
Atwater Kent Laboratories Sustainable and Modular Display 

System 

 

Team Members 

Zach Bergquist, zjbergquist@wpi.edu 

Olivia Hanson, omhanson@wpi.edu 

Jonathan Lee, jlee4@wpi.edu 

Quincy Rhodes, qcrhodes@wpi.edu 

Brandon Terry, bcterry@wpi.edu 

Tim Vermilyea, tmvermilyea@wpi.edu 

 

Advisor 

Alexander Wyglinski, alexw@wpi.edu 

 

Co-Advisor 

Shamsnaz V. Bhada, ssvirani@wpi.edu 

 
Worcester Polytechnic Institute 

Worcester, MA 

This project proposal is submitted in partial fulfillment of the degree requirements of Worcester Polytechnic Institute. 

The views and opinions expressed herein are those of the authors and do not necessarily reflect the positions or 

opinions of Worcester Polytechnic Institute.  



 

 II 

Abstract 

The overarching goal of this project was to inspire interest and awareness in Electrical 

and Computer Engineering (ECE). To fulfill this goal, the project integrates several pre-built and 

hand-made electrical systems together to create a sustainable, independent, non-intrusive system 

that interacts with people in an energy efficient and attractive manner. Each part of the system 

represents something that can be implemented for practical or hobbyist work, showing the wide 

range of systems that apply to electrical and computer engineering.  
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Executive Summary 

ECE is a fascinating field of study and offers a wide range of topics at Worcester 

Polytechnic Institute (WPI). ECE involves the study of old and new technologies, as there are 

frequent groundbreaking advances in this subject. However, Atwater Kent Laboratories, WPI’s 

center of ECE, provides little in the way of conveying the many exciting facets of ECE.  

 This project aims to give Atwater Kent Laboratory visitors an eye-catching display of 

modern technologies. It sheds light on many intriguing topics available within the ECE major 

field at WPI. Multiple concepts together to create a complete product and accomplish this goal. 

The three main aspects of the project are solar power, wireless power transfer (WPT), and a light 

emitting diode (LED) display. These components exhibit use of modern technology and cover a 

wide range of ECE topics such as power electronics, radio frequency (RF) circuitry, and 

embedded processing.  

  This project consists of a photovoltaic (PV) panel that generates power to be transferred 

via WPT which powers a custom modular LED display. The system requires no external power 

sources and is completely self-contained. Since the solar panel can produce enough power 

necessary for the system, the system does not need any additional power sources. If there is a 

lack of sunlight to charge the panel, the main battery at full charge can power the display 

continuously for about 3 days. Considering how the motion sensor is designed to lessen the 

display's usage, the system can operate for a substantial amount of time. Thus, this system is 

entirely independent from Atwater Kent Laboratories. To produce and store power for our 

system, we first use the solar panel to charge two 12 volt, 7 amp-hour batteries in parallel. The 

batteries charge on a hysteresis curve provided by the first charge controller, up to about 14 volts 

and no lower than 11 volts. Excess power from the solar panel and the two 12 volt batteries leave 

the charge controller at 12 volts, which is converted by a boost converter to 24 volts and 

delivered to the WPT transmitting coil and received by the receiving coil. The transmitter of the 

WPT unit must be notified on start-up to begin power transfer via a mechanical switch. To 

ensure no physical action is required, a supplementary control circuit (SCC) was designed to 

simulate a mechanical switch actuation 5 seconds after start-up power is supplied. The WPT unit 

passes the power through an exterior window to the remainder of the system. The 24 volt output 

of the WPT unit goes to the second charge controller, which charges a 12 volt and 75 amp-hour 
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(AH) battery to serve as a power buffer from the power source to the load. The output of the 

charge controller from the battery is stepped down via a buck converter to provide the display 

with 5 volts, used to power the custom display and embedded processor that drives the display. 

The charge controllers, batteries, and wireless power system during a live demo is shown below 

in Figure 1. 

 

 
 

Figure 1: Photo of the system power path from solar charge controller to wireless power receiver 

charge controller. The wireless power transfer units are shown in the center. The 24V 9AH battery is 

on the left, and the 12V 75AH battery is on the right. 

 

The display consists of 9 handmade display modules, each with a 10 by 10 grid of 

addressable RGB LEDs. Using addressable LEDs allows for the selection of individual pixels 

and pixel colors to provide the widest range of possibilities for images and text. These displays 

were designed to be built out of 3D printed housings, several custom PCBs, and factory made 

LED strips and would be assembled by hand using solder and adhesives. The display logic is 

driven by a Raspberry Pi microprocessor to create a range of eye-catching animations on the 

display and sense the proximity of bystanders. The display shows a variety of pieces of 

information spread over the nine modules. The Raspberry Pi grabs time and date data from the 
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internet and displays this. It also grabs weather information through a weather application 

programming interface (API) on the internet and displays it. Once a bystander enters a certain 

range and waits for a period of time, the display will turn on and start displaying the pre-

programmed information. Figure 2 below shows the display showing information during the live 

demo. 

 

 
Figure 2: The display is shown outside during the live demo. It is displaying the date, time, 

temperature, weather, and wind speed. The Raspberry Pi and distance sensor are located at the top of 

the display. 

 

 The final product was successfully built based upon our initial designs for the project. 

The final system itself integrated a solar panel, charging circuitry with WPT, and a handmade 
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modular LED matrix. The final system was hung within a six foot tall acrylic display and the 

trickle charging circuitry and batteries were to be encased within acrylic boxes as well for 

protection from the elements. Some small changes needed to be made in the trickle charging 

circuit due to unexpected integration errors between the charge controller and buck converters 

and between the WPT’s transmitter and supplementary circuit.  

The only major change in the system’s design was how WPT was implemented. The 

WPT transmits enough power from transmitter to receiver to power the display. However, the 

proposed idea to transmit power through the exterior windows failed as the exterior windows are 

too thick to transmit the required power to the rest of the system. In lieu of this fact, the WPT 

unit will now be displayed with a representative window pane in between the coils, instead of 

being mounted on one of Atwater Kent Laboratory’s exterior windows.
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Chapter 1: Introduction 

1.1 Motivation  

The primary motivation of this project was to create an attention grabbing system that 

displays many facets of ECE to inspire interest in ECE. The project accomplishes this by piecing 

many different concepts together to create a finished product that is self-contained and 

intriguing. These different concepts stem from multiple different paths of learning in ECE at 

WPI, and give visitors to Atwater Kent Laboratories insight on what ECE majors are capable of 

creating. The system involves technology in the fields of power systems, RF circuitry, and 

embedded processing. The system must also be self-contained, requiring no external power, as a 

way of promoting sustainability in ECE. Instead, it utilizes solar power as a green carbon neutral 

energy source.  

1.2 Current State of the Art in Interactive Displays 

 The overall system will be powered using a solar panel that trickle-charges a high 

capacity battery with WPT. The battery will then be connected to the display, which is located in 

the Atwater Kent Laboratories stairwell. The display needs to be able to attract the attention of 

bypassers, students, and potential students to show them how ECE knowledge can be applied. To 

complete this objective, a display that can create legible characters was needed, show interesting 

animations, and can be both power and cost efficient. 

The display portion of the system is defined by a set of requirements and properties 

necessary to ensure the display may function properly with the system. Qualities of the desired 

display include: power efficiency, sufficient resolution, and programmatic accessibility. The 

display and its computing hardware must run solely on the battery storage for power efficiency. 

The resolution is deterministic of the content presented on the display. In addition, the computing 

and programming to display the information must be straightforward to code and well supported 

for future iterations of the project. After research and discussion, it was decided that designing 

and building a proprietary display would be the path forward for this system. There were four 

display types considered during the research process. 
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In today’s day and age, there are a large variety of different display types and more 

varieties of those specific display types as well. The displays that were considered for this project 

were handmade and factory built LED matrices, liquid crystal display (LCD) screens, organic 

light emitting diode (OLED) screens, and electronic ink (E-ink) screens. The handmade LED 

matrices are self-designed by daisy chaining either LEDs or LED strips together. Factory built 

LED matrices are the same as handmade matrices, but a producer supplies fully built matrices 

with a casing or housing to hold the matrix together. LCD screens are one of the most common 

screen types today, which use crystals to diffuse inorganic light into specific colors. OLED 

screens are similar to LCD screens, but they use organic materials to produce a wider spectrum 

of light to the display. E-ink screens use magnetic fields to control black magnetic “ink” within 

the display to either come to the front of the screen or the back of it within a white liquid. This 

construction will create a white or black color effect. More details about how these displays work 

is provided in Chapter 3. 

1.3 Proposed Interactive Display 

 The initial design for the display was a custom built grid of 3000 addressable RGB LEDs.  

These LEDs can be programmed individually such that the grid would form a pixel screen, able 

to display information and animations.  The proposed size of the display was six feet by five feet, 

allowing a large enough size to be eye catching while maintaining a reasonable LED density, 

which is important when trying to convey coherent information. 

 The display was also meant to be interactive, with external sensors to sense user input.  

Examples include an ultrasonic sensor to detect the presence of a human, allowing the display to 

only activate when someone is nearby to save power. A gesture detector could be used for people 

to give input to the display without having to touch anything.  Users could wave their hands in a 

certain direction to change information displayed or even play games.   

 Figure 3 and Figure 4 show the proposed location for the display was at the bottom of the 

front Atwater Kent Laboratories stairwell, an area that receives heavy foot traffic daily.  This is 

also previously the location of old electrical equipment displayed in transparent boxes which 

have since been removed. This project would serve as a modern replacement to fill this area.   
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Figure 3: The displays were proposed to be placed under this staircase since anyone passing by could 

view the display from both inside and outside. Additionally since the old equipment was being moved 

we thought it would be nice to replace the older technology with newer modern components. 

 

Figure 4: The proposed LED display was six feet tall and 5 feet wide. In the proposed design, the 

display would have 3000 LEDs spread out within that area and display various animations and texts to 

attract the eye of both the curious and scholar. Additionally, the display was going to be interactive by 

having emulators loaded to simulate common games. 

1.4 Core Technologies 

The purpose of this section is to outline the different technologies in this system. These 

technologies assisted with the creation of different designs, understanding how each system 
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worked, and provided more options to add flexibility to the design. Before doing any research for 

this system, it was split into 3 major components. The components were solar, WPT, and display. 

These were the major components stemming from the initial three objectives of the project: 

“To create a self-sustainable system that would demonstrate the abilities of electrical and 

computer engineers and intriguing modern technologies.” 

1.4.1 Solar System 

 Solar energy generation has been increasing in the United States since 2014. As of 2018, 

solar energy made up about 1.5% of the electricity generation in the United States. A major 

benefit of solar energy is the minimal effect that the systems have on the environment. 

Unfortunately, the amount of power generation is variable because the amount of sunlight that 

reaches Earth’s surface is based on several factors such as season, weather, location, and time of 

day [1]. Solar energy has a wide variety of applications, ranging from powering buildings to 

small portable devices and lighting neighborhoods [2]. It can also be used to generate thermal 

energy, provide power for transportation, and even the distillation of water [3]. 

This project uses a solar module to generate power for the display inside WPI’s ECE 

building, Atwater Kent Laboratories. The solar portion of the system consists of three main parts: 

the solar panel, battery, and charge controller. The solar panel generates power to store in a 

battery before being converted from 14V to 24V and sent through the WPT system. The different 

options considered for each part will be discussed in Chapter 3. The originally proposed location 

for the solar panel was next to the bicycle racks outside Atwater Kent Laboratories, as shown in 

Figure 5. 
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Figure 5: The solar panel would be placed between the bike rack and Atwater Kent Laboratories, 

keeping out of the way of pedestrians but also in a viewable location. This placement would allow the 

solar panel to face the sun and attract the attention of visitors. 

1.4.2 WPT 

 Wireless Power Transfer was first discovered in 1898, when Nikola Tesla was able to 

demonstrate that the high frequency alternating currents produced by his resonant tesla coil 

transformers were able to transfer power over very short distances without any wires [4]. WPT 

technology has applications ranging from low-power (microwatts to milliwatts) radio frequency 

identification (RFID) and satellite communications applications to high power (watts to 

kilowatts) applications, and have been the focus of most industry research and development [5]. 

WPT has implemented approaches such as radio waves, optical link, ultrasound, capacitive 

coupling, inductive coupling or magnetic resonance, and microwaves [5]. Although each 

technology has their benefits and their drawbacks, inductive coupling has become the most 

popular technology for WPT at high power [5].  

 In this project, wireless power is desired for two critical reasons. The first reason is 

purely practical. The solar panel must be outside to generate electricity, but the display must be 

inside to avoid exposing it to the elements, and there are walls and windows that separate the two 

locations. Thus, there must be a third component of this project that can take the power generated 
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outside the building and route it inside. Wireless power transfer is capable of transferring this 

magnitude of electricity over a medium like glass windows, so it is a good choice for this 

solution. The second critical reason goes back to the motivation of this project. One of the goals 

of this project is to create a system that can showcase modern technologies that spark interest in 

both ECE and non-ECE minds. Many people might not know about the capabilities of wireless 

power transfer, and this part of the system is aimed at demonstrating what wireless power can do 

when coupled with other exciting technologies in the modern world. The location shown in 

Figure 6 was chosen for WPT based on these constraints. 

 

Figure 6: The WPT would go onto the front window so that people inside and outside would be able to 

have a good view of the component and be able to see what it was doing. Additionally, this would 

showcase a newer piece of technology and garner attention from those interested. 

1.5 Technical Challenges 

With many separate parts needed to implement this system, the project faced many 

technical challenges. One of the greatest challenges was making the system independent of grid 

power. This meant finding a solar panel within the project’s budget that could keep the system 

running daily. This challenge was overcome by allowing the system to consume less power. 

Various power saving strategies such as low power configurations and brightness modulation for 

the display kept the project within budget. 

WPT was also a challenge. Creating circuitry that could transmit large amounts of power 

through a window separation of at least 1 centimeter would involve much research, calculation, 



 

 7 

and experimentation. Fortunately, a pre-built system was obtained to accomplish this task. The 

pre-built system removed the complication of manually constructing the system, which 

accomplished high efficiency and kept the project on schedule.  

    One of the problems that arose when designing and creating the display was making sure 

there were enough LEDs for the display to be an adequate size while maintaining a high enough 

density to make it readable. More LEDs would draw more power and require a higher budget. 

Furthermore, a larger display would take more time to construct. A modular design would be 

simpler to construct and allow flexibility with the display’s size. 

 Overall, many of the elements of the system are not specifically designed to work with 

each other. The solar system is not meant to be directly compatible with the wireless power 

system, and the display cannot just plug right into the solar panel or wireless power receiver. 

There are many supporting elements of this system that are crucial to its success. One of the 

most difficult parts in designing this system was integrating each subsystem of the project to 

ensure that they could work as one fluid system, rather than a few smaller systems with 

disconnects. There were many moments when roadblocks emerged that blocked the function of 

one or more parts of the system. It all came down to determining all of the additional 

components each system needed to function correctly as a whole, which took plenty of time and 

money. Given a longer timeline with a project like this, it is always important to assess the 

system as a whole to determine the needs of each subsystem and research every possible solution 

for integrating systems before making any major decisions. 

1.6 Contributions 

Jonathan Lee   

In A term, member Jonathan Lee contributed to research on the potential displays, 

prototyping code for LED animations, testing LED power draw, finding and following up with 

sponsors and donations, and project management. In B term, member Jonathan Lee worked on 

defining final goals and objectives of the project, feasibility of having a connected WPI database, 

reaching out to sponsors, and project management. In C term, member Jonathan Lee worked on 

designing mounts and housings for project components, creating 3D models and figures of 

potential displays and components, coordinating with associates to print out modules and build 
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displays, debugging and testing code and display modules, project management, and contributing 

to the final report. 

 

Zachary Bergquist   

In B term, member Zachary Bergquist worked on creating the prototype LED module for 

the displays, creating a bootable SD card with Raspbian OS, designed the PCBs, and developed 

and simulated code for LEDs. In C term, member Zachary Bergquist worked on creating a 

modified library to drive the LEDs, generating code to displaying texts according to a rendering 

library, generating code for interfacing with an application program interface for weather 

information, generating code for reading object distance, setting up a secure shell server and 

virtual network computing server for the Raspberry Pi, maintaining a Github Repository 

containing code information, setup Raspberry Pi to run code upon startup, testing and debugging 

displays, and contributing to the final report. 

 

Timothy Vermilyea  

In A term, member Timothy Vermilyea worked on initial research for wireless power 

transfer. He designed, prototyped, and tested the first iteration of the wireless power component 

of the project, and contacted Würth Elektronik when an alternate solution was needed. He also 

corresponded with the WPI facilities department to determine initial installation roadblocks. In B 

Term, Timothy Vermilyea utilized SOLIDWORKS to create the 3D models for the display 

modules and printed the first prototype module. He also worked on design, layout, and ordering 

of the custom PCBs and machine screws for the display modules. In C term, Timothy Vermilyea 

tested and integrated the wireless power transfer element into the full system. He designed, 

prototyped, and tested the supplementary control circuit for wireless power transfer. He worked 

on converting spreadsheet animations to Python dictionary entries, and drafted some C++ and 

Python code for communicating with I2C devices. Additionally, he assisted with the building and 

testing of the solar mount and acrylic display cases, the debugging of the module solder joints, 

and the wiring of the full system power path. Lastly, he completed integration testing of the 

charge controllers to and from solar panel and inside battery. 
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Olivia Hanson  

In A term, member Olivia Hanson documented meeting discussions and contributed to 

research on solar systems, including potential solar panels, charge controllers, batteries, and 

inverters. She also assisted in finding sponsors and donations, including attending an energy 

symposium and recruiting Justin Woodard from National Grid to assist with this project. In B 

term, Olivia Hanson assisted with overall project management including continuing to document 

all meeting discussions, contact with sponsors, and researching models within the budget for the 

different parts of the solar system. In C term, Olivia Hanson assisted with the testing of the solar 

module, documenting meeting discussions, and lead report organization and edits. 

 

Brandon Terry  

In A term, member Brandon Terry researched varying display technologies, specifically 

LED strip libraries and power consumption. The power analysis led to further discussions over 

display size and overall design of the proprietary display. In B Term, he contributed to the 

development and design of the modular display. Particularly, he proposed the layout of the LEDs 

and how to interface with the PCBs. In C term, Brandon Terry researched and integrated the 

charge controllers for the system. In addition, he debugged intermittent solder joints, shorts, and 

dead LEDs present on the fabricated LED modules. Throughout the entire project, Brandon 

Terry gave help wherever needed, such as WPT load testing, solar panel mount construction, 

Raspberry Pi programmatic solutions, and system integration. 

 

Quincy Rhodes  

In A term, member Quincy Rhodes contributed to research on displays and display 

design, research on DC to DC converters, and LED testing.  In B term Quincy Rhodes further 

contributed research on the display design, creating a model for the display housing, constructing 

the display for the small scale model, testing DC to DC converters, and creating the 

alphanumeric library to be used in programming the display.  In C term Quincy Rhodes worked 

on constructing the display modules, debugging the display modules, testing the solar panel and 

power electronics circuitry, constructing the mount for the solar panel, and contributing to the 

final report.   
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1.7 Report Organization    

The structure of the report is detailed in this section. Chapter 1 provides background 

information of the different technologies considered using for the three major components of the 

project. Chapter 2 covers any information that following users would need to know in order to 

use, alter, and improve upon the system and it’s design. Chapter 3 outlines the decision process 

for choosing parts along with the initial tests of those components. Chapter 4 discusses how the 

display system works, explains how each part was made and designed, and summarizes the costs 

and power estimates of the system. Chapter 5 covers software development, including the 

decision to use this operating system to show each of the functions the operating system needs to 

run. Chapter 6 explains the additional elements necessary for ensuring all of the electronics 

function as one interrupted and cohesive system. Chapter 7 discusses issues encountered within 

all of the subsystems and how they were resolved. Chapter 8 provides information on the 

outcome requirements of all of the systems that need to accomplish in order to produce a fully 

functional system. Lastly, appendices are attached at the end of the report to provide 

supplementary information that is too large to include in the main text 
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Chapter 2: Tutorial Survey of Fundamental Technologies  

The following chapter is an introduction to the fundamental technologies used in this 

project. These fundamental technologies are solar energy, WPT, and modular display 

technology. Section 2.1 outlines the various necessary elements of a typical PV system, 

including the solar panel, charge controller, and battery. Section 2.2 describes the various 

elements of inductive and magnetic resonant WPT systems such as the coils, oscillator, inverter, 

and rectifier. It also explains the operation of such a system from an electrical theory perspective. 

