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1.0 Introduction 

During the recent Operation Iraqi Freedom and Operation Enduring Freedom, 82% of 

soldiers injured during battle suffered from a musculoskeletal extremity wound (Devore, 2011). 

Powerful bombs, Improvised Explosive Devices (IEDs), and firearms that cause these injuries 

remove soldiers from the battlefield surviving what were once non-survivable injuries just a 

couple of decades ago.  The rapid triage, emergent medical evacuation and strategically placed 

Combat Army Surgical Hospitals providing immediate surgical intervention have significantly 

increased the survival rate of those soldiers who face large traumas, but this leads our injured 

military members into a new battle. Many recovering soldiers have to endure large functional 

and morphological damage, as many of these wounds can cause volumetric muscle loss (VML) 

(Figure 1).  

 

Figure 1. Left: Calf muscle VML (Sahar, 2013) 

Skeletal muscle accounts for 45% of body mass and can heal itself and restore function 

when small-scale injuries occur to the myofibers (Tidball, 2010). VML occurs when the 

basement membrane that recruits and forms new muscle cells is damaged at the wound site. As a 

result, muscle cannot properly heal and form functional tissue. At the site of the wound, muscle 
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cells are not able to align uniaxially to restore function. Additionally, fibroblasts invade the 

wound site, forming disorganized scar tissue. Over 4.5 million reconstructive surgeries involving 

VML are performed annually which include burn victims, trauma patients, injured sports players, 

and maxillofacial reconstructive patients (Grasman, 2015). The most common reconstructive 

surgery performed to treat VML injuries is an autologous tissue transfer wherein healthy muscle 

tissue is taken from somewhere else in the body and is implanted at the wound site in an attempt 

to restore function. However, autologous tissue transfers have a high rate of failure, result in 

donor site morbidity, and are expensive (Sahar, 2013). Additionally, the average lifetime 

disability cost for veterans suffering from a VML injury is on average $341,300 (Corona, 2015). 

There is a need for an approach that provides biophysical and biochemical cues for the 

muscle cells to regrow functional tissue at the site of the wound. One approach is an implantable 

therapy which would provide biophysical and biochemical cues to signal for muscle cells to 

regrow and restore function to the damaged tissue.  The Pins lab has shown promising results 

with fibrin microthreads as an implantable scaffold for VML. The fibrin microthreads provide a 

uniaxially aligned scaffold for myoblasts (muscle cell precursors) to grow out onto while also 

functioning as a delivery vehicle for growth factors to increase cell proliferation (Litvinov, 

2016). In vitro studies can be carried out to test these factors in order to maximize the structural, 

mechanical, biological, and chemical properties of the fibrin microthreads to predict and improve 

in vivo results (Grasman, 2015 & 2017).  

There currently exists no reproducible in vitro 3D modeling system that fully predicts the 

interactions cells have with the scaffold in vivo. Therefore, the design team worked to design, 

develop, and test a more reproducible 3D in vitro model for fibrin microthreads as a treatment 

for skeletal muscle regeneration. The overarching goal of this project is to develop a 
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standardized model that will provide researchers with reproducible, higher throughput in vitro 

results, which will increase overall confidence in study results for tested treatments in advance of 

in vivo studies. The team developed an initial set of objectives, but refined those objectives (and 

detailed sub-objectives) upon client and user interviews and further background research. Each 

objective was further broken down to define sub-objectives for the project. A list of constraints 

was created and utilized to remain within the scope of the project.  

Using an objectives tree, the team developed a decision matrix that was used to make 

pairwise comparison charts for the design of the assay. It was determined that the model must be 

easy to use, reproducible between users, interface with 3D scaffolds (fibrin microthreads), 

support cellular characterization, and remain cost efficient. The results of the pairwise 

comparison led the team to focus on which objectives were of highest priority, and their 

respective functions. Reproducibility, ability to interface with 3D scaffolds, and cellular 

characterization/efficient data collection were the highest priority of all of the clients, users, and 

team. The team then used the prioritized objectives to develop a series of functions for the 

model: 

1. Six or more sufficient fibrin microthread - C2C12 cell gel interfaces 

2. Fixturing mechanism of fibrin microthreads  

3. Support cell culture environment 

4. Data capture and imaging of six or more thread-gel interfaces 

From these initial functions, multiple design iterations were created and researched. Each design 

iteration combined several methods of the above functions, guiding the team to determine which 

method for each function was most ideal. The team determined that a Thermanox® coverslip 

was the best surface for the cell gel to be deposited onto, as it has the ideal properties to maintain 
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surface tension for the gel to interact with the fibrin microthreads. For the fixturing method, it 

was determined that manually cut slits into the PDMS with a razor blade were most effective at 

securing the thread without disrupting the sterilization process.  It was determined that in order to 

standardize the dimensions of the PDMS frames, a mold which would create PDMS frames with 

a groove for Thermanox® placement could be used. Additionally, a cutting guide 3D printed out 

of acrylonitrile butadiene styrene (PLA), and a cutting tool of three equidistantly spaced razor 

blades, were made to minimize user variability when cutting slits while increasing data 

throughput. 

Once the final design for making the frames was selected, experimentation was 

performed to validate and optimize the design. The final design is composed of 3 separate 

components: a mold for making PDMS frames, a cutting guide, and cutting tool. Potential 

materials for the mold were heat tested to ensure they could withstand being in the oven for at 

least one hour at 60℃ which is necessary for complete PDMS curing. The team tested molds 

made from biocompatible, flexible, tough, and durable resins, in addition to Delrin™, 

manufactured by DuPont, plastic by placing each mold in the oven for 2 hours and observing the 

material for deformation or breakage. It was determined by the team that any observable 

deformation was unacceptable.  Each material was tested to ensure it could properly cure and 

release the PDMS frames. Out of the available 3D resins and machining materials, it was 

observed that only Delrin™ plastic passed both heat testing and PDMS curing testing.  

Through these experiments, the team was able to confirm that Delrin™ plastic was the 

optimal material to create the mold for the PDMS frames. Additional research was done, and it 

was found in the literature that experiments had been performed which determined that Delrin™ 

is not cytotoxic and would therefore not leach any chemicals into the PDMS frames that would 
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affect the viability of the cells during the assay (Penick et al., 2005). Therefore, cell viability 

testing on the frames was not needed.  

To validate that this design improved standardization of the frames, assembly testing was 

done to compare the model created by the design team to the current Pins Lab Model. Initial 

assembly testing for the Pins Model included the cutting and shaping of six PDMS rings, cutting  

slits into the PDMS using a razor blade, placing three fibrin microthreads per ring, and 

constructing six Thermanox® cell-gel stages. This was then compared to the six PDMS frames 

that the team removed from the mold. Using the rapid prototyped PLA cutting guide, razor slits 

were made into the PDMS frames. The assembly time for each model was compared, and the 

team determined their model decreased assembly from fifteen to eight steps. 

To validate the reproducibility of the design, the team created 48 models using the Pins 

Lab method and 24 models using the Muscle Ladies Model (ML Model). The wall thickness of 

each PDMS frame was measured using calipers and recorded. The distance between slits for 

fibrin microthread fixturing was also measured and recorded. It was determined that the ML 

Model decreased assembly time by 42.8%, reduced PDMS frame width variability by 94.4%, 

and reduced fibrin microthread fixation slit variability by 83.0%.  

The ML Model is a reusable, cost-effective kit that can be used within the Pins Lab and 

other labs which investigate the use of scaffolds to achieve reproducible in vitro results capable 

of predicting in vivo response to the scaffold implanted in a wound site. This standardized design 

and protocol will provide more valid cellular outgrowth assay results, as the dimensions are the 

same for each frame, and each setup has negligible variability. Future studies could be used to 

quantify the reproducibility of outgrowth assay results, as preliminary testing confirmed that 

outgrowth is sustainable over 96 hours. 
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The team recognizes and discussed design changes that should be made to future 

iterations of this project, such as the depth of the Thermanox® groove on the PDMS frame. 

Future applications of this project include testing the ML Model with growth factor threads 

(HGF, etc.) and altering mechanical properties of the fibrin microthreads (UV treatment, 

bundling, etc.) to better reflect in vivo conditions. Additionally, we recommend the creation and 

study of a multicellular design incorporating muscle, nerve, and endothelial cells to better mimic 

native muscle tissue growth.  
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2.0 Literature Review 

 2.1 Volumetric Muscle Loss (VML) 

Since the beginning of Operation Enduring Freedom and Operation Iraqi Freedom, more 

than 40,000 soldiers have suffered casualties (Wenke, 2011). While advancements in protective 

gear and medical care on the battlefield have led to reduced mortality, there is still significant 

morbidity resulting from injuries to the extremities. Eighty two percent of injuries on the 

battlefield have caused a musculoskeletal injury, many of which result in VML (Devore, 2011). 

This leads to a loss of muscle function and mobility due to the formation of a large amount of 

scar tissue (Grasman, 2015). The lifetime cost per person for this type of disability is $341,300 

(Pantelic, 2018). In addition to soldiers, VML injuries affect athletes, trauma victims, and cancer 

patients, with over 4.5 million reconstructive surgeries performed annually in cases of VML 

(Pollot, 2016).  

VML is broken down into two categories: partial compartment loss and total 

compartment loss. Partial compartment loss occurs when the nerve remains intact. Total 

compartment loss is defined as the loss of the nerve that supplies the muscle compartment, 

depleting most ability for the muscle to function.  Currently available treatments for VML fail to 

restore function to the damaged tissue at a level similar to the muscle before the injury (Grogan, 

2011). The Medical Research Council (MRC) Scale for Muscle Strength provides a method of 

determining the level of function a muscle group has. An examiner provides resistance against 

the muscle and if the patient is able to contract the muscle against full resistance, then the muscle 

determined to have full function. In order to restore full function to the damaged tissue after 

VML, surgical intervention is required as it is beyond the capacity of the muscle to heal itself 
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(Grogan, 2011). The current methods that are used to restore function to the damaged muscle 

include autologous tissue transfers, prosthetics and biological scaffolding (Liu, 2018).  

2.2 Skeletal Muscle 

In developing a treatment for VML, it is necessary to understand the structure and 

function of skeletal muscle, in addition to the natural  healing process in cases of small injuries. 

Then it is possible to understand what is required by a new therapy in order to promote the 

proliferation of healthy, functional tissue.  

2.2.1 Anatomy and Physiology 

Muscle makes up as much as 45% of the body’s mass and has a remarkable capacity to 

heal itself (Juhas, 2013). Muscle tissue is composed of grouped units, called fascicles, and the 

smallest unit, the myofibers which are multinucleated cells formed by the fusion of myoblasts 

(Figure 2).   

 
 

Figure 2. Structure of muscle tissue (Grasman, 2015) 
 

Myofibers contain bundles of myofibrils made up of contracting units of actin and 

myosin filaments and are each enveloped by connective tissue known as the endomysium, also 



 

26 

referred to as the basement membrane (Grefte, 2007). Fascicles are made up of bundled together 

myofibers which are held together by the connective tissue of the perimysium. These fascicles 

are grouped together to form the whole muscle and are held together by the epimysium 

(Korthuis, 2011). The organized and uniaxial structure of muscle fascicles allows muscle to 

contract and produce resistance to force.  

2.2.2 Wound Healing 

Muscle tissue is a highly innervated and vascularized tissue, with each myofiber being  

innervated by an individual motor neuron which branches off from a larger nerve. This 

connection is where the muscle is signaled to contract. Additionally, the muscle tissue is 

vascularized by branching blood vessels which penetrate through the connective tissue of the 

muscle to the epimysium to provide blood flow to each myofiber (Segal, 2005). This high level 

of vascularization is what allows muscle to heal itself from smaller injuries.  When a small 

muscular injury occurs, the smallest unit of the muscle (myofibrils) are torn. This triggers the 

three-phase healing process (Figure 3). The first phase is inflammation, during which the 

damaged tissue is cleared away by neutrophils and macrophages that release signals to amplify 

the inflammatory response and signal for satellite cells to invade (Figure 3B) (Tidball, 2010). 

Satellite cells reside between the cell membrane of myofibers and the basement membrane 

(Figure 3A) and proliferate in response to injuries (Morgan, 2003). The next step is the repair 

phase which includes the invasion of vascular, nerve, and muscle tissue to the wound area. 

Satellite cells begin to differentiate into myoblasts which fuse together to form new myofibers or 

build onto the damaged ones (Figure 3C). During this time, collagenous scar tissue is formed to 

stabilize the wound by connecting the damaged myofibers. In the third and final phase, the newly 
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formed portions of myofiber re-align uniaxially, healing the gap between the damaged myofibers 

while incorporating themselves into the extracellular matrix (Figure 3D) (Grasman, 2015).  

 

Figure 3: Schematic of muscle regeneration (Grasman, 2016) 

 

Muscle healing occurs for a small-scale injury, so when the damage is too great, healing 

does not occur effectively. A large-scale muscle injury is defined as when enough muscle is lost 

that it is not able to be regenerated by the muscle’s innate healing ability (Turner, 2012). In cases 

of VML, organized repair is not able to occur because such a large amount of muscle tissue, as 

well as connective tissue, nerve tissue, and vasculature, are lost. This lack of vasculature 

prevents the promotion of guided satellite cell infiltration to form myoblasts as the basement 

membrane has been destroyed (Jarvinen, 2005). This can be seen in the healing pathway depicted 

by Figure 3E-G. Since the basement membrane is gone, satellite cells cannot infiltrate the wound 

site (Grasman, 2016).  Instead, fibroblasts invade the wound site and generate collagen that first 
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stabilizes the wound then remodels into nonfunctional scar tissue (Jarvinen, 2005). This dense 

scar tissue inhibits the infiltration of nerve tissue and vasculature, which further inhibits healthy 

muscular regrowth. The end result of this healing process is disorganized and low functioning 

muscle (Juhas, 2013). As shown in Figure 4, healthy muscle tissue is highly striated and uniaxial, 

whereas natural healing from a VML injury is disorganized and occurs multi directionally. This 

lack of uniaxial alignment means that the muscle cannot contract. 

 
Figure 4. Healthy (left) versus scarred muscle tissue (right) (Grasman, 2015) 

2.2.3 Current Treatments for VML 

Autologous tissue transfers involve the surgical transfer of functional, innervated muscle 

from a different muscle group in the body to the site of the VML. This procedure is able to 

restore some function to the damaged muscle, but even the best-case outcome for this procedure 

is not able to restore full function to the muscle (Fischer, 2013). A high rate of failure can be 

attributed to infection and necrosis at the site of implantation, as well as morbidity at the donor 

site. Complications, such as total flap failure, can arise as a result of damage to the donor nerve 

(Bianchi, 2009). Yet another drawback of this procedure is the limited availability of donor 

muscle tissue. Depending on the severity of the injury, the patient may not have enough healthy 

muscle tissue available to transplant to the wound site. If the wound is so severe that the entire 
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limb portion is compromised, amputation and prosthetics are an option to provide the patient 

with limited use of that limb.  

Another treatment for VML involves the use of biological scaffolds, specifically those 

comprised of decellularized extracellular matrix (dECM) (Liu, 2018). These scaffolds are formed 

by extracting biological tissue and removing all of the cells and living material, leaving behind 

the extracellular proteins that serve as a scaffold to direct the growth of cells and support muscle 

regeneration (Sicari, 2014). While decellularized ECM scaffolds direct muscle healing and 

restore some function, this type of treatment is not able to create architecturally accurate muscle 

tissue. The structure of the new muscle tissue does not fully mimic that of the native tissue 

because the decellularized ECM is not as highly uniaxial as native muscle tissue (Dziki, 2016). 

The uniaxial orientation of muscle is imperative to its proper function because that is the main 

characteristic that allows it to contract and resist force. The absence of a structure similar to 

native tissue means that the new muscle generated will not have the same level of strength and 

functionality as the tissue prior to the injury.  

2.2.4 Clinical Need 

While more research has been done investigating VML and its effects, there is still no 

consensus regarding how best to treat it. Currently available treatments are able to restore 

moderate strength, mobility, and function to the damaged tissue, but none of the available 

treatments fully restore function to a level comparable to that of the muscle before trauma (in 

animal subjects).  

The best available treatment involves autologous tissue transfer of functional muscle to 

the site of VML. High rates of failure due to infection and donor site morbidity, as well as a 

limited availability of donor tissue, creates a large gap for improved treatment options for VML.  
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The gap in treatment success emphasizes the need for an implantable therapy to provide the 

necessary biophysical and biochemical cues to direct the uniaxial regeneration of healthy, 

functional muscle tissue.  

2.3 Tissue Engineering Scaffolds 

Tissue engineering is a broad and interdisciplinary field of research. One of the major 

goals of tissue engineering is to develop solutions to restore function to damaged tissues and 

organs. The most promising approach tissue engineers have discovered in order to overcome the 

limitations of current VML treatments are biomimetic scaffolds (Passipieri, 2017). A biomimetic 

scaffold is a 3D, tissue-similar structural framework that cells use as a guide to proliferate and 

migrate onto to promote regrowth of functional tissue. Biomimetic scaffolds for wound healing 

should emulate the environment of the extracellular matrix (ECM) and encourage cellular 

behavior to maintain, restore, or improve tissue function (Nigam, 2014). Tissue engineered 

scaffolds can be utilized as a partial muscle graft, as a whole muscle replacement, or as a drug 

screening device when developed in vitro. Key features of a successful biomimetic scaffold for 

skeletal muscle regeneration include (Lev, 2018): 

1. The ability to provide an environment for the formation of functional muscle tissue.   

2. The ability to construct densely-packed uniaxial myofibers  

3. The ability to promote bioactive cell signaling  

4. The ability to deliver regenerative growth factors 

There are two major types of scaffolds used for tissue regeneration; synthetic and natural. 

Synthetic scaffolds can be classified as organic or inorganic and are often made from polymers 

such as Polylactic Acid (PLA), Polyglycolic Acid (PGA), nylon, and gelatin. Synthetic scaffolds 
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are considered beneficial because they have mechanical and physical properties that can be 

modified for specific applications. However, synthetic scaffolds are not as biocompatible as 

natural scaffolds, making it difficult for cells to adhere. Oftentimes, synthetic scaffolds are 

modified with bioactive molecules such as growth factors, enzyme sensitive peptides, and cell 

adhesive peptides to increase cells ability to migrate and proliferate onto the scaffold (Zhu, 

2011). Additionally, as synthetic polymers degrade they increase the pH of the surrounding 

tissue and release toxins into the body. Natural scaffolds are typically derived from proteins, 

polysaccharides, and polynucleotides (DNA and RNA). Natural scaffolds are beneficial because 

of their high biocompatibility and bioresorbability (Nigam, 2014). Researchers have applied 

tissue engineered scaffolds alone or have paired them with drugs, cells, or growth factors as a 

treatment for VML in preclinical and clinical studies (Passipieri, 2017). Numerous types of 

biomimetic scaffolds have been investigated in the field such as dECM, hydrogel, and 

microthread scaffolds.  

2.3.1 Decellularized Extracellular Matrix Scaffolds 

A commonly investigated scaffold as a therapy for VML is dECM. Biologic scaffold 

materials composed of dECM are typically produced by decellularization of mammalian tissues. 

Successful dECM scaffolds provide a supportive environment for cells that influence 

endogenous cell behavior at the target site (Dziki, 2016). Proper cell function and behavior is 

achieved for muscle regeneration when the dECM scaffold is able to align itself with the 

surrounding muscle fibers to optimize recruitment of myogenic stem cells and fusion of new 

myotubes (Zhang, 2016). However, proper alignment of muscle fibers is often difficult to 

achieve using a dECM scaffold because the structure of the dECM does not mimic the highly 

uniaxial structure of skeletal muscle. 
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A study performed by Ma et al., investigated the ability of small intestinal submucosa 

(SIS) grafts to be utilized to repair and promote regeneration of skeletal muscle in VML injuries 

in rodent abdominal walls. The success of the scaffold was analyzed using tissue biopsies 

performed 16 weeks after surgery. Three to five 10 μm transverse cryosections were cut at 0.6-

0.8 mm intervals throughout the defect and stained with hematoxylin and eosin to measure 

morphologic observations, and Herovici’s polychromatic to visualize and quantify the VML 

defect. Researchers found after 16 weeks of implantation, only about 10% of the target site was 

vascularized muscle tissue. The lack of vascularized muscle tissue indicated that the SIS ECM 

scaffold did not provide an adequate environment for VML repair (Ma, 2015).  

Sicari et al., performed a study illustrating the effects of xenogenic dECM scaffolds 

derived from a porcine urinary bladder as a treatment for VML injuries in a preclinical rodent 

model and in five male human patients. Histological analysis and immunolabeling were used to 

identify skeletal muscle and examine perivascular stem cells (PVSCs). The detection of PVSCs 

is an indication the newly formed tissue is beginning to vascularize, which is crucial for the 

development of functional skeletal muscle. Six months after the ECM scaffold was implanted in 

the rodent models, VML defects exhibited evidence of striated skeletal muscle tissue throughout 

the target area. PVSCs were identified outside of their normal niche and were present among the 

degrading ECM scaffold in both rodent and human biopsies. At 24 to 28 weeks after scaffold 

implantation in human patients, three out of the five male patients showed at least a 20% 

improvement of muscle strength. At six months, all patients exhibited signs of new muscle and 

blood vessel formation at the target site with improved strength after physical therapy (Sicari, 

2014).  
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Dziki et al., completed a larger scale cohort study where they implanted porcine ECM 

scaffolds into a VML wound in 13 human patients. The scaffold was analyzed using histology 

and immunolabeling to observe the structure of the formed tissue and identify the cellular 

interactions. Three different scaffolds derived from porcine tissues were used. However, there 

was no measurable difference in skeletal muscle regeneration based on scaffold origin. Force 

production, strength improvement, and degradation rate of the scaffold were monitored 

throughout the duration of the study. After 24-28 weeks, the average increase in force production 

for the 13 patients was 37.3% ± 12.4%. Seven out of thirteen patients had an improvement in 

strength at the injury site with an average increase of 21.1% ± 12.2%. After an average of 7 

months, the scaffold had completely degraded and been replaced with new muscle tissue. 

Additionally, the bulk tissue density increased by an average of 27.2% after 8 months (Dziki, 

2016).  

Although these studies do exhibit moderate improvements in muscle structure and 

function, the scaffold could still be improved. The low level of muscle fiber regeneration 

observed in each study is predicted to be a result of the decellularization process of the scaffold. 

Naturally, ECM materials contain bioactive proteins and growth factors which are involved in 

complex interactions between the regenerative elements in skeletal muscle. When the ECM is 

decellularized, these elements are damaged and wound healing is inhibited (Greising, 2016). 

