayes estimate from the relationship

[Fukunaga & Hummels, 1987].

1.2.6 Alternative methods

Discriminant Adaptive Nearest Neighbor

In higher dimensions, the bias results because the nearest neighbor may in fact

be far away. Through adaptation of the distance metric, the bias may decrease

while leaving the variance the same, and thus such a technique can be advanta-

geous over previously considered methods. One such technique is the discriminant
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adaptive nearest-neighbor (DANN) [Hastie & Tibshirani, 1996]. The metric is ad-

justed at each point under consideration denoted x0 based on the class distribu-

tion surrounding it developed from a neighborhood of some fixed set of points and

then the adapted metric is used for the nearest-neighbor rule. The DANN metric

at each point x0 can be defined as D (x,x0) = (x− x0)
T Σ (x− x0) where Σ =

W−1/2
[
W−1/2BW−1/2 + εI

]
W where W is the pooled within-class covariance

matrix
∑K

k=1 πkW k and B is the between class covariance matrix
∑K

k=1 πk (x̄k − x̄) (x̄k − x̄)T ,

both computed only using the neighborhood of fixed points. This metric is the one

that is then used in the nearest-neighbor rule for x0. In general ε = 1 because it is the

parameter used to prevent using points “too far away” from x0 [Hastie et al., 2001].

Support Vector Machines

When classes overlap it is difficult to apply a linear classification rule to separate

them. With support vector machines (SVM) a nonlinear boundary is determined

through construction of a linear boundary in a transformed feature space. In the

g=2 case, the classification rule is constructed as follows: Let the training data

consist of n pairs, (x1, y1) , (x2, y2) , . . . , (xn, yn) where xi ∈ <p and yi ∈ {−1, 1}.

Defining a hyperplane as x : f (x) = xT β + β0 = 0 where β is a unit vector. The

classification rule is then G (x) = sign
[
xT β + β0

]
. It is desired that the hyperplane

that allows for the largest possible margin between training points for class 1 and −1

be determined. When overlap amongst classes occurs, it is still desired to optimize

the margin, however, the definition is relaxed and some points may be allowed to

cross over into the margin region while still bounding the sum of all the propor-

tional amounts by which the predicted observations are on the the wrong side of

the margin. So with SVM, the observations that are clearly inside their boundary

do not influence the formation of the boundary and instead the boundary is more
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determined by the observations that are close to it where as with linear discrimi-

nant analysis the structure of the covariance matrix influences boundary formation

[Hastie et al., 2001]. For a more thorough analysis of the comparison and contrast

between support vector machines and linear discriminant analysis see the article by

Gokcen and Peng [Gokcen & Peng, 2002].
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Chapter 2

Distance profile nearest-neighbor

classification

2.1 Nearest-neighbor classification rules

For a general g-group classification problem, xij denotes the observed p-dimensional

feature vector for the jth training sample in the ith group where i = 1, . . . , g, j =

1, . . . , ni. To clarify the two approaches to nearest neighbor discussed previously,

with the first approach to identify the distance to the kth nearest object in group i

for each i = 1, . . . , g. assign x to the group in which the distance is the smallest.

Since nearest neighbor classification first identifies the nearest objects of previously

determined classes, it is important to distinguish what qualifies an object as being

“nearest” and which distance function is applied. The second is to identify the kth

closest xij and fix a radius surrounding the p-dimensional feature vector x that

extends out as far as that kth closest object. Next, assign x to the group that

contains the most objects within the fixed radius.

For the first approach, first let dij(X) denote the distance between each xij and
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x. For example, if distance in the p-dimensional feature space is measured using the

Euclidean metric then

dij (X) =
√

(xij −X)′ (xij −X).

So x is assigned to the group for which dij(x) is the smallest.

For the second approach the distance is fixed within some sphere. In higher

dimensions this approach gets more complicated as was discussed in the section on

discriminant adaptive nearest-neighbor method. See Section 1.2.6. This time the

distances are ordered within each group. So, let di(j) (X) denote the distance from

X to its jth nearest neighbor in group i such that for each i = 1, . . . , g

di(1)(X) < di(2)(X) < · · · < di(ni)(X)

are the order statistics of di1(X), di2(X), . . . , dini
(X).

This type of k-nearest-neighbor classifier identifies the k nearest training samples

to x and classifies it into the group which contains the largest number of the k

nearest neighbors. These methods can also be modified to allow for the situations

where distance is measured to the kth nearest neighbor in each group or the average

distance to the kth nearest neighbors in each group is found.

For R code that performs an algorithm for nearest-neighbor see Appendix A.

2.2 Advantages and disadvantages

However, these methods are not without their limitations and are based on some

assumptions. Although, nearest neighbor is distribution free and the classifier then

has no explicit functional form, it is very difficult to check the assumption that the
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distribution is locally constant near x. Also, the choice of the distance function

must be taken into consideration. It must be appropriate and meaningful. For ex-

ample, Euclidean distance is usually the default choice but may not be appropriate

as in such cases where the variables are of very different magnitudes and must be

standardized first. Also, distances in high dimensions becomes complicated and as-

signing one object to be nearer than other gets blurred because as p gets increasingly

larger the ratio of nearest to furthest neighbors approaches 1.

2.3 Classification via interpoint distance profiles

To address these specific problems with the k-NN classifier an alternative classifier

is proposed. The g-dimensional distribution group-distance space classification is

made as classification via interpoint distance profiles. This will be referred to as

distance profile nearest-neighbor (DPNN). For R code that performs the algorithm

for distance profile nearest-neighbor exlpained below, see Appendix A.

Let Di(X) denote the distance between X and group i. For example, if the

distance from an object,x, to group i is defined as the distance to its first nearest

neighbor in group i then Di(x) = di(1)(x). This roughly corresponds to the concept

of single linkage in cluster analysis.

Once Di is defined for each of the groups i = 1, . . . , g, the g-dimensional group

distance profile for X is denoted by D(X) = [D1(X), D2(X), . . . , Dg(X)]. Fur-

thermore, the g-dimensional distance profiles for each of the training samples is

denoted by Dij = [D1(xij), D2(xij), . . . , Dg(xij)], for i = 1, . . . , g and j = 1, . . . , ni,

where xij is ignored when computing Di(xij).

An alternative to this is examined in order to draw inferences about this method.

Instead of obtaining distance profiles based on measuring the distance to each group,
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when the class is already known for an observation xij, xij is included in the mea-

surement to its own class creating a distance of 0 in that distance profile and thus

xij is not ignored when computing Di(xij). This will be referred to as anchored

distance profile nearest-neighbor (anchored DPNN). For R code that performs the

algorithm for anchored distance profile nearest-neighbor see Appendix A.

So, δij(X) denotes the distance between Dij and D(X). For example, if distance

in the g-dimensional distance-profile space is measure by the Euclidean metric then

δij (X) =
√

(Dij −D(X))′(Dij −D(X))

Letting δi(j) (X) denote the distance from D(X) to its jth nearest distance-

profile neighbor in group i such that for each i = 1, . . . , g

δi(1)(X) < δi(2)(X) < · · · < δi(ni)(X)

are the order statistics of δi1(X), δi2(X), . . . , δini
(X) then the proposed k-nearest

distance profile neighbor classifier would classify X into the group that contains the

most k nearest distance-profile neighbors.
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Figure 2.1: Graphical Representation of Distance Profile for unlabeled observation
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Figure 2.2: Graphical Representation of Distance Profile notation
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Chapter 3

Applications of classification

Classification has many applications in the life sciences, social sciences, computer

applications, business, and forensic investigations. Major applications include di-

agnostic testing, decision making, and pattern recognition. In this chapter, there

will be a discussion on the following topics. In terms of diagnostic testing, the liver

disorder data shows an application of classification into the diagnosis of medical

conditions, in particular liver disorders. With the dermatology data, another med-

ical application arises for classification in disease diagnosis. The diabetes data also

shows another medical application for classification to determine the possiblility for

disease development. Another medical application and the associated risk involved

with development of cancer arises with the breast cancer data. The hepatitis data

demonstrates a motivation for classification by how it is applied to determine the

impact of a disease on life or death, thus tying into the next category of decision

making. For decision making, the contraceptive method data demonstrates an ap-

plication of classification as to the effectiveness of certain methods of birth control

as a means of socioeconomic development and how it can be used to motivate de-

cisions in marketing and product availability. From a biological view, classification
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can be implemented as demonstrated with the iris data in species classification. The

ionoshpere data shows how classification is a technique that can be applied to fre-

quency transmission for communication and governmental defense to aid in decision

for strategical purposes. The sonar data set is another application of classification

for military purposes to aid in decisions concerning defense. Finally, the voting

data demonstrate classification use in political aspects used to make decision in ac-

cordance with political agendas. Pattern recognition is a third form of motivation

with applying classification. It is represented by the vowel data which shows how

classification can be used to help improve aspects of communication through speech

recognition.

3.1 Diagnostic testing

3.1.1 Liver disorders

The liver disorders data contains entries to determine if certain liver disorders

arise due to excessive alcohol consumption. It is one of many databases found

at [D.J. Newman & Merz, 1998]. The dataset contains a total of 345 observations

and no observations were removed. There are 2 classes with 145 observations from

the {1} class, and 200 observations from the {2} class. It appears that consump-

tion of more than 5 drinks daily is some sort of a selector for the classes. There

are a total of 6 predictor variables all of which are continuous. The 6 predictors

are (1) mean corpuscular volume - (mcv), (2) alkaline phosphotase - (alkphos),

(3) alamine aminotransferase - (sgpt), (4) aspartate aminotransferase - (sgot), (5)

gamma-glutamyl transpeptidase - (gammagt), and (6) number of half-pint equiva-

lents of alcoholic beverages consumed per day - (drinks). For a complete description

of this data set, see under PC-Beagle Users Guide the BUPA Medical Research Ltd.
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database maintained by Richard S. Forsyth.

3.1.2 Dermatology

The dermatology data was obtained to identify the problem with diagnosing cer-

tain dermatological diseases because they all share the clinical features of erythema

and scaling with very little differences. It is one of many databases found at

[D.J. Newman & Merz, 1998]. The dataset contains a total of 366 observations;

however once all missing entries were removed only 358 remained. There are 6

classes with 111 observations from the psoriasis {1} class, 60 observations from the

seboreic dermatitis {2} class, 71 observations from the lichen planus {3} class, 48

observations from the pityriasis rosea {4} class, 48 observations from the chronic

dermatitis {5} class, and 20 observations from the pityriasis rubra pilaris {6} class.

There are a total of 34 predictor variables, where 32 are categorical having integer

values ranging from 0 to 3, 1 is binary, and 1 is continuous.

3.1.3 Diabetes

The Pima Indians diabetes data was obtained from the National Institute of Di-

abetes and Digestive and Kidney Diseases. It is one of many databases found at

[D.J. Newman & Merz, 1998]. The dataset contains a total of 768 observations and

no observations were removed. There are 2 classes with 500 observations from the

negative for diabetes {0} class, and 268 observations from the positive for diabetes

{1} class. There are a total of 8 predictor variables all of which are continuous. The

8 predictors are (1) Number of times pregnant, (2) Plasma glucose concentration a

2 hours in an oral glucose tolerance test, (3) Diastolic blood pressure in mm Hg, (4)

Triceps skin fold thickness in mm, (5) 2-Hour serum insulin in mu U/ml, (6) Body

mass index in kg/m2, (7) Diabetes pedigree function, and (8) Age in years. For a
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complete description of this data set, see its past usage in [Smith & Johannes, 1988].

3.1.4 Breast cancer

The breast cancer data was obtained from the University of Wisconsin Hospitals,

Madison from Dr. William H. Wolberg. It is one of many databases found at

[D.J. Newman & Merz, 1998]. The dataset contains a total of 699 observations;

however once all missing entries were removed only 683 remained. There are 2

classes with 444 observations from the benign {2} class and 239 observations from

the malignant {4} class. There are a total of 9 predictor variables, all of which are

categorical and each has integer entries that range from 1 to 10. The 9 predictors

are (1) Clump Thickness, (2) Uniformity of Cell Size, (3) Uniformity of Cell Shape,

(4) Marginal Adhesion, (5) Single Epithelial Cell Size, (6) Bare Nuclei, (7) Bland

Chromatin, (8) Normal Nucleoli, and (9) Mitoses. For a complete description of

this data set, see its past usage in [Michalski & Lavrac, 1986].

3.1.5 Hepatitis

The hepatitis data was donated by G. Gong at CMU. It is one of many databases

found at [D.J. Newman & Merz, 1998]. The dataset contains a total of 155 obser-

vations; however once all missing entries were removed only 80 remained. There are

2 classes with 13 observations from the die {1} class and 67 observations from the

live {2} class . There are a total of 19 predictor variables, where 13 are binary, 5

are categorical and 1 is continuous. For a complete description of this data set, see

its past usage in [Diaconis & Efron, 1983] or [G. Cestnik & Bratko, 1987].
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3.2 Decision making

3.2.1 Contraceptive method

This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence

Survey. The samples are married women who were either not pregnant or do not

know if they were at the time of interview. The detail of interest is to examine

the current contraceptive method choice (no use, long-term methods, or short-term

methods) of a woman based on her demographic and socio-economic characteristics

in order to examine economic development and make decisions accordingly. It is one

of many databases found at [D.J. Newman & Merz, 1998]. The dataset contains a

total of 1473 observations and no observations were removed. There are 3 classes

with 629 observations from the no use {1} class, 333 from the long term use {2}

class and 511 observations from the short term use {3} class. There are a total of

9 predictor variables, some of which are categorical, some of which are binary and

some of which are continuous. The 9 predictors are (1) Woman’s age (continuous),

(2) Woman’s education (categorical having integer values ranging from 1 to 4),

(3) Husband’s education (categorical having integer values ranging from 1 to 4), (4)

Number of children ever born (continuous), (5) Wife’s religion (binary : Islam, Non-

Islam), (6) Woman’s work status (binary), (7) Husband’s occupation (categorical

having integer values ranging from 1 to 4), (8) Standard-of-living index (categorical

having integer values ranging from 1 to 4), and (9) Media exposure (binary). For a

complete description of this data set, see its past usage in [Lim & Shih, 1999].

3.2.2 Iris

This is perhaps the best known database to be found in the pattern recognition

literature. Fisher’s paper is a classic in the field and is referenced frequently to
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this day. It is one of many databases found at [D.J. Newman & Merz, 1998]. The

dataset contains a total of 150 observations and no observations were removed.

There are 3 classes with 50 observations from the Setosa {1} class, 50 observations

from the Versicolour {2} class, and 50 observations from the Virginica {3} class.