Section 2.3 outlines the theoretical operation of two different types of popular individually 

addressable LEDs that are often used in strip and matrix type systems. Section 2.4 outlines the 

basics of the serial peripheral interface protocol and how it will be used in this project. 

2.1 Solar Systems 

The type of solar energy used in this project was PV technology. PV technology takes 

direct sunlight and converts it into electrical energy through the use of semiconducting materials, 

such as silicon. The energy conversion is done through the use of photovoltaic devices such as 

PV cells. A single cell is small and only produces one or two watts of power, so the cells are 

connected together in chains to produce larger outputs of power [6]. These are known as panels 

or modules, and can be built to accommodate almost any power need. When one or more of 

these panels are connected to an electrical grid with an inverter and battery, it becomes a 

complete PV system [7]. Distinction between a solar cell, module, and system can be seen in 

Figure 7. 

The insulator and metal properties of the semiconducting material allows the conversion 

light into electricity [8]. There are multiple different types of semiconductor materials used in the 

solar cells. The most common material is silicon, whose atomic crystal lattice’s organized 

structure provides an efficient energy conversion. Silicon solar cells also have a high efficiency 

and are sold at a low rate. The cells last up to 25 years without losing more than 20% of their 

efficiency in that time. Silicon is also easily found and attributes to the high representation in 

solar modules today.  
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Figure 7: This figure shows the difference between the solar cell, module, and system. A module 

consists of many calls while a system consists of many modules. 

 

Another type of solar cell is called thin-film photovoltaics, where two PV semiconductors 

used in thin-film cells are copper indium gallium selenide (CIGS) and cadmium telluride (CdTe) 

[9]. These cells are made by placing one or more layers of the PV material on glass, metal, or 

plastic. Neither are as resistant to outdoor conditions as silicon, and thus require more protection. 

The manufacturing processes for CdTe are low cost due to it being the second most common 

material. However, the efficiency of these cells is not as high as silicon. CIGS cells are more 

complex because combining four elements makes the process more challenging [9]. 

Depending on the intended use of the energy generated by the solar cells, an inverter may 

be necessary, where they are used to convert DC electricity into alternating current (AC) 

electricity. AC electricity is what is used in homes and for transmission of local energy. Inverters 

can be implemented into systems by either attaching microinverters to each individual panel or 

implementing a single inverter into the system to convert the electricity generated by all panels. 

Attaching the inverters to individual panels is useful if the modules are placed in an area where 

the system may be partially shaded because it allows each panel to operate individually. Using a 

single inverter allows the inverter to be easily cooled and serviced when necessary. On average, 

an inverter will be replaced at least once within a PV module’s 25 year lifetime.  
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Figure 8: This figure, taken from the ETechnoG website, displays an example of a solar system. This 

particular system consists of a solar panel, charge controller, battery and an inverter. [10] 

 

The electricity generated by the system is typically stored in batteries. This allows for the 

power to be used when there is no direct sunlight shining on the panels, such as during the night. 

There are several different types of batteries that are commonly used in solar systems, as 

discussed in Chapter 1. An example of a solar system that incorporates all of these different parts 

is shown in Figure 8. In this example, the charge controller plays an important role by being 

connected to the solar panel, battery, inverter, and any loads that may be applied.  

2.2 Wireless Power Transfer 

WPT via inductive coupling and magnetic resonance can be broken down into three 

stages: power, transmission-receiving, and rectifying/load [5]. More advanced systems may 

utilize communication stages to relay information between transmitter and receiver. The power 

stage typically consists of a rectifier-inverter. The rectifier-inverter takes AC power, converts it 

into DC power, and reconverts it back to AC power again. This is necessary because wall outlet 

power typically oscillates at 50-60 Hz, while the frequency required for typical power transfer is 

much higher. The frequency usually ranges between kilohertz and megahertz depending on the 

type of power transfer being used. Typical inductive coupling systems operate between 87 and 

205 kHz, whereas many resonant systems will operate in the megahertz range [11].  



 

 14 

Next, all systems require a transmitter-receiver stage. This stage contains two or more 

coils, at least one transmitter and one receiver. Both transmitter and receiver coils are typically 

made of tightly wound Litz wires, coated in enamel to prevent shorting. Litz wire consists of 

many thin conductors, designed for AC power and to reduce the “Skin Effect” that occurs at 

higher frequencies [5]. The “Skin Effect” is a phenomenon in the electrical world in which AC in 

a wire tends to limit the area of travel of electrons to the surface of the wire. This decreases the 

effective cross-sectional area of the wire and increases resistance [12]. The equation 𝛿 = # 	1
𝜋𝑓𝜇𝜎, 

where 𝑓 is the frequency of AC, 𝜇is the magnetic permeability of the conductor, and 𝜎is the 

conductivity of the material allows us to approximate the skin depth of the conductor, 𝛿. The 

skin depth dictates how much of the conductor is used to move electrons [12]. A higher skin 

depth means that more of the conductor is used and the effective resistance of the conductor is 

lower [12]. A higher frequency results in a lower skin depth and thus a higher resistance. Figure 

9 shows results from tests done at the University of St. Andrews, where wire impedance is 

plotted as a function of skin depth, normalized by conductor radius [12].  

Litz wires decrease the skin effect by using many solid conductors with radii less than the 

skin depth for that material at particular frequencies, so the skin effect losses become less 

apparent.  

The next component of a WPT system is where inductive coupling and magnetic 

resonance coupling have the largest difference. The diagram in Figure 10 shows a very basic 

depiction of an inductive coupling system. The system consists of the previously mentioned 

power, transmission-receiving, and rectifying/load stages. Figure 11 depicts a magnetic 

resonance system in the same way.  
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Figure 9: The impedance of a conductor increases as skin depth 

increases. Skin depth is normalized by conductor radius, R0 [12]. 

 

Notice the additional coils and capacitors that make up what are called “resonant circuits” 

in the transmission-receiving stage of Figure 11. The diagram shows these circuits as separate 

from the transmitter and receiver coils, but the resonant circuits are just an extension of the 

already existing coils. Resonance is an electrical phenomenon in which the impedances of 

elements in a circuit cancel each other out [14]. A resonant circuit in WPT will always have a 

resistive, inductive, and capacitive element, making a simple RLC circuit [14]. The coil acts as 

an inductor, and the wire has a DC resistance. Given the equation 𝑋+ =
,

-.+
for capacitive 

reactance, the reactance moves toward 0 as the frequency increases. Given 𝑋/ = 𝑗𝜔𝐿for 

inductive reactance, the reactance increases to ∞ as the frequency increases. At a certain 

frequency, 3|𝑋𝐶|3 = 3|𝑋𝐿|3, but the voltages across the inductor and capacitor in this RLC circuit 

will be 180 degrees out of phase, making the sum of their reactance zero. As a result, the 

impedance in the RLC circuit at this particular frequency has only a real element, the DC 

resistance of the coil. The frequency, in which the circuit has the lowest impedance, is called its 

“resonant frequency” [14]. Coil manufacturers will often specify the DC resistance of the coil, 

and the inductance is given. Using the above equations, the ideal capacitance to achieve 

resonance can be calculated.  
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Figure 10: Diagram of a typical inductive coupling wireless power 

system. Green arrows denote the direction of the magnetic field [3]. 

 

 
Figure 11: Diagram of a typical magnetic resonance wireless power system. The magnetic field flows 

through and is expanded by the resonant circuits [13]. 

 

The third and final stage of a typical WPT system is a rectifying and load stage. The 

rectifying stage is the process of taking an AC voltage and turning it into a DC voltage. This 

includes inverting the negative portions of the waveform and smoothing out the ripples with a 

capacitor. Additionally, most wireless power systems will include either a linear or switching 

regulator to ensure a constant voltage is delivered to the load. The load in most systems is a 

battery and battery management system for storage of transmitted power. While the stages 

outlined are the most basic elements of a WPT system, there are additional elements that can 

help to enhance the safety and effectiveness of the system. Most consumer devices will have 

circuit protection elements for overvoltage, overcurrent, and EMI. Some implement 

communication protocols between transmitter and receiver to maximize efficiency, but all 

consumer devices require the use of foreign object detection protection as of 2011 [15]. Foreign 

object detection is required because if a conductive object is placed on a transmitter coil, the 
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magnetic field created by the coil induces a current in the object. This causes it to rapidly heat up 

and cause fires, which in turn cause damage and possibly injury.  

2.3 Modular Display Technology 

The team took a qualitative approach when researching and defining what form the 

desired display would take. The purpose of the display is to catch the attention of anyone passing 

by and to convey information to viewers. Some parameters include power efficiency, 

availability, modularity, and compatibility. To meet these requirements, the team designed a 

custom built proprietary system to act as the display. The system involves a matrix layout of 

RGB LED strips that are controlled by a Raspberry Pi. The LED strips are placed in a 3D printed 

backing and signals are routed via printed circuit boards (PCB). 

The LED strips needed to be addressable and communicate using inter-integrated circuit 

(I2C) for the Raspberry Pi. In this context, addressable means that each LED in the strip has an 

address and can be referred to individually so the LED matrix can be any particular color at any 

specific location. Each LED includes a microchip that reads the first 24-bits provided from the 

previous LED and passes the remaining data to the next LED in line. There are multiple types of 

addressable LEDs that exist, two of which were lab tested before implementation. The first LED 

type is called WS2812b [16]. Even though the WS2812b strip was affordable and power 

efficient, the communication protocol for the microchip in each LED was undesirable. The 

WS2812b relied on a single data pin with no clock data and almost no libraries supported on the 

Raspberry Pi.  

The other LED type is called SK9822 [17], which is similar to the more expensive 

APA102C [18]. The APA102C’s communication protocol is supported on the Raspberry Pi and 

its power efficiency is adequate, but it is not cost effective. However, the SK9822 is cost 

effective and communicates in a similar manner as the APA102C. The pin layouts and the daisy 

chain structure of the two are the same, as shown in Figures 13 and 14. The subtle difference 

between the two technologies is the time at which the LED color is updated. The SK9822 is 

updated after the Start Frame, while the APA102C is updated after the corresponding set of LED 

data. This is described in greater detail in Chapter 5 of this report. The existing libraries for the 

APA102C are altered to operate correctly with the SK9822 by altering the bit out to operate with 

the earlier update. Aside from this slight change, the data through the data line and the clock line 
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is the same. The data line for communication is illustrated in Figure 12. After small scale testing 

of the SK9822, the LEDs were chosen for the final project [19]. 

The SK9822 LEDs are controlled by a Raspberry Pi 4. It has a multithreaded, dual core 

processor with 2 GigaBytes of ram, making it ideal for this project. Raspberry Pi products are 

well developed and have continued iterations for simple and easy upgradability in the future. The 

Raspberry Pi 4 has the hardware power and the long term support to ensure success with this 

project. 

 

 
Figure 12: In the example above, 8-LEDs are cascaded, with 32-bits for each LED. The first 8-bits for 

green, then red, blue, and light level respectively. All other bits are passed through to the following 

LED. Note: all three packages, the WS2812b, the APA102C, and the SK9822, operate in this format. 

 

 
Figure 13: The daisy chain structure is repetitive from one LED to the next. This layout is crucial for 

modularity, as it allows repetition from one module to the next. 
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Figure 14: The pin layout is identical to the pin layout of the APA102C, in Figure 13. The similar 

layout is crucial for the SK9822 compatibility with the APA102C libraries. 

2.4 SPI Data Communication Protocol 

 The serial peripheral interface (SPI) data protocol is utilized when interfacing with the 

SK9822. The SPI is an interface bus commonly used to send data between microcontrollers and 

small peripherals, similar to I2C and the LED strips used in this application [20]. Unlike most 

other data buses, SPI is a synchronous data bus. In other words, SPI uses separate lines for data 

and clock signals to ensure both are in sync. The clock signal oscillates from high to low and 

tells the microcontroller when to sample data bits. When the microcontroller detects the rising 

edge of the clock it will read whatever bit of data is present at that time, as shown in Figure 15. 

Figure 15 shows that 8 bits are read to form the ASCII character ‘S’. 

 The SPI protocol is used to write bits of data from the SK9822 datasheet [19]. These bits 

are sent to the slave through the master out slave in (MOSI) pin on the Raspberry Pi (Pin 10). 

Clock is sent from pin 12 of the Raspberry Pi at a rate of 8MHz. Data is written to each LED one 

bit at a time and synced with the clock. Figure 16 shows one byte being written to an LED chip. 

Each clock cycle (CKI) corresponds to a high or low data write (SDI) to the SK9822 (a “1” or 

“0”). Frames of data were built and clocked into the strip using  the SpiDev Python library on the 

Raspberry Pi. 
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Figure 15: Clock is pulsed at a constant rate and data is recorded in sync with the clock for each pulse. 

In response to the clock,  8 bits are recorded to form the ASCII character ‘S’. 

 
Figure 16: Taken directly from the SK9822 datasheet, one can see the Serial Data Input (SDI) update 

as a high or low (1 or 0) bit in sync with the ClocK Input (CKI) [19]. Eight bits are shown as one byte 

of data in the figure. 

2.5 Chapter Summary 

The operation of a complex system such as the described in this project requires the use 

of many fundamental technologies. Extensive research was necessary to understand the operation 

of PV systems, WPT systems, and the available protocols for addressable LEDs. The information 

outlined in this chapter is a synopsis of the required technologies to build a system of this 

complexity. 
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Chapter 3: Proposed Approach  
This chapter outlines the process in which technologies and solutions were chosen for the 

system based on the system requirements. After reviewing the problem statement for this project, 

all of the possible design options were considered for each system. Various options for each part 

of the solar system, as well as WPT systems, and display design choices are described. They are 

evaluated on their feasibility, flexibility, and overall benefit to the system as a whole. Project 

logistics are also reviewed and explained in this chapter. 

3.1 Problem Statement 

 With this project aiming to bring attention to the many intriguing topics within the ECE 

major field at WPI, it combined various concepts that showcase modern technology. A PV panel 

generates power to be transferred via WPT to power a custom modular LED display. The excess 

power generated by the solar panel charges a battery that will supply power when no sunlight is 

present. The power generated is converted from 14V, the peak output of the solar panel, to 24V 

by a boost converter. 24V is delivered to the WPT transmitting coil and received by the receiving 

coil. The power outputted by the WPT device is used to charge another battery to serve as a 

power buffer and additional energy storage. The output of the battery is then stepped down to 5V 

and used to power the custom display and embedded processor that drives the display. The 

display consists of 9 display modules and is driven by a Raspberry Pi microprocessor to create a 

range of eye-catching animations on the display.   

3.2 Design Options Available 

3.2.1 Solar System 

The solar panel technologies used on the market today are monocrystalline, 

polycrystalline, and thin film amorphous [21]. Monocrystalline solar panels are currently the 

most popular technology. They have the highest efficiency because they are cut from a single 

source of silicon. As represented in Figure 17, the silicon is formed into bars before being cut 

into the cells of the panel. These panels convert more than 22.5% of sunlight into electricity. 
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Monocrystalline solar panels are also space-efficient. They yield the highest power outputs and 

require the least amount of space compared to any other type. These solar panels also produce 

more power per square foot of space when used in an array. These solar panels also tend to last 

longer than their predicted 25 year lifespan [21]. Crystalline solar panels are made from 

crystalline silicon, a very stable material. These solar panels often last longer than their 25-year 

warranty [21]. One disadvantage of these panels is that they are more expensive than others with 

their more complex manufacturing process [21]. 

The process used to make polycrystalline silicon is simple so the cost of the solar panels 

is less than monocrystalline. The cells are formed by melting the fragments of silicon together, 

shown in Figure 17. Polycrystalline solar panels tend to have a slightly lower heat tolerance than 

monocrystalline solar panels. The efficiency of polycrystalline-based solar panels is typically 14-

16% [21]. These solar panels have a low space efficiency, covering a larger surface to output the 

same electrical power as a solar panel made of monocrystalline silicon. 

 
Figure 17: This is a comparison of monocrystalline, polycrystalline, and thin film solar cells. Note the 

silicon fragments that can be seen in the polycrystalline panel compared to the monocrystalline being 

cut from a single source of silicon. The thin film panel is also a different color because of the different 

substrates that are added in addition to the silicon. 

 

While monocrystalline and polycrystalline solar panels have been around for decades, 

thin film amorphous solar panels are a relatively new technology [22]. They tend to be more 

expensive than the other two types because they require more mounting equipment, which adds 

to the overall cost of the system. However, thin film panels do not require as much silicon as a 

crystalline based solar panel, and the substrates in them can be made out of inexpensive materials 
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so they have the potential to become less expensive than crystalline based panels. A feature of 

the thin film module is that they are flexible and allow more creativity with different 

applications. With the technology being so new and still developing, these panels have lower 

efficiency rates and tend to degrade faster than crystalline based solar panels [23].  

3.2.2 Batteries 

The batteries considered for this system are lead acid and Lithium-Ion batteries. There are 

two types of lead acid batteries, flooded lead acid and sealed lead acid. Flooded lead acid, shown 

in Figure 18, allow hydrogen fluid and oxygen gas to escape during charging. These batteries last 

between five and seven years and require more maintenance than sealed lead acid batteries. 

Flooded lead acid batteries can receive excessive charging periodically to better “equalize” the 

battery cells so any cells that might not be doing well can be brought to a full state of charge on a 

regular basis [24]. These have a low upfront cost but require lots of maintenance in the form of 

checking the distilled water level and refilling it every month to keep it topped off [25]. They 

also expel built up hydrogen gas and need to be installed in a vented enclosure.  

Sealed lead acid batteries are considered maintenance-free because the absorbent glass 

mat (AGM) or Gel prevents and they do not need water. The AGM and Gel keep the electrolyte 

mixed with the water so it does not settle to the bottom, which eliminates the need for 

equalization charging and helps mix the electrolyte with the water in flooded batteries [24]. If the 

charging or discharging is high enough, the pressure will build up and the valve will allow some 

gas to escape, eliminating the need for a vented enclosure. These batteries have a higher upfront 

cost than flooded lead acid batteries and have a lifespan of three to five years. 

Lithium-Ion batteries have a longer life-span than sealed lead acid batteries of up to 

fifteen years. They are lighter and more compact than the lead acid batteries, making them easier 

to move and store. These batteries are more expensive than the lead acid batteries but they are 

more stable, safer, and maintenance free [27]. Lithium-Ion batteries also have a higher charge 

and discharge efficiency and don't lose much capacity when idle, which is good for a system 

where the energy is not constantly in use. 
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Figure 18: The distilled water of the sealed lead acid battery on the right is in a compartment within 

the battery itself, as opposed to the flooded lead acid battery on the left. The sealed lead acid battery has 

no access to that compartment, meaning distilled water does not need to be added and the battery is 

therefore maintenance free [26]. 

 

Both pulse width modulation (PWM) and maximum power point tracking (MPPT) charge 

controllers were considered for this system. MPPT controllers offer a potential 30% increase in 

charging efficiency compared to PWM controllers. These controllers also offer the potential 

ability of having an array with higher input voltage than the battery bank and are offered in sizes 

up to 80A [28]. MPPT controller warranties are typically longer than PWM units and offer 

flexibility for system growth. MPPT is the only way to regulate grid connected modules for 

battery charging. These controllers are more expensive, sometimes costing twice as much as a 

PWM controller and are larger in physical size.  

PWM controllers have been used for years in solar systems, and are well established and 

inexpensive, usually selling for less than $350. These charge controllers are available in sizes up 

to 60 Amps and are durable with passive heat sink style cooling [28]. The solar input nominal 

voltage of the PWM controllers must match the battery bank nominal voltage. There is no single 

controller sized over 60 amps direct current (DC) as of yet and many smaller PWM controller 

units are not UL listed. Many of the smaller PWM controller units come without fittings for 

conduit and have limited capacity for system growth. They also cannot be used on higher voltage 

grid connect modules [28]. 
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3.2.3 WPT 

The most widespread use for WPT is in wireless charging for mobile and healthcare 

devices, which utilizes inductive coupling or magnetic resonance to transfer usually less than 

15W of power over distances of only a few millimeters [5]. Figure 19 represents a typical 

wireless charging pad for a mobile phone. 

  
Figure 19: The power transmitter on the wireless phone charging pad 

is located in the pad below the phone, while the power receiver is 

located within the phone itself. 

