
Securing Physical Layer Passband Signals
Via Machine Learning

by

Kyle W. McClintick

A Dissertation
Submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy

in

Electrical and Computer Engineering
by

December 2021

APPROVED:

Professor Alexander Wyglinski, WPI ECE, Major Advisor

Professor Andrew Clark, WPI ECE

Professor Ziming Zhang, WPI ECE

Dr. Jacob Harer, MIT Lincoln Laboratory

Abstract

Machine Learning (ML)-based Wireless Sensor Networks (WSNs) need secure algorithms

to avoid human and financial costs in vehicular, agricultural, and national defense appli-

cations. Thus, there are several challenges within the context of ML-based WSNs that

require novel solutions from the technical community. For instance, there does not cur-

rently exist a stationary wireless localization algorithm capable of classifying the source

of signals detected by WSNs. Another challenge involves the active obfuscation of trans-

mission modulation class from eavesdropping ML-based WSNs, where power inefficiency

and the lack of a Quality-of-Service (QoS) guarantee makes the realization of a practical

solution difficult to achieve. Finally, implementations of obfuscation techniques and their

countermeasures within a WSN application do not possess the same level of advances and

sophistication when compared to other domains such as image processing, which have been

employing ML-based solutions for several decades. To address these challenges, this disser-

tation presents three separate (yet connected) novel contributions. First, we present a novel

localization framework that is self-organizing, opportunistic, and jointly localizes stationary

transmitters while classifying signal detections. Experimental results from this framework

demonstrated the ability to locate an unknown number of low-power beacons with 1.2-meter

error bias. Second, we devised two new constraints on ML solutions to help increase power

efficiency and guarantee a minimum QoS in WSNs, namely, constructive and Bandwidth

Equivalency (BWE) perturbation constraints. Based on these novel constraints, we showed

an improvement of up to 80% with respect to the Bit Error Rate (BER) and a reduction of

up to 60% with respect to adversarial classification precision. Finally, we implemented the

first-ever real-world hardware experimentation of an adversary-trained, ML-based, modu-

lation classifying sensor, and evaluated a case study involving wireless adversarial training,

regularization, model width, label leaking, parallel and cascade variations, and iterative at-

tacks. Results from this case study using this hardware setup showed that strong Gradient

Sign Method (GSM) attacks can reduce classification precision down to guessing precision,

but that moderate strength attacks can be resisted by up to 35% while simultaneously

increasing non-adversarial precision by up to 1%.

I

Acknowledgements

The work presented in this dissertation was generously funded by MIT Lincoln Laboratories,

with special thanks to Allyn Dullighan, Tim Gallagher, Jacob Harer, Mark Smith, and Mike

Tracey.

The formation of this dissertation was guided by my adviser Alexander Wyglinski and

committee members Andrew Clark and Ziming Zhang, as well as the Wilab, with special

thanks to Kuldeep Gill.

Some of the research presented in this dissertation has received significant guidance and

intellectual contributions from Bryse Flowers of the University of California San Diego and

William Headley of Virginia Technology’s Hume Center.

I would also like the thank my wife Gigi for her love and support.

II

Contents

List of Figures IV

List of Tables IX

1 Introduction 1
1.1 Motivation . 1
1.2 State-of-the-Art . 3
1.3 Technical Challenges . 6
1.4 Contributions . 7
1.5 Contents & Structure . 7
1.6 Related Works . 9

2 An Overview of Related Machine Learning Topics 10
2.1 SL Overview . 10

2.1.1 LSR . 10
2.1.2 Logistic/Softmax Regression . 15
2.1.3 CNN . 21

2.2 SL Guidelines . 28
2.2.1 Weight Updates . 28
2.2.2 Weight Initialization . 36
2.2.3 Model Regularization . 38
2.2.4 Data Representation . 40
2.2.5 Data Pre-Processing . 42
2.2.6 Data Augmentation . 45
2.2.7 Hyper-Parameter Validation . 46
2.2.8 Ensemble Learning . 48

2.3 UL and Mixture Models . 49
2.4 Adversarial Perturbations . 50
2.5 Chapter Summary . 52

3 Machine Learning-Based Parameterized Fingerprinting for Unknown Num-
ber of Transmitters 54
3.1 Introduction . 54
3.2 Overview of Localization Model . 55

III

3.3 Proposed Multilateration Framework . 57
3.3.1 Signal Detection and Pre-Processing 57
3.3.2 Input Feature Estimation . 59
3.3.3 Multilateration . 60
3.3.4 Inference . 61

3.4 Experimental Results . 64
3.4.1 Experiment Implementation Details 64
3.4.2 Label Generation Via Surveying . 65
3.4.3 CNN Training . 69
3.4.4 CNN Testing & UL Inference . 70

3.5 Chapter Summary . 74

4 Physical Eavesdropper Evasion: Signal Dependent Perturbation Design
and Adversarial Training 76
4.1 Introduction . 76

4.1.1 Assumptions . 77
4.2 System Model . 79

4.2.1 Signal Dependent Waveforms and Classifier 79
4.2.2 Adversarial Training Waveforms and Classifier 82
4.2.3 Adversary Goals and Description . 85

4.3 Signal Dependent Perturbation Design . 89
4.3.1 Constructive Perturbations . 89
4.3.2 Bandwidth Equivalent Perturbations 91
4.3.3 Constraint Analysis . 91

4.4 Adversarial Training . 94
4.4.1 Evaluation of Non-Adversarial Model 95
4.4.2 Evaluation of Cascade and Parallel Models 98
4.4.3 Label Leaking . 100
4.4.4 Evaluation of Models Trained with Iterative Attacks 100
4.4.5 Model Capacity . 102

4.5 Chapter Summary . 103

5 Conclusion & Future Work 105
5.0.1 Research Achievements . 105
5.0.2 Open Questions . 107

Bibliography 109

IV

List of Figures

2.1 An illustration of how fitting a linear model (w, b) for accurate network la-
tency predictions has a clear solution for two samples s1, s2 until a third
sample s3 is observed. A linear solution can be given by MLE, where the
probability of recreating the data x ∈ {s1, s2, s3} is maximized choosing w, b. 12

2.2 The lowest NLL is given for about w1 = 0.01 and w2 = −0.005. Since the
data model (2.1) is linear, its NLL is convex. This attribute can be leveraged
to avoid iterative approaches that compare predictions made by the infinite
range of inputs −∞ < w1, w2 < ∞ to some loss function. Instead, a closed
form solution exists for w. 13

2.3 A neuron is composed of a biased dot product of inputs and weights. In this
mathematical model inspired by the biological neuron, the neuron is changed
from a linear regression model to a non-linear one by the arbitrary activation
function f , which in logistic regression is given by the sigmoid function. . . 15

2.4 A binary class softmax regression model with two serialized neuron layers
i = 1, 2. Each layer has four parallel neurons (Figure 2.3), and input data
has three states. 16

2.5 An illustration of a two weight softmax regression objective function and
its gradient ∇w. Nonlinear models have local minima/maxima (i.e., o2). A
learning rate scalar η is needed to reduce weight updates, as large weight
updates can cause the objective function to go to infinity or significantly
increase the number of updates needed to reach the global objective minimum
o1. If η is too small, SGD becomes computationally expensive and can cause
the weights to be unable to move away from local minima. 18

2.6 Multifamily Likelihood Ratio Test (MFLRT) [1] (a) and SL (b) algorithms for
multiple signal classification. MFLRT is a linear model, and is consequently
suboptimal for nonlinear signals. Additionally, MFLRT requires difficult ana-
lytical derivations for decision thresholds γ that are a function of signal PDFs
and classification objectives (hypothesis), and requires knowledge of AWGN
variance (variance can be estimated as σ̂2 at a penalty to performance) to
calculate likelihood. SL algorithms require no analytical derivations to use,
and have been shown to be a robust, scalable, and dependable classification
model when the model structure and hyper parameters are chosen carefully
through a combination of trial-and-error and domain knowledge. 22

V

2.7 A mathematical circuit model showing forward pass values being computed
using gates (

∑
,×) and example inputs. Backward pass values are then

computed by applying the chain rule recursively. 23
2.8 A convolutional layer computing outputs zr,c across two input dimensions

for some arbitrary data. Representing data with more than one dimension in
wireless communications applications often is used to correlate mathematical
transforms on data to their labels (i.e., real/imaginary components, absolute
value, difference between features). 24

2.9 A signal x is shifted in frequency in a flat frequency channel (coherence band-
width of the channel is larger than the bandwidth of the signal) by f(x) and
convolved with a convolutional layer’s weights by z(x). In a frequency selec-
tive channel, the equivariance assumption would no longer hold, as different
frequency bins would be attenuated by different amounts. 24

2.10 Max pooling of a 512 bin spectrogram with pooling window of size ph =
pw = 8. Spectrogram displays a sin-sweeping sinusoid. Notice that some key
attributes of the signal are maintained, such as the frequency-sweep period.
Such features may be highly correlated to model outputs. 25

2.11 An arbitrary CNN with repeated convolutions, padding, and down sampling
via max pooling of a 512 by 512 data sample. Layer heights and widths
are computed by (2.31), and depths are chosen. In wireless communications,
such a sample may represent a 512-bin spectrogram. The signal is classified
via a softmax layer to be one of ten categories. Receptive fields of a neuron
in the flattening layer on the input sample are highlighted. 27

2.12 When model complexity is small compared to the number of training sam-
ples, the test loss follows a U-shaped, “classic” bias-variance tradeoff. A
model is classically under-trained when both training and validation loss are
high, which can be mitigated by training for more epochs, gathering more
data, adding more weights to the model, or validating SGD hyper-parameters
(Section 2.2.7). Typically, during SGD a model will under-fit until it begins
to over-fit, which is when training loss is low but validation loss is high.
Over-fitting can be mitigated by training for fewer epochs, decreasing the
number of weights in a model, voting via ensemble learning (Section 2.2.8),
or constraining the model with regularization (Section 2.2.3). 30

2.13 Bias and weight values of a four neuron NN over 50 epochs of SGD, initialized
as w = 0 and b = 1. Consequently, all weights and biases compute the same
gradient update for each epoch δz

δx = w, making weight convergence to values
that correspond to the global loss minimum impossible. 36

2.14 Bias and weight values for a single input, four neuron NN over 50 epochs of
training, initialized via the Xavier initialization. Gradient computations are
now able to take non-zero, unequal values and achieve convergence to values
that correspond to a global loss minimum. 38

VI

2.15 Different data representations can be integrated, via multiple approaches,
in order to achieve an additional prediction performance gain by reducing
multicollinearity. Data from the same domain is typically concatenated and
integrated early as shown in (a). Data domains with high correlation between
each other are typically integrated in the middle of a model as shown in (b),
and highly dissimilar data is integrated at the end of an implementation by
some voting scheme (c). Alternatively, late integration of identical inputs
can be used as a form of ensemble learning in order to reduce the variance of
model predictions introduced by the randomness of SGD (see Section 2.2.8). 43

3.1 A typical SOP navigation scenario (a) and its inverse problem, SOP beacon
localization (b). Physical feature and range estimates are independent of
other readings in the SOP beacon localization problem, such that they may
be computed locally at each receiving sensor or at the fusion center. 55

3.2 An example of the low meta data scenario is a subset of the transmitter local-
ization problem, where the number of beacons is hidden from the localization
network of sensors, and must be inferred. As in the standard localization
problem, the the transmitter locations are unknown. Additionally, the origin
of the four signals detected in this scenario is hidden, such that the receiving
network must infer which transmitter sent which signal via the physical layer
pass-band characteristic inference of signal strength, angle, or timing estimates. 56

3.3 An overview of the interaction between of all estimators, classifiers, and dig-
ital signal processing tasks of the proposed approach presented in this work.
Inputs and outputs are represented by circles, while intermediate steps are
represented by rectangles. kW and AD tests were performed to determine
the uniqueness of each beacon’s true RSS population and normality of es-
timated beacon location subtracted multilateration estimates, respectively.
Normality is an assumption of the DPGMM inference, and by determining
the number of unique input data populations, we identify maximum perfor-
mance bounds for the DPGMM inference. 58

3.4 The experiment site, located at 358 Pleasant St, Gardner MA, USA (lon-
gitude -71o59’41.32”W, latitude -42o34’9.19”N). The hardware used in the
experiment is also pictured. 59

3.5 The true location of beacons was measured by adding the measured distance
of the beacon from these known intersect points (a) and the anchor and
beacon locations for the experiment (b). 66

3.6 An overview of the PointNet CNN architecture, which we modify only by
changing the 10-class softmax output to a two-dimensional linear output.
A dropout with p = 0.3 is used after each dense layer. Each T-net is a
mini-network that aims to learn a affine transformation matrix. PointNets
are designed for low-dimensional data and physical space. We employed a
bagging ensemble of three PointNets for this experiment. 67

VII

3.7 The transient epochs of MSE training and validation loss of the CNN. Final
training MSE for the ensemble was 0.89 meters, and a final test set MSE of
4.87 meters. CRLB results found that training and test labels have a mini-
mum error of 0.168 meter and 0.173 meter along the x and y axis, respectively. 68

3.8 A summary of the N = 229 spatial multilateration estimates and the esti-
mated cluster means and co-variances of the DPGMM. “Missed detections”
represent pairs of transmitters whose spatial and RSS estimates could not be
statistically distinguished. 71

3.9 A summary of the test set’s N = 229 detected TPMS packet multilateration
estimates true indicator variables ci = j, i = 1, ..., N, j = 1, ..., k (a) and our
predictions (b). Any sample from one axis with the same indicator variable
as a sample from the other axis is colored white. 72

3.10 QQ plot of the cluster mean subtracted, standardized PointNet multilat-
eration estimates. Additionally, the axis-specific AD statistics and critical
statistics are provided. 73

4.1 The transmitter, given both a signal and a perturbation power constraint, strategically

amplifies certain samples of signals such that an adversarial eavesdropper cannot correctly

classify the modulation scheme of the observed signals. When successful, the transmitter

avoids being demodulated correctly and its bits estimated by the eavesdropper are random

and lack any information. We measure the success of perturbations by how low of a BER

they achieve with the intended receiver and by how low of a classification accuracy (PPV)

the eavesdropper achieves in this dual-objective scenario. Conversely, we measure the

success of the eavesdropper by how high of a classification PPV it can achieve on observed

signals and how many bit errors it can force the transmitter to make in order to avoid

correct demodulation. 78
4.2 The VT-CNN2 [2] modulation classifier model used in Section 4.3. 81
4.3 One captured signal for each modulation class from the connected USRP N210 SDRs using

our RML2018.01A [3] inspired dataset. These visualizations are oversampled by 8 SPS and

display only the first 32 samples of the 4096 sample signals for visualization purposes. . . 83
4.4 USRP N210 SDRs, their coaxial connection, and host computer. The connection employs

a 10 dB attenuator. 84
4.5 The VGG10 [4] modulation classifier model used in Section 4.4. 84
4.6 One i.i.d. captured perturbation and non-adversarial signal for each modulation class from

the connected USRP N210 SDRs from our implementation of the RML2018.01A [3] dataset.

These visualizations are over sampled by 8 SPS. 86
4.7 A visualization of a single pre-channel QPSK signal and CFGSM perturbations in the time-

domain (a). CFGSM perturbations are signal-dependent and do not add deconstructively

with the information being transmitted. We also display 78,125 QPSK signals and their

constrained FGSM perturbations in a 512-bin FFT averaged by frequency bin (b), show-

casing how much energy of the FGSM perturbations is attenuated because of their OOB

frequencies. 90

VIII

4.8 Non-coded BER for QPSK test signals for different uses and quantities of perturbation

energy allocations. Noise and signal energy are fixed and equal at Es/N0 = 0 dB. When

the perturbation energy allocation is re-allocated to the signal, and the signal is amplified

uniformly, the SNR increases and BER decreases. The FGSM attack that is not signal

dependent interferes with the transmission and increases BER proportional to the amount

of energy allocated. The constructive FGSM attack only amplifies a subset of half (1/I)

of the indexes, such that BER decreases very slowly as the amount of energy allocated

increases, but this is not the primary objective of increasing Ep, and this attack importantly

does not increase BER. This crucially allows, if the transmitter’s operator has chosen a Es

to satisfy a maximum BER requirement, the guarantee that the use of perturbations, for

any Ep, will not increase BER and compromise that requirement. Many such Quality

of Service (QoS) guarantees are mandatory in wireless protocols, and can be difficult to

enforce in ML applications. BWE attacks are slightly lower BER than their non-BWE

equivalent attacks because their energy is not filtered out by the LPF. 92
4.9 Modulation classification PPV for QPSK test signals for different uses and quantities of

perturbation energy allocations. Noise and signal energy are fixed and equal at Es/N0 = 0

dB. When the perturbation energy allocation is re-allocated to the signal, and the signal

is amplified uniformly, the SNR increases and the signal is easier for the eavesdropper to

classify. The BWE FGSM attack is the most effective because no energy is filtered out, and

the energy constraint is used optimally. The constructive FGSM attacks are less effective

because a lot of energy is used on a subset of the samples rather than a little energy on the

whole set, and the effectiveness of perturbations is proportional to the sum of amplitudes,

not power. 93
4.10 Our offline non-adversarial (a), adversarial (b), cascade (c), and ensemble (d) training

schemes mostly follow those outlined in [5], although we decouple training by only gener-

ating perturbations from already trained models, as in [6]. Additionally, unlike any other

work, we evaluate our model using perturbations crafted from gradients computed from

the ultimate model, and do so using online, physical signal captures. Our reasoning is that

if our system is vulnerable to an attack once, it can be attacked again, and to assume that

the attack is done without knowledge of our countermeasure is overly optimistic. Each

model and dataset is i.i.d., and the training of the ultimate model is always done with the

same number of weight updates as outlined in Section 4.2.2. For instance, if we produce

a parallel set of adversarial training data using three models, we would train the ultimate

model using three sets of 1.4/3 million signals for 20 epochs each. 96
4.11 A class-by-class analysis of the effectiveness of each attack and strength of attack on the

non-adversarial trained VGG10 model. Most false positives belong to the same one or two

classes. IterLL attacks are the strongest, followed by FGSM, and stepLL. FSK classes are

the most difficult to fool due to large frequency shifts between each symbol. Perturbations

sent over a physical channel are slightly less effective than perturbations transmitted over

a simulated wireless channel. 97

IX

List of Tables

1.1 A comparison of surveys and tutorials discussing ML-based wireless commu-
nication systems. 2

1.2 Timeline of survey papers exploring the use of SL models in PHY layer
applications . 3

1.3 A listing of the challenges faced by the state-of-the-art solutions to the re-
search problems discussed in our dissertation, and our contributions to these
problems. 8

2.1 A summary of momentum-based SGD methods and their improvements upon
each other. 34

2.2 A summary of Quasi-Newton SGD methods and their improvements upon
each other, some of which may also incorporate momentum-analogous terms. 35

4.1 Effect of various adversarial training schemes on the modulation classification PPV of dif-

ferent partitions of data. stepi−1 perturbations refers to testing models using perturbations

from the same distribution as training set perturbations, where stepi perturbations refers

to testing model using perturbations crafted after adversarial training. The adversarial

training maintains ∼ 26% of its protection against current step physical attacks compared

to physical attacks crafted during training. Furthermore, as in [6], the model trained by

the parallel training scheme is more accurate when evaluated on adversarial data at the

cost of non-adversarial accuracy. In [6], this gain is seen only for black box attacks, not

white box attacks. Our current step white box attacks are analogous to black box attacks

from the perspective of adversarial training because test-phase perturbations are crafted

from a different set of weights than that from which training perturbations are crafted.

