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Wireless capsule endoscopy (WCE) offers a patient-friendly, non-invasive and painless

investigation of the entire small intestine, where other conventional wired endoscopic

instruments can barely reach. As a critical component of the capsule endoscopic exam-

ination, physicians need to know the precise position of the endoscopic capsule in order

to identify the position of intestinal disease after it is detected by the video source. To

define the position of the endoscopic capsule, we need to have a map of inside the human

body. However, since the shape of the small intestine is extremely complex and the RF

signal propagates differently in the non-homogeneous body tissues, accurate mapping

and localization inside small intestine is very challenging. In this dissertation, we present

an in-body simultaneous localization and mapping technique (Body-SLAM) to enhance

the positioning accuracy of the WCE inside the small intestine and reconstruct the tra-

jectory the capsule has traveled. In this way, the positions of the intestinal diseases can

be accurately located on the map of inside human body, therefore, facilitates the follow-

ing up therapeutic operations. The proposed approach takes advantage of data fusion

from two sources that come with the WCE: image sequences captured by the WCE’s

embedded camera and the RF signal emitted by the capsule. This approach estimates

the speed and orientation of the endoscopic capsule by analyzing displacements of fea-

ture points between consecutive images. Then, it integrates this motion information

with the RF measurements by employing a Kalman filter to smooth the localization

results and generate the route that the WCE has traveled. The performance of the

proposed motion tracking algorithm is validated using empirical data from the patients

and this motion model is later imported into a virtual testbed to test the performance of

the alternative Body-SLAM algorithms. Experimental results show that the proposed

Body-SLAM technique is able to provide accurate tracking of the WCE with average

error of less than 2.3cm.
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Chapter 1

Introduction

Many of the profound innovations in science and engineering start with metaphors pre-

sented in the science fictions. The wireless information networking industry was mo-

tivated by the Captain Kirk’s communicator in the 1960s science fiction series “Star

Trek”. The idea was formed in the early 1980s; the Federal Communications Commis-

sion (FCC) released the Industrial, Scientific and Medical (ISM) bands; the IEEE 802.11

standardization committee created the WLAN standard in 1997 [1]. After almost half a

century, modern smart phones are what the evolution of the “Star Trek” communicator

fantasy brought to us. Recently, another 1960s science fiction, the “Fantastic Voyage”,

in which a space craft with its crew were shrunken to become a micro-device capable

of traveling inside human body to remove a brain clot, has stimulated a new wave of

innovative science and engineering for the Body Area Network (BAN) [2–5]. That space

craft lost its navigation capabilities and went through an unguided dramatic traveling

experience within the human body before it exits through tears from the eye of the

human subject. Today, wireless endoscopic capsules are traveling inside the digestive

system in the same way as the space craft in the fantastic voyage traveled and one can

1



Chapter 1. Introduction 2

envision emergence of a number of other similar applications for micro-robots inside the

human body.

1.1 Evolution of Wireless Capsule Endoscopy (WCE)

Endoscopy [6] is a medical procedure used to examine the interior wall of the digestive

system. According to a study conducted in 2002 [7], approximately 19 million people in

the United States were estimated to be affected by disorders of the small intestine. This

statistic indicates that effective advancements in endoscopy technology are extremely

worthy of investigation. When using the conventional endoscopic instrument, a long

flexible tube with a miniature camera needs to be inserted through the mouth or the

anus in order to get into the gastrointestinal (GI) tract. Owing to its rigidity and large

size, it causes much discomfort to whoever undergoes this procedure. This generally

limits the willingness of patients to have their GI tract examined regularly. Furthermore,

the lack of capability to reach the entire small intestine is also a significant shortcoming

of the current wired endoscope.

Wireless Capsule Endoscopy (WCE) [8–11], a significant step in the efforts of developing

a more effective endoscopy technique, was invented to overcome the above limitations.

The first WCE prototype for the small intestine was approved by the Food and Drug

Administration (FDA) in 2001. Over subsequent years, this technology has been evolving

into one of the most popular non-invasive imaging tools of the intestinal disease diagnosis.

WCE is a pill-shaped device which consists of a short focal length CMOS camera, light

source, battery and radio transmitter [12, 13]. After the endoscopic capsule is swallowed

by a patient , this miniature device propelled by peristalsis of GI tract begins to work

and record images at least 2 frames per second (permitting the acquisition of over 50
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000 images) while moving along the GI tract. At the same time, images are sent out

wirelessly in Ultra High Frequency (UHF) at 432 MHz to a small portable recorder

attached to the waist [14]. The images are subsequently downloaded from the portable

recorder to a workstation for analysis off line. The whole examine process takes about

8 h, during this period, the patient do not need to be confined to a hospital or clinic

environment during the examination and is free to continue their daily routine. Up

to now, WCE has been used to detect the following diseases [15–17] small intestinal

blooding, Crohn disease, ulcer, tumors, vascular lesions and colon cancers.

1.2 Motivation

Although WCE provides a non-invasive wireless imaging technology for observing the

entire GI tract, one significant drawback of this technology is that it cannot localize

itself during its several hours journey. Therefore, when an abnormality is detected by

the video source, the physicians have limited idea where the abnormality is located which

prevents the following up therapeutic operations being executed immediately. Therefore,

having a precise localization system for the endoscopic capsule would greatly enhance

the benefits of WCE.

However, localization of the WCE inside the human body is not trivial. There are some

fundamental technical challenges which make accurate localization inside human body

a difficult task.

• First, we don’t have a clear map of inside human body. A map of the digestive

system plays a very important role in refining the localization results [18–20] since

everything goes through the GI tract follows the same route. However, existing
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computed tomography (CT) and magnetic resonance imaging (MRI) imaging tools

are not able to provide enough resolution to extract the path of the small intestine.

• Second, conventional single source localization techniques, for example RF lo-

calization techniques, cannot provide satisfactory localization results due to the

non-homogeneity and severe attenuation of body tissues [21]. We need to design

more complicated hybrid localization algorithms that integrate all possible data

sources to enhance the localization accuracy. To do this, we need researchers with

multidisciplinary background including wireless localization, robotics and image

processing etc.

• Third, validation of existing localization algorithms are challenging [22]. After

the capsule is swallowed by the patient, we have limited control of the endoscopic

capsule. Exploratory clinical procedures such as planar X-ray imaging and Ultra-

sound cannot be easily used for verifying the position and motion status of the

capsule due to their high cost and potential risk to the patient’s health.

• Last but most importantly, operating experiments inside human body is extremely

difficult. As we mentioned previously, there are practical challenges to verify the

performance of any localization algorithm. Moreover, human subjects are different

from one and another, we need a uniform platform to do comparative performance

evaluation for different algorithms.

These challenges make deign of an accurate localization system for the WCE inside

human body a unsolvable engineering problem for more than 13 years. And this became

the motivation of my research : To design a localization system that is able to precisely

localize the endoscopic capsule as it travels along the digestive system and meanwhile

reconstruct the map inside of the small intestine.
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1.3 Contributions

To meet the challenges introduced above, in this dissertation, we present an in-body

simultaneous localization and mapping technique (Body-SLAM) to enhance the po-

sitioning accuracy of WCE inside the small intestine and meanwhile reconstruct the

trajectory the capsule has traveled. The contributions of this multi-disciplinary and

inter-disciplinary dissertation are:

• Design and performance evaluation of a Body-SLAM algorithm to accurate local-

ize the position of WCE and reconstruct the 3D map the capsule has traveled.

The proposed Body-SLAM technique estimates the speed and orientation of the

endoscopic capsule by analyzing displacements of feature points between consecu-

tive images and this motion information is integrated with the RF measurements

by employing a Kalman filter to smooth the localization results and the generated

3D map.

• To achieve this objective, we modeled the motion of the endoscopic capsule using

empirical data obtained from a actual patients. This motion model is further

imported into a emulation testbed for performance evaluation.

• We designed a tested for performance evaluation of hybrid localization algorithms

that benefits from content of the endoscopic images as well as the features of the

RF signal emitted from the video capsule. We used this testbed to demonstrate

the effectiveness of hybrid localization algorithms for Body-SLAM inside small

intestine.

The specific contributions of mine are reflected in the following publications:
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1. K. Pahlavan, G. Bao, Y. Ye, S. Makarov, U. Khan ... K. Sayrafian, “Rf local-

ization for wireless video capsule endoscopy”. International Journal of Wireless

Information Networks, Vol.19 (4), pp.326-340, 2012.

2. G. Bao, Y. Ye, U. Khan, X. Zheng and K. Pahlavan, “Modeling of the Movement

of the Endoscopy Capsule inside GI Tract based on the Captured Endoscopic

Images”, The 2012 International Conference on Modeling, Simulation and Visual-

ization Methods (MSV), Las Vegas, USA, July, 2012.

3. G. Bao and K. Phalavan, “Motion Estimation of the Endoscopy Capsule using

Region-based Kernel SVM Classifier”, 2013 IEEE International Conference on

Electro/Information Technology (EIT), Rapid City, SD, May 9-11, 2013.

4. G. Bao, L. Mi and K. Phalavan, “Emulation on Motion Tracking of Endoscopic

Capsule inside Small Intestine”, 2013World Congress in Computer Science,Computer

Engineering, and Applied Computing (WORLDCOMP’13), Las Vegas, USA, 2013.

5. G. Bao, L. Mi and K. Phalavan, “A Video Aided RF Localization Technique

for the Wireless Capsule Endoscope (WCE) inside Small Intestine”, 8th Interna-

tional Conference on Body Area Networks, Boston, Massachusetts, United States,

September 30 - October 2, 2013.

6. L. Mi, G. Bao and K. Phalavan, “Design and Validation of a Virtual Environment

for Experimentation inside the Small Intestine”, 8th International Conference on

Body Area Networks, Boston, Massachusetts, United States, September 30 - Oc-

tober 2, 2013.

7. R. Fu, G. Bao and K. Pahlavan, “Activity Classification with Empirical RF Prop-

agation Modeling”, 8th International Conference on Body Area Networks, Boston,

Massachusetts, United States, September 30 - October 2, 2013.
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8. L. Mi, G. Bao and K. Pahlavan, “Geometric Estimation of Intestinal Contraction

for Motion Tracking of Video Capsule Endoscope”, SPIE Medical Imaging: Image-

Guided Procedures, Robotic Interventions, and Modeling, San Diego, California,

February 15-20, 2014.

9. G. Bao, L. Mi, Y. Geng and K. Pahlavan, “A Computer Vision based Speed

Estimation Technique for Localizing the Wireless Capsule Endoscope inside Small

Intestine,” submitted to Signal Processing Letters, IEEE, April, 2014.

10. G. Bao, L. Mi, Y. Geng, M. Zhou and K. Pahlavan, “A Video-based Speed Esti-

mation Technique for Localizing the Wireless Capsule Endoscope inside Gastroin-

testinal Tract, ” submitted to IEEE Engineering in Medicine and Biology Society

(EMBC 14), March, 2014.

11. M. Zhou, G. Bao and K. Pahlavan, “Mutual Information based Motion Tracking

Technique for the WCE inside Large Intestine”, submitted to IEEE Engineering

in Medicine and Biology Society (EMBC 14), March, 2014.

12. G. Bao, L. Mi and K. Pahlavan, “Hybrid Localization of Micro-robotic Endo-

scopic Capsule inside Small Intestine by Data Fusion of Vision and RF Sensors”,

submitted to Sensor Journal, IEEE, March, 2014.

A full publication list can be found in Appendix A.

1.4 Outline of the Dissertation

This dissertation focuses on the hybrid localization which we called “Body-SLAM” for

the wireless capsule endoscopy and testbed design for comparative performance evalua-

tion of various localization algorithms inside human body. The rest of the dissertation
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is organized as follows: in chapter 2, we give a overview of the existing localization

technologies of WCE and addressed the technical challenges in this field. In Chapter 3,

we present a hybrid localization technique, which we called “Body-SLAM”, that uses

endoscopic images for motion tracking and combines the motion information with the

RF signal radiated from the capsule to enhance the localization accuracy, and mean-

while reconstruct the trajectory the capsule has traveled. In chapter 4, performance

evaluation of the proposed localization algorithm are given by using empirical data and

design of emulation testbed. Finally, we conclude the dissertation in chapter 5 and give

the suggested direction of future work.



Chapter 2

Challenges in WCE Localization

While physicians can receive clear images of the interior of the entire digestive system

using WCE, they have little idea of the exact location of the capsule when an abnor-

mality is found by the video source. To localize intestinal abnormalities, physicians

have to administrate successive radiological, endoscopic or surgical operations, which

are invasive and potentially harmful to patient’s health. If we could develop a wireless

localization system to localize these devices, not only can physicians diagnose the medi-

cal diseases, but they can also learn where the diseases are located. However, designing

such a localization system is a very challenging task. In this chapter, we review the

existing localization techniques, especially the RF localization techniques, discuss their

limitations and address the challenges in designing localization system for inside human

body.

