


Abstract

The extraordinary magnetoresistance (EMR) in metal-semiconductor hybrid structures was first

demonstrated using a van der Pauw configuration for a circular semiconductor wafer with a con-

centric metallic inclusion in it. This effect depends on the orbital motion of carriers in an external

magnetic field, and the remarkably high magnetoresistance response observed suggests that the

geometry of the metallic inclusion can be optimized to significantly enhance the EMR. Here we

consider the theory and simulations to achieve this goal by comparing both two-dimensional as

well as three-dimensional structures in an external magnetic field to evaluate the EMR in them.

Examples of structures that are compatible with present day technological capabilities are given

together with their expected responses in terms of EMR. For a 10 micron 2D square structure with

a square metallic inclusion, we see a MR up to 107 percent for an applied magnetic field of 1 Tesla.
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I. INTRODUCTION

Magnetic materials and artificially layered metals exhibit giant magnetoresistance (GMR)

and manganite perovskites show colossal magnetoresistance (CMR), their nomeclature sug-

gesting unusually high magnetoresistance (MR) of the structures in externally applied mag-

netic fields. However, patterned nonmagnetic metal-InSb shows a much larger geometrically

enhanced MR even at room temperature and with no magnetic materials.1 This effect is so

large that it has been called extraordinary magnetoresistance (EMR).2,3 This phenomenon

is a member of a class of effects labeled by EXX (piezoconductance (EPC),4–7 optocon-

ductance (EOC),8–10 and electroconductance (EEC)11 being the other effects) observed in

metal-semiconductor hybrid structures that show a remarkably high response to external

perturbations. The magnetoresistance (MR) is defined as MR= [R(H)−R(0)]/R(0), where

R(H) is the resistance at finite field H . Because they are nonmagnetic and work at room

temperature, EMR devices can be used in applications where typical magnetic sensors are not

suitable. Furthermore, their performance continues to be impressive down to the nanoscale.

Unlike traditional magnetic recording sensor technologies, such as GMR and tunnel magne-

toresistive (TMR) sensors, where device resistance is determined by spin dependent scatter-

ing, in EMR structures the magnetoresistance is modulated by utilizing the Lorentz force

to steer an electron current away from the high conduction metallic regions. The carrier

velocity has a non-zero Hall angle with respect to the electric field which continues to be

directed normal to the essentially equipotential metal-semiconductor interface.

The experiments were initially performed on a composite van der Pauw disk of a semicon-

ductor matrix with an embedded metallic circular inhomogeneity that was concentric with

the semiconductor disk. A finite element approach to modeling was developed earlier by

us,12 and the calculated MR based on a diffusive model for the current-electric field relation

(J = σ · E), provides a striking agreement with experimental results for the MR for the

circular geometry.12 A similar enhancement has been reported1 for a rectangular semicon-

ductor wafer with a metallic shunt on one side. The rectangular geometry with four contacts

can be shown to be derivable from the circular geometry by a conformal mapping,13 and the

rectangular geometry is the desired form from device fabrication considerations as for most

semiconductor devices. So it is natural to consider variations of the rectangular embedding

of metal in a semiconductor as the most convenient for experimental fabrication.
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An application of our original shunt geometry is to use the EMR device as a read-head

for reading out data from magnetic storage hard-disks.3,14–16 The planar geometry of thin

wafers results in a device that is sensitive to magnetic fields perpendicular to the plane

of the wafer rather than the more typical in-plane field sensitivity demonstrated by GMR

and TMR. This characteristic enables consideration of integrating EMR into unique planar

recording head configurations. Commercial efforts in this direction are already under way.

Further elaborations on the geometric enhancement of MR are discussed in Ref. 17.

In this article, we wish to consider the promise of very high MR in the metal-semiconductor

structures by designing new schemes that could substantially enhance the EMR effect, and

by modeling realistic two-dimensional (2D) and 3D structures that could be fabricated using

Au/InSb. Here we develop the theory for such analysis, and demonstrate that geometrical

enhancement of MR can be increased considerably with no more effort than used in making

devices employed in earlier experiments with simple shunt devices. We provide estimates for

devices of mesoscopic and nanoscopic dimensions, keeping in mind the recent technological

advances in material fabrication today.

