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Abstract

Kage is a real-time operating system that guarantees return address integrity and
control flow integrity for embedded ARMv7-M devices. Kage uses a parallel shadow
stack for protecting return addresses to minimize instrumentation and, consequently,
runtime performance overhead. However, Kage’s parallel design incurs a large mem-
ory penalty to the device’s RAM section. Embedded devices face tighter constraints
on memory usage, so memory efficiency becomes a major concern. To address this
challenge, we propose two novel shadow stack designs: the interleaved shadow stack
design and the shared shadow stack design. These designs offer similar runtime
performance compared to the parallel shadow stack design with significantly higher
memory efficiency. For instance, we observed an up to 71.43% improvement to stack

usage over the parallel design when running the CoreMark benchmark suite.
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Chapter 1

Introduction

Embedded devices are common in daily life, placed in homes in the form of routers,
modems, and cars [1]. Software for these devices may be written in memory unsafe
languages, such as C, placing these devices at risk of exploitation should a memory
safety error be present [2, 3]. There exists literature to address memory safety for
these devices with Kage [4] being one of the leading solutions in terms of runtime
performance.

Kage is an extension of FreeRTOS [5] and the LLVM [6] compiler to offer control
flow integrity and return address integrity with an average 5.2% impact to runtime
performance compared to baseline FreeRTOS. However, Kage optimizes for reduced
runtime overheads. One of the consequences of this design goal is the use of a
parallel shadow stack design. The parallel shadow stack design allows for fast in-
strumentation for accessing the shadow stack but comes at a cost of high RAM usage
relative to baseline FreeRTOS. One of the major constraints of a parallel shadow
stack design is that all tasks on the system must have the same size. This causes
overallocation to occur when tasks have varying stack needs.

In contrast, we argue memory usage should be a significant consideration in



memory safety designs and propose two novel shadow stack designs which offer the
security guarantees and runtime performance of Kage while reducing RAM usage.

In summary, we make the following contributions:

e We present the interleaved shadow stack design which, through careful stack
placement, relaxes the constraint of Kage which requires all tasks to have the

same size.

e We present the shared shadow stack design which allows all tasks to share
the same stack. This design requires updates to the task scheduler and inter-

process communication mechanisms for functional correctness.

e We evaluated these designs using a STM32L475 Discovery board with the
CoreMark benchmark and microbenchmarks. We observe up to 25% memory
savings in the interleaved design and 71% memory savings in the shared design
when compared to Kage. We observe a 0-0.07% impact to runtime compared

to Kage.



Chapter 2

Background

We describe our threat model, targeted architecture, real-time operating system,

and the previous work we implement our designs on.

2.1 Threat Model

We assume an attacker can manipulate a memory error in untrusted code to alter
control data located in memory. This includes return addresses, indirect branches,
function pointers, and processor state of the currently running thread. Examples of
possible memory errors include buffer overflows [2] and dangling pointers [3].

We define untrusted code as all application written code, the libraries they re-
quire, and portions of the kernel. Conversely, trusted code is assumed to be free
of memory errors. We focus on preventing code injection [7, 8, 9] and code-reuse
attacks [10, 11, 12, 13, 14] with this threat model. Physical attacks and non-control

data attacks [15] are out of scope.



2.2 Architecture

We target the ARMv7-M [16] and ARMv8-M [17] architectures which enables ac-
cess to two hardware code execution levels, privileged mode and unprivileged mode.
Unprivileged mode is referred to as user-mode in other sources. ARMv7/8-M has no
memory management unit (MMU). All memory regions, peripherals, and processor
control registers lie in the same physical address space. Instead, ARMv7/8-M pro-
vides a memory protection unit (MPU) as an optional feature to set access policies
dependent on privilege level. The MPU has a fixed maximum number of regions,
usually eight, but the exact value depends on implementation. In each region, read,
write, and execute permissions can be set for each privilege level. Notably, the
small number of available regions and the following constraint present challenges

when designing shadow stacks.

MPU Constraint. An MPU region must have a size that is a power of two and

must be naturally aligned to the size.

An MPU region larger than 256 bytes may additionally be equally divided into
eight subregions. By default, every subregion is enabled and may be selectively
disabled by the developer. MPU regions have priority levels and can overlap other
regions. When an overlap occurs, the highest priority region determines the access
policy. Disabling a subregion allows a lower priority region to determine access
policy.