However, acellular biological scaffolds still remain a vital tool for VML injuries and should 

continue to be modified in combination with other biological and rehabilitative therapeutic 

strategies.  
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2.3.2 Hydrogel Scaffolds 

Another popular scaffold for muscle regeneration is a hydrogel scaffold. Hydrogels act as 

cell delivery vehicles to promote the differentiation and maturation of skeletal muscle cells. Ideal 

hydrogel scaffolds encourage cellular integration onto the scaffold, support cell survival, and 

protect the cells upon implantation into the body (Lev, 2018). Natural hydrogels can be made out 

of materials such as alginate, collagen, and keratin.  

The Christ lab has recently focused their work on creating a keratin hydrogel as a 

treatment for VML injuries. Keratin is a fibrous protein that is responsible for forming hair. It 

has been investigated as a scaffold material because of its ability to promote cell adhesion and 

release drugs and growth factors (Passipieri, 2017). Keratin hydrogels alone were placed into a 

surgically induced VML wounds in mice. Force analysis and histological analysis were 

performed on the injury site two months post-surgery. Researchers discovered the maximum 

force exerted by the muscle treated with the keratin hydrogel was about 70% of the maximum 

force exerted by the control group, which was native muscle tissue. The histological analysis 

revealed that the tissue at the wound site repaired with varying amounts of collagen, adipose, and 

neomuscle tissue. Collagen and adipose tissue do not allow for functional repair of the muscle 

tissue because these tissues are not uniaxially aligned. Regenerated muscle tissue must be 

aligned uniaxially in order to be able to produce forces similar to forces exerted by native muscle 

tissue. Compared to native tissue, the keratin hydrogels provided a much less structural 

organization of muscle fibers (Passipieri, 2017). Future work is needed to further enhance the 

wound healing mechanisms of hydrogel systems to provide more aligned formation of muscle 

fibers in vivo and improve functional outcomes.  
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2.3.3 Fibrin Based Microthread Scaffolds 

Fibrin is a natural provisional matrix protein that is vital in the clotting of blood at a 

wound site. When tissue damage that results in bleeding occurs, thrombin, a clotting enzyme, 

polymerizes fibrinogen into fibrin at the wound site (O’Brien, 2016). Fibrin is made up of long 

fibrous chains that entangle platelets at the wound site to create a blood clot. Since fibrin is 

naturally found in the body and facilitates wound healing, it is a biocompatible material that 

supports cell adhesion and proliferation in the direction of the fibers. This makes fibrin a 

promising material to use as a biomimetic scaffold for wound healing. Fibrin scaffolds act as a 

delivery vehicle for growth factors to increase cell proliferation to the target site. As the adherent 

cells create new ECM, the fibrin scaffold degrades to allow the newly formed tissue to take over. 

Fibrin has been used to create multiple types of scaffolds including hydrogel scaffolds and 

microthread scaffolds (Litvinov, 2016). 

Fibrin microthreads and fibrin bundles offer a number of benefits for skeletal muscle 

regeneration; they provide contact guidance for cell growth, act as a delivery vehicle for muscle-

derived cells, promote functional skeletal muscle regeneration, and deliver necessary growth 

factors (O’Brien, 2016). Page et al. 2011, loaded fibrin microthread bundles with adult human 

cells harvested from an adult male’s muscle tissue. The cell-loaded fibrin bundles were placed 

into a large wound in the tibialis anterior (TA) of a mouse. After 2 weeks, the fibrin threads were 

no longer individually visible by gross inspection and there was evidence of physical contact 

between the native tissue and the fibrin threads at the wound site. Thirty days after implantation, 

the wounds sites with fibrin implants (about 8%) had significantly less collagen than untreated 

controls (about 55%) (Figure 5), implying that the fibrin scaffolds prevent the formation of scar 

tissue (Page, 2011).  
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Figure 5. Histological sections of wound healing in untreated mouse tibialis anterior defect (A) and fibrin microthread 
implanted mouse tibialis anterior defect (B). Masson’s Trichrome stain was used for collagen (blue) and muscle tissue 
(red). Quantification of collagen deposition at no implant (untreated) and implant wound site (C) (Page, 2011). 

 

In addition, the cell-loaded fibrin microthread bundle implants improved the recovery of 

muscle strength 4 months after surgery. The tetanic intermittent and maximum force was 

measured on mice without a TA defect (baseline), on mice with an untreated TA defect (no 

implant), and mice with a TA defect treated with cell-loaded fibrin microthread implants 

(implant). After the injury was left to heal, the results of the maximum tetanic force indicated a 

positive linear trend of muscle function in implanted mice, reaching almost 100% recovery at 90 

days post-surgery. No implant mice showed a negative linear trend of function and exhibited just 

over 50% of normal (baseline) muscle strength. These results reveal that cell-loaded fibrin 

microthreads promote functional skeletal muscle recovery in a large-scale muscle wound (Page, 

2011).  
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Grasman et al. 2015, fabricated a biomimetic scaffold using fibrin microthreads and 

incorporated varying biochemical and biophysical cues to promote tissue regeneration. 

Researchers conducted a study using cell seeded microthreads as a scaffold in a rodent VML 

injury. Human muscle cells were seeded onto fibrin microthreads and then secured in bundles 

into a VML injury created in the tibialis anterior (TA) muscle of mice and examined after 90 

days. Time-course examination of the maximum tetanic force revealed the fibrin microthread 

scaffolds helped restore strength to the injury site. The mean tetanic force of the uninjured 

muscle, non-innervated muscle, and treated muscle were 16 g, 10 g, and 14 g respectively. 

Histological analysis of the injury site indicated that the microthreads appeared to reduce scar 

formation at the wound site as well as promote myotube formation. Fibrin microthreads appear 

to be a promising therapy for VML injuries, but more in vitro studies need to be conducted in 

order to test alterations to structural, mechanical, biological, and chemical properties of the 

microthreads to improve results and better predict how the scaffold will perform in an in vivo 

wound healing environment (Grasman, 2015).  

The Pins lab has continuously been working to enhance the biological, chemical, and 

physical properties of fibrin microthreads (Grasman, 2017). A study comparing fibrin hydrogel 

scaffolds and fibrin microthread scaffolds was conducted to determine which scaffolding 

material was able to best promote regeneration of functional tissue in a mouse VML model. A 

VML injury was created in the TA muscle of a mouse. After the formation of the injury one of 5 

treatments was implanted into the wound site:  no intervention (control), fibrin hydrogel, 

uncrosslinked (UNX) microthreads, crosslinked (EDCn) microthreads, or crosslinked and 

hepatocyte growth factor loaded (EDCn-HGF) microthreads. HGF is key signaling molecule for 

cell adhesion and wound healing found in the basal lamina of the body. In large skeletal muscle 
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injuries, the basal lamina is destroyed and HGF is removed. The fibrin gel treatment was used as 

a control to study the effect of the microthread architecture on wound healing. Pins lab 

performed force and histological experiments to determine which condition promoted functional 

wound healing.  

Sixty days post injury, a tetanic force analysis and a histological and 

immunohistochemical analysis were performed on the animal subjects. Researchers concluded 

that crosslinked fibrin microthreads loaded with HGF (EDCn-HGF) were the most promising 

scaffold technology to promote skeletal muscle growth in a uniaxial direction. HGF stimulates 

the activation and migration of satellite cells from the wound margin onto the scaffold and to the 

injury site (O’Brien, 2016). EDCn-HGF microthreads were able to produce 200% the force of 

the injured muscle. Fibrin gels were only able to produce about 125% the force of the injured 

muscle. As indicated in the histological analysis (Figure 6), the no intervention treatment shows 

excess collagen tissue represented by the blue arrows, while the fibrin gel treatment resulted in 

the formation of adipose tissue represented by the yellow arrows. The EDCn-HGF resulted in 

regenerated muscle tissue with myofibers in direct contact with the threads (green arrows). Both 

adipose tissue deposition and collagen deposition at the wound site do not lead to functional 

muscle regrowth because the fat cells and collagen fibers do not align themselves uniaxially 

along the scaffold to allow for maximum contraction of the muscle.  
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Figure 6: Histological analysis of no intervention (A), fibrin gel (B), and fibrin microthread (E) treatments. The 
bottom pictures are a cross section of the target site with blue arrows indicating fibrous tissue, yellow arrows 

indicating adipose tissue, and green arrows indicating aligned myofibers (Grasman, 2015). 
 

Microthreads appear to be a successful method to facilitate cellular migration and 

proliferation of native muscle cells with reduced collagen and adipose deposition and increased 

muscle strength (Grasman, 2015). However, tissue engineers continuously strive to improve the 

clinical outcome of biomaterial-based therapies. The biological properties, strength, immune 

response, recruitment of cells, and infiltration of cells, of fibrin microthreads could be optimized 

and tested in vitro to improve the clinical results of fibrin microthreads as a treatment for VML. 

Therefore, a 3D in vitro model is needed to mimic the biological environment while testing the 

effectiveness of several scaffolds for muscle cell growth. 

2.3.4. Need for Tissue Engineered Scaffolds for VML 

Fibrin microthreads produce promising results that demonstrate their ability to be used as 

a potential scaffolding material and treatment for VML. Scaffolds are used as a tool to guide 

cells to specific areas of the body. Fibrin can be extruded into microthreads that mimic the 
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natural architecture of skeletal muscle tissue. Results with animal studies with scaffolds created 

out of fibrin microthreads increase confidence that a patient’s cells will migrate to the wound 

site, proliferate in the correct direction, and regenerate functional muscle tissue. However, much 

more data needs to be collected before fibrin microthreads can be tested clinically.  

Therefore, there is a need to develop a 3D in vitro model system to predict how human 

muscle cells will interact with a scaffold in vivo, specifically fibrin microthreads that have been 

altered by crosslinking and bundling or loaded with growth factors to promote functional muscle 

tissue regrowth. A 3D in vitro model system of cellular outgrowth, defined as cellular migration 

and proliferation, would allow for multiple thread conditions to be tested to determine which 

type of thread will provide regenerated muscle tissue with the highest degree of functionality. 

Successful in vitro results will provide researchers with more confidence in the scaffolding 

treatment as they move into in vivo studies. Ultimately, a 3D in vitro model of skeletal muscle 

cell outgrowth onto fibrin microthreads will expedite the testing process of scaffolds to be used 

clinically in VML injuries.  

2.4 In Vitro Assays for Tissue Regeneration 

Tissues and organs are complex three-dimensional (3D) structures. In order for advances 

in regenerative medicine to be made, researchers must fully understand their structures and 

functions as well as how they interact with scaffolds. Improving the understanding of tissue and 

organ function can be achieved through the use of experimental models and assays. Testing can 

be done using two-dimensional (2D) or 3D models. Two-dimensional models are often used for 

preliminary testing and consist of a monolayer of cells grown on a flat tissue culture plate. After 

preliminary testing is completed using in vitro 3D methods, scaffolds are most often tested in an 
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animal model. Although these two model types can provide valuable information, there is a need 

to better understand in vivo molecular mechanisms in a simplified 3D environment (Yamada, 

2007). Three-dimensional in vitro models bridge this gap and provide opportunities to more 

accurately model complex structures in the in-vitro environment.  

2.4.1 2-Dimensional (2D) Assays 

2D  cell culture has served as an invaluable tool for cell biology and preclinical 

biomedical research for decades. 2D cell migration models are an important device for 

investigating key physiological events which occur during wound healing. They model the 

movement of cells, allow researchers to easily study the effects of various stimulating factors, 

but are often expensive to use (Kramer, 2011).  

Scratch assays (Figure 7) are one of the most widely used formats for studying cell 

migration. Cells are seeded onto a multiwell assay plate and allowed to form a confluent 

monolayer. A tool is then used to remove or “scratch” cells from an area and cell migration into 

the scratch is observed. Scratch assays are versatile and can be performed in any basic cell 

culture plate configuration without the need for a specialized assay setup. Prior to the 

experiment, the scratch assay surface can be coated with an ECM of choice, adding to its 

versatility. An additional advantage of the scratch assay is that cells along the scratch boundary 

move in a defined direction to try to close the wound, and the movement and morphology of 

these cells can be captured in real-time (Hulkower, 2007). Scratch assays can be useful in wound 

healing studies because the process of creating the scratch damages cells along the boundary. 

These damaged cells release growth factors and produce signals which facilitate wound repair 

and migration (Vogt, 2010). However, the scratch assay method can be inconsistent due to user 

variation in scratch technique. Additionally, it can be difficult to ensure that different treatment 
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groups are run under equivalent conditions of monolayer confluence and that the consistency of 

wound size is precise (Hulkower, 2007). There are a number of commercially available scratch 

assays, such as the CytoSelect Wound Healing Assay (Cell Biolabs) and the Cell Comb Scratch 

Assay (Millipore Sigma) which are designed to maximize standardization.   

 

 

Figure 7.Example of a scratch assay showing (A) the wound created by the scratch, and (B) cells migrating 
into the wound site (Vogt, 2010). ) 

 

Another type of commonly used 2D in vitro model is the cell exclusion zone assay. Cell 

exclusion assays use stencils, such as small silicone stoppers to create an exclusion zone. The 

stencil is placed on the plate and then cells are seeded into the surrounding space and allowed to 

reach confluence. The stencil is then removed, allowing the cells to migrate into that area 

(Kramer, 2011). Figure 8 shows an example of a cell exclusion zone assay. Cell migration can be 

quantified using fluorescent cell stains and fluorescence plate readers or with other image 

analysis techniques such as microscopy. A commonly used cell exclusion zone assay which 

operates under these principles is the Orsis Cell Migration Assay (Platypus Technologies LLC). 

To eliminate the need for a microstensil which must be manually removed, assays with a 

chemically engineered cell exclusion zone have also been designed. Cells cannot penetrate the 
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area while being seeded, and once the cells have adhered, the exclusion zone dissolves to allow 

cell migration (Vogt, 2010).  

 

Figure 8. Cells growing into an exclusion assay over a 12-hour period. At t=1 hr, the clean border created by the 
exclusion zone stencil is still visible. Over the next 11 hours, the cells migrate into the exclusion zone. Cells were 
stained with CellTracker Green and imaged using wide field fluorescence microscopy (Brescia and Banks, 2013). 

2.4.2 Need for 3D in vitro Assays 

While 2D assays provide valuable information about basic cell migration and behavior, 

cells cultured in 2D on a flat surface are not representative of cells residing in the complex 

conditions and 3D architecture of tissue in vivo. In native tissue, cells reside in an ECM and 

interact with neighboring cells and the surrounding matrix through biochemical and mechanical 

cues. Intercellular interactions influence cell properties such as morphology, differentiation, 

proliferation, gene and protein expression, and response to stimuli. Because cells grown in 2D 

cell culture cannot achieve the same level of organization and connectivity, many of these 

properties are limited or diminished. When cells are placed in 2D culture they become 

progressively flatter, divide abnormally, and can lose their differentiated phenotypes (Sanyal, 

2014).  
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3-Dimensional in vitro models offer an alternative which can provide a reproducible, 

controlled microenvironment which mimics conditions in vivo (Creative Bioarray, 2016). In 3D 

models, cell attachment occurs around the entire surface of the cell. Cells grown in a 3D 

environment exhibit similar morphology, signaling, and polarity to cells in native tissue (Sanyal, 

2014). Additionally, 3D in vitro models can act as an intermediate assessment stage before 

moving to in vivo techniques, bridging the gap between 2D culture models and animal models. 

The designed microenvironment of the 3D in vitro model enables studies which would be 

difficult to address in vivo. Users can test cell responses to specific conditions in isolation from 

the full in vivo system. The 3D in vitro model also is conducive to continuous biochemical 

analysis and imaging (Creative Bioarray, 2016).  Ultimately, using 3D in vitro modeling 

techniques allows researchers to accurately evaluate cellular responses in a more ethical, and 

more cost-effective way before proceeding to in vivo studies (Biogelx, 2018).  

2.4.3 3-Dimensional Assays 

There are a variety of existing 3D in vitro models which can be grouped into two 

categories; scaffold and non-scaffold based.  Scaffold-based approaches include solid polymeric 

scaffolds, hydrogel-based scaffolds, and micropatterned surfaces. Non-scaffold-based 

approaches include cells only that assemble into 3D structures using hanging drop microplates, 

spheroid microplates, and microfluidic devices.  

2.4.3.1 Scaffold-Based Approaches 

3-Dimensional scaffold-based models can be created by culturing cells on pre-fabricated 

polymeric scaffolds designed to mimic the in vivo ECM. Scaffolds are used as a physical support 

system to which cells attach and fill the interstices within the scaffold to form a 3D culture 
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environment. Commonly used synthetic polymers include polystyrene (PS), polycaprolactone 

(PCL), poly(glycolic acid) (PGA), and poly(lactic-co-glycolic acid) (PLGA)  which are then 

fabricated into scaffolds. Scaffold structures include electrospun fiber networks, porous 

materials, and orthogonal layered meshes (Larson, 2015) created by fabrication techniques 

including soft-lithography, electrospinning and bio-printing (Sanyal, 2014). 3D in vitro models 

made with synthetic polymer scaffolds are advantageous because they can be fabricated with 

strict control over mechanical, structural, and physicochemical properties. However, unlike 

naturally-derived polymers, synthetic polymer scaffolds lack adhesion motifs which promote 

optimal cell attachment and growth (Duda, 2015).  

3D in vitro scaffold-based models can also be created using hydrogels that can be formed 

using proteins commonly found in the ECM such as fibronectin, collagen, laminin, and gelatin. 

In addition to providing a support matrix, naturally-derived scaffolds provide growth factors, 

hormones and other molecules that cells interact with in the in vivo environment (Larson, 2015). 

Cells can be encapsulated within or sandwiched between hydrogel layers. Synthetic hydrogels 

can also be used when naturally-derived biological matrices are unsuitable. These include 

poly(ethylene glycol) (PEG), poly (vinyl alcohol) and poly (2-hydroxyethyl methacrylate) . 

Synthetic hydrogels are biologically inert, but can be modified with appropriate biological 

components (Sanyal, 2014).  

Another scaffold-based 3D in vitro modeling technique is micropatterned surface 

microplates. Each microplate well contains regularly arrayed, micrometer sized compartments. 

Wells can be various shapes and are created using micro-fabrication technology. Micropattern 

configuration is dependent on the cell type being used and can be optimized for spheroid or cell 

networking formation. Wells are selectively coated to create low adhesion surfaces in each 
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micro-space. This causes cells to aggregate together into spheroid structures at the bottom or 

form continuous cell networks (Larson, 2015). The transparent bottom of the plate allows for 

easy imaging and observation of in vivo-like cell activity (Creative Bioarray, 2016). 

2.4.3.2 Non-scaffold Based Approaches 

Scaffold-free 3D in vitro models use self-assembled 3D cells rather than a physical 

support system. Hanging drop microplates use gravity to encourage 3D growth of cells 

downward from where they were seeded in wells. Unlike traditional well plates, hanging drop 

plates have an open bottom. Cell media is dispensed on top of the well, and surface tension 

causes a small drop of media to hang from the aperture in the bottom (Creative Bioarray, 2016). 

This media drop is large enough for cellular aggregation into spheroids, but small enough that it 

will not dislodge when handled. Co-cultured spheroids can be created by adding multiple cell 

types sequentially. These hanging drop spheroids can also be transferred to a larger volume plate 

for long-term culturing (Larson, 2015). Hanging drop microplates are one of the most cost-

effective methods for 3D cell culture because they only require cells and media, and are 

compatible with automated liquid handling devices (Creative Bioarray, 2016).  

Spheroid microplates with an ultra-low attachment coating create a similar tissue model 

to hanging drop microplates. Each well has a typical shape and depth but has an ultra-low 

attachment coating on the bottom. This minimizes cell adherence and allows spheroid formation 

(Creative Bioarray, 2016). Well bottoms also have a round, tapered, or v-shaped geometry to 

ensure the creation of consistent sized spheroids positioned in the center of the well. Because of 

the larger well capacity, procedures can be carried out in the same plate and do not need to be 

transferred for long-term culturing (Larson, 2015).  



 

47 

Microfluidic devices simulate the 3D architecture of in vivo tissues and cell-ECM 

interactions while adding an additional layer of complexity by introducing fluid flow to the 

cellular environment. This allows for continuous nutrition and oxygen introduction as well as 

waste removal. Microfluidic devices are composed of polymers such as polydimethylsiloxane 

(PDMS), polymethylmethacrylate (PMMA), polycarbonate (PC) and polystyrene (PS), in 

addition to chromatographic or filter paper and hydrogels. (Larson, 2015). This type of 

technology was used to create an in vitro model of skeletal muscle to evaluate tissue formation 

and injury. The “muscle-on-a-chip” provided uniaxial cell alignment and was able to quantify 

strain as the tissue formed and matured (Varghese, 2017).  

2.4.3.3 Current 3D in vitro Fibrin Microthread Scaffold Model 

The Pins Lab is currently researching a 3D in vitro model of skeletal muscle 

regeneration.  

 

Figure 9. Current PDMS frame model: A - Top view, B - Thermanox® stage with fibrin microthreads stretched 
across, C - Ring and stage assembly in a well of a 6-well tissue culture plate. Adapted from (Grasman, 2015). 

 

In order to create the PDMS ring in Figure 9A, the user must make rectangular sheets of PDMS. 

From one sheet of PDMS, a leather hole punch (19mm) is used to make 6 holes in the sheet. A 

razor blade is used to cut squares around the holes that are punched in the PDMS. These squares 

are shaped once more with the razor blade into an octagon. Then, the user must use the razor 

blade to cut three slits in parallel sides of the PDMS rings. The slits are estimated to be half of 
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the depth of the PDMS ring, however this is an estimated length, so it is subjected to user 

variability. Following the laboratory protocol for making fibrin microthreads (Appendix A), the 

user must make fibrin microthreads, a polymerization of fibrinogen and thrombin. Once the 

fibrin microthreads are extruded, dehydrated, and cut into ideal sizes, the user must use forceps 

and their fingers to open the PDMS slits and place the fibrin microthreads in each side. This step 

causes 25% failure in the rings, as the opening of the slits typically causes the PDMS to fully 

split. The user then constructs a Thermanox® stage by making small PDMS “posts” (Figure 9B, 

lower graphic), and gluing a small rectangle of Thermanox® to the top of the PDMS posts. The 

PDMS ring, with threads intact, is then laid over the Thermanox® stage, inside a single well of a 

6-well plate. Vacuum grease is used to keep the PDMS ring and Thermanox® stage from 

moving during cellular characterization studies. The whole system must then be sterilized, which 

is currently done using 70% ethanol sterilization. 