 

These small, low power applications that use induction typically fall under the use of the 

“Qi” standard. The Qi standard (pronounced CHEE) is a standard created by the Wireless Power 

Consortium (WPC) in 2008 to govern the use of low wireless power applications [29]. Wireless 

charging and transfer of power at less than 15W fall under Qi’s Power Class 0. Since WPT is 

still a relatively new technology and under development, power class 0 encompasses the majority 

of all wireless power applications [29]. The Qi standard also has power classes 1 and 2, which 

serve medium (15 - 200W) and high (>200W) power applications, respectively [30]. Power 

classes 1 and 2 are still under development, and the applications for higher power transfer are 

currently limited [30]. A similar, but much newer, standard is called Rezence, which is being 

developed by the Alliance For Wireless Power (A4WP). Rezence utilizes magnetic resonance 
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technology, which is similar to induction, but the transmitting and receiving coils are tuned with 

a capacitor to their natural resonant frequencies [31]. This allows magnetic resonance coupled 

systems to have a greater range and area of effect. Manufacturers using Rezence often adopt a 

“1-to-many '' design, where a transmitter coil tuned to the correct resonant frequency can transfer 

power to multiple receiving coils. A Rezence magnetic resonance charging mat is shown in 

Figure 20.  

 

 
 

Figure 20: The transmitter is the large mat in the back, and the 

receiver is the smaller phone-sized board on top of the mat. There is 

control circuitry pictured above both pieces [32].  

 

Users of Rezence standardized chargers are able to place their devices anywhere on this 

mat to receive power from the transmitter, unlike magnetic induction where the coils have to be 

closely coupled to receive power [31]. Qi and Rezence compatible devices are popular because 

their operation and designs are standardized. The system for this project has a specific set of 

requirements that are not satisfied by one standard alone, so the solution adopts principles from 

both standards to achieve the best solution for this application. This system needs high levels of 

power transferred, from 100W to 200W, so something under Qi power class 1 might have 
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worked. However, a forgiving range and tolerance for misalignment was desired, so magnetic 

resonance technology from Rezence might have also been advantageous. Fortunately, there are 

other manufacturers out there working on similar solutions as this project and will continue to 

refine the technology for application in similar systems. 

3.2.4 Display 

LED Matrices are one of the simplest and most flexible of the display choices. This 

display is an array of LEDs that are connected in series and controlled by a driver 

microcontroller that will set the color, brightness, select which LEDs to turn on, etc [33]. One 

product focused on was the Flexible LED Matrix created by Sparkfun [34]. This LED Matrix 

uses individually addressable LED strips that are daisy chained together so instructions can be 

sent through the entire matrix. It specifically used WS2812B LED, which is an LED strip that 

has individually addressable LEDs [16]. Individually addressable LED strips allow specific 

LEDs to be controlled to create pictures, letters, and characters. If they were not individually 

addressable, the entire strip would only display a single color at a time. 

A LCD is a type of display that utilizes the properties of liquid crystals to create visual 

changes [35]. When the white light is first emitted, it is distributed, diffused, and focused so that 

it is evenly distributed throughout the screen, preventing “hot spots” from appearing . Next, the 

light is polarized to only allow light with vertical wavelengths to pass through. This light is then 

passed through the liquid crystals. The crystals are managed using controllable voltage levels 

within the thin film transistor and common electrode. Depending on the voltage levels, the liquid 

crystals will filter primary colors (red, green and blue) within the light. The light is then 

polarized again so only horizontally polarized light is transmitted [35]. 

An OLED is a type of display that generally uses the same technology and structure as an 

LCD screen. However, instead of liquid crystals and white LEDs, an OLED uses organic 

material that will emit light as electricity is applied to it [36, 37]. That light is then filtered using 

the same techniques in an LCD screen producing a screen with higher quality colors and images 

[37].  

An electronic paper display (EPD) uses E-Ink to create changes within the screen. E-Ink 

refers to the positively or negatively charged pigments suspended within microcapsules that are 

filled with a clear liquid [38]. Using the ink’s property of having a charge, an EPD can move one 
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ink color to the top of the capsule, which pushes the other ink to the bottom of the capsule and 

allows the ink on the top to be seen. Another option is for it to push the ink to the side to create a 

transparent display [38]. The screen will not be transparent as a result of the second option. 

3.3 Final Selection of Design 

3.3.1 Solar System 

Given the variety of solar technologies that are on the market today, it was necessary to 

narrow down the options for this project. The ideal module is a monocrystalline solar panel 

because of their high efficiency and power outputs. However, the team was only able to acquire a 

polycrystalline solar panel. While the monocrystalline solar panel would have been the first 

choice for this project, there are advantages to the polycrystalline modules. Over the years, the 

gap between the efficiencies of monocrystalline and polycrystalline solar panels has decreased 

through improvements that increased their efficiency. They are also less expensive because the 

process of creating polycrystalline silicon is not as complex as monocrystalline. They also have a 

higher temperature coefficient so the output decrease in higher temperatures is lower than 

monocrystalline modules. 

NationalGrid generously donated a 305W Yingli Solar 72 cell polycrystalline solar panel 

to this project. The front cover of this panel is made of low-iron tempered glass and rated for a 

peak efficiency of 15.64%. The frame is made of anodized aluminum alloy, which has a high 

tensile strength and corrosion resistance. The voltages at maximum power and open circuit are 

36.1V and 45.4V respectively, while the currents at maximum power and short circuit are 8.45A 

and 8.93A. This Yingli Solar panel has a nominal operating cell temperature (NOCT) of 46℃. Its 

physical dimensions are 39 inches by 77.6 inches and weighs about 60 pounds, as shown in 

Figure 21. 
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Figure 21: The panel is 39 inches by 79 inches with a frame width of about 1.5 inches. There are also 

grounding and mounting holes around the perimeter of the frame 

3.3.2 Batteries 

The best type of battery for this project is the sealed lead acid AGM battery. These 

batteries are overall the most cost efficient because although they have a higher upfront cost, 

they are maintenance free. They do not need to be installed in any specific enclosures and have 

an adequate charge and discharge rate for the project.  

The battery used in this project is the DCM0075 model battery from Interstate Batteries, 

pictured in Figure 22. Being a sealed lead acid AGM battery, it is maintenance free, spill-proof 

and has no exposure to hazardous chemicals. This battery is optimized for high-power density, 

extended cycle life, and flame arresting for safety and long life [39]. 
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Figure 22: This is a 75-Amp Hour, 12-Volt, AGM battery. Its deep cycle design works with most 

backup systems and has an efficient glass recombination of up to 99% [39]. 

 

A PWM charge controller was chosen as the ideal charge controller for this project. After 

looking at the system as a whole, it was decided that the maximum power transferrable is about 

150W, or only half of the panel's ability. The losses that would be occurring in that regard render 

the energy losses with a PWM charge controller inconsequential.  

The model chosen for this project is a PWM 30A Charge Controller by HQST [40]. It 

was designed for off-grid applications and is compatible with both 12V and 24V battery banks, 

both of which are used in this system. This charge controller also comes with comprehensive 

self-diagnostics and electronic protection functions to prevent damage from system faults. Safe 

grounding and compatibility with any negative ground system is also ensured by its negative-

ground battery controller. This charge controller is shown below in Figure 23. 
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Figure 23: The charge controller features protection against several battery life shortening aspects 

such as battery short-circuit, over-current, overload, and overheating. Any system issues can be easily 

diagnosed with assistance from the system error codes and information that display on the LCD screen 

[40]. 

 

A 300W, 20A DC step down buck converter by Aideepen was chosen for this project 

because it can be used as a voltage regulator for solar panels and also as a driver for high power 

LED lights. The operation of this buck converter is further discussed in Chapter 6. 

3.3.3 WPT 

Based on the three part design of a WPT system outlined previously, the creation of a 

unique WPT design was attempted for this project. The design would feature all elements 

previously described: an oscillator, inverter, two coils with resonance compensation capacitors, 

and a rectifier. The first step in the design process was to choose the oscillator and then design 

the full inverter. The initial design choice was to use inductive coupling technology over 

magnetic resonance because there was a desire for the highest possible efficiency without coil 

alignment compensation using resonance. Inductive coupling WPT systems using the Qi 

standard operate between 87 kHz and 205 kHz, so an oscillator that could create a square wave at 

a frequency in this range was necessary. A simple option would have been to use the popular 555 
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timer or similar. It was also decided that an H-Bridge would be used, which is a common circuit 

in inverter technology in which 4 field effect transistors (FETs) are driven by a driver circuit and 

can sink large currents that an oscillator cannot. Digikey was consulted to find a suitable 

oscillator IC and H-Bridge IC for the application. Fortunately, the IRS24531D, which is an H-

bridge driver IC with a built in oscillator, meant that this solution could accomplish with one 

chip what would normally require two circuits. The typical application circuit for the IRS24531D 

is shown in Figure 24. 

 

 
Figure 24: The IRS24531DS full bridge gate driver with internal 

oscillator is connected to four N-Channel MOSFETS. All components 

together create a basic inverter [41]. 

 

Using the Qi standard and the IRS24531DS datasheet as guides, 100kHz was selected as 

the operating frequency. A 10nF capacitor was selected for the built-in oscillator and using the 

equation 𝑓 ≈ ,
,.9:;∗=>∗+>

, where RT is the timing resistor and CT is the timing capacitor, the ideal 

resistor value worked out to be 6.8kΩ. The series gate resistors were 33Ω and the high-side 

decoupling capacitors were 1uF. The IRF520N N-channel enhancement mode MOSFET was 

chosen for the FETs that form the H-bridge, particularly for its high current sinking capability 

and general popularity. The circuit, shown in Figure 25, was assembled and soldered onto a 

protoboard for testing. 
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Figure 25: The IRS24531D is the 14-DIP chip in on the top. The four 

MOSFETs forming the H-bridge are shown at the bottom. Supporting 

components were chosen following guidelines set in the IRS25431D 

datasheet. 

 

Additionally, a very basic rectifying and regulating circuit was built using 1N4005 diodes 

[42], a LM7805 5V regulator [43], and an LED to load the receiving end of the transfer system. 

An oscilloscope photo of the testing is shown in Figure 26, which looked promising at first. 

Channel 1 shows the output of the inverter and while the rise and fall times of the square wave 

were slightly slower than desired, the operating frequency was right in the expected range. 

Channel 2 shows the output of the LM7805 prior to loading the system with the LED, so the 

output looked smooth and ideal for a first test. However, after loading the system, it could not 

maintain the efficiency required to meet the dropout voltage to the regulator. 
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Figure 26: Channel 1 shows the output of the inverter and Channel 2 

shows the output of the LM78-5 regulator on the receiving end. 

 

Initial tests made it clear that this system would be difficult to build, test, and integrate 

into the rest of the project in the allotted amount of time without considerable support. A 200W 

wireless power development kit was found during the research process, made by Würth 

Elektronik in partnership with Infineon [44]. This kit and its available schematics and 

specifications were inquired after to try and determine if something similar could be replicated in 

the system. A block diagram of their system is shown in Figure 27. 
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Figure 27: This diagram outlines the most important elements of the 

Wurth Elektronik 200W Medium Power Extended Solution Kit [44]. 

 

There are many additional control elements in addition to the traditional elements of a 

WPT system, making the design complex. An onboard XMC1302 series microcontroller 

monitors the voltage and current levels during transfer and adjusts the frequency of operation 

between 110 kHz and 150 kHz to attain maximum power transfer at a given distance between 

coils [44]. Additionally, circuitry is added to modulate the current flow through the coils to create 

unidirectional data communication from receiver to transmitter for greater control [44]. The 

design also includes several protection elements to ensure the design will withstand 

electromagnetic interference (EMI) and overvoltage/overcurrent situations. This kit does not 

contain foreign object detection, which should not be needed for the system as it will be fixed 

and inaccessible. Unfortunately, developing a system of the same quality under the budget and 

time constraints of this project is not feasible. Fortunately, Würth Elektronik generously donated 

one of the development kits to the project free of charge. The retail value of this all-in-one 

development kit is $350.00. The kit includes an all-in-one transmitter, all-in-one receiver,  24V 

DC power supply with international adapters, and 9W, 220Ω load resistor. The final system 

currently utilizes the existing WPT solution to create a power delivery system for the display.  
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3.3.4 Display 

There were two major concerns in the display selection process. The power draw from 

the display could not exceed the power supply, and at the time there were also cost concerns 

about how the energy from the solar panel would be stored, generate the WPT unit, and set up 

the solar panel array because each of these processes required funding.  

The LCD and LED screens were disregarded in regards to the power concern because  

they had a high power consumption over time. These displays were defined with high power 

consumption because they required more power than initially calculated. At the time it was 

estimated that, at best, 30W would be able to be supplied to the display, but both the LED and 

LCD screen required a supply of 34W. As a result, both of these options were not selected.  

The OLED and E-Ink displays were also disregarded after further budget consideration. 

Both of these displays were unaffordable given the budget. An OLED display would cost around 

$1000 according to the research, but an accurate cost was unable to be obtained because most 

OLED displays were unavailable in the US. The E-Ink display was also extremely expensive at 

$2500, excluding shipping and handling. As a result, these two options were also disregarded. 

Ruling out the previous four options flushed out an ideal solution, the handmade LED 

matrix display. Not only was this option the most affordable at about $100, it also had a low 

power consumption of about 11W. Since the device was hand-made, features could also be 

added to the display such as transparency and modularity. Additionally, a handmade display 

would add a more technical aspect to this educational project. 

The display consists of nine modules, each containing 100 LEDs, three PCBs, and a 

single 3D printed structure to hold the LED strips. The display is controlled by a single 

Raspberry Pi microprocessor. The estimated total cost of all components for a single module is 

shown in Table 1. 
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Table 1: Display System Cost 

Part Cost 

LEDs $130.00 

Microprocessor $35.00 

PCBs and wires $40.00 

Structure $10.00 

Total $215.00 

 

The 100 LEDs in each module are arranged in a 10 by 10 square. This is created by 

cutting 10 strips of 10 LEDs and attaching them to the structure, spacing them evenly to create a 

square grid. Two PCBs on each end of the strips connect the LED strips together in a chain to 

form a continuous 100 LED daisy chain. Connectors on the underside of each of these PCBs 

allow the modules to be connected together such that two modules can form a chain of 200 

LEDs, 3 modules can form 300 LEDs, and so on. This modular design allows many modules to 

be connected continuously for multiple different display sizes. When multiple displays are 

connected continuously, one of the terminating displays must be connected to the microprocessor 

with the Right Cap PCB while the other terminating display’s connector must have the Left Cap 

PCB which, along with the Right Cap PCB, connects all rows of LEDs together to form the 

chain. A graphical description of this design is shown in Figure 28 and Figure 29. 
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Figure 28: The power is connected in parallel while data and clock lines are connected in series as 

shown by the arrows. 

 
Figure 29: When multiple modules are connected, the rows are expanded and data and clock lines are 

connected to the consecutive row at the terminating modules.   
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The proposed display consisted of nine modules for a total of 900 LEDs. The LED 

chosen was the SK9822, an RGB addressable LED which is relatively affordable and is available 

in high density strip form, which is ideal for the design [17]. The SK9822 utilizes 5V input and 

multiple LEDs are connected to 5V and ground in parallel on the strip. The SK9822 has two 

inputs, data and clock. These signals must be provided externally. The SK9822 also outputs 

these two signals such that the data and clock are connected to all LEDs in the chain in series. 

The results of the current draw testing of the SK9822 are detailed in Table 2. 

 
Table 2: Current Draw of LEDs With Red Color  

 
 

Each module has a Left Main and Right Main PCB. These PCBs bundle the left and right 

ends of the LED strips into connectors that allow strips from different modules to be connected 

together. The completed display also has a single Left Cap PCB that connects the left ends of all 

LED rows together and a Right Cap PCB that connects all the right ends together as well as 

connects the start of the chain to the microprocessor for data and clock input. The underlying 

structure for each module is a 3D printed plastic frame. This frame is custom designed to have 10 

slots for each LED strip as well as slots on each side for the Left Main and Right Main PCBs. 

Each frame has 4 screw holes that serve the purpose of securing the PCBs as well as the 

structural connectors that fasten modules together.  

 

3.4 Project Logistics 

The main goals of the first eight weeks were defining the final system, researching the 

components, designing the system, and finding sponsors or donations to support the project. The 

biggest difficulty during this time was the deficit in the budget for building the system. Due to 

this issue, buying small components for each system to try and build a simple prototype of the 

system and searching for sponsors or donors was the objective. Near the end of A term, Justin 
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Woodard agreed to become a sponsor for the project and promised to donate any needed parts for 

the power component of the system. Thanks to his help, the budget required to build the system 

was reduced and progress for designing the full scale system could continue. 

The second eight weeks were dedicated to finishing the project’s design for each system 

component, switching to a modular display, ordering the parts, and beginning prototyping and 

debugging for each piece. During this period, separate teams were made to focus on different 

aspects of the project. Each team focused on either the system’s power component, software 

component, power transfer component, or the display component. The main issue in this period 

was determining whether WPT was feasible or not. Eventually, Wurth Electronik donated a 

WPT kit to the project that met the requirements for this system. However, this setback caused 

constraints on the time needed to begin debugging the prototype system as a whole. 

The main goals of the final eight weeks of the project were building and debugging the 

system, writing the report, and demonstrating the system. During this period the smaller teams 

were combined to work together on integrating the entire system as a group. One major setback 

in this period was when it was discovered that there were shorts in all of the initial PCBs and 

they needed to be redesigned. Additionally, due to an international health crisis, the delivery time 

for these parts took two weeks increasing the build time and reducing the testing and debugging 

time for the display by two weeks. Another setback was that the WPT unit’s supplementary 

circuit was not working as intended and was not fixed until the final few days of this period. The 

foremost setback was that the display modules were having solder joint issues due to the joints 

sporadically shorting to one another or were not properly connected. In spite of these various 

setbacks, all goals were achieved albeit a week later than expected. 

3.5 Chapter Summary 

Devices and components were chosen after careful evaluation of design options for each 

part of the system. Some compromises had to be made to conserve time and money, such as 

choosing a polycrystalline panel over a monocrystalline panel based on what the team had access 

to, or using a development kit for wireless power instead of creating a custom one to save time. 

Batteries and charge controllers were chosen based on the needs of the other parts of the system. 

It was paramount to consider the needs of each system segment throughout the process while 

considering all the design options available. 
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Chapter 4: Methodology and Implementation Display  
The overall development of the display required specific qualities to ensure it met the 

design goal. To create a fully modular display, each panel of the display had to be identical and 

the LEDs needed to be programmable given different height and widths. The design for a 

modular panel had multiple iterations including one large PCB, milled acrylic with PCBs on the 

back side, or small PCBs with 3D printing. Each idea was discussed until a final design was 

determined. 

The module was broken up into the following 4 components: main frame, brackets, 

screws, and PCB’s. The main frame is where all of the materials would be connected and hold 

the major parts of the project together in a neat and organized design while the brackets hold the 

modules together. There were many iterations and tests of different screws to find ones that met 

the specific criteria for the design.  

4.1 Main Frame 
As previously stated, the main frame was designed to hold major components together so 

the LED matrix would look neat and organized. The main frame was displayed from various 

angles in Figure 30. The dimensions of the module were about 6.7 inches tall, 6.7 inches wide, 

and had a maximum thickness of 0.25 inches. The module had several features for specific 

reasons, as can be seen in Figure 30. Those features were: wings, channels, uneven wing heights, 

and screw holes as seen in Figures 31, 32, 33, and 34. 

The purpose of the wings in Figure 31 was to hold the PCBs that were going to be 

mounted onto the module. These PCBs were going to be one inch wide and 6.7 inches long, are 

the exact dimensions that were prepared on the module. The purpose of the opening in between 

the top and bottom wings was for connections and other wiring. The purpose of these 

connections was for creating modularity, which will be explained in Chapter 4.4 .  
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Figure 30: Four different viewing angles of the LED module to provide an idea of how the module is 

shaped. 

 

 
Figure 31: Figure of the final module design with the wings highlighted and labeled with their 

dimensions. Each wing is 2.6 inches long and 1 inch wide. 



 

 43 

 

The uneven heights on the left and right wings that can be seen in Figure 32 is because of 

a small error made while ordering the PCB’s. Some of the PCBs have shorter thicknesses than 

intended. The designs on the wings were changed so that the PCB’s thickness would line up with 

the bottom of the channels to make up for the misalignment.  

 
Figure 32: This figure shows the bottom of the module with measurements of the heights of both wings 

and a line to compare the difference in the heights of the wings. The right wings have a shorter height 

of 0.1 inches while the left wings have a height of 0.125 inches. 

 

The screw holes in Figure 33 are necessary to mount the PCB’s to the module and 

guarantee that they would not separate or detach from it. The screw holes cannot be closer to the 

center because they need to be kept away from the internal circuitry of the PCB’s.  