ARMv7/8-M offers a unique instruction that interacts with the MPU. The store
with translation (strt) instruction accesses memory using the MPU’s unprivileged
permissions regardless of the current code execution level. These instructions are the
basis for store hardening provided by Silhouette [18] which Kage takes advantage of

to provide fine-grained intra-address isolation.



2.3 FreeRTOS

When an embedded system requires real-time performance, developers often turn to
a real-time operating system (RTOS). Kage directly extends FreeRTOS [5], specifi-
cally Amazon-FreeRTOS [19]. FreeRTOS is a popular open-source RTOS for micro-
controllers and can run on systems with kilobytes of memory. FreeRTOS provides
features such as shared queues, preemptive scheduling, and task priority assign-
ment [20]. These features benefit real-time systems as they ensure efficient resource
management, timely execution of tasks, and application responsiveness.

FreeRTOS organizes applications as a collection of independent threads called
tasks. For each task, FreeRTOS maintains a task control block (TCB) to store
needed runtime data such as a stack pointer and MPU configuration. The TCB
remains persistent across the lifetime of a task, which we use to our advantage in
the implementation of the shared shadow stack design.

Applications developed on FreeRTOS follow a paradigm which may be different

than other programs.

FreeRTOS Task Design. Tasks are designed as infinite loops to repeatedly com-

plete a job. Tasks block when they have no work left to do.

The FreeRTOS kernel maintains lists to determine whether a task is in the
blocked, suspended, ready, or running state. By default, FreeRTOS uses a preemptive
scheduler; the running task is always the highest priority task in the ready state. A
task can only enter the blocked state during their own execution through yielding.
Tasks are removed from the blocked state when the condition of their yield is met.
The suspended state is an optional feature which allows halting and resuming the
execution of tasks from anywhere inside the application. This paradigm and the

management of task states are a major consideration for the updates of the scheduler



in the shared shadow stack design to ensure functional correctness.

2.4 Kage

Kage [4] extends the FreeRTOS kernel [5] and LLVM compiler [6] to provide return
address integrity (RAI) and control flow integrity (CFI) for embedded ARMvT7-
M devices. Kage implements return address integrity through the use of shadow
stacks [21]—an area of trusted memory which can only be written to by store in-
structions executing in privileged mode. Figure 2.1 shows the stack and shadow
stack layout located in RAM. We call this a parallel shadow stack design. Kage
updates function prologues and epilogues for secure access into the shadow stack

using a shadow stack offset as seen in figure 2.2.

MPU Region 2: rw-, rw-
MPU Region 1: rw-, r-

Shadow Stack Offset
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r 3 r r ~r ) ~
| A | A | B I B Il c | | ¢
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Over-allocated memory due to Over-allocated memory due / Allocated Task Stack
instrumentation requirements to power of two constraint i

E D Allocated Shadow Stack i
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Figure 2.1: The stack layout of the parallel design. The first MPU region protects
all of RAM to only allow privileged writes and does not move for the lifetime of the
application. On context switch, the second MPU region with a higher priority is
moved to allow unprivileged writes to the stack of the task executing.

The Kage compiler uses store hardening [18] to transform functions in the un-
trusted computing base to enforce intra-address space isolation between stacks and
shadow stacks. An attacker exploiting a memory error in untrusted code cannot
write into the shadow stack and therefore cannot subvert control flow.

The compile time transformations net Kage a huge advantage over other memory



protection solutions: Kage incurs an average runtime performance overhead of 5.2%

compared to an unmodified FreeRTOS.

Function Prologue Function Epilogue

push {r4-r6, 1r} pop {r4-r6, pc}
str.w 1lr, [sp, #1020] ldr r6, [sp, #8]
sub sp, #16 ldr r5, [sp, #4]
strt r4, [sp] ldr r4d, [spl]

strt r5, [sp, #4] add sp, #16

strt r6, [sp, #8] ldr.w pc, [sp, #1020]
strt 1lr, [sp, #12]

Figure 2.2: The Kage compiler transforms function prologues and epilogues in the
untrusted computing base to use a privileged store to the shadow stack and store
with translation (unprivileged store) for stack writes. The immediate offset of 1020
is the shadow stack offset.

Key Assumption 1. Kage focuses primarily on runtime performance.

The efficiency of Kage’s runtime performance hinges on the instrumentation
added to prologues and epilogues in the untrusted computing base at compile time.
Functions are shared among multiple tasks in the application, and the shadow stack
offset must work for every task. If every task were the same size, then the shadow
stack offset would be the same for all of them. Kage imposes exactly this assumption

to the system.

Key Assumption 2. All tasks must allocate the same amount of stack and shadow

stack space.