9
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2.1 Overview of Wireless Capsule Endoscopy (WCE)

Wireless Capsule Endoscopy (WCE) is a pill-shaped device which consists of a short focal

length CMOS camera, light source, battery and radio transmitter [12, 13] as shown in

Figure 2.1. After the endoscopic capsule is swallowed by a patient, this miniature device

begins to work and record images at least 2 frames per second while moving along the

GI tract. At the same time, images are sent out wirelessly to a data recorder attached

to the patient’s waist. The whole process takes about 8 h, then all the image data

are downloaded into a work station and physicians could inspect the whole video and

diagnosis diseases in the GI tract. Being such an innovative technique without cable

connection, WCE offers a patient-friendly, non-invasive and painless investigation of

the entire GI tract, especially the small intestine, where other conventional endoscopic

instrument can barely reach. Up to now, WCE has been used to detect the following

diseases: small intestinal blooding, Crohn disease, ulcer, tumors, vascular lesions and

colon cancers [15–17].

A typical capsule endoscopy system consists of 3 components shown in Figure 2.2

[12, 13]:

1. A wireless capsule endoscope

All capsule endoscopes have similar components: a disposable plastic capsule, a

complementary metal oxide semiconductor or high-resolution charge-coupled de-

vice image capture system, a compact lens, white-light emitting diode illumination

sources, and an internal battery source.

2. A sensing system with sensing pads or a sensing belt to attach to the patient, a

data recorder, and a battery pack.
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The mode of data transmission is either via ultra-high frequency band radio teleme-

try (PillCam, EndoCapsule) or human body communications (MiroCam). The lat-

ter technology uses the capsule itself to generate an electrical field that uses human

tissue as the conductor for data transmission. Currently PillCam SB2 and Miro-

Cam are available with extended battery life, which may be beneficial in patients

with delayed small-bowel transit.

3. A personal computer workstation with proprietary software for image review and

interpretation.

Major visualization systems are RAPID Reader from Given Imaging, WS-1 En-

doCapsule from Olympus America and MiroView from IntroMedic.

Specifications of each individual WCE system are outlined in Table 2.1.
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Figure 2.1: The architecture of WCE
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Figure 2.2: Wireless Capsule Endoscopy
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Table 2.1: FDA-approved wireless capsule systems and specifications

WCE company Size, mm Weight View angle Frame rate Battery life Resolution

EndoCapsule
Olympus America 11× 26 3.5 g 145o 2 /sec 8 hours 512× 512
PillCam SB2
Given Imaging 11× 26 2.8 g 156o 2 /sec 8 hours 256× 256
PillCam SB3
Given Imaging 11× 26 2.8 g 156o 2-6/sec 12 hours 320× 320
PillCam SB2EX
Given Imaging 11× 26 3.3 g 156o 2 /sec 12 hours 256× 256
MiroCam
Intromedic Co Ltd 11× 26 3.3 g 170o 3 /sec 11 hours 320× 320
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2.2 Literature Review

WCE provides a noninvasive way to inspect the entire small intestine. As a critical

component of capsule endoscopic examination, physicians need to know the precise po-

sition of the endoscopic capsule in order to identify the position of intestinal disease

after it is found by the video source [23–25]. The follow up therapeutic operations and

effect of drug administration are heavily dependent on the accuracy of capsule’s posi-

tion information [26]. Therefore, having a precise and reliable localization system plays

an important role in enhancing the benefits of WCE. During the past few years, many

attempts have been made to develop accurate and reliable localization systems for the

WCE. A good review of existing localization techniques is given in [27]. These technolo-

gies can be divided into those using magnetic field [28–32] or inertial systems [33], using

image processing techniques [34] and techniques using RF signals [4, 35–37].

In magnetic sensing based techniques, a magnet is inserted into the WCE and the WCE

is located by measuring the magnetic field [38, 39]. This technique increases the weight

and size of the WCE and the magnetic field of the WCE used for localization will be

interfered by the external magnetic fields used for other applications such as the Magnetic

Resonance Imaging (MRI) systems. One can also insert radiation opaque material into

the WCE and trace the location of the WCE using X-ray or Computed Tomography

(CT) scan. Continuous imaging using X-ray or CT scan is very expensive and it bears

the health risks for the patient [27, 40].

In [33], Ciuti and his colleagues magnetic inertial sensing based localization system.

They inserted a three-axis accelerometer LIS331DL into the capsule. the This inertial

sensing not only provides the approximate location and orientation of the capsule in

digestive tract, but also provides feedback to the actuation system to preserve a reliable
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magnetic link between the external permanent magnet and the capsule. However, it

would be difficult to make a compact capsular mechanism to be swallowable with the

integration of such a inertial sensing subsystem and four cylindrical magnets. Also, this

localization technique only offers rough spatial information (an average error of 3 cm)

without data in a vertical direction.

Besides the magnetic field based and inertial sensing based techniques, using computer

vision based technique for localization the WCE is being investigated [34, 41–44]. Be-

cause the capsule endoscope changes position and direction very slow, some identical

areas exist in the successive two endoscopic images, so we can find the correspondent

point pairs in these two images. Using the image correspondences, we can determine the

motion (rotation and translation) parameters of capsule endoscope with an appropriate

algorithm. This approach can be a complementary method for improving the magnetic

localization and orientation method.

Using the RF signal used for image transmissions for the WCE to also locate the capsule

offers a natural and low cost solution that does not add to the capsule extra complexity

and payload [4, 45–49]. Therefore, it has been chosen for use with the smartpill capsule

in USA and the M2A capsule in Israel. RF signal has been widely used for locating

an object in both outdoor and indoor environments with the accuracy achieved up to

hundreds of millimeters [19, 50]. Nevertheless, applying radio frequency in the task of

tracking an object when it moves inside a special environment, such as the GI tract,

is a challenge. This is because high-frequency signals suffer significant attenuation at

different levels when they pass through different living tissues, whereas low-frequency

signals due to their long wavelengths are not able to deliver the desired precision of sev-

eral millimeters. The most commonly used RF techniques are Received Signal Strength

(RSS) and Time of Arrival (ToA). In the following sections, we will explain the principle
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of using RF signal for localization and address their limitations and challenges when

applied inside human body.

2.3 RF Localization Techniques

The wireless localization industry was initiated by Global Positioning System (GPS)

for outdoor navigation in early 1970s and later evolved into Indoor Positioning System

(IPS) in 1990s [51–57]. Soon after, with the release of Body Area Network (BAN)

IEEE 802.15.6 standard and arising of implantable micro-robots, the future trend of

this localization technique is moving inside the human body [4, 58–60]. The first major

application for this localization technology is the wireless capsule endoscopy [7, 29, 61–

63].

A commonly used RF localization infrastructure is to attach many calibrated external

RF sensors to the anterior abdominal wall of the human body to detect the RF signal

emitted by the wireless capsule as shown in Figure 2.3. By interpreting the charac-

ter of the received signal (RSS or ToA) into distance between the capsule and body

mounted sensor array, position of the capsule can be estimated by pattern matching

algorithms such as least square algorithm and maximum likelihood algorithm [28, 36].

However, RF localization of micro-robots inside humans is not trivial. Compared to

outdoor and indoor environments, the inside of the human body is a complex environ-

ment making engineering design and visualization a formidable task [64]. The inside of

the human body is an extremely complex medium for RF propagation because it is a

non-homogeneous liquid-like environment with irregularly shaped boundaries and severe

path-loss. Things become more complex when it comes inside human body since the

road map for the movements of the micro-robot is blurry and the body mounted sensors
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used as references for localization are also in motion. More importantly, reliable designs

need testing the hardware implementation, but we cannot easily test devices inside the

human bodies. Therefore, existing RF localization systems sometimes end up providing

discontinuous and scattered estimations with large errors.

Figure 2.3: A typical RF localization system

2.3.1 RSS based techniques

The name of “wireless” capsule endoscope indicates its capability to transmit the images

by RF signal. The transmitter embedded inside the capsule sends endoscopic images,

which are captured during its travel along the GI tract, to several receivers placed

uniformly on the exterior of the patient abdomen as shown in Figure 3.12. Taking

advantage of this integrated function, people can measure the strength of the received

RF signals at each sensor and use each sensor as a reference node to localize the capsule

(mobile node). The tracking algorithm is based on the observation that the closer the

receiver is to the transmitter, the stronger signal it catches. The relationship between
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Table 2.2: Parameters for the statistical implant to body surface pathloss model

Implant to body surface LP (d0) dB α σdB

Deep tissue 47.14 4.26 7.85
Near surface 49.81 4.22 6.81

the RSS reading and the distance from the transmitter to the receiver can be expressed

by a pathloss model as given below [45, 46, 65, 66]:

RSS(d) = Pt − PL(d0)− 10αlog10
d

d0
+ S(d > d0) (2.1)

where d is the distance between transmitter and receiver, PT is the transmit power,

PL(d0) is the path loss for a reference distance d0 (i.e. 50 mm), α is the path loss

gradient which is determined by the propagation environment. For example, in free

space, α equals to 2. Since the human body tissue strongly absorbs RF signal, a much

higher value for the path loss gradient is expected for inside human body. S is a Gaussian

random variable caused by shadow fading. From Eq. 2.1, the distances between the

capsule and each of the sensors can be roughly estimated by the RSS readings. Then,

the capsule’s location can be calculated using trilateration method.

A propagation attenuation model plays a vital role in the RSS technique. In order to

reduce the positioning error, it is necessary to develop an appropriate implant to body

surface path loss model. The parameters of one of the most cited signal attenuation

model developed by National Institute of Standards and Technology (NIST) at MICS

band are summarized in Table 2.2.

The empirical model mentioned previously is not accurate enough for the complex envi-

ronment of the GI tract. The model was developed by National Institute of Standards

and Technology (NIST) at MICS band.
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Instead of using a signal propagation model, another RSS based localization scheme is

called “finger printing” technique [47]. The way of finger printing technique works is to

create a lookup table for position estimation first. Offline measurement survey needs to

be done in advance, in which at each position of the capsule, both the corresponding

signal strength measured by each of the sensors and its position data were recorded into

the table. During the experiment, online data were compared with the data stored in the

lookup table to find the closest match and thus to select the most appropriate position.

However, since we don’t have a map of inside the body to do the survey and people are

different in term of body shape, this method doesn’t have too much practical value.

2.3.2 ToA based techniques

For RF based localization, a widely known benefit of ToA based techniques is their high

accuracy compared to RSS based techniques [60, 67]. The ToA based technique relies on

measurements of travel time of signals between the known reference nodes and unknown

mobile node. Ranging distance is calculated by multiplying the propagation velocity of

RF signal and the measured ToA value [60, 68].

di = c× τi (2.2)

However, since the human body is formed of tissues with different characteristics of

conductivity and relative permittivity, the RF signal propagates with various speed

through different organs [69]. These variations in the speed are the dominant source

of error for the ToA-based RF localization inside the human body. Also, in near-field

application, time-based methods are difficult because radio waves travel with a very high

speed (3 × 108m/s); thus, an extremely strict time synchronization of less than 1 ns is
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required in order to obtain the position resolution of 0.3 m. Another geometric location

method, time difference of arrival (TDoA), does not have these disadvantages. All it

needs is a transmission that has a recognizable unambiguous starting point. The data

used in the location calculations is the time difference in the reception of that starting

point at the several reference nodes, and not the actual time of flight of the signal from

the target to the fixed sensors. But in order to have sufficient data to find the mobile’s

coordinates, TDoA requires one more reference node than ToA.

2.3.3 Localization Algorithms

In every ranging based localization, the position of the mobile node is determined as

the intersection of the spheres [70], of which centers are the coordinates of the reference

nodes and radius are the ranging distance mi between the reference nodes

[
xi yi zi

]T

and the target node

[
x y z

]T
, where

m2
i = (x− xi)

2 + (y − yi)
2 + (z − zi)

2 (2.3)

Since inside the human body is an non-homogeneous environment, there is difference

between the true distance and the ranging distance using ToA. Therefore, the spheres do

not always intersect at one single point. The goal of the localization algorithm is to find

out the best estimation of the target’s actual position based on the noisy measurements.