 This assay is run in a 6-well plate for a total of 96 hours, with imagining done every 24 

hours on a Zeiss inverted microscope in phase contrast and fluorescence mode.  The cells are 

stained with Dioctadecyl-Tetramethylindocarbocyanine Perchlorate (DiI), a lipophilic, red-

orange membrane stain and each fibrin microthread (or bundle of fibrin microthreads, collagen 

thread, etc.) and C2C12 myoblast populated fibrin gel interface is imaged.  The phase contrast 

image is overlaid with the fluorescent image to measure cellular alignment and migration onto 

the fibrin microthreads. 
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3.0 Project Strategy 

The project strategy chapter discusses the framework of the engineering design process 

and its application regarding the design of a 3D in vitro skeletal muscle outgrowth assay. The 

design team gathered information crucial to the engineering design process from the initial client 

statement, client interviews, user interviews, industry expert interviews, project objectives, 

constraints, and the revised client statement. 

3.1 Stakeholders 

In order to effectively frame the need, constraints, and expectations of the project, the 

team considered all of the stakeholders. These stakeholders include the design team, the clients, 

and the users. It is important to consider the opinions and needs of the clients, as they are funding 

the project. The users are also critical, as they are the researchers that will ultimately utilize the 

assay in the future. In order to meet the needs of the stakeholders, the design team must be able 

to apply the engineering design process to define the assigned project and determine a feasible 

solution. 

The clients of this project include Dr. George D. Pins and Dr. Catherine F. Whittington, 

and the current user of this project is PhD candidate, Meagan Carnes. Other potential users 

include other researchers in the field of exploring scaffolds for use in directing repair of muscle 

or other tissues.  The design team is composed of Erin Heinle, Emily Morra, Emily Mossman, 

and Alyssa Paul. The project objective was provided to the team by Dr. George D. Pins and Dr. 

Catherine F. Whittington due to the need for a 3D assay to more efficiently and reproducibly 

model cellular outgrowth onto fibrin microthread scaffolds to predict muscle healing. This assay 
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will assist Dr. George D. Pins and Meagan Carnes in their research by creating a 3D assay to 

model outgrowth, for increased detection and predictability of scaffold to succeed in vivo. It can 

also be implemented in other labs where it may be used to model cellular outgrowth onto various 

types of biological scaffolds compatible with the final system created by the design team. 

 The design team has determined through client and user interviews that there exists a 

need to design a new assay that will reduce current assay assembly time by 50%, allow for a 6-

well imaging format, and has the ability to model reproducible cell proliferation, migration, and 

confluence of C2C12 cells onto a 3D fibrin microthread scaffold. Ultimately, this model should 

be able to support different types of scaffolds (e.g. collagen, bundles of fibrin microthreads) and 

multiple cell lines to better model skeletal muscle regrowth. Overall, there exists a need to bridge 

the research gap between the current 2D and 3D in vitro assays and the 3D in vivo testing of 

scaffolds, specifically for cellular outgrowth onto fibrin microthreads as a treatment for VML. A 

reproducible model will allow researchers to identify predict the in vivo response to the scaffold 

and enhance the rate of which scaffolds can be tested.  

3.2 Initial Client Statement 

The initial client statement provided to the team: 

“Design, develop, and characterize a 3D in vitro model of skeletal muscle ingrowth” 

In order to accomplish this goal, the design team would need to successfully develop a 

new assay or improve the existing 3D assays in order to effectively model cell confluence, 

migration, and proliferation onto the scaffold. It was important that the team identified and 

prioritized design objectives and constraints, which would be iterated as the stakeholders’ needs 

were understood in depth. A final set of objectives and constraints were formed to assist the team 
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in moving forward with a comprehensive project strategy and testing mechanisms throughout the 

design phase. 

3.3 Objectives 

A list of objectives was created based on the initial client statement. Client and user 

interviews, along with team assessments, were used to then tailor the objectives to the wants and 

needs of the present stakeholders and determine success (Appendix B-D). 

The initial objectives determined by the team were evaluated once client and user 

interviews provided detailed information regarding goals of the project. The team decided to 

focus on developing a new model system that would be compatible with 3D models, and then 

test this assay using a 3D microthread scaffold. Once the design iteration process began, the 

objectives and sub-objectives were further investigated for importance to the assay design. 

Figure 10 shows a hierarchical structure of the project objectives and their relevance to the 

design. 
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Figure 10. Project objectives hierarchical tree 

  

The five high-level objectives specify that the assay will be Easy to Use, Reproducible, 

it will Interface with 3D scaffolds (e.g. fibrin microthreads), Support Cellular 

Characterization, and be Cost Efficient. These objectives are defined in Table 1 and the sub-

objectives are defined in Tables 2 through 6. 
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Table 1.  Main objective definitions 

Objective Definition 

Easy to Use Model must be easy to assemble, easy to handle and intuitive to 
use 

Reproducible Must produce results that are consistent across replicates and 
multiple users  

Interface With 3D 
Scaffolds 

Model needs to be biocompatible and conducive to C2C12 
replication and migration onto the scaffold 

Support Cellular 
Characterization 

Must be able to obtain quantifiable results and be designed to 
allow the user to test multiple replicates at once and meet size 
constraints 

Cost Efficient Model needs to be productive relative to the cost of building 
and using it 

 

Table 2.  Sub-objective definitions for Ease of Use 

Sub-Objective: Ease of Use Definition 

Minimal Preparation Time Model assembly and testing setup must be intuitive and 
efficient for user 

“Off the Shelf” Design Components are prefabricated and minimal assembly is 
required 

Easy to Handle Model must be easy to work with during setup, testing, and 
imaging 

Easy Data Collection The user must be able to stain and image cells and analyze 
relevant throughput using available techniques 

Easy to Clean Assay can be sterilized using 70% Ethanol 

Limited Monitoring 
Required 

The assay will not come out of place once final assembly is 
complete (only media changes and imaging will be required) 
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Table 3.  Sub-objective definitions for Reproducible 

Sub-Objective: 
Reproducible 

Definition 

Consistent Assay 
Properties 

Model must be able to show similar levels of cell outgrowth 
and confluence between replicates and between multiple tests 

Standardization Between 
Users 

Model must be designed to minimize variability between users 

Precision of 
Measurements 

Little variance between cellular outgrowth distance 
measurements of same conditions (consistent) 

Accuracy of 
Measurements 

Cellular confluence predictive of in vivo response (shows 
cellular alignment, comparable leading cell outgrowth, 
formation of ECM around thread-gel interface) 

in vivo Predictability Data provides benchmarks to recognize success and failure 
once the scaffold is tested in vivo 

 

Table 4. Sub-objective definitions for Interface with 3D Scaffolds 

Sub-Objective: Interface 
with 3D Scaffolds 

Definition 

Support Microthread 
Scaffolds 

The model must be designed to test fibrin microthreads as the 
primary focus 

Biocompatible Material Materials used for the model must be compatible with C2C12 
cells and non-cytotoxic 

Sustained Outgrowth The model must be able to sustain cells in order for 
proliferation to occur 
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Table 5. Sub-objective definitions for Supports Cellular Characterization 

Sub-Objective: Supports 
Cellular Characterization 

Definition 

Quantify Cell Migration Model must support cell migration onto the microthread 
scaffold 

Quantify Cell 
Proliferation 

Model must be able to distinguish if outgrowth is caused by cell 
division or cell migration 

Quantify Cell Confluence Model must be able to quantify cell confluence around the 
circumference of the microthread 

Observe Cell Alignment Model must support the cell alignment required for functional 
muscle tissue regrowth 

Ease of Data Collection Data collection must be efficient using microscopes and 
technology provided 

Maximize Data Collection 
Rate 

 Efficient and intuitive set up leads to more assays being 
analyzed and more conditions being tested 

 

 

Table 6.  Sub-objective definitions for Cost-Efficient  

Sub-Objective: Cost-
Efficient 

Definition 

Materials Purchased 
Sustainably 

The model must be made of materials which are available to the 
lab over time and affordable to purchase. Required consumables 
and disposable components must also be inexpensive. 

Equipment is 
Inexpensive or Provided 

Model must be compatible with technologies already present in 
the lab and any additional accessories must be inexpensive to 
purchase 

Minimize Use of 
Reagents 

Lower the cost of materials / amount of materials used  

High Throughput Device is able to provide a high volume of data in a short time 
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3.4 Constraints 

In order to complete the MQP project requirements, certain criteria must be met. These 

criteria were identified as constraints because they had the potential to limit the ability for 

continuation of the project. Table 7 defines the constraints. 

Table 7.  Project Constraints    

Constraint Definition 

Financials Budget of $1,000 

Time Project must be completed by April 19th, 2019 

Resources Materials must be available or attainable for the team 

Materials Must not be cytotoxic or harm users 

Sterility Must be able to be sterilized by lab standards or fabricated in a 
sterile environment. 

 

The constraints provided the team with working limitations that must be met to design the 

assay. WPI provided a working budget of $1,000 and the team had until April 19th, 2019 

(Project Presentation Day) to complete the MQP. It is important that the materials used for the 

project be available to the team and the users within the Pins lab. Additionally, the materials used 

to produce the assay must not be cytotoxic or harmful to users of the model system. Finally, the 

team needed to ensure that the assay could be sterilized by laboratory standards. 

3.4.1 Design Dimension Constraints 

The design of the developed assay must also fit physical constraints. Each singular model 

system must fit into a 34.8 mm diameter well. The container in which PDMS is cured must fit 

into a vacuum chamber, measuring 25 cm in diameter. Additionally, the PDMS has to be cured 
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at 60°C for at least one hour. The container in which the PDMS is cured must not be cytotoxic or 

leach toxins into the PDMS.   

3.5 Quantitative Analysis of Objectives 

To identify the most important objectives directing the design specifications, the design 

team, clients, and users completed a pairwise comparison. A pairwise comparison is beneficial to 

the design process, because it allows each objective and sub-objective to be prioritized against 

the others. The objectives in a row and column that overlapped were compared and given a 

numerical score. A score of “1” indicates that the objective in the column position of the chart 

had priority over the objective in the row position of the chart. A score of “0.5” indicates that the 

two objectives were equally important. A score of “0” indicates that the objective in the column 

position had less priority than that of the objective in the row position. The scores were tallied 

for each objective, and compared among the design team, clients, and users. The pairwise 

comparison charts for each stakeholder can be found in Appendix E.  

The scores of the two clients and one user were evaluated and used for final scoring. 

Table 8 shows the average scores for the design team, clients, and user. Each objective was then 

assigned a weight based on the total scores. The average of the clients’ responses was multiplied 

by 0.4, as were the user’s responses. The design team’s responses were multiplied by 0.2, giving 

more weight to the clients and users, as this project is ultimately for them. The final weighted 

objectives determined using the following equation are listed in Table 9. 

 

Weight = [(0.4 * user score) + (0.4 * average of clients’ score) + (0.2 * average of 

design team score)] 
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Table 8. Pairwise comparison chart 

Totals for Pairwise Comparison for 3D in vitro Skeletal Muscle Regeneration 

 Team Pins Whittington Carnes Total 

Ease of Use 0.5 0.5 0.5 0.5 2 

Reproducible 3 4 3.5 2 12.5 

Interface with 3D 
Scaffolds 4.5 4 3.5 4.5 16.5 

Data Collection 4.5 4 3.5 4.5 16.5 

Multi-Well 
Format 2 2 3.5 1.5 9 

Cost Efficient 0.5 0.5 0.5 0 1.5 
 

Table 9. Objective weights 

Objective Weight 

Ease of Use 0.5 

Reproducible 2.7 

Interface with 3D Scaffolds 3.7 

Data Collection 3.7 

Multi-Well Format 2.1 

Cost Efficient 0.3 

  

The customer, user, and design team pairwise comparison shows that interfacing with 3D 

scaffolds, and efficient and effective data collection were the two most important objectives. 

These objectives were prioritized moving forward with the design process. After the initial 

objectives were defined, the terms “Data Collection” and “Multi-Well Format” were merged into 

one category, called “Supports Cellular Characterization”. 
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3.6 Functions and Specifications 

The design team worked with the clients and user to identify specific functions and 

specifications that would be evaluated throughout testing to determine if the assay is reaching an 

ideal standard. The assay was considered to consist of six supportive frames to fit into a 6-well 

plate. Each one of the six frames was required to have a successful fibrin microthread to gel 

interface, fixturing mechanism, supportive cell culture environment, and data capture and 

analysis. It was important to keep the objectives defined in Section 3.3 in mind, which these 

functions were created to satisfy. These key functions allowed for the creation of a successful 

assay and modeling system for 3D microthread scaffolds. 

3.6.1 Six or more sufficient fibrin microthread - C2C12 cell gel interfaces 

In order for the model to effectively be used to depict proliferation, migration, and 

alignment of cells along the scaffold, a C2C12 myoblast populated fibrin gel of C2C12 cells 

must be in contact with the fibrin microthreads. Our model must provide a sufficient area, 3 mm, 

on which the cell-gel will interface with the fibrin microthreads and a biocompatible material. In 

the past, Thermanox® has been used, as it does not disrupt the cellular proliferation. 

Additionally, the thread-gel interface must provide at least six data points that can be monitored 

and imaged by a Zeiss AxioVert 200M microscope. 

. A minimum of six thread-gel interfaces implies that at least three fibrin microthreads 

must be able to be secured to the model. 
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3.6.2 Fixturing mechanism of fibrin microthreads onto PDMS frame 

The fibrin microthreads must be stably fixtured to the PDMS frame in order to model 

cellular proliferation onto the fibrin microthreads. The current “gold standard” secures the 

threads to the PDMS by manually cutting slits in the side of the PDMS using a razor blade. The 

threads are then carefully slid into the “slits”, securing them in place (Grasman, 2017). It is 

crucial that the new design allows for user friendly and time efficient placement of threads. The 

fixturing mechanism must be able to be performed by one user and should not require significant 

experience. It is important that during media changes, a process that results in fluctuation of fluid 

level in the assay, the threads must remain in place. The team performed tests to determine 

whether slits or silicone glue would be the best fibrin microthread fixturing mechanism. 

3.6.3 Support cell culture environment 

 The assay must be able to function in an ideal cell culture environment for an extended 

amount of time.  Ideal cell culture environment for mammalian cells is 37℃, 5% carbon dioxide, 

and ~85% humidity. The environment must be robust for 96 hours. It must be compatible with 

the current media formulations used in the Pins Lab. To maintain ideal thread length and reduce 

stretching, the thread culture environment should be no longer than 1 cm within a 6-well plate 

format, with each well diameter measuring to be 35 mm. The height of the threads must be 

within the height range of the well plate, relative to the plate bottom, so that the media can 

surround the threads. The design team estimates this height to be 9.65 mm. However, the height 

of the model will be lower than this in order to be in the optimal range for imaging. The assay 

components must be biocompatible and support cellular outgrowth onto the fibrin microthreads. 
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3.6.4 Data capture and imaging of six or more thread-gel interfaces 

The assay must be able to be imaged using an inverted Zeiss AxioVert 200M microscope 

currently available in the Pins Lab. Each system must fit in a well of a 6-well plate and within 

the vertical working distance of the microscope. Six or more data interface points must be visible 

for each singular assay system (a 6-well plate with six data points in each well) by the 

microscope and analyzing software. 

3.7 Engineering Standards 

In order to ensure that the final device functions properly, protocols set forth by the 

International Standardization Organization (ISO) and the American Society of Testing and 

Materials (ASTM) will be used.  

The device must be tested for cytotoxicity. Because it is meant to support the growth of 

muscular cells, it must not create any toxic effects on the cells which would disrupt the data. This 

will be tested in two ways. A direct contact assay will be carried out per ASTM F813-07. This 

method calls for the incubation of mammalian cells in contact with the model. These results will 

be compared to those of cells incubated on latex as a positive control and high-density 

polyethylene (HDPE) as a negative control. This will allow the team to draw conclusions about 

whether contact with the device causes toxic effects to the cells. If there is research that supports 

that the material is not cytotoxic, then this test does not need to be conducted.  

The leaching of the device model will also be tested using an extract cytotoxicity assay 

following ASTM F619-03. In this test, samples of the model are incubated in media for five 

days. This media then replaces media in which healthy cells were growing. The effect of this 

media on the cell morphology determines if the model leached anything harmful into the media. 
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The same procedure was performed with samples of latex as a positive control and high-density 

polyethylene (HDPE) as a negative control. If there is research that supports that the material 

does not leach, then this test does not need to be conducted.  

To test that the chosen method of sterilization is effective, the device could be sterilized 

and submerged in media. It would then be stored in an incubator for five days, after which it 

would be examined under a microscope to determine microbial growth. If there is research that 

supports the effectiveness of the chosen method of sterilization, this test does not need to be 

done. CAD is being used to create the design for the model so ISO 16792, which dictates 

technical product documentation using CAD, must be followed. This standard which outlines 

methods for documenting the design drawings (ISO 16792, 2015). 

3.8 Revised Client Statement 

After weighting and evaluating the importance of the objectives, sub-objectives, and 

further specifications from the clients and user, the design team developed a revised client 

statement: 

“Design, develop, and characterize a reproducible and standardized 3D in vitro model of 

skeletal muscle tissue with less than 5% user variability. It must be assembled in 50%of the time 

required in the current Pins Lab protocol and must be able to be imaged to quantify outgrowth 

of C2C12 cells in six, 35mm wells. Whilst maintaining structural integrity while submerged in 

media in a sterile environment for 96 hours.” 

The revised client statement was iterated as the project progressed to ensure that the 

clients’ and user’s wants and needs are achieved by the objectives and specifications determined 
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by the design team. Once the design process became more detail oriented, it was important to 

reiterate and understand the wants and needs of the customer and user. 
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4.0 The Design Process 

Once the team completed a thorough literature review and conducted interviews with 

both the client and user, the team formulated a project strategy. The project strategy began with 

identifying the stakeholders for the project. The objectives for the project design were formulated 

after a series of interviews with the stakeholders and were prioritized as stated in Section 3.5. 

The design team then determined the functions of the project design and formulated multiple 

means to fulfill each function. Each means was evaluated in terms of its ability to fulfill the 

specifications of the function. The final design was chosen after iterating the means of the assay 

and prioritizing functions using a decision matrix. 

4.1 Needs Analysis 

Based on the information gathered by the design team from the clients and users, all 

objectives were ranked based on their importance to the success of the project (Appendix E).  

The design team observed the current setup process of the assay used now, while asking 

the user what improvements they would like to see in a new model. While observing the current 

assay assembly, the team recorded the number of steps and length of time each respective step 

took. Table 10 shows the PDMS and fibrin microthread ring assembly steps and corresponding 

elapsed time.  
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Table 10. Current assay setup and elapsed time 

Task/Step User’s Time (Experienced User) 

Making fibrin microthreads 1 hour, 30 minutes 

Mixing and pouring PDMS 10 minutes 

Vacuuming out air bubbles from PDMS 20 minutes 

Cure PDMS in oven 12 hours (overnight) 

Making six PDMS rings 5 minutes, 35 seconds 

Make Thermanox® “stage” 12 minutes, 12 seconds 

Place three threads in each (6) PDMS rings 18 minutes, 8 seconds 

 

While several additional steps follow the placement in threads into each ring, the design 

team focused on the assembly time for the PDMS and microthread portion. In the design of the 

new model, a need was defined as an aspect of the assay that the stakeholders felt was crucial for 

the project and design to succeed. Table 9 shows how the objectives were ranked, which 

informed needs and wants. The top four ranked objectives were to Interface with 3D Scaffolds, 

Support Cellular Characterization, for the design to be Reproducible and standardized. The 

team determined the extent of these needs when observing the setup and cellular outgrowth assay 

completed by the user, and understanding which features they would like to see be improved 

with our design. 

When evaluating the wants and needs of the user, client, and industry, a want was defined 

as an aspect of the assay that was desired to be included, but not entirely necessary for the 

success of the project. The two objectives labeled as wants were Ease of Use and Cost Efficient. 

These objectives would improve the final assay design/appeal, but are not crucial to the success 
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of the assay. The functions of the assay were developed and defined by further analyzing the 

clients’ and user’s rankings. 

4.2 Design Alternatives  

After each function was defined, the design team created a list of design alternatives 

(means) to satisfy each function. Each means was initially tested and evaluated based on its 

ability to pass the constraints test. If the means did not pass the constraints test, it was eliminated 

from the list of design alternatives. Table 11 contains all of the means that passed the constraints 

test. A list of pros and cons was created for each means in order to determine which means 

satisfies its corresponding function the best. The functions the model must meet to be successful 

are provide six or more fibrin microthread-C2C12 cell gel interfaces, fixture fibrin microthreads 

to a PDMS frame, support cell culture environment, and capture data by imagining six or more 

thread-gel interfaces. Once each means was evaluated, the team completed a feasibility study to 

determine whether the means could be used to create a successful assay. 
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Table 11. Means for each function 

Thread-Gel Interface Fixturing System Data Collection 
Throughput 

Thermanox® coverslip in 
the middle with threads 
resting on top 

Slits created in frame of 
assay  
  

Zeiss microscope 

Two Thermanox® 
coverslips on the ends 
with threads resting on top 

Silicone glue Confocal microscope 

Threads resting 
across a fibrin gel with 
another fibrin gel on top 

Surface roughness as a 
gasket 

Center orientation of 
threads 

  Side orientation of threads 

4.2.1 Thread-Gel Interface 

Thermanox® coverslips are favorable surfaces for cell attachment and growth. They are 

resistant to all commonly used solvents. As a result, Thermanox® can be easily sterilized using 

techniques involving solvents such as ethanol or isopropanol. Additionally, Thermanox® can be 

cut into various shapes and sizes using sterile scissors. Because Thermanox® can be cut into 

different shapes and sizes, it allows the design team and user to be able to customize the shape 

and size of the thread-gel interface allowing for different numbers of fibrin microthreads to be 

tested with the assay system. 

One means for the thread-gel interface is to have a piece of Thermanox® placed under 

the midline of the fibrin threads. A C2C12 myoblast populated fibrin gel would then be seeded 



 

68 

on top of the Thermanox® (Figure 11). Table 12 lists the pros and cons of this means to be used 

as a thread-gel interface.   

  

Figure 11. Means 1 for thread-gel interface (top view and front view) 

Table 12. Pros and cons for means 1 (one centered thread-gel interface) 

 
 
 

One Thermanox® 
Coverslip Centered 

Pros Cons 

Allows for a wider range of 
means to be used for fixturing 
method 

Placement of Thermanox® 
may require additional 
assembly  

Mechanical support in the 
middle of the threads 

Greater risk of threads 
bundling when gel is placed 

Only one gel needed  

 

By placing the piece of Thermanox® coverslip at the midline of the threads, there is a 

wider range of methods that can be used to fixture the threads to the assay system, increasing the 

flexibility of the overall assay design. A Thermanox® coverslip at the midline of the threads acts 

as a mechanical support for the threads. When media is applied to the well in the current 

configuration, the threads hydrate and will begin to sag. If the threads are too long, they will 
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touch the bottom of the well plate and compromise the experiment. Longer threads can be used 

when a mechanical support is present in the middle of the threads. Longer threads are easier to 

handle making the overall assay more user friendly. Lastly, only one gel needs to be seeded. This 

is beneficial because the gel needs to completely set before media can be added and only seeding 

one gel will decrease the amount of time needed to set up the assay as well as decrease the cost 

of reagents used.   