Therefore, the allocated amount for each task is the next power of two above the
largest high watermark. The allocated space must be a power of two to meet the

constraints of the MPU. A high watermark is a recording of the average stack usage



for a task. The larger the gap between the largest and smallest high watermark, the

more space goes un-utilized in RAM.



Chapter 3

Design

We lead with the intuition for each design and describe the key features which make
each design possible. Memory savings are our leading goal and we construct our

designs to keep Kage’s efficient shadow stack instrumentation.

3.1 Interleaved Shadow Stack

Our first intuition of a design comes from the goal of relaxing Kage’s stack size
assumption while still retaining the efficient instrumentation to access the shadow

stack.

Key Feature 1. Grouping task stacks together, followed then by grouped shadows
stacks, allows each task to use a different stack size while retaining the same instru-

mentation of a parallel shadow stack.

The interleaved shadow stack design shown in figure 3.1 has a constant value
for the shadow stack offset. The interleaved design no longer wastes space due
to a discrepancy in high watermark values and only overallocates to meet the the

constraints of the MPU, that is, allocated stacks and shadow stacks are powers of



two.
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Figure 3.1: The arrangement of stacks allows for all tasks to use the same offset
value. This uses the same MPU configuration settings as the parallel shadow stack
design.

Key Feature 2. Tasks are arranged in descending order of size to prevent fragmen-

tation caused by natural alignment constraints.

If a smaller stack were to come before a larger one, padding would be required
to place the larger stack in a location that is naturally aligned with its size. By

ordering in descending order of size, no padding is required.

3.2 Shared Shadow Stack

The second intuition comes from the idea that some tasks may run infrequently.
The previous stack designs require allocating stack space at compile and linkage
time. Tasks that run infrequently—such as initialization tasks—will force under-
utilization of RAM for the life of the embedded device. Our primary insight is to
incorporate a shadow stack into a shared stack design. Shared stacks have previously
been proposed to increase memory utilization [22]. The shared shadow stack design
in figure 3.2 has all tasks share a single stack in memory, along with a single shadow

stack. The application keeps a single stack pointer in use instead of one for each

10



task. When a new task preempts a lower priority one, it begins writing at the stack

where the previous one left off.

MPU Region 2: rw-, rw-

0 0 0 0 0 0 1 1
r Y- r Y- R Saved Memor
y
| A | B | ¢ [ A I B ' c |
A — Ao )
Over-allocated memory due [I E] Allocated Task Stack ;
to power of two constraint !

i D Allocated Shadow Stack i

Figure 3.2: The layout of the shared stack. Instead of moving the second MPU
region on context switch, the region is now fixed to cover all of the shared stack. To
further reduce allocated stack space, extra subregions are disabled using a bitmask
in the MPU_RASR register. A bit set to 1 indicates a disabled subregion.

As all tasks share the same stack space, it is important to ensure that stack
corruption does not occur through normal use. Functional correctness in the shared

design can be met with a few extra requirements to the scheduler.

Requirement 1. Tasks free their stack space when not in the ready state and con-

sume stack space when they run again.

This requirement ensures that when a higher priority task would halt execution
it frees its stack space so that a lower priority task can resume at a higher point in
the stack. An example of this can be seen in figure 3.3.

FreeRTOS does not have a mechanism to free stack space when not in use. As

such, we add a feature to the shared shadow stack design.

Key Feature 3. We introduce a task return handler to free stack space when the

task returns.

We add a kernel supervisor call to initiate a task return when a task has com-

pleted its work. The kernel frees the used stack space of the task and runs the

11
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Figure 3.3: This is an example of the usage of the shared stack over time. The stack
continually grows downward. When a task moves out of the ready state, it frees the
stack space it used. A lower priority task can run again without issue.

Blocked: B1
Suspended: A2
4. B (priority 1) C (priority 0)
Ready:
Running: CO

Figure 3.4: A violation of requirement 1 or requirement 2 would cause a lower
priority task to corrupt the stack of a higher priority one.
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highest priority task in the ready state. This is in direct contradiction to the stan-
dard design of a FreeRTOS task. We require that tasks now return when their work
is complete instead of looping again. As a consequence, the second requirement now

becomes necessary.
Requirement 2. Tasks must run to completion and can not block.

Blocking would immediately cause the blocked task to have their stack corrupted
by a lower priority task as the blocked task exists lower on the stack. Disallowing
blocking is a severe restriction to a real-time operating. An alternative must exist
in order to allow event driven scheduling. To fill this gap, we add the concept of

task predicates.