 
Figure 33: This figure highlights the screw holes and their measurements as well as the type of screw 

hole. Each screw hole is made for an M3 size screw and is 0.52 inches from either the side of the 

module and 0.125 inches from the top or bottom of the module. 
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The channels seen in Figure 34 are designed to hold and align the LED strips so the lights 

look uniform, neat and evenly spread light. The channels are 0.09 inches tall from the bottom of 

the channel to the top and they are 4.725 inches wide and 0.2 inches wide except at the edges 

where they are only 0.1 inches wide. 

 
Figure 34: LED module with all the channels highlighted and dimensions labeled. The channels are 

0.475 inches wide, 0.085 inches tall, and 4.725 inches long. 

 

There were difficulties in the design process, but after trying to 3D print out the module it 

was decided to keep printing them out  because it was relatively cheap and easier to create by 

using a 3D printer. Overall, by using the semi clear PETG, modules were able to be generated at 

around $1.67 per module. 

4.2 Brackets 
The brackets are designed to hold the module together and prevent misalignment. A total 

of three different brackets were created for this reason. Figures 35, 36, and 37 show the vertical 

edge connections, horizontal edge connections, and center connections that were created. The 

three connections are necessary because the dimensions to connect vertically and horizontally 

were different.  
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Figure 35: All vertical edge connecting bracket dimensions are labeled in this figure. The bracket is 

11mm wide, 4mm inches thick, and 42mm long, with the distance between holes being 30mm.  

 
Figure 36: The horizontal edge connecting bracket dimensions are 22mm wide, 4mm inches thick,  and 

21mm long , with the distance between holes being 10mm. 
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Figure 37: All center connecting bracket dimensions are labeled in this figure. The bracket is 22mm 

wide, 4mm inches thick, 42mm long. The distance between holes is 10mm vertically and 30mm 

horizontally. 

 

Some difficulties encountered were due to constraints with the PCBs because the original 

intent was to have three screws per corner to ensure the strength of the connections and to 

prevent any “wiggle room” for the parts, which was infeasible. Additionally, more screws 

increase the overall cost of the system and as a result, the final design has one screw at each 

corner of the modules. 

4.3 Screws 
The purpose of the screws is to allow the PCB to be mounted onto the module and 

provide something to latch to for the bracket. Flat headed M3 screws were used because they 

have the thinnest heads, allowing the LEDs that are placed over them to remain as flat as 

possible. The screws are about an inch long so that they can be used to mount behind the module 

without putting pressure on the wiring behind the module.  
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Figure 38: This figure displays the flat-head machine screws that were selected to mount the PCBs. It 

is a 25mm long M3 flathead screw [45]. 

 

Finding a type of screw that does not stick up too far from the PCBs was difficult because 

the LEDs were intended to lay on top of them. The ideal screws are ultra-thin M3 screws but 

each one costs about a dollar. The less expensive option of flat head screws was chosen that only 

made the LEDs stick out a couple millimeters. 

4.4 Custom Printed Circuit Board 
 The final design of the display includes several LED modules that can be connected 

differently to allow for many topologies and display shapes. Each module consists of 100 LEDs 

arranged in a square 10 by 10 grid. 10 strips of 10 leds are affixed to a plastic 3D printed surface 

with channels for each strip so that even spacing is achieved between the strips when assembled. 

The plastic surface has slots at each end for two PCBs, shown in Figure 39 and Figure 40 [46]. 

The four solder pads on each end of the LED strips are connected to corresponding pads on the 

PCB. The purpose of the PCBs are to connect the strips to each other as well as to the connector 

that is used to connect modules together.  
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Figure 39: This figure displays the front and back of the left side PCBs used for the modules. 

The front is on the left and the right is on the left. 

 

 
Figure 40: Right Side PCBs. This figure displays the front and back of the right side PCBs 

used for the modules. The front is on the left and the right is on the left. 

 

 Four unique PCBs were designed to allow all connections to easily be made and for the 

system to remain modular. Each module is identical, with two edge PCBs attached to the 3D 
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printed backing. The left edge and right edge PCBs interface the LED strips to a 24-pin single 

surface connector. The signals are passed to one of three connectors, either a cable, a right cap, 

or a left cap, and each serves a purpose to move the LED signals through the display in a pattern 

from left to right. The left and right sided PCB diagrams can be seen in Figures 41 and 42, 

respectively. The small cables, that connect the inner modules together, pass the signals from 

each LED strip to the LED strip directly across the gap. The right caps are placed on the right 

side of the rightmost modules to route the LED strip to the next LED below it, allowing the 

signal to run back across the display from right to left. The design is simple featuring only one 

component, an input/output 24-pin single surface connector, this PCB is shown in Figure 43. The 

left caps are placed on the left side of the leftmost modules to route the LED strip to the one 

below it, allowing the signal to run back across the display from left to right, similar to the right 

cap. However, in addition to routing the signals from one panel to the other horizontally, the last 

LED signal is routed downward to the module below it, and/or the first LED signal is passed 

from the module above it. This PCB is shown in Figure 44. In a display configuration with a 

vertical component, this allows the signal to be translated to second and subsequent rows of 

modules. 

 

 
Figure 41: The design has the green pads on the leftmost edge of the 3D printed backing on the 

topside. The red pads are connected to a 24-pin surface mount pin header on the underside. 
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Figure 42: The design has the green pads on the rightmost edge of the 3D printed backing on the 

topside. The red pads are connected to a 24-pin surface mount pin header on the underside. 

 

 
Figure 43: The right cap routes all signals from the right side of the rightmost module back through 

the module. The single 24-pin sits on the topside of the PCB. 

 

 
Figure 44: This PCB sits on the left edge of the leftmost modular. The cap routes signals from the top 

6-pin connector through the module via the 24-pin connector, then signals from the module to the 

bottom 6-pin connector. The top 6-pin connector provides input, and the bottom 6-pin connector is the 

output. The 6-pin connectors are on the bottom side of the board, and the 24-pin connector is on the 

topside of the PCB. 
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Two issues that appeared in the development and construction of the PCB were having 

the ordered PCBs from JLC PCB be different thicknesses and having incorrect designs for one of 

the PCBs. To compensate for the difference in thickness, the 3D printed backing was altered to 

keep the surface height of the display consistent. Initially, the design for the right edge PCB was 

incorrect. The PCB was routing the signals from the top row to the bottom, rather than directly 

across the display. To fix this issue, a new PCB was designed and ordered to properly map the 

signals from one module to the next. 

4.5 Complete Module Design 
 Each module is constructed by cutting ten strips of ten LEDs and attaching them to the 

ten channels in the plastic surface using adhesive backing. All PCBs should be assembled before 

attaching to the module and connecting to the LED strips. Each module has a total of four PCBs 

that must be assembled. This includes a single surface connector for both left and right PCBs, a 

through hole connector that must be soldered to the right cap PCB, and three through hole 

components for the left cap PCB. The PCBs are fixed to each end with screw holes that align in 

the plastic structure. Each LED strip has four pads on each end that are soldered to 

corresponding pads on both left and right PCBs. The left and right cap PCBs must be plugged 

into their corresponding sides on the display module to allow connection to the other modules. 

Multiple modules can be connected together to create the complete display as a result of how the 

electrical components were designed. To display these modules correctly, a custom acrylic stand 

was created that will allow all 9 modules to hang within the casing, shown in Figure 45.  

The dimensions for this model were created because all modules, which have a width and 

length of 6.7 inches and a thickness of 1.25 inches, needed to be considered. Based on these 

dimensions, the display case needed to encompass at least a volume of 6.7 inches wide, 61 

inches long, and 1.25 inches thick. There is a large amount of additional space because at least 2 

standoffs at the top and middle of the module were desired. 
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Figure 45: This figure depicts the model of the planned LED display case. This stand was made to be 6 

¾ inches wide, 72 inches long, and 3 inches thick. 

4.6 Chapter Summary 
This chapter outlined the various elements of the implemented display design. Due to the 

desirable modular characteristic of the display, the implementation had to support modularity in 

both electronics and mechanical design. In mechanical design, the base of the modules ensured 

all LEDs would be spaced out evenly vertically and horizontally. The brackets were designed to 

ensure that the modules would be held flush together and hold the tensile stress of the module 

weight. On the electrical side, the PCBs were designed so that every clock, data, and power pin 

on each strip would be translated into a single connector and retranslated into strips again at the 

other side. To improve the versatility and visual fidelity of the display element, the module stand 

was designed for the 9 modules to be in a straight vertical configuration.  
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Chapter 5: Methodology and Implementation of 

Software 
Chapter 5 describes the steps needed to implement the software of the display. This 

chapter provides a walkthrough for installing the Raspberry Pi 4 operating system and 

configuring the necessary settings for use. Additionally, a description of the Python libraries 

needed to implement the display and an overview of their operation is outlined. In particular, the 

software libraries needed for the LEDs, the ultrasonic sensor, and the weather API are discussed. 

Lastly, there are descriptions of the Python scripts used to control the display, with the code 

provided in appendices. 

5.1 Operating System 

   Unlike many microprocessors, the Raspberry Pi 4 is capable of running a myriad of 

diverse operating systems for a variety of different applications. Images of Raspbian, Ubuntu 

Mate, Core, and Server; Windows 10 Internet of Things (IoT) Core; PiNet; Mozilla WebThings; 

and several others are available for use on the Raspberry Pi 4. All Ubuntu operating systems are 

best for those seeking a less optimized, but more complete version of a Linux operating system, 

featuring powerful and secure software at the cost of lower performance. Windows 10 IoT Core 

is best suited for IoT applications, namely, automation and smart home projects controlled via a 

Windows development environment. Mozilla WebThings is mostly the same but is better suited 

for a wider variety of devices using different operating systems, whereas PiNet accomplishes the 

same thing for a classroom environment. 

   After assessing the multitude of options for potential operating systems to be used in this 

application, it is decided that Raspbian desktop would be best suited. Raspbian OS is a desktop 

environment operating system built on Debian Buster, a universal, non-Unix distribution of 

Linux. The Raspbian distribution of Debian Buster has been modified to make better use of the 

Raspberry Pi’s unique hardware. Raspbian is compatible with tens of thousands of Raspberry Pi 

specific software packages, ensuring that most libraries used in any given project function 

correctly. Raspbian comes pre-installed with SPI and I2C support, making interfacing with third 

party hardware connected to the Raspberry Pi easy and reliable. The Raspbian desktop 
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environment allows for the use of the Thonny 3 Python Development IDE, assuring Python 

syntax rules are followed and helps identify bugs in the code. For these reasons, Raspbian Buster 

with Desktop was chosen as the operating system installed on the Raspberry Pi. 

5.1.2: Raspbian Installation 

   Raspbian Buster with Desktop must be installed onto the Raspberry Pi’s internal storage 

(a micro SD card) before it can be inserted into the Raspberry Pi and booted up for the first time. 

This is done by inserting the micro SD card into a PC, formatting the SD card using SD Card 

Formatter, and installing the system image using Win32Disk Imager. 

   To begin, the Raspbian Buster image must be downloaded from the official Raspberry Pi 

website [47] as well as the ISO. This will download a .zip file that is extracted upon completion 

of the download. This extracted file will later be installed as a bootable image on the SD card. 

However, before the image can be installed the SD card must first be formatted. Using SD Card 

Formatter, one must select the SD Card drive and wipe it as shown in Figure 46. 

 

 

Figure 46: SD card formatter for windows was used for this project. Once installed, one simply needs 

to select the SD drive and format it with a quick format. 
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Once the SD card is formatted, the Raspbian image can be installed on the SD card. 

Using Win32 Disk Imager, the SD card is selected as a device and the extracted image file is 

written as shown in Figure 47. 

Figure 47: Using Win32 Disk Imager, one can create a bootable SD card for the Raspberry Pi. Once 

installed, simply select the unzipped .img file and select the drive containing the SD card. Then, select 

“write” to create the bootable drive. 

   Once this has been completed, the SD card can be removed from the PC and inserted into 

the Raspberry Pi. With the SD card installed, the Raspberry Pi should boot into the Raspbian 

Buster Desktop environment. 

5.1.3 Raspbian Setup 

 After the initial bootup, there are several libraries and settings that must be set before one 

can interface with the LEDs. From the Rasbian desktop, launch the terminal and run “sudo raspi-

config”, which will open the window shown in Figure 48. 
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Figure 48: After running “sudo raspi-config” in the terminal, this is the resulting screen. From here, 

the user can change the password, screen resolution, and several other system settings. For this, the 

user is concerned with changing the interfacing options. 

 

Using the d-pad select “5: Interfacing options” and the screen in Figure 49 will be 

displayed. 

 

 
Figure 49: Within “Interfacing Options” the user has the option to enable and disable several settings. 

For this application, the user must enable SPI, VNC, and SSH. 
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Figure 50: SPI Enable. After selecting SPI, highlight “<Yes>”. Press enter and reboot the Pi to enable 

SPI. 

 

From Figure 49, select “P4 SPI” and press enter. This will be followed by Figure 50, in 

which one should highlight ”<Yes>” and press enter to enable SPI. Following the same 

procedure, one should enable VNC and SSH to allow remote access to the Raspberry Pi. After 

that, one should reboot the Raspberry Pi to apply the settings. The SK9822 chip employed in the 

LED strips in this design interface through the SPI protocol and will not operate properly without 

enabling this setting. After SPI is enabled, one should install the Python libraries to interface 

with the LED strips.  

 Begin by opening a terminal window and running the “python3” command to verify that 

the proper version of Python is installed. Python 3 will be used for the entirety of this project as 

Python 2 support has officially ceased as of January 2020. When one is met with a terminal line 

shown in Figure 51, it is confirmed that the correct version of Python is installed.  
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Figure 51: After running the command “python3” the console should display the current 

Python version. If the Python console is not displayed, Python 3 must be installed. 

 

Libraries will be installed using the “pip” installer for Python. The pip installs functions 

by running “sudo pip3 “ followed by the name of the library one is intending to install. For this 

application, theAPA102-pi driver from pypi.org is installed and modified for use with the 

SK9822 LED strips [48].  

5.2 APA102 library 

    The chosen LED strips are driven by the SK9822 integrated circuit chip, which is a 

Chinese version of the more expensive APA102 driven LED strips. Since the SK9822 is a clone 

to the APA102, it is not always guaranteed to function correctly with any and all drivers that 

have been written for the APA102. The way data is cycled through the two ICs is slightly 

different. Although the data format is more or less the same, the color combination data is 

written to the SK9822 in a slightly different way. The SK9822 updates the PWM registers in the 

first cycle after the next start frame, whereas the APA102 updates the PWM register immediately 

after receiving the data. As a result, the SK9822 has a slightly delayed color update and some 

drivers may not work correctly [17].  
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Figure 52: This oscilloscope shows a side by side comparison of the APA102 and SK9822 dataframes. 

The data structure is exactly the same, but where the data is updated differs between the two.  

 As shown in Figure 52, which was taken from Tim’s Blog [17], the data frame is exactly 

the same for both APA102 and SK9822. However, the way the data is updated deviates slightly 

between the two ICs. Color combinations written to the SK9822 are updated after the first PWM 

register and do not write the data until the next start frame. However, the APA102 updates the 

PWM register immediately after receiving the data, which ironically results in a slightly delayed 

color update.  

 These differences are due to a deviation in the trigger for data frame updates. In the 

APA102, data updates are triggered by RGB data transmission as opposed to the update trigger 

of the SK9822, which is set off by a reset frame of zero bits (0x00000000) at the end of each 

data frame. Driver libraries written for the APA102 will oftentimes not be compatible with the 

SK9822 due to this discrepancy. For example, initially the Luma LED Matrix driver was 

installed due to its robust feature list including matrix resizing, text displaying, and state 

management. Unfortunately, this driver was written for the APA102 chip, where the data frame 

is being updated with each RGB data transmission. Unlike other drivers, the Luma LED Matrix 

driver does not include an end data frame of zeros, which is required to trigger the data update of  

the SK9822. Unfortunately, this meant that other, less feature heavy, drivers were used. 

 For a library protocol to work correctly with both chips, they must have the four 

following features; (i) a start frame of 32 zero bits (<0x00> <0x00> <0x00> <0x00>); (ii) a 32 

bit LED frame defining the brightness and the RGB combination to display; (iii) a reset frame of 

32 zero bits (<0x00> <0x00> <0x00> <0x00>); (iv) an end frame consisting of at least ?
@
bits, 

with N equaling the number of total LEDs in the entire strip [17].  
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Figure 53: One dataframe of the SK9822 consists of a start frame, an LED frame for each LED, and 

an end data frame. The start frame consists of 32 zero bits whereas the end frame is 32 one bits. Each 

LED frame contains 3 one bits to start, 5 bits to set the brightness, and 8 bits each for the amount of 

red, green, and blue in the color being displayed on that LED [19].  

As one can see from Figure 53, the data structure consists of a start frame, the RGB data 

for each LED, and an end frame of 1’s. This entire data frame will commit to the LEDs when a 

32 bit frame of  0’s is added to the end and trigger a data update. Based on this, the APA102- Pi 

driver was written to work for both APA102 and SK9822.  

5.2.2 APA102 Functions 

 The main functions of the APA102 driver class are set_pixel, set_pixel_rgb, show, 

clear_strip, and cleanup. The driver begins by initializing the max brightness, the start LED data, 

and the bus speed. In the __init__ method, the number of LEDs in the strip, the RGB map, and 
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brightness are defined. The data and clock pins for SPI (mosi and sclk respectively) are 

initialized to bus zero with a previously defined bus speed of 8000000 Hz. 

 The clock_start_frame method builds a 32 bit data frame and writes it to SPI. The 

clock_end_frame method writes another 32 bits of zeros to trigger a data reset. The clear_strip 

method iterates through each LED in the strip in a for loop and sets each pixel color and 

brightness to zero. 

 The two most frequently used methods are set_pixel and set_pixel_rgb. Set_pixel takes in 

led_num, red, green, blue, and brightness percentages as input parameters. This function first sets 

the brightness by checking for a valid input and then building an 8 bit start frame initializing the 

LED matrix and assigning global brightness to each LED in the last 5 bits of the 8 bit start frame. 

After this, the function proceeds to initialize the red, green, and blue lights contained in each 

LED on the strip. Set_pixel_rgb takes in led_num, rgb_color, and brightness as input parameters. 

The function sends whatever combination of red, blue, and green color to create the hex RGB 

color that is input as the rgb_color parameter. It does this by building three 32 bit color frames 

for red, blue, and green. The function takes the hex value for red and compares it to the input 

RGB color through an “and” operand and shifts the bits to the right by 16, the same is repeated 

for green but shifts the bit to the right by 8, and blue without any bit shifting. The result is 

sending the correct ratio of red, green, and blue to create the desired hex color when passed into 

set_pixel. 

5.2.3 Module_test.py 

 A simple script is developed to test and debug each individual module of the overall 

system. The script begins by importing the time library for delays and theAPA102 driver. A LED 

strip object is initialized using theAPA102 driver setting the number of LEDs in the strip to 100 

(for one strip), the global brightness to 1 (the lowest setting for power efficiency), and the order 

of the RGB color interpretation. The script then iterated through a for loop in the range of 100 

indices to light up each LED in the strip one by one with a delay of 0.025 seconds between each 

light. For testing purposes, each LED is lit up in 0xFF0000, which is the hex color for red. This 

was chosen for maximum  power efficiency. This for loop is nested in an infinite loop so data is 

continuously being fed through the strip. When debugging each module, it is integral to have 
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data constantly being fed through the sdata and the clock so that when there is a lack of signal it 

will be immediately obvious that there is something amiss.  

 Module_test.py calls the set_pixel_rgb function from the APA102 class in the for loop by 

using the initial parameters set in the initialization of the strip object. After this the show 

function is called fromAPA102 and the LED is lit. A 0.025 second delay is programmed in 

between the setting of the pixel RGB and the displaying to create a cascade animation across the 

strip so isolated errors can be identified and rectified. When running the test, the user is given the 

option to either run the test by pressing 1 or  clearing the strip by pressing 0. This script was used 

for the entirety of the testing process and is refined to create animations later on.  

5.3 OpenWeatherMap API 

After a failed attempt to use html web scraping to collect information on the current 

weather conditions, it was decided that an API would be a better choice for this application. 

Attempts at making a request for accuweather, google weather, and weather.com all were refused 

due to inadequate permissions to access the websites from a headless script. OpenWeather’s 

current weather data API offers a much easier to implement and more reliable method of 

collecting weather data than doing it manually through html scraping. 