There are a total of 4 predictor variables all of which are continuous. The 4 predictors

are (1) sepal length in cm, (2) sepal width in cm, (3) petal length in cm, and (4)

petal width in cm. For a complete description of this data set, see its original

introduction in [Fisher, 1936].

3.2.3 Ionosphere

This radar data was collected by a system in Goose Bay, Labrador. This system

consists of a phased array of 16 high-frequency antennas with a total transmitted

power on the order of 6.4 kilowatts. The targets were free electrons in the ionosphere.

It is one of many databases found at [D.J. Newman & Merz, 1998]. The dataset

contains a total of 351 observations and no observations were removed. There are 2

classes with 126 observations from the bad (b) {1} class and 225 observations from

the good (g) {2} class. The were 34 predictor variables in the original data set;

however, one was removed because all the entries were zero and caused problems.

The remaining 33 predictors are all continuous. For a complete description of this

data set, see its past usage in [Sigillito & Baker, 1989].

3.2.4 Sonar

This data was contributed by Terry Sejnowski, now at the Salk Institute and the

University of California at San Deigo. The data set was developed in collaboration

with R. Paul Gorman of Allied-Signal Aerospace Technology Center. It is one of

many databases found at [D.J. Newman & Merz, 1998]. The dataset contains a
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total of 208 observations and no observations were removed. There are 2 classes

with 11 observations from the mine (M) {1} class and 97 observations from the

rock (R) {2} class. There are a total of 60 predictor variables with values that lie

in the range of 0.0 to 1.0. Each number represents the energy within a particular

frequency band, integrated over a certain period of time. Two different extractions

were performed based on the two different papers. The first was to use the 60% for

training data and 40% for testing data, however the second was a strict allocation

of 104 observations to each set. For a complete description of this data set, see its

past usage in [Gorman & Sejnowski, 1988].

3.2.5 Voting

This data set includes votes for each of the 1984 U.S. House of Representatives Con-

gressmen on the 16 key votes identified by the CQA contributed by Jeff Schlimmer.

It is one of many databases found at [D.J. Newman & Merz, 1998]. The dataset

contains a total of 435 observations; however once all missing entries were removed

only 232 remained. There are 2 classes with 124 observations from the democrat

{1} class and 108 observations from the republic {2} class. There are a total of

16 predictor variables as mentioned above, all of which are binary. For a complete

description of this data set, see its past usage in [Schlimmer, 1987].

3.3 Pattern recognition

3.3.1 Vowel

The vowel data was obtained through the connectionist benchmark of [D.J. Newman & Merz, 1998].

The dataset contains a total of 990 observations and no observations were removed.
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There are 11 classes, as speaker independent recognition of the eleven steady state

vowels of British English. For each utterance, there are ten floating-point input val-

ues, so there are a total of 10 predictor variables. The vowels appear in the following

words: heed, hid, head, had, hard, hud, hod, hoard, hood, who’d, heard. For a com-

plete description of this data set, see its past usage in [Rabiner & Schafer, 1978].
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Table 3.1: Characteristics of data from UCI repository

Data Number of Number of Observations Type of predictor
Observations within (categorical

(without each class (binary,integer)
missing or continuous
entries)

liver 345 1 - 145 All 6 predictors are continuous
2 - 200

derm 358 1 (psoriasis) - 111 33 predictors are categorical,
2 (seboreic dermatitis) - 60 1 predictor (age)
3 (lichen planus) - 71 is numeric integer
4 (pityriasis rosea) - 48
5 (cronic dermatitis) - 48
6 (pityriasis rubra pilaris) - 20

diabetes 768 0 (negative for diabetes) - 500 All 8 predictors are continuous
1 (positive for diabetes) - 268

cancer 683 2 (benign) - 444 All 9 predictors are categorical
4 (malignant) - 239

hep 80 1 (die) - 13 13 predictors are binary,
2 (live) - 67 5 predictors are categorical,

1 predictor is continuous
contra 1473 1 (no use) - 629 4 predictors are categorical,

2 (long term) - 333 3 predictors are binary,
3 (short term) - 511 2 predictors are numeric integer

iris 150 1 Iris Setosa - 50 All 4 predictors are continuous
2 Iris Versicolour - 50
3 Iris Virginica - 50

ion 351 1 b (bad) - 126 All 33 predictors are continuous
2 g (good) - 225 (2nd predictor from original data

removed because all 0 entries)
sonar 208 1 M (mine) - 111 Each observation is a set

2 R (rock) - 97 of 60 numbers in the
range 0.0 to 1.0

vote 232 1 democrat - 124 All 16 predictors are binary
2 republic - 108

vowel 990 eleven steady state vowels All 10 predictors are numeric
train: 528 of British English floating point input values
test: 462 using a specified training set

of lpc derived log area ratios
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Chapter 4

Simulations

In addition to the UCI data, simulations were run in order to compare different

methodologies and see which technique performs best under different situations.

The following simulations were again replicated to resemble those performed by

Hastie and Tibshirani in their attempt to compare their adaptive nearest neighbor

classification technique with other nearest neighbor methods available at that time

[Hastie & Tibshirani, 1996]. As with the UCI data, training and testing samples

were randomly extracted for each simulation 20 times. The goal was to see how the

technique using distance profiles compares under the following conditions: (1) intro-

duction of noise into the data sets and the results produced for each of the methods

as compared to the results of the methods for the data sets containing only the

given predictors, (2) increasing the number of predictors and the effect on method

performance, and (3) the effect multimodality on the methods. Through these simu-

lations, traits suggested by the UCI data could be examined more thoroughly as well

as other characteristics often observed in practice not already recognized through

this collection of data. See Appendix B for the generation of the data.
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4.1 Two bivariate normal classes

This set contains two classes with two predictors, (X1, X2). Each class is bivariate

normal separated by 2 units in X1 and the predictors have variance (1, 2) and corre-

lation 0.75. Training set size was 200 total observations, 100 observations per class,

and test set size was 500 total observations.

4.2 Two bivariate normal classes with noise

This set contains the same simulation as in Simulation 1, but with the introduction

of noise. In addition to that contained in Simulation 1, 14 additional predictors

were added each having an independent standard Normal distribution. Training set

size was 200 total observations, 100 observations per class, and test set size was 500

total observations.

4.3 Four multimodal classes

This set contains four classes each with three independent subclasses that are bivari-

ate normal thus containing two predictors. The means of the subclasses are chosen

at random without replacement from the integers [1, 2, . . . , 5]× [1, 2, . . . , 5] and the

standard deviation for each subclass is 0.25. Training set size was 240 total obser-

vations, 20 observations per subclass, and test set size was 480 total observations.

4.4 Four multimodal classes with noise

This set contains the same simulation as in Simulation 3, but with the introduction

of noise. In addition to that contained in Simulation 3, 8 additional predictors were
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added each having an independent standard Normal distribution. Training set size

was 240 total observations, 20 observations per subclass, and test set size was 480

total observations.

4.5 Four dimensional Gaussian sphere with noise

This set contains two classes with ten predictors, with the last six predictors being

noise variables each with an independent standard Normal distribution. The first

four predictors of class 1 are independent standard Normal conditioned on the radius

being greater than 3 while the first four predictors of class 2 are independent stan-

dard Normal without any restrictions. Training set size was 200 total observations,

100 observations per class, and test set size was 500 total observations.

4.6 Ten dimensional Gaussian sphere

This set contains the same simulation as in Simulation 5, but the restrictions on

class 1 change. All of the predictors in class 1 are independent standard Normal

conditioned on the radius being greater than
√

22.4 and less than
√

40 while all of

the predictors of class 2 are independent standard Normal without any restrictions.

Training set size was 200 total observations, 100 observations per class, and test set

size was 500 total observations.

4.7 Four multivariate normal classes

This set contains four classes with six predictors. Each predictor was independent

standard Normal, while the class probabilities were 0.1, 0.2, 0.2, and 0.5 respec-

tively. Training set size was 100 total observations, and test set size was 500 total
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observations.

4.8 Two completely separable classes

This set contains two classes with ten predictors. The predictors in class 1 were

independent standard Normal, while the predictors in class 2 were independent

normal with mean
√

j/2 and variance 1/j for j = 1, 2, . . . , 10. Training set size was

200 total observations, 100 observations per class, and test set size was 500 total

observations.

4.9 Comparison of Gaussian and uniform spheres

After observance of performance on the data sets and simulations suggested from the

literature, further simulations were performed to make inferences about certain char-

acteristic traits of the data under certain methods. In particular, nearest neighbor

distance profile performance was measured to compare the distributional character-

istics of the populations. Classes from normal distributions and classes with data

uniformly spread within a sphere were compared. Under each distribution the in-

fluence of the number of predictors was examined as well as the distinguishability

between classes at certain distances apart.
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Chapter 5

Results

5.1 Data from UCI repository

This section summarizes and compares the results obtained by applying DPNN, NN,

LDA, and SVM methods for data from the UCI Repository of Machine Learning

[D.J. Newman & Merz, 1998]. Error rates were calculated based on the misclassi-

fication rate of each method to provide inferences as to the performance of each

method.

From each dataset, training and testing samples were selected 20 times randomly,

then standardized. Thus the boxplots for the error rates are based on the 20 errors

obtained in each case. All missing observations were removed from each dataset and

then standardized to the training data by subtracting the mean then dividing by the

standard deviation of each variable in the training sample to obtain the standard-

ized values. The training set was created by randomly allocating 200 observations

from the original data and then randomly selecting 200 out of the remaining obser-

vations and placing those in the testing set for any dataset that contains over 400

observations. For datasets that contain fewer than 400 observations, 60% of the ob-
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servations were randomly allocated to the training data and 40% of the observations

to the testing data. The training and testing samples were randomly extracted 20

times from each of the UCI data. This was done in accordance with the methods

performed by Hastie and Tibshirani [Hastie & Tibshirani, 1996] as well as Gokcen

and Peng [Gokcen & Peng, 2002] on these particular datasets for the purpose of

method comparisons.

The first graph in each section displays the error rates for the following methods

as denoted by the following:

d denotes the method using anchored distance profiles in which the class is known

for each element in the training set and the distance to that class is 0 for the

training set, then used to compare the distance profiles for the testing set. This

method was used solely as a basis for performance comparison and is not an actual

method discussed. Thus, dk1k2 denotes measuring distance from each object to

group using the k1 nearest neighbor from the other groups and then using the k2

nearest distance profile. dp denotes the method using distance profiles in which

the class is unknown for each element in the training set and the distance to that

class is based on a nearest neighbor in that class for the training set, then used to

compare the distance profiles for the testing set. This method is classification via

DPNN. Thus, dpk1k2 denotes measuring distance from each object to group using

the k1 nearest neighbor from the other groups and then using the k2 nearest distance

profile. knn denotes the method of NN. Thus, knn1 denotes classification based on

the first nearest neighbor and knn5 denotes classification based on the fifth nearest

neighbor. lda denotes the method of linear discriminant analysis. svm denotes the

method of support vector machines. Then, a representation of the data is displayed

both as a multidimensional scaling of the data in its the feature space based on its

p-characteristics and as it appears in distance space based on its distance profiles.
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5.1.1 Liver disorders

In the BUPA liver disorders data, it is obvious that LDA performs well. This results

because each of the classes contain only continuous predictor elements and thus are

from a continuous distribution model, possibly multivariate normal, which is, as

stated earlier, when LDA works most effectively. It is surprising, however, that LDA

works so well given that the data is not easily linearly separable. SVM does well also

though which indicates that linear separation works well for data of this type. It is

important to note that nearest neighbor methods, knn, perform in a similar manner

to the distance profile methods, dp, in that larger nearest neighbors cause higher

error rates. (See Figure 5.1). In the multidimensional scaling representation of this

data, it can be observed that the two classes are not linearly separable; however,

this may be a result of an outlying observation at around (-250,30). (See Figure

5.2). The distance profiles show no evidence that the data appears closer to any

one group over another, and thus supports why LDA is still more effective in this

instance. (See Figure 5.3).

5.1.2 Dermatology

For the dermatology data, the distance profile method works rather well compared to

the other methods, especially the distance profile that uses the fifth nearest neighbor

to measure point to group distance and then the fifth nearest neighbor to measure

group to group distance. This is an instance in which there are multiple classes as

well as a larger number of predictors that are primarily categorical. It is important

to note that nearest neighbor methods, knn, perform in a similar manner to the

distance profile methods, dp, in that smaller nearest neighbors cause higher error

rates. (See Figure 5.4). In this dataset, it appears that the groups could be linearly
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Figure 5.1: Boxplots of error rates for liver disorder data

Figure 5.2: Scatterplot of multidimensional scaling representation of liver disorders
data in feature space with points in black corresponding to group 1 and points in
red corresponding to group 2
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Figure 5.3: Scatterplot of liver disorders data in distance space with points in black
corresponding to group 1 and points in red corresponding to group 2

separated from the rest, which is why LDA works relatively well also. However, there

are multiple classes and with multiple dimensions, which hinders the effectiveness of

the LDA method. (See Figure 5.5). In the distance profile representation of the data

the groups are relatively differentiable with some overlap, hence why the distance

profile method using first nearest neighbors for both distance measures is not as

effective, but the higher order nearest neighbors work better. (See Figure 5.6). It is

really difficult though to see any real differences between the methods though.

5.1.3 Diabetes

In the Pima Indians diabetes data the DPNN method performs relatively poorly.

(See Figure 5.7). When removing the fifth predictor, it performs reasonably similar

to the rest of the other methods, (see Figure 5.8), although this is not evident in the

multidimensional scaling representation of the data due to outlying observations.