Key Feature 4. We introduce task predicates to ensure that a task only runs when

its requirements are fulfilled.

If a task were to run and block on a requirement, the requirement must now be
satisfied before the task runs. For example, if a task needs data from a queue, the
kernel only schedules the task once the queue has an object in it. The kernel moves
tasks from the suspended state to the ready state when the predicates for a task
evaluate to true.

With these requirements met, the scheduler will never schedule a task such that
it can write into a different task’s stack space [22]. As a direct consequence of
the requirements, round-robin scheduling is not supported; two tasks cannot be the

same priority.

Key Feature 5. Disabling select MPU subregions further reduces the amount of

over-allocated stack space.

The shared design has the same implementation technique of placing an MPU

region over the task stack space to allow unprivileged writes. However, instead

13



of covering the individual tasks, this region covers the entire shared stack. This
then subjects the shared stack to the same constraints of the MPU. This presents
a potentially large amount of wasted space when rounding up to the next power of
two.

Let w be the high watermark for the shared stack and the next power of two be
2", In the worst case, w is one greater than a power of two (w = 2""! + 1) and the
shared stack must allocate an extra 2"~ — 1 bytes which will go unused. We can
reduce this waste by disabling extra subregions. Instead of allocating the full 27,
we allocate to the next multiple of the subregion size. If our implementation has
eight subregions, each subregion has size 2" /2% = 2773, In the worst case, we waste
almost a full subregion: 2773 — 1.

This is only a constant improvement when viewed asymptotically, but since
embedded devices have less memory available, we see this as a dramatic improvement
in practice.

It is important to note that this technique cannot be applied to the parallel or
interleaved design. We look at the high watermark for task i, w;. We must still
apply a region of size 2™, but then we only allocate space which is a multiple of
the subregion 2" 3k, k € {1,2,...7} (assume that k is not zero or eight, as in
both cases no memory is saved with this technique). When we go to place an MPU
region on the task that follows it in memory, j, if w; = w; then we have broken the
alignment necessary to place the MPU region over j, as j’s stack explicitly begins

between the 2% aligned bytes as 0 < 273k < 2 = 2",

14



Chapter 4

Implementation

In this section, we describe the implementation of our designs.

4.1 Interleaved Shadow Stack

To enforce stack size sorting in memory, we updated the linker file to place stack and
shadow stack buffers in RAM by their defined size. Stack and shadow stack buffers
are statically allocated and marked with variable attributes. The linker file uses the
attributes to determine where to place the buffer in memory. For our prototype,
since we know stack sizes statically, we manually computed the shadow stack offset
by taking the sum of all task stack sizes. We then pass this value as a flag to the

Kage compiler for use in shadow stack instrumentation.

4.2 Shared Shadow Stack

To meet the requirements of the shared design’s functional correctness, we imple-

mented task return mechanisms and scheduling predicates.

15



4.2.1 Task Return Mechanisms

In FreeRTOS on task initialization, the stack frame for a task is prepared as if it
were context switched out of. Eight words are placed at the top of the stack which
determines the initial processor state of the task. These eight words are called the
basic frame, and are managed on exception entry and exit. The eight words placed
are RO, R1, R2, R3, R12, R14 (the link register), the start address of task code, and
xPSR. This ensures that context switching into the task works even if that task has
never run before. The link register holds the return value for the task code entry
function and task initialization sets this value to null. This generates a hard fault
on tasks attempting to return from their task code.

For the shared shadow stack design, tasks do not have stack space allocated
ahead of time, so this stack frame preparation happens when the task first runs.
We add two initial processor state values onto the task control block for use in this
stack frame preparation—the pointer to task code and the pointer to the task’s
parameters (RO). We re-purpose the pointer to the top of the stack by initially
setting it to null. The task control block sits in privileged data and belongs to the
trusted kernel, so our security guarantees are not violated. An example of this is
seen in figure 4.1.

As a result of our scheduler constraints, we have two cases to address for swapping

tasks.
Case 1. A task is preempted. A context switch occurs.

Because tasks never block, context switches are always from a lower priority
task to a higher priority task. We save the context of the current task and set up
the stack for the new higher priority task. We set the pointer to the stack in the

new task’s TCB to the current stack pointer. We then push the basic frame onto

16



pcTaskName: A void_taskACode (void * pvParameters)
- .

pxTaskFunction {

pxTaskArgument

pxTopOfStack \\\‘ } ...
null

Shared Stack

(a) Here, no task has yet run so the shared stack is empty. The task control block contains
two new pointers, pxTaskFunction and pxTaskArgument, and pxTopOfStack is set to null.

pcTaskName: A
pxTopOfStack

TaskArgument
bx gu prvPortTaskReturn

N )

\
' ™
[ RO|IR1I|RZ|R3|R12|R14 |pxTaskFunction|xPSR

,

!