The theoretical development, presented in Section II, unlike earlier treatments discusses

the use of high accuracy finite elements with C1 - or derivative - continuity. The use of

Hermite interpolation polynomials18 for this purpose allows us to implement the derivative

boundary conditions at interfaces very much more accurately than with Lagrange interpola-

tion polynomials. All potential function and current boundary conditions can be explicitly

implemented with Hermite interpolation polynomials, given their C1 degrees of freedom.

Results of our analysis are given in Section III followed by concluding remarks in Section

IV.

II. THEORETICAL CONSIDERATIONS

In the presence of a magnetic field, the magneto-conductivity is given in terms of ~β = µ ~H

where µ is the carrier mobility and H is the magnetic field. In 3D, we have

σ =
σ0

1 + β2
x + β2

y + β2
z











(1 + β2
x) (−βz + βyβx) (βy + βzβx)

(βz + βyβx) (1 + β2
y) (−βx + βyβz)

(−βy + βzβx) (βx + βyβz) (1 + β2
z )











(1)
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which reduces in 2D, with ~H = ẑH and βz = µH , to

σ =
σ0

1 + β2
z





1 −βz

βz 1



 (2)

with only the x, y-components for the conductivity tensor. Here the intrinsic conductivity

σ0 is the conductivity in the absence of a magnetic field.

A. The Action Integral

In Refs. 12 and 15, we showed that a finite element approach18,19 to the calculation of

the MR in simple 2D structures provides remarkable congruence with experimental results.

Only linear interpolation polynomials were used in the calculations. Here we display the

details of the theoretical development of the calculations for more complex geometries in

2D, keeping in mind that we will be investigating examples from 2D as well as 3D. We

will also employ C1-continuous functions which provide significant advantages in terms of

accuracy, and also in terms of explicitly applying current continuity conditions at internal

metal-semiconductor interfaces and derivative boundary conditions along the periphery.

In the present case of steady-state conditions the equation of continuity leads to

∇ · J = 0 = ∇ · (σE), (3)

or equivalently,

−∇ · σ · ∇φ(r) = 0, (4)

where the electric field E is expressed in terms of a scalar potential φ. The use of variational

methods provides fast, stable convergence in the calculations and we cast the problem using

the principle of stationary action. The action integral from which this equation is derivable

for Dirichlet boundary conditions is

A0 =

∫ T

0

dt
∑

α

[
∫

Ωα

dr
1

2

(

∂iφ(r) σ
(α)
ij ∂jφ(r)

)]

. (5)

The sum over α is to account for the actions in different regions Ωα with their different

conductivities. In the steady state under consideration here, the integration over time is

3



trivial. Let us consider a typical 4-probe system for measuring the MR in the structure (see

Fig. 3). The presence of current boundary conditions at two of the ports, corresponding

to derivative boundary conditions, requires a modification of the above action in order to

ensure that the equation of motion can be derived consistently. We suppose that the steady

current comes in at port P1, say, and leaves the structure at port P2. The additional terms

that are needed can be identified by analytically attempting to obtain the equation of motion

as follows. A variation of A0 with respect to the potential function φ together with the usual

integration by parts leads to

δφ(A0/T ) = 0 =
∑

α

[
∫

Sα

dr δφ

(

−∇·σ(α) ·∇φ(r)

)]

+
∑

β

∫

Γβ

dℓ δφ n̂ ·

(

σ(β) ·∇φ(r)

)]

. (6)

Here β corresponds to the various contours at the peripheries of the various regions and n̂ is

the normal to the counter-clockwise boundary paths in 2D. It is clear that if we had Dirichlet

boundary conditions specifying the potential everywhere along the external periphery, the

second term in Eq. (6), which we refer to as the surface term in both 2D and 3D, would

vanish since φ is then fixed on the boundary. We note that (i) the requirement of continuity

of the current across the metal-semiconductor interface always ensures that the integrals

along Γ2 and Γ3 cancel (see Fig. 3). We also note that (ii) The potential at, say, P3 is set to

zero to give a reference potential, hence the boundary integral across ∆3 is zero (δφ is zero

there since φ is zero there and is therefore fixed in value). (iii) Our boundary conditions are

not of the Dirichlet type along the outer periphery at the current ports so that the portions

of Γ1 corresponding to ∆1,2 require special consideration. Using the relation J = −σ∇φ(r),

we can identify the integrand of the surface term in square brackets in terms of the current

there. Since no current comes in or escapes along Γ1 except at the ports P1 and P2, we can

set the contour integral to zero everywhere except over ∆1 and ∆2. The potential at port P4

is determined by the solution there as discussed below. (iv) The two surface terms at ∆1,2

are such that δφ are arbitrary there, and −σ∇φ · n̂ is nonzero. Since these two surface terms

cannot be set to zero the equation of motion, Eq. (4), does not hold. This is remedied by

adding two additional terms to the action that ensure that these surface terms are cancelled