Finally, we observed that the cascade adversarial training scheme follows the same trend

as the parallel scheme but with greater magnitude. 99
4.2 An investigation of “label leaking” [5] occurring when using FGSM adversarial training

schemes, justifying the use of the stepLL attack in training over the use of the FGSM

attack. While we do not see evidence of label leaking for this dataset, we find that stepLL

training yielded higher protection against iterative and FGSM attacks than FGSM training,

which are the most dangerous attacks. 99

X

4.3 IterLL attacks are significantly more effective than stepLL attacks. StepLL training offer

almost no defense against iterLL attacks. We are able to achieve iterLL trained models

with a small level of defense against iterLL attacks, and higher defense against stepLL and

FGSM attacks with no significant loss to non-adversarial performance. 101
4.4 Effect of model capacity on adversarial training, evaluated using physical test data. We

find that adversarial training prevents overfitting from occurring when training our VGG10

model scaled by ρ = 4. We additionally find that stepLL perturbations crafted after

adversarial training are more effective against deeper models, indicating a model capacity

trade-off between non-adversarial and adversarial test classification PPV. Models that are

too shallow additionally make lower confidence classifications than deep models, such that

they are easier to fool. “Clean” is short hand for non-adversarial data. 102

XI

Acronyms

ACM Automatic Coding and Modulation

AD Anderson-Darling

ADC Analog-to-Digital Conversion

ADS-B Automatic Dependent Surveillance Broadcast

AGC Automatic Gain Control

AI Artificial Intelligence

ASK Amplitude Shift Keying

AUC Area Under the Curve

AWGN Additive White Gaussian Noise

BCH Bose-Chaudhuri-Hocquenghem

BER Bit Error Rate

BIRCH Balanced Iterative Reducing and Clustering using Hierarchies

BPF Band Pass Filter

BPSK Binary Phase Shift Keying

BS Base Station

BWE Band Width Equivalence

CDF Cumulative Distribution Function

CDMA Code Division Multiple Access

CFAR Constant False Alarm Rate

CFGSM Constructive FGSM

CFO Carrier Frequency Offset

CIFAR Canadian Institute for Advanced Research

CNN Convolutional Neural Network

CR Cognitive Radio

CRLB Cramer Rao Lower Bound

CSI Channel State Information

CUE Cellular User Equipment

DA Data Augmentation

DAC Digital-to-Analog Conversion

XII

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DC Data Choice

DPGMM Dirichlet Process Gaussian Mixture Model

DPP Data Pre-Processing

DSA Dynamic Spectrum Access

DT Decision Tree

DTV Digital Television

DUE Device-to-Device User Equipment

EM Expectation Maximization

FFT Fast Fourier Transform

FGSM Finite Gradient Sign Method

FIR Finite Impulse Response

FSK Frequency Shift Keying

GAN Generative Adversarial Network

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPU Graphics Processing Unit

GR GNU Radio Companion

GSM Global System for Mobile Communications

IE Input Equivariance

IF Intermediate Frequency

IoT Internet of Things

IQ In-Phase/Quadrature

ISI Inter-Symbol Interference

iterLL Iterative Least Likely

KKT Karush-Kuhn-Tucker

KM Kernel Method

KNN K-Nearest Neighbor

KW Kruskal-Wallis

LDPC Low-Density Parity-Check

XIII

LIDAR Light Detection and Ranging

LNA Low Noise Amplifier

LOS Line of Sight

LPF Low Pass Filter

LSB Least Significant Bits

LSR Least Squares Regression

LSTM Long Short-Term Memory

MAC Medium Access Control

MCMC Markov Chain Monte Carlo

MHT Multi-Hypothesis Tracking

MIMO Multiple Input Multiple Output

ML Machine Learning

MLE Most Likely Estimation

MSE Mean Squared Error

NP Neyman-Pearson

NLL Negative Log Likelihood

NLOS Non Line of Sight

NN Neural Network

OOB Out-of-Band

OOK On-Off Keying

OOT Out-of-Tree

OPTICS Ordering Points To Identify Cluster Structure

PCA Principal Component Analysis

PDF Probability Density Function

PGD Projected Gradient Descent

PHY physical

PLL Phase-Locked-Loop

PPV Positive Predictive Value

QoS Quality-of-Service

QQ Quantile-Quantile

XIV

R Regularization

RBF Radial Basis Function

ReLU Rectified Linear Unit

RF Radio Frequency

RFFE Radio Frequency Front End

RL Reinforcement Learning

RMS Root Mean Square

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

RRC Root Raised Cosine

RSS Received Signal Strength

RSU Road Side Unit

SDR Software Defined Radio

SGD Stochastic Gradient Descent

SL Supervised Learning

SNR Signal-to-Noise Ratio

SON Self Organizing Networks

SOP Signal of Opportunity

SPS Samples Per Symbol

SRO Symbol Rate Offset

stepLL One-Step Least Likely

SUMO Simulation of Urban Mobility

SVM Support Vector Machine

TDD Time Division Duplexing

TDoA Time Difference of Arrival

TPMS Tire Pressure Monitoring System

UAP Universal Attack Perturbation

UE User Equipment

UL Unsupervised Learning

USRP Universal Software Radio Peripheral

XV

UWB Ultra Wide-Band

V Validation

V2I Vehicle-to-Infrastructure

VAE Variational Auto-Encoder

VGG Visual Geometry Group

VI Variational Inference

WI Weight Initialization

WMMSE Weighted Minimum Mean Square Error

WSN Wireless Sensor Networks

WSR Weighted Sum Rate

WU Weight Updates

1

Chapter 1

Introduction

1.1 Motivation

Parameter estimation and classification in the presence of noise is a ubiquitous problem

in wireless signal processing. Machine Learning (ML) models have a good track record in

predicting these unknown parameters in real-world wireless systems with few assumptions

about data. However, only recently have they become practical due to faster hardware

leveraging graphics processing units and cloud computing [7], more data from increasingly

permeating wireless networks collected by cheaper sensors [8], and improved algorithms

that train faster [9] while performing more accurate predictions [10]. ML-based wireless

signal processing solutions tout a number of advantages, including the ability to implement

real-world Cognitive Radio (CR) networks with dynamic spectrum access capabilities [11],

Wireless Sensor Networks (WSN) with less re-programming and longer service life [12], Self

Organizing Networks (SON) with robust routing protocols [13], and more secure Internet

of Things (IoT) networks that fully utilize resources to stay online longer [14], and improve

any communication system with lower costs and higher Quality-of-Service (QoS) [15].

Scientific publications re-implementing, analyzing, and clarifying the choices and re-

sults of ML applied to wireless communications are relatively difficult to find despite their

widespread use. A summary of ML employed in wireless communications is presented in

Table 1.1, which describes what paradigm and stack layers are discussed by each work.

Due to training and decision rule concerns raised during the “Artificial Intelligence (AI)

winter” [25], ML in wireless communications did not begin to widely appear in published

works until the late 1980s. New works at that time were published digital signal processing

2

Table 1.1: A comparison of surveys and tutorials discussing ML-based wireless communi-
cation systems.

References
ML Paradigms Wireless Stack Layers
SL UL RL PHY LNK NET TRAN APP

[16] X X X X X X
[11] X X X X X X
[12] X X X X X X X
[17] X X X X
[13] X X X X X X
[18] X X X X
[14] X X
[19] X X X X X X X X
[15] X X X X X X X X
[20] X X
[21] X X X X X
[22] X X X X X X
[23] X X X X
[24] X X

papers, which often made use of NNs as a non-linear estimator, primarily for equaliza-

tion [26]. Previously, the Volterra series [27] and nonlinear auto-regressive moving average

filters [28] had been used for non-linear estimation. This trend continued until the year 2000

when advances in computing, wireless communications, and ML allowed for the application

of ML to other layers of the protocol stack besides the PHY layer. A timeline of the history

of ML used in the PHY layer is presented in Table 1.2.

In this dissertation, we present novel contributions to the state-of-the-art applications

of ML to estimate the location of wireless transmitters by observing noisy received signals.

Specifically, we choose to showcase our results using Signal of Opportunity (SOP), which

do not contain timing or location information, or whose timing and location information

cannot be observed due to a lack of protocol information. Additionally, we investigate the

often overlooked fragility of trained ML algorithms and contribute to the state-of-the-art

research of transmitting signals in a way such that ML-based eavesdroppers cannot classify

and learn about observed signals.

3

Table 1.2: Timeline of survey papers exploring the use of SL models in PHY layer applica-
tions

Year Event

1986 ← Tank [29] implements an ADC NN during what is called the “AI winter”, a time
when researchers were disillusioned by gradient descent issues.

1989 ← AI winter ends, and many DSP works are published leveraging NNs. Bruck et
al. [30] use a NN to perform MLE decoding of Hamming and Reed-Muller block
codes.

1990 ← Chen et al. [31] and others make use of NNs as a non-linear estimator for equal-
ization.

1991 ← Kunz [32] uses a softmax classifier to decide which channel to transmit on within
a cellular network, using interference patterns and channel demand as determinants.

1992 ← Aazhang et al. [33] use a NN to demodulate CDMA signals, additionally ”assist-
ing” training by learning with interference in the samples (on-line training).
← Fang et al. [34] use a variational auto-encoder NN to compress data, learning the
latent space of data by minimizing reconstruction loss.

1995 ← Ibnkahla et al. begin publishing works that use a NN to model the inverse
non-liner function of traveling wave tubes, wireless channels, and amplifiers. They
summarize three years of these works in their 1998 paper [35].
← Iba [36] and others optimize the power usage of a power distribution system, a
technique later used for low power wireless networks such as IoT. Genetic algorithms
are used at this time, in favor over initial RNNs (Hopfield NN [37]) due to learning
issues present in the latter.
← Southall et al. [38] use an RBF NN to perform beam steering towards far-field
targets.

1998 ← Nandi et al. [39] uses a NN to classify the modulation type of observed signals,
and another to classify modulation order.

2000 ← Hoppensteadt et al. [40] train a NN-based Phase-Locked-Loop (PLL) for phase
synchronization of multiple signals.

2010 ← Daniels et al. [41], among the rise of MIMO technologies, publish an ACM work
with an SL model that leverages the estimated matrix utilized in MIMO systems.

1.2 State-of-the-Art

Driverless vehicles could save the U.S. economy an estimated $450 billion per year [42] by

improving traffic safety [43,44], increasing the mobility of the impaired and the elderly [45],

and reducing pollution to the environment [46]. In order for robust autonomous opera-

tion to be realized, these vehicles require nearly comprehensive and continuous situational

awareness to make appropriate driving decisions. This awareness is obtained via the use of

on-board sensing technologies such as Light Detection and Ranging (LIDAR) [47], computer

vision algorithms [48, 49], and radar [50]. A Global Navigation Satellite System (GNSS)

4

such as Global Positioning System (GPS) or similar provides vehicle location data [51]. Ac-

curate location information is critical, especially during maneuvers such as lane changing,

navigating an intersection, or merging with high speed traffic [52]. GNSS-based techniques

may be unable to handle complex road conditions upon which these vehicles operate, such

as urban canyons [145] and foliage [146] that cause significant signal attenuation, as well as

being susceptible to unintentional interference [147] and malicious jamming signals [148].

Therefore methods to supplement or replace GNSS have generated significant interest [149].

Alternatively, the position and velocity of vehicles can also be determined by leverag-

ing Signal of Opportunity (SOP)-based navigation and SOP beacon localization methods

which assume that source transmitters detected by the WSN can be distinguished using a

priori metadata (e.g., physical layer attributes such as carrier frequency). In adversarial

wireless localization problems, this meta-data may be limited or unavailable. In this work,

we introduce a framework to estimate and classify the following unknown parameters using

only physical pass-band signal characteristics detected by the WSN: i) the number of trans-

mitters; ii) their location; iii) which transmitter sent each detected signal. State-of-the-art

WSN frameworks that estimate a subset or all of these unknowns are ubiquitously show-

cased using Automatic Dependent Surveillance Broadcast (ADS-B) signals [53–58]. These

solutions estimate Radio Frequency (RF) features that are highly correlated to hardware

noise such that the transmitters can be identified [53, 54], perform mobility analysis via

Multi-Hypothesis Tracking (MHT) [55], use heuristic thresholds in multilateration or range

estimate based verification methods [56,57], or jointly utilize multiple techniques [58].

In 2014, Goodfellow [59] presented a picture of a panda the world’s state-of-the-art

Machine Learning (ML) algorithms confidently decided is a gibbon. Ever since, an arms

race has been ongoing between crafting adversarial perturbations and developing counter-

measures [6, 60–72]. It is important that high-risk wireless communications systems such

as autonomous vehicle [73], agricultural [74], and military [75] networks are secure from

perturbation attacks because incorrect classifications can result in catastrophic financial

and/or human costs. Thus the design of trained ML algorithms for these wireless networks

must prevent the creation of additional attack surfaces used by potential adversaries, which

requires an understanding of effective perturbation designs in realistic, physical scenarios.

The study of adversarial perturbations in the wireless data domain is relatively new and

lagging behind that of leading data domains such as computer vision. Sadeghi et al. [76]

synchronously added Finite Gradient Sign Method (FGSM) [59] and UAP [63] attacks to re-

5

ceived signals over an Additive White Gaussian Noise (AWGN) channel model, highlighting

how considerably less power is needed to fool a Convolutional Neural Network (CNN) with

perturbations when compared with random jamming signals, and that the UAP [63] attack

is robust to time shifts between it and the received signal that simulates synchronization

errors. Kim et al. [77] analyzed the same threat model and explored how the adversary

can used the channel state information matrix to synchronously deliver power and error-

optimized white and black box perturbations. Flowers et al. [78] use a different threat

model, where FGSM [59] perturbations were added by a transmitter to its own signal to

fool a CNN-based eavesdropper, and investigated the trade-off between BER and adversar-

ial accuracy. The authors find that perturbations strong enough to be effective at lowering

eavesdropper classification accuracy come at the cost of a significant number of communi-

cation errors (especially higher order modulation signals), that frequency and timing errors

have a small effect on perturbation effectiveness, and that relatively large, single-step per-

turbations do not always increase loss because of unstable gradient ascent. These lessons

motivated Flowers et al. [79] to design a feedback loop to the transmitter from the adver-

sary to optimize multi-objective loss functions, which design the perturbations to minimize

power consumption, minimize BER, and minimize eavesdropper accuracy. DelVecchio et

al. [80] similarly optimized the frequency-domain power and bandwidth of perturbations to

maximize communication effectiveness without increasing eavesdropper accuracy. Maroto

et al. [81] implemented adversarial training robust to iterative attacks, but experienced label

leaking and weak models due to crafting ground-truth-based perturbations that are overly

correlated to trained models, ground truth class, and the non-adversarial data. Zhang et

al. [82] performed defensive distillation to protect the network from single-step adversarial

perturbations, but the process of fooling these networks is well understood [83,84]. Finally,

Sahay et al. [85] performed a 4-class modulation classification adversarial training simu-

lation using both time and frequency domain features, showing a clear improvement over

using time-based features alone. However, they did not show evidence that their novel fea-

ture extraction offered improvement upon the moment and cumulant-based features used

in state-of-the-art works [3].

6

1.3 Technical Challenges

Localization algorithms that classify source radio IDs face substantial challenges. Radio-

frequency (RF) feature analysis solutions such as the algorithms presented by Moser et

al. [53] and Schafer [54] require protocol meta-data, such as transmission frequency, to

correct for Doppler effects in order when computing their frequency-based feature. Addi-

tionally, Moser’s phase-based feature requires the detection of spoofing signals transmit-

ted during the tuning interval of the spoofer’s Phase-Locked-Loop (PLL), during which

the transmitter-specific transient behaviors can be observed. Mobility analysis works such

as [55] reliably detect sudden changes to tracks, but can be vulnerable to slowly diverging

spoofed tracks and spoofers who are knowledgeable of the propagation delay to trusted

transmitters. Multilateration and range-estimate based verification methods have several

drawbacks, including being heuristic threshold based classifiers that do not generalize well,

along with requirements for non-opportunistic signals to contain position and time stamp

information. Moreover, they employ inference techniques that focus only on the binary un-

known parameter representing the presence or absence of a second transmitter or spoofer.

As a relatively new field of research, wireless adversarial perturbation papers present

many open challenges that have yet to be resolved. Papers that synchronously add physical

perturbations to other physical transmissions do not model realistic synchronization errors

between the two, with the exception of the time shifted Universal Attack Perturbation

(UAP) [63] attacks simulated in [76]. Works that simulate transmitters that add optimized

perturbations to their own signals [79,80] generously assume a white box eavesdropper and

have not made attempts to design deterministic perturbations that improve various loss

metrics. Additionally, several works [78–80, 86] have noted the frequently used dataset for

these studies are generated with several ratio and labeling errors. There has also yet to be

an investigation on the effects of the wireless channel applied to the ML-based detection

and isolation of these perturbations [64], commonly performed by statistical distribution

estimating algorithms such as Variational Auto Encoders (VAEs) [87] or Generative Ad-

versarial Network (GANs) [88]. Additionally, there remains a need for experimentation

to confirm the overwhelmingly simulated works published so far with respect to realistic

real-world scenarios involving clock drift, Radio Frequency Front End (RFFE) noise, and

other real-world phenomena. Finally, many simulated countermeasures [81, 82, 85] do not

consider state-of-the-art adversarial attacks published in the computer vision domain.

7

1.4 Contributions

Our research is comprised of two different ML-based wireless system topics: secure

localization and evasion. Our UL-based wireless localization works leverage the Gaussian

distribution of wireless beacon multilateration estimates in order to perform ground-up

parameter estimation without the use of heuristic thresholds. Our evasion research injects

transmissions with adversarial perturbations that exploit the fragility of trained SL models

to fool SL-based eavesdropping radios while minimizing the communication loss of a receiver.

See Table 1.3 for a summary of technical challenges proposed by the state-of-the-art and

our contributions to those areas of research.

1.5 Contents & Structure

This dissertation is structured as follows: chapter 2 overviews the basics of the UL and

SL algorithms used in the research contribution sections. Specifically, CNNs and related

SL algorithms are presented by Section 2.1, guidelines for implementing SL by Section 2.2,

DPGMMs and related UL algorithms by Section 2.3, and adversarial perturbations by

Section 2.4. Our research contributions are then presented by chapters 3-4, and a broader

discussion of this dissertation’s findings is presented in chapter 5.

8

Table 1.3: A listing of the challenges faced by the state-of-the-art solutions to the research
problems discussed in our dissertation, and our contributions to these problems.

Topic References Challenges Contributions

Ground-up

localization using

multilateration

analysis

[55–58] → Transmitters with direc-

tional antennas

[56–58] → Frequentist, heuristic

threshold-based classifica-

tions

→ A Bayesian approach

[56–58] → Require non-opportunistic

signals that contain timing

and location information in

conjunction with range or lo-

cation estimates

→ Uses multilateration

estimates only

[56–58] → Gaussian hypothesis test-

ing infers only one binary un-

known parameter, the pres-

ence of a second transmitter

for a population of detections

→ Classify sub-

populations of a

population of detec-

tions, estimate number

of sub-populations,

estimate mean and

covariance of each sub-

population

Crafting

adversarial

perturbations to

avoid SL-based

eavesdroppers

[76,77] → Add separate OTA pertur-

bations robust to realistic syn-

chronization errors

[79,80,89] → Adversarial perturbations

large enough to be robust to

channel effects disrupt com-

munications.