Two most commonly used optimal estimation algorithms are least square algorithm and

maximum likelihood algorithm. In the following subsections, we explained how these

two algorithms works.
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2.3.3.1 least square algorithm

In least square (LS) algorithm [71, 72], at least three reference nodes are needed to solve

the least square problem. Substituting

x′ = x− x1 y′ = y − y1 z′ = z − z1 (2.4)

and

x′i = xi − x1 (i = 2, 3) (2.5)

into Eq. 2.3 and subtracting the first one (i = 1) successively from it for i = 2, 3 results

in an equation set in the matrix form as




x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

...

xn − x1 yn − y1 zn − z1







x

y

z



=

1

2




m2
1 −m2

2 + k2 − k1

m2
1 −m2

3 + k3 − k1

...

m2
1 −m2

n + kn − k1




(2.6)

where

ki = x2i + y2i + z2i (2.7)

it can be denoted as

2At = b (2.8)
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where

t =

[
x y z

]T
(2.9)

A =




x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

...

xn − x1 yn − y1 zn − z1




(2.10)

b =




m2
1 −m2

2 + k2 − k1

m2
1 −m2

3 + k3 − k1

...

m2
1 −m2

n + kn − k1




(2.11)

The solution can be obtained by using the least square method [72, 73]:

t =
1

2
(ATA)−1AT b (2.12)

2.3.3.2 maximum likelihood algorithm

This section talks about how to using maximum likelihood (ML) algorithm [74, 75] to

do the localization. Assume the RSS measurements intensity for each sensor is

Ri = γi

K∑

k=1

Ck

|ρk − ri|α
+ ωi (2.13)
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where Ri is the t-th sample: γi is gain factor, Ck is intensity of the k-th contaminant

source, ρk is the position of the k-th source, ri is the position of the mobile node, ωi is

the background noise.

Eq. 2.14 can be also expressed as

Ri = γi
C

m2
i

+ ωi (2.14)

where mi is shown in Eq. 2.3, which is the Euclidean distance between the mobile node

and sensor nodes.

Setting ξi = (ωi − µi)/σi ∼ N(0, 1), (Ri−µi)
sigmai

∼ N( γiσi

C
m2

i

, 1), we can define the following

matrix notation:

Z =

[
(R1−µ1)

σ1
, (R2−µ2)

σ2
... (RN−µN )

σN

]T
(2.15)

G = diag

[
γ1
σ1
, γ2σ2

... γNσN

]
(2.16)

D =

[
1
m2

1

, 1
m2

2

... 1
m2

N

]T
(2.17)

ξ =

[
ξ1, ξ2...ξN

]T
(2.18)

We use MLE method to estimate the location. The joint probability density function

can be expressed as:
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f(Z|θ) = (2π)N/2exp

{
−1

2(Z −GDC)T (Z −GDC)

}
(2.19)

its log likelihood function is:

L(θ) ∼ −
1

2

N∑

i=1

∥∥∥∥Zi − γi
C

m2
i

∥∥∥∥ = −
1

2

N∑

i=1

∥∥∥∥
Ri − µi

σi
− γi

C

m2
i

∥∥∥∥ (2.20)

where the θ is the estimated mobile position. Thus, we can get the maximum likely

mobile position by minimizing this function [76].

2.3.4 Cramer-Rao Lower Bound (CRLB)

Cramer-Rao lower bound (CRLB), named in honor of Harald Cramer [77] and Calyam-

pudi Radhakrishna Rao [78] who were among the first to derive it, expresses a lower

bound on the variance of estimators of a deterministic parameter. In the localization

literature [79, 80], CRLB defines the lower bound on the precision of a localization that

one algorithm can reach. To calculate the CRLB for localization inside human body, we

define a performance evaluation scenario and models for the behavior of the localization

metrics mentioned above, the RSS and ToA, for RF signaling in between the GI tract

and the body-mounted sensors used for localization. In this section, we introduce a gen-

eral scenario for comparative performance evaluation of RSS and ToA based localization

for capsule endoscopy application. The scenario is designed to reflect the performance

in different organs, the path of movement of the WCE inside the small intestine, and

the number and pattern of installation of body mounted sensors on the torso. Since the

received signal on the body-mounted sensors is distorted with the multipath receptions
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caused by the refraction at the boundary of organs and tissues inside the human body,

models for behavior of the RSS and ToA are fairly complicated.

Figure 2.4: A typical 3D pattern of body mounted sensors used as reference points
of the performance evaluation scenario for localization of the WCE

Consider the WCE whose location is being indexed as 1 and m body mounted receiver

sensors denoted with indexes 2...m + 1 as shown in Figure 2.4. Each receiver sen-

sor i is capable of measuring the ToA τi or RSS ri from the WCE. The observation

vector is X = |τ2...τm+1| for the ToA case or X = |r2...rm+1| for the RSS. Assume

the localization coordinate of the WCE is θ1 = [x1, y1, z1], then our objective here is

to estimate the location of the WCE θ̂1. The τi observation are modeled as normal

random variables fτi|θ1,θi N(di,1|v̄, σ
2
T ), where di,1 is the distance between the WCE

and receiver sensor i. v̄ is the average propagation speed of the RF signal inside the

human GI tract, and σT is the parameter describing the ToA ranging error caused

by human tissue non-homogeneity. The ri measurements are log-normally distributed

fridB|θ1,θi N(Pr(dB), σ2
sh), with Pr(dB) = P0(dB)− 10αlog10(d1,i). P0(dB) is the RSS
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at the reference distance from the WCE. α is the pathloss gradient and σ2
sh is the

variance of the log normal shadowing.

The CRLB of θ̂1 is cov(θ̂1) > I(θ1)
−1 is the Fisher information matrix (FIM)

Iθ1 = −E▽θ1(▽θ1 lnι(X|θ1, θ)) =




Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz




(2.21)

where ι(X|θ1, θ) is the logarithm of the joint conditional probability density function:

ι(X|θ1, θ) =
m+1∑

i=2

logfτ1|θ1,θi (for ToA) (2.22)

ι(X|θ1, θ) =
m+1∑

i=2

logfr1|θ1,θi (for RSS) (2.23)

and

Ixx = −
i=2∑

m+1

E[
∂2logfτi|θ1,θi

∂2x21
] (for ToA) (2.24)

Ixx = −
i=2∑

m+1

E[
∂2logfri|θ1,θi

∂2x21
] (for RSS) (2.25)

Similar expressions can be extend to Iyy, Izz, Ixy, Ixz and Iyz. The CRLB on the variance

of the ToA/RSS location estimation is
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σ2
1 = tr {covθ(x̂1, ŷ1, ẑ1)}

= min tr(cov(θ̂1)) = tr(I(θ1)
−1)

= (−Ixx(Iyy+Izz)+IxyIxy+IxzIxz.../(−IxxIyyIzz+IxxIyzIyz...+IxzIyyIzz)) (2.26)

2.4 Challenges of Localization inside Small Intestine

There are a number of fundamental multi-disciplinary scientific and technological chal-

lenges facing the RF localization of the WCEs inside the human body. To design an

accurate localization system for inside human body we need to consider the following

[4]:

• Modeling of the Movements of WCE inside the GI Tract

The first challenge for meaningful analysis of RF localization inside the human

body is to use clinical databases and clinical procedures performed by GI special-

ist, to model the movements of the endoscopy capsule inside the GI tract [81].

Previously acquired and stored databases of patients with approximately 55,000

images per patient could be examined for detection of landmarks or fixed points

such as the pylorus and the ileocecal valve [29, 82]. Using the location of these

landmarks, the number of images that observes the landmark, and the fact that

the images are taken at a rate of two frames /sec (recently released WCE can take

up to six frames / sec), we should design a model for the movements of the capsule

in the GI tract to be mapped into the hardware and visualization platform. In the

future, inertial sensing units that are small enough to be embedded in a pill size

device could be used to provide real time information about pitch and roll angles of
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the endoscopic capsule. This information could be used to enhance the movement

model provided by examining the images reported by the capsule. The improved

model for the movements of the WCE using inertial sensors would enhance the

RF localization result. The feedback controlled inertial sensors have been already

used to monitor the robotic end luminal system using magnetic field to efficiently

perform diagnostic and surgical medical procedures [33].

• In every localization technique, map always plays a very important role in terms

of refining the localization results [18, 19]. Existing literature [20] reported that a

clear street map is able to reduce the GPS localization error from tens of meters

to several meters in the urban area. In case of the localization inside human body,

“map” is even more important since everything goes through the GI tract follows

the same route. Knowing a clear pattern of the intestinal tract will greatly enhance

the localization accuracy. Therefore, tracing the path of intestinal tract is essential

to the accurate capsule localization.

• Modeling of the Wideband RF Propagation from Inside the Human Body

The second challenge is to model the wideband characterization of the RF propaga-

tion channel between an endoscopy capsule and body-mounted sensors [83, 83, 84].

We could use measurements inside phantoms and on the human subject’s body sur-

face to calibrate existing software simulation tools for direct solution of Maxwell’s

equations inside the human body. We then could use the software to determine

the waveforms observed by a body-mounted sensor used as a reference point for

localization or another endoscopy capsule inside the tract that could be used for

cooperative localization purposes. Finally, it should be possible to design models

for the temporal and spatial features of these waveforms (that are extracted for
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localization techniques) as capsules travel along the GI tract, to be used by the

CPS for performance evaluation and visualization .

• Design of Complicated Algorithms for Localization inside the GI Tract

The third challenge would be the design and comparative performance evaluation

of alternative localization algorithms and discovery of methods for visualization

of the results. For this part one needs to consider the use of channel models for

spatial and temporal variation of the signal, the model for the track of physical

movement of the capsule inside digestive system, and landmarks detected from

video frames of the endoscopy capsule camera [41, 63, 85, 86]. In addition to the

RF localization features, we may expect that these algorithms could exploit the

knowledge of pattern of movements and the visual data observed by the camera

inside the tract. The Cramer-Rao lower bound (CRLB) for the performance of

basic RSS and ToA based localization algorithms for capsule endoscopy are already

available in the literature [87]. We can use these bounds as a guideline for the

expected performance of the designed algorithms [88].

• Security and Reliability Issues

One last challenge in RF localization for WCEs would be to examine and where

possible quantify the security, reliability, and privacy of implantable WCEs in

human bodies. Here, there is an impending need to understand and analyze radio

propagation of signals from WCEs outside the human body at larger distances

where they may (a) cause interference (accidental or malicious) to the localization

of WCEs and or devices inside a human body (b) recovered by more powerful

devices towards identifying existence of such WCEs in specific patients. The former

impacts the reliability of localization of the WCEs inside the human body while
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the latter impacts the privacy of patients and the medical procedures that may be

conducted on the patients.

In the following chapters, we are going to elaborate how we meet these challenges.



Chapter 3

Design of Algorithms for

Body-SLAM

Since the RF signal suffers from the noisy characteristics of wireless channel and multi-

path distortions, it is natural to resort to other techniques to improve the overall per-

formance of the localization system. One way to enhance the performance of RF lo-

calization is to combine the motion information of the capsule by employing a data

fusion algorithm such as Kalman filter [89] or particle filter [43, 90, 91]. In our previous

work [53], we have used both filters to integrate the RSS-based Wi-Fi localization and

the movement models from inertial sensors including accelerometers and gyroscopes for

cooperative robotic localization in indoor areas. The results were promising since this

method shown the potential to enhance the localization accuracy by combining data

from various sensor sources. However, as we mentioned previously, inertial sensors that

meet the accuracy requirement for the WCE applications are too large to be embedded

inside a video capsule and even if they can be embedded as the assembly technology

31
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improves, the cost of the capsule will be increased dramatically. In the localization lit-

erature, there has been a trend to extract motion parameters from consecutive image

sequence to improve the accuracy of RF localization, which is known as visual based

Simultaneous Localization and Mapping (V-SLAM) algorithm [92–94]. In the WCE ap-

plication, since the endoscopic capsule continuously takes pictures with very short time

interval (up to 6 frames / sec), it is possible to extract the motion information of the

capsule by processing the video stream captured by the embedded vision sensor. This

motion information can be used as an alternative of inertial sensors to smooth the RF

localization results and meanwhile to reconstruct the trajectory that the capsule has

traveled in the same manner of V-SLAM for the indoor geo-location.

3.1 Formulation of Body-SLAM

For every location aware application, higher positioning accuracy can be achieved by em-

ploying hybrid techniques which take advantage of data fusion of different sensors [89].