4



out.12,20 Writing the new action, we have

A/T =
∑

α

∫

dr
1

2

(

∂iφ(r) σ
(α)
ij ∂jφ(r)

)

−

∫

∆1

dℓ φ(x, y)|
∆1
Jin +

∫

∆2

dℓ φ(x, y)|
∆2
Jout, (7)

with the current boundary conditions incorporated into the action. We note that while

the current Iin must equal Iout, the width of the contacts ∆1,2 and the thickness of the

semiconductor wafer determine the current densities J1,2. The same considerations apply

to a 3D geometry with the extension of the above expressions to metallic inclusions in a

semiconductor volume.

We now evaluate the action directly by discretization of the physical space using the finite

element method (FEM), as discussed in the following.

B. The Finite Element Method with C1-continuous Elements

In the finite element method, the physical domain is discretized into elements. In each

of the elements the variational principle holds. The potential function is represented as a

polynomial multiplied by coefficients representing the value of the potential at special points

in the element called nodes. On integrating out the spatial dependence, the action reduces

to a bilinear expression in the as-yet unknown interpolation coefficients, which are known

as the nodal variables. The principle of stationary action is invoked by varying A/T with

respect to the nodal variables, which then leads to a system of simultaneous equations that

represent the discretized equation of motion.18

The simultaneous equations are solved to obtain the potentials at the nodes and the

potential everywhere is reconstructed using the original interpolation polynomial in each

element. This allows us to also obtain the current density in great detail, and we then

determine the MR for a range of values of the magnetic field H .

Since the predominant practical choice of device geometry is rectangular, we consider

finite elements of the same shape. In 2D, consider a standard square element with nodes

at ξ = ±1, η = ±1. A given rectangular element can be linearly mapped into the standard

element, so that the interpolation polynomials can be defined on the standard element for

convenience. Each of the four nodes at the four corners of the element are associated with the

values of the potential and its derivatives {φ(in), φ
(in) ′
, ξ , φ

(in) ′
, η , φ

(in) ′′
, ξη }, where in = 1, . . . , 4,

5



for the four nodes. Thus there are 4 degrees of freedom (DoF) at each of the four nodes of the

element. This is shown in Fig. 1 The corresponding C1-continuous (Hermite) interpolation

polynomials are given in Ref.18. For Hermite interpolation polynomials Nν(x, y), or shape

functions as the interpolation polynomials are called in finite element analysis, we represent

the potential function over a given element as

φ(x, y) =
∑

ν

φνNν(x, y), (8)

with the sum running over the full set of 16 DoF for the element. The action is calculated

over each element and the spatial variables are integrated out. The resulting expression

is bilinear in the nodal variables and can be cast in a matrix form. The element matrices

are then overlaid to account for the continuity of the solution over the individual materials

of the composite, keeping account of the interface boundary conditions. In summary, the

discretized action obtained from Eq.(7) can be written as

A/T
.
=

1

2
φαMαβφβ − φα[δατ1R

in
τ1
]Jin + φα[δατ2R

out
τ2

]Jout (9)

where the surface integrals in Eq.(7) are designated by the nodal values multiplied by inte-

gration of shape functions only over the current ports in the last two terms.

C. Boundary Conditions for Hermite Elements

The boundary conditions for the potential and its derivatives are readily implemented

within the finite element scheme.

(a) The continuity of the potential across the metal-semiconductor interface can be en-

forced by setting the nodal values

φI
in = φII

in . (10)

The continuity of the normal current across the interface requires

n̂iσ
(I)
ij ∂jφ

(I)(x, y) = n̂iσ
(II)
ij ∂jφ

(II)(x, y),

6



so that at each of the nodes common to the paths Γ2,3 where, for example, n̂µ = ŷ we

use the relation















1 0 0 0

0 1 0 0

0 σ
(I)
yx σ

(I)
yy o

0 0 0 1





























φ(I)

φ
(I)′

x

φ
(I)′

y

φ
(I)′′

xy















=















1 0 0 0

0 1 0 0

0 σ
(I)I
yx σ

(II)
yy o

0 0 0 1





























φ(II)

φ
(II)′

x

φ
(II)′

y

φ
(II)′′

xy















; (11)

a similar relation holds for the current continuity of Jx across the interfaces with

constant y. Thus the first-derivative degrees of freedom are reduced appropriately to

enforce the current continuity.