Stack Pointer (SP)

(b) When task A is scheduled, the basic frame is prepared and pxTopOfStack is set in the
TCB. The stack pointer points to the top of the shared stack as no task has run yet.

Figure 4.1: Visual representation of the task return mechanism.
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pcTaskName: B pcTaskName: A
pxTopOfStack pxTopOfStack
\/
B A

(c) Here, task B has preempted task A. The stack pointer follows B as the stack grows

down. pxTopOfStack points to the top of B’s stack usage and the bottom of task A’s
usage.

pcTaskName: C pcTaskName: B pcTaskName: A
pxTopOfStack pxTopOfStack pxTopOfStack
null null
\/

SP

(d) If Task B finishes, the kernel resets the stack pointer to the value of task B’s
pxTopOfStack. If A were to be scheduled next, the kernel checks pxTopOfStack, finds it
to be non-null, and loads the context from the stack pointer which is saved at the bottom
of A’s stack usage. If C were to be scheduled next, the kernel sees pxTopO0fStack is null
and prepares the stack frame like in 4.1b.

Figure 4.1: Visual representation of the task return mechanism (cont.).

18



the stack. Instead of null for the link register (R14), we place the address of a new
function, prvPortTaskReturn, the task return handler. This task return handler
generates a supervisor call (SVC) to the kernel indicating that it must handle a task

return event.
Case 2. A task completes. The task returns to the kernel.

In a task return event, we reset the stack pointer to the stack address in the
task’s TCB. This brings the pointer back to before the task had run. We zero out
the stack address in the TCB, and suspend the task if it had a queue predicate

placed on it. We then have another two possible cases.
Case 2.1. The highest ready task is the task currently lowest on the stack.

Case 2.2. A new task has become ready that is of priority lower than the completed

task, but higher than the task saved on the stack.

FreeRTOS’s preemptive scheduler gives us the task with the highest priority
which is ready, but we do not initially know which of the two cases the task belongs
to. We determine if a task has run—and therefore has stack space in use—by
checking the pointer to the stack in the new running task’s TCB. If it is null, the
task has not been run and must have the stack frame prepared. If the pointer is
non-null; it indicates the task has stack space allocated so we restore the context at
the current stack pointer. Our scheduler requirements ensure that the running task
must be the lowest on the stack, so we can safely resume from the current stack

pointer.

4.2.2 Task Predicates

Currently, the only task predicate we have implemented is a queue predicate. Queue

predicates are implemented using FreeRTOS’s existing functionality. We add a

19



function called xQueuePredicate which takes as arguments a task handle and a
queue. This moves the task to the suspended list, and adds the task to the queue’s
list of tasks waiting to receive. When the queue receives data, it moves the dependent
task out of the suspended list and into the ready list. This requires no update to
code to send data through a queue. As a consequence of queue predicates, when
calling xQueueReceive, data will always exist in the queue. This allows us to remove
many of the checks and yielding code from within xQueueReceive.

For multiple task predicates, the only currently supported operand is OR. More

boolean expressions may be added with some extra engineering time.

4.3 Other Changes to Kage

We optimized the hand-coded assembly used to store processor state to the shadow
stack in a context switch. Kage uses many individual 1dr and str instructions
which we convert to 1dm (load multiple) and stm (store multiple) by changing the
ordering of context store and restore. This optimization reduces the total number of
instructions from the previous work. We apply this optimization to all three designs.

We also fix a compilation issue which applies Kage compiler’s store protections

to the linked Newlib library, even on the baseline FreeRTOS benchmarks.
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Chapter 5

Methodology

To evaluate the performance of our designs, we utilize Kage’s modified version of
the CoreMark benchmark [23]. We manually measure the memory usage for each
trial and compare between designs. In order to further understand the performance
implications of our implementations, we create and run our own microbenchmarks

which record cycle counts with the KIN1 library [24].

5.1 Updates to Kage’s CoreMark

CoreMark provides an effective measurement of holistic runtime performance on
an average embedded application behavior. Kage takes the CoreMark benchmark
and updates it to include measurements of FreeRTOS features such as inter-process
communication and context switching. Kage runs all benchmark code inside FreeR-
TOS’s Daemon task. This task manages timers and thus allocates more stack space
than needed for benchmarks. We move benchmark code out of the Daemon task
and into a new, empty task.