To begin using the API, one needs to create a free account and generate an API key on 

the official OpenWeather website [49]. This can be done by visiting the website, logging in or 

creating an account, and navigating to the API page. Figures 54, 55, and 56 show exactly how to 

generate an API key on the OpenWeather website.  
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Figure 54: The main page to openweathermap.org. Click “Sign In” to sign in or create an 

account. 

 

The OpenWeather main page is shown in Figure 54. Here, one shall select the “Sign in” 

option to create an account or sign in to an already existing one. When creating a new account, it 

is crucial that only the free account is used, as no premium features are required for this 

application. 
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Figure 55: The first screen one is met with after signing in. Click on “API keys” to view the 

accounts API keys. 

 

Once “API keys”  is selected, one can generate an API key for use in their project as seen 

in Figure 56. 

 

 
Figure 56: Enter a name in “Create Key” and click “generate” to create a new API key. The 

“MQP” API key is what is used for this project. 
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Using the key generated in Figure 56, one can add the key to their code and begin 

collecting weather information. Note that only a free account will be used, therefore only current 

weather conditions and forecasts will be returned by this API. 

5.3.1 OpenWeather API Outputs 

 Weather-test.py is a simple testing script that was written to test the functionality of the 

OpenWeather API and investigate the data that is returned. The script first declares the API key, 

API url, and the city name as an input to create an API call that will return weather for any given 

city. In this case, Worcester, MA is used for all testing. A url string is concatenated together 

using these three objects and the result is used as an input parameter to the Python requests 

library. The response of this url request is saved in the “response” object and converted to a 

JSON data structure for ease of parsing. Figure 57 is an example of a response JSON object 

created from an API call. 

  

 
Figure 57: An example of a response to the OpenWeatherMap API. Within this JSON, current weather 

conditions, current temperature, and wind are of concern to display on the LED matrix.  
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 After the API response, the script checks for the “404” element to make sure the input 

city is recognized. The script then looks into the “main” element and parses for temperature, 

pressure, and humidity information. After that, the script looks at the “weather” element and 

parses for the weather description. The script then compiles a string containing all of this 

information and prints it in the terminal. A modified version of this script is later added to 

matrix.py as a class that returns the current weather conditions, temperature, and wind as a list. 

 

 
Figure 58: Weather-test.py is modified for use as a class in matrix.py. The modified class 

returns a 5 element list, with element 0 reporting the temperature in fahrenheit, element 1 

reporting the detailed forecast, element 2 reporting the wind speed, element 3 reporting the 

main forecast, and element 4 reporting the code indicating night or day. 
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5.4 Matrix.py 
 Matrix.py contains fifteen total classes that consist of  matrix class, the weather class, a 

hypersonic sensor driver, and twelve animation classes. Matrix.py appropriately begins with the 

“matrix” class which computes the index of the LED strip that corresponds to the coordinate 

position (x,y) in the total matrix. It does this by first computing the number of LEDs per column.  

Given the dimensions of the display, the algorithm determines the linear LED address 

which corresponds to the known coordinates. The algorithm is as follows:  

{[𝑥 × 𝐿] 	+ |([𝑥%2] × 𝐿) − 𝑦 − 1|} 

where W is the width, L is the length of the display, and x and y are the X and Y coordinates, 

respectively. Note, each variable listed is zero indexed. The algorithm above is in two parts. 

First, [𝑥 × 𝐿], determines how many rows of LEDs precede the active row. For example, X is 5, 

then the active row is 6, so the number of LEDs in the rows before is X times the length. The 

other portion of the equation determines how far down the column the active LED is. The 

statement |([𝑥%2] × 𝐿) − 𝑦 − 1| decides where to subtract Y from the length or simply add Y, 

based on whether the signal is running right to left or left to right in the active row. The result is 

then summed with the total LEDs from preceding rows and this value is the address of the 

desired LED at the given coordinates. 

 There are some slight differences between the mathematics above and the code 

implemented. In the code, an ‘if statement’ is used to fix an error on the odd X coordinates. The 

factor is off by one, and is fixed in the algorithm above. Also in the code, X and Y are referred to 

as coord[0] and coord[1], respectively. The code can be found at the beginning of Appendix C. 

The weather class works exactly as weather-test.py does. The getWeather() function 

behaves the same at wether-test.py but returns the weather information instead of just printing it. 

An API URL is built using the API key, a base API URL, and the city name. The city name is 

hard coded as Worcester, MA and, therefore the API will only collect weather information for 

Worcester. The list returned by the getWeather function can be seen in Figure 58. The main() 

function of matrix.py calls weather().getWeather() and saves the current weather conditions to an 

object that is then inspected to determine what information to show on the display. 

The SainSmart HC-SR04 hypersonic sensor, used to determine patron proximity to the 

display, is driven using the echoSens() class function distance(). The driver works by first 

initializing which GPIO pins are being used to trigger the sensor and receive its echo. The trigger 
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pin sends a signal to the trigger of the hypersonic sensor, sending a high frequency sound wave 

out of the sensor. The distance() function then measures the time it takes to receive a response 

from the echo pin. When the sound wave is reflected back to the echo pin of the sensor, the echo 

GPIO pin will pulse to logic high (1). The time it takes to receive an echo from the trigger is 

directly proportional to the distance an object is from the sensor. With this in mind, the echoSens 

class converts the measured time between trigger and echo into centimeters and returns it to the 

main() function. 

5.4.1 Animations 

 For each animation, arrays are saved as animation objects that are then iterated through to 

draw a final icon, that is often accompanied by a moving element. Each animation object is an 

array of tuples containing the coordinates for each pixel in the animation. These tuples are sent to 

matrix().get_coord() to convert the x,y coordinates to an index (0-899) in the overall LED strip. 

Using this index, each pixel is set to a predetermined color most appropriate for the design. 

Figures 59-69 are every possible animation that can be displayed by matrix.py. 

 

 
Figure 59: The rain animation is split into two arrays. One for a static cloud drawing and one for the 

raining animation. This displays when drizzle or rain is returned by the Weather() class 
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 In the raining animation, two arrays are iterated through. The cloud array is first, which 

contains the coordinates to draw the cloud shown in Figure 59. This is done by iterating through 

a for loop of the cloud array and assigning a silver color (hex 0xC0C0) to the LED strip index 

returned by matrix.get_coord(). The for loop pasuses for 25 milliseconds before drawing the next 

pixel. Subsequently, the rain array, which contains the “raindrops” shown at the bottom of Figure 

59, it iterated through and cleared in an infinite loop. This is done through two for loops 

contained within an infinite while loop. The first for loop iterates through the array and assigns 

each LED strip index returned by matrix.get_coord() to the color blue (hex 0x0000FF). The 

second for loop iterates through the same array, but sets each pixel to zero, turning it off. These 

two loops repeat indefinitely in sequence, creating a cascading rainfall effect. The infinite While 

loop is broken when the global variable “stop_animate” is set to True by the main() function.  

 

 
Figure 60: There are two arrays in the sunshine animation. One for a static drawing of the sun’s 

center and another for the rays protruding from it. This displays when clear skies are reported during 

the day. 

 

 The sun animation functions in exactly the same way. The only difference being the 

“cloud” array is the middle yellow circle of the sun and the “rain” array is the rays radiating 

outward. The same static for loop followed by two for loops within an infinite loop structure is 
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used, only all pixels are set to yellow (hex 0xFFFF00), as seen in Figure 60. Also like the rain 

animation, the while loop is also broken by the main() function setting “stop_animation” to True. 

 

 
Figure 61: There are two arrays in the moon animation. One that draws a static picture of the moon 

and another that removes half the drawing to form a half crescent  and then redraws the full moon 

again. This displays when clear skies are reported during the night. 

 

 Much like the rain and sunshine animations, the moon animation uses two arrays. One for 

a static image to be drawn initially and a second to animate the filling and erasing of the half 

crescent. The initial for loop followed by two infinitely looping for loops structure is used again, 

setting each LED to silver (hex 0xC0C0C0). This loop is again broken by the “stop_animate” 

global boolean. Figure 61 shows the beginning and end stages of the animation. 
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Figure 62: There is only one array for the cloud animation that draws a static image of a cloud. This is 

displayed when broken clouds or overcast clouds are reported. 

 

 The cloud animation only has one array. The cloud array is iterated through a for loop, 

like the other animations, and individually sets each pixel to silver (hex 0xC0C0C0). The 

difference here being, the animation ends here. The cloud animation just draws the icon and 

keeps it displayed until the entire display clears. 
 

 
Figure 63: There are two arrays in this animation. One draws a static image of a cloud and another 

animates a sun shining behind the cloud. This is displayed when broken clouds or overcast clouds are 

reported during the day. 
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 The partly cloudy animation functions exactly as the rain, sun, and moon animations. 

There is a cloud array and a sun array. The cloud array is drawn in an initial for loop and then 

sun animates a radiating movement through an infinite while loop containing a draw and a clear 

for loop iterating through the sun array. This animation is stopped by the “stop_animate” global 

boolean. Figure 63 represents the final stage of the sun animation. 
 

 
Figure 64: There are two arrays in this animation. One that draws a static cloud and another that 

draws a small moon in the distance. This is displayed when clear skies are reported at night. 

 

 The same applies to the nighttime partly cloudy animation, only the sun array is replaced 

by a moon array found in the top right of Figure 64, which shows the moon fully drawn. 
 

 
Figure 65: There are two arrays in this animation. One draws a static cloud and another animates 

snow falling from it and accumulating at the bottom of the module. This is displayed when snow is 

reported.  
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 The snowing animation is essentially a copy of the rain animation with a few important 

distinctions. The rain array is replaced by the snow array, which staggers instead of falling in one 

direction. Additional pixels are also added to the snow array to fill in the bottom of the module, 

as seen in the right frame of Figure 65. The exact functional structure is used with the initial for 

loop and two infinite for loops drawing and clearing the snow array. The “stop_animate” global 

variable breaks this infinite loop. 

 

 
Figure 66: There are two arrays in this animation. One that draws a static cloud and another that 

draws a lightning bolt striking through it. This is displayed when thunderstorms are reported.  

 

 Again, using the same structure as with snow, rain, and sun animations, the thunderstorm 

animation first draws a cloud using the cloud array. A lightning bolt is then drawn by setting 

each pixel in the bolt array to yellow (hex 0xFFFF00) and erased using the same while loop 

structure. The pause between drawing pixels is slightly reduced to emphasize the speed of the 

lightning bolt. Figure 66 above shows this animation. 
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Figure 67: This animation is split into two arrays. Every other row starting from the top scrolls to the 

left and every other row starting from the second highest line scrolls to the right in a loop. This is 

displayed when fog is reported. 

 

 For the fog animation there are two arrays. One array scrolls to the right the other scrolls 

to the left. This is done by first concatenating the arrays and iterating through the result in a for 

loop to display the starting image. The left and right arrays are then shifted 9 pixels to the right 

and left respectively. All under an infinite while loop, the left array is iterated through a for loop 

which shifts each element of left to the left and appends each shifted pixel to a temporary “clear” 

array. After that, the right array goes through the same type of loop, only pixels are shifted to the 

right. In both loops, the pixel RGB is set to silver (hex 0xC0C0C0). After the right for loop, the 

shifted versions of the left and right arrays are built and ready to display. For each iteration of the 

infinite loop containing both the left and right for loops, the strip is updated. This allows for a 

frame by frame animation of complete shapes, rather than a pixel by pixel animation type used in 

the other animations. Each frame is displayed for ¼ of a second before being cleared. Each frame 

is cleared by iterating through the temporary “clear” array and setting each pixel to zero. The 

strip is not updated until the completion of the clear array loop, so the entire frame is cleared 

instead of pixel by pixel. Figure 67 shows various frames of the fog animation. The 

“stop_animate” global boolean is used to break the infinite loop. 
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Figure 68: This animation converts a string of ASCII characters into pixel indexes on the matrix. With 

this, static letters are drawn and remain in place. 

 

 The staticText() class takes a string as an input and then converts it into an array of pixels 

corresponding to each letter. This is done by inheriting the characters.py library; a separate file 

containing a dictionary of the pixel coordinates required to draw any ASCII character on this 

display. The staticText() class iterates through each character of the input string and compares it 

to the dictionary of ASCII characters in characters.py. When it finds the matching key element in 

the dictionary, staticText() adds the corresponding array of tuples that are required to draw that 

character to a new array. Once the final string array is built, the y coordinate is shifted according 

to the “y_shift” input parameter and the resulting array is iterated through. Each tuple element 

contains the  x and y coordinates that are then converted to an LED strip index through 

matrix().get_coord() and set to an input color. In each iteration of the loop, a pixel is drawn 

creating a cascading effect almost like drawing with a pencil or pen. The result is shown above in 

Figure 68. 
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Figure 69: This animation converts a string of ASCII characters into pixel indexes on the matrix. 

These pixels are shifted to the right and scroll from the right edge to the left in an infinite loop. 

 

 The scrollText() class uses the same algorithm as staticText() to convert input strings into 

tuple arrays of pixel coordinates required to draw the string. Much like the fog animation, 

scrollText shifts the array to the right and then frame by frame creates a new array shifted one 

pixel to the left. This creates a scrolling effect from right to left. Shifting the array to the right 

initially makes the text appear as if it has been strung around the back of the display and back 

around to the other side when the end of the word is reached. Figure 69 shows various frames of 

the string “61°F” as it moves from right to left in a loop. The “stop_animate” global boolean is 

again used to end the animation.  

5.4.2 Main() 

 The main() function of matrix.py initializes the matrix leds, measures patron’s distance 

from the display, determines the correct weather animation to display, and builds all the 

additional information to show on the display. After initializing the LED matrix, the main() 

function calls the echoSens().distance() function every half second to determine how far away 

any objects are from the display. This function call is within a while loop that will infinitely loop 

until a distance of less than 60 centimeters is recorded. When the main() function detects an 

object less than 60 centimeters away, it begins building the data that is to be shown on the 

display. 

 The main() function first uses the datetime Python library to determine the time and date, 

saving the date as a single string object and the hours and minutes of the current time as two 
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seperate string objects. Weather information is collected using the weather().getWeather() 

function and threads are created for the temperature, date, hour, minute, am/pm, wind label, and 

wind speed.  

 The main() function uses a variety of if statements to determine which weather animation 

is appropriate to show on the display given the current weather conditions returned by 

weather().getWeather(). If the main weather forecast is foggy the animation is set to the fog() 

class. If the main weather forecast is thunderstorms the animation is set to the thunder() class. If 

the main weather forecast is drizzle or rain the animation is set to the rain() class. If the main 

weather forecast is snow the animation is set to the snow() class. If the main weather forecast is 

clear and the weather().getWeather function returns a nighttime icon codeanimation is set to the 

moon() class, otherwise it is set to the sunshine() class. If the main weather forecast is cloudy, 

the main() function must determine how severe before assigning an animation. If the main 

weather forecast is cloudy and the forecast description is “few clouds” or “scattered clouds” the 

animation is set to the partcloud() class. If this is all true and the icon code is for the night time, 

then the animation is set to the nightpartcloud() class. Finally, if the main forecast is cloudy and 

the forecast description is “broken clouds” or “overcast clouds” the animation is set to the 

cloud() class. In the event of a forecast that is not common to the area, such as tornadoes or dust, 

the display will simply show a scrolling text of the main forecast. 

 Once the weather animation is determined, the main() function can start each thread and 

run every animation from the date to the wind speed in parallel, effectively displaying all of the 

information it collected. The display remains on for 60 seconds, then the strip is cleared and the 

“stop_animate” global boolean is set to false to clear any secondary animations. The GPIO pins 

are then reset and the whole process starts over again by measuring object distance until an 

object is detected 60 cm or closer to the display again. This process loops forever as long as 

power is connected to the Raspberry Pi. The matrix.py script is added to the end of the 

“/etc/profiles” configuration file built into the os of the Raspberry Pi, making the script run 

automatically after boot. This ensures that whenever the Raspberry Pi is turned off and back on 

again, the matrix.py script will automatically run without any input from the user. As long as the 

Raspberry Pi and display has power, the script is running and will display weather information 

when approached.  
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5.5 Chapter Summary 

 This chapter guides a user through the installation and development of all necessary 

software for implementing the display part of this system. Raspberry Pi setup is an important part 

of the software methodology. The correct versions of Raspian must be installed and the correct 

config settings set for the application code to work properly. Software libraries were a critical 

component of software for this project. Using the existing APA102 Python library means that 

low-level driver software does not need to be written to implement an application. Other 

important areas to note are the testing software, like module_test.py, which helps to debug 

certain areas of the display and fix any errors that occur. The application code, made up by the 

weather-test.py, matrix.py, echo_sens.py and charcters.py scripts, is the most important part of 

the software methodology. These scripts provide the necessary logic for full functionality of the 

display. 
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Chapter 6: Full System Integration  

 Chapter 6 details the process of implementing the system based on the project design 

described in previous chapters. This chapter includes changes and additions to the proposed 

design they were found to be needed during the implementation. The details of the working 

system, as well as the overall success and shortcomings if the initial version of the project are 

detailed here. The overall block diagram of the system is shown in Figure 70, noting the key in 

the upper right corner for guidance. The elements of the system flow from top to bottom to 

indicate the source of power and the end device that uses said power. The box denoted “SCC” 

stands for supplementary control circuit, and is the circuit that tells the wireless power transfer 

system to begin transfer after power-up. Furthermore, the dotted box describes the area at which 

the window to transfer power over will be located.  
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Figure 70: The diagram flows from top to bottom, indicating the direction of power flow. The window 

is located between the WPT transmitter and receiver. 
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6.1 Solar  
The purpose of the solar portion of the system is to generate power for the system as a 

whole. One of the necessary considerations was the location of the solar panel for maximum 

power generation. If any part of the solar panel is blocked from direct sunlight, including things 

like clouds and passing shadows, the power output of the panel decreases. The solar panel will be 

placed next to the bicycle racks outside the Atwater Kent Laboratories at WPI, as shown in 

Figure 71.  

 
Figure 71: The solar panel is located to the left of the entrance to Atwater Kent Laboratories, next to 

the bicycle racks. This location was chosen for its proximity to the stairwell and the amount of sun 

available in that area. 

 

 The solar panel mount constructed with assistance from WPI Facility’s Bill Appleyard 

used three centimeter thick 80/20 Aluminum bars and various connectors that were donated by 

Justin Woodard from National Grid. The mount for the solar module uses two major frame parts: 

a mount frame and L frame. The mount frame was made to directly connect to the solar panel 

and provide sections for the L frame to support the solar mount. These frame pieces were also 

designed to be shiftable so the mount can be angled at a varying range of angles from the ground. 

 The mounting frame is attached directly to the back of the solar panel, securely 

connecting to the L frame. The mounting frame needed to line up with screw holes on the solar 

panel. As a result, the frame’s dimensions are 194 centimeters long and 91 centimeters wide 
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instead of 2 meters long and 1 meter wide. Additionally, the middle connector on the frame 

needed to be slightly off-center in order to connect to the L frame properly, because the stake 

from the L frame is set directly in the center as seen in Figure 76. 

 

 
Figure 72: This picture depicts the right leg of the solar mount connected with an L bracket and corner 

bracket. 

 

 The L frame is the main support for the solar mount. Since the L frame has two 

connectors at the bottom of the mounting frame that can change angles, the solar mount can also 

be set up to hold the solar panel up at different angles off the ground. The range of angles that 

the solar panel can achieve is about 5 to 85 degrees. This design allows the panel to be set up on 

terrain that isn’t completely flat. The pieces used to build this frame are 4 corner brackets, 1 tee 

bracket, and 2 L brackets, as shown in Figures 73, 74, 75, and 76. In order to adjust the frame for 

the different lengths, the brackets on the frame itself can be loosened and shifted to the lengths 

needed for the angle required as seen in Figure 72. 
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Figure 73: Middle Leg of Solar Mount. This picture depicts the middle leg of the solar mount 

connected with a tee bracket and two corner brackets. 

 

 
Figure 74: This picture depicts the left leg of the solar mount connected with an L bracket and corner 

bracket. 
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Figure 75: This picture depicts the screw connection between the bottom frame and the connecting 

frame between the legs. 