However, additional assembly of a stage created out of PDMS in order to elevate the 

Thermanox® coverslip off of the bottom of the plate may be needed in order to place the 

Thermanox® at the midline of the threads, thus, increasing the difficulty of the set-up process as 

well as increasing the amount of time needed to set up the assay system. Another risk to consider 

is the threads may touch or bundle together when the gel is seeded. The threads may bundle 

because the threads are fixtured at the ends creating a wider range of movement of the threads at 

the center.  

The second means for creating the thread-gel interface is to fixture a Thermanox® 

coverslip under each end of the fibrin microthreads with a gel of C2C12 cells seeded on top of 

the threads and the Thermanox® (Figure 12), and Table 13 lists the pros and cons for this means.  

 

Figure 12. Means 2 for thread-gel interface (top view and front view) 
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Table 13. Pros and cons for means 2 (thread-gel interface) 

 
 
 

Two Thermanox® 
Coverslips on Sides 

Pros Cons 

Easy to attach Thermanox® 
to frame  

No mechanical support in the 
middle of the threads 

 Fixturing method must 
account for presence of gel  

 Multiple gels needed  

 

The Thermanox® coverslip at the end of the threads will be easy to attach to the frame of 

the assay system decreasing the time needed to set up the system. Since the threads need to be 

fixtured to the system at the end of the threads, the fixturing method may interfere with the gel’s 

interaction with the threads. Additionally, there is no mechanical support in between the threads 

increasing the risk the threads will sag to the bottom of the well. The threads will need to be cut 

shorter, no longer than 1 centimeter, to ensure they will not touch the well plate. Multiple gels 

are needed for this means, which increases the time it takes to set up the assay system and 

increases the volume of reagents needed.  

The third means for thread-gel interface is to first seed a gel of C2C12 cells on either side 

of a well plate (Figure 13). For this configuration, a rubber stopper will be placed in the middle 

of the well to create a mold for the gel. Once the gel has set, the stopper will be removed and the 

threads will be placed over the gels with the ends resting on the gels. A second gel will then be 

seeded on the top of the first gel and the threads. Table 14 lists the pros and cons for the means.  
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Figure 13. Means 3 for thread-gel interface (top view and front view) 

Table 14. Pros and cons for means 3 (thread-gel interface) 

 
 
 
 
 

Two Gels Seeded on 
Sides of Well 

Pros Cons 

Cells can migrate and 
proliferate onto the threads 
without interruption of the 
Thermanox® 

Placement of gels may require 
additional assembly  

 Complicates means of 
fixturing method  

 No mechanical support in the 
middle of the threads 

 Multiple gels and molds for 
gels needed 

 

The most beneficial aspect of this design is that the threads will completely be 

surrounded by gels creating an assay that is a better representation of the environment the threads 

would experience in vivo. However, this means has the most difficult execution. Four gels will 

need to be seeded, which is a timely procedure that uses the greatest volume of reagents. There is 

also no mechanical support placed in the middle of the threads increasing the risk of the threads 
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touching the bottom of the well plate. The last drawback of this design is that it would be 

difficult to securely fix the threads in the gel as media is added to the well. 

4.2.2 Fixturing System  

Another function that was decided upon by the design team, users, and clients was a 

fixturing system to attach the fibrin microthreads to the assay system. Three means were 

brainstormed for this function including slits, glue, and a gasket.  

Currently in the Pins lab, slits are manually made in PDMS using a razor blade, and the 

fibrin microthreads are placed into the slits using forceps (Figure 14). Once the fibrin 

microthreads are placed in the slits, the PDMS slit is closed and it is tightly pressed against the 

fibrin microthreads holding the threads taut in place. A list of the pros and cons to this method in 

Table 15.  

 

Figure 14. Means 1 for fixturing system (top view and front view) 
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Table 15. Pros and Cons for means 1 ( fixturing system) 

 
 

Slits Created with a 
Razor Blade 

Pros Cons 

Does not interfere with 
sterilization method 

Can be difficult to place the 
threads 

Holds the threads taut PDMS frame can break  

Quick procedure Variable depth 

 

By creating slits in PDMS, the assay system would easily be able to be sterilized using 

the currently used method in the Pins lab of 70% ethanol. Additionally, it is easy to readjust the 

threads when they are placed into the assay system and pull them taut so that they do not touch 

the bottom of the well. The slits method is also quick to assemble. The gels can be seeded and 

the system can be submerged in media on the same day. However, when slits are created in the 

PDMS, it decreases the mechanical strength of the material increasing the chance the PDMS will 

split as threads are placed.  

Using silicone glue is another means to fixture the threads at the ends of the PDMS 

(Figure 15). Silicone glues are commonly used for biomedical laboratory research applications 

because they are non-toxic, adhere to organic and inorganic surfaces, and can be sterilized. A 

pros and cons list is shown in Table 16. 
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Figure 15. Means 2 for fixturing system (top view and front view) 

Table 16. Pros and cons for means 2 (fixturing system) 

 
 
 

Silicone Glue 

Pros Cons 

Simple procedure to place 
threads  

Takes 24 hours to dry 

Can be done on top of the 
Thermanox® coverslips or on 
PDMS 

Complicates sterilization  

 

Using glue to fixture the threads is another commonly used fixturing method in the Pins 

lab. Glue is placed on the ends of the PDMS frame and the threads are placed on top of the glue. 

Then another layer of glue is placed on top of the threads. The glue is left to dry for at least 12 

hours. Glue is beneficial because it is a simple procedure with minimal steps. In addition, this 

means can be used with multiple means for thread-gel interface. Thermanox® can be placed in 

the middle of the threads and the threads can be fixtured to the PDMS using glue, or the 

Thermanox® can be on the ends of the PDMS frame and the threads can be fixtured using glue 

on top of the Thermanox®.  

The third means to fixture the threads is to create a gasket system. In order to create a 

gasket, two frames would be 3D printed. Three-dimensional printing naturally creates a 
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roughened surface on the material. This small degree of surface roughness would work to create 

a gasket. The threads would first be placed along one frame. Then a second frame would be 

placed on top and the two frames would be clamped together to hold the threads in place (Figure 

16). A list of the pros and cons is in Table 17. 

 

Figure 16. Means 3 for fixturing system (top view and front view) 

Table 17. Pros and cons for means 3 ( fixturing system) 

 
 
 

Gasket and Clamp 

Pros Cons 

Multiple threads can be 
fixtured at once 

Threads could slip out as 
clamp is placed 

 Additional equipment needed 
for set up  

 Gaskets are needed 

 

Ideally, the gasket system would be a quick and efficient way to secure the threads. It 

would allow for all of the threads to be fixed at one-time. However, the threads tend to have 

static cling, and the movement of the top 3D printed frame could cause the threads to move out 

of place. There is also a need for a clamping mechanism to ensure the seal between the two 
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pieces of the 3D printed polymer frame will not break. Adding a clamping mechanism could 

increase the time needed to set up the system as well as increase the complexity of the design.  

4.2.3 Data Collection Throughput 

One of the microscopes available to the team is the Zeiss AxioVert 200M Microscope 

(Zeiss). The Zeiss is an inverted fluorescent microscope that can take images of living cells. An 

inverted microscope has a larger working distance than an upright microscope, which allows for 

a 6-well tissue culture plate to fit in the microscope and be imaged. Images taken with the Zeiss 

can be analyzed using ImageJ, the analysis software chosen by the team users and clients.   

Another microscope available to the team is the Leica TCS SP5 Confocal Laser Scanning 

Microscope (confocal). Confocal microscopes also use fluorescence to image samples but do so 

by passing a laser beam through a light source to focus on a defined spot and specific depth 

within the sample, which increases the resolution of the image. However, the signal intensity is 

decreased, and the sample must be exposed for a long period of time which increases the overall 

time it takes to collect data from the assay. Images taken with the confocal microscope can be 

analyzed using ImageJ.  

The location of the data collection points is dependent on the orientation of the 

Thermanox® coverslip seeded with the fibrin gel of C2C12 cells. Whether the gel is in the center 

of the PDMS frame (Figure 17A) or on the sides of the PDMS frame (Figure 17B), there will 

still be at least six data points to image per well.   
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Figure 17. Location of data collection points (circled in red) to be images with Thermanox® in the middle 
of the PDMS frame (A, left) and on the sides of the PDMS frame (B, right). 

 
 

4.3 Means Analysis  

In order to compare the benefits of the different designs, a decision matrix was created. 

This decision matrix included the criteria discussed in Section 3.3. The weighting of each criteria 

was determined by combining the scores of the clients, the user, and the team as shown in 

Section 3.5. All of the potential designs were given a score from 1 to 3 in each category with a 1 

representing the worst score and a representing 3 the best. The criteria for earning each score can 

be found in Appendix F.  The designs were scored in each category independent of the other 

designs, based only on how successfully they met the outlined objective. The scores are shown in 

Table 18.  

The scores were then multiplied by the predetermined weighting and summed to provide 

a weighted score. These overall scores provide a preliminary means of evaluating which design 

best meets all of the design objectives. Because the devices scored the same in many categories, 
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specifically the broad category of “Supports Cellular Characterization,” additional testing must 

be completed in order to compare which of the feasible design more effective. 

 The initial designs that were scored in this decision matrix were: The Grill, Sandwich, 

Grilled Cheese, and Weenie-on-a-stick along with the Pins Lab Model. The Grill, Sandwich, and 

Grilled Cheese were determined to be feasible and are described in the following section. The 

Weenie-on-a-Stick Model would have had threads suspended in clear tubing to allow for 

imaging on all sides of the threads. There was no determined method of fixturing the threads so 

the design was determined not to be feasible and was not explored further. 

Table 18 : Decision Matrix 

 

 



 

79 

4.4 Feasible Designs 

Based on the weighted scores assigned using the decision matrix, three feasible designs 

were chosen: “The Grill”, “The Sandwich”, and “The Grilled Cheese.” The fourth model 

included in the decision matrix, “Weenie-on-a-Stick” was discarded due to a low final score. 

Each design uses a combination of the means described in Section 4.2.  

Figure 18 depicts The Grill design which consists of a rectangular PDMS frame with the 

fibrin microthreads running longitudinally across the frame.  At each end of the frame a piece of 

Thermanox® plastic is fixed to the frame with sterile silicone glue. Threads are glued at the 

edges of the frame and the gel is seeded on the Thermanox® at each end of the “grill”. This 

design eliminates the need to create a separate Thermanox® stage, however it also eliminates 

any mechanical support at the center of the threads. Hydrated fibrin microthreads tend to sag, 

and they can only be a certain length without requiring support. The fixturing of the fibrin 

microthreads would also be difficult with this design because the Thermanox® and gel are 

located in the same area where the threads would be fixed. Threads would have to be glued to the 

sides or held in place using an external fixation method.  
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Figure 18. “The Grill” design. The frame is grey, the threads are brown, the Thermanox® is blue, and the 
glue is white.  

 

The second feasible design is “The Sandwich” as shown in Figure 19. This design 

consists of a two-part 3D printed frame which snaps together to create a gasket. The fibrin 

microthreads run across the short dimension of the frame and are held in place using pressure 

created by the two sides of the sandwich. The Thermanox® seeded with the gel runs 

longitudinally across the center of the frame. Having a 3D printed reusable frame would 

eliminate the PDMS preparation and cutting time, however it would add to the cost and 

disassembly time. In order to use a 3D printed part, the chosen polymer would need to be non-

cytotoxic and undergo repeat sterilization or be inexpensive enough to be single use. Using a 

pressure-based fixture system would also require some sort of preliminary fixturing system to 

align and hold the threads in place while the top piece of the frame was snapped on.  
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Figure 19. “The Sandwich” design. The frame is grey, the Thermanox®   is blue, the threads are brown, 
and the gel is not pictured.  

 

Figure 20 shows the third feasible design, “The Grilled Cheese,” which does not use 

Thermanox® or a frame. A plug is placed in the center of the well and gel is cast in a semi-circle 

at either end. The threads are added on top of the gel and more gel is cast on top to hold the 

threads in place. This design eliminates PDMS and Thermanox® assembly, however the 

placement and fixation of threads would be difficult. Additionally, there would be no mechanical 

support at the center of the threads and the assembly time would increase due to the two-step gel 

seeding process.    

 

Figure 20. “The Grilled Cheese” design. The plug is shown in blue, the gel is shown in pink, and the 
threads are shown in brown.  
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4.5 Final Design 

The final design combines aspects of “The Grill” and “The Sandwich” designs and was 

named the ML Model (Figure 18 and Figure 19). The design is based on a PDMS frame with the 

threads running longitudinally across. A Thermanox® coverslip will be placed across the center 

of the frame and seeded with the gel of cells. Threads will be fixed at both ends using slits cut 

into the PDMS frames. The PDMS frame will be formed in a 3D printed mold. The PDMS frame 

has an indentation for the Thermanox® to be placed across the PDMS frame. Figure 21 shows 

the top and side view of the ideal final design. 

 

 

Figure 21. Overview of final design  
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5.0 Design Development and Validation Plan 

In order to test the team’s preliminary design, a series of experiments were performed to 

evaluate different components and validate the model’s overall performance. These experiments 

and tests included assembly testing, reproducibility testing, sustainability testing, and cell 

outgrowth assay viability. The team compared setup times between the ML Model and the 

current Pins lab Model to optimize setup time. The team verified the ML Model decreased user-

to-user variability. The team verified that our design is non-cytotoxic and compatible with the 6-

well cell culture environment. Finally, the team quantified cellular outgrowth onto the fibrin 

microthread scaffolds. 

5.1 Three-Dimensional in vitro Assay Development and Analysis 

5.1.1 Mold for PDMS Frame  

Initial prototypes of the mold were created using the Formlabs Form 2 SLA printer. The 

first iteration was created as a proof of concept using Durable resin (Figure 22). The first 

prototype of the mold was used to show design feasibility and to finalize PDMS frame 

dimensions. It contained the inverse of six frames with a slot for Thermanox®. Three of the 

wells had grooves for a glue fixturing system, and three were for a slit-based system. Prior to 

use, the wells of the mold were washed with 70% isopropyl alcohol to remove any uncured 

residual resin left behind from the fabrication process. PDMS was poured into the mold, 

vacuumed, and cured following standard procedure. The PDMS frames successfully released 

from the mold using a razor blade to separate the PDMS from the sides. This iteration of the 

mold was used to support the decision to use slits as a fixturing method instead of glue.  
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Figure 22. Durable resin mold 

The second iteration of the mold was printed using Formlabs Biocompatible resin (Figure 

23). This mold had six wells configured for the slit fixation method. Well dimensions were 

updated, and the overall mold dimensions were optimized to decrease material usage and 

manufacturing costs. Biocompatible resin was chosen to minimize the risk of any potentially 

cytotoxic resin components leaching into the PDMS. Prior to filling the wells with PDMS, the 

mold was soaked in 70% isopropyl alcohol for five minutes and thoroughly flushed with water to 

remove any uncured resin. However, after baking the PDMS for 2 hours at 60°C and letting it sit 

at room temperature for an extended period of time, the PDMS did not fully cure and would not 

cleanly release from the mold. The mold was given subsequent five-minute soaks in 70% 

isopropyl in an attempt to remove any residue that was interfering with the curing process that 

was not removed during the first wash. New batches of PDMS were also made to verify that the 

curing issue was not caused by improper mixing. These corrective measures failed to resolve the 

issue, and surfaces of the PDMS frame that were in contact with the biocompatible resin 



 

85 

continued not to cure properly. Once the frames were removed from the mold and allowed to sit 

for an extended period of time, full curing occurred, however the surface features were distorted 

with low resolution. This preliminary testing showed that biocompatible resin was not a feasible 

material choice for printing. In addition to preventing the PDMS from curing, printing with 

biocompatible resin is more than double the cost of printing with other resins.  

 

 

Figure 23. Biocompatible resin mold 

The third iteration of the mold was created to decrease PDMS frame removal time. 

Instead of a 1-piece design, this mold had separate side and bottom components (Figure 24). A 

rubber gasket was placed between the side and bottom pieces to prevent PDMS from leaking out 

of the wells. Due to the project timeline and material availability, the two-piece mold was printed 

using Formlabs Tough resin. The Tough resin was found to be unsuitable for this application, as 

it was flexible and warped before heating. The team also anticipated having issues with PDMS 

curing, similar to what was experienced with the biocompatible resin. The complexity of this 
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design also created more potential for user error and variability. These factors caused the team to 

designate the two-piece design unfeasible and not proceed with further testing.  

 

 

Figure 24. Tough resin two-piece mold. The sides of the mold press fit onto the bottom of the mold. When 
PDMS is cured, the frames can easily be released from the mold by removing the side piece.  

 

Additive manufacturing using the Formlabs Form 2 SLA printer was chosen as the 

preliminary prototyping technique due to cost effectiveness, time, and the availability of a 

biocompatible material. Additionally, some features on the original prototype were too small to 

be machined accurately. After testing three mold prototypes created with SLA printing it was 

determined that the Form 2 resin post-print curing process was not consistent enough to be used 

reliably with PDMS. Each resin cured differently, and the amount of uncured resin left after 

post-processing varied between materials and print iterations. PDMS would not cure consistently 

and it was difficult to ensure that all uncured resin was removed from the part.    

To avoid the issues associated with Form 2 mold prototypes,  a 1-piece 6-well mold was 

machined from Delrin™  acetal plastic using a 3/32”end mill bit. A 3-degree draft angle was 
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added to the sides of the mold to facilitate easy removal of the frames. PDMS poured in the 

Delrin™ mold cured fully after one hour at 60°C and the frames lifted out of the mold cleanly. 

Figure 26 shows a frame made in the Delrin™ mold. This iteration of the mold was chosen as the 

team’s final design and material because acetal plastic allowed the PDMS to fully cure and 

release from the mold. Additionally, the inclusion of a draft angle and the rounding of the 

corners facilitated easy frame removal. Acetal plastic has a heat deflection temperature higher 

than the PDMS curing temperature of 60 °C and does not leach cytotoxic elements into the 

PDMS. The feasibility of the Delrin™ mold was verified using testing described in the following 

sections and it was selected as the team’s final design. Three more identical molds were 

machined to increase design validation data throughput. 

        

          Figure 25. Machined Delrin™ acetal plastic mold  Figure 26. PDMS frame made in Delrin™ mold 

5.1.2 Cutting Tool and Guide for Fibrin Microthread Fixturing Slits 

To ensure that thread fixturing slits are made with uniform spacing and depth, a cutting 

tool and guide were designed. The cutting tool (Figure 27) consists of three equidistantly spaced 

blades. Three- and one-half inch paint scraper blades (Blue Hawk #0089625) were selected for 
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their two circular holes which allowed the blades to be secured at a fixed distance. This blade 

length also allows for three PDMS frames to be cut at once. Three blades were assembled onto 6-

32 x 1” machine screws and spaced using a combination of nuts and washers. Blades were 

leveled and then all hardware was tightened to create the final 4.1mm cutting distance.  

 

Figure 27. Cutting tool and PLAcutting guard with PDMS frames. 

To standardize slit depth, a cutting guard was created to use with the cutting tool. Slits 

must be cut approximately halfway through the PDMS so that the threads are at the correct 

height to rest on the Thermanox®. A rectangular cutting guard with a thickness of 1.9 mm was 

printed using acrylonitrile butadiene styrene (PLA) polymer (Figure 27). The first iteration was 

created so that the slit depth would be exactly halfway through the 3.8 mm thick PDMS frame. 

The ends of the cutting guard were marked where the cutting tool should be lined up. The cutting 

guard was sized to accommodate three frames at once. Frames are placed in the guard (Figure 

28) and the cutting tool is lined up with the marks on the guard. Once properly aligned, the 

cutting tool is pressed into the PDMS to create three evenly spaced cuts on either side of the 

frame. The combination of the mold, cutting tool, and cutting guide, was named the ML Model. 
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Figure 28. PDMS frames placed in PLA cutting guard 

5.2 Three-Dimensional in vitro Assay Verification Studies  

To verify that the ML Model met the design objectives stated in Section 3.3, the team 

completed assembly testing, reproducibility and sustainability testing, cell viability and sterility 

research, and cellular outgrowth assay validation.  

5.2.1 Assembly Testing 

Tests were performed to verify the amount of time it takes to construct the Pins Lab 

Model system in comparison to the amount of time it takes to construct the ML Model system. 

The Pins Lab Model system is constructed in three phases: construction of 6 PDMS rings, 

construction of the Thermanox® stage, and placement of fibrin microthreads onto PDMS rings. 

The ML Model system is constructed in four phases: removal of PDMS frames from mold, 

cutting of the fibrin microthread fixturing slits, placement of Thermanox® stage onto PDMS 

frame, and placement of fibrin microthreads into fixturing slits. To perform the assembly tests, 

four inexperienced users were timed when assembling each stage of the set up for the Pins Lab 

Model and the ML Model. These times were then compared to verify that the ML Model reduces 
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the assembly time. Assembly testing validates the ML Model is user friendly, standardized, and 

efficient.  

5.2.1.1 Pins Lab Model Assembly Test 

The three phases to construct the Pins Lab Model are construction of 6 PDMS rings, 

construction of the Thermanox® stage, and placement of fibrin microthreads onto PDMS rings. 

Each user followed a standard testing protocol (Appendix G) and was timed to determine how 

long it took to assemble each phase of the model. To create the 6 PDMS rings, cured PDMS was 

removed from a 11.7 cm by 7.5 cm plate and the edges of the PDMS rectangle were removed 

using a razor blade (Figure 29A). A ¾ inch diameter leather hole punch tool was used to make 

the inner diameter of 6 PDMS rings (Figure 29B). Then, a razor blade was used to cut out 

squares enclosing the punched-out hole in the center (Figure 29C). Once the 6 squares were 

created, the corners of the squares were removed using a razor blade to create an octagon shape 

and the sides were cut to ensure they are similar in width (Figure 29D).  
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Figure 29. Steps taken to construct the 6 PDMS rings for the Pins Lab Model. 

To create the Thermanox® stages, first, a syringe was filled with silicone glue. A leather 

hole punch tool with a 5/32-inch diameter was then used to punch 12 posts out of PDMS (Figure 

30A). Thermanox® coverslips were cut into six 3mm by 13mm rectangles, ensuring that the cell 

treated side of the plastic was not touching the benchtop (Figure 30B-C). The user used the 

syringe filled with silicone glue to make two dots of glue in the center of the 6-wells (Figure 

30D). Then the PDMS posts were placed on the dots of glue using forceps (Figure 30E). Dots of 

silicone glue were put on the top of the PDMS posts and forceps were used to lay the 

Thermanox® coverslips across the posts (Figure 30F).   