However, if there is some overlap of the groups they are relatively differentiable.
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Figure 5.4: Boxplots of error rates for dermatology data

Figure 5.5: Scatterplot of multidimensional scaling representation of dermatology
data in feature space with points in black corresponding to group 1, points in red
corresponding to group 2, points in green corresponding to group 3, points in blue
corresponding to group 4, points in cyan corresponding to group 5 and points in
magenta corresponding to group 6
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Figure 5.6: Scatterplot of multidimensional scaling representation of dermatology
data in distance space with points in black corresponding to group 1, points in red
corresponding to group 2, points in green corresponding to group 3, points in blue
corresponding to group 4, points in cyan corresponding to group 5 and points in
magenta corresponding to group 6

(See Figure 5.9). As observed from the graphical representation of the data in

feature space, an oddity occurs where all of the data bunches up toward the end

of the MDS[,1] axis. This is influenced by the fifth predictor in the data and can

be remedied by its removal as seen in Figure 5.10. However, on the original data

set, the distance profiles are sensitive to the overlap caused by the predictor and

thus the two groups are essentially non distinct in the distance space, making the

distance profile method perform poorly. There is an observation in distance space

near (110, 250) which may in fact be a nearest neighbor distance profile causing the

tailing observations to be pulled toward or away from a certain group. (See Figure

5.11). Even after removing the fifth predictor, there is not much improvement in

distance space due to the presence of outliers. (See Figure 5.12).
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Figure 5.7: Boxplots of error rates for diabetes data

Figure 5.8: Boxplots of error rates for diabetes data with fifth predictor removed
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Figure 5.9: Scatterplot of multidimensional scaling representation of diabetes data
in feature space with points in black corresponding to group 0 and points in red
corresponding to group 1

Figure 5.10: Scatterplot of multidimensional scaling representation of diabetes data
with fifth predictor removed in feature space with points in black corresponding to
group 0 and points in red corresponding to group 1

40



Figure 5.11: Scatterplot of diabetes data in distance space with points in black
corresponding to group 0 and points in red corresponding to group 1

Figure 5.12: Scatterplot of diabetes data with fifth predictor removed in distance
space with points in black corresponding to group 0 and points in red corresponding
to group 1
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5.1.4 Breast cancer

In the Wisconsin breast cancer data, all methods perform relatively the same. (See

Figure 5.13. It is evident from the multidimensional scaling representation that the

two classes are essentially separated, while the spread of the two classes differs. (See

Figure 5.14). Representation of the data in distance space yields surprising results,

in the structuring of one class into what appears to be levels. That may be caused by

the fact that for the Benign group the mitosis predictor has integer values primarily

assigned as category one. (See Figure 5.15).

Figure 5.13: Boxplots of error rates for breast cancer data

5.1.5 Hepatitis

In the hepatitis data, all methods are essentially equivalent except for LDA which

performs poorly in comparison with the rest of the methods. For this dataset, the

predictors are mostly binary and categorical. It is important to note that nearest

neighbor methods, knn, perform in a similar manner to the distance profile methods,

42



Figure 5.14: Scatterplot of multidimensional scaling representation of breast cancer
data in feature space with points in red corresponding to group 2 and points in blue
corresponding to group 4

Figure 5.15: Scatterplot of breast cancer data in distance space with points in red
corresponding to group 2 and points in blue corresponding to group 4
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dp, in that larger nearest neighbors cause higher error rates. (See Figure 5.16).

The distance profiles display that the distance to each group is almost the same

regardless of which group the element actually belongs to. This is why the distance

profile method offers no additional improvement over NN. (See Figure 5.18).

Figure 5.16: Boxplots of error rates for hepatitis data

5.1.6 Contraceptive method

For the contraceptive method choice data, it does not appear that using distance

profiles offers much of an advantage over NN and in fact LDA is again a more effective

method. While there are some categorical and binary elements to the predictors in

this case, the continuous elements as well as the linear separability of the data may

be the reason for gaining more advantageous results using LDA. (See Figure 5.19).

From the multidimensional scaling representation of the data it is not clear that

the three classes are linearly separable, however, due to the higher dimensions it is

possible that they may just each be overlayed onto each other and actually exist
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Figure 5.17: Scatterplot of multidimensional scaling representation of hepatitis data
in feature space with points in black corresponding to group 1 and points in red
corresponding to group 2

Figure 5.18: Scatterplot of hepatitis data in distance space with points in black
corresponding to group 1 and points in red corresponding to group 2
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on different planes. Also, this influence of the binary predictors may be causing

difficulty. Thus LDA would work best in this situation. (See Figure 5.20). While

the classes are more differentiable for this dataset, there is still a lot of overlap of

the groups which is why distance profiles are still not as effective in this case. (See

Figure 5.21).

Figure 5.19: Boxplots of error rates for contraceptive method data

5.1.7 Iris

For the iris data, LDA works the most effectively in classification. Here the three

groups are generated from multivariate normal distributions and thus is a text book

example of when to apply LDA. (See Figure 5.22). From the multidimensional

scaling representation of the data, it is evident that the three groups are almost all

linearly separable, giving more support to the use of LDA. (See Figure 5.23). The

distance profiles do not offer any advantage to the rate of misclassification for data

of this type. (See Figure 5.24).
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Figure 5.20: Scatterplot of multidimensional scaling representation of contraceptive
method data in feature space with points in black corresponding to group 1, points
in red corresponding to group 2 and points in green corresponding to group 3

Figure 5.21: Scatterplot of multidimensional scaling representation of contraceptive
method data in distance space with points in black corresponding to group 1, points
in red corresponding to group 2 and points in green corresponding to group 3
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Figure 5.22: Boxplots of error rates for iris data

Figure 5.23: Scatterplot of multidimensional scaling representation of iris data in
feature space with points in black corresponding to group 1, points in red corre-
sponding to group 2 and points in green corresponding to group 3
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Figure 5.24: Scatterplot of multidimensional scaling representation of iris data in
distance space with points in black corresponding to group 1, points in red corre-
sponding to group 2 and points in green corresponding to group 3

5.1.8 Ionosphere

The ionosphere data clearly demonstrates an instance in which using distance pro-

files offers an advantage in that they lead to a reduced number of misclassification

errors when compared with other methods. While there are only two classes with

continuous predictors, it has another element that qualifies it as a good candidate

for distance profile methods, it appears to be somewhat multimodal. It is impor-

tant to note that with the anchored distance profiles using the first nearest neighbor

to measure group-to-group distances does poorly, as in the case of NN. However,

DPNN does very well using this measure, suggesting that classification for data

with a dependence on point-to-group distance measures can be improved with this

methodology (See Figure 5.25). The multimodality of the data can be observed in

the multidimensional scaling of the data. There is a clear separation of one class

into two subgroups. (See Figure 5.26). The multimodality is also supported in the
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distance space and the other group is in fact equidistant from itself and the other

group. (See Figure 5.27).

Figure 5.25: Boxplots of error rates for ionosphere data

Figure 5.26: Scatterplot of multidimensional scaling representation of ionosphere
data in feature space with points in black corresponding to group 1 and points in
red corresponding to group 2
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Figure 5.27: Scatterplot of ionosphere data in distance space with points in black
corresponding to group 1 and points in red corresponding to group 2

5.1.9 Sonar

In the sonar data, it can be shown that error rates are approximately equivalent,

regardless of how the training set and testing set are formed. Here NN performs

best. (See Figures 5.28 and 5.29). It is important to note that in Figures 5.28 and

5.29 nearest neighbor methods, knn, perform in a similar manner to the distance

profile methods, dp, in that larger nearest neighbors cause higher error rates. The

two groups overlap greatly and are very difficult to differentiate amongst. (See

Figure 5.30). While distance profiles offer an improvement in discerning the two

classes, the spread is large and in many instances the opposite group is just as close

to the object as its own group is for both groups. This is different than the other

cases where group to group distances resulted in a tie because in those cases there

was only one group that had elements equidistant from both classes where as this

data has ties for both classes. (See Figure 5.31).
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Figure 5.28: Boxplots of error rates for sonar data

Figure 5.29: Boxplots of error rates for alternate version of sonar data
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Figure 5.30: Scatterplot of multidimensional scaling representation of sonar data
in feature space with points in black corresponding to group 1 and points in red
corresponding to group 2

Figure 5.31: Scatterplot of sonar data in distance space with points in black corre-
sponding to group 1 and points in red corresponding to group 2
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5.1.10 Voting

The United States congressional voting records data again demonstrates an instance

where LDA performs the best but has primarily binary predictors violating the

normality assumption. (See Figure 5.32). Observing the multidimensional scaling

representation of the data, there are two relatively distinct classes with a few points

that cross over into the opposite region. (See Figure 5.33). As a result, the elements

that cross over hinder the effectiveness of creating distance profiles that are adequate

for using the distance profile method. This is caused by the binary traits in the

predictors. (See Figure 5.34).

Figure 5.32: Boxplots of error rates for voting data

5.1.11 Vowel

For the vowel data, distance profiles offer no clear advantage over NN, however, LDA

performs very poorly relative to the rest of the methods. It is important to note that

dp51 does better than dp51 and knn5. (See Figure 5.35). In the multidimensional
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Figure 5.33: Scatterplot of multidimensional scaling representation of voting data
in feature space with points in black corresponding to group 1 and points in red
corresponding to group 2

Figure 5.34: Scatterplot of voting data in distance space with points in black corre-
sponding to group 1 and points in red corresponding to group 2
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scaling representation of the data, it is evident that there is much overlap to the

groups, hence the poor performance of LDA. (See Figure 5.36). In the distance

profile representation of the data, the groups are more discernible, but offer no

distinct separation of the classes providing limited improvement over the original

representation. (See Figure 5.37).

Figure 5.35: Boxplots of error rates for vowel data

5.2 Simulations

For the simulations replicated from Hastie’s paper [Hastie & Tibshirani, 1996], the

following results were obtained using the different methods previously discussed.

Error rates were computed based on the misclassifications for each method so com-

parisons can be drawn as to the accuracy of each method. For each dataset, training

and testing samples were selected 20 times randomly then standardized, thus the

boxplots for the error rates are based on the 20 errors obtained in each case. The first

graph displays the error rates for the following methods as denoted by the follow-
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Figure 5.36: Scatterplot of multidimensional scaling representation of vowel data
in feature space with points in red corresponding to group 1, points in orange cor-
responding to group 2, points in yellow corresponding to group 3, points in green
corresponding to group 4, points in blue corresponding to group 5, points in pur-
ple corresponding to group 6, points in brown corresponding to group 7, points in
black corresponding to group 8, points in gray corresponding to group 9, points in
magenta corresponding to group 10 and points in cyan corresponding to group 11

Figure 5.37: Scatterplot of multidimensional scaling representation of vowel data in
distance space
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ing: dp denotes the method using distance profiles in which the class is unknown for

each element in the training set and the distance to that class is based on a nearest

neighbor in that class for the training set, then used to compare the distance profiles

for the testing set. This method is classification via DPNN. Thus, dpk1k2 denotes

measuring distance from each object to group using the k1 nearest neighbor from

the other groups and then using the k2 nearest distance profile. knn denotes the

method of NN. Thus, knn1 denotes classification based on the first nearest neighbor

and knn5 denotes classification based on the fifth nearest neighbor. lda denotes the

method of linear discriminant analysis. svm denotes the method of support vector

machines. Then, a representation of the data is displayed both as a multidimen-

sional scaling of the data in its the feature space based on its p-characteristics and

as it appears in distance space based on its distance profiles.

5.2.1 Two bivariate normal classes

For Simulation 4.1, there are two bivariate normal populations. As a result, LDA

turns out to be the most effective method for classification. In comparison with

Hastie’s result in [Hastie & Tibshirani, 1996], performance was in relatively the

same region. (See Figure 5.38). As seen in the Figure a linear separation between

the two classes is entirely realistic and thus LDA performs well in this instance. (See

Figure 5.39). The distance profile representation of the data then demonstrates the

difficulty of handling the overlapping region for this case. (See Figure 5.40).

5.2.2 Two bivariate normal classes with noise

It can be noted that as in Simulation 4.1, for Simulation 4.2 having two bivariate

normal populations although with the presence of noise will still result in LDA

performing best. In comparison with Hastie’s result in [Hastie & Tibshirani, 1996],
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Figure 5.38: Boxplots of error rates for two bivariate normal classes

Figure 5.39: Scatterplot of two bivariate normal classes data in feature space

59



Figure 5.40: Scatterplot of two bivariate normal classes data in distance space

performance was generally worse in our case. (See Figure 5.41). Again although

there appears to be overlap, it is possible to separate the two classes linearly. (See

Figure 5.42). The introduction of noise actually makes the effectiveness of DPNN

decrease because many observations cross over into the other region, preventing the

observations from actually being more similar to its own class than the other. (See

Figure 5.43).

5.2.3 Four multimodal classes

There has been evidence that using the DPNN method should vastly improve over

other technique when the data appears to be generated from multimodal popula-

tions as suggested in the Ionosphere data discussed previously. In an attempt to

analyze the impact of this effect on the efficiency of the method, the following sim-

ulations were performed. At first it was believed that looking at the boxplots, the

distance profile method did not show vast improvements over nearest neighbor in
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Figure 5.41: Boxplots of error rates for two bivariate normal classes with noise

Figure 5.42: Scatterplot of two bivariate normal classes with noise data in feature
space
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Figure 5.43: Scatterplot of two bivariate normal classes with noise data in distance
space

this situation because the training sample size was small compared to the test sam-

ple size, thus the rule for classification was not as good as it could be. (See Figure

5.45). However, examination of the error rates after adjusting for this fact gave the

same impression. (See Figure 5.47). However, in comparison with Hastie’s result

in [Hastie & Tibshirani, 1996], performance was in relatively the same region. By

looking at the graphical representation of the data though it is clear why nearest

neighbor performs just as well. All of the groups seem to have equal spread and are

generally far from any other group. (See Figure 5.49). By inspecting the distance

space, it appears that for the most part, each of the groups is equidistant from

itself and any of the other groups. (See Figure 5.50). In an effort to understand

this phenomenon, the distance space was broken down in order to observe each of

the group combinations separately. (See Figures 5.51,5.52,5.53,5.54,5.55 and 5.56).

Some unusual criss-crossing patterns appear that suggest further investigation.
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Figure 5.44: Boxplots of error rates for four multimodal class data - small training
samples

Figure 5.45: Boxplots of error rates for four multimodal class data excluding LDA
- small training samples
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Figure 5.46: Boxplots of error rates for four multimodal class data - large training
samples

Figure 5.47: Boxplots of error rates for four multimodal class data excluding LDA
- large training samples

64



Figure 5.48: Scatterplot of four multimodal class data in feature space

Figure 5.49: Scatterplot of multidimensional scaling representation of four multi-
modal class data in feature space
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Figure 5.50: Scatterplot of multidimensional scaling representation of four multi-
modal class data in distance space

Figure 5.51: Scatterplot of groups one and two of the four multimodal classe data
in distance space
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Figure 5.52: Scatterplot of groups one and three of the four multimodal class data
in distance space

Figure 5.53: Scatterplot of groups one and four of the four multimodal class data
in distance space
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Figure 5.54: Scatterplot of groups two and three of the four multimodal class data
in distance space

Figure 5.55: Scatterplot of groups two and four of the four multimodal class data
in distance space
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Figure 5.56: Scatterplot of groups three and four of the four multimodal class data
in distance space

5.2.4 Four multimodal classes with noise

As DPNN did not show any improvement over nearest neighbor in the last case, noise

was introduced to see if by changing the spreads, distance profiles would be more

beneficial. In the boxplots of the error rates, it shows that for the smaller training

sample size no improvement is made, but that for the larger training sample size

a slight improvement is gained as was the case with the previous simulation. In

comparison with Hastie’s result in [Hastie & Tibshirani, 1996], performance was in

relatively the same region. (See Figures 5.57 and 5.58). Examining the graphical

representation of the data to see exactly how the noise influences the spread, it seems

that there is very little overlap of groups and very few points are close to boundaries

between any of the groups. (See Figure 5.59). Thus these do not show very good

instances where distance profiles is helpful and motivated the investigation into

different distributional circumstances. All of the groups seem to have equal spread

and are generally far from any other group. (See Figure 5.60). By inspecting the
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distance space, it appears that for the most part, each of the groups is equidistant

from itself and any of the other groups. (See Figure 5.61). In an effort to understand

this phenomenon, the distance space was broken down in order to observe each of

the group combinations separately. (See Figures 5.62,5.63,5.64,5.65,5.66 and 5.67).