→ Two novel perturba-

tion crafting constraints

[79,80,89] → Data set is too over

sampled, too specific, too

collinear, and contains signal,

perturbation, and noise ratio

computation errors

→ Data set that fixes

these issues

[79,80] → Non-optimization based

improvements to communica-

tion, power, and adversarial

loss

→ Pulse shap-

ing perturbations,

constructive-only per-

turbations

[80] → Countermeasure case

study, specifically UL-based

detection of OTA perturba-

tions

→ Adversarial training

case study

[76, 77, 79,

80,89]

→ OTA perturbation experi-

ment

→ USRP N210 experi-

ment

9

1.6 Related Works

The chapters of this dissertation contain figures and writings adapted from drafts or

final versions of the following peer-reviewed publications:

• K. McClintick, G. Wernsing, P. Ferreira, A. Wyglinski, “Parameter Estimation and

Classification via Supervised Learning in the Wireless Physical Layer: A Survey and

Tutorial.” IEEE Access, 2021.

• K. McClintick, A. Wyglinski, “Reproduction of Evaluating Adversarial Evasion

Attacks in the Context of Wireless Communications and Convolutional Radio Mod-

ulation Recognition Networks,” Proceedings of the 2021 CPS-IoTBench Conference,

Spring 2021.

• K. McClintick, M. Page, T. Wickramarathne, A. Wyglinski, “Machine Learning-

Based Roadside Vehicular Traffic Localization via Opportunistic Wireless Sensing,”

Proceedings of the 2019 IEEE GlobalSIP Conference.

Additionally, the following submitted works have been incorporated in this dissertation:

• K. McClintick, J. Tolbert, A. Wyglinski, “Physical Layer Wireless Localization of

an Unknown Number of Beacons using Unsupervised Learning,” IEEE Open Journal

of Vehicular Technology, 2021.

• K. McClintick, J. Harer, B. Flowers, W. Headley, A. Wyglinski, “Physical Eaves-

dropper Evasion: Signal Dependent Perturbation Design and Adversarial Training”

IEEE Transactions on Cognitive Communications and Networking, 2021.

10

Chapter 2

An Overview of Related Machine

Learning Topics

This section presents the basic underlying concepts of the ML algorithms used in our

contribution chapters. Specifically, we present a statistical approach to neural networks and

SL in Section 2.1 and guidelines for their design and training in Section 2.2 to provide the

reader with a foundation for chapters 3-4. Next, we describe the algorithmic assumptions

and implementation details of sampling mixture models in Section 2.3 to provide the reader

with a foundation for chapter 3. Finally, we present the theory, and taxonomy of adversarial

perturbations in Section 2.4 to prepare the reader for chapter 4.

2.1 SL Overview

The core mechanic of a NN is regression. We begin the derivation of a NN by presenting

the Least Squares Regression (LSR) algorithm to establish terminology, model assumptions,

and key statistical concepts such as likelihood, unknown parameter estimation, parametric

models, and training.

2.1.1 LSR

LSR is a data-fitting solution that is determined by minimizing the squared sum of resid-

uals on training data such that a test data set may have an unknown parameter estimated

via a set of noisy observed features. The true value of an unknown parameter y, or ground

11

truth, can be estimated from noisy samples of data x = s + ε, such that a linear function

can estimate the unknown parameter as:

ŷ = f(x,w, b) = xTw + b = [1|x]T [b|w], (2.1)

where b is a scalar and all vectors x,w are length p column vectors; with the number of

input features equal to p. The bias b is consolidated into the weights matrix w as a unit

input 1 is multiplied with a bias b, often written instead as w0. This linear regression model

is a predictive algorithm with the following assumptions:

• A linear relationship between data labels and input features;

• Normality of each input feature (ε ∼ N (0, σ2));

• Low multicollinearity, or that each input feature X of the same sample s is indepen-

dent;

• Low auto-correlation, or that each sample is independent from the others;

• Homoscedasticity, or that the variation ε of data is constant over samples;

• Statistical equivalence between exclusive training and testing data partitions, where

training data is used to solve for parameters, testing data is used to evaluate the

quality of trained parameters, and partitions are exclusive sets.

These significant constraints provide a starting point for the development of more applied

models, which will be studied as they are introduced throughout this chapter.

One approach to finding the best weights w for more than two training samples (Fig-

ure 2.1) is to pick the values that are most likely to re-create the dataset. This is known as

the probabilistic approach to optimization.

If the data is subject to random variation described by a Gaussian random variable

y ∼ N (xTw, σ2I), the likelihood of N states is the product of N Gaussian PDFs:

L(y|x,w, σ2) =
1

(2πσ2)N/2
e

1
2σ2

∑N−1
i=0 (yi−xTi w)2 , (2.2)

where the likelihood decreases as N → ∞. This can present an issue in computing, as

likelihoods become numerically unstable, meaning they are roughly on scale with the res-

olution of the floating-point values computers use to represent numbers. For instance, a

12

Figure 2.1: An illustration of how fitting a linear model (w, b) for accurate network latency
predictions has a clear solution for two samples s1, s2 until a third sample s3 is observed.
A linear solution can be given by MLE, where the probability of recreating the data x ∈
{s1, s2, s3} is maximized choosing w, b.

32-bit single precision float value uses 24 fraction bits, allowing a fractional resolution of

log10(224) ≈ 7.225. This means, as likelihood approaches L(y|x,w, σ2) = 10−7, a computer

will begin to quantize the computed likelihood to the nearest valid value, resulting in a

shift of similar magnitude as the likelihood. These large rounding errors make likelihood

computations inaccurate towards selecting high-probability weights. The natural logarithm

of the likelihood is used to mitigate this numerical instability. Since the log of probabilities

gives negative values, the log-likelihood is often multiplied by −1 to compute the Negative

Log Likelihood (NLL), which maintains positivity given the goal to maximize the likelihood,

NLL reverses the objective argument from maximization to minimization, which is given

by:

arg min
w
{l(y|x,w, σ2)} =

arg min
w
{−N

2
ln(2πσ2)− 1

2σ2

N−1∑
i=0

(yi − xTi w)2}.
(2.3)

Since −N
2 ln(2πσ2) is not a function of w, the values for w that are most likely to recreate

13

the training data are:

arg min
w

N−1∑
i=0

(yi − xTi w)2. (2.4)

This solution is given the name least squares regression for its objective of minimizing

the squared error between predicted and actual outcomes inferred by noisy observations.

Similarly, the NLL function of a set of data is referred to as the objective function and loss

function. A LSR model is evaluated by this metric, where if predictions xTi w and ground

truths y are similar, the model is performing well. The NLL computed assuming the linear

model can sometimes look like Figure 2.2.

Figure 2.2: The lowest NLL is given for about w1 = 0.01 and w2 = −0.005. Since the data
model (2.1) is linear, its NLL is convex. This attribute can be leveraged to avoid iterative
approaches that compare predictions made by the infinite range of inputs−∞ < w1, w2 <∞
to some loss function. Instead, a closed form solution exists for w.

Visually, the NLL in Figure 2.2 has a single minimum, or is convex. For a convex

function, every local minimum is the global minimum, or formally δ2

δx2
f(x) ≥ 0,∀x. Linear

data always give convex NLL contours, and as such the global minimum can be solved for

14

in closed form where the slope of the line is zero:

δ

δw
l(y|x,w, σ2) = 0, (2.5a)

δ

δw
(y −Xw)T (y −Xw) = 0, (2.5b)

XT (Xw − y) = 0, (2.5c)

where solving for w using input feature matrix X ∈ RN,p yields:

ŵ = (XTX)−1XT y. (2.6)

Intuitive use of SL algorithms requires an understanding of a wide array of statisti-

cal topics including regression, concavity, Bayes theorem, MLE, chain rule, and gradient

descent. Consequently, the NN algorithm — a fundamental building block for many SL

algorithms — will be derived and defined by first discussing the LSR algorithm and then

softmax regression.

NN models estimate or classify unknown parameters y by observing data matrices x

with N samples and some dimensionality p. Each element xi, i ∈ p is also called a feature.

The set of all values data can take x ∈ Ω is called the state space of the data.

Given the continuous nature of many real-life state-spaces, it is impossible to train a

model with every value in Ω. When the state-space is continuous, a scientist may choose

to parameterize a predictive model, or utilize a set of weights w so that a continuous

trend-line can be approximated from just a few observed feature states. Such models allow

generalization under the assumption that states observed are descriptive of the underlying

data distribution.

In reality, few estimation problems can be approached effectively using a linear model.

Non-linear, polynomial regression solutions present a possible solution, where:

ŷ =w0 + w1,1X
1
1 + ...+ w1,pX

p
1 +

...+ wn,1X
1
n + ...+ wn,pX

p
n,

(2.7)

although these models assume the input features follow a specific polynomial trendline. If

the assumed polynomial trendline is too low of an order (i.e., linear when the true trendline

is quadratic) the model is said to under fit and residuals will be high. Conversely, an

15

assumed polynomial trendline with too high of an order (i.e., cubic when the true trendline

is quadratic) is said to over fit, and will also result in a high residual.

2.1.2 Logistic/Softmax Regression

Logistic regression was developed as an alternative algorithm to polynomial regression

with greater resilience against both over- and under-fitting a model to a set of data [90].

Robustness to over- and under-fitting is achieved by “boosting” [90], a set of small, serialized,

and parallel nonlinear regression models, or neurons (Figure 2.3), solve a union of small

estimation problems to solve a high-dimension estimation problem. At last we arrive at the

distinction between a regression model and a neural network: a regression model becomes a

neuron when it joins a network of other regression models by serializing and/or parallelizing

them, and a neural network is the set of serialized and parallelized regression models.

Additionally, a neural network is considered deep if there exist more than two serial layers

of neurons, and considered shallow otherwise.

fΣixiwi

x0

x1w1

x 2w
2

x0 w
0

f(Σixiwi	+	b)

w
2

x1

x2

w
1

w
0 b

Figure 2.3: A neuron is composed of a biased dot product of inputs and weights. In this
mathematical model inspired by the biological neuron, the neuron is changed from a linear
regression model to a non-linear one by the arbitrary activation function f , which in logistic
regression is given by the sigmoid function.

16

In logistic regression, each layer or parallel set of neurons performs two computations,

including the linear logit:

z = xTW + b, (2.8)

and the non-linear activation:

a = f(z). (2.9)

In logistic regression, the sigmoid activation function:

f(x) =
1

1 + e−(xTw+b)
, (2.10)

is chosen as the activation function to satisfy the non-constructive universal approximation

proof [91].

Figure 2.4: A binary class softmax regression model with two serialized neuron layers
i = 1, 2. Each layer has four parallel neurons (Figure 2.3), and input data has three
states.

Softmax regression (Figure 2.4) is an algorithm similar to logistic regression, designed

for detection tasks instead of estimation. This change in objective is made by replacing the

sigmoid activation function of the final serial layer of neurons with the softmax activation

function, which is a function of the linear logit of every neuron in the current layer:

ai =
ezi∑C
k=1 e

zk
, i = 1, ..., C. (2.11)

17

The activation is designed to be positive and monotonically increasing for the purpose of

gradient descent, presented by equation (2.13), and is normalized so that each activation

may be interpreted as a pseudo-probability, or the probability of a data sample belonging

to class i = 1, ..., C, where a class is an exclusive outcome from a set in detection theory.

In NN models, the computation of a model’s output is also called a forward pass, because

all computations flow sequentially through the model. In the softmax regression model, the

loss function is computed by NLL, defined as categorical cross entropy loss:

fCE = − logP (y|x,w),

fCE = −
n∑
i=1

C∑
k=1

yi,k log ŷi,k,
(2.12)

where the minimum NLL weights are solved. Unlike in LSR, a non-convex loss function

gradient makes a closed form solution impossible due to the existence of local minima.

While many iterative approaches exist to locate the global minimum in the loss function

(i.e., Newton’s method), the dominant method in recent years has been the SGD method

(Figure 2.5).

In SGD, the weights are iteratively improved by subtracting the loss functions gradient

with respect to the weights:

w = w − η∇wfCE , (2.13)

where updates are reduced by a learning rate η < 1. Each update using all training data

(Gradient Descent) or set of updates making use of all mini-batches of the training data

(SGD) is defined as an epoch. Training sessions are commonly performed for some number

of defined epochs, ne. The computation of a models’ gradients is also called a backwards

pass because all computations flow sequentially from the model output to the input due to

chain rule. For a single layer softmax regression model, we have the following expression

given equations (2.8, 2.11, 2.12):

∇wfCE =
δfCE
δa

δa

δz

δz

δw
, (2.14)

where:

∇wfCE = − 1

n

n∑
i=1

xi(yi − ŷi). (2.15)

Armed with equation (2.15), we can iteratively update the weights of the single-layer soft-

18

Figure 2.5: An illustration of a two weight softmax regression objective function and its
gradient ∇w. Nonlinear models have local minima/maxima (i.e., o2). A learning rate
scalar η is needed to reduce weight updates, as large weight updates can cause the objective
function to go to infinity or significantly increase the number of updates needed to reach the
global objective minimum o1. If η is too small, SGD becomes computationally expensive
and can cause the weights to be unable to move away from local minima.

max model until the cross entropy loss has converged. However, gradients are tedious to

compute analytically so they are often computed numerically using software libraries. Such

libraries make use of the centered difference formula:

δf

δx
= [f(x+ h)− f(x− h)]/2h, (2.16)

where the spacing h << 1 (typically 10−5 [92]). For insight into this process, mathemat-

ical circuit diagrams can show how software libraries use numerical methods to compute

gradients for any NN architecture.

The softmax regression model has several improvements over LSR [93]. There no longer

exists a linear relationship between the data and labels. Additionally, the residuals ε are

no longer required to be normally distributed. Finally, homoscedasticity is not required.

Guidelines for softmax regression training and testing are given by Algorithm 1 and Algo-

rithm 2.

Why is there a need for ML algorithms given the existing Bayesian and frequency-

based estimators and classifiers? The answer is that many ML models are less constrained.

19

Algorithm 1 Softmax model training protocol [92]

1: procedure Given training data X with labels Y , a model with some number
of layers L, learning rate η, and number of epochs ne:

2: initialize model parameters w, b
3: for ne do
4: for each x in X, y in Y do
5: for layer l in L do
6: compute linear logits zl(x)
7: compute sigmoid al(zl)
8: end for
9: compute softmax ŷ = arg max(ai(zL))

10: compute loss fCE(y, ŷ)
11: compute gradients δ

δwfCE ,
δ
δbfCE

12: update model parameters w, b
13: end for
14: end for
15: end procedure

Algorithm 2 Softmax classification prediction protocol [92]

1: procedure Given test data X, trained weights w and bias b of a model with
some number of layers L:

2: for each x in X, y in Y do
3: for layer l in L do
4: compute linear logits zl(x)
5: compute sigmoid al(zl)
6: end for
7: compute softmax ŷ = arg max(ai(zL))
8: end for
9: end procedure

Consider the highly constrained signal detection problem where two known discrete time

signals s0, s1 ∈ Cn can be inferred by the noisy signal:

x = s+ ε, (2.17)

where ε ∼ N(0, σ2I) is Additive White Gaussian Noise (AWGN). If the signals s0, s1 and

noise σ2 are known, this coherent problem (known signals, known noise) can be modeled

optimally with a Neyman-Pearson decision rule [94], derived by maximizing PD for a given

20

Pfa = α. Given the NP criterion decision rule [94]:

ρNP = arg max
ρ∈D

PD(ρ), (2.18)

the alternate hypothesis for this signal detection example is decided as:

ρNP
(
L(x) =

P (x; s1)

P (x; s0)
< γ

)
= 1, (2.19)

where the decision threshold γ is solved for given:

Pfa =

∫
x:L(x)>γ

P (x; s0)dx = α. (2.20)

Alternatively, a Bayes decision rule δBπ(L(x)) ∈ 0, 1 can be derived if non-equal priors

exist (the prior is the set of probabilities π = {P (s0), P (s1)}, and P (s0) 6= P (s1)), by

deciding [94]:

ρBπ
(
P (x; s1)

P (x; s0)
>
P (s1)

P (s0)
= γ

)
= 1. (2.21)

If the noise variance (σ2) or signal hypothesis’ (s0, s1) are unknown, the problem becomes

parametric, meaning one or more parameters are unknown. This use of the word parametric

differs from the data scientist’s definition of parametric and non-parametric, which describe

the presence or absence of weights in an estimator model. In the case of a parametric

problem, statisticians generally take one of three approaches [94]. The first approach is to

apply the Neyman-Pearson rule with some significance level α to identify a uniformly most

powerful or locally most powerful decision rule. The second approach is to determine a

Bayesian decision rule if priors and cost assignments exist. The third approach is to use

the generalized likelihood ratio test, which rules s1 if [94]:∫
x∈X/X0

P (s1|x)dx∫
x∈X0

P (s0|x)dx
> v, (2.22)

where:

Pfa =

∫
x:L(x)>v

P (x; s0)dx = α, (2.23)

which can be implemented if the MLE for all unknown parameter(s) can be identified. All

of these solutions require a Probability Density Function (PDF) describing the likelihood

21

of observations.

In application, the noise and signals can have unknown, non-linear, and time-varying

PDFs due to both intentional alterations (e.g., ACM, pulse shaping) and unintentional

alterations (e.g., amplifier non-linearities). Given these complications, highly structured

solutions become difficult or impossible to use (Figure 2.6).

ML algorithms that utilize NNs provide powerful solutions when data is available, but

their PDF is difficult to model, as a single layer NN has been proven to be a universal func-

tion approximator [91]. This non-constructive proof asserts and proves that any bounded

function f(x) can be approximated as f̂(x) within a finite tolerance δ, or | ˆf(x)− f(x)| < δ.

For example, if the inputs x = −2, y = 5, z = −4 are stored by the state q = x+ y and

compute an output f = z × q (Figure 2.7), The forward pass values can be computed as

q = 3 and f = −12. The output’s gradient with respect to itself would be given as δf
δf = 1.

Since f is a function of q and z, its gradient is given by ∇f =
[δf
δq ,

δf
δz

]
= [z, q] = [−4, 3].

The state q is dependent on x, y and has a gradient given by ∇q =
[δq
δx ,

δq
δy

]
= [1, 1]. The

resulting gradient for each input is then x = δf
δf ×

δf
δq ×

δq
δx = −4, y = δf

δf ×
δf
δq ×

δq
δy = −4,

and z = δf
δf ×

δf
δz = 3.