Since the only two data sources come with the endoscopic capsule are video stream cap-

tured by the embedded vision sensor and wireless signal received by the body mounted

RF sensors, an intuitive idea to enhance the localization accuracy of the capsule is

through combination of the two [95]. As we mentioned before, the endoscopic capsule

continuously takes pictures at short time interval (2 - 6 frames / sec) as it travels. Thus,

it is possible to obtain information such as how quick the capsule moves and the direc-

tion of moving to track the position of the capsule. In this chapter, we present a novel

motion tracking algorithm for the endoscopic capsule by analyzing the displacements of

unique portion of the scene, which referred as feature points (FPs), between consecu-

tive image frames. The proposed motion tracking algorithm consists of 3 steps: feature
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points matching, image unrolling and quantitative calculation of motion parameters.

Detailed procedures of each step are explained in the upcoming subsections.

 

RF propagation simulation using Semcad X Algorithm design for  RF localization 

Modeling the Speed of WCE using Endoscopic 

Images 

Algorithm design of Body-SLAM & performance evaluation 

Map generation and visual tesbed design 

Figure 3.1: Overall flow chart of Body-SLAM
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3.2 Motion Tracking using Endoscopic Images

The movement of the endoscopic capsule is highly unpredictable. It may move fast,

slow, rotate and with any combination of the movements stated above. This complicated

movement of the wireless capsule creates great errors to the localization accuracy since

the Received Signal Strength (RSS) various a lots due to fast fading and sudden change

of antenna gain caused by flipping and rotating. Thus, knowing how the capsule moves

will help us to better understand the radio propagation channel inside human body and

therefore enhance the accuracy of the existing localization methods.

3.2.1 Analyzing the Content of Endoscopic Images

3.2.1.1 Image segmentation using SRM

To model the pattern of movements of the endoscopic capsule, we need to categorize the

endoscopic images first to get a conceptual idea how the capsule moves [85]. Based on

our observation, the received endoscopic images can be briefly categorized into two basic

categories: “facing the tunnel” (FT) and “facing the lumen” (FL). Two sets of typical

FT and FL images are shown in Figure 3.2. FT is the case when the focal axis of the

camera is parallel to the center of the intestinal tube. The major feature of this set of

images is always there would be a black hole (we call it “tunnel” here) somewhere in

the picture representing the vanishing line of the intestinal tube. Through a sequence

of consecutive FT images, we can clearly see the capsule either moves propelled by the

intestinal motility. On the contrast, FL is the case where the capsule tends to stop or

moves not as fast as in the FT. The reason why we do such classification is we are trying

to develop a geometric model for the FT images to quantitatively calculate the speed of

the capsule.
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Fig.1 two sets of images (top: FT, bottom: FL)
Figure 3.2: Two basic categories of endoscopic images

To distinguish the FT images from the FL images seems to be a fairly easy task for the

human eye, however, it has been proved to be extremely difficult for the machines. Ma-

jor sources of difficulties include highly complicated shape of the scene, various lightning

conditions and uncontrolled noise include liquid and bubbles inside the GI tract [85].

Given a set of labeled images, finding what is in common among each set and what is

difference between different set can provide inductive clues for classifier design. Some

normally used feature descriptors such like Histogram of Oriented Gradients (HOG) and

Local Binary Pattern (LBP) [96] doesn’t work well for our application since no distin-

guish difference can be found between the two image sets. Thus, in terms of image

representation, our approach is a region-based method. We used a Statistical Region

Merging (SRM) techniques described in [97] to segment the original image into several

sub-regions with each region represent an object. The basic idea of this technique is to

grow the major regions iteratively by combining smaller regions or pixels with homoge-

neous properties. A typical example of segmented FT image is shown in Figure 3.3 with

segmented regions shown in their representative colors. From Figure 3.3 we can clearly

see that after the segmentation, the image preserved the tunnel shape (the darkest com-

ponent in the center) while the complex textures around the tunnel are get rid of. This
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will effectively reduce the variance in the feature space.

( )

 

this will generate a support vector machine in an infinite 

dimensional while do so in roughly the same amount of time it

If we measure the 

margin by the kernel function and perform the optimization, a 

Note that the boundary 

       (15)

) into the above equation with replacing 

0 (16)

       (17) Fig.7 Two sequences of segmented image with Q = 16 Top row: FT, 
Figure 3.3: Two sequences of segmented image with Q = 16 Top 2 rows: FT, Bottom

2 rows: FL

The region merging rule is following:

P (R,R′) =





Merge if |R̄− R̄′| 6
√
s2(R,Q) + s2(R′, Q)

Not merge Otherwise

(3.1)

where R̄ is the average value of a certain color channel inside region R, s(R,Q) is a

threshold function whose value is controlled by Q. Detailed expression of s(.) can be

found in [97]. A good threshold is to find balance between preserving the major com-

ponents of the scene and the risk of over merging. The choice Q control the coarseness

of the segmentation: a large Q will keep more detailed regions while a small Q tends to

merge the small regions. From the experimental point of view, we set the value of Q to

be 16.
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After merging, pixels inside each isolated region share a common color expectation while

the expectations between adjacent regions are different for at least one color channel.

Then, we can extract features out of the segmented images. To reach a good classification

performance, the feature selection must obey the following rule: choose the feature that

is more likely to appear in one set other than in the other set. This can be measured

by calculating the co-occurrence of similar instances from different sets with the same

label. Features that are more distinguishable may increase the precision of classification.

Nine features are selected to classify the images. They are the size of the darkest region

of the segmented image, length of the darkest region, length of the darkest region, RGB

value for the darkest region and RGB value for the remaining regions.

3.2.1.2 Image classification using SVM classifier

After feature extraction, the segmented images are classified using a Kernel Support

Vector Machine (K-SVM). The training data set are labeled in the following format
{
xi, yi

}
, where xi is a n × 1 feature vector, each element of the feature vector is

composed by the feature we extracted from the previous section, since we extracted 9

features to represent an image, here n = 9, and yi ∈

{
+1,−1

}
is the label of the image.

If the endoscopic image is FT, yi = +1, otherwise, yi = −1. Suppose we have some

hyperplanes which separates the positive from the negative examples, the points x that

lie on the hyperplane must satisfy

wTx+ b = 0 (3.2)

where w is a weight vector with the same dimension of x and b is a bias term, which

is a real number. The distance between a training sample xi and the boundary, usually
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called “geometric margin”, can be expressed as follows:

wT
i + b

‖w‖
(3.3)

Since the hyperplane expressed by Eq. 3.2 are identical after w and b are scaled by a

common constant, we can add a normalized restriction to this expression:

min|wT
i + b| = 1 (3.4)

Then, the optimal solution is the boundary that maximize the minimum distance which

expressed by Eq. 3.3. By restriction of Eq. 3.4, this can be reduced to maximization of

1
‖w‖ .

The above equations are only applicable for the linear separable case. However, for our

application, since the content of endoscopic images from different sets sometimes share

similar features, the two set of images are not always linear separable. In another word,

a hyperplane that can perfectly classify the two image sets does not exist. Thus, we

need an approach that able to achieve nonlinear boundaries. Kernel mapping [98] is a

technique which is used to solve nonlinear separation data set. The basic concept of the

Kernel method is to map the vector xi to a higher dimensional space (possibly infinite

dimensional) and do the SVM in this higher dimensional space. Figure 3.4 shows a one

dimensional example of kernel mapping. The transformed space should satisfy that the

distance is defined in the transformed space and the distance has a relationship to the

distance in the original space.
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Fig. 5 Simple example of feature mapping using Kernel function

    ( )                       (14)

Figure 3.4: Illustration of feature mapping using Kernel function

x ∈ ~Rn mapping
→ φ(x) ∈ ~Rm (3.5)

where φ is the mapping function. Since φ(x) is very high dimensional, it would not be

very easy to work with φ(x) explicitly. If we measure the margin by the kernel function

and perform the optimization, a nonlinear boundary can be obtained.

3.2.2 Feature Points Matching

For the FT images, the translation of the endoscopic capsule inside the small intestine

can be modeled as a tiny camera passing through a elastic cylindrical tube as shown

in Fig. 3.5. Since the WCE continuously takes pictures at a rate up to 6 frames/sec,

common portions of the scene may present between consecutive images [34]. These

portions of the images are called “feature points” (FP). The pattern and magnitudes of

the displacements of these feature points can be used as a hint to reveal the speed of

the endoscopic capsule.

To make an accurate estimation of the capsule’s speed, it is very important that the

FPs extracted from the reference (first) frame can be accurately located in the following

frames.
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The Affine Scale-invariant Feature Transform (ASIFT) [99–101] defined by the affine

camera model in Eq. 3.7, is a perfect matching tool for the WCE images due to its

immune property to viewpoint changes, blur, noise and spatial deformations.

A = HλR1(Ψ)TtR2(Φ)

= λ



cosΨ −sinΨ

sinΨ cosΨ






t 0

t 1






cosΦ −sinΦ

sinΦ cosΦ


 (3.6)

where R represents rotation and T represents tilt. Ψ is rotation angle of camera around

optical axis. Φ is longitude angle between optical axis and a fixed vertical plane. λ is

zoom parameter. Detailed procedure of FPs matching using ASIFT can be found in

[100]. An example of feature points matching is given in Fig. 3.6 (a), in which blue “o”

represents the coordinates of detected FPs in the reference frame, red “o” represent the

coordinates of matched FPs on the second frame. If we connect the corresponded FP

pairs on the same frame (as shown in Fig. 3.6 (b)), a bunch of motion vectors will be

generated representing the displacements of FPs between frames.

Intestinal wall 

Wireless Capsule Endoscope (WCE) 

LED light 

Lens 

Field of view 

Figure 3.5: A WCE moving inside the small intestine
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(a) Corresponding feature points between
two consecutive frames

(b) Formation of
motion vectors

Figure 3.6: Feature matching between two consecutive images using A-SIFT

3.2.3 Image Unrolling

To standardize the displacement of each FP pair and facilitate the quantitive calculations

of motion parameters that are useful for localization, we need to perform an inverse

cylindrical projection [102] (also referred as “image unrolling” in [63, 103]) to project

the original cylindrical image onto an flatten view coordinate system, which we called

“unrolled” image domain. As shown in Fig. 3.7, given a point P at distance d away from

the camera, the angler depth of P is defined as:

 

 

 

 

d 

 

 

 

 

Cylindrical image domain

( , ) 

 

 

Figure 3.7: Image acquisition system of WCE.

θ = tan−1

(
R

d

)
(3.7)
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where R represents the radius of the intestinal tube. It can be seen from Eq. 3.7 that a

smaller angler depth indicates a larger distance away from the camera. To facilitate the

derivation of angler depth, we map the coordinate (x, y) of any point on the cylindrical

image plane to the unrolled image plane (x′, y′) by:

x′ =
Lφ

2π
y′ = r (3.8)

where φ is the angle between point P and the horizontal axis in the cylindrical image

plane (shown in Fig. 3.8 (a)).

φ = tan−1

(
y − y0
x− x0

)
(3.9)

r is the radius of the circular ring associated with point P that can be calculated by:

r =
√
(x− x0)2 + (y − y0)2. (3.10)

L and H are length and height of the unrolled image plane respectively. Fig. 3.8 illus-

trates the procedure of image unrolling.

In this unrolled image plane, x′ axis represents the radian angle φ whose value ranges

from 0 (when x′ = 0) to 2π (when x′ = L). y′ axis represents angular depth which reflect

the distance away from the camera. y′ = 0 represents a 0 angular depth and y′ = H

gives the maximum field of view η of the camera. As can be seen in Fig. 3.8(a), after

the mapping, the circular rings in the cylindrical image plane are stacked up vertically

in the unrolled image plane. Under this new coordinate system, the angular depth of

any point P can be calculated directly through its y′ value by:
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θ ∼=

(
y′

H

)
η (3.11)

The angular depth obtained from Eq. 3.11 would facilitate the calculation on the speed of

the capsule and values changes in x′ direction would facilitate the calculation of rotation

of the capsule. Detailed calculation based on this new coordinate will be presented in

the upcoming subsection.

Figure 3.8: The process of ”unrolling” the cylindrical image

3.2.4 Speed Estimation

As mentioned in previous sections, motions of a video capsule can be detected by mea-

suring the displacements of the FPs. To explain better, we use Fig. 3.9 to illustrate the

procedure of calculating the transition speed of a capsule traveling through the intestinal

tube.

In Fig. 3.9 (a), point P is a FP detected at a distance D from the initial position of the

camera C with its angular depth equals to θ1. After the camera has moved forward by
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a distance d to a new position C ′, the angular depth of P changes to θ2. The changes

in angular depth can be used to calculate the transition speed of the capsule.