 

92 

 

Figure 30. Steps taken to construct the Thermanox® stage  for the Pins Lab Model. 

In order to place the fibrin microthreads, a razor blade was used to create six parallel slits 

in the PDMS rings, three on each side of the ring (Figure 31A-B). Next a fibrin microthread was 

removed from the cardboard box, placed on the benchtop, and cut into three equal pieces using a 

razor blade (Figure 31C). A cut piece of the fibrin microthread is picked up using forceps. To 

place the fibrin microthread into the slit, the user pulls open the slit with one hand and places the 

fibrin microthread into the slit using forceps (Figure 31D). Each fibrin microthread was pulled 

taught on each side (Figure 31E).  
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Figure 31. Steps taken to construct place fibrin microthreads for the Pins Lab Model. 

5.2.1.2 ML Model Assembly Test 

The four phases to construct the ML Model include removal of PDMS frames from the 

mold, cutting of the fibrin microthread fixturing slits, placement of the Thermanox® coverslips 

onto the PDMS frames, and placement of fibrin microthreads into the fixturing slits. Each user 

followed the standard testing protocol (Appendix H) and was timed to determine how long it 

took to assemble each phase of the model.  

To remove the PDMS frames from the mold, a microspatula (scoopula) was used to trace 

the edges of the PDMS frame and lift it out of the mold (Appendix H, Part 3.2) (Figure 32A-C). 

This was completed for all six frames in the mold (Figure 32D). Each user was timed as they 

completed Part 1 of the assembly procedure. 
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Figure 32. Steps taken to construct PDMS Frames for ML Model  

The cutting guide and cutting tool were used to create the fibrin microthread fixturing 

slits in each PDMS frame. Three PDMS frames were aligned in the cutting guide (Figure 33A). 

Then, the cutting tool was aligned with the marks created on the cutting guide and pressed into 

the PDMS frames to create the fibrin microthreads fixturing slits (Figure 33B). This procedure 

was repeated for all six frames and each user timed themselves completing Part 2 of the ML 

Model assembly process (Appendix H, Part 3.3). 
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Figure 33. Steps taken to construct fibrin microthread fixation slits using cutting guide and tool 

The mold to create the PDMS frames creates a groove in the PDMS frames to hold the 

Thermanox® coverslips in place. Thermanox® coverslips are cut into 3 x 24.5 mm rectangles 

using a ruler and scissors, ensuring that the cell treated side of the plastic was not in contact with 

the benchtop (Figure 34A-B). To place the Thermanox® coverslip into the groove, the user first 

puts a drop of silicone glue in each groove to hold the Thermanox® coverslip in place (Figure 

34C). Then, the user used forceps to place the Thermanox® coverslip into the groove (Figure 

34D). This process is repeated for all six frames, and each user was timed to complete Part 3 of 

the ML Model assembly procedure (Appendix H, Part 3.4). 
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Figure 34. Steps taken to place Thermanox® stage 

In order to place the fibrin microthreads, a fibrin microthread was removed from the 

cardboard box, placed on the benchtop, and cut into three equal pieces using a razor blade. A cut 

piece of the fibrin microthread was picked up using forceps. To place the fibrin microthread into 

the slit, the user pulls open the slit with one hand and places the fibrin microthread into the slit 

using forceps (Figure 35A). This was completed 3 times for each of the six frames. The fibrin 

microthreads were pulled taught on each side after placement (Figure 35B-C). Each user was 

timed to complete Part 4 of the ML Model assembly procedure (Appendix H, Part 3.5). 
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Figure 35. Steps taken to place fibrin microthreads 

5.2.2 Reproducibility Testing and Sustainability Analysis 

 In order to determine the degree of reproducibility of the Pins Lab Model compared to 

the ML Model, user variability testing was completed. A power analysis was used to determine 

the necessary sample size and the corresponding assemblies were made following the protocols 

included in Appendix G-H. The reproducibility of the frame dimensions and fibrin microthread 

placement were tested for each model and the resulting data was used to measure reproducibility. 

Figure 36 shows the 6x8 array of reproducibility frames of the Pins Lab Model. 
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Figure 36. Pins Lab Model PDMS frames for reproducibility testing, n=48. 

5.2.2.1 Pins Lab Model Reproducibility and Sustainability Tests 

To complete the reproducibility and sustainability testing, the design team followed the 

protocols in Appendix I-J. Four plates of PDMS were poured to a thickness of approximately 4 

mm and individually weighed to determine starting mass. Each plate was made into six rings 

following of the Pins Lab Model user variability protocol (Appendix G, Section 3.1) Excess 

PDMS not used to create the PDMS rings was collected for each plate and massed. The side 

width of each ring was measured in two positions (Figure 37 left) and the thickness was 



 

99 

measured across the diameter of the frame. Finally, each ring was individually weighed. Three 

slits were cut by hand across each ring approximately halfway through the ring’s thickness. The 

distance between the slits was measured in two positions (Figure 37 right).  

 

Figure 37. Side width measurement positions (left) and slit distance (right) on the Pins Lab Model 

5.2.2.2 ML Model Reproducibility and Sustainability Tests 

Testing was conducted on the ML Model following steps similar to those described in the 

section above (Appendix I-J). Twenty-four PDMS frames were made using the Delrin™  molds. 

The side width of each frame was measured in two positions (Figure 38 left) and the thickness 

was measured across the height of the frame. Finally, each frame was individually massed. Three 

slits were cut across the frame using the cutting tool and cutting guard. The distance between the 

slits was measured in two positions (Figure 38 right).  
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Figure 38. Side width measurement positions (left) and slit distance (right) on the ML Model 

5.2.3 Cell Viability Research  

The final mold was machined out of polyoxymethylene plastic (POM), commonly known 

as Delrin™. Delrin™ is used as a biocompatible material and has been used as a long-term 

medical implant in animal studies (Penick et al., 2005). Medical applications include cardiac 

valve prosthesis, dental implants and prosthetics, and orthopedic implants. Due to Delrin™’s 

mechanical, dimensional, and thermal stability along with its biocompatibility, the Penick et al. 

lab has used Delrin™ as a media-wetted component in a tissue engineered bioreactor to grow 

cartilage scaffold composite constructs. The Penick lab has obtained good results using Delrin™ 

as a component in the bioreactor (Penick et al., 2005).  

 A study was performed to assess the effects of media exposed to machined Delrin™ on 

cellular proliferation and chondrogenic differentiation of human mesenchymal stem cells 

(MSCs). Delrin™ was autoclaved to ensure that heating of the material did not have a cytotoxic 

effect on the MSCs. In the study, an assay was performed to evaluate the attachment of MSCs 
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onto Delrin™ blocks. A leaching assay was also performed to determine Delrin™’s effect on the 

proliferation of MSCs. MSCs were seeded at 80,000 cells per 60-mm diameter dish with 3 mL or 

medium. Twenty-four hours after seeding, the media was exchanged with a 1:1 ratio of fresh 

media to Delrin™ conditioned media. Cell proliferation was determined by creating a growth 

curve of the number of cells harvested on subsequent days. Researchers assessed the effects of 

Delrin™Ⓡ on chondrogenic differentiation of MCSs by means of pellet culture. Chondrogenic 

differentiation of MCSs was evaluated through a series of histological and immunohistochemical 

assays on the pellets. Researchers concluded the use of Delrin™ conditioned media did not have 

a negative impact on the proliferation of MSCs over a one-week period, and Delrin™ 

conditioned media did not exhibit any chondrogenic differentiation after 3 weeks of culture 

(Penick et al., 2005).  

 Delrin™ is a biocompatible, medical grade, non-toxic plastic, making it suitable for 

biomedical applications. Its melting point is between 160℃ and 184℃. Additionally, the 

maximum service temperature, the highest temperature at which the material can reasonably be 

used without oxidation, chemical change or excessive deflection or “creep” becoming a problem, 

of Delrin™ is between 76.9℃ and 96.9℃. Autoclaves are typically programmed to reach a 

temperature of at least 121℃ for 15 minutes to fully steam sterilize a material (CES EduPack, 

2018).  

 The mold created by the design team must be able to withstand being in an oven at 60℃ 

for one hour to thoroughly cure the PDMS frames. Because 60℃ is well below the lower limit of 

the maximum service temperature, the Delrin™ will not leach any chemicals into the PDMS 

frames making them cytotoxic to the C2C12 cells. Evidence found in the Penick et al. paper 

defends Delrin™ as a safe material to be used in a cell culture environment. Therefore, the 
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design team did not need to complete a direct contact assay or leaching assay to assess the cell 

viability of the Delrin™  mold (Penick et al., 2005).  

5.2.4 Sterilization Method 

The existing model uses 70% ethanol as a sterilization method. After observing and 

interviewing the current user, and future user of the ML Model, the team determined that many 

failures occur during or after the ethanol disinfection. This is due to the several times that the 

wells are filled with liquid for the sterilization and subsequent rinses. This can cause the threads 

to become dislodged from the slits or dehydrated and break (Grasman, 2016). It was concluded 

that ethylene oxide gas (EtO) sterilization would be used in order to reduce the rate of failure. 

5.2.4.1 Ethylene Oxide Sterilization  

Dry scaffolds were sterilized by exposure to EtO for 12 hours using an Anprolene AN74i 

gas sterilizer. The scaffolds were aerated for a minimum of 24 hours to remove residual EtO 

molecules. Research supports that the mechanical strength and the chemical properties of fibrin 

microthreads are not compromised when using the EtO sterilization method. Both ethanol and 

EtO sterilization techniques are effective at preventing microbial or fungal growth in three days 

of observation (Grasman, 2016). 

5.2.5 Cellular Outgrowth Assay Validation 

Cellular outgrowth assay validation was performed as described in the Outgrowth Assay 

Protocol (Appendix K). Fibrin microthreads were made with standard protocol (Appendix A) 

and left to dry for at least 24 hours before they were used for assembly. The ML Model system 

was assembled 5-7 days before the first day of the experiment using the ML Model Protocol 
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(Appendix L). EtO sterilization was completed 4-5 days before the assay was run. The team 

completed four, 96-hour cellular outgrowth assay validation experiments. Each experiment 

consisted of one 6-well plate of fibrin microthreads and one 6-well plate of collagen 

microthreads. The collagen microthreads are another type of scaffold being explored by the Pins 

Lab (Cornwell, 2004). The collagen microthread plates were used as a negative control because 

the assay is run using a fibrin-based gel and therefore outgrowth would not occur onto the 

collagen threads. 
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6.0 Final Design and Results of Validation Testing 

6.1 Overview of Final Design 

A 6-well Delrin™ mold was selected as the final design for creating PDMS frames. To 

further standardize the assay process a cutting tool and cutting guide were designed in 

conjunction with the Delrin™ mold. Based on the studies described in Chapter 5, this final 

design achieved all of the objectives and functions described in Chapter 3, while following the 

set constraints and specifications. The detailed protocol for creating the ML Model can be found 

in Appendix L.  

The four, 6-well Delrin™ molds can be re-machined using the part drawings found in 

Appendix M&N. A 3-degree draft angle on the mold sides is not necessary for frame formation, 

but facilitates easier frame removal. PDMS frames should be removed with a thin, blunt tool to 

prevent damage to the frame or the mold. A 20 mL syringe is used to fill the mold and a straight 

edge is used to level off excess PDMS. If any PDMS remains after frame removal, the mold can 

be cleaned using 70% isopropyl alcohol.  

The cutting tool consists of three equidistant razor blades spaced approximately 4.1 mm 

apart using a combination of nuts and washers assembled onto machine screws. Three and a half 

inch blades were used because they allowed three PDMS frames to be cut simultaneously. 

Spacing hardware was chosen to account for decrease in distance when the washers were 

tightened. Before the final tightening occurred, the blades were leveled. To maintain blade 

spacing and prevent loosening a locking nut was added to the end of the screw. 

To ensure the PDMS frames are cut to the correct depth, a rectangular cutting guide was 

3D printed out of PLA using the part drawing found in Appendix O. The thickness of the cutting 



 

105 

guide was designed to be half the thickness of the PDMS. Cutting guide size and thickness can 

be adjusted based on the size of the cutting tool and the thickness of the PDMS frames.  

6.2 Objectives Achieved  

The following section describes how the final design components achieved the objectives 

set forth in Chapter 3: Project Strategy. This section includes details on how the PDMS mold, 

cutting guide, and cutting tool followed the specifications set and remained within the design 

space. 

6.2.1 Ease of Use: Assembly 

6.2.1.1 Mold for PDMS Frame 

The defined objective was that the mold must be intuitive to researchers, regardless of 

experience level. One mold can make six PDMS frames in one round of PDMS curing. Common 

laboratory practice of making PDMS is intuitive, and a 10mL syringe can be used to inject the 

PDMS into each well. The mold is easy to handle, and can be moved from benchtop to oven, 

without concern. Compared to the current model assembly, the mold itself combines four steps 

into one. Previously, users had to start from a sheet of PDMS, trim the edges of the PDMS sheet, 

punch six evenly spaced holes, cut squares around each hole, and make those squares into 

octagons. With the PDMS mold, the user will only have to remove the PDMS frame and begin 

cutting slits and placing fibrin microthreads into the slits. The mold produces identical frames 

without relying on the user to properly shape them. The mold has a built-in groove for holding 

the Thermanox® coverslip, eliminating the need for the user to make the Thermanox® stage. 
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Once the PDMS frames are carefully removed from the mold using a microspatula , the mold can 

be cleaned and used again. Figure 39 displays the steps for both the Pins Model and ML Model. 

 

Figure 39. Steps of both the Pins Lab Model (left) and ML Model (right). The ML Model decreased number 
of steps from 15 to 8. 

 

The assembly times to create the Pins Model and the ML Model were recorded and 

compared. Each of the members of the design team (N=4) were timed as they completed each 

part of the Pins Model assembly (Appendix G) and the ML Model assembly (Appendix H). The 

assembly steps were categorized into four different parts: PDMS frame fabrication, Thermanox® 

® placement, fibrin microthread fixturing slit cutting, and fibrin microthread placement. 

Although times for all four steps were recorded, the team decided that only three parts, PDMS 

frame fabrication, Thermanox® placement, and fibrin microthread fixturing slit cutting, would 

be analyzed and compared between models. This is because the mold, cutting tool, and cutting 
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guide were designed to decrease user-to-user variability and ease of use in these steps, and did 

not address fibrin microthread placement.  

The average time of each team member for assembly of the Pins Model and ML Model 

were recorded in Tables 19 and 20.   

Table 19. Assembly times for four assembly steps: Pins Lab Model  

Assembly Step Team 
Member 1 

Team 
Member 

2 

Team 
Member 

3 

Team 
Member 4 

Average Standard 
Deviation 

PDMS Frame  6.5 min 8.5 min 9 min 8.2 min 8.05 min ± 1.08 min 

Thermanox® 
Stage  

11.9 min 12.2 min 12.5 min 12.7 min 12.3 min ± 0.35 min 

Fixturing Slits  1.5 min  1.1 min 1.25 min 1.5 min 1.3 min ± 0.20 min 

Thread 
Placement 

33.12 min 19 min 22.2 min 26.4 min 25.2 min ± 6.09 min 

 

Table 20. Assembly times for four assembly steps: ML Model 

Assembly 
Step 

Team 
Member 

1 

Team 
Member 2 

Team 
Member 3 

Team 
Member 

4 

Average Standard 
Deviation 

PDMS Frame  5 min 6 min 5.2 min 5.2 min 5.35 min ± 0.44 min 

Thermanox® 
Stage  

4.4 min 4.7 min 5.7 min 5.5 min 5.08 min ± 0.62 min 

Fixturing 
Slits 

1.4 min 0.9 min 0.8 min 0.75 min 0.96 min ± 0.29 min 

Thread 
Placement 

25.1 min 23.4 min 32.2 min 14.9 min 24.1 min ± 7.15 min 

 

Figure 40 displays the average times for the three analyzed parts of the Pins and ML Model 

assemblies.  
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Figure 40. Assembly time differential between Pins Model and ML Model. 

A paired one tail T-test was performed on the collected data to determine if the amount of time it 

took to assemble the different parts of the ML Model was significantly shorter than the time it 

took to assemble the Pins Model. A P-value of <0.05 (*) was considered to be statistically 

significant. The average times to create the PDMS frames for the Pins Model and ML Model 

were 8.05±1.08 minutes and 5.35±0.44 minutes, respectively. The P-value for the PDMS frame 

fabrication step is 0.00559. The average times to place the Thermanox® stages for the Pins 

Model and ML Model were 12.3±0.35 minutes and 5.08±0.62 minutes, respectively. The P-value 

for the PDMS frame fabrication step is 1.317×10-5. Statistically, it takes significantly less time to 

create the PDMS frames using the ML Model. The average times to create the fibrin microthread 

fixturing slits for the Pins Model and ML Model were 1.3±0.20 minutes and 0.96±0.29 minutes, 

respectively. The P-value for the PDMS frame fabrication step is 0.0407. Statistically, it takes 

significantly less time to create the fixturing slits using the ML Model. A decreased assembly 

time will allow the user of the ML Model to create more models per day in preparation to run the 
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cellular outgrowth assay. In turn, this will increase data throughput of the assay results, 

expediting the in vitro testing process. 

6.2.1.2 Cutting Guide and Cutting Tool for Fibrin Microthread Fixation Slits 

The cutting guide makes cutting slits in the PDMS frame much more user-friendly and 

reproducible. The old model required the use of a single razor blade to cut three slits in each ring 

based on the user’s best guess of where to place them and how deep to cut. The cutting tool cuts 

three slits (on each side of the frame) in three frames at once. The cutting guide ensures that all 

slits are the same depth. The tool/guide combo is intuitive and decreases the rate of failure 

caused when the PDMS is cut too deep and the frame breaks. With one motion and cut, the user 

is able to accomplish making identical slits (six slits per frame, three on each side) for three 

frames at once. 

6.2.2 Reproducibility: Frame Fabrication 

6.2.2.1 Mold for PDMS Frame 

One of the highest ranked objectives during project strategy (Chapter 3) was 

reproducibility, meaning that the model must produce results that are consistent across technical 

replicates and multiple users. The mold creates six identical PDMS frames; 24.5 mm in length, 

3.8 mm in height, with a width of 4 mm. Each frame provides a groove for the Thermanox® 

coverslip. The model currently used in the Pins lab has significant of variance in the length, 

height, and width of the model, which impacts the fibrin microthread placement and length. 

Figure 41 shows the location of the width measurements taken on each frame, and Figure 42 

graphically displays the difference in variance between the two models. 



 

110 

 

Figure 41. Width of PDMS frame measurement (red); Pins Model (left) and ML Model (right). 

 Reproducibility testing was conducted as described in Section 5.2.2. The team completed 

statistical analysis on the difference in the width of the PDMS frames created with the Pins 

Model assembly and the ML Model assembly. A total of 24 frames were created for each model 

(N=24; n=48). Two measurements of the width were taken and averaged for each frame (Figure 

48). The standard deviation between the two measurements was calculated for each of the 24 

frames for both models. In addition, the mean widths and overall standard deviations for the Pins 

Model and ML Model were calculated, 5.07±0.896 mm and 3.74±0.0505 mm, respectively. A 

paired T-test was performed on the standard deviations for each model to determine if the degree 

of user-to-user variability was reduced when using the ML Model. A P-value of <0.05 was 

considered to be statistically significant. The P-value was 2.78×10-6 (Figure 42).  
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Figure 42. Statistically significant (P<0.05) decrease in variation of PDMS frame dimensions in ML Model. 
Decreased user-to-user variability by 94.4%. Team used a paired T-Test, n=24, p-value=2.78x10-6 

6.2.2.2 Cutting Guide and Cutting Tool for Fibrin Microthread Fixation Slits 

The cutting guide/tool meets the reproducibility objective because it creates three 

equidistant slits in the PDMS frame, all with the same depth. The chance of failure (by PDMS 

frame breaking) decreases because the razor blade is stopped by the cutting guide at the bottom, 

preventing the user from cutting too deep. The cutting guide holds three PDMS frames, and the 

cutting tool can cut all of them at the same time. The cutting guide indicates where to place the 

cutting tool, improving reproducibility of the distance between slits and the depths of the slits, 

making each PDMS frame virtually identical. Figure 43 shows two models side by side and the 

measurements that were taken while the variation in these measurements is shown in Figure 44.  
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Figure 43. Distance between fibrin microthread fixturing slits measurement (red); Pins Model (left) and 
ML Model (right). 

The team also completed statistical analysis on the difference in the distance between the 

fibrin microthread fixation slits created with the Pins Model assembly and the ML Model 

assembly. A total of 24 frames were created for each model (N=24; n=48). Two measurements 

of the distance between three slits were taken for each frame (Figure 43). The standard deviation 

between the two measurements was calculated for each of the 24 frames for both models. In 

addition, the mean distance between the fibrin microthread fixturing slits and overall standard 

deviations for the Pins Model and ML Model were calculated, 3.83±0.533 mm and 4.51±0.0854 

mm, respectively. A paired T-test was performed on the standard deviations for each model to 

determine if the degree of user-to-user variability was reduced when using the ML Model. A P-

value of <0.05 was considered to be statistically significant. The P-value was 9.20×10-6 (Figure 

44).  
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Figure 44. Statistically significant (P<0.05) decrease in variation of fibrin microthread placement in ML Model. 
Decreased user-to-user variability by 83%. Team used a paired T-Test, n=24, p-value=9.20x10-6 

6.2.3 Cost Efficient 

6.2.3.1 Mold for PDMS Frame 

The mold is a cost-efficient option to the current model because it is reusable. The 

dimensions if the Delrin™ mold are 3.681in x 2.52 in x 0.228 in, and the cost for this volume of 

raw materials of Delrin™ plastic is about $8 per mold. The cost of the 3/32 flute 3-degree draft 

end mill needed to machine the mold is $20.57. The total estimated labor cost of four molds is 

about $350. A single mold costs approximately $102 [$8 of material + ¼ (cost of tooling and 

labor)]. 

A sustainability analysis was performed to determine the amount of waste PDMS 

produced when creating the Pins Model and the ML Model. The Pins Model requires an 11x7 cm 
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sheet of PDMS to be created to hand-cut the frames out of, resulting in 70.4% of the PDMS sheet 

wasted. The Delrin mold creates a negligible amount of PDMS waste because a syringe is filled 

with the exact volume of PDMS needed to fill the six molds. As indicated in Figure 46, the total 

cost of PDMS needed to create 6 PDMS frames of the Pins Model is $5.01, and the total cost of 

PDMS needed to create the ML Model is $0.91. The ML Model decreases the cost of PDMS 

used by 81.8% (Figure 45).  