(b) No current enters or leaves the device on the outer boundary Γ2 other than at the

current ports. We therefore require that

Jn = σnx

∂φ

∂x
+ σny

∂φ

∂y
= 0, (12)

except at the current ports. This again allows us to reduce the nodal derivative degrees

of freedom by one at every node on the external boundary. The variables φ(in) and

φ
(in) ′′
,xy on the boundary are not preassigned any values since they have no conditions

on them.

(c) At the voltage port P3, the potential at the nodes is set to zero, while the normal

current is eliminated as in the boundary condition (b) above. At the voltage port P4,

the potential is not determined, but the normal current is again eliminated since no

current leaves the system at P4. In order to make the contact an equipotential we

ensure that the potential variables φin are equated to one another as follows.

Suppose there are only two nodes N1 and N2 on P4, where N1,2 refer to node numbers

associated with a global node numbering for the entire structure. The discretized

action leads to the matrix Mαβ as in Eq. (7). The effect of equating the potentials

φN1
= φN2

is to add the row and column corresponding to N1 onto the row and column

for N2. After the transfer, the row and column of index N1 is then zeroed out, and

the matrix entry (N1, N1) is set to 1 while matrix entry (N1, N2) is set to −1. This

procedure is illustrated in Fig. 2.

7



As for the other degrees of freedom for these two ports, we treat them the same as the

outer boundary since we do not want current going in or out. Therefore φ′

, x and φ′

, y

follow the condition given in (a) above, and φ′′
, xy is left floating.

The overlay of the calculations for the element matrices, consistent with the above

element and interface boundary conditions, leads to the discretized action given by a

global matrix M together with vectors representing the surface terms at the current

ports. We have

A/T
.
=

1

2
φαMαβφβ − φα[δατ1R

in
τ1
]Jin + φα[δατ2R

out
τ2

]Jout (13)

with the surface integral evaluated explicitly using the shape functions mentioned

earlier. The nodal values for the potential over the entire domain are labeled by φα,

and their values at the current ports are limited to the nodes labeled by τ1 and τ2 that

are located there. The principle of stationary action is implemented by varying the

above discretized action with respect to φα and thereby obtaining the matrix equation

that represents the original differential equation. We solve the matrix equation

Mαβφβ = [δατ1R
in
τ1
]Jin − [δατ2R

out
τ2

]Jout (14)

for the potential at the nodes over the entire domain.

III. THE MAGNETORESISTANCE

A. A Rectangular Metallic Region Embedded in a Semiconductor

As shown in Fig. 3, the first case considered is a rectangular semiconductor with a single

embedded square metal region. The contacts can be placed anywhere on the edges of the

device, and the overall size as well as the size and position of the metal region can vary

as well. First, a 10µm semiconductor square is considered for various dimensions of the

embedded metal square, as well as a 300 nm semiconductor square to demonstrate that the

EMR effect is scalable. This is followed with discussion of more complicated geometries.
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1. 10µm, Centered Ports

For a 10µm square, we first consider the ports that are centered on all sides as shown in

Fig. 4. For a 5 µm metal region, Fig. 5, Fig. 6, and Fig. 7 all show a plot of the potential

and the current for B = −1T, B = 0T, and B = 1T, respectively. Note that the current is

represented by vectors which show the direction, and by a color gradient which represents

the magnitude. As expected we see that for zero field the current is normal to the surface of

the metal, and for higher fields the current curves around the metal and concentrates in the

semiconductor region, causing a change in resistance. Fig. 8 shows a plot of the resistance

obtained from this configuration versus the applied magnetic field for various widths of the

inner metal square region, where for each case the inner square is centered. Fig. 9 shows a

plot of the magnetoresistance versus the applied magnetic field. Note that this is a log-log

plot and the dashed lines represent the negative portion of the magnetic field for each case.

For an inner square width of 8µm for B = 1T and B = −1T, we see an MR on the order

of almost 107%.