θ1 = tan−1R

D
=⇒ D =

R

tanθ1
(3.12)

θ2 = tan−1 R

D − d
(3.13)

Replacing D in Eq. 3.13 with Eq. 3.12, we get:

d =
R

tanθ2

(
1−

tanθ2
tanθ1

)
(3.14)

since the time interval for this distance d is half a second, the speed of the capsule can

be calculated by:

v =
1
N

∑N
i=0 di

0.5
=

2

N

N∑

i=0

R

tanθ2i

(
1−

tanθ2i
tanθ1i

)
(3.15)

where N equals to the total number of all detected FPs.

From Eq. 3.15 it can be seen that information on depth of FP is factored into the

final expression of distance moved by the capsule. In this way, the actual displacement

d of the camera is independent of the location of the FP chosen in the image. To

reemphasize, the unrolling process facilitates the deriving of θ1 and θ2 in Eq. 3.11 and

therefore facilitates the deduction of v. Similarly, if the capsule moves backward, the

speed can be calculated in the same manner as well.
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Figure 3.9: Speed estimation
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Figure 3.10: Direction of moving of the capsule

3.2.5 Direction of Moving Estimation

Another important aspect for motion tracking is estimating the direction of moving of

the capsule. As illustrated in Fig.3.10. If we define the world coordinate as (X,Y, Z)
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and capsule’s coordinate as (X ′, Y ′, Z ′). The moving direction of the capsule is given

by a norm vector (nx, ny, nz)
T in the world coordinate. After the capsule rotated with

angle α around its X ′ axis (pitch), angle β around its Y ′ axis (yaw) and angle γ around

its Z ′ axis (roll), the new direction of the capsule (n′
x, n

′
y, n

′
z)

T can be calculated by:




n′
x

n′
y

n′
z



= R ·




nx

ny

nz




(3.16)

where R is an accumulative rotation matrix which relates the camera’s coordinate sys-

tem (X ′, Y ′, Z ′) to the world coordinate system (X,Y, Z). If we assume the camera’s

coordinate system was initially aligned with the world coordinate system with it is focal

axis pointed to the Z axis, then, the initial value of R equals to a 3× 3 identical matrix.

As the capsule moves away from the original position, R is updated at each time step

by:

 

 

 

 

 

  

 

 

Figure 3.11: Direction of moving estimation

R = R · Rt · R
−1 (3.17)
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where Rt is an direction updating matrix that has a following expression:

Rt =




cosαcosγ cosγsinαsinβ − cosαsinγ cosαcosγsinβ − sinαsinγ

cosβsinγ cosαcosγ + sinαsinβsinγ −cosγsinα+ cosαsinβsinγ

−sinβ cosβsinα cosαcosβ




(3.18)

where α, β and γ are the pitch, yaw and roll angles about the capsule’s X ′, Y ′ and

Z ′ axises, respectively, during the elapsed time interval. Again, these angles can be

obtained without complicated computation in the unrolled image domain.

• pitch (α) and yaw (β) estimation

During the transition of the capsule, the capsule will tilt toward the direction of the

curly intestinal tube. As illustrated in Figure 3.10, point P and point Q are of the same

distance from the initial position of the camera C. After the camera moves to C ′ and

tilted with angle ϕ towards Q, the angular depths of the two FPs changes with different

amount of magnitudes.

△P = θP2 − θP1 △Q = θQ2 − θQ1 (3.19)

Figure 3.10 shows that angular displacement △P is obviously larger than the angular

displacement △Q. The magnitude of tilting can be roughly estimated by:

ϕ ∼=
△Q−△P

max(△P,△Q)
(3.20)
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The direction of tilting can be obtained by finding the group of with smallest displace-

ment in y′ in the unrolled image domain. Therefore, this tilting angle φ can be further

decomposed into pitch angle α and yaw angle β by:

α = ϕ · cosφ β = ϕ · sinφ (3.21)

• roll (γ) estimation

The calculation of roll angle γ is even easier in the unrolled image domain by measuring

the horizontal displacements of FPs in the x′ axis:

γ =
1

N

N∑

i=0

△x′i
L

2π (3.22)

where △x′ denotes the horizontal displacement of a FP in the unrolled domain. L is

the length of the unrolled image. It can be seen from Eq. 3.22, a greater △x′ reflects a

greater rolling angle γ and vice versa.

3.3 Data Fusion of Visual and RF Information

The two data sources that come with the endoscopic capsule provide complementary

characteristics: visual motion tracking is very accurate at low-velocities but suffers from

accumulative estimation errors which leads to drifting away, while RF localization pro-

vides absolute localization results that is independent from the previous measurements

but with certain amount of error for estimation. In this section, we talk about how to

fuse the data from both sensors to improve the reliability and accuracy of WCE local-

ization inside small intestine. The proposed hybrid solution utilizes a Kalman filter to
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predict the position of the capsule based on the motion model extracted from images

and obtains feedback from the RF measurements to correct the position estimations [41].

3.3.1 Kalman Filter

The state of the mobile robot (in this case the capsule) in the 3D space can be modeled

as its x, y, z coordinates and orientation. These parameters can be combined into a

state variable vector. As we introduced above, the capsule continuously takes pictures

as it moves along, by processing the video stream, we are able to extract the motion

information about how far it has moved and its orientation. However, due to the low

resolution and low frame rate, these estimations include errors and these errors accumu-

late frame by frame. This will cause the capsule drifting away from the correct path.

The Kalman Filter (KF), which has been widely used for mobile robot navigation, is a

smarter way to optimally estimate the state by integrating all available data from var-

ious sensor sources. Since the only two data sources come with the endoscopic capsule

are video stream captured by the embedded vision sensor and wireless signal received

by the body mounted RF sensors, an intuitive idea to enhance the localization accuracy

of the capsule is through combination of the two.

The main idea of KF is to estimate the conditional probability of being in state mt

given available measurements z1, z2...zt. We call the probability of being in state mt

given measurements z1, z2...zt the belief,

Bel(mt) = P (mt|z1, z2...zt) (3.23)
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We can split this belief definition into the prior belief Bel−(mt) and the posterior belief

Bel+(mt) using Bayesian rule and Markov assumption.

Bel−(mt) = P (mt|z1, z2...zt−1) (3.24)

=

∫
P (mt|mt−1)Bel+(mt−1)dmt−1

Bel+(mt) = P (mt|z1, z2...zt) (3.25)

=
P (zt|mt)Bel−(mt)

P (zt|z1, z2...zt−1)

The prior belief is the conditional probability of being at state mt given all the mea-

surements z up to step t. The posterior belief is the conditional probability of being

at state mt given all the measurements z up to and include step t. In order to com-

pute the beliefs, we need to find expressions for the system model P (mt|mt−1) and the

measurement model P (zt|mt).

In order to predict and correct the belief, the KF needs a model for the system and a

model for the measurements. The KF assumes a Linear Dynamic System description of

the system of which it is estimating the state. The dynamic system may be corrupted

by noise sources, which the KF assumes can adequately be modeled by independent,

white, zero-mean, Gaussian distributions.

• Assumptions

The KF assumes that the system state and measurements can be described by a

linear dynamic system. This is a set of linear equations that models the evolution of
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the state of the system over time and that describes how measurements are related

to the state. The KF assumes a linear model, since it simplifies the computations

and since often a linear approach is adequate for the problem to be modeled. When

the problem is not linear, then we can use linearizing techniques to transform a

non-linear problem into a linear. A linear dynamic system consists of a system

and a measurement model.

• System Model

The system model describes how the true state of the system evolves over time.

The KF needs this model in order to make predictions about the state. The KF

assumes that the state of the system evolves according to the linear equation.

mt = Amt−1 + ωt−1 (3.26)

The true statemt ∈ R
n of the system at time t depends on the state of the system

one step earlier mt−1 and some noise. Matrix A is an n× n matrix that, without

taking into account possible noise in the system, relates the state of the previous

time step t − 1 to the state at the current step t. The vector ω ∈ Rn represents

the noise in the system.

• Measurement Model

The measurement model describes how measurements are related to states. The

KF needs a model of the measurements in order to correct the state prediction

when a measurement is available. If it has a model that given the true state

of the system describes what the measurement will be, then it can compare the

real measurement with the measurement that the model gives to correct the state
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prediction. The KF assumes that the measurements can be modeled by an equation

that linearly relates the state of the system to a measurement,

zt =Hmt +ψt (3.27)

The true measurement zt ∈ Rm at time t depends linearly on the state of the

systemmt. The m×n matrix H relates the current statemt to the measurement

zt. The vector ψ ∈ Rm represents the noise during the measurements.

• Markov process

Notice in Eq. 3.26 that the state mt at time t does not depend on all other

states and measurements given mt−1. Also notice in Eq. 3.27 that, given mt, the

measurement zt does not depend on all other states and measurements. These

properties make the system a Markov process.

3.3.2 Relative Position Predictions using Images

Given the motion model derived from the previous section, the priori motion state m̂−
t

at time step t (without any knowledge of RF measurement) is given by:

m̂
−
t = At−1 · m̂t−1 + ωt−1 (3.28)

motion state vectormt is defined as [x, y, z, nx, ny, nz]
T , where (x, y, z) is the 3D position

of the capsule in the world coordinate system and [nx, ny, nz] is a norm vector that

indicates the direction of moving of the capsule. ωt is a noise term caused by inaccurate

motion estimation which follows a normal probability distributions with covariance equal

to Qt. A is a 6 × 6 transition matrix that relates the previous motion state at time
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t− 1 to the current motion state at time t. Given that the sum of two Gaussian random

variables results in another Gaussian random variable, we derive the probabilistic system

model as

P (mt|mt−1) = N(Amt−1,Qt) (3.29)

If we plug in all the parameters, Eq. 3.28 can be rewritten as:




xt

yt

zt

nx|t

ny|t

nz|t




=
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0 0 0
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]

0 0 0


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·


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zt−1

nx|t−1

ny|t−1

nz|t−1




(3.30)

where v is the transition speed of the capsule derived from Eq. 3.15. △t is the time

interval between frames (half a second). R is the same rotation matrix introduced in

Eq. 3.16.

In the same way we want to find the probabilistic characteristics of the RF measurement

model from Eq. 3.27, since this is the distribution P (zt|mt) needed to compute the

posterior belief from equation Eq. 3.25. The RF measurements are modeled according

to the measurement model

ẑt =Ht · m̂
−
t + νt (3.31)
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where νt is a measurements noise term. Similar to ωt, νt also followed a normal distribu-

tion with covariance equal to Rt. In this, we again look at the term boldsymbolHt · m̂
−
t

as a Gaussian distribution with mean N(Ht · m̂
−
t , 0). Given these two Gaussian distri-

butions, we see that the conditional probability of observing zt given mt is Gaussian

distributed as

P (zt|mt) = N(Hmt,Rt) (3.32)

H is a 3× 6 matrix which predicts the RF localization based on the prior motion state

at time t.

H =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0




(3.33)

Once the actual RF localization result zt is available, we can use it to correct the

predicted position of the capsule. The covariance gives an indication of how precise the

KF thinks the state estimate elements are estimated. The smaller the variances are, the

more precise the state estimate is.

3.3.3 Absolute Position Measurements by RF Localization

To obtain the actual RF measurement zt, several calibrated external sensors are attached

to the anterior abdominal wall of the human body as shown in Figure 3.12 to detect the

wireless signal emitted by the wireless capsule [104]. As we mentioned in Chapter 2, the

power of received signal (RSS) is used to identify the distance between the capsule and

body mounted sensors using statistical channel models.
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Body Mounted Sensor

Endoscopic Capsule

d1 

d3 

d2 

Figure 3.12: A typical RF localization system
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Lp(d) = Lp(d0) + 10αlog10
( d

d0

)
+ S(d > d0) (3.34)

where Lp(d) represents the path loss in dB at some distance d between the transmitter

and receiver, d0 is a threshold distance and α is the path loss gradient which is determined

by the propagation environment. The parameters of the path loss model developed

by National Institute of Standards and Technology (NIST) at MICS band [66] was

summarized in Table 2.2.

Let (x, y, z) be the potential position of the capsule and (xi, yi, zi) be the position of

body mounted sensor i. The ranging distance between the capsule and sensors can be

expressed as:

di = 10

(
Lp(d)− Lp(d0)

10α

)
d0 (3.35)

Given 3 or more estimated distances between the capsule and body mounted sensors, the

3D position of the capsule zt can be calculated using a least square algorithm introduced

in Chapter 2 by minimizing the function below:

f(x, y, z) =
N∑

i=1

(√
(x− xi)2 + (y − yi)2 + (z − zi)2 − d2i

)2
(3.36)

3.3.4 Correction using RF Localization

After the actual RF localization zt is obtained, we can use the priori motion estimate

m̂
−
t and a weighted difference between the actual RF measurement zt and the predicted

RF measurement ẑt to correct the localization results.
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Motion Update (“Predict”) 

• Predict the motion state: 

=  

• Predict the error covariance  

= +  

• Update the transition matrix 
   : 

=  

RF Measurement Update (“Correct”) 

• Compute the Kalman gain: 

= ( + )  

• Update motion state with actual RF 
measurement : 

= + ( ) 

• Update the error covariance: 

= (1 )  

Initial estimates for and  

Figure 3.13: A complete flowchart of data fusion of images and RF measurements
using a Kalman filter

m̂t = m̂
−
t +Kt (zt − ẑt) (3.37)

where m̂t is defined as a posteriori motion state estimate given the RF measurement zt.