All that was obtained from this was that there appears to be a lot of overlap in

distance space, where none of the observation in a group are at all close to their

own group hence the reason for poor performance in classification.

Figure 5.57: Boxplots of error rates for four multimodal class data with noise - small
training samples

5.2.5 Four dimensional Gaussian sphere with noise

In Simulation 4.5, it is evident that this is an instance in which DPNN performs

slightly better than NN while both outperform LDA. However, in this case SVM does

perform the best. In comparison with Hastie’s result in [Hastie & Tibshirani, 1996],

performance was in relatively the same region. (See Figure 5.68). In the multidimen-

sional scaling representation of the data, it is understand as to why LDA performs
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Figure 5.58: Boxplots of error rates for four multimodal class data with noise - large
training samples

Figure 5.59: Scatterplot of four multimodal class data with noise in feature space
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Figure 5.60: Scatterplot of multidimensional scaling representation of four multi-
modal class data with noise in feature space

Figure 5.61: Scatterplot of multidimensional scaling representation of four multi-
modal class data with noise in distance space
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Figure 5.62: Scatterplot of groups one and two of four multimodal class data with
noise in distance space

Figure 5.63: Scatterplot of groups one and three of four multimodal class data with
noise in distance space
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Figure 5.64: Scatterplot of groups one and four of four multimodal class data with
noise in distance space

Figure 5.65: Scatterplot of groups two and three of four multimodal class data with
noise in distance space
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Figure 5.66: Scatterplot of groups two and four of four multimodal class data with
noise in distance space

Figure 5.67: Scatterplot of groups three and four of four multimodal class data with
noise in distance space
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so poorly and why these other methods would be an improvement. There is no clear

linear separation, however there does not seem to be any evidence to suggest that

DPNN would out perform NN. (See Figure 5.69). This is further supported by the

graphical representation of the data in distance space, where there is no clear sep-

aration of the two groups resulting from the large amounts of overlap. (See Figure

5.70).

Figure 5.68: Boxplots of error rates for four dimensional Gaussian sphere with noise

5.2.6 Ten dimensional Gaussian sphere

In Simulation 4.6, however, DPNN, specifically the ones that call for the fifth near-

est neighbor for initial point to group distance measuring, performs very well com-

paratively with other methods. This suggests an investigation into the nature of

choosing nearest neighbors for DPNN methods. It is important to note that knn5

performs differently than either dp55 or dp51. In comparison with Hastie’s result

in [Hastie & Tibshirani, 1996], performance was in relatively the same region. (See

76



Figure 5.69: Scatterplot of multidimensional scaling representation of four dimen-
sional Gaussian sphere with noise data in feature space

Figure 5.70: Scatterplot of multidimensional scaling representation of four dimen-
sional Gaussian sphere with noise data in distance space
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Figure 5.71). From the representation of the data in the feature space, it is clear why

a distance profile method would work well. One group is much more spread out than

the other. While there is overlap in generation of the MDS plot, it is not entirely

likely for overlap in the true the feature space. (See Figure 5.72). The distance space

representation of the data demonstrates why data of this nature would be sensitive

to the choice of which nearest neighbor is used in developing and comparing distance

profiles. (See Figure 5.73).

Figure 5.71: Boxplots of error rates for ten dimensional Gaussian sphere

5.2.7 Four multivariate normal classes

DPNN does not perform very well compared to LDA or SVM for Simulation 4.7. In

comparison with Hastie’s result in [Hastie & Tibshirani, 1996], performance was in

relatively the same region. (See Figure 5.74). This is understandable after observing

the data in the feature space where all classes seem to have very similar patterns for

distance and overlap quite a bit. (See Figure 5.75). Representation of the data in
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Figure 5.72: Scatterplot of multidimensional scaling representation of ten dimen-
sional Gaussian sphere data in feature space

Figure 5.73: Scatterplot of multidimensional scaling representation of ten dimen-
sional Gaussian sphere data in distance space
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distance space further demonstrates this. There is an outlying observation at (-4.5,-

1.25) that may be causing this structural dilemma and influencing the measurements

to nearest neighbor distance profile comparisons. (See Figure 5.76).

Figure 5.74: Boxplots of error rates for four multivariate normal classes

Figure 5.75: Scatterplot of multidimensional scaling representation of four multi-
variate normal classes data in feature space
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Figure 5.76: Scatterplot of multidimensional scaling representation of four multi-
variate normal classes data in distance space

5.2.8 Two completely separable classes

All error rates are very small in Simulation 4.8 because the two classes are very far

from each other with no overlap. In comparison with Hastie’s result in [Hastie & Tibshirani, 1996],

performance was in relatively the same region. (See Figures 5.77, 5.78 and 5.79).

5.3 Simulation study: Gaussian and uniform hy-

perspheres

For further study, more simulations were conducted based on the observations made

from the previous analyses. The following results were obtained using the different

methods previously discussed. Error rates were computed based on the misclassi-

fications for each method so comparisons can be drawn as to the accuracy of each

method. For each dataset, training and testing samples were selected 20 times ran-

domly then standardized. Because boxplot representations of all these error rates
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Figure 5.77: Boxplots of error rates for two completely separable classes

Figure 5.78: Scatterplot of multidimensional scaling representation of two com-
pletely separable classes data in feature space
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Figure 5.79: Scatterplot of two completely separable classes data in distance space

would not be beneficial, the medians for each of the 20 simulations was used in-

stead. Under both Normal distributional assumptions and Uniform distributional

assumptions, different values for p, the number of predictors for each class and δ,

representing the influence of distance between classes where distance between classes

is
√

δ/p were used and compared for different values of k, where k1 represents the

k1st nearest neighbor used to measure point to group distance and k2 represents the

k2nd nearest neighbor used to measure group to group distance.

5.3.1 Two Gaussian hyperspheres

5.3.2 Two uniform hyperspheres

For the Normal as p increases, the error increases. As δ increases, the error decreases.

As k1 increases, the error fluctuates as it does when k2 increases. This is always

true for the Uniform. As p increases, the error increases. As δ increases, the error

decreases. As k1 increases, the error fluctuates as it does when k2 increases.

83



Table 5.1: Median error rates for one dimensional Gaussian classes

δ

k1 k2 0 1 2 3 4 5 6 7 10
1 1 0.4850 0.4500 0.3975 0.3525 0.2825 0.2425 0.2275 0.1950 0.1050

2 0.5025 0.4600 0.3875 0.3350 0.2800 0.2325 0.2150 0.1900 0.1050
3 0.4850 0.4225 0.3500 0.3075 0.2625 0.2250 0.1950 0.1650 0.0875
4 0.5050 0.4350 0.3650 0.3150 0.2600 0.2300 0.1900 0.1600 0.0875
5 0.4900 0.4225 0.3525 0.3050 0.2550 0.2150 0.1825 0.1625 0.0800

2 1 0.5025 0.4300 0.3600 0.2975 0.2400 0.2225 0.1850 0.1475 0.0825
5 0.5000 0.4150 0.3350 0.2600 0.1975 0.1900 0.1550 0.1375 0.0700

3 1 0.5050 0.4175 0.3525 0.2950 0.2350 0.2125 0.1700 0.1500 0.0825
3 0.5125 0.4125 0.3125 0.2700 0.2150 0.1875 0.1625 0.1275 0.0725
5 0.5025 0.3925 0.2950 0.2675 0.2000 0.1725 0.1525 0.1225 0.0725

4 1 0.5050 0.4125 0.3275 0.2675 0.2100 0.1850 0.1625 0.1325 0.0775
5 0.5000 0.3800 0.2800 0.4275 0.1850 0.1575 0.1400 0.1150 0.0575

5 1 0.5050 0.4150 0.3225 0.2950 0.2175 0.1875 0.1675 0.1675 0.0850
2 0.5075 0.4125 0.3150 0.2800 0.2175 0.1900 0.1725 0.1475 0.0825
3 0.4950 0.3950 0.3025 0.2625 0.1950 0.1700 0.1475 0.1250 0.0750
4 0.4950 0.4000 0.3050 0.2625 0.2025 0.1650 0.1450 0.1300 0.0675
5 0.5075 0.3800 0.2875 0.2475 0.1900 0.1525 0.1375 0.1175 0.0650
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Table 5.2: Median error rates for two dimensional Gaussian discs

δ

k1 k2 0 1 2 3 4 5 6 7 10
1 1 0.5175 0.4575 0.4125 0.3500 0.3100 0.2600 0.2225 0.1725 0.1100

2 0.4975 0.4600 0.3850 0.3450 0.2975 0.2525 0.2200 0.1725 0.1225
3 0.5100 0.4650 0.3650 0.3250 0.2800 0.2275 0.1975 0.1625 0.0925
4 0.5225 0.4650 0.3775 0.3250 0.2625 0.2225 0.1975 0.1700 0.1025
5 0.5175 0.4375 0.3650 0.3075 0.2650 0.2150 0.1925 0.1550 0.0875

2 1 0.4900 0.4350 0.3750 0.3075 0.2650 0.2375 0.1950 0.1550 0.1000
5 0.5025 0.4150 0.3425 0.2600 0.2175 0.1875 0.1475 0.1250 0.0775

3 1 0.4900 0.4375 0.3700 0.2825 0.2550 0.2100 0.1750 0.1425 0.1000
3 0.5175 0.4050 0.3250 0.2575 0.2225 0.1800 0.1450 0.1275 0.0775
5 0.5075 0.3900 0.3225 0.2500 0.2100 0.1750 0.1400 0.1150 0.0700

4 1 0.4975 0.4400 0.3500 0.2950 0.2525 0.2150 0.1650 0.1425 0.0925
5 0.4925 0.3900 0.3125 0.2400 0.2050 0.1750 0.1350 0.1100 0.0650

5 1 0.5025 0.4200 0.3375 0.2825 0.2525 0.2075 0.1650 0.1450 0.0900
2 0.5000 0.4350 0.3500 0.2825 0.2550 0.2175 0.1775 0.1500 0.0975
3 0.5050 0.3925 0.3075 0.2425 0.2300 0.1650 0.1400 0.1225 0.0750
4 0.5050 0.4125 0.3075 0.2375 0.2275 0.1675 0.1375 0.1225 0.0600
5 0.5050 0.3825 0.2900 0.2225 0.2050 0.1650 0.1250 0.1125 0.0675
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Table 5.3: Median error rates for three dimensional Gaussian spheres

δ

k1 k2 0 1 2 3 4 5 6 7 10
1 1 0.5125 0.4725 0.4175 0.3525 0.3225 0.2750 0.2275 0.2100 0.1400

2 0.4950 0.4675 0.4100 0.3575 0.3125 0.2775 0.2250 0.2000 0.1325
3 0.5200 0.4700 0.4050 0.3325 0.2750 0.2475 0.2025 0.1700 0.1125
4 0.5125 0.4625 0.3900 0.3275 0.2825 0.2350 0.2025 0.1550 0.1025
5 0.5000 0.4575 0.3850 0.3125 0.2750 0.2250 0.1925 0.1650 0.1025

2 1 0.5050 0.4600 0.3825 0.3100 0.2825 0.2450 0.1875 0.1775 0.1050
5 0.5125 0.4300 0.3350 0.2700 0.2375 0.2000 0.1500 0.1400 0.0725

3 1 0.5100 0.4500 0.3600 0.3075 0.2650 0.2325 0.1850 0.1650 0.1075
3 0.5150 0.3925 0.3025 0.2350 0.2050 0.1775 0.1400 0.1125 0.0650
5 0.5050 0.4350 0.3250 0.2675 0.2200 0.1900 0.1500 0.1250 0.0650

4 1 0.5050 0.4275 0.3775 0.3100 0.2475 0.2250 0.1775 0.1650 0.0975
5 0.5000 0.3950 0.3125 0.2625 0.2075 0.1850 0.1400 0.1250 0.0700

5 1 0.4975 0.4325 0.3650 0.3075 0.2475 0.2300 0.1950 0.1475 0.0900
2 0.4975 0.4325 0.3625 0.2925 0.2550 0.2200 0.1825 0.1625 0.0900
3 0.4950 0.4075 0.3175 0.2700 0.2075 0.1900 0.1550 0.1225 0.0700
4 0.4925 0.4150 0.3250 0.2725 0.2225 0.1825 0.1550 0.1250 0.0750
5 0.4900 0.4050 0.3000 0.2550 0.2025 0.1750 0.1375 0.1150 0.0650
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Table 5.4: Median error rates for four dimensional Gaussian hyperspheres

δ

k1 k2 0 1 2 3 4 5 6 7 10
1 1 0.5000 0.4750 0.4250 0.3750 0.3150 0.2675 0.2300 0.2000 0.1300

2 0.5075 0.4850 0.4275 0.3725 0.3100 0.2875 0.2400 0.1950 0.1250
3 0.4975 0.4775 0.4050 0.3425 0.2800 0.2400 0.1975 0.1725 0.1100
4 0.5100 0.4625 0.4025 0.3300 0.2825 0.2275 0.2075 0.1725 0.1050
5 0.5150 0.4550 0.4025 0.3325 0.2625 0.2300 0.1850 0.1725 0.1025

2 1 0.4975 0.4400 0.4000 0.3275 0.2675 0.2300 0.2025 0.1775 0.1100
5 0.4875 0.4125 0.3475 0.2900 0.2275 0.1900 0.1600 0.1350 0.0850

3 1 0.4925 0.4400 0.3850 0.3150 0.2875 0.2225 0.1875 0.1550 0.1075
3 0.4925 0.4000 0.3100 0.2525 0.2000 0.1550 0.1350 0.1125 0.0700
5 0.4975 0.4200 0.3400 0.2750 0.2125 0.1825 0.1450 0.1250 0.0850

4 1 0.5000 0.4475 0.3725 0.3050 0.2675 0.2200 0.1775 0.1475 0.0975
5 0.5025 0.4150 0.3275 0.2600 0.2050 0.1750 0.1400 0.1200 0.0775