2. 10µm, Diagonal Ports

The next case considered is a 10µm square with diagonal ports as shown in Fig. 10. Once

again for a 5µm metal region, Fig. 11, Fig. 12, and Fig. 13 all show a plot of the potential

and the current for B = −1T, B = 0T, and B = 1T, respectively. Fig. 14 shows a plot of

the resistance versus the applied magnetic field for various widths of the metal region. The

result is very similar to what is obtained in the previous case for centered ports. However,

a plot of the MR versus the magnetic field shows the differences, as seen in Fig. 15. In this

case for a width of 8µm we see the greatest MR for B = −1T is on the order of 106%.

3. 10µm, Ports IVIV

Another contact configuration is shown in Fig. 16. In this case all four contacts are on

one side of the semiconductor, and is alternating between current and potential. Fig. 17,

Fig. 18, and Fig. 19 show the plots of the potential and current for B ranging from −1T

to 1T. Fig. 20 shows the resistance versus the magnetic field which is much different than

the previous two cases. In Fig. 21 a plot of the magnetoresistance versus the magnetic field
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is shown. Once again we see a lower MR compared to the square with centered ports. For

a = 8µm at B = −1T, there is a maximum MR on the order of 104%.

4. 10µm, Ports IVVI

Fig. 22 shows another configuration similar to the previous one with all ports on one

side, but now with two of the ports swapped. Once again the potential and current for

B = −1,0,1 T are shown in Fig. 23, Fig. 24, and Fig. 25, respectively. This time there is a

drastic change in the resistance versus magnetic field plot, shown in Fig. 26. The plot of the

magnetoresistance, shown in Fig. 27, has a similar maximum as the previous case for ports

IVIV, but this time has a non monotomic behavior for positive values of the magnetic field.

5. 300 nm, Centered Ports

A 300 nm square with a square metallic region was also examined to show that the

MR effect is scalable. The same input current was used. The schematic for this is shown

in Fig. 28. The potential and current are shown in Fig. 29, Fig. 30, and Fig. 31. The

resistance versus magnetic field is shown in Fig. 32.The magnitude of the current, potential,

and resistance have different maginitudes than for the 10µm cases with centered ports, but

the MR, shown in Fig. 33, is identical to that of the 10µm square (previously shown in

Fig. 9). This shows that the MR is scale invariant.

B. Circular Metallic Region Embedded in a Semiconductor

A circular semiconductor with a circular metal region was also modeled in order to com-

pare with previous results. The contacts on the circle were equally spaced as shown in

Fig. 34. The plots of resistance and MR versus magnetic field are shown in Fig. 35 and

Fig. 36, respectively. The maximum MR in this case for B = ±1T is just over 105% for an

inner radius of r = 0.7µm.
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C. Multiple Metallic Regions Embedded in a 2D Semiconductor Wafer

Because of the flexibility of FEM we can easily add multiple metal regions to the semi-

conductor. Fig. 37 shows a 10µm semiconductor with two embedded metal regions. The

length and width of these regions can be adjusted as well as the positions of the contacts.

As in Fig. 37, the current ports are centered along x, where in Fig. 38 they are centered

along y. We will examine both of these cases.

1. Multiple Regions with Current Ports along x

We first look at a 10µm square semiconductor with two embedded rectangular metal

regions which has current ports centered along the x-axis. Fig. 39, Fig. 40, and Fig. 41 show

plots of the current and potential for B = 1,0, and −1T. In these plots, we are using metal

regions of width a = 2.5µm, height b = 5µm, separated by a distance of d = 2.5µm. The

magnetorestance for this case, which we call case D, is shown in Fig. 42 along with three

more examples, cases A, B and C. For case A, we have a = 3.5µm, b = 8µm, and d = 1µm.

For cases B and C, we have a = 3.25µm, b = 7µm, d = 0.5µm, and a = 3.9µm, b = 8µm,

d = 0.2µm, respectively. We see that case A gives us the highest magnetoresistance, just

over 107 percent for 1 T, which is slightly better than what was obtained for the square

metal region with centered ports for 1 T.