The 3× 6 matrix K in Eq. 3.37 is called Kalman gain. If we define the priori estimate

errors covariance as P−
t = E[(mt − m̂

−
t )(mt − m̂

−
t )

T ] and a posteriori estimate errors

covariance as P t = E[(mt − m̂t)(mt − m̂t)
T ], the Kalman Gain can be expressed as:

Kt = P
−
t H

T
(
HP−

t H
T +R

)−1
(3.38)

The Kalman Gain controls the weighs of both sensors on the final position estimation:

if RF measurement noise is low, then the final estimation is more dependent on the RF

measurement. Otherwise, the final estimation is more dependent on the motion model.

The whole process of data fusion is illustrated in Fig. 3.13



Chapter 4

Performance Evaluation of

Body-SLAM

One of the major challenges in localization inside human body is performance evaluation.

That’s because any experiments inside human body is extremely difficult to operate.

After the WCE is swallowed by the patient, we have limited control of the capsule

and there is no effective way to verify their positions. Moreover, human subjects are

different from one and another, we need a uniform platform for comparative performance

evaluation. In this chapter, we talk about the validation of our proposed localization

algorithm. Both the empirical results and emulation results are given to verify the

performance of our algorithm.

4.1 Empirical Results of Motion Tracking

We need the motion model of the WCE for the simulation and the analysis of the tem-

poral and spatial variation of the observed signals by body mounted sensors, design

58
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Figure 4.1: Some typical landmarks for the WCE

of algorithms for localization, and the emulation of the channel characteristics for per-

formance evaluation and visualization of locations of WCEs. Unlike the movement of

vehicles on roads or human beings in indoor areas, the movement of WCE inside the

human body is very inconsistent and varies with the type of organs. While we cannot

develop completely generalized models, we should be able to develop empirical move-

ment models for these movements. Some pre-defined landmarks are detected by image

processing techniques or identified by a GI specialist through the video source taken by

WCE. These landmarks include entrance and exit of each of the four organs traversed by

the endoscopy capsule: esophagus, stomach, small intestine and large intestine as well

as tumors and bleeding identified in the tract. Figure 4.1 shows pictures of landmarks

inside the GI tract associated with pictures of duodenum, bleeding, tumor and cecum.

As introduced in Chapter 3, if we know the motion information of the capsule by pro-

cessing the endoscopic images, we can integrate this motion information with the RF

measurements to enhance the localization accuracy. Conventionally, one simple approach

of extracting the speed information of the capsule is to assume the capsule travels at a

constant average speed and the approximate position of the capsule is calculated accord-

ing to the time of travel away from some pre-defined land marks such like pylorus and

ileocecal valve. Apparently, when using this approach, the further the capsule moves
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away from the land marks, the greater the error is. Especially after the video capsule

has entered a few centimeters of the small intestine, the localization error will increase

dramatically. This is mainly due to the high complicity level of the shape of the small

intestine. The distribution of small intestine is like a curled snake with its length varies

from 5m to 9m (the average value for human being is 7m) and the tendency of loops

is highly indistinguishable. Besides, the intestinal motility is not consistent. Peristalsis

may make the wireless capsule sometimes move quickly, sometimes slow or sometimes

even stop and then progress with any combination of the movements above. To enhance

the localization accuracy, a precise knowledge of how fast the capsule moves is urgently

needed. In this section, we apply the speed estimation algorithm introduced in chapter

3 to the clinical endoscopic image database to model the speed of the capsule traveling

through the small intestine.

4.1.1 Speed Estimation using PillCam COLON 2

PillCam COLON 2 is another product of Given Imaging, which specially aims at visual-

ization of the colon mucosa and detecting polyps [105, 106]. After FDA Rejected PillCam

Colon application in USA in 2008, Given Imaging developed the second-generation Pill-

Cam COLON 2 and received a CE Mark in 2009 and was commercially available in

Europe in 2010. The size of PillCam COLON 2 is 11 × 31 mm and equipped with two

identical image cameras on both ends as shown in Figure 4.2. As we mentioned in the

previous chapters, performance evaluation of the speed estimation of WCE is extremely

difficult. The double camera feature of the PillCam COLON 2 is a perfect tool for sta-

tistical validation. Since the images taken from both cameras are almost the same but

pointing to opposite direction, after applying the speed estimation algorithm, the speed

extracted from both cameras should be the same.
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Figure 4.2: PillCam COLON 2 with double cameras

The data set we used for this validation is from UMass Memorial Medical Center. The

video clip is consist of 2600 continuous image pairs. After applying the proposed motion

tracking algorithms to each image pair, the result of the speed estimation (magnitude) is

shown in Figure 4.3, where blue line represents the speed estimated from camera 1 and

red line represents the speed estimated from camera 2. As we can see, the trend of both

line match pretty well which indicate our proposed speed estimation is accurate. The

plot shows that the capsule doesn’t travel at a constant speed, it sometimes travels fast

propelled by the intestinal motility and sometimes moves slowly even stops. This result

confirms the assumption that the capsule translates at various speed. We also plotted

the PDF and CDF of the speed estimation results from both cameras in Figure 4.4, they

also share almost identical distributions.

4.1.2 Statistical Speed Modeling

We also tested our algorithm with the clinical data from different individuals using

OMOM [107] capsule. Figure 4.7 shows a sequence of 60 endoscopic frames. After

applying our speed estimation algorithm, a plot of the corresponding speed is given

underneath. Since we do not have precise control of the capsule, we are not able to
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Figure 4.3: Speed estimation results from PillCam COLON 2 double cameras
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Figure 4.4: Statistics of speed estimation using PillCam COLON 2 double cameras

perform quantitative evaluation, but we can examine the images manually by naked

eye. As shown in Figure 4.7, the whole image sequence can be divided into 4 sections

marked by A, B, C, and D. It can be seen that during section A and C, the scene almost
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stays still which indicates a slow motion of the capsule, while in section B and D, the

capsule moves faster. The trend of the corresponding speed estimation plot matches

this observation. To further validate our algorithm, we compared the statistical results
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of clinical data (4 short video clips and 1 long video clip) from 5 different patients. The

results are shown in Figure 4.5 and Figure 4.6. It can be seen although the video clips are

from different individuals, after applying our speed estimation algorithm, the estimated

speed shares very similar distributions in term of probability density function (PDF)

and cumulative distribution function (CDF). Some typical speed estimation pattern are

shown in Figure 4.8 and Figure 4.9.
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Figure 4.8: A typical speed pattern of moving fast

Figure 4.9: A typical speed pattern of moving slow
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4.2 Design of Testbed for Performance Evaluation

As we mentioned before, one of the major challenges of implementing any capsule local-

ization algorithms when it comes inside the human body is validation. That is because

we have limited control of the capsule after it is swallowed by the patient so we could not

verify the performance of the algorithms [4, 108]. Besides, carrying out experiments on

the real human beings is extremely costly and restricted by law. Thus, the only way to

verify the performance of our localization algorithm is to build up an emulation test bed.

Similar idea was applied to wireless wide area network (WWAN) and wireless local area

network (WLAN) deployments. In WWAN and WLAN, instead of doing real measure-

ments, researchers model the characteristic of the RF signal under a certain scenario by

creating emulation testbed. Algorithms and protocols can be imported into the testbed

to test and compare their performances. In case of WCE localization, since experiments

inside human body is impossible, we need to design a testbed for performance evaluation

of the proposed Body-SLAM algorithm. In this section, we describe the details how to

establish a testbed for localization inside human body.

Since the only two data sources we get from the WCE are images and RF signals used

for transmitting these images, the testbed should include two major components: visual

component and RF component. The overall flow chart of designing this testbed is

illustrated in Figure 4.10.
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RF propagation simulation using 

Semcad X 

Algorithm design for  RF localization 

Modeling the Speed of WCE using 

clinical Images 

Performance evaluation  suing emulation testbed 

Speed estimation and direction of moving estimation 

RF localization and channel modeling  

Body-SLAM performance evaluation 

Map generation and visual tesbed 

Visual component RF component 

Figure 4.10: Design of emulation testbed for quantitative performance evaluation
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4.2.1 Visual Component

To establish the visual component of the testbed, we need to create a visual environment

that is able to produce artificial images that look the same as the real endoscopic images

taken by the WCE while we have fully control of the motion status of the camera.

4.2.1.1 Physical testbed

Our first attempt to emulates the digestive tract is to build a physical hardware [109].

This hardware was created by bending and twisting a 1.5 meter long 3 centimeter di-

ametric Polyvinyl Chloride (PVC) tube. The outer surface of the tube was painted

with flesh color to give it a more realistic interior look. A layer of tinfoil paper was

covered around the tube to prevent outer light from transmitted into the tube and also

preventing the light of camera from escaping outside.

To simulate the transition of the endoscopic capsule, we inserted a wired endoscopy

camera equipped with four LED lights (as shown in Figure 4.11 (a)) into the tube with

a constant step of 0.03 cm and took a picture after each step. In the endoscopic pictures,

the tube surface that lied physically closer to the camera had a brighter intensity value.

The brightness decreased as the distance increased and finally at the far end of the tube,

which was corresponding to the center of the endoscopic pictures, a black hole would

form. If the camera was about to tilt, the black hole would move toward to the edge

of the endoscopic pictures. Figure 4.11 (c) indicates a test pictures take from inside the

physical testbed. We can see that it looks similar with real pictures taken from the small

intestine.

One big advantage of the physical testbed is that we can put it into water to simulate

the liquid environment inside the small intestine. Also we could insert a antenna inside
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(a)                                                                         (b)                                              (c)

Figure 4.11: A physical visual model for the small intestine (a) wired endoscopic
camera (b) appearance of the physical model (c) pictures taken from inside the physical

model

the tube to emulate RF signal emitted by the endoscopic camera. However, there are

some fundamental drawbacks with this physical model:

• The major drawback of this physical model was the restriction in camera control.

After the camera was inserted into the tube, we can only control the speed of the

camera by pulling the wire connected to of the camera. However, we don’t have

full control of other movements of the camera such as tilt and rotation.

• The PVC plastic tube is not soft enough to bend into the complicated shape

(especially the sharp turn) of the small intestine. Besides, the endoscopic camera

is longer than the actual size of the endoscopic capsule, this would make smooth

transition of the camera challeging since it sometimes get stuck somewhere in the

tube.

• Adding texture to the interior of the PVC tube is difficult. We meed map the

actual texture of inside the digestive tract to the interior to the physical model to

make it looks more similar to the real endoscopic images.
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Due to the drawbacks stated above, an alternative way to emulate the inside environment

of the small intestine was to build a virtual testbed which will be introduced in the

upcoming subsection.

4.2.1.2 Virtual testbed

The major reason that we choose a virtual visual testbed is that it gives full control of the

camera’s motion. This is critical in validating the performance of our motion tracking

algorithm. Besides, we can easily change the shape of the testbed and attach any color

and texture to the testbed to make it looks more realistic. To verify the feasibility of

the virtual testbed, we compared the images generated from the virtual testbed and

physical testbed and make sure they share similar characteristics.