We use four different types of tasks when evaluating with CoreMark: FreeR-

TOS’s idle task, Amazon FreeRTOS’s logging task, a coordination task, and Kage’s
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reformulation of benchmark tasks, which adds I[PC and context switching. The idle
task is standard in all FreeRTOS applications and handles cleanup of deleted tasks.
The idle task has the lowest priority of 0. The logging task handles console output
and sends results over UART. The logging task has the highest priority at 6, but
will only run when a task has sent a string to print to the logging task’s queue. The
coordination task creates the benchmark tasks, times their execution, records the
results, and sends strings to the logging task. The coordination task has the sec-
ond highest priority at 5. The benchmark tasks run the CoreMark evaluation. The
number of benchmark tasks depends on the requested number of threads. CoreMark
1-thread only creates one benchmark task, CoreMark 2-thread has two benchmark
tasks, and CoreMark 3-threads has three benchmark tasks. The priority of these
benchmark tasks are assigned in descending order at 4, 3, and 2 respectively. This
means the benchmark tasks do not round-robin. We choose this due to requirements
of the shared scheduler. In order to generate a fair evaluation, we do not want round-
robin scheduling to hinder the performance of the baseline, parallel, and interleaved
designs. We apply one change to the shared design not present in the other evalua-
tions. The coordination task is split into two separate tasks: coordination start and
coordination end. The coordination start task has the same priority at 6, creates
the benchmark tasks, starts the timer, and then it returns. The coordination end
task has a lower priority than all of the benchmark tasks at 1 and waits from them
to finish. The coordination end task then stops the timer, collects the results and
passes them to the logging task. The reason for this is to fully utilize the shared
stack design and run tasks as sequentially as possible. An analysis of this reasoning

1s 1n section 6.1.
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5.2 Deciding Stack Usage

To decide the stack space that must be allocated to each task, we run a high water-
mark analysis on the benchmark. We fill the stacks with known debugging bytes and
take the average usage after multiple runs. Using these recorded high watermarks,
we reduce that stack allocations to as small as possible such that the program still

runs correctly.

5.3 Microbenchmark Selection

For purposes of understanding the impacts to specific parts of FreeRTOS that our
implementation makes, we want to record cycle counts for specific code regions. In
particular, we have made large changes to queues and context switching in the shared
design, small improvements to context switching in the parallel and interleaved
design, and other minor revisions from the previous prototype. We use the KIN1

library [24] to record cycles.

5.4 Replacing printf

We find the printf function acts improperly on our device. Primarily, floating point
operations with printf’s float format specifier do not utilize the board’s existing
floating point hardware and instead use software computations. This introduces
error during console printing which propagates to make the output meaningless.
We replace calls to printf by sending static strings and raw data over the board’s
universal asynchronous receiver-transmitter (UART). This has the knock-on effect

of dramatically reducing the code size and stack usage of the benchmark binaries.
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Chapter 6

Evaluation

In this section, we evaluate the performance of our two shadow stack designs. First,
we use the CoreMark benchmark [23] to simulate realistic application code. Then,
we use microbenchmarks to explore the impact of individual components.

We chose Amazon FreeRTOS v1.4.9 [19] and LLVM 9.0 [6]. We use an STM321475
Discovery board [25] for all experiments. This board contains an ARMv7-M [16]
microcontroller capable of running up to 80 MHz with MPU support, 128 KB of
SRAM, and 1 MB of flash memory. We use the default configuration of FreeRTOS

set to run at 80 MHz.

6.1 Stack Usage Analysis

To compare the stack usage of different designs, we calculated the total allocated
stack and shadow stack space for each design. Table 6.1 shows those values and table
6.2 shows the percentage difference from the parallel design. The parallel design and
interleaved design both grow linearly in allocation when adding a new benchmark
task, so the difference remains constant. The shared design however has a constant

allocation size, so the difference grows linearly.
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Stack Allocations in Bytes

Parallel Shared
Allocated | Allocated | Saved | Allocated | Saved

Interleaved

One task 5120 3840 1280 2048 3072
Two tasks 6144 4864 1280 2048 4096
Three tasks 7168 H&8Y 1280 2048 5120

Table 6.1: We record the total sum of allocated stack and shadow stack space
including the kernel stack and shadow stack. We then record the the amount of
bytes saved compared to the parallel shadow stack design.