5 1 0.5075 0.4400 0.3850 0.2850 0.2625 0.2075 0.1800 0.1500 0.1050
2 0.4950 0.4450 0.3875 0.3100 0.2550 0.1975 0.1875 0.1500 0.1050
3 0.5025 0.4100 0.3425 0.2625 0.2250 0.1725 0.1475 0.1275 0.0775
4 0.5000 0.4075 0.3450 0.2475 0.2225 0.1925 0.1475 0.1250 0.0825
5 0.4975 0.3975 0.3225 0.2500 0.2050 0.1675 0.1400 0.1100 0.0750
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Table 5.5: Median error rates for ten dimensional Gaussian hyperspheres

δ

k1 k2 0 1 2 3 4 5 6 7 10
1 1 0.4975 0.4900 0.4375 0.3850 0.3675 0.3100 0.3050 0.2525 0.1450

2 0.5000 0.4925 0.4425 0.3975 0.3700 0.3000 0.2950 0.2475 0.1650
3 0.4900 0.4850 0.4300 0.3700 0.3425 0.2800 0.2650 0.2150 0.1375
4 0.4975 0.4950 0.4250 0.3925 0.3500 0.2750 0.2525 0.2175 0.1225
5 0.4875 0.4850 0.4150 0.3700 0.3325 0.2625 0.2325 0.2050 0.1225

2 1 0.5000 0.4775 0.4100 0.3875 0.3450 0.2675 0.2525 0.2025 0.1150
5 0.4900 0.4600 0.3950 0.3350 0.2800 0.2200 0.1975 0.1625 0.0875

3 1 0.5050 0.4825 0.4250 0.3775 0.3050 0.2450 0.2250 0.1950 0.1175
3 0.4800 0.4575 0.3850 0.3275 0.2650 0.2225 0.1825 0.1550 0.0950
5 0.5100 0.4450 0.3750 0.3125 0.2675 0.1975 0.1725 0.1500 0.0825

4 1 0.5025 0.4500 0.3950 0.3575 0.2750 0.2350 0.2100 0.1725 0.1025
5 0.5025 0.4150 0.3650 0.2950 0.2300 0.1925 0.1650 0.1450 0.0800

5 1 0.4975 0.4750 0.3900 0.3525 0.2900 0.2350 0.2050 0.1750 0.1025
2 0.5050 0.4600 0.3825 0.3550 0.2875 0.2350 0.2025 0.1750 0.0975
3 0.5050 0.4475 0.3550 0.3100 0.2700 0.1875 0.1725 0.1375 0.0800
4 0.5050 0.4250 0.3575 0.3175 0.2525 0.1950 0.1700 0.1375 0.0850
5 0.5075 0.4275 0.3450 0.3025 0.2500 0.1750 0.1625 0.1375 0.0725
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Table 5.6: Median error rates for one dimensional uniform classes
δ

k1 k2 0 0.5 1 1.5 2
1 1 0.4925 0.4050 0.3675 0.3150 0.2650

2 0.4825 0.4100 0.3625 0.3000 0.2500
3 0.4950 0.3975 0.3525 0.2800 0.2175
4 0.4850 0.3950 0.3350 0.2750 0.2050
5 0.4825 0.4050 0.3325 0.2525 0.2025

2 1 0.5000 0.4100 0.3600 0.3075 0.2425
5 0.5050 0.3825 0.3175 0.2675 0.1975

3 1 0.5000 0.4150 0.3625 0.3000 0.2375
3 0.5100 0.3900 0.3425 0.2750 0.2275
5 0.5125 0.3725 0.3325 0.2575 0.1950

4 1 0.5050 0.4075 0.3450 0.3025 0.2300
5 0.5000 0.3725 0.3125 0.2475 0.1900

5 1 0.5050 0.3950 0.3450 0.2825 0.2300
2 0.5050 0.4175 0.3475 0.2950 0.2450
3 0.5025 0.3825 0.3450 0.2600 0.2125
4 0.5250 0.3950 0.3200 0.2775 0.2225
5 0.5075 0.3800 0.3200 0.2675 0.2000
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Table 5.7: Median error rates for two dimensional uniform discs
δ

k1 k2 0 0.5 1 1.5 2
1 1 0.4925 0.34 0.2475 0.175 0.1025

2 0.505 0.3325 0.2225 0.16 0.115
3 0.4925 0.32 0.23 0.165 0.11
4 0.4775 0.3175 0.225 0.17 0.1025
5 0.4925 0.3075 0.2275 0.16 0.1025

2 1 0.505 0.335 0.235 0.15 0.1125
5 0.5175 0.305 0.225 0.15 0.1125

3 1 0.495 0.325 0.2225 0.1525 0.115
3 0.4925 0.3075 0.22 0.1525 0.11
5 0.4875 0.305 0.22 0.1525 0.1075

4 1 0.4875 0.3075 0.2325 0.16 0.115
5 0.485 0.3125 0.215 0.15 0.11

5 1 0.5 0.3 0.22 0.16 0.115
2 0.4975 0.295 0.205 0.1575 0.11
3 0.5 0.3 0.215 0.1475 0.11
4 0.5075 0.2875 0.22 0.145 0.11
5 0.4975 0.295 0.2125 0.1375 0.1
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Table 5.8: Median error rates for three dimensional uniform spheres
δ

k1 k2 0 0.5 1 1.5 2
1 1 0.4975 0.2950 0.1950 0.1475 0.0775

2 0.5075 0.2975 0.1975 0.1500 0.0850
3 0.4950 0.2800 0.1900 0.1325 0.0650
4 0.4975 0.2775 0.1950 0.1375 0.0700
5 0.5100 0.2750 0.1850 0.1175 0.0650

2 1 0.4950 0.2925 0.1825 0.1225 0.0750
5 0.4875 0.2750 0.1750 0.1075 0.0650

3 1 0.4900 0.2950 0.1825 0.1275 0.0700
3 0.5150 0.2850 0.1725 0.1050 0.0700
5 0.5100 0.2675 0.1725 0.1025 0.0650

4 1 0.5000 0.2900 0.1775 0.1225 0.0675
5 0.4775 0.2500 0.1450 0.0975 0.0575

5 1 0.5075 0.2950 0.1725 0.1175 0.0650
2 0.4875 0.2875 0.1700 0.1225 0.0700
3 0.4875 0.2550 0.1525 0.1050 0.0650
4 0.4975 0.2550 0.1525 0.1025 0.0600
5 0.4950 0.2550 0.1650 0.0950 0.0600
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Table 5.9: Median error rates for four dimensional uniform hyperspheres
δ

k1 k2 0 0.5 1 1.5 2
1 1 0.5125 0.2650 0.1400 0.0850 0.0650

2 0.5050 0.2575 0.1350 0.0875 0.0550
3 0.4975 0.2225 0.1150 0.0725 0.0450
4 0.4900 0.2150 0.1125 0.0750 0.0450
5 0.4850 0.2075 0.1125 0.0650 0.0450

2 1 0.4925 0.2300 0.1325 0.0825 0.0500
5 0.4975 0.1825 0.1000 0.0600 0.0450

3 1 0.4975 0.2275 0.1250 0.0750 0.0450
3 0.5025 0.1825 0.1025 0.0625 0.0400
5 0.5025 0.1775 0.0950 0.0625 0.0375

4 1 0.5075 0.2225 0.1150 0.0700 0.0475
5 0.5025 0.1750 0.0950 0.0575 0.0375

5 1 0.5050 0.2150 0.1175 0.0650 0.0425
2 0.5100 0.2125 0.1175 0.0675 0.0450
3 0.5150 0.1700 0.0950 0.0550 0.0350
4 0.4975 0.1775 0.0975 0.0600 0.0350
5 0.4975 0.1650 0.0900 0.0550 0.0350
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Table 5.10: Median error rates for ten dimensional uniform hyperspheres
δ

k1 k2 0 0.5 1 1.5 2
1 1 0.5000 0.0050 0.0000 0.0000 0.0000

2 0.5000 0.0100 0.0000 0.0000 0.0000
3 0.4900 0.0050 0.0000 0.0000 0.0000
4 0.5025 0.0050 0.0000 0.0000 0.0000
5 0.4975 0.0050 0.0000 0.0000 0.0000

2 1 0.5025 0.0075 0.0000 0.0000 0.0000
5 0.5100 0.0025 0.0000 0.0000 0.0000

3 1 0.5200 0.0050 0.0000 0.0000 0.0000
3 0.5050 0.0050 0.0000 0.0000 0.0000
5 0.5175 0.0050 0.0000 0.0000 0.0000

4 1 0.5025 0.0050 0.0000 0.0000 0.0000
5 0.5100 0.0050 0.0000 0.0000 0.0000

5 1 0.5250 0.0050 0.0000 0.0000 0.0000
2 0.5125 0.0050 0.0000 0.0000 0.0000
3 0.5150 0.0000 0.0000 0.0000 0.0000
4 0.5175 0.0025 0.0000 0.0000 0.0000
5 0.5100 0.0000 0.0000 0.0000 0.0000
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When comparing the Normal simulations to the Uniform simulations, it can be

noticed that for the same p and same δ, the Normal simulations perform better.

This may be caused by the fact that in the overlapping regions, this would occur for

the Normal in the tails where there is less probability of observations, where as for

the Uniform the probability of observations appearing in that region is just as likely

as any other. As a result, in the overlapping regions when distance profile nearest

neighbor has more difficulty, there are less problematic observations to handle for

the Normal than with the Uniform.

5.4 Conclusions and conjectures

The UCI datasets as well as the simulations offer evidence that distance profiles

provide an effective means of classification in certain instances. Heavily influential

outlying observations as well as certain types of categorical or binary data hinder

the effectiveness of this method; however, in many instances, distance profile nearest

neighbor did offer a slight improvement over other techniques explored. In the

instances when data was more or less continuous, irregardless of the number of

predictors, distance profile nearest neighbor performed reasonably well. It provided

more reasonably good improvement over other methods in cases where data appear

to be generated from multimodal patterns. Given more time, an investigation into

the abnormal cases may provide insight into the effectiveness of this technique.
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Appendix A

Code for classification methods

All of this code should be implemented in R [R Development Core Team, 2006].

A.1 Nearest neighbor

# this defines the function that compares group to group distances

knn_pt <- function(train,test,cl,k2=1,votes=FALSE,mydist=dist)

{

# Initialization same as knn(class) with a few different variable names

train <- as.matrix(train) # reads in train set as a matrix

if(is.null(dim(test)))

dim(test) <- c(1,length(test)) # if test data is only a vector,

# then ensures the test data is a row

test <- as.matrix(test) # reads in test set as a matrix

if(any(is.na(train)) || any(is.na(test)) || any(is.na(cl)))

stop("no missing values allowed") # if any dataset contains missing values,

# prints out an error message

nctr <- ncol(train) # specifies the number of columns for the train dataset

nrtr <- nrow(train) # specifies the number of rows for the train dataset

ncts <- ncol(test) # specifies the number of columns for the test dataset

nrts <- nrow(test) # specifies the number of rows for the test dataset

if(length(cl)!=nrtr)

stop("‘train’ and ‘class’ have different lengths")

# if the number of classes does not

# equal the number of observations of the

# train dataset, then prints out an error message
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if(nrtr<k2)

{

warning(gettextf("k2= %d exceeds number %d of patterns",k2,nrtr),domain=NA)

k2 <- nrtr

}

# if the specified k2 is larger than the number of entries

# in the train dataset, then prints out an error message

if(k2<1)

stop(gettextf("k2= %d must be at least 1",k2),domain=NA)

# if k2 is not a valid positive entry,

# then prints out an error message

if(ncts!=nctr)

stop("dims of ’test’ and ’train’ differ")

# if the number of predictors is not the same

# for both the train dataset and the test dataset,

# then prints out an error message

cl <- as.factor(cl) # ensures the classes are factors

classes <- as.factor(levels(cl)) # computes the levels of the classes

ncl <- length(classes) # computes the number of different classes

M <- NULL

counts <- NULL

for(i in 1:nrts) # performs operations for each object in test dataset

{

count <- NULL

class_counts <- NULL

y <- test[i,] # takes the ith row of the test dataset

diff_y <- mydist(c(y,train))[1:nrtr] # computes distance between ith

# object in test dataset to every

# object in train dataset

df <- data.frame(diff_y,cl) # adds the class component so that

# distances are associated with a group

df_ordered <- df[order(df[,1]),] # sorts the distances from smallest to

# largest

dford <- df_ordered[1:k2,] # takes the first k2 smallest distances
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for (cc in 1:ncl) # performs operations for each class

{

# counts how many elements belong to the class from the k2

# smallest distances computed

count <- length(dford[dford[,2]==classes[cc],2])

class_counts <- cbind(class_counts, count)

}

# if there are any ties,

# then randomly chooses a class to assign the object to

class <- seq(along = class_counts)[class_counts == max(class_counts)]

if (length(class) > 1)

class <- sample(class, 1)

# Adds the predicted class for the current test observation

# to the vector of results

M <- c(M,as.vector(classes[class]))

counts <- rbind(counts,class_counts) # specifies how many objects

# from the test dataset are in each class

}

# Output

dimnames(counts)[[2]] <- levels(cl) # assigns the class labels to the columns

results <- list(class=M,votes=counts) # specifies each of the classes as well as

# how many test objects belong to each class

if(votes) results # outputs the number of objects in each class if they exist

else results $cl

}
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A.2 Distance profile nearest neighbor

# this defines the function that computes point to group distances

knn_profCV <- function(train,test,cl,k2=1,k1=1,mydistpt=dist,mydistprof=dist)

{

train <- as.matrix(train) # reads in train set as a matrix

if(is.null(dim(test)))

dim(test) <- c(1,length(test)) # if test data is only a vector,

# then ensures the test data is a row

test <- as.matrix(test) # reads in test set as a matrix

if(any(is.na(train)) || any(is.na(test)) || any(is.na(cl)))

stop("no missing values allowed") # if any dataset contains missing values,

# prints out an error message

nctr <- ncol(train) # specifies the number of columns for the train dataset

nrtr <- nrow(train) # specifies the number of rows for the train dataset

ncts <- ncol(test) # specifies the number of columns for the test dataset

nrts <- nrow(test) # specifies the number of rows for the test dataset

if(length(cl)!=nrtr)

stop("‘train’ and ‘class’ have different lengths")

# if the number of classes does not

# equal the number of observations of the

# train dataset, then prints out an error message

if(nrtr<k1)

{

warning(gettextf("k1= %d exceeds number %d of patterns",k1,nrtr),domain=NA)

k1 <- nrtr

}

# if the specified k1 is larger than the number of entries

# in the train dataset, then prints out an error message
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if(k1<1)

stop(gettextf("k1= %d must be at least 1",k1),domain=NA)

# if k1 is not a valid positive entry,

# then prints out an error message

if(ncts!=nctr)

stop("dims of ’test’ and ’train’ differ")