The first step is to map the physical model to the virtual 3D space [110]. To do so,

we measured the x, y, and z coordinates of the pipe every 10cm and imported those

coordinates into Matlab (as shown in Figure 4.12). After linking those 3D points, we got

the path of the physical testbed. This path is used for generating a cylinder the same size

as the physical pipe as shown in Figure 4.13. We attached the texture extracted from the

real endoscopic images to the interior of this cylinder to give a realistic look as the small

intestine. Using Matlab graphic toolbox, we placed a camera view point and moved it

along this path and meanwhile taking pictures. An light source was placed behind the

camera view point to simulate the illumination system. Some sample images generated

by this virtual environment is shown in Figure 4.14. As we can see, the images generated

from the virtual environment shares the same features of the images from the physical

testbed, therefore, it can be used as an alternative for creating the visual component

of the testbed. However, the cylinder shown in Figure 4.13 is too short and too simple
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to represent the real small intestine. We need a more realistic and complicated virual

model of the digestive tract.
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(a) Physical testbed 

(b) Mapping the coordinates of physical testbed into Matlab  

(c) Create the 3D path of the physical testbed by interpolation 

Figure 4.12: Mapping the physical testbed into virtual 3D space
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Figure 4.13: 3D testbed

Figure 4.14: Emulated endoscopic images from virtual visual testbed

To create a more realistic scenario, we generated a cylindrical tube with the same size

and shape of the small intestine. The actual path of this virtual test bed was extracted

from a an anatomical 3D model of the small intestine shown in Figure 4.16 by using some

3D image processing techniques. For the large intestine, since it already has a very clear

pattern which looks like a big hook, we applied 3D skeletonization technique [111] to

extract the path of it. As for the small intestine, since the shape of the small intestine

is much more complicated (the trend of the small intestine can be hardly recognized
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by human eyes), we developed an element sliding technique to trace the path. The

basic idea behind this technique is to define an element shape (ES) with its radius

automatically adjustable to the radius of the small intestine [86]. This ES is propelled

forward by a factor associated proportional to the average distance between the vertices

within certain range and the physical center of the ES. As the ES goes along the small

intestine, the position of its physical center is recorded and this will give us a clear path

of the small intestine. The path extracted from the 3D model is shown on the bottom

of Figure 4.15.

As illustrated on the top of Fig. 4.16 (c), the virtual test bed shared the same topology

with the real small intestine which is intertwined back and forth. To make the interior of

the testbed look more realistic, we extracted color and texture from the real endoscopic

images and mapped it onto the interior surface of the tube. Similar emulation set up

can be found in [108, 112, 113].
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Figure 4.15: 3D path generation from a 3D GI tract model
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(a) Human’s digestive system

(b) Path for small intestine

(d) Real endoscopic images (e) Emulated endoscopic images

(c) Virtual testbed for small intestine 

Figure 4.16: Emulation testbed set up
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4.2.2 RF Component

Research in localization inside of the human body has reached a bottleneck due to the

difficulty of conducting measurements inside the human body. Two major limitations

causing difficulty are the existence of a nonhomogeneous environment and difficulties in

antenna implantation inside the human body for experimental purposes. Previously, the

efficiency of different simulations around a human body was assessed and theoretically

analyzed [114, 115]. Phantoms with emulated tissues were used to validate surface

measurements of a human body [116–118]. However, the simulation analysis of the

small intestine remains to be done.

4.2.2.1 RF propagation emulation using FDTD

The RF propagating simulation was carried out using SEMCAD X [119]. SEMCAD

X is a full-wave electromagnetic simulation platform based on the Finite Difference

Time Domain (FDTD) method [120]. This software provides an abundant library of

anatomical non-homogeneous human body models for waveform transmission problems.

The models can be used to simulate wave propagation in and around the human body.

Additionally, this software runs faster than other electromagnetic simulation platforms

due to its algorithm optimization.

The FDTD method was first introduced by Yee in 1966 [121]. It solves Maxwell curl

equations in the time domain. The FDTD method has been proven to be an effective

simulation method in terms of the accuracy of obtaining electrical and magnetic field

parameters. It has been widely used in indoor localization and microwave simulations

[122, 123]. In this section, we present the simulation results of the waveform propagation

in both homogeneous and non-homogeneous tissues. By comparing simulation results
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and empirical measurements, we show that the SEMCAD X platform is a reliable tool

for waveform transmission.

In SEMCAD X, we simulated the in-body waveform transmission. The bandwidth range

is from 50MHz to 400MHz. We imported a model of a 34-year male and positioned two

sensors internally around the human torso. We placed two edge sensors inside the human

body model at the torso. One sensor acts as a transmitter (WCE) and the other sensor

as a receiver. We fix the receiver at a single location and move the transmitter at

increments of 1 cm as shown in Figure 4.17. Using this procedure we obtain the values

of TOA and received signal strength at different distances. The results are shown in

Figure 4.18. 

  
represents the x-coordinate value. The Distance Measurement 
Error (DME) of both measurement and simulations can also be 
calculated from DME versus distance shown in Fig. 7. 
Propagation velocity in a homogeneous tissue is given by [9]: 

                      (5) 

                      

 

                (6) 

                          

 is the relative permittivity, d is the 

 

 

Fig.8. the Human Body Model (Left), Locations of Transmitted and Received Figure 4.17: RF propagation setup using SEMCAD X
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4.2.2.2 RSS vs ToA

        (9) 

               

Then we can calculate the average permittivity of the human 

             (10) 

match to the to the deep tissue path loss gradient in Table 1 

  

Fig. 9.  RSS versus distance (left) and  Time-of-Arrival (TOA) versus 
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Figure 4.18: RSS versus distance (left) and Time-of-Arrival (TOA) versus distance
(right) inside human body

To measure the statistics of the temporal and spatial behavior of the signal, we used

computational techniques for direct solution of Maxwell’s equations for extensive mea-

surements of wide-band characteristics of RF signals inside the human body. We have

used these techniques to find the wide-band received signal at body mounted sensors and

other WCEs when a waveform is transmitted from a VCE in a specific location inside the

GI tract. Then we extracted the RSS, TOA and DOA of the received wide-band signal

by other capsules or by body-mounted sensors to model them for use in RF localization

algorithm design.

For RSS based localization techniques, we need a path-loss model that relates the sta-

tistical behavior of the power to the distance to calculate the estimated distance of the

capsule from the body-mounted sensors used as the reference point. For TOA-based

localization algorithms, we need a model for the multipath arrival and the relationship

between distance measurement error and the bandwidth of the system to account for the

measurement noise and various biases in distance estimation from TOA measurements.
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The current body of literature only provides a few path-loss models for implant com-

munication applications. Modeling of the effects of multipath on TOA- and DOA-based

localization is at its infancy and new models for these purposes are needed.

4.3 Performance Evaluation for Body-SLAM

We first test the performance of the motion tracking algorithm using the visual testbed.

The artificial images were generated by moving the camera view point along a preknown

path. During the transition of the capsule, it took pictures at resolution of 420 × 560

pixels. For the purpose of inverse cylindrical projection, we only used the square portion

(1:420, 71:490) of the original image. The size of the unrolled domain was set to be

500(L)× 300(H) pixels. The radius of the cylindrical tube was set to be 1.5 cm, which

was close to the actual radius of the small intestine.

Fig. 4.19 shows some artificial images generated by the visual testbed and typical move-

ments that were detected by the proposed motion tracking algorithm. Fig. 4.19 (a)

shows a scenario that the capsule moves forward. It can be seen that the displacements

of FPs are originally pointed to the outer ring in cylindrical image domain while stacked

vertically with their orientation pointing upward when mapped into the unrolled image

domain. The magnitude of displacements in the unrolled domain reflects the speed of

moving of the capsule. Similarly, if the capsule moves backward (shown in Fig. 4.19

(b)), motion vectors in the cylindrical image domain are pointed to the center and cor-

respondingly, when mapped into the unrolled image domain, they are vertically pointing

downward. Fig. 4.19(c) shows a case when the capsule rotated, motion vectors in the

cylindrical image domain formed a circle around the focal axis and the corresponding
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motion vectors in the unrolled domain were horizontally pointing to the right indicat-

ing a clockwise rotation. The magnitude of △x′ reveals the rotation angle. Finally in

Fig. 4.19(d), the capsule tilted toward φ during the transition, thus the magnitudes of

the motion vectors in this area were smaller than the others. The difference in magnitude

indicates the degree that the capsule tilts.
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Cylindrical image domain 

(a) 

Unrolled image domain 

(b) 

(c) 

(d) 

 

 

Figure 4.19: Typical movements detected by the proposed motion tracking algorithm
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Experimental results show that the linear transitions and rotations can be accurately

inferred from the vertical component and horizontal component of the motion vectors

in the unrolled domain, respectively. Meanwhile, differences in the magnitude of motion

vectors reflect tilting direction of the capsule. Based on the quantitative calculation, the

tracking process is implemented as follows: given the initial position of the capsule, the

subsequent positions of the capsule are estimated by multiply the current position with

the transition matrix, which consists of distance, rotation, and tilt angle. The tracking

results are illustrated in Figure 4.20 compared with the ground truth path. Also, the

MSE of estimated position of the capsule for each step was plotted in Figure 4.21. It

can be seen from the plotting that the motion estimation for the first 50 steps were

very accurate, whose average MSEs were below 1 cm. However, the error increased as

the step goes further. This was due to the accumulative characteristic of all motion

tracking techniques. In every motion tracking technique, the next state is purely de-

cided by the current state plus the current transition information, which was estimated

from the displacements of FPs between consecutive image frames. If an error happened

in the estimation of this transition information, even with very little magnitude, this

error would accumulate and the overall error would keep increasing. This is what we

call “drifting effect” in Robotics. Thus, we cannot judge the performance of a motion

tracking algorithm based on the overall accuracy. Instead, we should evaluate the per-

formance of an algorithm by measuring the accuracy of estimation within each step.

Statistics in Table 4.1 show that our proposed algorithm worked accurately in calculat-

ing the proceeding distance and rotation angle for each step. The average distance error

was 0.04 cm which was way below the unit step size, and the average rotation error

was 1.8o, which was also very small compared with average rotation angle of 7.8o. The

estimation of tilt was not as accurate because the differences in motion vectors were not
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Table 4.1: Motion tracking performance for each step

Average estimates Average error

Distance 0.41 cm 0.04
Rotation 7.8o 1.8o

Tilt 4.3o 3.0o

always obvious and the range of smaller motion vectors may cover up to more than 45

degree of x′ axis. Therefore, it was very difficult to quantize the tilt angle which leaded

to great calculation errors.

 

 

Figure 4.20: Result of the motion tracking compared with ground truth
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Fig. 11 Mean square error (MSE) in the motion racking process  
Figure 4.21: Mean square error (MSE) in the motion racking process

The results of motion tracking using images, RF localization and the proposed hybrid

localization are given in Fig. 4.22. It can be seen from Fig. 4.22 (a) that the results of RF

localization (represented in green triangles) are scattered all around the small intestine

with relative large error (6.8 cm on average). This is because the RF channel suffers

shadow fading and non-homogeneity of the body tissues. However, the good part of RF

localization is its independent characteristics. Each measurement is an isolated proce-

dure which cannot be affected by the previous measurements. Therefore, the localization

error would not accumulate as the capsule moves along (shown in Fig. 4.22(b)).

The result of the camera motion tracking algorithm is shown in gray line in Fig. 4.22 (a).

It shows that when using this algorithm alone, the estimated positions are continuous and

the overall trend of the trajectory matches the ground truth path (shown in black line in

Fig. 4.22 (a)) of the small intestine. However, as the capsule moves along, the localization

error increases. It can be seen from Fig. 4.22 (b), after about 15 steps, the localization

errors of motion tracking reaches almost the same level of RF localization and it keeps

growing until explode (up to 70 cm). This is due to the accumulative characteristic of

the motion tracking algorithm. In the motion tracking algorithm, the next motion state
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is highly dependent on the current motion state plus the current transition information,

which is estimated from the displacements of FPs between consecutive image frames. If

an error happens during the estimation of this transition matrix, even with very little

magnitude, the error would accumulate and the overall error would keep increasing. This

is what we call “drifting effect” in Robotics. Thus, we cannot judge the performance of a

motion tracking algorithm based on the overall accuracy. Instead, we should evaluate the

performance of an algorithm by measuring the accuracy of estimation within each step.

Statistics in Table I show that our proposed algorithm worked accurately in calculating

the transition speed of the capsule and direction angles for each step. The average

distance error was 0.04 cm which was way below the unit step size, and the average

rotation error was 1.8o, which was also very small compared with average rotation angle

of 7.8o. The estimation of tilt was not as accurate because the differences in motion

vectors were not always obvious and the range of smaller motion vectors may cover up

to more than 45 degree of x′ axis.
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Finally we evaluated the performance of the proposed Body-SLAM localization algo-

rithm. The results are shown in purple line in Fig. 4.22 (a). It shows after the combina-

tion of motion tracking and RF signals, the hybrid localization is able to achieve more

continuous position estimation of the capsule and the reconstructed path that the cap-

sule has traveled matches the ground truth path of the small intestine very well. From

Fig. 4.22 (b) we can see that, compared with the existing RSS based localization system,

the localization error of hybrid localization stays stable at a very low level (2.3 cm on

average) and the error would not increase as the capsule moves along. The error distri-

bution and CDF plot of the above three algorithms are given in Fig. 4.23 and Fig. 4.24,

respectively. From both statistical plots we can see that the localization accuracy of the

proposed hybrid localization is much better than the traditional RSS based RF local-

ization. Since the diameter of small intestine is approximately 2.5-3 cm, the localization

accuracy that the proposed hybrid localization provides meets the requirement of WCE

application.
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Chapter 5

Conclusion and Future Direction

This chapter provides an overall conclusion of the dissertation and points out the possible

future directions of our research.