2.1.3 CNN

While logistic/softmax regression models allow for higher order predictions than LSR

and a lower chance of under/over fitting than polynomial regression, their computational

cost does not scale well with a large number of inputs and many layers of neurons. To

exemplify this, consider a data set of spectrograms where each of 100 time-steps is computed

as a 512-bin FFT x ∈ R512,100. A single layer softmax regression model with 25 neurons

would require 1,280,000 weights and 25 bias terms. The computation of the first layer’s

linear logit z = xTw + b would require 2.1× 1018 computations given an O(n3) for matrix

multiplication and O(n) for element-wise addition (n = 1.28×106). The CNN was designed

to address this computational load by constraining the softmax regression model to use the

same set (filter) of weights for each input feature. Consider the same data and model again,

where instead of 25 neurons, a set of 25 filter weights w ∈ Rfh,fw are used to compute linear

logits, where filter height fh = 5 and width fw = 5 span 5 frequency bins and 5 time steps.

The weights are convolved over the input data; the rth row cth column of the linear logit is

now computed as:

22

(a) Linear Signal Classifier - MFLRT

(b) Nonlinear Signal Classifier - SL

Figure 2.6: Multifamily Likelihood Ratio Test (MFLRT) [1] (a) and SL (b) algorithms for
multiple signal classification. MFLRT is a linear model, and is consequently suboptimal for
nonlinear signals. Additionally, MFLRT requires difficult analytical derivations for decision
thresholds γ that are a function of signal PDFs and classification objectives (hypothesis),
and requires knowledge of AWGN variance (variance can be estimated as σ̂2 at a penalty to
performance) to calculate likelihood. SL algorithms require no analytical derivations to use,
and have been shown to be a robust, scalable, and dependable classification model when
the model structure and hyper parameters are chosen carefully through a combination of
trial-and-error and domain knowledge.

23

Figure 2.7: A mathematical circuit model showing forward pass values being computed using
gates (

∑
,×) and example inputs. Backward pass values are then computed by applying

the chain rule recursively.

zr,c =

fh/2∑
i=−fh/w

fw/2∑
j=−fw/2

xr+i,c+jwi,j , (2.24)

and the dimensions of the linear logit z ∈ Rzh,zw are:

zh = (xh − fh) + 1,

zw = (xw − fw) + 1.
(2.25)

The resulting number of matrix multiplications (Figure 2.8) between the filter and input

is zh×zw = 48768, or 7.62×108 computations (n = 1.56×104) this time, which is 10 orders

of magnitude fewer computations.

By using a filter constraint on linear logit computations, we have introduced an assump-

tion to the predictive model, called equivariance [95]. Equivariance is the concept that given

some transform f(x) on the data x and the convolution z(x), then f(z(x)) = z(f(x)) (Fig-

ure 2.9). If equivariance is not held, a CNN will perform worse than a softmax regression

model.

CNNs use many different techniques to enforce equivariance. A simple approach is to

use multiple filters per convoluational layer, similar to how a neuron layer has multiple

neurons computed in parallel. In practice this allows each filter to be trained to recognize

different representations of a signal (i.e., a signal observed at different frequency bands in

a frequency selective channel). A mandatory form of equivariance enforcement is pooling

(Figure 2.10), which enforces data equivariance to data scaling and shifting using a window

24

Figure 2.8: A convolutional layer computing outputs zr,c across two input dimensions for
some arbitrary data. Representing data with more than one dimension in wireless commu-
nications applications often is used to correlate mathematical transforms on data to their
labels (i.e., real/imaginary components, absolute value, difference between features).

Figure 2.9: A signal x is shifted in frequency in a flat frequency channel (coherence band-
width of the channel is larger than the bandwidth of the signal) by f(x) and convolved with
a convolutional layer’s weights by z(x). In a frequency selective channel, the equivariance
assumption would no longer hold, as different frequency bins would be attenuated by dif-
ferent amounts.

25

of size pr,c ∈ Rph,pw :

pr,c = max{xr−ph/2,c−pw/2, ..., xr+ph/2,c+ph/2}, (2.26)

meaning pr,c does not change if a signal x (Figure 2.9) is shifted by a small amount in

amplitude, phase, frequency, or time, depending on the domain of the data. The size of the

pooling window affects how large scaling and shifting can be while still holding equivariance,

larger shifts can be made equivariant with larger pooling windows ph, pw → ∞. However,

this comes at the cost of lost information, as more elements are discarded with larger

pooling windows. Consequently, it is a common practice to design CNNs with repeated

layers of small convolution and pooling windows so that filters can have a redundant set of

equivariance and receptive field.

(a) signal (b) Pooled signal

Figure 2.10: Max pooling of a 512 bin spectrogram with pooling window of size ph = pw = 8.
Spectrogram displays a sin-sweeping sinusoid. Notice that some key attributes of the signal
are maintained, such as the frequency-sweep period. Such features may be highly correlated
to model outputs.

The second assumption a CNN model assumes is a sufficient receptive field. An element

of the activation zl,r,c, l = 1, ..., L at layer l of a CNN is said to have a receptive field on

layer k of size RFl,k(zl,r,c) ∈ Rrfh,rfw defined as the set:

RFl,k(zl,r,c) ={zk,r−rfh/2,c−rfw/2, ...,

zk,r+rfh/2,c+rfw/2},
(2.27)

or less formally, all the values influencing that convolution, extending back to the kth layer.

26

Most commonly, the receptive field is used to describe how much of the input sample (k = 1)

influences a particular filter or filter element (i.e., the highlighted fields of Figure 2.11 would

be the receptive field of a neuron in the k = 4 layer). For a CNN to have a sufficient receptive

field, filters must be sufficiently large as to learn patterns relevant towards classification.

For instance, if a CNN classifies time domain signals with some periodic behavior of period

T , and there exist no filters with receptive field rfw ≥ T , it may be difficult or impossible

to accurately train the CNN.

Convolution is a linear function, so if a CNN is to have the same non-linear capabilities

as softmax regression, a similar activation function must be used after computing the linear

convolutional logit z. In CNN, Rectified Linear Unit (ReLU) activations [96] can compute

each activation a ∈ Rzh,zw from input element x as:

a(z(x)) = max(0, z(x)). (2.28)

In models with more than two neuron layers, the weight update ∇wfCE → 0 as the

number of layers L→∞ due to the product of many small gradients when computing the

weight update by chain rule. The ReLU function was created to mitigate these numerically

unstable gradients. If this occurs for a weight with a large receptive field, training can be

significantly slowed or even stopped. This phenomenon is called a neuron blackout [92].

Leaky ReLU [97] is an activation function which was developed to mitigate the neuron

blackout issue by giving a small slope α for values x < 0:

f(x) =

x if x ≥ 0

αx if x < 0
. (2.29)

To aid in making receptive fields sufficient, CNNs are typically terminated with a few

dense layers of neurons, without the convolution filter constraint. Flattening layers are

required to allow the 1D dense layers to compute their linear logits, where flattening of a

pooled 3D layer P with nf filters to a 1D vector of flattened features p ∈ Rnf×ph×pw is

computed as:

p = flatten(P). (2.30)

A final consideration for computing convolutional linear logits is zero-padding [92]. Zero-

padding is a method of increasing the dimension of features in a CNN after dimension

27

reduction by pooling or convolution, without adding information or noise. The stride of

convolution is defined as how many rows or columns the filter is shifted by after each

convolution is computed, zr,c. These two operations affect the linear convolutional logit

dimensions (2.25). After padding with a window ∈ RPh,Pw , convolving with some stride

∈ RSh,Sw , and pooling, convolutional logit dimensions are computed as:

zh = ((xh − fh + 2Pw)/Sh + 1)/ph,

zw = ((xw − fw + 2Pw)/Sw + 1)/pw.
(2.31)

Consider the CNN architecture in Figure 2.11 as an example of a forward pass through

convolutional, pooling, flattening, fully connected, and softmax layers.

Figure 2.11: An arbitrary CNN with repeated convolutions, padding, and down sampling
via max pooling of a 512 by 512 data sample. Layer heights and widths are computed by
(2.31), and depths are chosen. In wireless communications, such a sample may represent a
512-bin spectrogram. The signal is classified via a softmax layer to be one of ten categories.
Receptive fields of a neuron in the flattening layer on the input sample are highlighted.

Training a model (Algorithm 8) is done by calculating the weights most likely to predict

the correct label in the presence of noise. Similar to softmax regression, this is accomplished

by minimizing categorical cross entropy loss (2.12). SGD is performed, where gradients are

calculated via the chain rule as in logistic/softmax regression. The CNNs testing protocol

is described in Algorithm 4.

28

Algorithm 3 CNN model training protocol [92]

1: procedure Given training data X, labels Y , learning rate η, training it-
erations ne

2: initialize model parameters w, b
3: for ne do
4: for each x in X, y in Y do
5: for layer convolution layer l in L do
6: for filter w in layer l do
7: apply zero-padding if used
8: compute convolution zl(x,w, b)
9: apply ReLU a = max(0, z)

10: compute max pooling P = pool(a)
11: end for
12: end for
13: flatten down sampled features, p = flatten(P)
14: for each dense layer do
15: compute linear logit, z(p, w, b)
16: compute activation function a = max(0, z)
17: end for
18: compute softmax ŷ = arg max(a(z))
19: compute loss fCE(y, ŷ)
20: compute gradients δ

δwfCE ,
δ
δbfCE

21: update model parameters w, b
22: end for
23: end for
24: end procedure

2.2 SL Guidelines

Implementing an SL algorithm requires the consideration of several design factors, in-

cluding the depth and width of the CNN and RNN, the ordering, type, and parameters of

the layers in a CNN, the SVM kernel type and parameter choice, and the SGD parameters.

This section covers the basic concepts and practical considerations for an SL implementa-

tion.

2.2.1 Weight Updates

The task of using SGD to compute the global loss minimum is non-trivial. Several

versions of SGD have been developed [92, 98–101], each placing different emphases on how

to decrease the magnitude of weight errors, perform fewer calculations, and lessen the

29

Algorithm 4 CNN classification prediction protocol [92]

1: procedure Given trained model parameters w, b, test data X
2: for each x in X do
3: for layer convolution layer l in L do
4: for filter w in layer l do
5: apply zero-padding if used
6: compute convolution zl(x,w, b)
7: apply ReLU a = max(0, z)
8: compute max pooling P = pool(a)
9: end for

10: end for
11: flatten down sampled features, p = flatten(P)
12: for each dense layer do
13: compute linear logit, z(p, w, b)
14: compute activation function a = max(0, z)
15: end for
16: compute softmax ŷ = arg max(a(z))
17: end for
18: end procedure

sensitivity to initial parameter choices. In general, standard weight updates are defined as

the weight matrix w changing after each gradient calculation:

w(i+1) = w(i) − η∇w(i)
, (2.32)

where the hyper-parameter η is the learning rate, and ∇w(i)
is the current weight gradient.

Typically, weight updates are halted after training over a pre-determined number of

epochs, or after the gradient becomes smaller than a convergence threshold. Additional stop

conditions can be implemented, such as convergence patience, where the gradients must be

below a convergence threshold for a sequential number of epochs before stopping. Weight

values converging to local loss minima is avoided by computing gradients from small batch

sizes or by using robust weight update techniques (i.e., equation (2.33)). The state-of-the-

art theory for understanding loss curves was described by Nakkiran et al. [102], who explain

and expand on the “classic” bias-variance curve (Figure 2.12). The reference describes how

previous loss curve behavior theories expect SL models to be initially “classically under-

trained” as the model is trained over epochs. During this period, the loss curves indicate

that the models under-fit (i.e., training and validation error are relatively high) until an

critical epoch is reached. After this critical point, all future training epochs will show

30

loss curves that indicate the model is increasingly over-fitting, demonstrated by a growing

difference between a small training error and relatively large validation error.

However, the authors found that, in practice, if model complexity and duration are

large enough to achieve near zero training error, increasing the model complexity or train-

ing duration further will eventually decrease testing loss after reaching the “interpolation

threshold”. This phenomenon is called model-size double descent, or epoch-wise double de-

scent, because a “double descent” shaped test error curve is observed. Finally, the authors

show that, by varying the amount of training data available, the location of the interpola-

tion threshold will shift, such that test error can increase if training is performed for the

same number of epochs.

Figure 2.12: When model complexity is small compared to the number of training samples,
the test loss follows a U-shaped, “classic” bias-variance tradeoff. A model is classically
under-trained when both training and validation loss are high, which can be mitigated
by training for more epochs, gathering more data, adding more weights to the model, or
validating SGD hyper-parameters (Section 2.2.7). Typically, during SGD a model will
under-fit until it begins to over-fit, which is when training loss is low but validation loss is
high. Over-fitting can be mitigated by training for fewer epochs, decreasing the number of
weights in a model, voting via ensemble learning (Section 2.2.8), or constraining the model
with regularization (Section 2.2.3).

One innovation applied to the standard SGD is the development of “momentum” updates

that attempt to achieve faster convergence [103]. The term momentum is used as a physical

analogy for the optimization problem that is SGD, where the current weights of a model can

31

be thought of as a ball rolling around in a mountain range. Standard SGD updates have

been found to be slow to converge for non-spherical gradients, and unable to leave local loss

minima “valleys” if the learning rate is too small. Momentum updates, which were inspired

by position, velocity, and acceleration models from physics, were developed to solve both

of these issues. See Table 2.1 for a survey of momentum-based SGD updates. In such a

weight update scheme, the weights w are updated proportionally to their “velocity” as:

v(i) = µv(i−1) − η∇w(i)
, (2.33a)

w(i+1) = w(i) + v(i), (2.33b)

where the velocity is initialized as v−1 = 0, and the momentum µ is a tunable hyper-

parameter. The current velocity value is defined as v(i), and v(i−1) is the velocity of the

weights from the previous epoch of training over epochs i = 1,

At the start of training, it is common for the “ball” to descend a steep and tall “moun-

tain”, such that its velocity is so high that the weights “overshoot” the loss minima, and

ascend the gradient of another loss “mountain” or circle the “valley”. The Nesterov mo-

mentum [98] is one of many SGD momentum schemes developed to mitigate these issues.

It does so by computing velocity that is proportional to the difference in the velocity of the

ith and (i−1)th training iteration, making it much harder for weight updates to become un-

stable (i.e., µv(i−1) >> η∇w(i)
). For the ith SGD backward pass, the Nesterov momentum

update on w(i) is defined as:

v(i) = µv(i−1) − η∇w(i)
, (2.34a)

w(i+1) = w(i) + (1 + µ)v(i) − µv(i−1). (2.34b)

Another category of SGD algorithms use higher order statistics to enhance the depth

and speed of the convergence at the cost of computational efficiency. Newton’s method,

which is defined as:

w(i+1) = w(i) −
∇w(i)

∇2
w(i)

, (2.35)

utilizes the Hessian matrix ∇2
w(i)

, derived from the 2nd order Taylor series expression for

w(i), to find the root of the gradient. This second order approach is very powerful because

it solves directly for the vertex or loss minima, which allows the weights to converge to the

32

nearest local loss minimum in a single update. Thus, this method requires no learning rate

η, nor a learning rate annealing function.

However, there are several shortcomings to Newton’s method. If the nearest loss minimia

is not the global loss minima, the weights can easily converge to the wrong values without

the aid of momentum approaches. Additionally, several “Quasi-Newton” SGD algorithms

(see Table 2.2) have been developed using the approximation ∇2
w(i)
≈ (∇w(i)

)2, since the

Hessian is too computationally expensive proportional to the number of weights m, i.e.,

O(m3) versus O(m2). The approximation ∇2
w(i)
≈ (∇w(i)

)2 only holds true for full batch

SGD, which unfortunately requires the entire training data set to be held in temporary

memory which is sometimes impossible. As the batch size decreases, the approximation

is decreasingly accurate, and the use of Quasi-Newton SGD methods may become inap-

propriate. Adam [101] is one such Quasi-Newton algorithm, which updates weights as:

m(i) = β1m(i) + (1− β1)∇w(i)
, (2.36a)

m(i) =
m(i)

1− βi1
, (2.36b)

v(i) = β2v(i) + (1− β2)(∇w(i)
)2, (2.36c)

v(i) =
v(i)

1− βi2
, (2.36d)

w(i+1) = w(i) +
−η ×m(i)
√
v(i) + h

. (2.36e)

Adam combines the acceleration/de-acceleration of the learning rate present in RMSprop

and the second order statistics of Newtons method. β1 and β2 serve as momentum hyper-

parameters similar to Nesterov’s µ. The term h is used to avoid division by zero errors.

Finally, (∇w(i)
)2 is used to solve for the nearest vertex. As long as the Hessian approxima-

tion holds, Adam can be thought of as the best of both RMSprop and Newton’s method.

Consequently, Adam has seen significant use in all ML applications.

For large data sets, deep models, and slow-converging SGD algorithms, the interested

reader is directed towards parallel and distributed SGD frameworks such as “Hogwild!” [104],

which performs well when data is sparse, or when most elements of the data are near-zero

valued. Downpour SGD [105] performs a variety of boosting, where many copies of the

model are trained on different subsets of data. However, since the models do not communi-

33

cate with each other, divergence is a constant concern with this framework. Delay-tolerant

Algorithms for SGD [106] have been shown to work well by adapting SGD to past gradients

and by updating delays between devices. Elastic Averaging SGD [107] links asynchronous

model updates to a central “elastic force” variable to allow for more exploration of the

parameter space. Finally, Tensorflow [108] splits a computation graph into sub-graphs for

distributed SGD.

While some of the algorithms discussed so far autonomously anneal the learning rate,

the learning rate η can additionally be annealed in any SGD algorithm by an “annealing

function” to increase weight convergence depth and speed. Step decay [92] is one such

annealing function, which reduces the learning rate every s weight update steps by a factor

α:

η(i) =

η(i−1) − α, if i%s

n(i−1), otherwise
, (2.37)

where α ∈ [0, 1] and integer s are hyper-parameters. An aggressive annealing function is

exponential decay [92]:

η(i) = η(i−1) − α0e
−ki, (2.38)

where the values α0 and k are hyper-parameters. This annealing function is more dependent

on its hyper-parameters and number of update steps than (2.37), as the learning rate can

quickly become too small to move, even in steep and convex regions of the gradient.

Inverse decay [92] is another annealing function which was developed as a middle-of-the-

road option between (2.38) and (2.37):

η(i) = η(i−1) − α0/(1 + ki). (2.39)

Finally, an annealed gradient noise [116] can be introduced into SGD updates in order

to make weight updates more robust to poor initialization:

w(i) = w(i−1) +N
(

0,
η

(1 + i)γ

)
, (2.40)

where near the end of training the added noise will increase training error if not properly

annealed by decay term γ, and near the start of training the added noise will not be of

benefit if annealed too quickly.

34

Table 2.1: A summary of momentum-based SGD methods and their improvements upon each other.

Name Reference Update Hyper-parameters &
Terms

Advantages Disadvantages

Vanilla [109] w(i+1) = w(i) − η∇w(i)
η ≈ 0.01: learning rate Simple, stable Slow

Momentum [103] v(i) = µv(i−1) + η∇w(i)

w(i+1) = w(i) − v(i)

v: velocity, η ≈ 0.01:
learning rate, µ ≈ 0.9:

momentum

Faster
convergence than

vanilla

Unstable

Nesterov
Momentum

[98] v(i) = µv(i−1) + η∇w(i)

w(i) +(1+µ)v(i)−µv(i−1)

v: velocity, η ≈ 0.01:
learning rate, µ ≈ 0.9:

momentum

Stability via
“look ahead”

Not adaptive

AggMo [110] vt(i) = βtvt(i−1) −∇w(i−1)

w(i+1) =

w(i) + η
K

∑K
t=1 v

t
(i)

βt = 1− at−1, i = 1, ...,K:
damping function, a ≈ 0.1:

damping base, η ≈ 0.01:
learning rate, K ≈ 3:

count

Stability via
redundant
damping

Many hyper-
parameters, not

adaptive

35

Table 2.2: A summary of Quasi-Newton SGD methods and their improvements upon each
other, some of which may also incorporate momentum-analogous terms.