2. Multiple Regions with Current Ports along y

Next we look at a 10µm square semiconductor with two embedded rectangular metal

regions which has current ports centered along the y-axis. Fig. 43, Fig. 44, and Fig. 45

show plots of the current and potential for B = 1,0, and −1T for case D mentioned in the

previous section. Fig. 46 shows the magnetoresistance for cases A,B,C and D. In this case

we get a maximum MR of less than 105 percent. So, in this case the ports centered on the

x-axis is preferable.
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D. Metallic Cube Embedded in a 3D Semiconductor Cube

Fig. 47 and Fig. 48 show two examples of a three-dimensional semiconductor cube. The

results shown below all have an embedded metal region of 5µm. In the first case, which we

will call case 1, we have a magnetic field along both the y and z directions, with 2 contacts

on the front face and 2 contacts on the back face. In case 2, we have a magnetic field only

along z, with current contacts on the left and right faces and voltage contacts on the front

and back. This case is analogous to the two-dimensional case where there is one square

metal region with contacts centered on all sides.

First we will look at the results for case 1. Fig. 49, Fig. 50, and Fig. 51 show plots

of the potential in the y-z plane for B = 0T for various x coordinates (x = 0, 5, 10µm,

respectively). The same is shown in Fig. 52, Fig. 53, and Fig. 54, but for B = −1T. Three

dimensional vector field plots for the current are shown in Fig. 55 and Fig. 56 for B = 0T

and B = −1T.

For case 2, Fig. 57, Fig. 58, and Fig. 59 show the potential plots in the y-z plane for

B = 0T for various x coordinates (x = 0, 5, 10µm, respectively). The same is shown in

Fig. 60, Fig. 61, and Fig. 62 but for but for B = 1T. Three dimensional vector field plots

for the current are shownin Fig. 63 and Fig. 64 for B = 0T and B = 1T.

For case 1, we see a maximum MR of 346% for a field of −1T and 556% for a field of

1 T. However in case 2 we see a much larger MR, which is 27, 356% for −1T and 26, 495%

for 1T. If we compare this to the two-dimensional case with ports centered on all sides and

an inner square of 5µm, the MR is on the same order of magnitude.
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IV. CONCLUDING REMARKS

The use of the Finite Element Method produces highly accurate results, especially when

using Hermite interpolation polynomials. FEM is advantageous because of the action in-

tegral formalism in which we can directly apply derivative boundary conditions for the

current. It is also a very flexible method which transcends geometrical issues, so many pos-

sibilities for the geometry-dependent EMR calculations are feasible. Here we have shown

that the Magnetoresistance effect can be optimized through changes in the geometry of the

metal-semiconductor hybrid structure. The sensitivity of the device is based on intrinsic

contributions from physical properties such as carrier mobility and energy band structure.17

However there is also a geometric contribution to the MR, which can play an even more

important role. The geometric contribution which can include the size and shape of the

metallic regions and the device as a whole, the number of metallic regions, and even the

orientation of the current and potential ports.17 We can see this especially in the geometry

of the square region with centered ports, where the highest MR is obtained for an inner

metal width of 8 µm at fields of B = ±1T and also for the 10µm square with two metal

regions and ports centered along x for 1T. However, if we compare these two cases, when

we have one metal region the greatest MR occurs when we have 64µm2 of metal, and with

multiple regions, this maximum occurs in case A when we have less metal - a total of 56µm2.

Even for lower values of the field, we see in most cases a very large MR which means that

EMR read heads would be more sensitive than the currently used TMR read-heads. The

three-dimensional model also shows some promising results for other applications. For the

case (case 2) which is analogous to the 2D case with centered ports, we get an MR which is

on the same order of magnitude for an inner metal width of 5µm.
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FIG. 1. A 2D reference finite element is shown with four degrees of freedom at nodes at the four

corners corresponding to the value of the function, its first derivatives with respect to ξ, η and a

second (cross) derivative. The polynomial interpolation within the element is performed using the

values of the function and its derivatives at the nodes. See Ref. 18. This scheme is extended to 3D

for a cube element.
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FIG. 2. The diagram illustrates the matrix manipulation for setting two nodal values to be the

same. Matrix entries are rearranged as discussed in the text. This is done for all nodes on P4 to

make it an equipotential contact.
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FIG. 3. A semiconductor wafer with a rectangular metallic inclusion is shown. Contacts P1, ...

P4 correspond to two voltage probes P3 and P4, with current I coming in at say P1 and leaving

the structure at P2. The current density entering the device is taken to be I/(∆1 t) where t is

the thickness of the wafer and ∆1 is the width of the contact. The metal and semiconductor are

labeled by roman numerals.
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FIG. 4. A schematic for a 10µm square with ports centered on all sides.