# if the number of predictors is not the same

# for both the train dataset and the test dataset,

# then prints out an error message

cl <- as.factor(cl) # ensures the classes are factors

classes <- as.factor(levels(cl)) # computes the levels of the classes

ncl <- length(classes) # computes the number of different classes

P <- NULL

for(i in 1:nrtr) # performs operations for each object in train dataset

{

group <- NULL

group_dist <- NULL

group_dist_final <- NULL

dist <- NULL

y <- train[i,] # takes the ith row of the train dataset

train_CV <- train[-i,] # creates new train dataset that doesn’t

# contain object to find distance profile for

cl_CV <- cl[-i] # removes the class for the object under consideration

diff_y <- mydistprof(c(y,train_CV))[1:nrow(train)-1]

# computes distance between ith object in original train

# dataset to every object in new train dataset

df <- data.frame(diff_y,cl_CV) # adds the class component so that

# distances are associated with a group

df <- as.matrix(df)

df_final <- df[order(df[,1]),] # sorts the distances from smallest to

# largest
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for (g in 1:ncl) # performs operations for each class

{

group <- (df_final[df_final[,2]==classes[g],])

# finds all of the distances for a specified group

group_dist <- group[order(group[,1]),]

# ensures the distances are sorted

# from smallest to largest within the group

group_dist_final <- group_dist[k1,-2]

# takes the first k1 smallest distances

dist <- cbind(dist,group_dist_final)

# puts all the reduced distance profiles together for each

# of the classes

}

# puts all the reduced distance profiles together for each of the objects

P <- rbind(P,dist)

}

P <- as.matrix(P)

a <- levels(cl)

b <- paste(a,"_train_dist")

dimnames(P)[[2]] <- b # assigns headings to columns specifying train distances

# for each class

N <- NULL

for(j in 1:nrts)

{

group <- NULL

group_dist <- NULL

group_dist_final <- NULL

dist <- NULL

x <- NULL

x <- test[j,] # takes the jth row of the test dataset

diff_x <- mydistprof(c(x,train))[1:nrtr]

# computes distance between jth object in test dataset

# to every object in original train dataset

df <- data.frame(diff_x,cl) # adds the class component so that distances

# are associated with a group

df <- as.matrix(df)

df_final <- df[order(df[,1]),] # sorts the distances from smallest to

# largest
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for (g in 1:ncl) # performs operations for each class

{

group <- (df_final[df_final[,2]==classes[g],])

# finds all of the distances for a specified group

group_dist <- group[order(group[,1]),]

# ensures the distances are sorted

# from smallest to largest within the group

group_dist_final <- group_dist[k1,-2]

# takes the first k1 smallest distances

dist <- cbind(dist,group_dist_final)

# puts all the reduced distance profiles together for each

# of the classes

}

# puts all the reduced distance profiles together for each of the objects

N <- rbind(N,dist)

}

N <- as.matrix(N)

a <- levels(cl)

b <- paste(a,"_test_dist")

dimnames(P)[[2]] <- b # assigns headings to columns specifying test

# distances for each class

# calls nearest neighbor function

# performs nn to find "closest" distance profile

knn_pt(P,N,cl,k2,mydist=mydistpt)

}
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A.3 Anchored distance profile nearest neighbor

# this defines the function that computes point to group distances

knn_profCV <- function(train,test,cl,k2=1,k1=1,mydistpt=dist,mydistprof=dist)

{

train <- as.matrix(train) # reads in train set as a matrix

if(is.null(dim(test)))

dim(test) <- c(1,length(test)) # if test data is only a vector,

# then ensures the test data is a row

test <- as.matrix(test) # reads in test set as a matrix

if(any(is.na(train)) || any(is.na(test)) || any(is.na(cl)))

stop("no missing values allowed") # if any dataset contains missing values,

# prints out an error message

nctr <- ncol(train) # specifies the number of columns for the train dataset

nrtr <- nrow(train) # specifies the number of rows for the train dataset

ncts <- ncol(test) # specifies the number of columns for the test dataset

nrts <- nrow(test) # specifies the number of rows for the test dataset

if(length(cl)!=nrtr)

stop("‘train’ and ‘class’ have different lengths")

# if the number of classes does not

# equal the number of observations of the

# train dataset, then prints out an error message

if(nrtr<k1)

{

warning(gettextf("k1= %d exceeds number %d of patterns",k1,nrtr),domain=NA)

k1 <- nrtr

}

# if the specified k1 is larger than the number of entries

# in the train dataset, then prints out an error message
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if(k1<1)

stop(gettextf("k1= %d must be at least 1",k1),domain=NA)

# if k1 is not a valid positive entry,

# then prints out an error message

if(ncts!=nctr)

stop("dims of ’test’ and ’train’ differ")

# if the number of predictors is not the same

# for both the train dataset and the test dataset,

# then prints out an error message

cl <- as.factor(cl) # ensures the classes are factors

classes <- as.factor(levels(cl)) # computes the levels of the classes

ncl <- length(classes) # computes the number of different classes

P <- NULL

for(i in 1:nrtr) # performs operations for each object in train dataset

{

group <- NULL

group_dist <- NULL

group_dist_final <- NULL

dist <- NULL

y <- train[i,] # takes the ith row of the train dataset

diff_y <- mydistprof(c(y,train))[1:nrtr]

# computes distance between ith object in original train

# dataset to every object in train dataset (including itself)

df <- data.frame(diff_y,cl) # adds the class component so that

# distances are associated with a group

df <- as.matrix(df)

df_final <- df[order(df[,1]),] # sorts the distances from smallest to

# largest

103



for (g in 1:ncl) # performs operations for each class

{

group <- (df_final[df_final[,2]==classes[g],])

# finds all of the distances for a specified group

group_dist <- group[order(group[,1]),]

# ensures the distances are sorted

# from smallest to largest within the group

group_dist_final <- group_dist[k1,-2]

# takes the first k1 smallest distances

dist <- cbind(dist,group_dist_final)

# puts all the reduced distance profiles together for each

# of the classes

}

# puts all the reduced distance profiles together for each of the objects

P <- rbind(P,dist)

}

P <- as.matrix(P)

a <- levels(cl)

b <- paste(a,"_train_dist")

dimnames(P)[[2]] <- b # assigns headings to columns specifying train distances

# for each class

N <- NULL

for(j in 1:nrts)

{

group <- NULL

group_dist <- NULL

group_dist_final <- NULL

dist <- NULL

x <- NULL

x <- test[j,] # takes the jth row of the test dataset

diff_x <- mydistprof(c(x,train))[1:nrtr]

# computes distance between jth object in test dataset

# to every object in original train dataset

df <- data.frame(diff_x,cl) # adds the class component so that distances

# are associated with a group

df <- as.matrix(df)

df_final <- df[order(df[,1]),] # sorts the distances from smallest to

# largest
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for (g in 1:ncl) # performs operations for each class

{

group <- (df_final[df_final[,2]==classes[g],])

# finds all of the distances for a specified group

group_dist <- group[order(group[,1]),]

# ensures the distances are sorted

# from smallest to largest within the group

group_dist_final <- group_dist[k1,-2]

# takes the first k1 smallest distances

dist <- cbind(dist,group_dist_final)

# puts all the reduced distance profiles together for each

# of the classes

}

# puts all the reduced distance profiles together for each of the objects

N <- rbind(N,dist)

}

N <- as.matrix(N)

a <- levels(cl)

b <- paste(a,"_test_dist")

dimnames(P)[[2]] <- b # assigns headings to columns specifying test

# distances for each class

# calls nearest neighbor function

# performs nn to find "closest" distance profile

knn_pt(P,N,cl,k2,mydist=mydistpt)

}
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Appendix B

Code for generation of simulated
data

All of this code should be implemented in R [R Development Core Team, 2006].

B.1 Two bivariate normal classes

#generate train datasets

#train class 1

mu1<-c(0,0)

sigma1<-matrix(c(1,(3*sqrt(2)/4),(3*sqrt(2)/4),2),2,2)

f<-mvrnorm(100,mu1,sigma1)

c1<-matrix("cl1",100,1)

class1<-cbind(c1,f)

#train class 2

mu2<-c(2,0)

sigma2<-matrix(c(1,(3*sqrt(2)/4),(3*sqrt(2)/4),2),2,2)

f<-mvrnorm(100,mu2,sigma2)

c2<-matrix("cl2",100,1)

class2<-cbind(c2,f)

sim1datatrain<-rbind(class1,class2)
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#generate test datasets

#test class 1

f<-mvrnorm(250,mu1,sigma1)

c1<-matrix("cl1",250,1)

class1<-cbind(c1,f)

#test class 2

f<-mvrnorm(250,mu2,sigma2)

c2<-matrix("cl2",250,1)

class2<-cbind(c2,f)

sim1datatest<-rbind(class1,class2)

#standardization

sim1train<-matrix(as.numeric(sim1datatrain[,2:ncol(sim1datatrain)]),

nrow(sim1datatrain),ncol(sim1datatrain)-1)

sim1trainstd<-matrix(NA,nrow=nrow(sim1train),ncol=ncol(sim1train))

sim1test<-matrix(as.numeric(sim1datatest[,2:ncol(sim1datatest)]),

nrow(sim1datatest),ncol(sim1datatest)-1)

sim1teststd<-matrix(NA,nrow=nrow(sim1test),ncol=ncol(sim1test))

meantrain<-apply(sim1train,2,FUN=mean)

sdtrain<-apply(sim1train,2,FUN=sd)

for (i in 1:nrow(sim1train))

{

for (j in 1:ncol(sim1train))

sim1trainstd[i,j]<-(sim1train[i,j]-meantrain[j])/(sdtrain[j])

}

for (i in 1:nrow(sim1test))

{

for (j in 1:ncol(sim1test))

sim1teststd[i,j]<-(sim1test[i,j]-meantrain[j])/(sdtrain[j])

}

#classes

sim1trainclass<-as.factor(sim1datatrain[,1])

sim1testclass<-as.factor(sim1datatest[,1])
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B.2 Two bivariate normal classes with noise

#generate train datasets

#train class 1

mu1<-c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

sigma1<-diag(16)

f<-mvrnorm(100,mu1,sigma1)

c1<-matrix("c1",100,1)

class1<-cbind(c1,f)

#train class 2

mu2<-c(2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

sigma2<-diag(16)

f<-mvrnorm(100,mu2,sigma2)

c2<-matrix("c2",100,1)

class2<-cbind(c2,f)

sim2datatrain<-rbind(class1,class2)

#generate test datasets

#test class 1

f<-mvrnorm(250,mu1,sigma1)

c1<-matrix("c1",250,1)

class1<-cbind(c1,f)

#test class 2

f<-mvrnorm(250,mu2,sigma2)

2<-matrix("c2",250,1)

class2<-cbind(c2,f)

sim2datatest<-rbind(class1,class2)
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#standardization

sim2train<-matrix(as.numeric(sim2datatrain[,2:ncol(sim2datatrain)]),

nrow(sim2datatrain),ncol(sim2datatrain)-1)

sim2trainstd<-matrix(NA,nrow=nrow(sim2train),ncol=ncol(sim2train))

sim2test<-matrix(as.numeric(sim2datatest[,2:ncol(sim2datatest)]),

nrow(sim2datatest),ncol(sim2datatest)-1)

sim2teststd<-matrix(NA,nrow=nrow(sim2test),ncol=ncol(sim2test))

meantrain<-apply(sim2train,2,FUN=mean)

sdtrain<-apply(sim2train,2,FUN=sd)

for (i in 1:nrow(sim2train))

{

for (j in 1:ncol(sim2train))

sim2trainstd[i,j]<-(sim2train[i,j]-meantrain[j])/(sdtrain[j])

}

for (i in 1:nrow(sim2test))

{

for (j in 1:ncol(sim2test))

sim2teststd[i,j]<-(sim2test[i,j]-meantrain[j])/(sdtrain[j])

}

#classes

sim2trainclass<-as.factor(sim2datatrain[,1])

sim2testclass<-as.factor(sim2datatest[,1])
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B.3 Four multimodal classes

set<-cbind(expand.grid(1:5,1:5)[sample(1:25,12),],rep(1:4,each=3))

#generate train datasets

#train class 1

mu11<-c(set$Var1[1],set$Var2[1])

sigma11<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f1<-mvrnorm(20,mu11,sigma11)

mu12<-c(set$Var1[2],set$Var2[2])

sigma12<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f2<-mvrnorm(20,mu12,sigma12)

mu13<-c(set$Var1[3],set$Var2[3])

sigma13<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f3<-mvrnorm(20,mu13,sigma13)

f<-rbind(f1,f2,f3)

c1<-matrix("cl1",60,1)

class1<-cbind(c1,f)

#train class 2

mu21<-c(set$Var1[4],set$Var2[4])

sigma21<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f1<-mvrnorm(20,mu21,sigma21)

mu22<-c(set$Var1[5],set$Var2[5])

sigma22<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f2<-mvrnorm(20,mu22,sigma22)

mu23<-c(set$Var1[6],set$Var2[6])

sigma23<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f3<-mvrnorm(20,mu23,sigma23)

f<-rbind(f1,f2,f3)

c2<-matrix("cl2",60,1)

class2<-cbind(c2,f)
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#train class 3

mu31<-c(set$Var1[7],set$Var2[7])

sigma31<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f1<-mvrnorm(20,mu31,sigma31)

mu32<-c(set$Var1[8],set$Var2[8])

sigma32<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f2<-mvrnorm(20,mu32,sigma32)

mu33<-c(set$Var1[9],set$Var2[9])

sigma33<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f3<-mvrnorm(20,mu33,sigma33)

f<-rbind(f1,f2,f3)

c3<-matrix("cl3",60,1)

class3<-cbind(c3,f)

#train class 4

mu41<-c(set$Var1[10],set$Var2[10])

sigma41<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f1<-mvrnorm(20,mu41,sigma41)

mu42<-c(set$Var1[11],set$Var2[11])

sigma42<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f2<-mvrnorm(20,mu42,sigma42)

mu43<-c(set$Var1[12],set$Var2[12])

sigma43<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f3<-mvrnorm(20,mu43,sigma43)

f<-rbind(f1,f2,f3)

c4<-matrix("cl4",60,1)

class4<-cbind(c4,f)

sim3datatrain<-rbind(class1,class2,class3,class4)
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#generate test datasets

#test class 1

f1<-mvrnorm(40,mu11,sigma11)

f2<-mvrnorm(40,mu12,sigma12)

f3<-mvrnorm(40,mu13,sigma13)

f<-rbind(f1,f2,f3)

c1<-matrix("cl1",120,1)

class1<-cbind(c1,f)

#test class 2

f1<-mvrnorm(40,mu21,sigma21)

f2<-mvrnorm(40,mu22,sigma22)

f3<-mvrnorm(40,mu23,sigma23)

f<-rbind(f1,f2,f3)

c2<-matrix("cl2",120,1)

class2<-cbind(c2,f)