Name Reference Update Hyper-parameters &
Terms

Advantages Disadvantages

Adagrad [100] w(i+1) = w(i)−
η·∇w(i)√

(∇w(i)
)2+h

h ≈ 0+: smoothing term,
η ≈ 0.001: learning rate

Adaptive learning
rate

Stops early

Adadelta [111] ∆w(i) =

−RMS[∆w(i−1)]

RMS[∇w(i)
] ∇w(i)

w(i+1) = w(i) + ∆w(i)

RMS[·]: RMS of
exponentially decaying

squared parameter updates,
∆w: weight update,
γ ≈ 0.95: decay

Fixes Adagrad’s
early stopping,
no learning rate

Biased updates
too small at first

RMSprop [99] E[(∇w(i)
)2] =

γE[(∇w(i−1)
)2] + (1−

γ)(∇w(i)
)2 w(i+1) =

w(i) −
η·∇w(i)√

E[(∇w(i)
)2]+h

E[(∇w(i)
)2]: exponentially

decaying squared parameter
updates, γ ≈ 0.9: decay,
η ≈ 0.001: learning rate

Fixes Adagrad’s
early stopping,

strong RNN
performance

Biased updates
too small at first

Adam [101] m̂(i) =
β1m(i−1)+(1−β1)∇w(i)

1−βi1
v̂(i) =

β2v(i−1)+(1−β2)(∇w(i)
)2

1−βi2
w(i+1) = w(i) −

ηm̂(i)√
v̂(i)+h

m: first moment, v: second
moment, β1 ≈ 0.9: first order

decay, β2 ≈ 0.999: second
order decay, h ≈ 0+:

smoothing term, η ≈ 0.001:
learning rate

Adds momentum
and bias

correction to
RM-

Sprop/Adadelta

Exponential
moving average

has poor
generalization,

unstable
momentum

Adamax [101] m̂(i) =
β1m(i−1)+(1−β1)∇w(i)

1−βi1
v̂(i) =

β∞2 v(i−1)+(1−β∞2)(∇w(i)
)∞

1−β∞2
w(i+1) = w(i) −

ηm̂(i)√
v̂(i)+h

m: first moment, v: second
moment, β1 ≈ 0.9: first order

decay, β2 ≈ 0.999: second
order decay, h ≈ 0+:

smoothing term, η ≈ 0.002:
learning rate

Stabilizes Adam
via `∞

normalization of
second moment

Exponential
moving average

has poor
generalization

Nadam [112] m̂(i) =
β1m(i−1)+(1−β1)∇w(i)

1−βi1
v̂(i) =

β2v(i−1)+(1−β2)(∇w(i)
)2

1−βi2
w(i+1) =

w(i) − η√
v̂(i)+h

(β1m̂i) +

(1−β1)∇w(i)

1−βi1
)

m: first moment, v: second
moment, β1 ≈ 0.9: first order

decay, β2 ≈ 0.999: second
order decay, h ≈ 0+:

smoothing term, η ≈ 0.001:
learning rate

Stabilizes Adam
via Nesterov

Exponential
moving average

has poor
generalization

AMSGrad [113] m̂(i) =
β1m(i−1)+(1−β1)∇w(i)

1−βi1
v̂(i) =

max(v̂(i−1), β2v(i−1) + (1−
β2)(∇w(i)

)2)

w(i+1) = w(i) −
ηm̂(i)√
v̂(i)+h

m: first moment, v: second
moment, β1 ≈ 0.9: first order

decay, β2 ≈ 0.999: second
order decay, h ≈ 0+:

smoothing term, η ≈ 0.001:
learning rate

Fixes Adam
generalization via
max function in
second moment

Inconsistent
improvement over

different data
sets and models

AdamW [114] m̂(i) =
β1m(i−1)+(1−β1)∇w(i)

1−βi1
v̂(i) =

β2v(i−1)+(1−β2)(∇w(i)
)2

1−βi2
w(i+1) =

w(i) − η
(αm̂(i)√

v̂(i)+h
+∇w(i)

)

m: first moment, v: second
moment, β1 ≈ 0.9: first order

decay, β2 ≈ 0.999: second
order decay, h ≈ 0+:

smoothing term, η ≈ 0.01:
learning rate, α ≈ 0.001: `2

regularization weight

Improves `2
regularization of

Adam via
removing from
second moment

Additional
hyper-parameters

QHAdam [115] m̂(i) =
β1m(i−1)+(1−β1)∇w(i)

1−βi1
v̂(i) =

β2v(i−1)+(1−β2)(∇w(i)
)2

1−βi2
w(i+ 1) = w(i) −

η

[
(1−v1)·∇w(i)

+v1·m̂(i)√
(1−v2)(∇w(i)

)2+v2·v̂(i)+h

]

m: first moment, v: second
moment, β1 ≈ 0.9: first order

decay, β2 ≈ 0.999: second
order decay, h ≈ 0+:

smoothing term, η ≈ 0.001:
learning rate, v1 ≈ 0.7: first
order immediate discount

factor, v2 ≈ 1: second order
immediate discount factor

Deeper
convergence via

weighted average
updates from

multiple
algorithms

Additional
hyper-parameters

36

2.2.2 Weight Initialization

If each layer of a L-layer deep NN model scales inputs by k, the final scaling will be kL,

such that for large L, we get ∇w(i)
= 0, k < 1 (the gradients “vanish”), or ∇w(i)

=∞, k > 1

(the gradients “explode”) [117]. This means that weights in deep learning, or any non-

convex optimization problem, must be initialized to avoid prohibitively long training times.

However, weights cannot be initialized at the same value. For example, a one input, four

neuron NN would compute linear logits as z = xw0 + xw1 + xw2 + xw3 + b0 + b1 + b2 + b3.

If all weights and biases are equal, then the gradient for each weight will be equal (i.e.,

δz
δx = w), such that each neuron learns the same information (Figure 2.13).

Figure 2.13: Bias and weight values of a four neuron NN over 50 epochs of SGD, initialized
as w = 0 and b = 1. Consequently, all weights and biases compute the same gradient update
for each epoch δz

δx = w, making weight convergence to values that correspond to the global
loss minimum impossible.

In order to avoid exploding or vanishing gradients during training, weight initialization

must follow two rules concerning the activations a or outputs of each layer of the NN:

E[al] = E[al−1],∀l, (2.41)

V ar(al) = V ar(al−1), ∀l. (2.42)

37

Kumar [118] shows that any initialization scheme that follows these two rules in a NN

with linear-near-zero activations such as tanh or sigmoid will express the equality:

V ar(al) = nl−1V ar(wl)V ar(al−1), ∀l. (2.43)

This equality serves as the justification for Xavier (also called Glorot) initialization [118],

in which all weights of an n-neuron layer are initialized according to samples from the

distribution:

wl ∼ N (0,
1

nl−1
), (2.44)

bl = 0, (2.45)

where V ar(wl) = 1
nl−1 such that equation (2.43) satisfies constraint (2.42). The results

of this can be seen in Figure 2.14, where each gradient is unique and each neuron learns

different weight updates with no issues concerning vanishing or exploding gradients. Zero-

mean normal or uniformly distributed initialization schemes without the proper variance

scaling, as seen in Xavier intitialization, is sufficient for shallow models. However, they will

experience vanishing or exploding gradients with deeper models because they fail to satisfy

the constraint (2.42).

Many deep NN models do not use linear-near-zero activations, such as deep ReLU CNNs.

The authors of Kaiming initialization [97] re-derived equation (2.43) with ReLU instead of

tanh activations to determine that the simple modification:

wl ∼ N (0,

√
2

nl−1
), (2.46)

bl = 0, (2.47)

must be made to the initialization scheme such that the constraint (2.42) holds.

There also exists a truncated version of Kaiming initialization (and any Gaussian-based

initialization), where the weight initializations are bounded by −1 < wl < 1 to avoid

sampling large weights, which becomes more common in larger NNs as n→∞ and L→∞
and the normal distrubtion is sampled from more times.

38

Figure 2.14: Bias and weight values for a single input, four neuron NN over 50 epochs of
training, initialized via the Xavier initialization. Gradient computations are now able to
take non-zero, unequal values and achieve convergence to values that correspond to a global
loss minimum.

2.2.3 Model Regularization

Regularization in SL is to make an assumption and to constrain a model to that assump-

tion. Examples include the assumption of a continuous range of optimal weights and the

constraint of the tie-breaking term 1
2nC ||w||

2 in the non-kernelized dual SVM loss function,

the assumption of input equivariance and constraint of filters in CNNs, and the assumption

of varying input dimensions and constraint of hidden nodes in RNNs.

The given CNN and RNN regularization examples are specifically called regularization

by weight sharing. With all else equal, a CNN or RNN model will have fewer weights than

a logistic or softmax regression model due to its filters and hidden memory units. To sum-

marize those sections, CNN filters compute logits via small convolutional windows instead

of fully connecting every input from the previous layer. RNNs, on the other hand, maintain

a small number of hidden memory states whose logits and activations are a superposition

of all previous input values to that layer. These models with relatively fewer weights have

decreased computational costs as they have smaller matrices to compute. They also have

reduced risks of over-fitting, because fewer weights compute lower-order estimation and

39

classifications of unknown parameters.

The given SVM regularization example is specifically called a regularization loss term.

Loss terms can be included in the loss function (i.e., categorical cross entropy or Mean

Squared Error (MSE) loss) of any model by summation. Common loss terms are a function

of the p-norm of the weights ||w||p = (
∑
wp)1/p, and are implemented with the goal of

forcing the model to learn certain weight values. Examples of loss terms include L1-norm

regularization [119]:

λ||w||, (2.48)

which forces weights to take on smaller values, and is weighted against the rest of the loss

function by hyper-parameter λ. Interestingly, this behavior can equivalently be produced

by adding Laplacian-distributed random samples to all training inputs, as outlined by Li et

al. [120]. Another example is the L2-norm or Tikhonov regularization [119]:

λ

2
||w||2, (2.49)

which also forces weights to be smaller but also forces there to be fewer outliers as p →
∞. This behavior may alternatively be enforced by adding Gaussian-distributed random

samples to all training inputs, as outlined by Li et al. [120]. By increasing the prediction

error via loss terms, models trained with L1 and L2 regularization do not learn larger

weight values unless their reduction of the prediction loss is larger than their increase of the

regularization loss. This constraint mitigates arbitrary learning and creates models that

generalize better to testing data.

Dropout [121] is another regularization technique, implemented when a model is assumed

to be over-fitting because it has too many weights. Rather than reducing the number of

weights in a model, constraining a model by using Dropout allows a subset of weights to be

randomly selected and have their values set to zero for a single forward pass. In addition to

mitigating over-fitting, Dropout has been found to also mitigate neuron co-adaptation as

a tie-breaking constraint [121]. Neuron co-adaptation is the ambiguity of optimal weights

caused when the linear logit of a neuron computed during training is equal to zero. This

creates ambiguity because the inputs could either all be zero, or their weighted sum could

be equal to zero. By randomly dropping weights, the weighted sum can be shifted to a

non-zero value, which clarifies the ambiguity.

40

In SGD, it has been found that the weights converge the fastest when the distribution

of weights at each layer in a NN possess zero mean with an identity covariance matrix [122].

Consider an NN with inputs x, hidden layer h, the input weight matrix g1 and the output

weight matrix g2, and predictions ŷ = g2(g1(x)). During training, backpropagation dictates

that P (h) and P (ŷ) will be updated from the gradient δf
δg1

. It is at this point that “internal

covariate shift” occurs: when P (g2) is updated according to δf
δg2

, P (h) is no longer the

same value as it was when δf
δg2

was calculated. Batch normalization is a form of model

regularization in which the ith activation of layer l is controlled [123]:

a∗i,l =
ai,l − µl√
σ2
l + h

, (2.50)

where h ≈ 0+ to avoid divide by zero errors. By using batch normalization in our example,

the distribution P (h) would be held constant, such that all gradients are accurate, and

internal covariate shift is reduced.

2.2.4 Data Representation

In wireless communications, the same analog signal can be represented by a signif-

icant number of axes or spaces [124], including amplitude-phase, IQ or complex space,

Gram-Schmidt basis vectors, Fourier transforms, Laplace transforms, spectral correlation

functions, cyclic autocorrelation functions, wavelet transforms, and spectrograms or “water-

falls”. If sampled, the same signal can be represented as digital bits, code-words, symbols,

Z-transforms, or any number of categorical attributes such as signal detected/signal not

detected, signal transmitted by user 1/user 2, and duration since last transmission has

been short/medium/long. This number of data representation choices becomes even more

daunting when common arithmetic signal processing operations, such as auto and cross

correlation, dot and cross products, energy and power calculations, spectral coherence, and

phase, amplitude, or frequency differences, are applied in order to compare two or more of

the signal representations mentioned thus far.

Luckily, the ideal data representation to choose for SL model inputs is usually given by

existing unknown parameter estimation and classification methods. For instance, control

coding schemes classify bits, and demodulators classify sequences of IQ data. There are

two reasons behind these choices that should serve as a guide when no non-SL estimator or

41

classifier is available: inputs should have low correlation and low multicollinearity. In other

words, each input should be independent, and each input should have unique indicators

that tie it to the ground truth value of its unknown parameter [124].

Input independence is important because models that train on many subsequent inputs

of the same class generalize poorly. When many of the initial weight updates during SGD

are computed with respect to highly dependent inputs, the model will consequently test

successfully on that class, and unsuccessfully on all others. This input dependence is most

commonly mitigated by shuffling the training data set and its corresponding labels. The

correlation between two continuous signals f(t) and g(t) can be quantified as [125]:

(f ∗ g)(τ) =

∫ ∞
−∞

f∗(t)g(t+ τ)δt. (2.51)

Low multicollinearity is important because highly similar inputs with different unknown

parameters cannot be correctly estimated or classified. Multiple data representations may

be incorporated into a SL model using early, middle, or late integration (Figure 2.15) in an

effort to decrease multicollinearity. Early integration involves combining the data before the

SL model, either via the concatenation of the data, or the addition of another dimension to

the data space. Middle integration can only be performed with NN models, where each data

representation has an independent branch of neuron layers that are concatenated partway

into the NNs architecture. Late integration involves training independent SL models for each

data representation, and interprets the set of unknown parameter estimates or classifications

as a single result via averaging or voting functions. A popular metric used to quantify

multicollinearity is the variance inflation factor, which describes how much the variance of

a trained weight changes when predictions are correlated. It is computed as [126]:

V IF =
1

1−R2
, (2.52)

where R2 is the coefficient of determination, computed as:

R2 = 1−
∑

i(ŷi − yi)2∑
i(yi − f(xi))2

. (2.53)

42

(a) Early Integration (b) Middle Integration (c) Late Integration

Figure 2.15: Different data representations can be integrated, via multiple approaches, in order to achieve an additional prediction
performance gain by reducing multicollinearity. Data from the same domain is typically concatenated and integrated early as
shown in (a). Data domains with high correlation between each other are typically integrated in the middle of a model as shown
in (b), and highly dissimilar data is integrated at the end of an implementation by some voting scheme (c). Alternatively, late
integration of identical inputs can be used as a form of ensemble learning in order to reduce the variance of model predictions
introduced by the randomness of SGD (see Section 2.2.8).

43

2.2.5 Data Pre-Processing

While many SL models achieve universal approximator characteristics, that does not

mean that data can be recklessly thrown into training without any considerations for null

values, standardization, categorical variables, one-hot encoding, sample dependence, or mul-

ticollinearity.

Null values can appear in signal data sets for any number of reasons, such as poor

alignment of signals or varying length samples. These null values will carry through to

model predictions and gradients during training if not changed. Imputation, or the process

of substituting null values, is one solution, where the null value’s true value can be estimated

via the mean of that feature across all signals in the data set, or via the mean of that signal

across all features in that signal. If the researcher wishes to keep the null value as an

indicator that something that caused a null value has occurred, imputation can instead

take the form of substituting a categorical value that is outside the range of values taken by

all other features (i.e., a value of −1 in an otherwise all positive valued data set). Finally,

if all null values occur at the start or end of signals in the data set due to signals of varying

length, the signals’ null values can be clipped or replaced by zeros in order to make all

signals in the data set the same length. This method is typically a last resort, however, as

clipping removes information, and adding zeros adds fabricated information.

Standardization of data is to force a zero mean and unit variance distribution on inputs.

Symmetric distributions allow for faster convergence during SGD when using momentum,

or schemes such as those discussed in Section 2.2.1. Non-symmetric gradient “landscapes”

cause momentum updates to “circle the drain”, overshoot loss minima by building up speed

on steep declines, and contain “rougher” landscapes with more local loss minima. Stan-

darization is implemented as:

xi =
xi − µ
σ2

, (2.54)

where a data sample xi, i = 1, ..., N is zero centered by subtracting the data set mean µ

and given unit variance by dividing by the data set variance σ2.

During classification tasks, the unknown parameter of each input takes the form of a

discrete value from a set of possibilities. Inputs can also be discrete values. Both discrete or

categorical inputs and outputs of SL models are either ordinal or nominal. Ordinal values

are related. If a pulse amplitude modulated signal encodes signals as having amplitudes

A ∈ −3A,−A,A, 3A, then signals of 3A are more similar to A signals than −A or −3A

44

signals. Nominal categorical values have no relationship: no two values are more or less

similar to each other than any other pair of values. While ordinal values can be expressed

using decimal values 1, 2, 3..., nominal values cannot, or a false relationship between values

will be taught to the SL model. Nominal values must instead be one hot encoded, such that

if m possible categories exist and the value of that category is n, then the value is expressed

as a vector of m zero-valued elements with the nth element set to a value of one.

Multicollinearity can be mitigated by pre-processing. Principal Component Analysis

(PCA) is an algorithm [127] that removes input features from all signals of a feature-rich

data set. The goal is to remove features with high multicollinearity, such that the low

multicollinearity features can dominantly teach the SL model. In PCA, user-defined p low

multicollinearity input features are identified by standardizing input data, computing the

covariance matrix of the standardized input data, and computing the eigenvalue decompo-

sition of the standardized covariance matrix. Principle components describe the dimension-

reduced form of the data set, where each feature is a linear combination of several other

features. The singular value decomposition factorization of the standardized covariance

matrix cov(XZC) gives the principal components XPCA as [128]:

xiZC = xi −
∑
xi

k ×D
,xi ∈ X,xiZC ∈ XZC , (2.55a)

cov(XZC) =
XT
ZC ·XZC

N
, (2.55b)

USV ∗ = cov(XZC), (2.55c)

XPCA = XZC · Up, Up ∈ [N, p], (2.55d)

where eigenvalues are S, conjugate transpose of the unitary matrix V ∗, k samples per

signal, number of features D ≥ p, number of samples N , matrix transpose XT , and the

element-wise dot product between two matrices ·

X · Y = x1 × y1 + x2 × y2 + ...+ xn−1 × yn−1, (2.56)

for elements x ∈ X, y ∈ Y of length n.