 

Figure 45. Cost to produce six PDMS frames for both the Pins Lab Model (left) versus the ML Model (right). The 
ML Model reduced cost of PDMS waste by 95%. This graph includes the mean and standard deviation. The team 

used a Paired T-test; N = 4; P-value = 8.27×10-7 

 

6.2.3.2 Cutting Guide and Cutting Tool for Fibrin Microthread Fixation Slits 

The cutting guide is a cost-efficient option to compliment the mold, as they are both  

reusable. The cutting is a one-time cost of $0.18, 3D printed out of PLAin the WPI Rapid 

Prototyping Lab. This cost could change slightly depending on the dimensions the user needs for 

the cutting guide (i.e. if the user decided to create a cutting guide that held more or less than 

three PDMS frames at a time). The three razor blades used to create the cutting tool cost $1.37, 
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and the cost of the washers and screws is $1.50 making the total cost of the cutting tool $2.87. 

All of the components used in the cutting tool were purchased at Lowes. These two design 

components combine for a one-time cost of $3.08. The total cost of ML Model assembly kit is 

$104.80 (Table 21).  

Table 21. Cost analysis for ML Model assembly kit 

Item Cost 

Cutting guide (PLA) $0.18 

Cutting tool $2.87 

Machined Delrin™ Mold (1) $101.75 

ML Model total cost $104.80 

 

It is important to note that the ML Model and Pins Lab Model require the same materials 

for the outgrowth assay, making these materials fixed and outside of the scope to investigate. 

This includes the biological materials needed to make cell culture media, create the fibrin gel, the 

C2C12 cells, and the several pipette and serological tips used throughout the cell culture 

procedures. 

6.2.4 Interface with 3D Scaffold 

6.2.4.1 Mold for PDMS Frame 

The mold allows for the creation of PDMS frames which are able to interface with a 3D 

scaffold. PDMS is a biocompatible material that provides mechanical stability sufficient to 
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support fibrin microthreads. The Delrin™ Plastic, which was used to make the molds, has shown 

to not leach any toxins into a material like PDMS below a temperature of 76.9-96.9°C, known as 

the maximum service temperature (Penick, 2005).  

6.2.4.2 Cutting Guide and Cutting Tool for Fibrin Microthread fixation slits 

The cutting guide allows for the creation of identical and evenly spaced slits in the frame. 

This allows for the even thread fixation which is what allows the PDMS frames to interface with 

the 3D scaffolds.  The PDMS frame is sterilized before contact with the C2C12 cellular gel, 

ensuring that any dust or fungus is eradicated before introduced to the cell culture environment. 

6.2.5 Support of Cellular Outgrowth on 3D Scaffold 

6.2.5.1 Cellular Outgrowth Assay Validation Experiment 1 

 On day 1 of experiment 1 (Exp1), a 6-well plate of the ML Model containing fibrin 

microthreads and a 6-well plate of the ML Model containing collagen microthreads was 

sterilized using the EtO sterilization method. The plates were left in the sterile packaging on the 

benchtop for at least 24 hours after EtO sterilization to degas. On day 2 of the experiment, 

C2C12 myoblast populated fibrin gels (20,000 cells) were dyed with DiI and seeded on the ML 

models, as written in the ML Model Outgrowth Assay Protocol (Appendix L). On days 3-4 of 

Exp2, both the fibrin and collagen plates were imaged at the 24hr and 48hr time points according 

to the imaging protocol discussed in ML Model Outgrowth Assay Protocol (Appendix L). 

Images were taken at using the Zeiss microscope at a 10X objective with the exposure times 

listed in Appendix P. The team was not able to image for days 5 and 6 of the experiment (3 and 4 
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of imaging) at the 72hr and 96hr time points, so the plates were bleached and properly disposed 

of following imaging on day 4.    

6.2.5.2 Cellular Outgrowth Assay Validation Experiment 2 

On day 1 of experiment 2 (Exp2), two 6-well plates of the ML Model containing fibrin 

microthreads were sterilized using the EtO sterilization method. The plates were left in the sterile 

packaging on the benchtop for at least 24 hours to degas. On day 2 of the experiment, C2C12 

myoblast populated fibrin gels (20,000 cells) were dyed with DiI and seeded on the ML Models 

as written in the ML Model Outgrowth Assay Protocol in Appendix L. On days 3-6 of Exp2, 

both fibrin plates were imaged at the 24hr, 48hr, 72hr, and 96hr time points as stated in the 

imaging protocol detailed in Appendix L. After the 48hr imaging, the media was changed and 

the cells were re-dyed with DiI (Appendix L - after 48hr time point image). Images were taken at 

using the Zeiss microscope at a 10X objective at the exposure times listed in Appendix P. 

6.2.5.3 Cellular Outgrowth Assay Validation Experiment 3 

 On day 1 of experiment 3 (Exp3), a 6-well plates of the ML Model containing fibrin 

microthreads and a 6-well plate containing collagen microthreads were sterilized using the EtO 

sterilization method. The plates were left in the sterile packaging on the benchtop for at least 24 

hours to degas. On day 2 of the experiment, C2C12 myoblast populated fibrin gels (20,000 cells) 

were dyed with DiI and seeded on the ML Models as written in the ML Model Outgrowth Assay 

Protocol in Appendix L. On days 3-6 of Exp3, both the fibrin and collagen plates were imaged at 

the 24hr and 48hr time points as stated in the Imaging Protocol detailed in the outgrowth assay 

protocol in Appendix L. Images were taken at using the Zeiss microscope at a 10X objective at 

the exposure times listed in Appendix P.  
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A black substance was discovered on the Thermanox® coverslips on day 3 of the 

experiment (24-hour imaging time point) (Figure 46). Although the media was clear and 

red/pink, the team decided to bleach and dispose the plates so that they would not contaminate 

other items in the incubator. As a result, the team was only able to obtain one day of images.  

 

Figure 46. Black substance observed in 6-well plate during Experiment 3. 

6.2.5.4 Cellular Outgrowth Assay Validation Experiment 4 

On day 1 of experiment 4 (Exp4), two 6-well plates of the ML Model containing fibrin 

microthreads were sterilized using the EtO sterilization method. The plates were left in the sterile 

packaging on the benchtop for at least 24 hours to degas. On day 2 of the experiment, C2C12 

myoblast populated fibrin gels (20,000 cells) were dyed with DiI and seeded on the ML Models 

as written in the ML Model Outgrowth Assay Protocol in Appendix L. On days 3 of Exp4, both 

fibrin plates were imaged at the 24hr time points as stated in the imaging protocol detailed in 

Appendix L. Images were taken at using the Zeiss microscope at a 10X objective. Unfortunately, 

the 6-well plate used to perform the cellular outgrowth assay had a taller base/overall height than 
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the previous plates used. This made the model system and 6-well plate too tall to be able to be 

imaged within the working distance of the microscope. This can be attributed to restocking with 

a different 6-well plate in the WPI campus laboratories. As a result, the team decided to dispose 

of the Exp4 plates and stop the imaging process because the team was not able to obtain in focus 

images of the thread-gel interfaces.  

6.2.5.5 Cellular Outgrowth Assay Validation: 96hr Outcome 

The PDMS frames supported successful interaction between the C2C12 myoblast 

populated fibrin gel and fibrin microthreads. This is depicted in Figure 47 which shows assay 

results at the 96-hr time point. During the course of the outgrowth assay, the red-orange stained 

cells could be seen migrating/proliferating onto the fibrin microthreads. 

 
Figure 47. Cellular outgrowth assay viability results, t=96hr. DiI was used as a lipophilic membrane stain 

to provide a red-orange fluorescence.  

6.3 Impact Analysis of PDMS Frame 

The purpose of the following sections is to discuss the impact that the ML Model has on 

the surroundings; including economics, environment, health and safety, society, politics, ethics, 

manufacturing, and sustainability. 
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6.3.1 Economic Impact 

The team designed a standardized 3D in vitro model of skeletal muscle regeneration onto 

fibrin microthread scaffolds to advance the research for a treatment for VML for use by  

biomedical engineers and researchers, specifically in the Pins Lab. The ML Model is a cost-

efficient alternative to the current model used in the Pins lab, as there is virtually no PDMS 

wasted, as opposed to the wasted 76% of PDMS made to produce the previously used model. A 

standardized 3D in vitro model kit, containing  the mold, cutting guide, and cutting tool is an off-

the-shelf design that could be used for the testing of other 3D scaffolds, similar to fibrin 

microthreads (i.e. collagen microthreads). This ML Model kit would be a cost-effective 

competitor to the current designs in the biomedical engineering field (i.e. microfluidic models, 

etc.). Additionally, this model can support several types of microthread scaffolds (fibrin, 

collagen, etc.), making it useful for a wider range of labs. The ML Model would promote 

academic research, and eventual adoption by industries that focus on this developed treatment 

and its required materials. 

This model improves the reproducibility and throughput of testing results of in vitro 

scaffolds, providing the researcher with confidence in which scaffolds would be successful in 

vivo. While in vivo testing is required to eventually approve this treatment by the FDA, the ML 

Model could decrease the number of animal subjects that have to be tested. By creating a 

reproducible model, it gives researchers more confidence moving into the in vivo testing phase, 

and would decrease the amount of “unnecessary” (or rushed) in vivo testing. As the researcher is 

able to be more confident in how the 3D scaffold would respond in vivo, the likelihood of the in 

vivo trials showing success increases. Eventually, this model could impact the rate at which an 
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implantable therapy is found to treat VML in soldiers, reducing the lifetime cost of disability for 

a soldier with a VML injury.  

6.3.2 Environmental Impact 

The designed ML Model (mold, cutting guide, and cutting tool) could have an impact on 

the environment. The 3D in vitro model is made using silicone (non-degradable), natural protein, 

fibrin, C2C12 cells and corresponding media, which would all be disposed of as biohazard 

waste. Once biohazard waste is transferred (by a diesel truck) to the appropriate facility, it is 

incinerated and dumped into landfills. Cellular environment byproducts and medium are required 

to follow safe biohazard disposal and be effectively harmless to the environment. Biohazard 

waste incinerators release one of the highest amounts of toxic and bioaccumulative pollutants 

into the Earth’s ozone, along with mercury and dioxins as the materials burn. Diesel fuel is one 

of the most toxic pollutant fuels that vehicles use, and these pollutants are harmful to the public’s 

and environment’s health (Wormer, 2013). 

The mold is made of Delrin™ Plastic and machined by a 3-degree draft angle screw. 

While the mold is reusable, it is made of a version of acetal plastic. Acetal plastic, like most 

other plastic materials, is a non-biodegradable material. Therefore, any plastic waste produced in 

the machining of this mold will sit in landfills for several of thousands of years, never re-entering 

the biologic cycle. This adds to humanity’s current problem of waste pollution. 

The cutting tool/guide is made of ABS, aluminum, and stainless-steel razor blades. 

PLAdegrades over a long period of time, as it is non-biodegradable. Aluminum and stainless 

steel are not biodegradable, so similar to the acetal plastic, these parts will remain in landfills for 

virtually forever. However, this tool is reusable and would be used for a significant amount of 

time, rather than just being disposable, leading to less waste. Additionally, the ML Model will 



 

122 

decrease the amount of PDMS being thrown away and wasted. As stated previously, PDMS is 

not biodegradable, so the ML Model will decrease harm to the Earth. 

6.3.3 Health and Safety Impact 

The ML Model is a safe device for users. None of the components produce harmful 

chemical byproducts, as the different parts are composed of stable materials that are not reactive 

at room temperature (22℃). The two cautions that must be taken are the sharp edges on the 

cutting tool that are made of razor blades. If not carefully, and properly stored and handled, the 

razor edges could damage (puncture or cut) a person or important piece of lab equipment. While 

the cutting guide and cutting tool are reusable, when they have reached the end of their lifespan, 

or are broken, they must be disposed of following proper sharps disposal protocols. This model 

would eventually be used in a 6-well plate, which would include user exposure to cells and 

culture media. 

The ML Model has the potential to be developed further and built upon to develop an 

implantable therapy for VML, which would greatly improve the muscle function and quality of 

life of soldiers. Once the ML Model is studied further in the Pins Lab, it must be approved by the 

FDA as a safe biomaterial for the majority of the population.  

6.3.4 Societal Impact 

The implementation of this device as a tool for modeling skeletal muscle regrowth on to 

fibrin microthreads in vitro will allow for an expedited timeline of scientific discovery. By 

decreasing user variability and increasing data throughput, this device allows researchers to 

answer a greater number of questions in a shorter period of time. This expedites the research 

timeline and will give researchers a more concrete idea of what constitutes success and failure in 
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vivo testing. Ultimately, this research will be used to implement fibrin microthread scaffolds as a 

means of treating VML and restoring function to the wounded tissue. This will improve the 

quality of life for those who have been affected by this injury. By restoring full function, VML 

patients will be able to perform activities at the same level they were able to before the injury. In 

the case of wounded veterans, this treatment may restore function at such a level that they are 

able to return to combat.  

6.3.5 Political Impact 

As the project currently stands, there are no immediate or foreseeable political impacts 

associated with it. As it currently stands, this project is very small-scale and will therefore not 

have any commercial or industrial impacts in the foreseeable future. If this product were to be 

made commercially available, it could become more widely used and therefore it would have to 

be revisited to analyze its broader effects. Potentially, the use of different components that are 

vital to the testing of this device could cause some controversy. The media used contains fetal 

bovine serum (FBS) which is taken from the blood of bovine fetuses. Additionally, fibrin is a 

blood component derived from animals. Both of these components could be cause for concern 

for animal rights activists and could lead to a political issue with the continued pursuit of this 

type of testing.   

6.3.6 Ethical Impact 

The ethical concerns directly associated with this project are minimal. An improved 

model of skeletal muscle regrowth onto fibrin microthreads will not likely have any large ethical 

ramifications. Although, the long-term goal of this research is to use fibrin microthread scaffolds 

as a treatment for VML. Fibrin and thrombin, which are needed to produce the fibrin 
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microthreads, are isolated from bovine sources which may raise some concern due to the use of 

animal material in scientific research. However, this project does not introduce any new need for 

these materials, rather suggests how to better utilize the materials that will already be used. An 

additional concern would be the risk of disease transfer from isolating these materials from 

animal sources, but they are processed in such a way so as to minimize this risk.  

6.3.7 Manufacturing Impact 

This project improved the manufacturability and assembly of the frames. With the new 

system designed by the team, the process of fabricating the frames has been streamlined and 

made more reproducible. The mold was machined from Delrin™ plastic and allowed for six 

identical PDMS frames to be created at once. The cutting guide and cutting tool ensure that all of 

the slits are equidistant and of the same depth. Using these three components allows for the 

consistent and user-friendly production and assembly of the frames. The average total hands-on 

time required is approximately 34 minutes for a set of six. 

6.3.8 Sustainability 

In order to create the mold for the frame, Delrin™ plastic was machined to fit the 

specifications of the team. Machining this material to the desired shape produces some waste, but 

not a significant amount due to the limited scale of production at this point in product 

development. If this mold were to become commercially available, material waste may become a 

factor that needs to be looked into. 

The production and assembly of the frames designed in this project requires the use of 

energy through several steps in the process. After pouring the PDMS into the mold, it is put into 

a vacuum chamber for an hour and then cures in an oven for an hour at 60oC. Both of these steps 
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require the use of energy. By maximizing the number of frames that can be produced at one-time 

while minimizing the space that the molds take up, the amount of energy required to produce the 

frames is reduced.  

By pouring the PDMS into molds for producing the frames, rather than cutting the frames 

from sheets of PDMS, there is less PDMS wasted in the process of making the frames. This is 

beneficial for the long-term commercialization of this product because it is more sustainable and 

produces far less waste. 
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7.0 Discussion of Results 

This section highlights the overall results of validation testing and explanations as to why 

these results may have been achieved 

7.1 Development of 3D in vitro Assay  

7.1.1 Mold for PDMS Frame 

The 6-well acetal plastic mold decreases user variability by standardizing the dimensions 

of the PDMS frames. Frames can be fabricated in fewer steps and in less time than the hand-cut 

frames used in the Pins Model. The three-degree draft angle on the mold enabled PDMS frames 

to be easily removed. The dimensions of the mold allow four molds to be vacuumed 

simultaneously in one chamber. PDMS can be easily removed from the acetal plastic, allowing 

for quick clean up.  

7.1.2 Cutting Guide and Cutting Tool for Fibrin Microthread Fixturing Slits 

The cutting tool creates equidistantly spaced thread fixation slits and allows the user to 

cut three frames at once. The cutting guide ensures uniform thread fixation split depth. It also 

prevents the slits from being too deep which would cause it to fail when it is bent during thread 

placement. By having all threads in the same viewing plane, imaging can be done more 

effectively because less time will be spent refocusing on a new plane. Additionally, uniform 

thread placement will help with the location and imaging of the leading cell.  
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7.2 Assembly Testing 

Assembly testing performed by the team determined that the use of the Delrin™ mold, 

cutting guide, and cutting tool decreased overall assembly time of six frames by 48%. Both the 

PDMS frame removal/fabrication and Thermanox® stage steps saw the highest decrease in 

assembly time. This is attributed to the design components of the ML Model that standardize 

PDMS frame fabrication; specifically, the 6-well mold and built-in Thermanox® groove. The 

Thermanox® groove eliminated the need to create a separate stage, diminishing the assembly 

time considerably. 

The assembly of both models were completed by all four members of the project team. 

We were all considered to be inexperienced for both models, and strictly followed the assembly 

protocol while creating both models. The thread placement step resulted in the minimal amount 

of time decreased, because the method of thread placement was identical between models (thread 

fixation slits). Additionally, manual thread placement can only be done so quickly and requires 

users to be careful with the PDMS frames and threads.  

7.3 Reproducibility and Sustainability Analysis 

Reproducibility testing performed by the team determined that the use of the Delrin™ 

mold, cutting guide, and cutting tool decreased overall user-to-user variability by 88.7%. In 

addition, sustainability analysis concluded that the use of the Delrin™ mold decreased the cost to 

create six PDMS frames by 81.8%.    
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7.3.1 Reproducibility Testing 

The cutting guide and the cutting tool create equidistant slits of equal depth to fixture 

fibrin microthreads. These tools will decrease the user-to-user variability when creating the 

model and produce reproducible results when performing the cellular outgrowth assay to 

expedite the in vitro screening process. In addition, the cutting guide and the cutting tool 

improve the imaging process of the fibrin thread-gel interface. All of the threads will be located 

on the same plane, so the user will not have to adjust the focus of the microscope at each thread-

gel interface. 

The Delrin™ mold produces PDMS frames with equal widths independent of the user, 

decreasing user-to-user variability. Use of the ML Model mold will create each model in the 

cellular outgrowth assay to be virtually identical. Thus, the user’s confidence in validation of the 

in vitro results of the outgrowth assay will be increased. Overall, an increased volume of 

reproducible in vitro data will also expedite the process of in vitro testing of fibrin microthreads. 

This will lead to successful fibrin microthread scaffolds to be tested in vivo sooner, bringing a 

treatment for VML closer to reality.   

7.3.2 Sustainability Analysis 

 Sustainability analysis performed by the team determined that the use of the Delrin™ 

mold, cutting guide, and cutting tool decreased cost of PDMS used by 81.8%. A potential source 

of error is inaccuracy of the scale during the weighing process of the plates of waste PDMS for 

the Pins Lab Model. Additionally, the waste in the ML Model was negligible, but the remnant 

PDMS film on top of the mold could have added to the overall PDMS waste cost. 
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The cost of a 3.9 Kg set of base and curing agent to make PDMS in 3.8 the lab costs 

about $500. Therefore, by decreasing the amount of PDMS used and wasted when creating the 

PDMS frames, the lab will be able to save money and use it towards other research. 

Additionally, by utilizing a reusable mold, the ML Model eliminates the need to use a new plate 

for pouring each sheet of PDMS.  

7.4 Cell Outgrowth Assay Viability 

The overarching goal of the outgrowth assay viability study was to show that the ML 

Model was able to sustain cellular outgrowth and be analyzed in the same manner as the Pins 

Lab Model. This study was completed four times, by means described in Section 5.2.5. The 

cellular outgrowth assay viability study was successful in showing that the ML Model can 

sustain cell culture conditions and the cellular reaction to fibrin microthreads resulted in 

alignment and outgrowth.  

Experiment 1 only included the 24hr and 48hr time point images. Experiment 2 included 

the 24hr, 72hr, and 96hr time point images. This experiment provided the team with the most 

successful cellular outgrowth images. Experiment 3 was terminated due to contamination issues. 

Experiment 4 was assembled in a 6-well plate that was too tall to fit within the working distance 

of the Zeiss microscope. This made it impossible to take focused images without fear of 

damaging the objectives on the scope. Appendix Q is a composite of photos from 24hr, 48hr 

72hr, and 96hr taken during our experiments showing cellular outgrowth onto a fibrin 

microthread. 

Several of the challenges that arose from this portion of design validation was due mostly 

to user inexperience; both in cell culture, staining procedures and troubleshooting the Zeiss when 
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the exposure times would differ. The results of the cellular outgrowth assay show that the ML 

Model is able to sustain cellular migration/proliferation and can be imaged using the Zeiss 

inverted fluorescence microscope. 

7.5 Cost Analysis  

The major costs required to create the ML Model assembly kit include the cost of the 

Delrin™ mold, cutting guide, and cutting tool. These tools can be easily cleaned for reuse, 

making the higher up-front cost a worthwhile investment. Additionally, the tooling for the mold 

and the labor cost for the time to set up the CNC machining program are one-time costs. Once 

the first mold is completed, the time and cost required to machine one mold decreases greatly.  

At this point, the manufacturing of the three components has been done on a small scale, 

but in the long term, manufacturing could be outsourced, and all three components could be 

packaged as a kit. This would allow other labs to perform tests on microthreads in a reliable and 

consistent manner.  Manufacturing the mold on a larger scale would also reduce the cost of 

producing each part. 

7.6 Comparison to Existing Research 

The design of a standardized in vitro model of skeletal muscle growth onto implantable 

fibrin microthreads presented in this paper was made using PDMS. A mold machined of 

Delrin™ acetal plastic allowed for the created on six identical frames which could then be cut 

using a cutting tool and gutting guide to produce evenly spaced slits of equal depth for thread 

fixation. As described in Chapter 2.4, there exist multiple 2D assays to model tissue growth. 

Because fibrin microthreads are a 3D scaffold, a model that can properly interface with them is 
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required. This is necessary in order to gather information that is as close as possible to what can 

be observed in vivo. The model currently used in the Pins Lab is hand-cut from sheets of PDMS 

in the shape of an octagon with a hole punched in the middle. A separate stage made of PDMS 

and Thermanox® is also constructed in the well plate (Grasman, 2015). This method has a lot of 

limitations as it is time consuming and results in a significant amount of user-to-user variability.  