(a) (b)

FIG. 5. The potential (a) and the plot of the current (b) for a 10µm square with centered ports

with a 5µm metallic region and an applied field of B = −1T are shown.
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(a) (b)

FIG. 6. The potential (a) and the plot of the current (b) for a 10µm square with centered ports

with a 5µm metallic region and an applied field of B = 0T are shown.

(a) (b)

FIG. 7. The potential (a) and the plot of the current (b) for a 10 µm square with centered ports

with a 5µm metallic region and an applied field of B = 1T are shown.
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FIG. 8. Plot of the resistance versus the magnetic field for a 10µm square with ports centered on

all sides.
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FIG. 9. Plots of the magnetoresistance versus the magnetic field for a 10µm square with ports

centered on all sides for different square metallic regions of side a. The dashed lines represent the

MR for negative values of the magnetic field.
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FIG. 10. A schematic for a 10µm square with diagonal ports.

(a) (b)

FIG. 11. The potential (a) and the plot of the current (b) for a 10µm square with diagonal ports

with a 5µm metallic region and an applied field of B = −1T is shown.
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(a) (b)

FIG. 12. The potential (a) and the plot of the current (b) for a 10µm square with diagonal ports

with a 5µm metallic region and an applied field of B = 0T is shown.

(a) (b)

FIG. 13. The potential (a) and the plot of the current (b) for a 10µm square with diagonal ports

with a 5µm metallic region and an applied field of B = 1T is shown.

23



-400

-300

-200

-100

0

100

200

300

400

-1 -0.5 0 0.5 1

R
e

s
is

ta
n

c
e
 (

Ω
)

Magnetic Field (T)

a=1
a=2
a=3
a=4
a=5

a=9
a=8

a=6
a=7

FIG. 14. Plots of the resistance versus the magnetic field for a 10µm square with diagonal ports.
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FIG. 15. Plots of the magnetoresistance versus the magnetic field for a 10µm square with diagonal

ports. The dashed lines represent the MR for negative values of the magnetic field.
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FIG. 16. A schematic for a 10µm square with ports IVIV.

(a) (b)

FIG. 17. The potential (a) and the plot of the current (b) for a 10µm square with ports IVIV with

a 5µm metallic region and an applied field of B = −1T is shown.
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(a) (b)

FIG. 18. The potential (a) and the plot of the current (b) for a 10µm square with ports IVIV with

a 5µm metallic region and an applied field of B = 0T is shown.

(a) (b)

FIG. 19. The potential (a) and the plot of the current (b) for a 10µm square with ports IVIV with

a 5µm metallic region and an applied field of B = 1T is shown.
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FIG. 20. Plots of the resistance versus the magnetic field for a 10µm square with ports IVIV.
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FIG. 21. Plots of the magnetoresistance versus the magnetic field for a 10µm square with ports

IVIV. The dashed lines represent the MR for negative values of the magnetic field.
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FIG. 22. A schematic for a 10µm square with ports IVVI.

(a) (b)

FIG. 23. The potential (a) and the plot of the current (b) for a 10µm square with ports IVVI with

a 5µm metallic region and an applied field of B = −1T is shown.
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(a) (b)

FIG. 24. The potential (a) and the plot of the current (b) for a 10µm square with ports IVVI with

a 5µm metallic region and an applied field of B = 0T is shown.

(a) (b)

FIG. 25. The potential (a) and the plot of the current (b) for a 10µm square with ports IVVI with

a 5µm metallic region and an applied field of B = 1T is shown.
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FIG. 26. Plots of the resistance versus the magnetic field for a 10µm square with ports IVVI. Note

that an exchange of the voltage ports would lead to a positive resistance.
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FIG. 27. Plots of the magnetoresistance versus the magnetic field for a 10µm square with ports

IVVI. The dashed lines represent the MR for negative values of the magnetic field.
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FIG. 28. A schematic for a 300 nm square with ports centered on all sides.

(a) (b)

FIG. 29. The potential (a) and the plot of the current (b) for a 300 nm square with centered ports

with a 150 nm metallic region and an applied field of B = −1T is shown.
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(a) (b)

FIG. 30. The potential (a) and the plot of the current (b) for a 300 nm square with centered ports

with a 150 nm metallic region and an applied field of B = 0T is shown.