#test class 3

f1<-mvrnorm(40,mu31,sigma31)

f2<-mvrnorm(40,mu32,sigma32)

f3<-mvrnorm(40,mu33,sigma33)

f<-rbind(f1,f2,f3)

c3<-matrix("cl3",120,1)

class3<-cbind(c3,f)

#test class 4

f1<-mvrnorm(40,mu41,sigma41)

f2<-mvrnorm(40,mu42,sigma42)

f3<-mvrnorm(40,mu43,sigma43)

f<-rbind(f1,f2,f3)

c4<-matrix("cl4",120,1)

class4<-cbind(c4,f)

sim3datatest<-rbind(class1,class2,class3,class4)
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#standardization

sim3train<-matrix(as.numeric(sim3datatrain[,2:ncol(sim3datatrain)]),

nrow(sim3datatrain),ncol(sim3datatrain)-1)

sim3trainstd<-matrix(NA,nrow=nrow(sim3train),ncol=ncol(sim3train))

sim3test<-matrix(as.numeric(sim3datatest[,2:ncol(sim3datatest)]),

nrow(sim3datatest),ncol(sim3datatest)-1)

sim3teststd<-matrix(NA,nrow=nrow(sim3test),ncol=ncol(sim3test))

meantrain<-apply(sim3train,2,FUN=mean)

sdtrain<-apply(sim3train,2,FUN=sd)

for (i in 1:nrow(sim3train))

{

for (j in 1:ncol(sim3train))

sim3trainstd[i,j]<-(sim3train[i,j]-meantrain[j])/(sdtrain[j])

}

for (i in 1:nrow(sim3test))

{

for (j in 1:ncol(sim3test))

sim3teststd[i,j]<-(sim3test[i,j]-meantrain[j])/(sdtrain[j])

}

#classes

sim3trainclass<-as.factor(sim3datatrain[,1])

sim3testclass<-as.factor(sim3datatest[,1])
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B.4 Four multimodal classes with noise

set<-cbind(expand.grid(1:5,1:5)[sample(1:25,12),],rep(1:4,each=3))

#generate train datasets

#train class 1

mu11<-c(set$Var1[1],set$Var2[1])

sigma11<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f1<-mvrnorm(20,mu11,sigma11)

mu12<-c(set$Var1[2],set$Var2[2])

sigma12<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f2<-mvrnorm(20,mu12,sigma12)

mu13<-c(set$Var1[3],set$Var2[3])

sigma13<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f3<-mvrnorm(20,mu13,sigma13)

f<-rbind(f1,f2,f3)

c1<-matrix("cl1",60,1)

class1<-cbind(c1,f)

#train class 2

mu21<-c(set$Var1[4],set$Var2[4])

sigma21<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f1<-mvrnorm(20,mu21,sigma21)

mu22<-c(set$Var1[5],set$Var2[5])

sigma22<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f2<-mvrnorm(20,mu22,sigma22)

mu23<-c(set$Var1[6],set$Var2[6])

sigma23<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f3<-mvrnorm(20,mu23,sigma23)

f<-rbind(f1,f2,f3)

c2<-matrix("cl2",60,1)

class2<-cbind(c2,f)
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#train class 3

mu31<-c(set$Var1[7],set$Var2[7])

sigma31<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f1<-mvrnorm(20,mu31,sigma31)

mu32<-c(set$Var1[8],set$Var2[8])

sigma32<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f2<-mvrnorm(20,mu32,sigma32)

mu33<-c(set$Var1[9],set$Var2[9])

sigma33<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f3<-mvrnorm(20,mu33,sigma33)

f<-rbind(f1,f2,f3)

c3<-matrix("cl3",60,1)

class3<-cbind(c3,f)

#train class 4

mu41<-c(set$Var1[10],set$Var2[10])

sigma41<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f1<-mvrnorm(20,mu41,sigma41)

mu42<-c(set$Var1[11],set$Var2[11])

sigma42<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f2<-mvrnorm(20,mu42,sigma42)

mu43<-c(set$Var1[12],set$Var2[12])

sigma43<-matrix(c((0.25)^2,0,0,(0.25)^2),2,2)

f3<-mvrnorm(20,mu43,sigma43)

f<-rbind(f1,f2,f3)

c4<-matrix("cl4",60,1)

class4<-cbind(c4,f)

mu<-c(0,0,0,0,0,0,0,0)

sigma<-diag(8)

f<-mvrnorm(240,mu,sigma)

sim4datatrain<-rbind(class1,class2,class3,class4)

sim4datatrain<-cbind(sim4datatrain,f)
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#generate test datasets

#test class 1

f1<-mvrnorm(40,mu11,sigma11)

f2<-mvrnorm(40,mu12,sigma12)

f3<-mvrnorm(40,mu13,sigma13)

f<-rbind(f1,f2,f3)

c1<-matrix("cl1",120,1)

class1<-cbind(c1,f)

#test class 2

f1<-mvrnorm(40,mu21,sigma21)

f2<-mvrnorm(40,mu22,sigma22)

f3<-mvrnorm(40,mu23,sigma23)

f<-rbind(f1,f2,f3)

c2<-matrix("cl2",120,1)

class2<-cbind(c2,f)

#test class 3

f1<-mvrnorm(40,mu31,sigma31)

f2<-mvrnorm(40,mu32,sigma32)

f3<-mvrnorm(40,mu33,sigma33)

f<-rbind(f1,f2,f3)

c3<-matrix("cl3",120,1)

class3<-cbind(c3,f)

#test class 4

f1<-mvrnorm(40,mu41,sigma41)

f2<-mvrnorm(40,mu42,sigma42)

f3<-mvrnorm(40,mu43,sigma43)

f<-rbind(f1,f2,f3)

c4<-matrix("cl4",120,1)

class4<-cbind(c4,f)

mu<-c(0,0,0,0,0,0,0,0)

sigma<-diag(8)

f<-mvrnorm(480,mu,sigma)

sim4datatest<-rbind(class1,class2,class3,class4)

sim4datatest<-cbind(sim4datatest,f)

116



#standardization

sim4train<-matrix(as.numeric(sim4datatrain[,2:ncol(sim4datatrain)]),

nrow(sim4datatrain),ncol(sim4datatrain)-1)

sim4trainstd<-matrix(NA,nrow=nrow(sim4train),ncol=ncol(sim4train))

sim4test<-matrix(as.numeric(sim4datatest[,2:ncol(sim4datatest)]),

nrow(sim4datatest),ncol(sim4datatest)-1)

sim4teststd<-matrix(NA,nrow=nrow(sim4test),ncol=ncol(sim4test))

meantrain<-apply(sim4train,2,FUN=mean)

sdtrain<-apply(sim4train,2,FUN=sd)

for (i in 1:nrow(sim4train))

{

for (j in 1:ncol(sim4train))

sim4trainstd[i,j]<-(sim4train[i,j]-meantrain[j])/(sdtrain[j])

}

for (i in 1:nrow(sim4test))

{

for (j in 1:ncol(sim4test))

sim4teststd[i,j]<-(sim4test[i,j]-meantrain[j])/(sdtrain[j])

}

#classes

sim4trainclass<-as.factor(sim4datatrain[,1])

sim4testclass<-as.factor(sim4datatest[,1])
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B.5 Four dimensional sphere with noise

#generate train datasets

#train class 1

mu1<-c(0,0,0,0)

sigma1<-diag(4)

x1t4<-mvrnorm(100,mu1,sigma1)

rad<-sqrt(diag(x1t4\%*\%t(x1t4)))

for (i in 1:length(rad))

{

while (rad[i]$<$3)

{

for (j in 1:ncol(x1t4))

{

x1t4[i,j]<-rnorm(1,0,1)

rad<-sqrt(diag(x1t4\%*\%t(x1t4)))

}

}

}

mu<-c(0,0,0,0,0,0)

sigma<-diag(6)

f<-mvrnorm(100,mu,sigma)

c1<-matrix("cl1",100,1)

class1<-cbind(c1,x1t4,f)

#train class 2

mu2<-c(0,0,0,0,0,0,0,0,0,0)

sigma2<-diag(10)

f<-mvrnorm(100,mu2,sigma2)

c2<-matrix("cl2",100,1)

class2<-cbind(c2,f)

sim5datatrain<-rbind(class1,class2)
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#generate test datasets

#test class 1

x1t4<-mvrnorm(250,mu1,sigma1)

rad<-sqrt(diag(x1t4\%*\%t(x1t4)))

for (i in 1:length(rad))

{

while (rad[i]<3)

{

for (j in 1:ncol(x1t4))

{

x1t4[i,j]<-rnorm(1,0,1)

rad<-sqrt(diag(x1t4\%*\%t(x1t4)))

}

}

}

f<-mvrnorm(250,mu,sigma)

c1<-matrix("cl1",250,1)

class1<-cbind(c1,x1t4,f)

#test class 2

f<-mvrnorm(250,mu2,sigma2)

c2<-matrix("cl2",250,1)

class2<-cbind(c2,f)

sim5datatest<-rbind(class1,class2)
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#standardization

sim5train<-matrix(as.numeric(sim5datatrain[,2:ncol(sim5datatrain)]),

nrow(sim5datatrain),ncol(sim5datatrain)-1)

sim5trainstd<-matrix(NA,nrow=nrow(sim5train),ncol=ncol(sim5train))

sim5test<-matrix(as.numeric(sim5datatest[,2:ncol(sim5datatest)]),

nrow(sim5datatest),ncol(sim5datatest)-1)

sim5teststd<-matrix(NA,nrow=nrow(sim5test),ncol=ncol(sim5test))

meantrain<-apply(sim5train,2,FUN=mean)

sdtrain<-apply(sim5train,2,FUN=sd)

for (i in 1:nrow(sim5train))

{

for (j in 1:ncol(sim5train))

sim5trainstd[i,j]<-(sim5train[i,j]-meantrain[j])/(sdtrain[j])

}

for (i in 1:nrow(sim5test))

{

for (j in 1:ncol(sim5test))

sim5teststd[i,j]<-(sim5test[i,j]-meantrain[j])/(sdtrain[j])

}

#classes

sim5trainclass<-as.factor(sim5datatrain[,1])

sim5testclass<-as.factor(sim5datatest[,1])
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B.6 Ten dimensional sphere

#generate train datasets

#train class 1

mu1<-c(0,0,0,0,0,0,0,0,0,0)

sigma1<-diag(10)

x1t10<-mvrnorm(100,mu1,sigma1)

rad<-(diag(x1t10\%*\%t(x1t10)))

for (i in 1:length(rad))

{

while (rad[i]$>$sqrt(40) $|$ rad[i]$<$sqrt(22.4))

{

for (j in 1:ncol(x1t10))

{

x1t10[i,j]<-rnorm(1,0,1)

rad<-(diag(x1t10\%*\%t(x1t10)))

}

}

}

c1<-matrix("cl1",100,1)

class1<-cbind(c1,x1t10)

#train class 2

mu2<-c(0,0,0,0,0,0,0,0,0,0)

sigma2<-diag(10)

f<-mvrnorm(100,mu2,sigma2)

c2<-matrix("cl2",100,1)

class2<-cbind(c2,f)

sim6datatrain<-rbind(class1,class2)

121



#generate test datasets

#test class 1

x1t10<-mvrnorm(250,mu1,sigma1)

rad<-(diag(x1t10\%*\%t(x1t10)))

for (i in 1:length(rad))

{

while (rad[i]$>$sqrt(40) $|$ rad[i]$<$sqrt(22.4))

{

for (j in 1:ncol(x1t10))

{

x1t10[i,j]<-rnorm(1,0,1)

rad<-(diag(x1t10\%*\%t(x1t10)))

}

}

}

c1<-matrix("cl1",250,1)

class1<-cbind(c1,x1t10)

#test class 2

f<-mvrnorm(250,mu2,sigma2)

c2<-matrix("cl2",250,1)

class2<-cbind(c2,f)

sim6datatest<-rbind(class1,class2)
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#standardization

sim6train<-matrix(as.numeric(sim6datatrain[,2:ncol(sim6datatrain)]),

nrow(sim6datatrain),ncol(sim6datatrain)-1)

sim6trainstd<-matrix(NA,nrow=nrow(sim6train),ncol=ncol(sim6train))

sim6test<-matrix(as.numeric(sim6datatest[,2:ncol(sim6datatest)]),

nrow(sim6datatest),ncol(sim6datatest)-1)

sim6teststd<-matrix(NA,nrow=nrow(sim6test),ncol=ncol(sim6test))

meantrain<-apply(sim6train,2,FUN=mean)

sdtrain<-apply(sim6train,2,FUN=sd)

for (i in 1:nrow(sim6train))

{

for (j in 1:ncol(sim6train))

sim6trainstd[i,j]<-(sim6train[i,j]-meantrain[j])/(sdtrain[j])

}

for (i in 1:nrow(sim6test))

{

for (j in 1:ncol(sim6test))

sim6teststd[i,j]<-(sim6test[i,j]-meantrain[j])/(sdtrain[j])

}

#classes

sim6trainclass<-as.factor(sim6datatrain[,1])

sim6testclass<-as.factor(sim6datatest[,1])
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B.7 Four multivariate normal classes

#generate train datasets

x1<-rnorm(100,0,1)

x2<-rnorm(100,0,1)

x3<-rnorm(100,0,1)

x4<-rnorm(100,0,1)

x5<-rnorm(100,0,1)

x6<-rnorm(100,0,1)

x<-cbind(x1,x2,x3,x4,x5,x6)

class<-runif(100,0,1)

cl<-NULL

for (i in 1:length(class))

{

if (class[i]$<$=0.1)

cl[i]<-"cl1"

else if (class[i]$$>$$0.1 \& class[i]$<$=0.3)

cl[i]<-"cl2"

else if (class[i]$$>$$0.3 \& class[i]$<$=0.5)

cl[i]<-"cl3"

else cl[i]<-"cl4"

}

sim7datatrain<-cbind(cl,x)
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#generate test datasets

x1<-rnorm(500,0,1)

x2<-rnorm(500,0,1)

x3<-rnorm(500,0,1)

x4<-rnorm(500,0,1)

x5<-rnorm(500,0,1)

x6<-rnorm(500,0,1)

x<-cbind(x1,x2,x3,x4,x5,x6)

class<-runif(500,0,1)

cl<-NULL

for (i in 1:length(class))

{

if (class[i]$<$=0.1)

cl[i]<-"cl1"

else if (class[i]$$>$$0.1 \& class[i]$<$=0.3)

cl[i]<-"cl2"

else if (class[i]$$>$$0.3 \& class[i]$<$=0.5)

cl[i]<-"cl3"

else cl[i]<-"cl4"