 

 

 
Figure 76: This picture depicts the whole solar mount connected to the flipped solar panel. All 

connections are highlighted and the movable parts and the directions are marked. 
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6.2 WPT 
Upon linking the solar charge controller to the WPT system, it was discovered that the 

charge controller did not regulate its load-side voltage to 24V, but rather just connected the load 

to the battery output through a relay. Due to the fact that this part of the system uses two sealed 

lead acid batteries in series, this means that the battery voltage would fluctuate from over 25V to 

under 24V. A separate component is needed to ensure that the input voltage to the wireless 

power system is a constant 24V. The ideal solution is to use a buck-boost DC-DC converter to 

convert voltages both above and below 24V to 24V. However, a requirement for anything in the 

power path of the system is that it must be capable of sustaining a current flow of 6A. Of the 

available buck-boost converters available on Amazon, none hold a wattage rating that was 

sufficient for the intended output power for the device. However, there are plenty of buck 

converters that have >150W ratings and ideal voltage input and output ranges for the system, 

such as the Aideepen 20A 300W Buck Converter [50], shown in Figure 77. 

 
Figure 77: This module features a wide input and output range, large heatsinks, and both output 

voltage and current adjustment knobs. 

 

This part allows for the input voltage to be regulated to no more than 24V. At below a battery 

voltage of 24V, the buck converter output will be the battery voltage. Any voltage between 19V 

and 24V is an acceptable input for the wireless power transmitter [5]. 
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 The one contained issue within the pre-built wireless power kit is that the transmitter is 

designed to power-up, but not immediately initiate power transfer. The user is intended to initiate 

transfer themselves by pressing in the rotary encoder on the board. This poses a problem for a 

permanent installation of the system, considering there cannot be any user interaction to initiate 

transfer once the system is set up. If the system loses power, such as at night, it needs to 

automatically resume transfer once it receives power again. The easiest fix to this problem is to 

reprogram the microcontroller on the transmitter to perform the transfer start after a certain 

delay, rather than a button press. However, reprogramming the XMC1300 family of 

microcontrollers requires the XMCTM Link debug probe, which comes at an additional $90 cost 

[51]. The alternative solution is to create a circuit that would simulate the pressing of the rotary 

encoder automatically after a short delay. The circuit that is used is denoted as a supplementary 

control circuit (SCC) in the block diagram and is shown in Figure 78. 

 

 
Figure 78: This design consists of two operational amplifiers, two diodes, and a FET. When power is 

applied to the system, the circuit creates a ~1 second pulse after a delay of ~3 seconds. 

 

The heart of this control circuit is the LMC6484IN, a simple rail-to-rail operational 

amplifier [43]. The LMC6484IN is configured as two single supply op-amp comparators, with 

the rails connected to 5V and Ground. The entire operation is controlled by the interaction of the 
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timing resistors and capacitors with the non-inverting input of one amplifier, and the inverting 

input with the other. There is a voltage divider network on the inverting input of one amplifier 

and the non-inverting input of the other to bias the inputs at ~3.3V. Switch S1 simulates the 

circuit receiving power. Two reverse bias diodes are on the outputs of the amplifiers. An 

oscilloscope readout of the module under operation is shown in Figure 79. 

 

 
Figure 79: Channels 1 and 2 show the voltages on C1 and C2, respectively. Channels 3 and 4 show the 

LMC6484IN outputs, where there is approximately 1.3 seconds of overlap between the signals. 

 

Once power is applied to the circuit, the voltage on the non-inverting input of U1A 

begins to increase to VCC as C1 is charged through R2. Given the equation 𝑉	 = 	𝑉P ∗ (1 −

𝑒R
S

TUVW), and solving for t using the values for R2 and C1 in the schematic, the charge time to hit 

the bias threshold is approximately 3s. The voltage on the inverting input of U2A also begins to 

increase to VCC as C2 is charged through R5. Using the same equation, the charge time to hit the 

bias threshold is approximately 4.3s. While U1A outputs HIGH after 3 seconds, U2A remains 

high for 4.3 seconds from power-up, then goes LOW. This allows for 1.3 seconds between both 

output changes where both outputs will be high. During this period of time, there is no current 

through the pull-up resistor, because there is no path to ground. This causes the voltage on the 

IRF520N MOSFET gate to jump to 5V and complete the circuit to start power transfer. 
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The other charge controller operates after the wireless power receiver. This unit is 

responsible for converting the unregulated DC output of the receiver to a constant voltage output 

supply and a ~12V charge to and from the battery. The circuit is controlled by the BQ25703a 

charge management integrated circuit, which is programmed via I2C from the Raspberry Pi. The 

power from the input to the output is regulated by four MOSFETs, which intersect the line from 

ADAPTER and VSYS/BATT shown below in Figure 80 [52]. The BQ25703a is programmed to 

draw 6A from the wireless power receiver, and provide a constant current out. The constant 

current draw is important, as it keeps the wireless power receiver operating in a stable state. 

 
Figure 80: The main elements of this application schematic are the inductor and the FETs Q1-Q4, 

which create a buck-boost configuration that can be used to charge a wide range of batteries. 

 

Unfortunately, after testing and debugging the BQ25703a circuit for a while, the charger 

would not provide an output to the battery. The chip was receiving successful I2C commands, but 

there was no output to the battery, no matter what was tried. Given the fact that time was running 

out, it was decided that a second charge controller, identical to the one on the solar side of the 

system, would be used to replace the BQ25703a. The 20A 300W buck converter comes in handy 

here, as it allows the user to set an output current limit, a feature that the system using the 
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BQ25703a would not need, but that this new system element would require to keep charge 

current below 6A. 

Like the solar charge controller, the charger connects the battery straight to the load 

without regulation. The load for the charger is the display and Raspberry Pi, which both run off 

of regulated 5V sources. In order to create a 5V source for the load, an additional power stage is 

required. For this, an additional DC-DC buck converter is used. The Aideepen 20A 300W 

Adjustable Buck Converter is used once again for this part of the system. The 20A MAX output 

current, 15A suggested output current is plenty to ensure the display and Raspberry Pi have a 

regulated 5V input with plenty of current to run everything. 

Figure 81 shows a model of the housing for mounting the WPT units on the windows. 

The model is simply a representation of the actual housing. The housing itself will be thinner 

than shown in Figure 81 because only a small amount of space is needed to house the WPT units. 

To mount the housing onto the windows, four suction cups will be used that are made to hold up 

window mounted bird feeders which are also made out of acrylic frames. Placed between the 

suction cups will be the receiver or transmitting coils and the attached heat sink that is connected 

to it. Behind these pieces will be the WPT’s circuit board and affiliated circuitry. In the model, 

the top and bottom of the housing was slanted so that water would not gather anywhere and will 

drip off of the housing at the outer edge. On the bottom of the housing, vents were added to 

allow the WPT’s circuits to passively cool faster and the originally clear acrylic was changed to 

mirrored acrylic to prevent heat from sun exposure from gathering. Additionally, to protect the 

charge controller circuits, batteries, and other electrical components that are housed outside and 

inside, simple acrylic boxes will be made to house them within. The outside circuitry housing is 

12 inches long by 12 inches wide by 24 inches tall. The inside circuitry housing dimensions are 

the same as the outside circuitry housing, but it is 12 inches tall instead of 24 inches. 
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Figure 81: The dimensions of this window mount for the WPT housing are 5 inches by 5 inches by 7 

inches. 

6.3 Display 
 The power output from the solar panel and WPT, which will be stored in a battery inside 

the Atwater Kent Laboratories, will be used to light up the LED display. The display will show 

animations such as weather, temperature, time, and date, and will have features such as motion 

detection for power conservation. The display will be turned off until an object comes within 

23.6 inches, which will help minimize the power draw. The nine modules will be displayed 

vertically, connected top to bottom in a single line, which will be suspended within an acrylic 

casing and displayed in the entrance of the Atwater Kent Laboratories. 

6.4 Chapter Summary 

 The initial implementation of the system came with many of the initially expected 

challenges. Multiple parts required supplemental circuitry to be integrated properly, but the 

overall design of the system did not need to change drastically based on the findings.  After 

making necessary changes the project as a whole works as intended and adheres to the proposed 

implementation.   
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Chapter 7: Verification 

 Many measures were taken to ensure that the system works properly based on the overall 

design.  This chapter includes the details of troubleshooting the initial implementation as well as 

the results of any testing done of specific parts of the system to determine its capability.  This 

chapter includes load testing for the solar and WPT and debugging of the display hardware.       

7.1 Solar 
 Unlike other aspects of this project, the solar system is entirely off the shelf. Testing 

entailed making sure the solar panel was operational and can be implemented into the built 

system at the completion of the project. The solar module was tested at several different loads to 

prove its operationality. The results of this are shown in Table __. 

 

Table 3: Solar Panel Test Results 

Load Light cloud at 12PM 

None 14.2V 

1kΩ 12.8V 

10kΩ 13.0V 

100kΩ 13.9V 

 

As can be seen from the load testing results, the panel can output a relatively stable 

voltage even under a wide range of loads. Under a minimal load of 100kΩ, output voltage drops 

only slightly of 300mV from no load. Under a heavy load of 1kΩ, the output voltage drops 1.4V 

from no load, but still remains well above the operating voltage of the system, as the boost 

converter requires at least 10.5V to supply power to the WPT. This heavy load is much greater 

than the expected average load of the system. Even under cloudy conditions, the panel will be 

able to supply enough power for the system to run.  



 

 92 

7.2 WPT 
Given the fact that the WPT solution for the project is a complete solution, its 

implementation is fairly easy electronically. The first step of integrating WPT into the system is 

to verify the operation of the devices. This means performing tests at various input currents and 

varying the load conditions to determine the total power transferred and the efficiency of the 

device under load. To do this, a current limited DC power supply and a DC electronic load in 

constant current (CC) mode is used. In this test, the coils of the transmitter and receiver are 

aligned and separated by approximately 10mm to simulate real installation conditions. The 

transmitter is connected to the lab power supply and set at 24V. The receiver is connected to the 

electronic load and the current is set at 500mA. The load input is turned on, followed by the 

supply output. The wireless power transfer system under test is shown in Figure 82.  

 

 
Figure 82: The transmitter has the SCC connected, and the coils have heat sinks to prevent thermal 

damage. The green and blue lights indicate normal operating conditions. The component tube between 

the coils is simply used as a non-metallic spacer. 

 

After transfer starts, values for both input voltage and current, as well as output voltage 

and current are recorded. Using the input parameters, the input power , PIN, to the transmitter is 

calculated using the equation 𝑃 = 𝐼𝑉. The same is done for output power, POUT, using the output 

parameters. Using the input and output power, the efficiency of the system is computed using the 
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equation 𝜂 = 𝑃𝑂𝑈𝑇
𝑃𝐼𝑁

. The results of the test are shown in Table 4, which was carried out in a 

controlled lab environment with a constant current DC electronic load and current limited power 

supply. 

 

Table 4: WPT Load Testing Data 

VIN (V) VOUT (V) IIN (A) IOUT (A) PIN (W) POUT (W) Efficiency (%) 

23.9 18.5 5.7 6 136.23 111 81.47985025 

23.9 18.7 5.2 5.5 124.28 102.85 82.75667847 

23.9 18.9 4.8 5 114.72 94.5 82.37447699 

23.9 17.8 4.1 4.5 97.99 80.1 81.743035 

23.9 18.2 3.8 4 90.82 72.8 80.15855538 

23.9 18.6 3.4 3.5 81.26 65.1 80.11321683 

23.9 18.85 3 3 71.7 56.55 78.87029289 

23.9 19.1 2.5 2.5 59.75 47.75 79.91631799 

23.9 19.35 2.1 2 50.19 38.7 77.10699342 

23.9 19.6 1.7 1.5 40.63 29.4 72.36032488 

23.9 20 1.3 1 31.07 20 64.37077567 

23.9 20 0.9 0.5 21.51 10 46.49000465 

 

The results for system efficiency are plotted against input power to form the plot shown 

in Figure 83. Looking at the plot, it can be seen that the system can achieve efficiencies upwards 

of 80%, which is pretty impressive considering the coils have a centimeter of separation. 

However, the efficiency rapidly drops off at lower input powers. At lower than 40W, efficiency 

drops to less than 75%, and at lower than 25W, efficiency starts to drop below 50%. This could 

be caused by software frequency compensation or ideal hardware ranges located at higher 

currents, with the general assumption that the 200W kit will be operated at higher power loads 

most of the time [44]. 
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Figure 83: Efficiency tends to increase with input power. Max efficiency is reached at slightly over 

100W. 

 

Upon testing the module, particularly at higher currents like 6A, parts of the system start 

to get quite hot. Würth Elektronik recommends that for applications transferring over 150W, air 

cooling should be used to prevent damage to the components [44]. However, this is not a 

problem, considering the input power to the system is regulated to 150W. Additionally, 40mm x 

40mm aluminum heat sinks are placed on the coils to assist with heat dissipation. 

7.3 Display 
The first error encountered when constructing the display was an error in the PCB design. 

The Right Main PCB was incorrectly designed so that the signals were not routed correctly 

between individual strips from left to right. This error led to a significant delay in the progress of 

constructing the display, as the PCB had to be redesigned and ordered before any module could 

be completed. The PCBs were successfully redesigned, and weeks later the modules were 

completed after receiving the new Right Main PCBs. 
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Troubleshooting the display modules began by testing each of the nine modules 

individually by using a test program that would turn all the LEDs in the module on sequentially 

with a single color . In testing the modules for the first time, only one of the nine modules 

worked completely. Eight modules had a similar problem where only a consecutive few of the 

ten LED strips would turn on. Many of the modules were detected to have shorts where the ends 

of the LED strips were soldered to the left and right PCBs. These shorts were unexpected 

because they were difficult to identify visually, as the shorts occurred where solder had flowed 

underneath the strip and contacted the pads on the bottom of the strip. Later it was determined 

that the high frequency of these issues was due to the adhesive on the underside of the strip 

allowing the solder to easily flow between pads. These errors were resolved by analyzing the 

signals at each solder joint where the following strip was not activated, and resoldered the joints 

more carefully so no short would occur. 

Another, however less frequent, cause of fault in the modules was that a couple LEDs 

were found to be faulty. This was determined by analyzing the signals output by a single LED 

and finding that either the data, clock, or both signals had been corrupted by the faulty LED, thus 

not allowing any subsequent LEDs to function. Of the total 900 LEDs, two were found to be 

faulty.   These LEDs were replaced by replacing the entire strip of which the faulty LED was 

located.  After all hardware errors were remedied, all nine display modules were able to work 

together to form a continuous display, as seen in Figure 84 below. 
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Figure 84: From top to bottom the display shows the following information: date, weather 

animation, outside temperature, time, wind speed. 

 

As seen in Figure 85, the display case was changed to a four sided box instead of having 

open sides. This change was implemented to prevent anyone from touching the circuitry within 

the case. The new design also provided support for the acrylic holding up the modules. 
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Figure 85: Picture of the final display case with the LED matrices running the program within 

it. 

7.4 Total Integration 

Each part of the system is tested individually to ensure that they work as standalone 

elements. Then, they are integrated into the full system. The full system block diagram that was 

used in Chapter 6, but with additional annotations, is shown in Figure 86. Voltage and current 

inputs and outputs are denoted at each stage of the system. All power flowing through the system 
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is DC, with the exception of the wireless power transfer system, which has a contained high 

frequency AC element to drive the coils.  

 
Figure 86 : The text on the left indicates the various voltage and current readings at all points of the 

system. Data transfer is denoted with a blue arrow, while power is denoted with a red arrow. 

 

 Before integrating every single element of the project into one system, elements are 

tested in groups of items that grow with each iteration to remove confusion and complexity, and 

to isolate any errors. For example, the components that would reside on the outside of the 
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building were tested first. This includes the photovoltaic panel, the charge controller, the 24V 

9AH battery, the buck converter, and the wireless power transmitter with supplementary control 

circuit. Figure 87 illustrates the testing of the “outside” electronics. 

 

 
Figure 87: These components are housed in the outside box and provide the necessary power path to 

the wireless power transmitter. 

 

On the inside of the building, the electronics include the wireless power receiver, the 

second charge controller, the 12V 75AH battery, and the second buck converter. These 

components are pictured in Figure 88. The second buck converter is not shown, because it is 

connected in close proximity to the Raspberry Pi and display, in the event that long wires cause 

large, unwanted voltage drops. Additionally, an ammeter is connected in series with the wireless 

power input for testing. As shown, the ammeter reads about 5A. This number varies from 4.5A 

to 6A based on coil alignment and distance, but never exceeds 6A, which would indicate 

successful transfer testing for this system. 
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Figure 88: These components are housed in the inside box and provide the necessary power path from 

the wireless power receiver to the battery and even further, the display. 

 

 Power transfer through the window was inefficient and sometimes unfeasible because the 

windows of the Atwater Kent Laboratories are thicker than initially anticipated. As a result, 

facilities would either need to replace the window with a thinner piece of glass or simply wire a 

power line through the window. It was decided on routing a wire through the window and into a 

new display casing to the WPT because there are uncertainties with mounting the display case on 

the window. The new display casing dimensions can be seen in Figure 89. Additionally, a new 

housing to hold the batteries was created, as seen in Figure 90. 
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Figure 89: The circuitry housing is 36 inches long by 6.5 inches wide  by 4 inches tall. 

 

 
Figure 90: The battery housing is 16 inches long by 6.5 inches wide  by 10 inches tall. 

7.5 Chapter Summary 

Even with rigorous testing of every component, initial implementation of the system 

proved to have many problems that needed to be worked out.  Several changes were made to 

ensure everything was working properly.  Despite these issues, the overall design of the systems 

did not change much, as it still proved effective after implementation was complete and the 

entire system worked as intended.   
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Chapter 8: Conclusion 

The solar panel works as intended, providing necessary power to the system during 

daylight hours. Figure 69 shows the panel outside Atwater Kent Laboratories in its final location. 

It has a maximum output of 305W and an average of approximately 200W, which is more than 

enough to power the system. The excess power is used to charge a battery which will provide 

power to the system when the panel is not operational. The panel, which is in new condition has 

ample longevity, and the only maintenance required is cleaning the surface of the panel about 

every six months.  

As a prebuilt system, the operating characteristics of the WPT component of this project 

are very defined. The system has an unregulated input, so the power source has to be a 24V 

regulated power supply. While the system advertises 200W of input power, the actual maximum 

input power for the stock modules is closer to 150W. To increase to 200W, active cooling is 

required. At 24V, this works out to 6.25A of input current. The final system is designed to accept 

a regulated 24V 6A input source. The input to the system is a 24V output boost converter, which 

will act as a regulated constant voltage power supply for the transmitter module. Efficiency of 

the system, as shown in section 7, increases with input current. At an input of 5.2A and a load 

current of 5.5A, the system is expected to operate at 83% efficiency. Based on the fact that coil 

current has an effect on output parameters, the output voltage will likely vary from 18 to 22V. 

The output of the system feeds into the charger, which has an input voltage range of 0 to 24V, 

and an input current range of 0 to 6.35A, ideal ranges for these output parameters.  

When constructed as intended and provided necessary power, and signal from an external 

microprocessor, seven of the nine constructed modules work properly to form a single, 

continuous display. Although not all of the modules that were initially anticipated were acquired, 

the display still succeeds as a self-contained and working device for showing a wide range of 

information. 

Coupled with the completed software this module display will have a variety of features. 

Using the openweathermap API, the display should be able to identify different weather 

conditions. Using this information, the APA102 Python driver will import custom created 

animation arrays and loop through them to display what the weather is like outside. In addition to 

this, an ultrasonic sensor will measure pulse data width signals using I2C to determine people’s 
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distance from the Raspberry Pi and will display an unlocking animation that corresponds to the 

distance one is from the display. Once unlocked, the display will show the weather animation, 

the time, and the date. 

 
Figure 91: Picture of the final system with the solar panel generating power, the wireless power 

transfer system transferring power, and the display running the program, completely off-grid. 

 

There are 4 mounts or housings are the solar mount, the WPT and circuitry housings, 

battery housing, and the display case. The solar mount, if built as intended, should be able to 

hold up the solar module at a 45 degree angle and should be staked into the ground after 

determining a place to construct it. The mount should be into the ground because it will prevent 

the mount from shifting and it is more aesthetic than putting a plate with sandbags under the 

solar module.  

 The WPT and circuitry housing will be inside of Atwater Kent Laboratories. This 

housing, that also needs to be built, will protect the WPT and other circuitry from getting 

touched or damaged. To connect the solar panel to the components within this housing, a drilled 

hole through the building will need to be made to wire the components together in the safest way 

possible. The battery housing is a simple acrylic box that also needs to be built. They will 

encompass the batteries to protect them from being tampered with. 
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 The display case will stand on its own, as seen in Figure 91 above along with the rest of 

the system. To set up the LED matrix within the case, simply slide the matrix down the opening 

at the top and store the Raspberry Pi in the box attached at the top. The display case will also 

protect and support the LED matrix and Raspberry Pi from all sides and the front of the display 

case is sanded down to translucence. The translucence will act as a light diffuser and blur the 

electronics behind the acrylic. The circuitry won’t be viewable unless the viewer looks in from 

the side. 