(a) (b)

FIG. 31. The potential (a) and the plot of the current (b) for a 300 nm square with centered ports

with a 150 nm metallic region and an applied field of B = 1T is shown.
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FIG. 32. Plots of the resistance versus the magnetic field for a 300 nm square with ports centered

on all sides.
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FIG. 33. Plots of the magnetoresistance versus the magnetic field for a 300 nm square with ports
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V=0

FIG. 34. A schematic for a 1µm circle with equally spaced contacts.
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FIG. 35. Plots of the resistance versus the magnetic field for a 1µm circle.

36



10

0.1 1

M
a
g

n
e

to
re

s
is

ta
n
c
e

 (
%

)

Magnetic Field (T)

2

10
3

10
4

10
5

10
6

10
-1

10
-2

10
-3

10
1

r=0.1μm
r=0.2μm
r=0.3μm
r=0.4μm
r=0.5μm
r=0.6μm

r=0.7μm
r=0.8μm
r=0.9μm

FIG. 36. Plots of the magnetoresistance versus the magnetic field for a 1 µm circle. The dashed

lines represent the MR for negative values of the magnetic field.
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FIG. 37. A schematic for a 10µm square with two metal regions and current ports along x.
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FIG. 38. A schematic for a 10µm square with two metal regions and current ports along y.
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(a) (b)

FIG. 39. The potential (a) and the plot of the current (b) for a 10µm square with centered ports

along x with 2 metal regions and an applied field of B = −1T is shown.

(a) (b)

FIG. 40. The potential (a) and the plot of the current (b) for a 10µm square with centered ports

along x with 2 metal regions and an applied field of B = 0T is shown.
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(a) (b)

FIG. 41. The potential (a) and the plot of the current (b) for a 10µm square with centered ports

along x with 2 metal regions and an applied field of B = 1T is shown.
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FIG. 42. Plots of the magnetoresistance versus the magnetic field for a 10µm square with 2 metal

regions and ports centered along x. The dashed lines represent the MR for negative values of the

magnetic field. Cases A,B,C,D are specified in the text.
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(a) (b)

FIG. 43. The potential (a) and the plot of the current (b) for a 10µm square with centered ports

along y with 2 metal regions and an applied field of B = −1T is shown.

(a) (b)

FIG. 44. The potential (a) and the plot of the current (b) for a 10µm square with centered ports

along y with 2 metal regions and an applied field of B = 0T is shown.
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(a) (b)

FIG. 45. The potential (a) and the plot of the current (b) for a 10µm square with centered ports

along y with 2 metal regions and an applied field of B = 1T is shown.
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FIG. 46. Plots of the magnetoresistance versus the magnetic field for a 10µm square with 2 metal

regions and ports centered along y. The dashed lines represent the MR for negative values of the

magnetic field. Cases A,B,C,D are specified in the text.
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FIG. 47. A schematic for a 10µm Cube with ~B along y and z (Case 1). The semiconductor cube

has an embedded metal cube which is centered within it.
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FIG. 48. A schematic for a 10µm Cube with ~B along z only (Case 2). The semiconductor cube

has an embedded metal cube which is centered within it.
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FIG. 49. Potential for the cube (case 1) along y-z plane for x = 0µm for B = 0T

FIG. 50. Potential for the cube (case 1) along y-z plane for x = 5µm for B = 0T
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FIG. 51. Potential for the cube (case 1) along y-z plane for x = 10µm for B = 0T

FIG. 52. Potential for the cube (case 1) along y-z plane for x = 0µm for B = −1T
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FIG. 53. Potential for the cube (case 1) along y-z plane for x = 5µm for B = −1T

FIG. 54. Potential for the cube (case 1) along y-z plane for x = 10µm for B = −1T
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FIG. 55. Current plot for the cube (case 1) for B = 0T

FIG. 56. Current plot for the cube (Case 1) for B = −1T
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FIG. 57. Potential plot for the cube (Case 2) with x = 0µm for B = 0T

FIG. 58. Potential plot for the cube (Case 2) with x = 5µm for B = 0T
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FIG. 59. Potential plot for the cube (Case 2) with x = 10µm for B = 0T

FIG. 60. Potential plot for the cube (Case 2) with x = 0µm for B = 1T
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FIG. 61. Potential plot for the cube (Case 2) with x = 5µm for B = 1T

FIG. 62. Potential plot for the cube (Case 2) with x = 10µm for B = 1T
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FIG. 63. Current plot for the cube (case 2) for B = 0T

FIG. 64. Current plot for the cube (case 2) for B = 1T
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