}

sim7datatest<-cbind(cl,x)
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#standardization

sim7train<-matrix(as.numeric(sim7datatrain[,2:ncol(sim7datatrain)]),

nrow(sim7datatrain),ncol(sim7datatrain)-1)

sim7trainstd<-matrix(NA,nrow=nrow(sim7train),ncol=ncol(sim7train))

sim7test<-matrix(as.numeric(sim7datatest[,2:ncol(sim7datatest)]),

nrow(sim7datatest),ncol(sim7datatest)-1)

sim7teststd<-matrix(NA,nrow=nrow(sim7test),ncol=ncol(sim7test))

meantrain<-apply(sim7train,2,FUN=mean)

sdtrain<-apply(sim7train,2,FUN=sd)

for (i in 1:nrow(sim7train))

{

for (j in 1:ncol(sim7train))

sim7trainstd[i,j]<-(sim7train[i,j]-meantrain[j])/(sdtrain[j])

}

for (i in 1:nrow(sim7test))

{

for (j in 1:ncol(sim7test))

sim7teststd[i,j]<-(sim7test[i,j]-meantrain[j])/(sdtrain[j])

}

#classes

sim7trainclass<-as.factor(sim7datatrain[,1])

sim7testclass<-as.factor(sim7datatest[,1])
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B.8 Two completely separable classes

#generate train datasets

#train class 1

x1<-rnorm(100,0,1)

x2<-rnorm(100,0,1)

x3<-rnorm(100,0,1)

x4<-rnorm(100,0,1)

x5<-rnorm(100,0,1)

x6<-rnorm(100,0,1)

x7<-rnorm(100,0,1)

x8<-rnorm(100,0,1)

x9<-rnorm(100,0,1)

x10<-rnorm(100,0,1)

x<-cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)

c1<-matrix("cl1",100,1)

class1<-cbind(c1,x)

#train class 2

x1<-rnorm(100,sqrt(1/2),1/1)

x2<-rnorm(100,sqrt(2/2),1/2)

x3<-rnorm(100,sqrt(3/2),1/3)

x4<-rnorm(100,sqrt(4/2),1/4)

x5<-rnorm(100,sqrt(5/2),1/5)

x6<-rnorm(100,sqrt(6/2),1/6)

x7<-rnorm(100,sqrt(7/2),1/7)

x8<-rnorm(100,sqrt(8/2),1/8)

x9<-rnorm(100,sqrt(9/2),1/9)

x10<-rnorm(100,sqrt(10/2),1/10)

x<-cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)

c2<-matrix("cl2",100,1)

class2<-cbind(c2,x)

sim8datatrain<-rbind(class1,class2)
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#generate test datasets

#test class 1

x1<-rnorm(250,0,1)

x2<-rnorm(250,0,1)

x3<-rnorm(250,0,1)

x4<-rnorm(250,0,1)

x5<-rnorm(250,0,1)

x6<-rnorm(250,0,1)

x7<-rnorm(250,0,1)

x8<-rnorm(250,0,1)

x9<-rnorm(250,0,1)

x10<-rnorm(250,0,1)

x<-cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)

c1<-matrix("cl1",250,1)

class1<-cbind(c1,x)

#test class 2

x1<-rnorm(250,sqrt(1/2),1/1)

x2<-rnorm(250,sqrt(2/2),1/2)

x3<-rnorm(250,sqrt(3/2),1/3)

x4<-rnorm(250,sqrt(4/2),1/4)

x5<-rnorm(250,sqrt(5/2),1/5)

x6<-rnorm(250,sqrt(6/2),1/6)

x7<-rnorm(250,sqrt(7/2),1/7)

x8<-rnorm(250,sqrt(8/2),1/8)

x9<-rnorm(250,sqrt(9/2),1/9)

x10<-rnorm(250,sqrt(10/2),1/10)

x<-cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)

c2<-matrix("cl2",250,1)

class2<-cbind(c2,x)

sim8datatest<-rbind(class1,class2)
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#standardization

sim8train<-matrix(as.numeric(sim8datatrain[,2:ncol(sim8datatrain)]),

nrow(sim8datatrain),ncol(sim8datatrain)-1)

sim8trainstd<-matrix(NA,nrow=nrow(sim8train),ncol=ncol(sim8train))

sim8test<-matrix(as.numeric(sim8datatest[,2:ncol(sim8datatest)]),

nrow(sim8datatest),ncol(sim8datatest)-1)

sim8teststd<-matrix(NA,nrow=nrow(sim8test),ncol=ncol(sim8test))

meantrain<-apply(sim8train,2,FUN=mean)

sdtrain<-apply(sim8train,2,FUN=sd)

for (i in 1:nrow(sim8train))

{

for (j in 1:ncol(sim8train))

sim8trainstd[i,j]<-(sim8train[i,j]-meantrain[j])/(sdtrain[j])

}

for (i in 1:nrow(sim8test))

{

for (j in 1:ncol(sim8test))

sim8teststd[i,j]<-(sim8test[i,j]-meantrain[j])/(sdtrain[j])

}

#classes

sim8trainclass<-as.factor(sim8datatrain[,1])

sim8testclass<-as.factor(sim8datatest[,1])
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B.9 Two Gaussian hyperspheres

#generate train datasets

n<-100

p<-1

delta<-0

x1<-mvrnorm(n,rep(0,p),diag(p))

x2<-mvrnorm(n,rep(sqrt(delta/p),p),diag(p))

cl<-rep(c(1,2),each=n)

Ndatatrain<-rbind(x1,x2)

Ndatatrain<-cbind(cl,Ndatatrain)

#generate test datasets

n<-100

p<-1

delta<-0

x1<-mvrnorm(n,rep(0,p),diag(p))

x2<-mvrnorm(n,rep(sqrt(delta/p),p),diag(p))

cl<-rep(c(1,2),each=n)

Ndatatest<-rbind(x1,x2)

Ndatatest<-cbind(cl,Ndatatest)
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#standardization

Ntrain<-matrix(as.numeric(Ndatatrain[,2:ncol(Ndatatrain)]),

nrow(Ndatatrain),ncol(Ndatatrain)-1)

Ntrainstd<-matrix(NA,nrow=nrow(Ntrain),ncol=ncol(Ntrain))

Ntest<-matrix(as.numeric(Ndatatest[,2:ncol(Ndatatest)]),

nrow(Ndatatest),ncol(Ndatatest)-1)

Nteststd<-matrix(NA,nrow=nrow(Ntest),ncol=ncol(Ntest))

meantrain<-apply(Ntrain,2,FUN=mean)

sdtrain<-apply(Ntrain,2,FUN=sd)

for (i in 1:nrow(Ntrain))

{

for (j in 1:ncol(Ntrain))

Ntrainstd[i,j]<-(Ntrain[i,j]-meantrain[j])/(sdtrain[j])

}

for (i in 1:nrow(Ntest))

{

for (j in 1:ncol(Ntest))

Nteststd[i,j]<-(Ntest[i,j]-meantrain[j])/(sdtrain[j])

}

#classes

Ntrainclass<-as.factor(Ndatatrain[,1])

Ntestclass<-as.factor(Ndatatest[,1])
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B.10 Two uniform hyperspheres

# For p=1

#create train data sets

p<-1

radius<-1

volume<-pi^(p/2)*radius^p/gamma(p/2+1)

density<-50 # number of points per unit of volume

#n<-round(density*volume,0) # maintains density of points per unit volume

n<-100

delta<-2

x<-matrix(runif(2*n,-1,1)*radius,nrow=2*n)

x[-(1:n),]<-x[-(1:n),]+rep(sqrt(delta/p),p)

cl<-rep(c(1,2),each=n)

UDdatatrain<-cbind(cl,x)

#create test data sets

p<-1

radius<-1

volume<-pi^(p/2)*radius^p/gamma(p/2+1)

density<-50 # number of points per unit of volume

#n<-round(density*volume,0) # maintains density of points per unit volume

n<-100

delta<-2

x<-matrix(runif(2*n,-1,1)*radius,nrow=2*n)

x[-(1:n),]<-x[-(1:n),]+rep(sqrt(delta/p),p)

cl<-rep(c(1,2),each=n)

UDdatatest<-cbind(cl,x)
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#standardization

UDtrain<-matrix(as.numeric(UDdatatrain[,2:ncol(UDdatatrain)]),

nrow(UDdatatrain),ncol(UDdatatrain)-1)

UDtrainstd<-matrix(NA,nrow=nrow(UDtrain),ncol=ncol(UDtrain))

UDtest<-matrix(as.numeric(UDdatatest[,2:ncol(UDdatatest)]),

nrow(UDdatatest),ncol(UDdatatest)-1)

UDteststd<-matrix(NA,nrow=nrow(UDtest),ncol=ncol(UDtest))

meantrain<-apply(UDtrain,2,FUN=mean)

sdtrain<-apply(UDtrain,2,FUN=sd)

for (i in 1:nrow(UDtrain))

{

for (j in 1:ncol(UDtrain))

UDtrainstd[i,j]<-(UDtrain[i,j]-meantrain[j])/(sdtrain[j])

}

for (i in 1:nrow(UDtest))

{

for (j in 1:ncol(UDtest))

UDteststd[i,j]<-(UDtest[i,j]-meantrain[j])/(sdtrain[j])

}

#classes

UDtrainclass<-as.factor(UDdatatrain[,1])

UDtestclass<-as.factor(UDdatatest[,1])
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# For p=2

#create train data sets

p<-2

radius<-1

volume<-pi^(p/2)*radius^p/gamma(p/2+1)

density<-100 # number of points per unit of volume

#n<-round(density*volume,0) # maintains density of points per unit volume

n<-100

delta<-1

r<-(runif(2*n,0,1))^(1/p)*radius

phi<-matrix(runif(2*n*(p-1),0,2*pi),nrow=(2*n))

xfirst<-cbind(rep(1,2*n),sin(phi))

x<-r*cbind(xfirst[,-p]*cos(phi),xfirst[,p])

x[-(1:n),]<-x[-(1:n),]+rep(sqrt(delta/p),p)

cl<-rep(c(1,2),each=n)

UDdatatrain<-cbind(cl,x)

#create test data sets

p<-2

radius<-1

volume<-pi^(p/2)*radius^p/gamma(p/2+1)

density<-100 # number of points per unit of volume

#n<-round(density*volume,0) # maintains density of points per unit volume

n<-100

delta<-1

r<-(runif(2*n,0,1))^(1/p)*radius

phi<-matrix(runif(2*n*(p-1),0,2*pi),nrow=(2*n))

xfirst<-cbind(rep(1,2*n),sin(phi))

x<-r*cbind(xfirst[,-p]*cos(phi),xfirst[,p])

x[-(1:n),]<-x[-(1:n),]+rep(sqrt(delta/p),p)

cl<-rep(c(1,2),each=n)

UDdatatest<-cbind(cl,x)
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#standardization

UDtrain<-matrix(as.numeric(UDdatatrain[,2:ncol(UDdatatrain)]),

nrow(UDdatatrain),ncol(UDdatatrain)-1)

UDtrainstd<-matrix(NA,nrow=nrow(UDtrain),ncol=ncol(UDtrain))

UDtest<-matrix(as.numeric(UDdatatest[,2:ncol(UDdatatest)]),

nrow(UDdatatest),ncol(UDdatatest)-1)

UDteststd<-matrix(NA,nrow=nrow(UDtest),ncol=ncol(UDtest))

meantrain<-apply(UDtrain,2,FUN=mean)

sdtrain<-apply(UDtrain,2,FUN=sd)

for (i in 1:nrow(UDtrain))

{

for (j in 1:ncol(UDtrain))

UDtrainstd[i,j]<-(UDtrain[i,j]-meantrain[j])/(sdtrain[j])

}

for (i in 1:nrow(UDtest))

{

for (j in 1:ncol(UDtest))

UDteststd[i,j]<-(UDtest[i,j]-meantrain[j])/(sdtrain[j])

}

#classes

UDtrainclass<-as.factor(UDdatatrain[,1])

UDtestclass<-as.factor(UDdatatest[,1])
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# For p>=3

#create train data sets

p<-3

radius<-1

volume<-pi^(p/2)*radius^p/gamma(p/2+1)

#n<-round(100*volume,0) # maintains density of 100 points per unit of volume

n<-100

delta<-1

r<-(runif(2*n,0,1))^(1/p)*radius

phi<-matrix(runif(2*n*(p-1),0,2*pi),nrow=(2*n))

xfirst<-cbind(rep(1,2*n),t(apply(sin(phi),1,cumprod)))

x<-r*cbind(xfirst[,-p]*cos(phi),xfirst[,p])

x[-(1:n),]<-x[-(1:n),]+rep(sqrt(delta/p),p)

cl<-rep(c(1,2),each=n)

UDdatatrain<-cbind(cl,x)

#create test data sets

p<-3

radius<-1

volume<-pi^(p/2)*radius^p/gamma(p/2+1)

#n<-round(100*volume,0) # maintains density of 100 points per unit of volume

n<-100

delta<-1

r<-(runif(2*n,0,1))^(1/p)*radius

phi<-matrix(runif(2*n*(p-1),0,2*pi),nrow=(2*n))

xfirst<-cbind(rep(1,2*n),t(apply(sin(phi),1,cumprod)))

x<-r*cbind(xfirst[,-p]*cos(phi),xfirst[,p])

x[-(1:n),]<-x[-(1:n),]+rep(sqrt(delta/p),p)

cl<-rep(c(1,2),each=n)

UDdatatest<-cbind(cl,x)
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#standardization

UDtrain<-matrix(as.numeric(UDdatatrain[,2:ncol(UDdatatrain)]),

nrow(UDdatatrain),ncol(UDdatatrain)-1)

UDtrainstd<-matrix(NA,nrow=nrow(UDtrain),ncol=ncol(UDtrain))

UDtest<-matrix(as.numeric(UDdatatest[,2:ncol(UDdatatest)]),

nrow(UDdatatest),ncol(UDdatatest)-1)

UDteststd<-matrix(NA,nrow=nrow(UDtest),ncol=ncol(UDtest))

meantrain<-apply(UDtrain,2,FUN=mean)

sdtrain<-apply(UDtrain,2,FUN=sd)

for (i in 1:nrow(UDtrain))

{

for (j in 1:ncol(UDtrain))

UDtrainstd[i,j]<-(UDtrain[i,j]-meantrain[j])/(sdtrain[j])

}

for (i in 1:nrow(UDtest))

{

for (j in 1:ncol(UDtest))

UDteststd[i,j]<-(UDtest[i,j]-meantrain[j])/(sdtrain[j])

}

#classes

UDtrainclass<-as.factor(UDdatatrain[,1])

UDtestclass<-as.factor(UDdatatest[,1])
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