The ML Model has reduced both assembly time and user variability in comparison to the 

existing model. This makes the new model more consistent and easier to assemble. While the 

team did not compare the outgrowth distance of the leading cell to current data produced by the 

Pins Lab Model, we were able to observe cellular outgrowth onto the fibrin microthreads in the 

ML Model. In future, more in-depth comparisons can be performed to quantitatively compare 

outgrowth between the two models.  
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8.0 Conclusions and Future Work 

This section summarizes the results and outcome of this MQP and potential future use of 

the ML Model. 

8.1 Conclusions 

The challenge proposed to the team was to design, develop, and characterize a 3D in vitro 

model of skeletal muscle tissue outgrowth. Through the design process, the team determined that 

the revised client statement/mission was that the model system used for the cellular outgrowth 

assay must be reproducible and standardized with less than 5% user variability. It must also be 

able to be assembled in half of the time required in the current protocol and must be able to be 

imaged to quantify proliferation, migration, and confluence of C2C12 cells in six, 35mm wells. 

Finally, the model must maintain structural integrity while submerged in media in a sterile 

environment for 96 hours. Overall, the main objectives of standardization of assembly, 

reproducibility of model, cost effectiveness, and support cellular characterization were achieved 

through the specified test methods. These objectives were validated through assembly testing, 

reproducibility testing, sustainability analysis, and cell outgrowth assay viability. From the data 

we were able to conclude that our design components combine to create a viable cellular 

outgrowth model to investigate treatments for VML and expedite the in vitro testing process.  

8.2 Future Work 

Further design recommendations include increasing the height of the groove in the mold 

created for the Thermanox® stage. This would reduce the number of threads floating off of the 
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Thermanox® coverslip and increase the number of thread-gel interfaces that are able to be 

imaged. To decrease the amount of time required to remove the frames, future work could be 

done to improve frame removal technique. The mold could be designed with a larger draft angle, 

tabs could be placed in the PDMS prior to curing for an easy removal point, or a better removal 

tool could be designed. Frame thickness could be increased to reduce the risk of PDMS rips 

during removal and the inner corners of each mold well could be rounded to decrease cracks at 

stress concentration points.  Future improvements can be made to the cutting tool by creating a 

more user-friendly, ergonomic design with sharper blades. The dimensions of the cutting guide 

can be adjusted to create a higher tolerance on how the PDMS frames fit into the guide. The 

thickness of the cutting guide can also be adjusted based on PDMS frame dimensions and 

Thermanox® slot placement.  

An additional step to validate the design would be to complete an experiment where the 

ML Model and Pins Lab Model are studied under identical conditions. This would allow the user 

to quantitatively compare the outgrowth of the cells onto fibrin microthreads. This would allow 

results obtained on the ML Model to be directly compared to Pins Lab Model data.  

Outside of this project scope, but useful for the continuing use of PDMS for fibrin 

microthread fixation, is a device that could hold open the fixation slits while fibrin microthreads 

are placed. Automation of thread extrusion and placement onto the PDMS frame would also 

greatly improve the process of production for the ML Model. 

Future in vitro ML Model research includes creating and testing a multi-cell design with 

muscle, nerve, and endothelial cells to better predict muscle tissue outgrowth in vitro. Muscle is 

a highly innervated tissue, and this multi-cell design will better reflect the healing response that 

fibrin microthreads would cause in vivo. To better compare the ML Model cellular outgrowth to 
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that of the Pins Lab Model, biophysical and biochemical properties of the threads should be 

modified; including growth factors and mechanical properties. This will work towards the 

ultimate goal of restoring muscle function in VML injuries. 
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Appendices 

Appendix A: Fibrin Microthread Protocol 

Fibrin Microthread Protocol 

Materials: 
● Fibrinogen aliquot (warmed to room temperature) Do not shake! 
● Thrombin aliquot (warmed to room temperature) 
● 40 mM CaCl2 solution (warmed to room temperature) 
● 100 mM HEPES buffer bath stock solution (10X) – prepared in previous lab session 
● Deionized water 
● Metal non-stick pan 
● 25 Gauge blunt end needle (1) 
● 0.86 mm I.D. polyethylene tubing (Intramedic PE90 427421) 
● 1 mL syringes (2) 
● Blending connector (SA-3670; Micromedics, MN) 
● pH meter 

  
Set Up Procedure: 

1. Prepare 600 mL of 1X (10 mM) HEPES buffer solution (60 mL of stock solution and 
*540 mL diH2O).  

2. Place blunt end needle (25 gauge, BD) into 0.86 mm I.D. polyethylene tubing. 
CAN REUSE THESE MATERIALS IF PREVIOUS USER WASHED PROPERLY 

3. Luer lock the blunt end needle/tubing assembly onto the front end of blending connector. 
4. Place a metal non-stick pan next to the syringe pump. 
5. Fill pan with 600 mL HEPES buffer solution. 
6. Do a “dry” run of the entire procedure, before loading the syringes with fibrinogen and 

thrombin, to make sure all materials and equipment are set up and working properly (as 
shown schematically in Figure 1 above). Make sure you know how to use the syringe 
pump and that when it is running the plungers are being depressed. 

  
Co-extrusion Procedure: 

1. Add 150 µL of thrombin aliquot to 850 µL of calcium chloride solution in a new 1mL 
microcentrifuge tube and mix well. 

2. “Prime” both 1 mL syringes by moving the plunger.  LABEL one as THROMBIN and 
one as FIBRINOGEN. 

3. Collect all of the thrombin OR fibrinogen solution into the appropriate 1 mL syringes. 
COLLECT THE FIBRINOGEN SOLUTION SLOWLY AND CAREFULLY, FAILURE 
TO DO SO MAY RESULT IN INSOLUBLE FIBRINOGEN FORMATION!!  (it’s 
viscous!!!). Do not vortex or shake. 

4. Invert syringe, remove all bubbles, and ensure that both syringes have equal volumes. 
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5. Place each 1 mL syringe of fibrinogen and thrombin solutions into the back end of the 
blending applicator. 

ALWAYS PUT FIBRINOGEN SOLUTION IN THE BLENDING APPLICATOR 
OPENING WITH THE CIRCLE ON IT. 

6. Secure syringe/blending applicator construct into syringe pump. 
7. Press run on the syringe pump and wait for fibrin solution to flow out of the tip of the 

tubing. 
8. Draw threads into the buffer solution, taking 6-10 seconds to draw each thread. 
9. If the pump does not automatically stop when the syringes empty, press stop. 
10. Immediately wash tubing/blending applicator with cold water and a 20 mL syringe, 

plugging the other opening with your thumb (at least 5 water rinses per blending 
applicator opening). 

11. Flush water out of blending applicator/tubing repeating step 9 using an empty 20 mL 
syringe. 

12. Fibers can be removed from the bath after 10-15 minutes (not longer than 15 minutes!!!). 
13. Label a cardboard box with your team number and team member names. 
14. Stretch threads and secure along the cardboard box (~7.5 inch threads). 
15. Leave stretched fibrin threads to dry overnight. 
16. After 16-24 hours (overnight), remove dried microthreads from the box. Make 

measurements immediately, or wrap dry microthreads in aluminum foil and store until 
use.  REMOVE MICROTHREADS FROM BOXES ASAP after the lab to avoid 
disruption of your microthreads by other lab users. 
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Appendix B: User Interview Notes 

User Interview Questions and Notes (Meagan, 9/6/18): 
1. Can you tell us about the research you are currently working on? 

a. Developing a scaffold to treat VML 
b. Scaffold: fibrin microthread 
c. Issue getting cells to infiltrate tissue to heal wound  
d. GF - release kinetics, are cells multiplying  
e. How to modify threads? Mechanical properties, degradation rate, crosslinking, 

surface features (generally smooth) 
f. In vitro cell based assay  
g. Cells: C2C12 
h. Page: primary mouse  

2. How do you currently model muscle regeneration with the microthread scaffold? 
a. Assays - outgrowth paper in the email  
b. 6 well plates with elevated cover slips (stage), align threads, add cells, culture 

cells  
3. What do you like/dislike about similar devices you currently use? 

a. Assays have long setup time, and long culture time   
4. What is the most important aspect of the scaffold to you, as the user? Strength, cell 

proliferation, etc.? 
a. Assay system: 

i. Reproducible and user friendly 
ii. Cost efficient (least) 

iii. Easy setup 
iv. Easy image (fluorescent) - show infiltration, proliferate, migrate  
v. 3D!! - figure out the limitations past research has faced 

1. Limitations of others: looking at 2D 
vi. Use for different types of scaffolds - gel  

vii. Work with desired cell types (myoblasts, endothelial, nerve) 
viii. Co-culture system: multiple cell types (recommendations for future 

project) 
ix. Migration, proliferation, stain, image (live imaging) 
x. Multi-well format (lower) 

xi. Cell culture - sterile  
5. What will be the main application of this 3D scaffold? Soldiers, traumas, research? 

i. Scaffolds themselves for any large-scale trauma  
ii. Your assay: intermediate between in vitro and in vivo  

1. Better model that cuts down on the number of animals that need to 
be tested on  
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b. Are there any other products/medical devices you with to pair with this device? 
(future things to do with assay) 

i. Drug delivery  
ii. Modeling musculoskeletal diseases 

6. How would this model benefit you? 
a. What information would it provide that you needed? 
b. What would it make easier? 

i. Setup  
ii. Eventually be able to test all different scaffolds  

c. What is your current model lacking? 
i. Setup, time in culture  
ii. Outgrowth paper - really looking for 3D, similar but improved? 

7. What imaging technology/microscope do you use to image 3D models? 
a. What imaging technology is available to us?  

i. Confocal: 3D, fluorescent  
ii. Zeiss: inverted fluorescence  

iii. Keep in mind working distance  
8. Is there anything we haven't asked you about that you think we should know? 

a. Research: in vitro assays, cancer research for cell migration, scratch assay (limit: 
2D), how can the scaffold be utilized in these assays, keep track of pros and cons 
and each assay,   

9. Can we schedule another meeting with you, so you can give us a tour of the lab and what 
devices you are using specifically?  

 
Extra Notes: 
 
Will be making scaffold but not modifying them. 
We are trying to develop an assay to look at cell outgrowth onto a scaffold.  
Using threads as the scaffold. 
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Appendix C: Industry/Company Interview Notes 

Company Interview Questions and Notes (Professor Whittington, 9/6/18): 
1. What past experiences do you have working with any muscle regeneration devices in 

industry? 
● Cancer  
● Vascularization side 
● Collagen matrices microstructures 

○ Change physical structures in microvessels 
● 3D cell culture tissue culture   

2. What past models have been created for muscle regeneration that have been successful? 
a. What were they lacking? 

● Things in body that aren't in the model (complexity) 
● Prevascularized or injection  
● Just cells and matrix for the model - missing key elements to make it in 

vivo like. Cannot put everything in in vitro model - would become too 
complex  

b. What works well? 
■ Can approximate some features that are best for the scope you are looking 

at  
■ Looking at lumen on vessels  
■ Able to generate a model to see measurable differences in mechanical 

properties 
1. Had the model for long enough to be able to measure these  
2. Platform technology for other research questions 

3. How would you like to see this 3D model used? 
a. Model with a functional component that would be able to be used for VML, or 

answer specific questions about regeneration 
■ What elements could hinder or promote regeneration? 
■ Be used in intermediate phases instead of just being able to replace muscle 

1. Vascularization, innervation  
4. What would the needs of a company that would use/sell this model be? 
5. What are your constraints for a model such as this? 
6. How would this model benefit you? 

a. What information would it provide that you needed? 
b. What would it make easier?  
c. What is your current model lacking?  

7. From your experience, what are typical challenges when designing a model like this? 
a. Identifying scope and components (How much is too much? How much is 

enough?) 
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■ REPRODUCIBILITY 
b. Technical  
c. Having your techniques down (sterile, cell culture, creating materials) 
d. Make sure your protocol is good 
e. Determining appropriate outcomes (evaluating systems and what does 

success mean to you) 
■ Picking the correct output 
■ Make sure your things line up - what is actually happening in what you are 

choosing to use  
1. Research about assays, cell types,  

f. Don’t forget about controls  
8. Is there anything we haven’t asked you that you think we should know?  

a. When we try to get more in vivo like having an idea what that means for us and 
your project  

■ What aspects of muscle do we want to make it more in vivo like 
■ Linking smaller scale outgrowth assays to how they correlate with in vivo 

b. Standardize Meagan’s procedure  
■ Make a universal protocol  
■ REPRODUCIBILITY 
■ Rank which problems of Meagan’s project are easiest to tackle first 

  
Tumor model experience  

● Who is going to actually be creating these models? 
● How easy is it for someone to actually be able to do this? 

○ Training time, feasibility  
○ Are the assays equipped to handle 3D? 

■ Too much information? 
■ Can it penetrate depth? 
■ Is dye working correctly? 
■ Can it penetrate long enough? 
■ Can incubation time be changed? 
■ How with this “tool” actually be used? 
■ How would the device be manufactured on a larger scale? 

● How many 
● Cost  

● Collagen + 4 additives  
○ Consolidated down to collagen + 1 additive  

■ Makes much more accessible  
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Appendix D: Client Interview Notes 

Client Interview Questions and Notes (Pins, 9/13/18): 

1. Mechanisms of the in vitro 3D microscale outgrowth assay system in the journal article. 
What could be improved on the current in vitro 3D microscale outgrowth assay system?  

● Extremely inefficient and time consuming because for any given plate you can only 
manipulate 1 condition→ 1 well per condition 

 
Version 1→ each island has 1 gel, threads go under it 
Thermanox® 
Carefully deposited drop of cells/gel 
Well characterized in vitro model of wound healing 
Fibroblast populated collagen lattices  
Cells are going to outgrowth from the “wound margin” onto the thread 
In vitro model is not as beneficial unless you can point to literature that says the same thing 
happens when you implant it 
 
2. What would you like to see in the new 3D in vitro model? 

● Lots of data points 
● Easier set up  
● Easy to handle 

 
3. What would you like to change within the new 3D in vitro model? 

● Really easy to contaminate(1 well), all or none  
● Only imaging at one intersection of the thread and island 
● Lifted from bottom in order to isolate threads from the bottom of the plate 
● No 2 points are the same imaging wise 

○ 80 data points if you have 20 threads 
○ 1 well, 1 experiment, 1 time point, n=1 

● only 1 condition per well 
● Uses a lot or resources 

 
Additional notes on this topic: 

● “Outgrowth” 
○ Cells growing onto the threads, define what that means to our project 
○ Biological meaning 
○ Cells are proliferating  
○ Migrating 
○ A front of cells is moving, not sure if they’re proliferating or migrating 
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○ Want to be able to uncouple them  
○ Change focal point, some cells end up on the bottom of the plastic 

 
4. How 3D is 3D? What is our scope/the size of the scaffold? (3D vs 2D)  
 

● 3d is the fact that these cells are responding to a 3d biomaterial 
○ Going all around the microthread 

● Thinking about what we measure 
● Tend to measure the distance to the leading cell 
● Cells are all the way around the microthread (about 10% coverage) 
● Thread is 3D, assay is 3D, implant will be 3D 
● It’s about the three-dimensional morphology of the structure 
● Goal is to collect as much quality data as quickly as possible 

 
5. What is the value of in vitro? 

● Answer better questions more efficiently 
 
6. Can we coculture with this type of model of just use one type of cell? 

● Value to thread is oriented thread growth 
● Guided topography 

 
7. What is the most important aspect of the model to you, as the user?  

a. What are the major characteristics you want to measure? Strength, cell 
proliferation, etc.?  

● These threads are something with a growth factor coating on them, want to be able to 
pick up a bundle of them and put them into a muscle and see what happens 

● Interested in cellular responses to the biomaterial 
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Appendix E: Research Team Pairwise Comparison Chart  

*before objectives were re-categorized 

Totals for Pairwise Comparison for 3D in vitro Skeletal Muscle Regeneration 

 Team Pins Whittington Carnes Total 

Ease of Use 
0.5 0.5 0.5 0.5 2 

Reproducible 
3 4 3.5 2 12.5 

Interface with 

3D Scaffolds 
4.5 4 3.5 4.5 16.5 

Data 

Collection 
4.5 4 3.5 4.5 16.5 

Multi-Well 

Format 
2 2 3.5 1.5 9 

Cost Efficient 
0.5 0.5 0.5 0 1.5 
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Appendix F: Decision Matrix Criteria 

 

Criteria to Rank Decision Matrix 

 Objective Criteria for Rank 

Ease of Use Metrics 

Minimal Prep Time 
1 = more than 1 
hour to set up 

2 = 30 min to 1 
hour 

3 = less than 30 
min to set up 

"off the shelf" 1 = no 2 = yes  

Easy to Handle 1 = no 2 = yes  

Easy Data Collection 1 =   

Easy to Clean 

1 = required to 
clean up 
materials to 
make it, and 
whole assay 

2 = required to 
clean one of the 
two items in #1 

3 = can throw 
away whole 
assay 

Limited 
Monitoring required 

1 = 
assay falls apart 
when media 
change 

2 = 
assay stays 
together during 
media change  

Data Collection 

Standardization 
between users 

1 = extensive 
training required 
for setup and 
imaging 

2 = some 
training 
required for set 
up and imaging 

3 = minimal 
training required 
for set up and 
imaging 

Precision of matrix 
1 = 100 - 66 % 
variance 

2 = 66 - 33 % 
variance 

3 = 33 - 0 % 
variance 

in vivo predictability 
1 = 100 - 66 % 
variance 

2 = 66 - 33 % 
variance 

3 = 33 - 0 % 
variance 

Interface w 3D scaffold 

Support microthread 
scaffolds 

1 = single fibrin 
threads 

2 = bundles of 
threads + single 
threads 

3 = threads + 
additional types 
of scaffolds 

Sustained outgrowth 

1 = 50% of 
threads show 
sustained 
outgrowth 

2 = 75% of 
threads show 
outgrowth 

3 = 100% of 
threads show 
sustained 
outgrowth 

Supports Cellular 

Characterization 

Migration 
1= migration is 
difficult to view 

2= migration is 
viewable 

3=migration is 
easily viewable 

Proliferation 
1= proliferation is 
difficult to view 

2= proliferation 
is viewable 

3=proliferation is 
easily viewable 
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Confluence 
1= confluence is 
difficult to view 

2= confluence 
is viewable 

3= confluence is 
easily viewable 

Alignment 
1= alignment is 
difficult to view 

2= alignment is 
viewable 

3=alignment is 
easily viewable 

Data collection 
1= data is difficult 
to collect 

2= data can be 
collected 
without much 
difficulty 

3=data is easy to 
collect 

Maximize data 
collection 

1 = less than 18 
data points per 6 
wells 

2 = 18 data 
points per 6 
wells 

3 = more than 18 
data points per 6 
well 

Cost Efficient 

Materials purchased 
sustainably 

1 = cost more 
than the budget 

2 = some 
materials 
provided, some 
purchased 

3 = all materials 
provided 

Inexpensive equipment 
1 = cost more 
than budget 

2 = some 
equipment 
provided, some 
purchased 

3 = all equipment 
provided 

Minimize use of 
reagents 

1 = cost more 
than budget 

2 = some 
reagents 
provided, some 
purchased 

3 = all reagents 
provided 

High throughput 

1 = data 
collection time 
increases 

2 = data 
collection time 
stays same 

3 = data 
collection time 
decreases 
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Appendix G: User Variability Assembly Testing: Pins Lab Model 

 
1. Purpose: 

This test method is used to measure the difference in setup time for a 6-well plate 
between users of the Pins Lab Model.  

 
2. Materials: 

PDMS sheet approximately 4mm thick 
PDMS sheet approximately 2mm thick 
Razor blade 
Tissue culture treated Thermanox® coverslip 
3/4” diameter punch 
5/32” diameter punch 
Silicone glue  
Forceps  
Fibrin microthreads 
Scissors 
Diamond tip tool 

 
3. Methods: 

NOTE: Before starting each section begin stopwatch. Record time it takes for 
user to create 6 individual assemblies.  
3.1. PDMS Rings  

3.1.1. Remove PDMS sheet from plate 
3.1.2. Trim approximately ¼” off each edge of the 4mm thick PDMS 
3.1.3. Use the ¾” punch to cut 6 holes in the PDMS sheet, leaving 

approximately 8 mm between holes  
3.1.4. Cut around the circles to create squares with a wall thickness of 

approximately 4 mm 
3.1.5. Cut the four corners off of each square to create 6 octagonal rings 
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Figure 1. PDMS rings cut to octagonal shape 

 
 

3.2. Thread Placement  
3.2.1. Cut 3 sets of equidistant slits across the PDMS ring approximately 

halfway through the ring. Repeat on all 6 rings  
3.2.2. Use the forceps to remove a fibrin microthread from the box 
3.2.3. Cut a section of the microthread long enough to span the diameter of the 

ring. Make sure there is enough extra length to handle the threads.  
3.2.4. Open one set of slits and use the forceps to place the microthread. Make 

sure that there is no excess slack. 
3.2.5. Repeat steps 3.2.1 through 3.2.4 two additional times for each ring 

 

 
Figure 2. PDMS ring with fibrin microthreads  
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3.3. Post and Stage Assembly 
3.3.1. Use the 5/32” punch to cut 12 posts from the 2 mm thick PDMS sheet 
3.3.2. Remove 1 sheet of Thermanox® from package with forceps. NOTE: 

Ensure that Thermanox® remains oriented with the tissue culture 
treated side facing up 

3.3.3. Fill 1 ml syringe part of the way with medical grade silicone glue 
3.3.4. Measure Thermanox® into six 3 mm x 13 mm rectangles and mark using 

a diamond tip tool 
3.3.5. Use scissors to cut out the rectangles 
3.3.6. Place two dots of silicone glue in the center of the well 
3.3.7. Place a PDMS post on each glue dot 
3.3.8. Place glue on top of the posts 
3.3.9. Place one Thermanox® stage on the posts 

3.3.10. Repeat steps 3.3.6 through 3.3.9 for the remaining five wells 

 
Figure 3. Posts and stage placed in well  
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Appendix H: User Variability Assembly Testing: ML Model 

 

1. Purpose: This test method is used to measure the difference in setup time for a 6-
well plate between users of the ML Model.  

 
2. Materials and Equipment: 

Flat double-ended microspatula Fibrin microthreads 

3-blade cutting tool  Razor blade 

Plastic cutting guide Fine tipped-forceps 

Thermanox® coverslip plastic  6-well plate  

Silicone glue  

 
 

3. Methods  
 
NOTE: Before starting each section begin stopwatch. Record time it takes for user 
to create 6 individual assemblies.  
 
3.1. PDMS Frame Removal 

3.1.1. Holding the microspatula perpendicular to the mold, gently run it around 
the edges of the frame (Figure 1A). You should be able to observe the 
PDMS turning opaque as it lifts from the plastic.  