 Overall, all of these displays need to be installed and set up for permanent residence. To 

judge the cost of setting all of these displays and wiring them all, we consulted Ronald O’Brien. 

From his estimates, the cost of implementing this system into the building would be around 500 

to 800 dollars. This cost will include, drilling through the wall for the wires, setting up the solar 

mount, and buying and connecting all the wires. 

8.1 Future Work 

 The best way to expand upon this project in the future would be to research and 

implement an alternate method of WPT. The WPT was the weakest part of the system, only able 

to transmit a portion of the power generated from the solar panel. To bolster the entire system’s 

reliability and efficiency, the WPT would be the first place to make changes such that it can 

support a greater power transfer and at a higher efficiency. This means replacing the current 

WPT system or finding an optimal window to utilize WPT. 

 The display is optimized for expansion because it is a modular system. Additional display 

modules could be created to enlarge the display and change its shape. This would also mean the 

hardware and software for the display could be updated as well. A larger display would make 

room for more animations and information. The display could also be made interactive, with 

sensors for detecting human input.   

 If this project were to be implemented in the future, an optimal location should be found 

based on where the solar panel will be most efficient, ideally a rooftop. Additionally, the WPT 

will not work very well through thick exterior windows. If the hardware for WPT technology 

were to be improved, this would potentially not be an issue. For future work, a thin medium 

through which to transfer power should be prepared to properly demonstrate the system’s uses 

instead of just showcasing the technology.  
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Appendix A: Communications Python Code 
 
from smbus2 import SMBus 

import time 

 

class SMBusI2C(object): 

 

 def read16(addr, cmd): 

 

  with SMBus(1) as dev: 

   dat = dev.read_i2c_block_data(addr, cmd, 2) 

 

  return dat 

 

 def write16(addr, cmd, data): 

 

  with SMBus(1) as dev: 

   lsb = data & 0x00FF 

   msb = (data & 0xFF00) >> 8 

 

   dev.write_byte_data(addr, cmd, data) 

   dev.write_byte_data(addr, cmd + 1, data) 

 

if __name__ == '__main__': 

 

 addr = 0x6B 

 

 time.sleep(1) 

  

 write16(addr, 0x00, 0x020E) #Default ChargeOption Values 

 write16(addr, 0x04, 0x3400) #Set MaxChargeVoltage to 12288mV 

 write16(addr, 0x02, 0x1000) #Set ChargeCurrent to 512mA 

 time.sleep(1) 

 current = read16(addr, 0x02) 

 voltage = read16(addr, 0x04) 

 

 time.sleep(1) 
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Appendix B: APA102 Python Library 
"""This is the main driver module for APA102 LEDs""" 

import Adafruit_GPIO as GPIO 

import Adafruit_GPIO.SPI as SPI 

from math import ceil 

 

RGB_MAP = {'rgb': [3, 2, 1], 'rbg': [3, 1, 2], 'grb': [2, 3, 1], 

     'gbr': [2, 1, 3], 'brg': [1, 3, 2], 'bgr': [1, 2, 3]} 

 

 

class APA102: 

 """ 

 Driver for APA102 LEDS (aka "DotStar"). 

 

 (c) Martin Erzberger 2016-2018 

 

 Public methods are: 

  - set_pixel 

  - set_pixel_rgb 

  - show 

  - clear_strip 

  - cleanup 

 

 Helper methods for color manipulation are: 

  - combine_color 

  - wheel 

 

 The rest of the methods are used internally and should not be used by the 

 user of the library. This file is the main driver, and is usually used "as is". 

 

 Very brief overview of APA102: An APA102 LED is addressed with SPI. The bits 

 are shifted in one by one, starting with the least significant bit. 

 

 An LED usually just forwards everything that is sent to its data-in to 

 data-out. While doing this, it remembers its own color and keeps glowing 

 with that color as long as there is power. 
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 An LED can be switched to not forward the data, but instead use the data 

 to change its own color. This is done by sending (at least) 32 bits of 

 zeroes to data-in. The LED then accepts the next correct 32 bit LED 

 frame (with color information) as its new color setting. 

 

 After having received the 32 bit color frame, the LED changes color, 

 and then resumes to just copying data-in to data-out. 

 

 The really clever bit is this: While receiving the 32 bit LED frame, 

 the LED sends zeroes on its data-out line. Because a color frame is 

 32 bits, the LED sends 32 bits of zeroes to the next LED. 

 As seen above, this means that the next LED is now ready 

 to accept a color frame and update its color. 

 

 So that's really the entire protocol: 

 - Start by sending 32 bits of zeroes. This prepares LED 1 to update 

   its color. 

 - Send color information one by one, starting with the color for LED 1, 

   then LED 2 etc. 

 - Finish off by cycling the clock line a few times to get all data 

   to the very last LED on the strip 

 

 The last step is necessary, because each LED delays forwarding the data 

 a bit. Imagine ten people in a row. When you yell the last color 

 information, i.e. the one for person ten, to the first person in 

 the line, then you are not finished yet. Person one has to turn around 

 and yell it to person 2, and so on. So it takes ten additional "dummy" 

 cycles until person ten knows the color. When you look closer, 

 you will see that not even person 9 knows its own color yet. This 

 information is still with person 2. Essentially the driver sends additional 

 zeroes to LED 1 as long as it takes for the last color frame to make it 

 down the line to the last LED. 

 """ 

 # Constants 

 MAX_BRIGHTNESS = 31  # Safeguard: Max. brightness that can be selected. 

 LED_START = 0b11100000  # Three "1" bits, followed by 5 brightness bits 
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 BUS_SPEED_HZ = 8000000  # SPI bus speed; If the strip flickers, lower this value 

 

 def __init__(self, num_led, global_brightness=MAX_BRIGHTNESS, 

     order='rgb', mosi=10, sclk=11, bus_speed_hz=BUS_SPEED_HZ, 

     ce=None): 

  """Initializes the library. 

   

  """ 

  self.num_led = num_led  # The number of LEDs in the Strip 

  order = order.lower() 

  self.rgb = RGB_MAP.get(order, RGB_MAP['rgb']) 

  # Limit the brightness to the maximum if it's set higher 

  if global_brightness > self.MAX_BRIGHTNESS: 

   self.global_brightness = self.MAX_BRIGHTNESS 

  else: 

   self.global_brightness = global_brightness 

 

  self.leds = [self.LED_START, 0, 0, 0] * self.num_led  # Pixel buffer 

 

  # MOSI 10 and SCLK 11 is hardware SPI, which needs to be set-up differently 

  if mosi == 10 and sclk == 11: 

   self.spi = SPI.SpiDev(0, 0 if ce is None else ce, bus_speed_hz)  # Bus 0 

  else: 

   self.spi = SPI.BitBang(GPIO.get_platform_gpio(), sclk, mosi, ss=ce) 

 

 def clock_start_frame(self): 

  """Sends a start frame to the LED strip. 

 

  This method clocks out a start frame, telling the receiving LED 

  that it must update its own color now. 

  """ 

  self.spi.write([0] * 4)  # Start frame, 32 zero bits 

 

 def clock_end_frame(self): 

  """Sends an end frame to the LED strip. 

 

  As explained above, dummy data must be sent after the last real colour 
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  information so that all of the data can reach its destination down the line. 

  The delay is not as bad as with the human example above. 

  It is only 1/2 bit per LED. This is because the SPI clock line 

  needs to be inverted. 

 

  Say a bit is ready on the SPI data line. The sender communicates 

  this by toggling the clock line. The bit is read by the LED 

  and immediately forwarded to the output data line. When the clock goes 

  down again on the input side, the LED will toggle the clock up 

  on the output to tell the next LED that the bit is ready. 

 

  After one LED the clock is inverted, and after two LEDs it is in sync 

  again, but one cycle behind. Therefore, for every two LEDs, one bit 

  of delay gets accumulated. For 300 LEDs, 150 additional bits must be fed to 

  the input of LED one so that the data can reach the last LED. 

 

  Ultimately, we need to send additional numLEDs/2 arbitrary data bits, 

  in order to trigger numLEDs/2 additional clock changes. This driver 

  sends zeroes, which has the benefit of getting LED one partially or 

  fully ready for the next update to the strip. An optimized version 

  of the driver could omit the "clockStartFrame" method if enough zeroes have 

  been sent as part of "clockEndFrame". 

  """ 

  # Send reset frame necessary for SK9822 type LEDs 

  self.spi.write([0] * 4) 

  # Round up num_led/2 bits (or num_led/16 bytes) 

  for _ in range((self.num_led + 15) // 16): 

   self.spi.write([0x00]) 

 

 def clear_strip(self): 

  """ Turns off the strip and shows the result right away.""" 

 

  for led in range(self.num_led): 

   self.set_pixel(led, 0, 0, 0) 

  self.show() 

 

 def set_pixel(self, led_num, red, green, blue, bright_percent=100): 
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  """Sets the color of one pixel in the LED stripe. 

 

  The changed pixel is not shown yet on the Stripe, it is only 

  written to the pixel buffer. Colors are passed individually. 

  If brightness is not set the global brightness setting is used. 

  """ 

  if led_num < 0: 

   return  # Pixel is invisible, so ignore 

  if led_num >= self.num_led: 

   return  # again, invisible 

 

  # Calculate pixel brightness as a percentage of the 

  # defined global_brightness. Round up to nearest integer 

  # as we expect some brightness unless set to 0 

  brightness = ceil(bright_percent * self.global_brightness / 100.0) 

  brightness = int(brightness) 

 

  # LED startframe is three "1" bits, followed by 5 brightness bits 

  ledstart = (brightness & 0b00011111) | self.LED_START 

 

  start_index = 4 * led_num 

  self.leds[start_index] = ledstart 

  self.leds[start_index + self.rgb[0]] = red 

  self.leds[start_index + self.rgb[1]] = green 

  self.leds[start_index + self.rgb[2]] = blue 

 

 def set_pixel_rgb(self, led_num, rgb_color, bright_percent=100): 

  """Sets the color of one pixel in the LED stripe. 

 

  The changed pixel is not shown yet on the Stripe, it is only 

  written to the pixel buffer. 

  Colors are passed combined (3 bytes concatenated) 

  If brightness is not set the global brightness setting is used. 

  """ 

  self.set_pixel(led_num, (rgb_color & 0xFF0000) >> 16, 

        (rgb_color & 0x00FF00) >> 8, rgb_color & 0x0000FF, 

        bright_percent) 
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 def rotate(self, positions=1): 

  """ Rotate the LEDs by the specified number of positions. 

 

  Treating the internal LED array as a circular buffer, rotate it by 

  the specified number of positions. The number could be negative, 

  which means rotating in the opposite direction. 

  """ 

  cutoff = 4 * (positions % self.num_led) 

  self.leds = self.leds[cutoff:] + self.leds[:cutoff] 

 

 def show(self): 

  """Sends the content of the pixel buffer to the strip. 

 

  Todo: More than 1024 LEDs requires more than one xfer operation. 

  """ 

  self.clock_start_frame() 

  # xfer2 kills the list, unfortunately. So it must be copied first 

  # SPI takes up to 4096 Integers. So we are fine for up to 1024 LEDs. 

  self.spi.write(list(self.leds)) 

  self.clock_end_frame() 

 

 def cleanup(self): 

  """Release the SPI device; Call this method at the end""" 

 

  self.spi.close()  # Close SPI port 

 

 @staticmethod 

 def combine_color(red, green, blue): 

  """Make one 3*8 byte color value.""" 

 

  return (red << 16) + (green << 8) + blue 

 

 def wheel(self, wheel_pos): 

  """Get a color from a color wheel; Green -> Red -> Blue -> Green""" 

 

  if wheel_pos > 255: 
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   wheel_pos = 255  # Safeguard 

  if wheel_pos < 85:  # Green -> Red 

   return self.combine_color(wheel_pos * 3, 255 - wheel_pos * 3, 0) 

  if wheel_pos < 170:  # Red -> Blue 

   wheel_pos -= 85 

   return self.combine_color(255 - wheel_pos * 3, 0, wheel_pos * 3) 

  # Blue -> Green 

  wheel_pos -= 170 

  return self.combine_color(0, wheel_pos * 3, 255 - wheel_pos * 3) 

 

 def dump_array(self): 

  """For debug purposes: Dump the LED array onto the console.""" 

 

  print(self.leds) 
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Appendix C: Led Matrix Driver, Matrix.py 
 

from time import sleep 

from apa102_pi.driver import apa102 

from threading import Thread 

from characters import abcLib 

import requests, JSON 

from datetime import datetime 

import RPi.GPIO as GPIO 

import time 

 

class matrix: 

 def get_coord(coord,led_num): 

     col_const = led_num//10 

     led_index = (9-coord[0])*col_const+abs((((9-coord[0])%2)*col_const)-coord[1])-1 

     if coord[0]%2 ==1: 

         led_index = led_index+1 

     return led_index 

""" 

coord = get_coord(8,39,led_num) 

strip.set_pixel_rgb(coord, 0xFF0000) 

strip.show() 

""" 

class rain(Thread): 

 def __init__(self,led_num,strip): 

     self.led_num = led_num 

     self.strip = strip 

     super(rain, self).__init__() 

 def run(self): 

     cloud = [(1,10),(2,10),(3,10),(4,10),(5,10),(0,11),(6,11),(7,11), 

                 (8,11),(0,12),(5,12),(6,12),(9,12),(0,13),(5,13),(9,13), 

                 (0,14),(9,14),(0,15),(9,15),(0,16),(9,16),(1,17),(2,17), 

                 (3,17),(4,17),(5,17),(6,17),(7,17),(8,17),] 
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     rain =  [(2,18),(4,18),(6,18),(8,18),(1,19),(3,19),(5,19),(7,19), 

                 (0,20),(2,20),(4,20),(6,20)] 

     shift = 0 

     for pos in cloud: 

         off = pos[1] 

         offset = off+shift 

         coord = (pos[0],offset) 

         pixel = matrix.get_coord(coord,self.led_num) 

         self.strip.set_pixel_rgb(pixel, 0xC0C0C0) 

         sleep(0.025) 

         self.strip.show() 

     while True: 

         global stop_animate 

         for pos in rain: 

             off = pos[1] 

             offset = off+shift 

             coord = (pos[0],offset) 

             pixel = matrix.get_coord(coord,self.led_num) 

             self.strip.set_pixel_rgb(pixel, 0x0000FF) 

             sleep(0.025) 

             self.strip.show() 

         for pos in rain: 

             off = pos[1] 

             offset = off+shift 

             coord = (pos[0],offset) 

             pixel = matrix.get_coord(coord,self.led_num) 

             self.strip.set_pixel(pixel,0,0,0) 

             self.strip.show() 

         if stop_animate: 

             break 

          

class sunshine(Thread): 

 def __init__(self, led_num, strip): 

     self.led_num = led_num 
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     self.strip = strip 

     super(sunshine, self).__init__() 

 def run(self): 

     sun = [(3,13),(4,13),(5,13),(6,13),(2,14),(3,14),(4,14), 

                 (5,14),(6,14),(7,14),(2,15),(3,15),(4,15),(5,15),(6,15), 

                 (7,15),(2,16),(3,16),(4,16),(5,16),(6,16),(7,16),(2,17), 

                 (3,17),(4,17),(5,17),(6,17),(7,17),(3,18),(4,18),(5,18), 

                 (6,18)] 

     shine = [(0,15),(9,18),(9,15),(0,18),(9,13),(1,19),(1,12),(8,12),(8,19), 

              (0,11),(3,11),(6,11),(9,11),(9,20),(6,20),(3,20),(0,20), 

              (2,10),(4,10),(7,10),(0,13),(0,20),(3,20),(6,20),(9,20)] 

     shift = 0 

     for pos in sun: 

         off = pos[1] 

         offset = off+shift 

         coord = (pos[0],offset) 

         pixel = matrix.get_coord(coord,self.led_num) 

         self.strip.set_pixel_rgb(pixel, 0xFFFF00) 

         sleep(0.025) 

         self.strip.show() 

     while True: 

         global stop_animate 

         for pos in shine: 

             off = pos[1] 

             offset = off+shift 

             coord = (pos[0],offset) 

             pixel = matrix.get_coord(coord,self.led_num) 

             self.strip.set_pixel_rgb(pixel, 0xFFFF00) 

             sleep(0.025) 

             self.strip.show() 

         for pos in shine: 

             off = pos[1] 

             offset = off+shift 

             coord = (pos[0],offset) 
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             pixel = matrix.get_coord(coord,self.led_num) 

             self.strip.set_pixel(pixel,0,0,0) 

             self.strip.show() 

         if stop_animate: 

             break 

class moon(Thread): 

 def __init__(self, led_num, strip): 

     self.led_num = led_num 

     self.strip = strip 

     super(moon, self).__init__() 

 def run(self): 

     moon = [(3,12),(4,12),(5,12),(6,12),(2,13),(3,13),(4,13), 

             (5,13),(6,13),(7,13),(1,14),(2,14),(3,14),(4,14),(5,14),(6,14), 

             (7,14),(8,14),(1,15),(2,15),(3,15),(4,15),(5,15),(6,15), 

             (7,15),(8,15),(1,16),(2,16),(3,16),(4,16),(5,16),(6,16), 

             (7,16),(8,16),(1,16),(3,17),(2,17),(3,17),(4,17),(5,17),(6,17), 

             (7,17),(3,18),(4,18),(5,18),(6,18)] 

     stars = [(6,12),(5,13),(6,13),(7,13),(4,14),(5,14),(6,14),(7,14),(8,14), 

              (4,15),(5,15),(6,15),(7,15),(8,15),(4,16),(5,16),(6,16), 

              (7,16),(8,16),(5,17),(6,17),(7,17),(6,18)] 

     shift = 0 

     for pos in moon: 

         off = pos[1] 

         offset = off+shift 

         coord = (pos[0],offset) 

         pixel = matrix.get_coord(coord,self.led_num) 

         self.strip.set_pixel_rgb(pixel, 0xA9A9A9) 

         sleep(0.025) 

         self.strip.show() 

      

     while True: 

         global stop_animate 

         for pos in stars: 

             off = pos[1] 
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             offset = off+shift 

             coord = (pos[0],offset) 

             pixel = matrix.get_coord(coord,self.led_num) 

             self.strip.set_pixel_rgb(pixel, 0xA9A9A9) 

             sleep(0.025) 

             self.strip.show() 

         sleep(1) 

         for pos in stars: 

             off = pos[1] 

             offset = off+shift 

             coord = (pos[0],offset) 

             pixel = matrix.get_coord(coord,self.led_num) 

             self.strip.set_pixel(pixel,0,0,0) 

             self.strip.show() 

         sleep(1) 

         if stop_animate: 

             break 

       

 

class cloud(Thread): 

 def __init__(self, led_num, strip): 

     self.led_num = led_num 

     self.strip = strip 

     super(cloud, self).__init__() 

 def run(self): 

     cloud= [(1,10),(2,10),(3,10),(4,10),(5,10),(0,11),(6,11),(7,11),(8,11), 

                 (0,12),(5,12),(6,12),(9,12),(0,13),(5,13),(9,13),(0,14),(9,14), 

                 (0,15),(9,15),(0,16),(9,16),(0,16),(9,16),(1,18),(2,18),(3,18), 

                 (4,18),(5,18),(6,18),(7,18),(8,18)] 

     shift = 0 

     for pos in cloud: 

         off = pos[1] 

         offset = off+shift 

         coord = (pos[0],offset) 
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         pixel = matrix.get_coord(coord,self.led_num) 

         self.strip.set_pixel_rgb(pixel, 0xC0C0C0) 

         sleep(0.025) 

         self.strip.show() 

 

class partcloud(Thread): 

 def __init__(self, led_num, strip): 

     self.led_num = led_num 

     self.strip = strip 

     super(partcloud, self).__init__() 

 def run(self): 

     cloud= [(2,14),(3,14),(4,14),(5,14),(2,15),(6,15),(7,15), 

             (8,15),(2,16),(5,16),(6,16),(9,16),(2,17),(5,17), 

             (9,17),(2,18),(9,18),(3,19),(4,19),(5,19),(6,19), 

             (7,19),(8,19)] 

 

     sun = [(0,15),(1,15),(0,14),(1,14),(0,16),(1,16),(1,17),(0,18), 

            (0,10),(4,10),(1,11),(3,11),(5,11),(0,12),(4,12),(1,13), 

            (2,13),(3,13)] 