Percent Savings Compared to Parallel Design
Interleaved Shared
One task 25.00 60.00
Two tasks 20.83 66.67
Three tasks 17.86 71.43

Table 6.2: Since the amount saved remains constant for the interleaved design, the
percent goes down as the total size goes up. Conversely, the shared design saves
more as the total goes up.
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Observation 1. The task workflow and memory requirements affect the stack usage

of different designs and should be considered when selecting a design.

The number of tasks concurrently on the shared stack significantly impacts the
stack allocation requirements. Task workflows primarily determine this number, as

shown in Figure 6.1.

Observation 2. The interleaved and shared designs both offer significant stack space

savings compared to the parallel design.

Specifically, the interleaved design reduces stack usage by at least 17.86% and
up to 25.00%, while the shared design saves between 60.00% and 71.43% of stack
space. The CoreMark benchmark task requires 512 bytes memory in the parallel
and interleaved design. Increasing the number of benchmark tasks does not change
the memory savings of the interleaved design. The experiments match our best case
scenario in figure 6.1a for the shared design which allows the allocated space to

remain constant, regardless of how many benchmark tasks we add.

6.2 CoreMark Runtime Comparison

We report results in terms of the number of iterations per second (Iter/sec) where
an iteration represents a unit of work completed by CoreMark. Each CoreMark
benchmark task computes 2000 iterations. Overhead was measured as a decrease
in the number of iterations per second. For each shadow stack design, we show
two sets of results, one with store hardening and one without. Store hardening is
not optional. A user cannot obtain the security guarantees offered by these designs
without store hardening. We record separate measurements in order to understand

what directly contributes to performance overhead.
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(a) In this task workflow, each task completes before another task runs. The shared stack’s
usage is then determined by the largest task.
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(b) In this workflow, task A and B are preempted before they can complete. The shared
stack’s usage then becomes the sum of all tasks.

Figure 6.1: These two task execution patterns produce different stack allocation
requirements as they change the high watermark of the shared stack.
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Iterations per Second

FreeRTOS Parallel Interleaved Shared

(Baseline) | NoSH| SH |[NoSH| SH |NoSH | SH

One task 183.49 179.24 | 173.90 | 179.24 | 173.85 | 179.24 | 173.91
Two tasks 183.62 179.12 | 173.91 | 179.12 | 173.89 | 179.24 | 173.88
Three tasks 183.61 179.12 | 17391 | 179.12 | 173.89 | 179.23 | 173.91

Table 6.3: The recorded iterations per second for the baseline unmodified FreeRTOS,
and each design with and without store hardening (SH). Caching is enabled in these
evaluations.

Percent Overhead Compared to Baseline

Parallel Interleaved Shared
NoSH| SH|NoSH| SH | NoSH | SH

One task 2.31 5.23 2.31 0.25 2.31 5.20
Two tasks 2.46 5.29 2.46 5.30 2.39 5.31
Three tasks 2.45 5.29 2.44 5.30 2.38 5.29

Table 6.4: The runtime overhead percents are all very similar for each design.

Table 6.3 presents a summary of the results obtained from the CoreMark bench-
mark. It also includes the performance of the baseline FreeRTOS as a comparison.

The main factor contributing to run time overhead is store hardening. For in-
stance, the average runtime overhead amounted to 2.39% without store hardening
so the remaining 2.88% of the 5.27% overhead can be attributed to store hardening.
It is crucial to emphasize that all designs’ security guarantees are dependent on
the collective functioning of these mechanisms, rendering none of these components

optional.

Observation 3. Parallel and interleaved designs exhibit similar performance over-

head, with differences ranging from 0.0% to 0.02%.
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This is because the instrumentation that accesses the shadow stack is exactly
the same in both designs. The arrangement of the interleaved design does not add

extra computation over the parallel design except in a specific edge case.

Observation 4. The shared design has similar performance overhead as the parallel

and interleaved designs, with differences ranging from 0.0% to 0.07%.

Again, the shared design uses the same instrumentation to access the shadow
stack as the parallel design. To further understand why we end up with the same

runtime values, we examine microbenchmarks.

6.2.1 Shadow Stack Offset Runtime Concerns

Store instructions can only accept an immediate offset between 0-4095. When the
shadow stack offset value is greater than 4095 bytes, an additional instruction must
be inserted into each prologue and epilogue in untrusted code as seen in figure 6.2.
This adds an approximately 2% runtime performance penalty when two instructions

added to each untrusted function.

Observation 5. All designs will encounter an approximately 2% runtime perfor-
mance penalty when the shadow stack offset becomes larger than 4095 bytes. The
interleaved design is more likely to go above this value and the parallel design is least

likely.