3.1.2. Use the microspatula to lift the four corners so that they are raised out of 
the mold (Figure 1B). 

3.1.3. Gently peel the frame from the mold, lifting perpendicular to the 
direction of the sides with the Thermanox® slot (Figure 1C). 

3.1.4. Repeat steps 3.1.1 through 3.1.3 on the remaining frames.  
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Figure 1. PDMS frame removal steps. 

 
3.2. Thread Fixation Slits 

3.2.1. Place three frames in the cutting guide as shown in Figure 2. Ensure that 
frames are level and fully in contact with the bench surface. 

3.2.2. Place the cutting tool across the middle of the frames (Figure 3).  
3.2.3. Press the cutting tool down into the frames until it touches the cutting 

guide. Make sure your weight is evenly distributed across the blades and 
you press perpendicular to the cutting guide. 

3.2.4. Remove the frames from the cutting guide and repeat steps 3.2.1 through 
3.2.3 on the remaining three frames. 
 

 
Figure 2. Frames placed in cutting guide 

 

 
Figure 3. Cutting tool placed on cutting guide. 
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3.3. Thermanox® Placement  
3.3.1. Cut a piece of Thermanox® approximately 3 mm x 24.5 mm. Ensure that 

the tissue culture treated side remains face up during handling.  
3.3.2. Apply a small amount of silicone glue to each Thermanox® slot in the 

frame (Figure 4A). 
3.3.3. Use forceps to place the Thermanox® into the frame (Figure 4B). Once 

placed, press gently at both ends to ensure the Thermanox® is properly 
seated in the slot.   

3.3.4. Repeat steps 3.3.1 through 3.3.3 on the remaining frames. 
NOTE: Glue must dry for at least 12 hours before beginning next step. 
 

 
Figure 4. Silicone glue and Thermanox® placement 

 
3.4. Thread Placement 

3.4.1. Use a razor blade to cut a section of microthread approximately 1 ½ to 2 
cm longer than the width of the PDMS frame (26-26.5 cm). 

3.4.2. Use the thumb and pointer finger of your non-dominant hand to bend a 
PDMS frame around the curvature of your middle finger so the fixation 
slits are fully opened, as demonstrated in Figure 5.  
 

 
Figure 5. Technique for holding PDMS frame during thread placement. 
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3.4.3. With your dominant hand, use the fine tipped forceps to pick up the cut 
microthread length, and place it into horizontally adjacent thread fixation 
slits. (Figure 6). NOTE: Hold the thread close to the end to avoid 
damaging the center. 
 

 
Figure 6. Thread placed in bent PDMS frame.  

 
3.4.4. Repeat steps 3.5.1-3.5.3 until all three sets of thread fixation slits are 

filled.  
3.4.5. Once threads are placed, release the PDMS frame. Adjust the tension of 

the microthreads until they appear taught. After tensioning the threads, use 
the razor blade to trim excess length from the ends. (Figure 7.) 
 

 
Figure 7. Microthreads before (left) and after (right) final adjustment.  
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Appendix I: Frame Reproducibility Testing Protocol 

 
1. Purpose: 

This test method is used to measure the variability in dimensions and mass 
between PDMS frames.  

 
2. Materials: 

Calipers 
Mass balance  
PDMS frames  
 

3. Methods: 
3.1. Dimensions 

3.1.1. Measure the PDMS thickness in two areas on the frame and record on 
spreadsheet. Calculate the average PDMS thickness. 
 

3.1.2.  Measure the wall thickness in two areas and record on spreadsheet. 
Calculate the average wall thickness. 
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3.1.3. Measure the distance between the slits and record on spreadsheet.  
 

 

 
3.2. Mass 

3.2.1. Weigh the frame and record the mass on spreadsheet.  
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Appendix J: Sustainability Analysis Protocol 

 
1. Purpose:  

This method is used to test the amount of left over PDMS created when 
assembling the Pins Lab Model vs when assembling the ML Model. 

 
2. Materials: 

PDMS 
Mass Balance 
PDMS Frame 
 

3. Methods: 
3.1. Pins Lab Model 

3.1.1. Using one sheet of PDMS, create 6 rings using the Pins-Grasman method. 
3.1.2. Collect the scrap PDMS from the assembly. 
3.1.3. Weigh the amount of leftover PDMS. 
3.1.4. Record results in Excel spreadsheet. 

3.2. ML Model 
3.2.1. Weigh PDMS mold and record results in Excel spreadsheet.  
3.2.2. Fill frames with PDMS. 
3.2.3. Cure PDMS and remove frames from mold. 
3.2.4. Weigh PDMS mold and record results in Excel spreadsheet. 
3.2.5. Calculate the mass of PDMS left over on the mold.  
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Appendix K: “OG” Outgrowth Assay Protocol 

“OG” Outgrowth Assay Protocol 
 

Pre-experiment: 
● Fibrin microthreads were made with normal protocol 
1. 3 UNX threads were attached to a PDMS ring with inner diameter 3/4” by cutting 3 slats 

½ way down through the thickness of the ring and wedging the thread in these slats so its 
taught across the ring opening 

2. Thermanox® coverslip stages were created in 6 well plates. This was done by adhering a 
small PDMS column (diam 5/32” and approx. 2 mm tall) with silicone glue to the bottom 
of a 6 well plate, and also to the non-tissue culture treated side of a Thermanox® 
coverslip. The Thermanox® coverslips were cut to be 3 x 13 mm rectangles. The glue 
was allowed to dry at least 12 hours. 

Sterilization: 
Day 1:  

1. Custom 6 well plate with coverslip stages were sterilized in 70% Ethanol for 2 hours. 
Plates were rinsed 3 times for 5 minutes with diH2O after Ethanol sterilization and 
allowed to dry in the laminar flow hood overnight 

2. PDMS rings with fibrin microthreads were placed in 6 well plates. Rings were placed 
onto Thermanox® coverslip stages and adhered with 2 dots of sterile vacuum grease. 
Vacuum grease was dotted on the bottom of the 6 well plate and the ring was placed on 
top of that 

3. Threads were hydrated in diH2O for 1 hour prior to being 70% ethanol-sterilized for 2 
hours. After Ethanol was removed, they were rinsed 3 times with diH2O for 5 min each 
rinse 

****** Alternative: Plates and threads could also be EtO sterilized which would be a lot less man 
hours/easier/threads less likely to break! But need to have samples prepped more in advance b/c 
rely on Gaudette lab to run the EtO 
Experiment: 
Day 2:  

1. PDMS rings with threads were carefully removed from 6 well plates and carefully placed 
on top of the Thermanox® coverslip stages. 

2. Threads (on rings) were hydrated in diH2O for at least 1 hour prior to cell seeding 
3. Calcium Chloride (31.25 mM) and thrombin (2.35 U/mL) were mixed on the benchtop  
4. Fibrinogen (5.22 mg/mL) and thrombin +CaCl2 aliquots were sterile filtered through 0.22 

um filter in the hood into separate sterile microcentrifuge tubes 
5. Cells: remove media, add trypsin+incubate, add media to trypsinized/detached cells. Add 

0.5 mL of this to a new flask + 9.5 mL media. Add remaining cells (~9.5 mL) into 
conical tube. Spin down for 5 min. Resuspend in 1 mL media.  

a. Add 5 uL of DiI cell labeling (Molecular probes DiI V-228888 Abs: 553, Em: 
570) to the 1 mL of cells in media.  (Follow manufacturer’s instructions) 

b. Gently mix by pipetting and place cells into incubator for 20 minutes 
c. Remove, centrifuge 5 min, and resuspend in 1 mL media. 
d. Centrifuge 5 min, resuspend in 1 mL media 
e. Remove centrifuge 5 min, and resuspend in 1 ml media 
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6. In sterile microcentrifuge tube, mix: fibrinogen (5.22 mg/mL) + CaCl2/Thrombin (3.25 
U/mL Th, 31.25 mM) + DiI-stained cell suspension (1,500,000 cells/mL)  (8:2:2 ratio) 

a. If wanted 1 mL of gel: 667 uL fibrinogen, 167 uL of CaCl2 + thrombin mixture, 
167 uL of cell suspension 

b. NOTE: When seeding >12 wells, make the gels in two separate batches so you 
don’t have an issue with it polymerizing before it is cast onto the stages 

c. The final gel has a fibrinogen concentration of 3.5 mg/mL and a final cell 
concentration of 250,000 cells/mL –> 20,000 cells within the 80 uL gel 

7. Add 80 uL of a C2C12-populated fibrin gel to each platform.  
8. After gels were cast, the samples were placed in the incubator for 1 hour to facilitate gel 

formation 
9. After 1 hour, wells were flooded with 6 mL of proliferation media to completely cover 

the top of the gel 
Day 3: 

1. Image 24-hour timepoint on the Zeiss 
a. EXPOSURE: Phase: _____ ms, Rho: _____ ms 
b. Labeling:   w1_th1   
c. Labeling scheme 

 
Day 4: 

2. Imaged 48 hr timepoint on Zeiss 
a. EXPOSURE: Phase: ____ ms, Rho: _____ ms 

3. Re-loaded cells AFTER image 48 hr timepoint imaging with media/DiI 
a. Add 1 mL media + 5 uL DiI to each 6 well 
b. Incubate plate for 20 minutes 
c. Remove 3 mL media from wells 
d. Replace with 2mL fresh media 
e. Agitate wells 
f. Remove additional 2 mL media 
g. Replace with 2 mL fresh media 

Day 5: 
10. Image 72 hr timepoint on Zeiss 

a. EXPOSURE: Phase: ____ms, Rho: ____ ms 
Day 6: 

1. Imaged 96 hr timepoint on Zeiss 
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a. EXPOSURE: Phase: _____ ms, Rho: ____ ms  
● After imaging 96 hr timepoint, fixed all the plates with 4% paraformaldehyde for 20 min 
● Can also do Ki67 staining of threads after fixation if want to see % cells proliferating on 

threads 
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Appendix L: ML Model Outgrowth Assay Protocol 

1. Purpose: This document outlines the steps for assembling and performing one 6-well plate of the 
ML Model. 

 
2. Materials and Equipment: 

Assembly 

Polydimethylsiloxane (PDMS) base and curing agent Plastic cutting guide 

20 mL syringe  Thermanox® coverslip plastic  

1X 6-well acetal plastic mold Silicone glue 

Straight-edge leveling tool Fibrin microthreads 

Vacuum chamber Razor blade 

Low temperature oven Fine tipped-forceps 

Flat double-ended microspatula 6-well plate  

3-blade cutting tool  Sterilization pouch  

 
 Outgrowth Assay  

Fibrinogen (5.22 mg/mL) 10 mL conical tubes 

Thrombin (2.35 U/mL) Sterile vacuum grease 

Calcium Chloride (31.25 mM) Sterile forceps  

Sterile diH2O  0.22 µm sterile filter (x2) 

DiI  cell labeling (V-228888 Abs: 553, Em: 570) 1 mL sterile syringe (x2) 

Sterile microcentrifuge tubes  Trypsin  

Media Components: F12, DMEM, FBS, Pennstrep, Amp. B, Aprotinin  

 
 

3. ML Model Assembly 
3.1. PDMS Frame Fabrication 

3.1.1. Mix 30 g of base with 3 g of curing agent and mix thoroughly (10:1 ratio). 

3.1.2. Fill the syringe with PDMS. 

3.1.3. Using the syringe, completely fill each well of the plastic mold. 
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3.1.4. Once all six wells have been filled, level off excess PDMS using a popsicle stick 
or other straight-edged tool. 

3.1.5. Place the mold in the vacuum chamber until all air bubbles are removed 
(approximately one hour).  

3.1.6. Move the mold into the low temperature oven and cure at 60℃ for at least one 
hour.  

 
3.2. PDMS Frame Removal 

3.2.1. Remove mold from oven and let cool. 

3.2.2. Holding the microspatula perpendicular to the mold, gently run it around the 
edges of the frame (Figure 1A). You should be able to observe the PDMS turning 
opaque as it lifts from the plastic.  

3.2.3. Use the microspatula to lift the four corners so that they are raised out of the 
mold (Figure 1B). 

3.2.4. Gently peel the frame from the mold, lifting perpendicular to the direction of 
the sides with the Thermanox® slot (Figure 1C). 

3.2.5. Trim any excess PDMS using a razor blade or X-acto knife. 

3.2.6. Repeat steps 3.2.2 through 3.2.4 on the remaining frames.  

 

 
Figure 1. PDMS frame removal steps. 

 
3.3. Thread Fixation Slits 

3.3.1. Place three frames in the cutting guide as shown in Figure 2. Ensure that frames 
are level and fully in contact with the bench surface. 

3.3.2. Place the cutting tool across the middle of the frames (Figure 3).  

3.3.3. Press the cutting tool down into the frames until it touches the cutting guide. 
Make sure your weight is evenly distributed across the blades and you press 
perpendicular to the cutting guide. 
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3.3.4. Remove the frames from the cutting guide and repeat steps 3.3.1 through 3.3.3 on 
the remaining three frames. 

 

 
Figure 2. Frames placed in cutting guide 

 

 
Figure 3. Cutting tool placed on cutting guide. 

 
3.4. Thermanox® Placement  

3.4.1. Cut a piece of Thermanox® approximately 3 mm x 24.5 mm. Ensure that the 
tissue culture treated side remains face up during handling.  

3.4.2. Apply a small amount of silicone glue to each Thermanox® slot in the frame 
(Figure 4A). 

3.4.3. Use forceps to place the Thermanox® into the frame (Figure 4B). Once placed, 
press gently at both ends to ensure the Thermanox® is properly seated in the slot.   

3.4.4. Repeat steps 3.4.1 through 3.4.3 on the remaining frames. 

3.4.5. Cover the frames and allow the glue to cure for at least 12 hours. 
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Figure 4. Silicone glue and Thermanox® placement 

 
3.5. Thread Placement 

3.5.1. Use a razor blade to cut a section of microthread approximately 1 ½ to 2 cm 
longer than the width of the PDMS frame (26-26.5 cm). 

3.5.2. Use the thumb and pointer finger of your non-dominant hand to bend a PDMS 
frame around the curvature of your middle finger so the fixation slits are fully 
opened, as demonstrated in Figure 5.  

 

 
Figure 5. Technique for holding PDMS frame during thread placement. 

 
3.5.3. With your dominant hand, use the fine tipped forceps to pick up the cut 

microthread length, and place it into horizontally adjacent thread fixation slits. 
(Figure 6). NOTE: Hold the thread close to the end to avoid damaging the center. 
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Figure 6. Thread placed in bent PDMS frame.  

 
3.5.4. Repeat steps 3.5.1-3.5.3 until all three sets of thread fixation slits are filled.  

3.5.5. Once threads are placed, release the PDMS frame. Adjust the tension of the 
microthreads until they appear taught. After tensioning the threads, use the razor 
blade to trim excess length from the ends. (Figure 7.) 

 

 
Figure 7. Microthreads before (left) and after (right) final adjustment.  

 
 

3.6. Plate Assembly and Sterilization  
3.6.1. Place the frames in a standard 6-well plate as shown in Figure 8.  

3.6.2. Seal the 6-well plate in a single use sterilization pouch. 

3.6.3. Sterilize the plate using Ethylene Oxide sterilization procedure.  

3.6.4. Allow the plate to de-gas for at least 24 hours before using for outgrowth assay.  
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Figure 8. Frame orientation in 6-well plate. 

 
 

4. Outgrowth Assay 
4.1. Pre-experiment  

4.1.1. Create 1mL aliquots of fibrinogen (5.22 mg/mL) 
4.1.2. Create 0.5 mL aliquots of thrombin (2.35 U/mL) mixed with calcium chloride 

(31.25 mM) in a 1:1 ratio 
4.1.3. Mix media components: 

 

219 mL F12 

219 mL DMEM 

50 mL FBS 

5 mL  Pennstrep 

5 mL  Amp. B 

2 mL  Aprotinin 

 
4.2. Experiment Setup  

4.2.1. Bring the sterile plate into the hood and remove from sterilization bag. 

4.2.2. Use the forceps to pick up each PDMS frame and place a small dot of sterile 

vacuum grease on the bottom surface under both sides of the Thermanox® 
groove. Replace frames in the orientation shown in Figure 8. 

4.2.3. Hydrate the fibrin microthreads by pipetting 80 ul of diH2O onto each of the 
Thermanox® stages and allowing the plate to sit for at least an hour. 

4.2.4. During the thread hydration hour, prepare cells for seeding: 
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4.2.4.1. Remove plate from the incubator and check for confluence under the 
microscope. 

4.2.4.2. Bring plate into the hood and remove media. 

4.2.4.3. Add 5ml trypsin and incubate for 3 minutes. After the incubation period, 
check under microscope to ensure that all cells have detached from plate. 

4.2.4.4. Add 5 ml media to trypsinized/detached cells and pipet up and down to 
fully mix and remove any remaining attached cells.  

4.2.4.5. If the cells are being passaged, add 0.5 mL of the cell/media mixture and 
9.5 mL media into a new flask.  

4.2.4.6. Centrifuge the remaining cell/media mixture down for 5 min at 1000 
RPM. Resuspend cell pellet  in 1 mL media.  

4.2.4.7. Add 5 uL of DiI cell labeling to the 1 mL of cells in media.  (Follow 
manufacturer’s instructions) 

4.2.4.8. Gently mix by pipetting and place cells into incubator for 20 minutes 

4.2.4.9. Centrifuge cells for 5 min at 1000 RPM and resuspend in 1 mL media. 

4.2.4.10. Repeat step 4.2.4.9 two more times. 

4.2.4.11. Resuspend the cells at a concentration of 1,500,000 cells/mL 

4.2.5. Carefully aspirate the diH2O off of the Thermanox® stages 

4.2.6. Filter the fibrinogen and thrombin/CaCl2 aliquots into separate sterile 
microcentrifuge tubes: 

4.2.6.1. Rest a sterile filter in the top of the microcentrifuge tube.  

4.2.6.2. Use a 1mL syringe to draw up the aliquot. 

4.2.6.3. Fully inject the aliquot into the top opening of the filter. 

4.2.6.4. Remove the empty syringe, fill it with air, and firmly inject the air into 
the top opening of the filter to ensure that all of the aliquot gets filtered 
through. 

4.2.6.5. Remove the syringe and filter and dispose. 

4.2.6.6. Repeat steps 4.2.6.1 through 4.2.6.5 to filter the second aliquot into a 
separate microcentrifuge tube.    

4.2.7. Make the cell seeded gel in a  sterile microcentrifuge tube: 
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For one 6-well plate: 80 uL gel per well x 6 wells = ~ 500 uL total 
Gel is made in an 8:2:2 ratio: 
8 parts fibrinogen : 2 parts cell suspension : 2 parts thrombin/CaCl2 
333 uL : 83 ul : 83 ul 
 

4.2.7.1. Add 333 ul fibrinogen 

4.2.7.2. Add 83 ul cell suspension 

4.2.7.3. Add 83 ul thrombin/CaCl2 

4.2.7.4. Mix directly after combining 

4.2.8. Add 80 mL of gel to each Thermanox® stage  

4.2.9. Place the plate in the incubator for 1 hour to facilitate gel formation.  

4.2.10. After 1 hour, flood each well with 6 mL of media to completely cover the top of 
the gel. 

4.2.11. Place the plate in the incubator.  

 

5. Imaging 

5.1. 24 Hours 

5.1.1. Image plate on the Zeiss. Take images using the phase contrast 1 channel, 
overlaid with rhodamine fluorescence. Keep track of the well and thread imaged 
using the labeling scheme shown in Figure 9. 

5.1.2. Record the image exposure [phase (ms) and Rho (ms)] and save the image file 
using the following naming convention:  

exp#_plate#_w#_t#_thread type.czi 

(experiment #, plate #, well #, thread #, thread type) 
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Figure 9. 6-well plate imaging scheme 

   

5.2. 48 Hours 

5.2.1. Image plate on the Zeiss using the same protocol specified in the 24 Hour 
instructions 

5.2.2. After imaging, re-dye cells: 

5.2.2.1. Add 1 mL media and 5 uL DiI to each well 

5.2.2.2. Incubate plate for 20 minutes 

5.2.2.3. Remove 3 mL media from each well 

5.2.2.4. Replace with 2mL fresh media in each well 

5.2.2.5. Agitate wells 

5.2.2.6. Remove additional 2 mL media from each well 

5.2.2.7. Replace with 2 mL fresh media in each well 

 

5.3. 72 Hours 

5.3.1. Image plate on the Zeiss using the same protocol specified in the 24-Hour 
instructions.  

5.4. 96 Hours 

5.4.1. Image plate on the Zeiss using the same protocol specified in the 24-Hour 
instructions. 
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Appendix M: PDMS Mold 

Drawing for Machining  
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Appendix N: PDMS Mold 

Drawing for Machining  
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Appendix O: Cutting 

Guide Drawing  
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Appendix P: Imaging Exposure Settings 

Experiment 1: 

Imaging Time Point Phase 1 Exposure DiI Exposure 

24hr 319 ms 2000 ms 

48hr 358 ms 1088 ms 

 

Experiment 2: 

Imaging Time Point Phase 1 Exposure DiI Exposure 

24hr 31 ms 727 ms 

72hr 314 ms 514 ms 

96hr 430 ms 1378 ms 

 

Experiment 3: 

Imaging Time Point Phase 1 Exposure DiI Exposure 

24hr 350 ms 3000 ms 

48hr 260 ms 3000 ms 
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Appendix Q: Outgrowth Images: 24-96hr 

24hr  

48hr  

72hr  

96hr  
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Appendix R: Gantt Chart 

A Term 
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B Term 
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C Term 

 

 



 

180 

D Term
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Appendix S: Expense Report/Budget Analysis 

Starting Budget $1,000 

- Lab Fee   - $400 

- McMaster - $12.29 

Remaining Budget $587.71 
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Appendix T: Bill of Materials 

Name Quantity Details Cost 
Delrin™ 1 ½”x 4”x 12” bar  

McMaster-Carr #8662K46 
$24.27 per foot 

End-mill (for 
machining mold) 

1 3 Flute, 3 Degree Taper, 3/32" Mill 
Diameter, 1" Long Cut 
McMaster-Carr #8936A48 

$20.57  

PDMS 30g base and 
3g curing agent 
used per mold 

Sylgard® 184 Silicone Elastomer Kit 
(3.9 kg) 
Material # 2065622 

$503.79 for  
3.9 kg kit 

PLA 5.90g Cutting guide printed on Ultimaker 
3D printer 

$0.03/g 

Cutting tool 
blades 

3 Blue Hawk™ 3.5 in Scraper Blades 
Product # 0089625 

$2.28 for 
package of 5 

Cutting tool 
screws 

2 Hillman 6/32 x 1 in machine screws  
Product # 491282 
 

$1.28 (5 screws 
and 5 nuts) 

 