 

     shift = 0 

     for pos in cloud: 

         off = pos[1] 

         offset = off+shift 

         coord = (pos[0],offset) 

         pixel = matrix.get_coord(coord,self.led_num) 

         self.strip.set_pixel_rgb(pixel, 0xC0C0C0) 

         sleep(0.025) 

         self.strip.show() 

 

     while True: 

         global stop_animate 

         for pos in sun: 

             off = pos[1] 
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             offset = off+shift 

             coord = (pos[0],offset) 

             pixel = matrix.get_coord(coord,self.led_num) 

             self.strip.set_pixel_rgb(pixel, 0xFFFF00) 

             sleep(0.025) 

             self.strip.show() 

         for pos in sun: 

             off = pos[1] 

             offset = off+shift 

             coord = (pos[0],offset) 

             pixel = matrix.get_coord(coord,self.led_num) 

             self.strip.set_pixel(pixel,0,0,0) 

             self.strip.show() 

         if stop_animate: 

             break 

class nightpartcloud(Thread): 

 def __init__(self, led_num, strip): 

     self.led_num = led_num 

     self.strip = strip 

     super(nightpartcloud, self).__init__() 

 def run(self): 

     cloud= [(2,14),(3,14),(4,14),(5,14),(2,15),(6,15),(7,15), 

             (8,15),(2,16),(5,16),(6,16),(9,16),(2,17),(5,17), 

             (9,17),(2,18),(9,18),(3,19),(4,19),(5,19),(6,19), 

             (7,19),(8,19),(7,10),(8,10),(9,10),(7,11),(8,11), 

             (9,11),(7,12),(8,12),(9,12)] 

 

     shift = 0 

     for pos in cloud: 

         off = pos[1] 

         offset = off+shift 

         coord = (pos[0],offset) 

         pixel = matrix.get_coord(coord,self.led_num) 

         self.strip.set_pixel_rgb(pixel, 0xC0C0C0) 
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         sleep(0.025) 

         self.strip.show() 

 

class snow(Thread): 

 def __init__(self, led_num, strip): 

     self.led_num = led_num 

     self.strip = strip 

     super(snow, self).__init__() 

 def run(self): 

     cloud = [(1,10),(2,10),(3,10),(4,10),(5,10),(0,11),(6,11),(7,11), 

                 (8,11),(0,12),(5,12),(6,12),(9,12),(0,13),(5,13),(9,13), 

                 (0,14),(9,14),(0,15),(9,15),(0,16),(9,16),(1,17),(2,17), 

                 (3,17),(4,17),(5,17),(6,17),(7,17),(8,17),] 

     snow =  [(1,18),(3,18),(5,18),(7,18),(2,19),(4,19),(6,19),(8,19), 

                 (1,20),(3,20),(5,20),(7,20),(9,20),(0,21),(2,21),(4,21), 

                 (6,21),(8,21),(1,21),(3,21),(5,21),(7,21),(9,21),(0,20), 

                 (2,20),(4,20),(6,20),(8,20),(0,19),(1,19),(3,19),(5,19), 

                 (7,19),(9,19)] 

     shift = 0 

     for pos in cloud: 

         off = pos[1] 

         offset = off+shift 

         coord = (pos[0],offset) 

         pixel = matrix.get_coord(coord,self.led_num) 

         self.strip.set_pixel_rgb(pixel, 0xD6ECEF) 

         sleep(0.025) 

         self.strip.show() 

     while True: 

         global stop_animate 

         for pos in snow: 

             off = pos[1] 

             offset = off+shift 

             coord = (pos[0],offset) 

             pixel = matrix.get_coord(coord,self.led_num) 
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             self.strip.set_pixel_rgb(pixel, 0xC0C0C0) 

             sleep(0.1) 

             self.strip.show() 

         for pos in snow: 

             off = pos[1] 

             offset = off+shift 

             coord = (pos[0],offset) 

             pixel = matrix.get_coord(coord,self.led_num) 

             self.strip.set_pixel(pixel,0,0,0) 

             self.strip.show() 

         if stop_animate: 

             break 

class staticText(Thread): 

 def __init__(self,strip,test_str,y_shift,led_num,color): 

     self.strip = strip 

     self.test_str = test_str 

     self.shift = 5 

     self.y_shift = y_shift 

     self.led_num = led_num 

     self.color = color 

     super(staticText, self).__init__() 

      

 def run(self): 

     l = abcLib().abc 

     pxl_str = [] 

     pxl_str.extend(l[self.test_str[0].upper()]) 

     index = 1 

     # shift is used to separate different letters into a full string 

     #Build an array of pixels to display full string 

     while len(self.test_str)>index: 

         pixels = l[self.test_str[index].upper()] 

         # Account for shift when degree sign is used 

         pixels = [(pixel[0]+self.shift*index ,pixel[1]) for pixel in pixels] 

         pxl_str.extend(pixels) 
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         index+=1 

     down = self.y_shift 

     pxl_str = [(pixel[0],pixel[1]+down) for pixel in pxl_str] 

     for led in pxl_str: 

         led_index = matrix.get_coord(led,led_num) 

         self.strip.set_pixel_rgb(led_index,self.color) 

         sleep(0.025) 

         self.strip.show() 

class thunder(Thread): 

     

 def __init__(self, led_num, strip): 

     self.led_num = led_num 

     self.strip = strip 

     super(thunder, self).__init__() 

      

 def run(self): 

     cloud= [(1,10),(2,10),(3,10),(4,10),(5,10),(0,11),(6,11),(7,11),(8,11), 

             (0,12),(5,12),(6,12),(9,12),(0,13),(5,13),(9,13),(0,14),(9,14), 

             (0,15),(9,15),(0,16),(9,16),(0,16),(9,16),(1,17),(2,17),(7,17), 

             (8,17)] 

     bolt = [(5,15),(6,15),(4,16),(5,16),(3,17),(4,17),(5,17),(6,17),(4,18), 

             (5,18),(3,19),(4,19),(2,20),(3,20),(1,21)] 

     shift = 0 

     for pos in cloud: 

         off = pos[1] 

         offset = off+shift 

         coord = (pos[0],offset) 

         pixel = matrix.get_coord(coord,self.led_num) 

         self.strip.set_pixel_rgb(pixel, 0xD6ECEF) 

         sleep(0.025) 

         self.strip.show() 

     while True: 

         global stop_animate 

         for pos in bolt: 
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             off = pos[1] 

             offset = off+shift 

             coord = (pos[0],offset) 

             pixel = matrix.get_coord(coord,self.led_num) 

             self.strip.set_pixel_rgb(pixel, 0xFFFF00) 

             self.strip.show() 

         for pos in bolt: 

             off = pos[1] 

             offset = off+shift 

             coord = (pos[0],offset) 

             pixel = matrix.get_coord(coord,self.led_num) 

             self.strip.set_pixel(pixel,0,0,0) 

             self.strip.show() 

         if stop_animate: 

             break 

class fog(Thread): 

     

 def __init__(self, led_num, strip): 

     self.led_num = led_num 

     self.strip = strip 

     super(fog, self).__init__() 

     

 def run(self): 

     right = [(0,13),(1,13),(2,13),(3,13),(4,13),(5,13), 

              (8,13),(9,13),(0,17),(1,17),(2,17),(3,17), 

              (4,17),(5,17),(6,17),(7,17),(0,21),(1,21), 

              (2,21),(3,21),(4,21),(5,21),(8,21),(9,21)] 

     left = [(2,10),(3,10),(4,10),(5,10),(6,10),(7,10), 

             (8,10),(9,10),(0,15),(1,15),(4,15),(5,15), 

             (6,15),(7,15),(8,15),(9,15),(2,19),(3,19), 

             (4,19),(5,19),(6,19),(7,19),(8,19),(9,19)] 

     together = [] 

     together.extend(right) 

     together.extend(left) 
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     for pos in together: 

         pixel = matrix.get_coord(pos,self.led_num) 

         self.strip.set_pixel_rgb(pixel,0xC0C0C0) 

         self.strip.show() 

     s = 0 

     left = [(pixel[0]+9,pixel[1]) for pixel in left] 

     right = [(pixel[0]-9,pixel[1]) for pixel in right] 

     while True: 

         global stop_animate 

         clear = [] 

         for led in left: 

             move_l = led[0]-s 

             led_index = matrix.get_coord((move_l,led[1]),led_num) 

             clear.append((move_l,led[1])) 

             self.strip.set_pixel_rgb(led_index,0xC0C0C0) 

         for led in right: 

             move_r = led[0]+s 

             led_index = matrix.get_coord((move_r,led[1]),led_num) 

             clear.append((move_r,led[1])) 

             self.strip.set_pixel_rgb(led_index,0xC0C0C0) 

         s+=1 

          

         if move_r == 19: 

             s=0 

         self.strip.show() 

         sleep(.25) 

         for c in clear: 

             self.strip.set_pixel(matrix.get_coord(c,led_num),0,0,0) 

         self.strip.show() 

         if stop_animate: 

             self.strip.clear_strip() 

             break 
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class scrollText(Thread): 

 

 def __init__(self,strip,test_str, y_shift, led_num,color): 

     self.strip = strip 

     self.test_str = test_str 

     self.shift = 6 

     self.y_shift = y_shift 

     self.led_num = led_num 

     self.color = color 

     super(scrollText, self).__init__() 

 

 def run(self): 

 

     l = abcLib().abc 

     pxl_str = [] 

     pxl_str.extend(l[self.test_str[0].upper()]) 

     index = 1 

     # shift is used to separate different letters into a full string 

     #Build an array of pixels to display full string 

     while len(self.test_str)>index: 

         pixels = l[self.test_str[index].upper()] 

         # Account for shift when degree sign is used 

         if self.test_str[index]=='^': 

             self.shift = 6 

         elif self.test_str[index-1]=='^': 

             self.shift = 5 

         else: 

             self.shift = self.shift 

         pixels = [(pixel[0]+self.shift*index ,pixel[1]) for pixel in pixels] 

         pxl_str.extend(pixels) 
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         index+=1 

     s = 0 

     temp_s = -1 

     down = self.y_shift 

     pxl_str = [(pixel[0]+9,pixel[1]+down) for pixel in pxl_str] 

     while True: 

         clear = [] 

         for led in pxl_str: 

             move = led[0]-s 

             led_index = matrix.get_coord((move,led[1]),led_num) 

             clear.append((move,led[1])) 

             self.strip.set_pixel_rgb(led_index,self.color) 

         s+=1 

         temp_s +=1 

         if move == -1: 

             s = 0 

         self.strip.show() 

         sleep(.15) 

         for c in clear: 

             self.strip.set_pixel(matrix.get_coord(c,led_num),0,0,0) 

         self.strip.show() 

         """ 

         for led in pxl_str: 

             coord = matrix.get_coord(led, self.led_num) 

             self.strip.set_pixel(coord,0, 0, 0) 

             self.strip.show() 

         """ 

         if stop_animate: 

             break 

class Weather(): 

 def __init__(self, city): 

     self.city = city 

 def getWeather(self): 

     # Enter your API key here 
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     api_key = "7595ed19467dfdb3d453eb78b5790d23" 

 

     # base_url variable to store url 

     base_url = "http://api.openweathermap.org/data/2.5/weather?" 

     city_name = self.city 

 

     # complete_url variable to store 

     # complete url address 

     complete_url = base_url + "appid=" + api_key + "&q=" + city_name 

 

     # get method of requests module 

     # return response object 

     response = requests.get(complete_url) 

 

     # JSON method of response object 

     # convert JSON format data into 

     # python format data 

     x = response.JSON() 

     #print(x) 

 

     # Now x contains list of nested dictionaries 

     # Check the value of "cod" key is equal to 

     # "404", means city is found otherwise, 

     # city is not found 

     if x["cod"] != "404": 

 

         # store the value of "main" 

         # key in variable y 

         y = x["main"] 

 

         # store the value corresponding 

         # to the "temp" key of y 

         current_temperature = y["temp"] 
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         # store the value corresponding 

         # to the "pressure" key of y 

         current_pressure = y["pressure"] 

 

         # store the value corresponding 

         # to the "humidity" key of y 

         current_humidiy = y["humidity"] 

          

         wind = x["wind"]["speed"] 

         # convert from meters/sec to mph 

         wind = wind*2.237 

         wind = str(int(wind))+ "mph" 

 

         # store the value of "weather" 

         # key in variable z 

         z = x["weather"] 

 

         # store the value corresponding 

         # to the "description" key at 

         # the 0th index of z 

          

         #convert from kelvin to Farenheit 

         current_temperature = (current_temperature-273.15)*(9/5)+32 

         current_temperature = int(current_temperature) 

         temperature_str = str(current_temperature)+'^F' 

         weather_description = z[0]["description"] 

 

         # Build list of info to return back to the matrix 

         weather_info = [temperature_str, weather_description, wind, 

                         x["weather"][0]["main"],x["weather"][0]["icon"]] 

          

         return weather_info 

 

     else: 
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         print(" City Not Found ") 

class echoSens(): 

     

 def __init__(self): 

     #GPIO Mode (BOARD / BCM) 

     GPIO.setmode(GPIO.BCM) 

       

     #set GPIO Pins 

     self.GPIO_TRIGGER = 15 

     self.GPIO_ECHO = 18 

       

     #set GPIO direction (IN / OUT) 

     GPIO.setup(self.GPIO_TRIGGER, GPIO.OUT) 

     GPIO.setup(self.GPIO_ECHO, GPIO.IN) 

     #self.distance = 0 

      

 def distance(self): 

     # set Trigger to HIGH 

     GPIO.output(self.GPIO_TRIGGER, True) 

   

     # set Trigger after 0.01ms to LOW 

     sleep(0.00001) 

     GPIO.output(self.GPIO_TRIGGER, False) 

   

     StartTime = time.time() 

     StopTime = time.time() 

   

     # save StartTime 

     while GPIO.input(self.GPIO_ECHO) == 0: 

         StartTime = time.time() 

   

     # save time of arrival 

     while GPIO.input(self.GPIO_ECHO) == 1: 

         StopTime = time.time() 
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     # time difference between start and arrival 

     TimeElapsed = StopTime - StartTime 

     # multiply with the sonic speed (34300 cm/s) 

     # and divide by 2, because there and back 

     distance = (TimeElapsed * 34300) / 2 

   

     return distance 

     

class fill(): 

 def __init__(self, strip,led_num, dist,color): 

     self.color = color 

     self.dist = dist 

     self.strip = strip 

     self.led_num = led_num 

     # build mass of leds to fill the matrix 

     flow = 90-dist 

     #print(flow) 

     self.fill = [(i,j) for i in range(10) for j in range(flow,90)] 

      

 def light(self): 

     for led in self.fill: 

         led_index = matrix.get_coord(led,self.led_num) 

         self.strip.set_pixel_rgb(led_index,self.color) 

         #sleep(0.01) 

     strip.show() 

     sleep(2) 

     strip.clear_strip() 

      

      

 

 

 

if __name__ == '__main__': 
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 led_num = 900 

 strip = apa102.APA102(num_led=led_num, global_brightness=1, order='rgb') 

 display = False 

 #fill(strip,led_num,20,0xFF0000).light() 

     

 ### Testing for filling module with distance?? 

 """ 

 while True: 

     dist = echoSens().distance() 

     print ("Measured Distance = %.1f cm" % dist) 

     print(int(dist)) 

     if int(dist)<70: 

         #test_num = (int(dist)//10)*10 

         test_num = ((round(60/int(dist))*10)) 

         print("this: ", test_num) 

         fill(strip,led_num,test_num,0xFF000).light() 

          

     time.sleep(1) 

 """ 

 while True: 

     while True: 

         dist = echoSens().distance() 

         print ("Measured Distance = %.1f cm" % dist) 

         print(int(dist)) 

         if int(dist)<60: 

             display = True 

             break 

         sleep(0.5) 

      

     if display is True: 

         now = datetime.now() 

         date = now.strftime("%b-%d") 

         current_time = now.strftime("%H:%M") 

         noon = "am" 
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         hour = current_time.split(":")[0] 

         if int(hour)>12: 

             noon = "pm" 

             hour = str(int(hour)-12) 

             if (int(hour)-12)<10: 

                 hour = "0" + hour 

         elif int(hour)==0: 

             hour = "12" 

             noon = "am" 

         else: 

             pass 

         minute = current_time.split(":")[1] 

         stop_animate = False 

          

         city = 'worcester' 

         weather = Weather(city).getWeather() 

         temperature = weather[0] 

         temp_scroll = scrollText(strip,temperature,22,led_num,0xFF0000) 

         date_scroll = scrollText(strip,date,0,led_num,0xFF0000) 

         dis_hour = staticText(strip,hour,30,led_num,0x0000FF) 

         dis_min= staticText(strip,minute,40,led_num,0x0000FF) 

         dis_noon = staticText(strip,noon,50,led_num,0x0000FF) 

         wind_top = staticText(strip,"wi",61,led_num,0x00FF00) 

         wind_bottom = staticText(strip,"nd",71,led_num,0x00FF00) 

         wind = scrollText(strip,weather[2],80,led_num,0x00FF00) 

          

         # Adjust values to test different conditions 

         """ 

         weather[1] = "scattered clouds: 25-50%" 

         weather[3] = 'Dust' 

         weather[4] = '01d' 

         """ 

         if weather[3]=='Fog': 

             animation = fog(led_num,strip) 
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         elif weather[3]=='Thunderstorm': 

             animation = thunder(led_num,strip) 

 

         elif weather[3]=='Drizzle' or weather[3] == 'Rain': 

             animation = rain(led_num,strip) 

 

         elif weather[3] == 'Snow': 

             animation = snow(led_num,strip) 

 

         elif weather[3] == 'Clear': 

             if 'n' in weather[4]: 

                 animation = moon(led_num,strip) 

             else: 

                 animation = sunshine(led_num,strip) 

              

         elif weather[3] == 'Clouds': 

             if weather[1] == "few clouds: 11-25%" or weather[1] == "scattered clouds: 25-50%": 

                 if 'n' in weather[4]: 

                     animation = nightpartcloud(led_num,strip) 

                 else: 

                     animation = partcloud(led_num,strip) 

             elif weather[1] == "broken clouds: 51-84%" or weather[1] == "overcast clouds: 85-100%": 

                 animation = cloud(led_num,strip) 

             else: 

                 animation = scrollText(strip, weather[3],10,led_num,0xC0C0C0) 

         else: 

             animation = scrollText(strip, weather[3],10,led_num,0xFF0000) 

 

         animation.start() 

         temp_scroll.start() 

         date_scroll.start() 

         dis_hour.start() 

         dis_min.start() 
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         dis_noon.start() 

         wind_top.start() 

         wind_bottom.start() 

         wind.start() 

         sleep(60) 

         strip.clear_strip() 

         stop_animate = True 

         GPIO.cleanup() 

         sleep(1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 135 

Appendix D: Weather-test.py 
# Python program to find current 

# weather details of any city 

# using openweathermap api 

 

# import required modules 

import requests, JSON 

 

# Enter your API key here 

api_key = "7595ed19467dfdb3d453eb78b5790d23" 

 

# base_url variable to store url 

base_url = "http://api.openweathermap.org/data/2.5/weather?" 

 

# Give city name 

city_name = input("Enter city name : ") 

 

# complete_url variable to store 

# complete url address 

complete_url = base_url + "appid=" + api_key + "&q=" + city_name 

 

# get method of requests module 

# return response object 

response = requests.get(complete_url) 

 

# JSON method of response object 

# convert JSON format data into 

# python format data 

x = response.JSON() 

print(x) 

# Now x contains list of nested dictionaries 

# Check the value of "cod" key is equal to 

# "404", means city is found otherwise, 
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# city is not found 

if x["cod"] != "404": 

 

    # store the value of "main" 

    # key in variable y 

    y = x["main"] 

 

    # store the value corresponding 

    # to the "temp" key of y 

    current_temperature = y["temp"] 

 

    # store the value corresponding 

    # to the "pressure" key of y 

    current_pressure = y["pressure"] 

 

    # store the value corresponding 

    # to the "humidity" key of y 

    current_humidiy = y["humidity"] 

 

    # store the value of "weather" 

    # key in variable z 

    z = x["weather"] 

 

    # store the value corresponding 

    # to the "description" key at 

    # the 0th index of z 

    weather_description = z[0]["main"] 

 

    # print following values 

    print(" Temperature (in kelvin unit) = " + 

        str(current_temperature) + 

     "\n atmospheric pressure (in hPa unit) = " + 

        str(current_pressure) + 

     "\n humidity (in percentage) = " + 



 

 137 

        str(current_humidiy) + 

     "\n description = " + 

        str(weather_description)) 

 

else: 

    print(" City Not Found ") 
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