5.1 Conclusion

In this dissertation, we presented a Body-SLAM technique that integrates motion in-

formation extracted from the video source and RF signal emitted by the capsule to

enhance to the localization accuracy of the WCE and meanwhile reconstruct the path

the capsule has traveled. The major contribution of this work is that we demonstrated

the potential of using endoscopic images to aid the RF localization and possibility to

map inside of human body. The proposed motion tracking technique is purely based

on the image sequence that captured by the video camera which is already equipped on

the capsule, thus, no extra components such as Inertial measurement units (IMUs) or

magnetic coils are needed. Another contribution is that we provided an uniform per-

formance evaluation platform to test the performance of localization algorithms inside

92
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human body. Both empirical and experimental results have shown that by combining

the motion information with RF measurements, the proposed Body-SLAM algorithm is

able to provide accurate, smooth and continuous localization and mapping results that

meet the requirement of WCE application.

5.2 Future Direction

In the future, we will focus on refining this Body-SLAM algorithm in the following ways:

• Enhance the performance of the Body-SLAM algorithm using more complicated

Extended Kalman Filter (EKF).

• Verify the performance of the Body-SLAM algorithm using more clinical data,

including experiments on animal and human subjects.

• Refine the virtual testbed by adding intestinal motilities.

A proposal based on the material of this dissertation has been filed to the NSF to pursuit

funding to continue this research.
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Appendix Tutorial

% To download the path , please go to http ://www.cwins.wpi.edu/personnel/guanqun.html

clc;

close all;

clear all;

step =3;

Ps=load(’path_small_intestine.txt ’); %load the path for small intestine

Si=load(’small_intestine .txt ’); %load the model for small intestine

C=load(’ex.txt ’);

li_x=C(1: step:end);

li_y=C(2: step:end);

li_z=C(3: step:end);

%h1=plot3(li_x ,li_y ,li_z ,’r.’);

p1=[li_x ’ li_y ’ li_z ’];

figure;

hold on;

[t1]= MyCrustOpen(p1);

surf3=trisurf(t1 ,p1(:,1),p1(:,2),p1(:,3),’facecolor ’,’b’,’edgecolor ’,’b’)% plot della superficie

alpha(surf3 ,0.01)

98



Appendix B. Tutorial 99

% rotation and translation matrix

Rz=[0 -1 0; 1 -1 0;0 0 1];

Ry =[0.86 0 -0.5; 0 1 0; 0.5 0 0.86];

Rx=[1 0 0; 0 0.94 0.34; 0 -0.34 0.94];

T=[369 -400 -478];

Ps=load(’path_small_intestine.txt ’); %load the path for small intestine

Si=load(’small_intestine .txt ’); %load the model for small intestine

% Ps(:,1)=Ps(:,2);

Temp=ones(length(Ps),3);

Ps=Ps*Rz*Ry*Rx *1.6+ Temp (:,3)*T;

% Si(:,1)=Si (: ,2)*0.7;

Temp=ones(length(Si),3);

Si=Si*Rz*Ry*Rx *1.6+ Temp (:,3)*T;

[t1]= MyCrustOpen(Si);

temp=rgb(’darkgreen ’);

surf3=trisurf(t1 ,Si(:,1),Si(:,2),Si(:,3),’facecolor ’,’white ’,’edgecolor ’,[temp ]); % plot della s

alpha(surf3 ,0.01);

Pl=load(’path_large_intestine.txt ’);% load the path for large intestine

Li=load(’large_intestine .txt ’);% load the model for large intestine

% Pl(:,1)=Pl (: ,2)*0.7;

Temp=ones(length(Pl),3);

Pl=Pl*Rz*Ry*Rx *1.6+ Temp (:,3)*T;

% Li(:,1)=Li (: ,2)*0.7;

Temp=ones(length(Li),3);

Li=Li*Rz*Ry*Rx *1.6+ Temp (:,3)*T;
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[t2]= MyCrustOpen(Li);

temp=rgb(’darkgreen ’);

surf3=trisurf(t2 ,Li(:,1),Li(:,2),Li(:,3),’facecolor ’,’white ’,’edgecolor ’,[temp ]); %plot della su

alpha(surf3 ,0.01);

plot3(Ps(:,1),Ps(:,2),Ps(:,3),’r .’)

plot3(Pl(:,1),Pl(:,2),Pl(:,3),’r .’)

view (-60,60)

view (40 ,35)

-200

0

200-300 -200 -100 0 100 200 300

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

200

Figure B.1: Generating the path inside human body

% unrolling the image

% [xp , yp] are coordiniates of feature points after projection
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% [x, y] are the coordinates of feature points in the original image

% [x0 , y0] is the center of the original image

% B is the heigth of the unrolled image

% L is the length of the unrooled image

function [xp ,yp] = inverse_proj(x,y,x0 ,y0 ,B,L)

r = sqrt((x-x0 )^2+(y-y0 )^2);

if(y>=y0&&x==x0)

theta = 0;

elseif(y>y0&&x<x0)

theta = atan(abs((x-x0)/(y-y0)));

elseif(y==y0&&x<=x0)

theta = pi/2;

elseif(y<y0&&x<x0)

theta = atan(abs((y-y0)/(x-x0))) + pi/2;

elseif(y<=y0&&x==x0)

theta = pi;

elseif(y<y0&&x>x0)

theta = atan(abs((x-x0)/(y-y0))) + pi;

elseif(y>=y0&&x==x0)

theta = 3/2*pi;

elseif(y>y0&&x>x0)

theta = atan(abs((y-y0)/(x-x0))) + 3/2*pi;

else

theta =2*pi;

end

xp = round(L*theta /(2*pi))+1;

yp = round(B-r)+1;

end

% Motion estimation for WCE

DistRatio= 1.25; % Increase value to decrease the number of matches

NumOrientBins = 16;

N_frame =6000;
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Cylindrical image “Unrolled” image

(a) 

(b) 
 

 

 

’ 

Figure B.2: Illustration of unrolling image

M_Vector = zeros(1, N_frame );

figure (1)

for n=1: N_frame

% Load images

rootname = ’motion /1 (’; % Root filename % Root filename

extension = ’.jpg ’;

filename1 = [rootname , num2str(n),’)’, extension ];

filename2 = [rootname , num2str(n+1),’)’, extension ];

A = imreadbw(filename1 );

B = imreadbw(filename2 );

J1 = imresize(A, 0.7);

J2 = imresize(B, 0.7);

I1 = J1 (20:152 ,25:157); % get rid of the black part

I2 = J2 (20:152 ,25:157); % get rid of the black part
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I1=I1 -min(I1(:));

I1=I1/max(I1(:));

I2=I2 -min(I2(:));

I2=I2/max(I2(:));

fprintf(’Computing frames and descriptors (~0.5 minutes ).\n’);

[frames1 ,descr1 ]= sift(I1 , ’NumOrientBins ’, NumOrientBins );

[frames2 ,descr2 ]= sift(I2 , ’NumOrientBins ’, NumOrientBins );

[inds ratios] = SiftRatioMatch(sqrt(descr1), frames1 , sqrt(descr2), frames2 , DistRatio );

matches= zeros(2,sum(inds ~=0));

i= 1;

for r=1: size(descr1 ,2)

if (inds(r)~=0)

matches (1,i)= r;

matches (2,i)= inds(r);

i=i+1;

end

end

M_Vector(n) = plotMotionVectors (I1 , I2 , frames1 (1:2,:), frames2 (1:2,:), matches , ’Stacking ’,

drawnow;

clf;

end

function [x,y,p] = sample_lds3d(F, H, Q, R, init_state , T, models , G, u)

% sample_lds3d model the movement of the WCE in a linear dynamical system.

% [x,y] = switching_lds_draw (F, H, Q, R, init_state , models , G, u)

%

% x(t+1) = F*x(t) + G*u(t) + w(t), w ~ N(0, Q), x(0) = init_state

% y(t) = H*x(t) + v(t), v ~ N(0, R)

%

% Input:

% F(:,:,i) - the transition matrix for the i’th model

% H(:,:,i) - the observation matrix for the i’th model
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% Q(:,:,i) - the transition covariance for the i’th model

% R(:,:,i) - the observation covariance for the i’th model

% init_state (:,i) - the initial mean for the i’th model

% T - the num. time steps to run for

%

% Optional inputs:

% models(t) - which model to use at time t. Default = ones(1,T)

% G(:,:,i) - the input matrix for the i’th model. Default = 0.

% u(:,t) - the input vector at time t. Default = zeros(1,T)

%

% Output:

% x(:,t) - the hidden state vector at time t.

% y(:,t) - the observation vector at time t.

if ~iscell(F)

F = num2cell(F, [1 2]);

H = num2cell(H, [1 2]);

Q = num2cell(Q, [1 2]);

R = num2cell(R, [1 2]);

end

M = length(F);

%T = length(models );

if nargin < 7,

models = ones(1,T);

end

if nargin < 8,

G = num2cell(repmat(0, [1 1 M]));

u = zeros(1,T);

end

[os ss] = size(H{1});

state_noise_samples = cell(1,M);

obs_noise_samples = cell(1,M);
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for i=1:M

state_noise_samples {i} = sample_gaussian (zeros(length(Q{i}),1), Q{i}, T)’;

obs_noise_samples {i} = sample_gaussian (zeros(length(R{i}),1), R{i}, T)’;

end

x = zeros(ss , T);

y = zeros(os , T);

m = models (1);

x(:,1) = init_state (:,m);

p(:,1) = init_state (:,m);

y(:,1) = H{m}*x(:,1) + obs_noise_samples {m}(: ,1);

for t=2:T

% m = models(t);

p(:,t) = F{t}*p(:,t-1);

x(:,t) = F{t}*x(:,t-1) + G{t}*u(:,t-1) + state_noise_samples {t}(:,t);

y(:,t) = H{t}*p(:,t) + obs_noise_samples {t}(:,t);

end

function [x, V, VV , loglik] = kalman_filter (y, A, C, Q, R, init_x , init_V , varargin)

% Kalman filter.

% [x, V, VV , loglik] = kalman_filter (y, A, C, Q, R, init_x , init_V , ...)

%

% INPUTS:

% y(:,t) - the observation at time t

% A - the system matrix

% C - the observation matrix

% Q - the system covariance

% R - the observation covariance

% init_x - the initial state (column) vector

% init_V - the initial state covariance

%

[os T] = size(y);

ss = size(A,1); % size of state space
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% set default params

% model = ones(1,T);

model = 1:T;

u = [];

B = [];

ndx = [];

args = varargin;

nargs = length(args);

for i=1:2: nargs

switch args{i}

case ’model ’, model = args{i+1};

case ’u’, u = args{i+1};

case ’B’, B = args{i+1};

case ’ndx ’, ndx = args{i+1};

otherwise , error([’ unrecognized argument ’ args{i}])

end

end

x = zeros(ss , T);

V = zeros(ss , ss , T);

VV = zeros(ss , ss , T);

loglik = 0;

for t=1:T

m = model(t);

if t==1

%prevx = init_x(:,m);

%prevV = init_V(:,:,m);

prevx = init_x;

prevV = init_V;

initial = 1;

else

prevx = x(:,t-1);

prevV = V(:,:,t-1);
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initial = 0;

end

if isempty(u)

[x(:,t), V(:,:,t), LL , VV(:,:,t)] = ...

kalman_update (A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx , prevV , ’initial ’, i

else

if isempty(ndx)

[x(:,t), V(:,:,t), LL , VV(:,:,t)] = ...

kalman_update (A(:,:,m), C(:,:,m), Q(:,:,m), R(:,:,m), y(:,t), prevx , prevV , ...

’initial ’, initial , ’u’, u(:,t), ’B’, B(:,:,m));

else

i = ndx{t};

% copy over all elements; only some will get updated

x(:,t) = prevx;

prevP = inv(prevV );

prevPsmall = prevP(i,i);

prevVsmall = inv(prevPsmall );

[x(i,t), smallV , LL , VV(i,i,t)] = ...

kalman_update (A(i,i,m), C(:,i,m), Q(i,i,m), R(:,:,m), y(:,t), prevx(i), prevVsmall , ..

’initial ’, initial , ’u’, u(:,t), ’B’, B(i,:,m));

smallP = inv(smallV );

prevP(i,i) = smallP;

V(:,:,t) = inv(prevP );

end

end

loglik = loglik + LL;

end
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