45

2.2.6 Data Augmentation

Small training data sets do not train SL models well because they do not fully describe

the testing data’s underlying probability distribution. If more data cannot be collected, data

augmentation can instead increase the diversity of data in a small training set by estimating

the underlying distribution and sampling additional signals to combat data scarcity.

A common way of estimating the underlying distribution is to train an encoding NN that

maps inputs to a lower dimension z(x), and a decoding NN that maps inputs back to their

original values h(z(x)) = x. This is done by forcing the encoder weights via regularization

to achieve a Gaussian behavior, z(x) ∼ N (0, 1). If the combined encoder-decoder weights

are well-trained to reconstruct images, and the encoder weights are effectively regularized,

random Gaussian samples can be input to the decoder h(N (0, 1)) to output simulated

training data. This process outlines how Generative Adversarial Networks (GANs) [129]

and VAEs [130] are used for data augmentation. Less popular and more constrainted

distribution estimators are produced through Bayesian Metropolis-Hastings sampling [131],

Gibbs sampling [132], importance sampling [133], and rejection sampling [134].

Training data can also be simulated by applying plausible transforms to existing data

sets. This form of data augmentation is performed by introducing simulated variations to

the training data under the assumption that the test data will also be affected by those

variations. Examples of plausible transforms include frequency, amplitude, phase shifts

in the data, wireless channel effects such as AWGN, multi-path, scattering, diffraction,

reflection, and Doppler, and hardware non-idealities such as clock drift, power amplification

characteristics, and other RF front end non-linearities.

2.2.7 Hyper-Parameter Validation

When designing a SL model, there are often several aspects of the architecture or SGD

(i.e., learning rate, number of neurons in a layer) that provide no clear choice towards

maximizing the testing accuracy. The process of experimenting with different operating pa-

rameters and other implementation values is referred to as hyper-parameter validation [92].

One of the most straightforward methods of hyper-parameter validation is a grid search,

through which a SL model is trained with the same training data that uses each combination

of hyper-parameters h from the set H. In order to evaluate which hyper-parameter subset

is optimal, the training data set must be partitioned into a smaller training data set and

46

a validation set. The hyper-parameters that result in a trained model with the highest

validation set accuracy are used at the testing stage of SL model deployment.

The gap between the validation and the test prediction performance is minimized when

the number of samples in both partitions are large and equal in count, and when both sets are

sampled from the same underlying distribution. Common partition ratios between training,

validation, and testing sets include 80:10:10, 60:20:20, and 50:25:25. Ratios with smaller

training sets are chosen when the data set size is large, which affects the minimization of the

variance in test data performance. Smaller validation/testing ratios are chosen when the

data set size is small, in order to ensure the proper training of the model. As the number

of hyper-parameters used in grid search increases, computational costs become prohibitive

(Algorithm 7).

Algorithm 5 Grid-search validation method [135]

1: procedure Given training data Xtr, validation data Xval, set of hyper-
parameters H

2: Best weights w∗ = None
3: Best accuracy acc∗ = 0
4: for Set h in H do
5: Train model on Xtr, Ytr to obtain w using h
6: Test model on Xval using w to obtain Ŷval
7: Compute test accuracy acc using Ŷval
8: if acc > acc∗ then
9: acc∗ = acc

10: w∗ = w
11: end if
12: end for
13: end procedure

If the amount of data is limited, validation accuracy can vary significantly, and sub-

optimal hyper-parameters can be selected. Cross-fold hyper parameter validation, where

the training data is split up into k equal-sized “folds”, or partitions (instead of just two,

as in grid search), can mitigate this issue. For each of the k folds, one fold is chosen as

the validation set, and the other k − 1 folds are used for training. The data split this

way are grid searched. Then, a new fold is chosen as the single validation fold, and the

old validation fold becomes part of the new k − 1 training partition. This process repeats

until each fold has served as the validation fold, then the final hyper-parameters are chosen

based on which hyper-parameters had the highest average validation accuracy across each

47

of the k folds. The weights trained with these hyper-parameters are used for final test data

evaluation (Algorithm 6). The larger k is, the higher the correlation between each learned

model; the highest correlation exists for k = N , or leave-one-out validation. The smaller k

is, the higher the variance of predictions, as the training set gets smaller. Common compro-

mises include k = 3, 5, 10. Cross-fold validation makes up for the high variance that would

be experienced in grid search of small training sets by averaging over all folds in order to

obtain hyper-parameter choices that are not biased to any one chosen fold.

Algorithm 6 Cross-fold validation method [136]

1: procedure Given training data X, set of hyper-parameter sets H, K folds
2: Partition X into K folds Xk, k = 1, ...,K
3: Best weights w∗ = None
4: Best accuracy acc∗ = 0
5: for Set h in H do
6: for k = 1, ...,K do
7: Train model on X 6⊂ Xk to obtain w using h
8: Test model on Xk using w to obtain Ŷk
9: Compute test accuracy acck using Ŷk

10: end for
11: Compute average acc = 1

K

∑
k acck

12: if acc > acc∗ then
13: acc∗ = acc
14: w∗ = w
15: end if
16: end for
17: end procedure

This process can be repeated using nested cross-fold validation, where multiple SL mod-

els (i.e., SVM, RNN, DT) are tuned to complete the same unknown parameter estimation

or classification task.

2.2.8 Ensemble Learning

A form of late integration (Section 2.2.4) known as ensemble learning can significantly

improve the performance of trained SL models. An ensemble of SL models is a collection

of n models independently trained on the same data set. Ensembles perform classification

or regression by averaging their predictions on test data. The benefit of this can be shown

48

by minimizng the expected squared error of predictions, defined as:

E

[
((

1

n

n∑
i=1

ŷi)− y)2

]
=
v

n
+ c

n− 1

n
, (2.57)

where the variance v = E[(ŷi − yi)
2], and the covariance c = E[(ŷi − yj)

2], i 6= j. If

the covariance is zero, or each model makes different mistakes, then the gain of using an

ensemble on the squared error of predictions is 1
n . If v = c, then the ensemble brings no

gains, and the prediction MSE remains at v.

While any SL model can be trained in an ensemble, there exist a few ensemble training

algorithms specific to a certain family of SL algorithms or that are designed to mitigate

training issues. Bootstrapping is a technique used to reduce prediction covariance c by

training each model in the ensemble with a different set of examples from the training set,

sampled with replacement. The random forest [137] algorithm is an example of bagging,

which trains n DT on bootstrapped data. Furthermore, random forest ensemble splits the

attributes of each node of each version of the DT randomly, selecting m attributes from p

each time. Attribute selection is usually done by computing the entropy of each attribute

and selecting the highest entropy feature. Finally, ensembles that perform classification by

bagging pick the class with the highest number of votes.

Adaboost [138] is another ensemble algorithm, where SVM or DT models are boosted

rather than bagged. The difference between the two is that the classifications of boosted

ensembles are weighted, and bagged ensembles have equal weight voting. The weights

are determined using error computations, such that weak learners, or models with high

prediction variance v, have less influence on classifications.

2.3 UL and Mixture Models

Gaussian Mixture Models (GMMs) can serve as a probabilistic model to assign the lo-

cations estimates P̂i to K sub-populations, where each sub-population represents a wireless

beacon located at µ̂k with location estimates that vary according to the covariance matrix

Σ̂k. In application, multi-object tracking models cannot assume the number of objects

k. Non-parametric mixture models side step this issue by assuming an infinite number of

sup-populations. The GMM generative model produces observations:

49

p(yi|π1, ..., πk, µ1, ..., µk, s1, ..., sk) =
k∑
j=1

πjN (µj , s
−1
j), (2.58)

where the mixing proportions
∑k

j=1 πj = 1 and observations from Gaussians with larger

mixing proportional are generated more often. Since computing p(π1, ..., πk|y1, ..., yN) ∝
p(y1, ..., yN |π1, ..., πN)p(π1, ..., πN)0 is nontractable, inference of GMMs is be performed by

markov chain monte carlo sampling [139], Variational Inference (VI) [140], or Expectation

Maximization (EM) [141]. If data samples are large with high dimensions and many non-

Gaussian latent variables, variational inference be used. For strictly GMM observations,

the authors prefer EM as a more hands-off approach, which risks convergence to a local

minima, over VI, which risks mode default and poor mixing [142].

EM optimization of DPGMM inference of parameters θ = π1, ..., πk, µ1, ..., µk, s1, ..., sk

is then given (Algorithm 7) by the expectation step [141]:

p(ci = k|yi, θ) =
N (µk, s

−1
k)πk∑k

j=1N (µj , s
−1
j)πj

, (2.59)

where observation yi belongs to mixture k if p(ci = k|yi, θ) > p(ci 6= k|yi, θ).
The maximization step is given as the computation of the new parameters θ as:

πk =
1

N

N∑
i=1

p(ci = k|yi, θ), (2.60)

µk =

∑N
i=1 p(ci = k|yi, θ)yi∑N
i=1 p(ci = k|yi, θ)

, (2.61)

sk =

∑N
i=1 p(ci = k|yi, θ)∑N

i=1(yi − µk)2p(ci = k|yi, θ)
. (2.62)

2.4 Adversarial Perturbations

An adversarial perturbation is defined as a jamming signal that is added to a signal that

is given to a ML model during either training or testing with the intent of causing incorrect

estimation or classification during the testing phase of the ML model. This interaction can

be generally described as [5]:

x∗ = x+ εη, (2.63)

50

Algorithm 7 Dirichlet Process Gaussian Mixture Model inference by EM [141]

1: procedure Given observations yi
2: Initialize θ = π1, ..., πk, µ1, ..., µk, s1, ..., sk
3: while not converged do
4: for i ∈ {1, ..., N} do
5: compute p(ci = k|yi, θ)
6: end for
7: for j ∈ {1, ..., k} do
8: compute πj |p(ci = k|yi, θ)
9: compute µj |yi, p(ci = k|yi, θ)

10: compute sj |yi, µk, p(ci = k|yi, θ)
11: end for
12: end while
13: end procedure

where the perturbation η is scaled by ε and added to the original signal x to form a perturbed

sum of signal x∗. If the trained ML model’s predictions are described as f(x) = ŷ, then the

perturbations must be crafted such that the prediction loss increases, or, formally:

L(f(x∗), y) > L(f(x), y). (2.64)

The reason for the scalar or mask ε was originally to craft computer vision perturbations

that are imperceptible to the human eye, but broadly is used to minimize the perturbation

according to the metric and scheme of choice. Broadly speaking, ε schemes can be either

constrained to a fixed value or optimized to achieve a minimum or maximum result for a

specified constraint function. Typically ε minimizing is defined by the vector norm metric

for some chosen p, most commonly p ∈ {0, 1, 2,∞}:

||ε||p =

(n∑
i=1

||εi||p
)1/p

= δ (2.65)

Finally, ε can take the form of a scalar that effects all elements of the perturbation signal

equally, or it can take the form of a mask or signal that scales some elements more or less

than others.

The perturbation itself can be described by a number of attributes, including adversarial

falsification, adversary knowledge, adversary specificity, and attack frequency.

• Adversarial falsification: The perturbation is crafted to achieve false positive or false

51

negative predictions.

• Adversary knowledge: The perturbation is crafted with full knowledge of the trained

ML model (white box) or only knowing a history of queries, or observed inputs and

outputs of the ML model (black box).

• Attack frequency: Perturbations may be crafted after one query (black) or gradient

computation (white), or improved over a number of repeated queries or gradient

computations.

• Adversary specificity: The perturbation is crafted to achieve a targeted false prediction

or any false, non-targeted prediction.

For surveys of adversarial attacks and countermeasures, the reader is directed towards

other works [6, 60–62]. Since gradient-based white box attacks leverage their knowledge

to take small steps in directions of steep or unstable loss, the theory behind most coun-

termeasures is to increase the “flatness” of trained models loss function. This serves the

dual purpose of generalizing the model well to unexpected statistical behavior in the testing

data partition. Black box countermeasures, on the other hand, leverage the transferabil-

ity attribute, which holds as long as non-linear activation functions produce outputs that

are distributed primarily around their linear region of operation. Consequently, counter-

measures for these attacks carefully reduce the linear behavior of classifiers, which makes

learning more difficult.

Adversarial perturbations in the wireless communications domain are ubiquitously gen-

erated via the RML2016.10a simulated dataset [143]. The data set was the first of two [144]

modulation classification data sets, classifying 128-sample IQ signals to one of 11 modu-

lation classes. The data experiences a noisy channel simulated by GNU Radio’s dynamic

channel model, which applies a truncated Gaussian-distributed random walk to symbol

rate and carrier frequency offset, a Rician-distributed frequency-selective fading multipath

model, and a Gaussian-distributed AWGN model. The adversarial papers also use the same

supervised learning model to compute perturbations, the VT-CNN2 [2] model. This has

made the comparison of various papers a simple task, while amplifying the issues present

in the data set and model due to a lack of diversity.

These perturbation papers all assume one of two different three-player scenarios: a

friendly transmitter and receiver, where an intelligent, jamming adversary synchronously

52

adds perturbations to the transmitter to fool the receiving radio, which classifies the ob-

served sum of signals [76,77]. In the other, a friendly transmitter adds pre-channel pertur-

bations to fool an adversarial receiver which classifies the transmissions, while maximizing

communication capabilities between the transmitter and receiver [78–80].

2.5 Chapter Summary

In this chapter we have provided the reader with a statistical foundation in neural

networks, SL, and UL and surveyed the implementation challenges that can arise when

employing them. Through examples, visualization, and derivation, we have shown the

power of these algorithms while also drawing attention to the systematic vulnerabilities

their implementation can present to attackers. We now present the contribution chapters

of this dissertation, wherein we contribute to the state-of-the-art by securing physical layer

passband signals using ML.

53

Chapter 3

Machine Learning-Based

Parameterized Fingerprinting for

Unknown Number of Transmitters

3.1 Introduction

In this chapter, we present a novel algorithmic framework distinguished from other

state-of-the-art for low assumption multilateration networks in the following ways:

1. The framework provides a stationary alternative to MHT that is relatively computa-

tionally inexpensive by utilizing Bayesian clustering instead of hypothesis test trees.

2. It introduces an opportunistic alternative to current WSNs that use multilateration

data to classify signal source IDs, allowing for localization without packet sniffing.

3. The framework requires fewer assumptions compared to current RF signature-based

WSNs that use phase and frequency meta-data, allowing for the localization of trans-

mitters when little is known a priori by the WSN about RF behavior.

The rest of this chapter is organized as follows. Section 3.2 presents a detailed overview

of the SOP concept, the value of meta-data, and the goals of our approach. Section 3.3

describes the framework as well as details of our methodology and experimentation. Sec-

tion 3.4 evaluates the performance of our CNN-based multilateration and UL-based clus-

tering of spatial multilateration data. This analysis includes an Anderson Darling (AD)

54

(a) Outdoor receiver localization

(b) Indoor transmitter localization

Figure 3.1: A typical SOP navigation scenario (a) and its inverse problem, SOP beacon
localization (b). Physical feature and range estimates are independent of other readings
in the SOP beacon localization problem, such that they may be computed locally at each
receiving sensor or at the fusion center.

normality test of spatial data to confirm the Gaussian assumptions of the UL algorithm, as

well as a Kruskal-Wallis (KW) non-parametric test of Received Signal Strength (RSS) esti-

mates. Final thoughts are discussed in Section 3.5, including drawbacks and open challenges

of our methodology.

3.2 Overview of Localization Model

A SOP is a wireless signal that is both freely available but not designed to carry in-

formation for receiving localization systems [150]. SOP-based navigation systems perform

55

Figure 3.2: An example of the low meta data scenario is a subset of the transmitter local-
ization problem, where the number of beacons is hidden from the localization network of
sensors, and must be inferred. As in the standard localization problem, the the transmitter
locations are unknown. Additionally, the origin of the four signals detected in this scenario
is hidden, such that the receiving network must infer which transmitter sent which signal
via the physical layer pass-band characteristic inference of signal strength, angle, or timing
estimates.

multilateration given a user’s receiver with an unknown location. Several local transmitters

with known locations are used with enough wireless information known about their carrier

frequency and bandwidth to individually detect each signal and estimate physical prop-

erties from them. These systems (Figure 3.1a) typically use high altitude, high transmit

power SOPs such as Digital Television (DTV), Global System for Mobile Communications

(GSM), and Code Division Multiple Access (CDMA) signals in outdoor multilateration ex-

periments with a small number of SOP transmitters [151–153]. System performance for

these approaches varies greatly depending on the availability and orientation of the trans-

mitters, and their advantages and disadvantages have been sufficiently covered in [149,150].

SOP-based navigation researchers have also explored the inverse approach focusing on

the beacon localization problem. In this approach, several receivers with known locations

are used together to estimate the positions of one or more SOP-emitting transmitters with

unknown locations (Figure 3.1b). They usually report Supervised Learning (SL)-based,

RSS-based indoor multilateration [154] or parameterized fingerprinting experiments to es-

56

timate the location of a single Zigbee, Wi-Fi, Bluetooth, or Ultra Wide-Band (UWB) SOP

transmitter via multiple receivers [155–160]. System performance for these works varies

greatly depending on the SL algorithm used, training data collected, and the number,

placement, and design of the receivers.

In this work, we investigated a variant of the transmitter localization scenario, where a

WSN “black box” had to solve the problem without meta data or packet sniffing capabili-

ties (Figure 3.2). Metaphorically speaking, the “black box” represents the WSN operator’s

intent to localize any detectable signal without knowing their protocol type (e.g. Zigbee,

Wi-Fi, Bluetooth, UWB, TPMS). Without a priori knowledge of how the channel activity

corresponds to transmitter activity or packet-layer data such as reported transmitter loca-

tion [53–58], our WSN was forced to use only locally-computed physical signal characteristics

(e.g., Time Difference of Arrival (TDoA), RSS) to determine the source of each detected

signals while also locating and counting those source radios. Given that pre-multilateration

physical features in this complex WSN varied by protocol, time, frequency, bandwidth, and

several other physical characteristics, a post-multilateration clustering approach was needed

to leverage the sum-of-Gaussians characteristic of all CNN multilateration estimates despite

their front-end variations.

3.3 Proposed Multilateration Framework

In this section, we describe our framework (see Figure 3.3). The method begins with

the signal detection and pre-processing of the TPMS signals received by our WSN setup,

their processing by a central computer to produce several input features, generation of

spatial transmitter location estimates from those features via CNN-based multilateration,

and UL-based inference of unknown parameters leveraging that spatial data.

3.3.1 Signal Detection and Pre-Processing

Data files in the form of two-dimensional arrays were processed to generate RSS esti-

mates from each receiver for each TPMS frame over time before localization could occur

(block (a) in Figure 3.3). The process of extracting RSS estimates from a given data file

includes: down-sampling, frame detection, preamble frequency and timing correction, and

frame correlation for estimating the RSS per frame.

57

Figure 3.3: An overview of the interaction between of all estimators, classifiers, and digital
signal processing tasks of the proposed approach presented in this work. Inputs and out-
puts are represented by circles, while intermediate steps are represented by rectangles. kW
and AD tests were performed to determine the uniqueness of each beacon’s true RSS pop-
ulation and normality of estimated beacon location subtracted multilateration estimates,
respectively. Normality is an assumption of the DPGMM inference, and by determining
the number of unique input data populations, we identify maximum performance bounds
for the DPGMM inference.