The shadow stack offset in the parallel design is determined by the stack space
allocated to all tasks, which is in turn determined by the stack with the largest
requirements. The interleaved design’s shadow stack offset is determined by the sum
of all task stack allocations. There are no instances in which the interleaved design

would have a smaller shadow stack offset than the parallel design. Conversely, there
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Function Prologue

mov ip, #4096
str.w 1lr, [sp, ip]

Figure 6.2: The above store can access the shadow stack with one instruction, while
the below one must use two instructions. 4092 is used because it is 4-byte aligned.

exists scenarios where the parallel design uses one shadow stack access instruction
and the interleaved uses two.

The shadow stack offset of the shared stack design depends on the task workflow
as seen in figure 6.1. In the best case scenario, it can potentially be smaller than
the parallel design due to key feature 5. In the worst case it is equivalent or worse

than the interleaved design.

6.3 Microbenchmarks

We built a set of microbenchmarks and measure cycle counts using the KIN1 Li-
brary [24] to further understand our holistic runtime evaluation. Table 6.5 shows
the cycle counts for segments of FreeRTOS that were updated to make the designs

possible.

Observation 6. The shared design does not perform equally well in every area

comparatively, it only matches holistically.

One measurement that immediately stands out is the dramatically reduced cycle
count for queue sending and receiving. Because we use queue predicates to ensure
that queues always have data before a task executes, we can remove all of the

code that checks if the queue has data and all of the code that causes the task to
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Cycle Counts

FreeRTOS Parallel Interleaved Shared
No MPU | MPU | NoSH| SH | NoSH | SH | No SH | SH
Context switching 174 195 259 259 259 259 177 177
Queue: create 543 720 748 838 748 838 745 845
Queue: send and receive 2053 2698 3386 | 3590 3365 3558 287 307
Task return: resume NA NA NA NA NA NA 294 351
Task return: new task NA NA NA NA NA NA 304 321
Table 6.5

block if the queue does not have data. The queue predicate then requires extra

instrumentation which we see reflected in the task return benchmarks.

Context

switching appears to be significantly faster for the shared design, but a task in

the shared design must also eventually return. On average, swapping in and out a

task is slower in the shared design. These areas of increased and reduced runtime

performance average out in the CoreMark benchmark.
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Chapter 7

Related Works

We examine previous work from SoK [26], Zipper Stack [27], and pRAT [28].

SoK proposes and evaluates the parallel shadow stack design along with a com-
pact shadow stack design which uses either a register, segment, or global variable to
point to the shadow stack. The compact design offers significantly condensed shadow
stacks, but memory accesses through segments and global variables are considerably
slower.

Not only are our shadow stack designs novel compared to SoK, but the difference
in architectural targets mean our shadow stacks work on embedded devices without
a MMU, which SoK relies on.

Zipper Stack takes a similar approach to focusing on memory savings by doing
away with a shadow stack entirely. Zipper Stack cryptographically verifies return
addresses at runtime using hardware hashing modules. Performance of Zipper Stack
heavily depends on the hardware module, but achieves good results when it is avail-
able. Zipper Stack also targets x86, but extensions to ARM are theoretically possible
using Pointer Authentication (PAC).

uRAI targets embedded devices and also provides an alternative to a shadow
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stack. Instead, return addresses are saved in the code segment at compile time and
a reserved register points to the correct return address for the currently executing
function. This technique does move the memory constraint from RAM into Flash,

but in doing so, incurs a memory access penalty to performance.
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Chapter 8

Conclusion

We proposed, implemented, and evaluated two novel shadow stack designs for use in
embedded memory safety designs targeting ARMv7/8-M. The interleaved shadow
stack design allows for stacks of different sizes through an alternative shadow stack
placement than Kage’s parallel shadow stack design. The shared stack design has all
tasks use a single stack and, despite changes to scheduling, matches the performance
overheads of Kage. Our designs save between 17%-71% memory in RAM compared
to Kage’s parallel shadow stack design. At the same time, we observe minimal
impact to runtime performance with differences of 0-0.07%. We also observe that to
maximize memory safety, no one design fits all. The best choice of a shadow stack
design depends on the task workflow of the application and should be evaluated at
development time.

Future directions for the work include extending the task predicate capabilities
of the shared design to support alternative predicates and arbitrary boolean expres-
sions, optimizations to the queue predicate functionality to reduce cycle counts in
the task return mechanism, and other shadow stack designs which reduce the size

of the shadow stack allocated for each task.
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