58

Figure 3.4: The experiment site, located at 358 Pleasant St, Gardner MA, USA (longi-
tude -71o59’41.32”W, latitude -42o34’9.19”N). The hardware used in the experiment is also
pictured.

The first step required band-pass filtering and down-sampling to reduce the computa-

tional load as well as increase the effective bit depth resulting from oversampling.

After re-sampling, detection was performed. This step began by identifying the start of

each individual frame. For this application we used a simple power detector with a Constant

False Alarm Rate (CFAR) threshold. We started by decomposing the down-sampled file

into k = 1, ...,K bins based on the detector’s integration period T . The energy level of each

bin in the decomposed signal x(t) was computed as [161]:

E[k] =
1

T

∫ T (k−1)

Tk
‖x(t)‖2dt. (3.1)

For this type of CFAR detector, the threshold level is computed using [162]:

α = N(P
−1/N
fa − 1), (3.2)

given false alarm probability Pfa and number of samples N .

3.3.2 Input Feature Estimation

After a frame was detected, the frequency and timing errors had to be corrected before

the RSS can be estimated using correlation (see block (b) in Figure 3.3). The frequency

and timing offsets form a continuous ambiguity function (CAF). To estimate the frequency

and timing offset parameters, the known preamble was frequency shifted and stretched as

needed, then correlated against the detected frame. The peak of the correlations represented

59

the best fit. This technique allowed for varying degrees of accuracy but at the expense of

computational load. For this experiment, we post-processed the data on a desktop such

that computational resources were not a limiting factor. The correlation between the CAF

search preamble and the received signal also acted to estimate the RSS of the received

frame [163]:

RSS =
1

N

N∑
t=1

xt||x̂t||, (3.3)

where xt sampled from t = 1, ..., N is the CFAR detected signal and x̂t is the unit power

CAF preamble after correcting for frequency and timing offsets. Through this process, we

employed three receivers to produce a dataset where input features were represented as

x = [RSS1,RSS2,RSS3].

3.3.3 Multilateration

Multilateration (see block (c) of Figure 3.3) is the process of using physical signal char-

acteristics to estimate the distance between receiver-transmitter pairs, and subsequently

computing the transmitter’s most likely location. The CNN algorithm is a popular choice

for replacing both stages of multilateration with a set of trainable weights [155–160]. This

algorithmic substitution is useful for replacing fingerprinting methods because it allows

for continuous, rather than discrete-space, unknown parameter estimation through the

use of trainable weights. This attribute is important since physical space is a continu-

ous variable, and traditional fingerprinting typically predicts physical transmitter location

via nearest-neighbor techniques that introduce inherent errors due to their discrete-space

nature [155–160]. Alternatively, traditional continuous-space, physical characteristic-based

transmitter localization techniques first estimate the range by assuming an electromagnetic

signal propagation path loss model, then solve for the geometric problem of intersecting

circles (or parabolas) to identify the most likely region of the transmitter [164]. State-of-

the-art CNN localization works [155–160] use the universal approximator characteristic [165]

of Neural Networks (NNs) to provide flexible, accurate transmitter location estimates that

improve traditional fingerprinting and provide an alternative to multilateration if the train-

ing data is available. Although range and geometry solving multilateration methods do not

require training data, they do require meta data in the form of path loss information [166].

Although CNN architectures can take many forms, the Stochastic Gradient Descent

60

(SGD) training methodology is frequently employed (see Algorithm 8) [167]. A NN can

be described as a union of small non-linear regression models arranged in both parallel

and serial connections. In our case, these models were iteratively optimized via SGD to

minimize the estimation error of each transmitter’s location. The use of filters in the CNN

architecture can be described as enforcing a constraint on weights that results in model

regularization, lower computational costs, and the model assumption of input equivariance.

Input equivariance is the idea that data patterns correlated to the ground truth are highly

similar despite shifts, rotations, and other common transforms.

Algorithm 8 CNN model training protocol [167]

1: procedure Given training data X, labels Y , learning rate η, training it-
erations ne

2: initialize model parameters w, b
3: for ne do
4: for each x in X, y in Y do
5: for layer convolution layer l in L do
6: for filter w in layer l do
7: apply zero-padding if used
8: compute convolution zl(x,w, b)
9: apply ReLU a = max(0, z)

10: compute max pooling P = pool(a)
11: end for
12: end for
13: flatten down sampled features, p = flatten(P)
14: for each dense layer do
15: compute linear logit, z(p, w, b)
16: compute activation function a = max(0, z)
17: end for
18: compute softmax ŷ = arg max(a(z))
19: compute loss fCE(y, ŷ)
20: compute gradients δ

δwfCE ,
δ
δbfCE

21: update model parameters w, b
22: end for
23: end for
24: end procedure

3.3.4 Inference

Using clustering algorithms as the final step in our proposed methodology, we proceeded

to estimate or classify the unknown parameters described in Section 3.1 (see block (d) in

61

Figure 3.3). This was achieved by self-organizing the spatial transmitter location estimates

provided by the CNN. Membership in a cluster represents the probability the signal that

produced that location estimate was transmitted by the same radio as all other location

estimates in that group. The number of active clusters represents the probability of how

many radios transmitted the set of all signals detected by the WSN. Finally, the estimated

mean of each cluster represents the most probable location of a transmitter.

The Dirichlet Process Gaussian Mixture Model (DPGMM) assumes a set of samples was

generated by the following generative conditional distribution [141]:

p(Pi|π1, ..., πk, µ1, ..., µk, s1, ..., sk) =

k∑
j=1

πjN (µj , s
−1
j),

(3.4)

where the mixing proportions
∑k

j=1 πj = 1, and observations from Gaussians of mean µ

and covariance s−1 with larger mixing proportions π are generated more often, and mixing

proportions that are small indicate inactive mixtures. Since integrating to evaluate the

distributions p(π1, ..., πk|P1, ..., PN) ∝ p(P1, ..., PN |π1, ..., πN)p(π1, ..., πN) are not tractable,

inference of DPGMMs is always performed either by Markov Chain Monte Carlo (MCMC)

sampling [139], Variational Inference (VI) [140], or Expectation Maximization (EM) [141].

In this work, we employed the optimization-based EM as a relatively hands-off approach

when compared to VI or MCMC, which only risks convergence to a local minima [142].

MCMC and VI, on the other hand, risk mode default and poor mixing due to their utilization

of Gibbs sampling [142]. Additionally, EM provides faster and more accurate results for

when point estimates are sufficient, as in this study [142].

EM optimization of the DPGMM conditional probabilities θ = π1, ..., πk, µ1, ..., µk, s1, ..., sk

is then provided first by the expectation step, which computes the cluster indicator vector

c of each sample given current estimated distribution parameters [141]:

p(ci = z|Pi, θ) =
N (µz, s

−1
z)πz∑k

j=1N (µj , s
−1
j)πj

, (3.5)

where observation Pi belongs to mixture z if p(ci = z|Pi, θ) > p(ci 6= z|Pi, θ).
Then, inversely, the maximization step is given as the computation of the new Bayesian

62

posterior distributions θ = [µ, s−1, π] by using the current cluster assignments as:

πj =
1

N

N∑
i=1

p(ci = j|Pi, θ), (3.6)

µj =

∑N
i=1 p(ci = j|Pi, θ)Pi∑N
i=1 p(ci = j|Pi, θ)

, (3.7)

sj =

∑N
i=1 p(ci = j|Pi, θ)∑N

i=1(Pi − µj)2p(ci = j|Pi, θ)
. (3.8)

Algorithm 9 shows an overview of the DPGMM EM optimization, including the combi-

nation of the expectation and maximization steps.

Algorithm 9 Dirichlet Process Gaussian Mixture Model (DPGMM) inference by EM [141]

1: procedure Given observations yi
2: Initialize θ = π1, ..., πk, µ1, ..., µk, s1, ..., sk
3: while not converged do
4: Expectation step
5: for i ∈ {1, ..., N} do
6: for j ∈ {1, ..., k} do
7: compute p(ci = j|Pi, θ)
8: end for
9: end for

10: Maximization step
11: for j ∈ {1, ..., k} do
12: for i ∈ {1, ..., N} do
13: compute πj |p(ci = j|Pi, θ)
14: compute µj |Pi, p(ci = j|Pi, θ)
15: compute sj |Pi, µj , p(ci = j|Pi, θ)
16: end for
17: end for
18: end while
19: end procedure

Current wireless localization works that make use of unsupervised learning algorithms [168–

171] do so for self-supervised applications, wherein clustering is used to generate labels for

unlabeled data such that the costs of training a supervised learning model are reduced.

These methods have been shown to reduce the bias and variance of CNN-based fingerprint-

ing estimates.

In previous work, we applied a Gaussian Mixture Model (GMM) to a known number

of mobile, simulated wireless beacons [172]. In the following sections, we describe how we

63

applied a modified version of that proof of concept simulation to a practical experiment.

There were several differences between the two efforts.

• Mutliateration estimates were produced from real measurements, rather than gener-

ated directly from a Gaussian distribution.

• While the Markov process used generated Gaussian samples at each time step with a

stationary mean, real-life data sets have a non-stationary mean. This would make the

use of mixture models inappropriate, which assume the distributions are stationary.

• We used a Dirichlet prior, which allowed for the inference of an unknown number of

clusters instead of a fixed number specified by the user utilizing a priori meta data.

Next, we present the implementation details of our novel framework (see Figure 3.3), as

well as evaluate its performance.

3.4 Experimental Results

In this section, we describe the implementation details of the proposed CNN-based mul-

tilateration, including the method used to generate dataset ground truths, the architecture

used, and the training protocol. We subsequently evaluate our entire methodology (Fig-

ure 3.3), supplemented by the use of assumption-checking hypothesis testing.

3.4.1 Experiment Implementation Details

Three custom-built Raspberry Pi 3 Model B+ receivers employing NooElec NESDR

smart v4 RTL SDR units and isotropic antennas were used to digitize and store the RF sig-

nals at 315 MHz emanating from the TPMS sensors of a Subaru Forester 2016 (Figure 3.4).

For each TPMS sensor, a three minute RF capture was made per location at 2.5 MSPS

complex IQ. The experiment consisted of four TPMS sensors, three custom receivers, nine

training vehicle positions, and two vehicle positions used for evaluation, which resulted in

132 data files. The samples were loaded into MATLAB and the built-in resample function

was used with a re-sampling factor of 32. This resulted in an output bandwidth of 78.125

kHz which was above the silicon on insulator (SOI) bandwidth and was about 18 samples

per symbol for the TPMS SOI. Finally, a time constant of T = 5 milliseconds was used in

64

our CFAR detector, which used both training cells and guard cells, but only on one side of

the cell under test. We used three guard cells and 10 training cells.

3.4.2 Label Generation Via Surveying

To generate the ground truth labels for the training and testing of our CNN, we surveyed

the parking lot located at 358 Pleasant St, Massachusetts, USA (longitude -71o59’41.32”W,

latitude -42o34’9.19”N). String was used to draw circles with tied sticks of chalk, anchored

down to the center of the circles on each of our three Raspberry Pi units, which were used

as the sensing localization network (Figure 3.5). Since each chalk intersection location

was known, the grid allowed physical objects to be located in the experimental region by

trilateration via hand-measuring three distances to the three nearest chalk intersects (not

to be confused with the wireless multilateration performed by our experiment). Measuring

distances to more than three reference points would have increased the accuracy of label

generation at the cost of more time spent measuring at each point.

The error for the hand-made range measurements of the 32 grid locations given by

Figure 3.5 was found, in an experiment of 32 measurements, to have a mean error of

2.00 cm and an error standard deviation of 1.68 cm. These moments were determined by

comparing theoretical geometry (see Figure 3.5) to the actual measurements. This error

combines human tape-measure error, which is about 0.5 cm or half a tick mark, and chalk

circle intersect misplacement errors caused by slack in the string and its measurement

error. Given this statistical description of range measurements, we used the second order

Taylor series approximation of the Cramer Rao Lower Bound (CRLB) for multilateration

measurements m [173]:

CRLB(θ|m) ≥
[
dm(θ)

dθ

T

N(θ)−1dm(θ)

dθ
+

1

2
tr

(
N(θ)−1dN(θ)

dθ
N(θ)−1dN(θ)

dθ

)]−1

.

(3.9)

This computation is performed given the trace function tr(·), anchor-beacon distance matrix

θ, the gradient of measurement covariance with respect to beacon location N(θ), and the

gradient of measurements with respect to beacon location dm(θ)
dθ to compute the CRLB of

training labels gathered for the fingerprint data. This yielded a standard deviation of 16.8

cm on the x axis and 17.3 cm on the y axis for our ground truth labels.

65

(a) Surveyed reference locations

(b) Anchor and beacon placements

Figure 3.5: The true location of beacons was measured by adding the measured distance of
the beacon from these known intersect points (a) and the anchor and beacon locations for
the experiment (b).

66

Figure 3.6: An overview of the PointNet CNN architecture, which we modify only by changing the 10-class softmax output to a
two-dimensional linear output. A dropout with p = 0.3 is used after each dense layer. Each T-net is a mini-network that aims
to learn a affine transformation matrix. PointNets are designed for low-dimensional data and physical space. We employed a
bagging ensemble of three PointNets for this experiment.

67

Figure 3.7: The transient epochs of MSE training and validation loss of the CNN. Final training MSE for the ensemble was
0.89 meters, and a final test set MSE of 4.87 meters. CRLB results found that training and test labels have a minimum error
of 0.168 meter and 0.173 meter along the x and y axis, respectively.

68

3.4.3 CNN Training

The CNN architecture developed for this work (Figure 3.6) was designed using a mod-

ified PointNet [174] architecture and a host of over-fitting countermeasures to combat the

high noise, low number, and large shift in statistics between training and testing data and

labels. The PointNet was terminated with a two neuron linear layer, whose outputs rep-

resented the estimated two-dimensional location of the transmitter whose range estimates

were input. The model’s three-dimensional input represents a set of RSS estimates from

the perspective of each sensor for a single detected signal of unknown origin. The PointNet

was comprised of two T-nets, each of which is a mini-network comprised of a 32, 64, and

512 filter convolutional layer, a global max pooling [175] layer, a 256 and 128 neuron dense

layer, and final dense layer with a number of neurons equal to the squared number of fea-

tures. We did not change the architecture’s depth or width because our inputs are of the

same dimensionality as the three-dimensional spatial data that this state-of-the-art archi-

tecture was optimized for. These T-nets utilized L2 [119] regularizers (λ = 0.001) to learn

an affine transformation matrix. Each convolutional layer has a kernel size of one, valid

zero padding [176], a Rectified Linear Unit (ReLU) activation function, and Kaiming [177]

kernel initialization. Additionally, the PointNet was comprised of two sets of convolutional

layers with shared weights, a global max pooling layer, and two dense layers with 256 and

128 neurons.

We trained three PointNets in a bagging ensemble [178] learning scheme, which can

significantly improve the performance of the trained SL models. A bagging ensemble of SL

models is a collection of n models independently trained on the same data set, not to be

confused with boosting or stacking ensembles. Bagging ensembles perform regression by

averaging their predictions on test data. The benefit of this can be shown by minimizing

the expected squared error of predictions, defined as [179]:

E

[((
1

n

n∑
i=1

ŷi

)
− y
)2]

=
v

n
+ c

n− 1

n
, (3.10)

where the variance v = E[(ŷi − yi)
2], and the covariance c = E[(ŷi − yj)

2], i 6= j. If

the covariance is zero, or each model makes different mistakes, then the gain of using an

ensemble on the squared error of predictions is 1
n . If v = c, then the ensemble brings no

gains, and the prediction MSE remains at v.

69

The weights were optimized in TensorFlow [108] by minimizing training data MSE loss

via the Adam [180] quasi-Newton SGD method (Figure 3.7). The relatively large difference

between the ensemble’s loss and each weak learner’s loss indicated a low covariance c as

described by Eq. (3.10), or that our use of a bagging ensemble was appropriate and beneficial

towards making accurate multilateration estimates. Data was trained in batches of the

whole training set, which was of size 601 detected TPMS packets over all 9 locations and 4

transmitters, and batch normalization [123] was used. No early stopping was implemented

over the 500 epochs of training, at which point the model loss converged. An Intel Core

i7-10750H CPU and 16GB of RAM were sufficient to train this relatively shallow network

and low-dimensional data.

3.4.4 CNN Testing & UL Inference

The deployment stage of the proposed SOP beacon localization system used the hard-

ware testbed and algorithms described in this chapter. Since physical signal features were

estimated, range estimates and subsequently multilateration-based location estimates were

random variables [173]. Specifically, location estimates are known to be distributed as mul-

tivariate Gaussian variables (even if observations are non-Gaussian [181–184]) such that

P̂i ∼ N (µj ,Σj) for a number of multilateration estimates i = 1, ..., N and a number of

SOP beacons j = 1, ..., k [181–184]. Consequently, we utilized a DPGMM as a probabilistic

inference model with which to assign the locations estimates P̂i to k sub-populations. Each

sub-population or cluster of estimates represents the spatially-inferred probability that the

jth wireless beacon transmitted the ith multilateration estimate (Figure 3.3). This inference

and assignment method differs from the heuristic methods [53, 55] discussed in Section 3.1

since it is automated, leverages the underlying statistics of the data, and is not overly

sensitive to hyper-parameter choices.

The evaluation of the experiment can be seen in Figure 3.8, in which N = 229 detected

TPMS packets were localized using the trained CNN. The Autel prompting radio [185] was

used for about three minutes at each TPMS beacon location, and the vehicle was moved

once for a total of eight beacons, on which we superimposed the multiateration estimates

in post-processing. We implemented the DPGMM with k = N such that every data point

may become a cluster if its mixing proportion πj , j = 1, ..., k is sufficiently large.

We found the multilateration estimates possessed a high error relative to the distance

70

Figure 3.8: A summary of the N = 229 spatial multilateration estimates and the estimated
cluster means and co-variances of the DPGMM. “Missed detections” represent pairs of
transmitters whose spatial and RSS estimates could not be statistically distinguished.

between beacons. This could potentially be the result of the significant variation in the RSS

estimates, the 22.5 dBi directional TPMS antenna [186], or our use of only three receivers,

the minimum number required for two-dimensional localization.

The two pairs of RSS populations that could not be differentiated by the EM-based

DPGMM clustering were not neighboring locations, but the front-left tire’s transmitter

and the back-right tire’s transmitter at two locations. This indicated a relatively higher

correlation between the transmit power and received power than the transmitter location

and received power. While only six of the eight RSS populations could be distinguished by

the DPGMM, this is actually a typical performance given the small number of sensors, the

small size and high variance of the RSS estimates, and the low-power, highly directional

design of the transmitters.

We performed a Kruskal-Wallis (kW) [187] test, a non-normal method for determining

if two sets of samples originate from the same distribution. The test statistic is defined as:

71

(a) True cluster (b) Predicted cluster

Figure 3.9: A summary of the test set’s N = 229 detected TPMS packet multilateration
estimates true indicator variables ci = j, i = 1, ..., N, j = 1, ..., k (a) and our predictions (b).
Any sample from one axis with the same indicator variable as a sample from the other axis
is colored white.

H = (N − 1)

∑g
i=1 ni(r̄i − r̄)2∑g

i=1

∑ni
j=1(rij − r̄)2

, (3.11)

where N is the number of samples across all groups g, ni is the number of samples in group

i, r denotes rank, and ·̄ denotes mean. For a critical statistic H∗ computed by table lookup

for α = 0.05, we found H < H∗ on the RSS populations of each pair of beacons that made

up a missed detection, or that we could not reject the null hypothesis. We could not find

evidence the estimates were statistically different. On average, the six beacon estimates

were evaluated with ground truth values to have a 1.72 meter variance (E[(P̂ − P)2]) and

1.19 meter bias (E[|P̂ − P |]).
Insight into the performance of the DPGMM is provided by the confusion matrix which

quantifies the accuracy of the expectation step, i.e. classification of which transmitter

produced which signals (see Figure 3.9). The confusion matrix shows the true mixing

proportions of the data (Figure 3.9a) and that some transmitter captures produced more

detected signals from the localization sensors than others. That number, from top left to

bottom right of the confusion matrix, is [18, 38, 31, 38, 17, 27, 18, 34] detected TPMS packets

72

Figure 3.10: QQ plot of the cluster mean subtracted, standardized PointNet multilateration
estimates. Additionally, the axis-specific AD statistics and critical statistics are provided.

for each of the three-minute captures at the eight test locations. Alternatively, the confusion

matrix also shows that only six of the eight clusters were detected (Figure 3.9b), as, starting

from the top left, if squares are named one through eight, it can be seen the first and third

clusters, as well as sixth and eighth clusters are combined. Finally, we can see that two

additional multilateration estimates from the seventh beacon are misclassified, producing

an indicator variable classification precision or Positive Predictive Value (PPV) of 76.4%.

When incorrect cluster assignments caused by missed cluster detections are removed, the

PPV is 93.7%. PPV is defined as the number of true positives divided by the sum of true

and false positives [188]:

PPV =
TP

TP + FP
. (3.12)

To gather evidence that our PointNet’s location estimates were Gaussian distributed and our

use of a Gaussian inference model was suitable, we utilized the AD [189] test for determining

if a set of samples are drawn from a particular distribution. To do so, we first subtracted

the estimated cluster mean from each population of estimates, then standardized them:

Yi =
(P̂i − µ̂j)− 1

g

∑g
i=1(P̂i − µ̂j)

1
g−1

∑g
i=1(P̂i − 1

g

∑g
i=1(P̂i − µ̂j))2

. (3.13)

73

This calculation produced a set of samples that, when tested, whether the estimates were

Gaussian with respect to their cluster center. The AD critical value for normal tests can

be computed as [190]:

A∗2 = A2

(
1 +

0.75

N
+

2.25

N2

)
, (3.14)

and the AD statistic is computed as [190]:

A2 =−N − 1

N

N∑
i=1

(2i− 1)(ln Φ(Yi)+

ln(1− Φ(YN+1−i))),

(3.15)

where Φ is the standard normal Cumulative Distribution Function (CDF). Our AD results

are presented in the Quantile-Quantile (QQ) plot in Figure 3.10, which visually and quan-

titatively show that PointNet multilateration estimates are Gaussian distributed due to the

diagonal trend line and small AD test statistics.

3.5 Chapter Summary

In this chapter, we described our “black box” localization problem statement in Sec-

tion 3.2. Then, we presented the motivation and methodology details for utilizing SL and

UL in transmitter localization in Section 3.3. Finally, we discussed the implementation

details of our methodology, and evaluated the training and testing of our the proposed

framework in Section 3.4.

The opportunistic, self-organizing, stationary transmitter, jointly localizing and classi-

fying methodology demonstrated in chapter 3 that:

• Locating transmitters in low meta data scenarios with high accuracy.

• The N = 229 spatial test set was able to recognize every statistically different RSS

population as verified by a Kruskal-Wallis (kW) test.

• That test classified the source radio of transmissions with a 76.4% indicator variable

PPV (93.7% when accounting for missed cluster detections).

• The detected transmitters were localized with an average of 1.71 meter variance and

1.19 meter bias within a roughly 15 meter square whose perimeter is made up of

receivers.

74

• We confirmed the Gaussian assumption of our clustering algorithm by failing to deny

that the PointNet CNN’s location predictions were Gaussian distributed. We accom-

plished this verification via an AD test with critical statistics A∗2 = 1.0 and observed

statistics A2 = 0.39(0.66) for x-axis (y-axis) samples.

Our methodology allows for the post-multilateration clustering of location estimates

such that unknown wireless devices present in driverless vehicles may be opportunistically

leveraged for localization tasks, as long as they broadcast detectable emissions from which

physical passband characteristics may be estimated from. This lowers reliance on GNSS

systems and SOP localization networks that require meta data.

75

Chapter 4

Physical Eavesdropper Evasion:

Signal Dependent Perturbation

Design and Adversarial Training

4.1 Introduction

In this chapter, we present a number of novel contributions to the state-of-the-art. These

contributions confirm as well as deny state-of-the-art best practices from the adversarial

computer vision domain, as well as establish new ones for wireless communication scenarios

through both simulated and experimental demonstrations. This chapter is organized as

follows:

• In Section 4.2, we introduce the real-world physical scenario that motivates adver-

sarial attack of a signal classifier and define metrics of success for such an adversary.

We proceed to describe the method of generating offline training data, capturing of

online physical testing data, and modulation classification architectures used. Finally,

we briefly survey adversarial threat models and three popular perturbation types for

readers with a understanding of wireless communications but without an understand-

ing of perturbations.

• In Section 4.3, we present two novel contributions to wireless adversarial perturbation

design that have been over looked by previous works; constraining perturbations to

add constructively with transmitted signals, and constraining perturbations to the

76

same bandwidth as transmitted signals. Both constraints are beneficial due to the

dual-objective nature of the transmitter in the wireless scenario described by Sec-

tion 4.2, which are to minimize the Bit Error Rate (BER) of the intended receiver

while also minimizing the eavesdropper’s classification precision, which is also called

Positive Predictive Value (PPV). In other data domains, the use of adversarial per-

turbations is typically a single-objective scenario in which minimizing the PPV of the

classifier is the only concern. However, the single-objective scenarios is not valid in

our domain and we define additional metrics in this work.

• In Section 4.4, we present several novel studies of state-of-the-art computer vision ad-

versarial training schemes applied to the problem of wireless adversarial perturbation

defense. We validate these schemes experimentally using NI Ettus Research’s USRP

N210 Software Defined Radios (SDRs). We implement the state-of-the-art adversar-

ial training scheme, compare state-of-the-art parallel and cascade variations of that

training scheme, investigate the effectiveness of state-of-the-art iterative attacks, an-

alyze the effect of adversarial training as a regularizer by varying model capacity, and

investigate the presence of label leaking in ground truth based adversarial training

schemes.

• In Section 4.5, we review our contributions and offer up several open challenges to the

wireless security community.

4.1.1 Assumptions

In this work, we explore defense approaches against adversarial perturbations in a cur-

rent step, white box attack regime, and consider adversarial training as the most effective

and appropriate defense. By “current step”, we mean the adversary may always refresh

their information of the eavesdropper’s system, and it is always knowledgeable of the classi-

fication networks current parameters. For example, if adversarial training is implemented,

we evaluate the model against perturbations crafted from the adversarial trained model,

not the non-adversarial trained model. We reason that if an adversary can observe the

eavesdropper’s radio and ML systems once, then it can be observed again in the future. We

note that very few adversarial training works operate using this challenging but realistic as-

sumption. In non-current step approaches, the lack of the adversary’s ability to see the final

77

network can potentially yield especially misleading results in gradient masking [62] works,

where adversarial detectors are unaware of supplemental classification schemes being used.

Figure 4.1: The transmitter, given both a signal and a perturbation power constraint, strategically ampli-
fies certain samples of signals such that an adversarial eavesdropper cannot correctly classify the modulation
scheme of the observed signals. When successful, the transmitter avoids being demodulated correctly and
its bits estimated by the eavesdropper are random and lack any information. We measure the success of
perturbations by how low of a BER they achieve with the intended receiver and by how low of a classifica-
tion accuracy (PPV) the eavesdropper achieves in this dual-objective scenario. Conversely, we measure the
success of the eavesdropper by how high of a classification PPV it can achieve on observed signals and how
many bit errors it can force the transmitter to make in order to avoid correct demodulation.

Traditionally, the term “white box” is used in adversarial perturbation scenarios to de-

scribe the weights and architecture of the target ML classifier as fully observable by the

agent who is crafting perturbations. In our white box scenario, the adversary can observe

not only the trained model and its weights, but all aspects of the eavesdropper’s radio and

ML systems, such as perturbation detection networks or ensemble classification schemes.

Consequently, we do not investigate the use of semi-supervised perturbation detection algo-

rithms [64] because it has been shown that they increase the attack surface of the classifier

when the adversary is aware of them [61]. We do not investigate the use of gradient mask-

ing [62] or defensive distillation [66] because the process of fooling these networks is well

understood [83, 84, 191, 192]. Finally, we do not investigate the use of network verifica-

tion [193–196] as these methods are still prohibitively computationally expensive for all

but the smallest datasets and models. While our classification architectures are relatively

78

small (see Section 4.2.1 and Section 4.2.2), we show in Section 4.4.5 that making them any

smaller such that network verification would be possible, will make them more vulnerable

to adversarial perturbations.

Adversarial training has been described as a powerful regularization method [5] that

performs a similar function to L1 regularization on the activations of linear classifiers [59].

When a model is overfitting, adversarial training, defensive distillation, and gradient mask-

ing schemes have all doubled as defenses against adversarial perturbations, as well as regu-

larizers that increase the classification PPV of non-adversarial test data.

4.2 System Model

The state-of-the-art perturbation approaches assume one of two different three-player

scenarios. In the first scenario, a transmitter and receiver communicate while a reactive

adversary eavesdrops, computes the proper perturbation, then synchronously transmits

those perturbations in order to fool the receiving radio, which classifies the observed sum

of signals [76, 77]. In the other, a transmitter adds pre-channel perturbations to fool an

adversarial eavesdropper, which classifies the transmissions while maximizing communica-

tion capabilities between the transmitter and receiver [78–80]. In this work, we investigate

the latter scenario (Figure 4.1), which we consider the only realizable white box scenario

of the two as it is a significant challenge for an eavesdropper to receive a signal, process

it, and transmit a perturbation which adds together with the original transmission at the

intended receiver with no delay [76]. Due to the disjoint research resulting in the contribu-

tions presented in this work, we present in the following subsections two different datasets

and modulation classification architectures.

4.2.1 Signal Dependent Waveforms and Classifier

Adversarial perturbations in the wireless communications domain are ubiquitously gen-

erated to fool classifiers trained on the RML2016.10A [143] simulated dataset. The dataset

is the first of two [144] modulation classification datasets, classifying 128-sample In-phase

Quadrature (IQ) signals (256 input features/example) to one of 11 modulation classes. The

signals are altered by a noisy channel model simulated by the GNU Radio (GR) dynamic

channel model, which applies a truncated Gaussian-distributed random walk to the symbol

rate and carrier frequency offset, a Rician distributed frequency-selective fading multipath

79

model, and a Gaussian-distributed AWGN model. Previous papers that apply adversarial

attacks to this dataset also used the same supervised learning model to compute perturba-

tions, the VT-CNN2 [2] model. This has simplified the comparison of various papers.

In this work, we create variations inspired by the RML2016.10A [143] and RML2018.01A [3]

datasets, for use in Section 4.3 and Section 4.4, respectively. The RML2018.01A dataset

expands upon its predecessor by classifying on a higher number of modulation classes, gen-

erating data via a wireless channel model with a greater number of noise sources, and more

complex feature engineering that allow for modulation classification using not just IQ data,

but also moments and cumulants. In the related work [86], the RML2016.10A [143] dataset

experiences significant multicollinearity, uses a pulse shaping filter without zero-crossings,

and does not properly compute Signal-to-Noise-Ratio (SNR) ratios:

SNR = 10 log10

(
I ×

∑
|x|2∑
|n|2

)
. (4.1)

Consequently, we chose to create a new dataset similar to RML2016.10A in which we lower

the Samples Per Symbol (SPS), I, from 8 to 2 to generate more symbols per signal time

slice, and increase the number of samples per signal capture from 128 to 1024 to reduce

multicollinearity. We compute AWGN as a circularly symmetric Gaussian random variable:

n ∼ N (0, σ2) + 1j ×N (0, σ2), (4.2)

where the standard deviation σ =
√

10−SNR/10

2 is used instead of σ = 10−SNR/10 [3] to

properly compute the SNR. Finally, we implement a slightly different Finite Impulse Re-

sponse (FIR) Root Raised Cosine [197] (RRC) with a rolloff α = 0.35 and 12 taps since

the RML2016.10A does not possess zero crossings in its RRC filter, as the dataset is not

designed for bit estimation.

Our version of the dataset also assumes no multipath instead of a three-tap scenario with

delays τ = [0.0, 0.9, 1.7] and magnitudes ρ = [1, 0.8, 0.3] since we believe their multipath

model to be overly specific and our test data generated via physical experimentation will

utilize a coaxial cable to connect radios, thus experiencing little-to-no multipath effects.

For additional ease of bit estimation, we deviate from the original dataset by applying all

channel effects without the use of GR channel models, since GR generates streams of data

that are difficult to align and are dynamically changing in size to optimize computational

80

Figure 4.2: The VT-CNN2 [2] modulation classifier model used in Section 4.3.

efficiency. Specifically, we implement the cumulative random walk of truncated Gaussian

samples for Symbol Rate Offset (SRO) as:

xSRO[n] = F−1

{
F{x}

(
cos

(
2πn

N

n∑
i=1

SROi

)
− 1j sin

(
2πn

N

n∑
i=1

SROi

))}
,

SRO ∼ Clip0,−50,50{N (0, 0.01)}.

(4.3)

We define the clip function Clipx,−δ,δ{A} as the element wise re-sampling of Ai,j to the

range [xi,j − δ, xi,j + δ]. The cumulative random walk of truncated Gaussian samples for

CFO is defined as:

xCFO[n] = xSRO[n]× exp

(
−2jπn

fs

n∑
i=1

CFOi

)
,

CFO ∼ Clip0,−500,500{N (0, 0.01)},

(4.4)

for sample index n = 1, ..., N , vector length N = 128, and sample rate fs = 200 MHz, which

are all equal to the values used in [143].

Finally, we implemented an 11th order FIR Butterworth [198] filter with a normalized

frequency cutoff of 0.65 to isolate the signals from OOB noise. Both filters are applied via

the convolution operator.

81

Wireless adversarial perturbation works ubiquitously craft their signals from the open-

sourced modulation classification dataset RML2016.10A [143] and the CNN model named

VT-CNN2 [2] (Figure 4.5) produced in [199]. Consequently, we will use this architecture

and dataset in our perturbation crafting in Section 4.3. The shallow VT-CNN2 network is

constructed using Keras [200], which is comprised of just two convolutional layers with 256

and 80 filters, respectively, as well as kernel sizes (7,1) and (7,2), respectively. The model

is terminated with a dense layer with 256 neurons and a softmax classifier layer consisting

of 11 outputs. Each convolutional layer utilizes valid padding, dropout [201] with p = 0.5,

Glorot (also known as Xavier) uniform weight initialization [202], and Rectified Linear Unit

(ReLU) activations [203]. The first convolutional layer has no bias terms, and each dense

layer is “He” initialized, totaling in 2.9× 106 parameters. We did not observe that weight

regularization improved classification performance.

The model is optimized using Tensorflow [204] by minimizing categorical cross entropy

via the Adam [205] quasi-Newton Stochastic Gradient Descent (SGD) method over 100

epochs in mini-batches of size 1024. The training is stopped early when the validation loss

has not decreased for 5 epochs, saving the lowest validation loss weights. The following

Adam [205] parameters are used: α = 0.001, β = (0.9, 0.999), ε = 1 × 10−7, γ = 0.0 with

no warm up steps.

4.2.2 Adversarial Training Waveforms and Classifier

During the development of this work, we found the open-sourced generation code for

RML2018.01A [3] dataset also experiences multicollinearity and incorrectly labels some

generated signals. To address the issue of multicollinearity, we used time slices of 4096

complex IQ samples instead of 1024. By trial-and-error, we found by using more samples

per signal, we did not need to generate as many signals to achieve the same test PPV,

such that our training dataset contains 1.4 million signals instead of 2 million [3]. We

additionally implemented the dataset with the following differences from the GR channel

model presented in [3]: α ∼ U(0.35, 0.45) instead of α ∼ U(0.1, 0.4), σclk = 0.005 instead

of σclk = 0.01, τ = [0.0] instead of τ = [0.0, 0.5, 1.0, 2.0] and SNR in the range Es/N0 ∈
[0, 30] dB instead of Es/N0 ∈ [−20, 30] dB. This smaller range of channel models were

chosen because of the use of a coaxial cable in physical data generation rather than wireless

connection between radios.

82

Figure 4.3: One captured signal for each modulation class from the connected USRP N210 SDRs using
our RML2018.01A [3] inspired dataset. These visualizations are oversampled by 8 SPS and display only the
first 32 samples of the 4096 sample signals for visualization purposes.

Since the training of models to be robust to perturbations is an adjacent task to training

models that generalize well to test data that differs statistically from training data [5], we

generated several physical test sets (Figure 4.3) to see how well our adversarial training

schemes perform as regularizers. These test sets are comprised of 1408 signals, also called

examples, where each of the 88 GR channel models generate 16 signals, as opposed to the

training sets wherein 2728 GR channel models generate 512 signals each. Each GR channel

model has a fixed modulation class, SNR, and SPS. To generate the data, two USRP N210

SDRs (Figure 4.4) are connected via coaxial cable. No digital gain or digital attenuation is

used, the radios sample captures using a 1 MHz bandwidth and 20 MHz carrier frequency.

We add perturbations to these streams of data via a synchronous Out-Of-Tree (OOT) block

in GR implemented before the USRP sink block, which loads the trained Pytorch model,

predicts and computes the gradient using the time slice of data, and adds the perturbation

to the output. For consistency, we enforce a unit energy constraint on all datasets before

classification and perturbation crafting as:

xnorm =
x
√
n

||x||1
, (4.5)

83

Figure 4.4: USRP N210 SDRs, their coaxial connection, and host computer. The connection employs a
10 dB attenuator.

Figure 4.5: The VGG10 [4] modulation classifier model used in Section 4.4.

84

where n is the length of x. The received test signals do not have an observable DC offset,

such that mean subtraction is not implemented in simulated data.

For our adversarial training presented in Section 4.4, we implemented a deeper model

in Pytorch [206], which possesses a higher learning capacity necessary for this work (see

Section 4.4.5) when performing adversarial training and training using a dataset with a

higher number of classes. We used, as found by trial-and-error, a deep model inspired

by the Visual Geometry Group (VGG) 10 [4] CNN model (Figure 4.2) comprised of 9

convolutional layers with ReLU activations [203] and the following number of filters per

layer: [64, 64, 128, 128, 256, 256, 256, 256, 256]. The model is terminated with two dense

layers with 512 neurons and 22 outputs from the second dense layer. Max pooling is

implemented every two layers with stride 2 and size 2. All convolutional layers used have

stride 1 and kernel size 3, totaling 18.2× 106 parameters. All weights are initialized using

Kaiming initialization [177]. We did not find that dropout [201] and weight regularization

improve classification performance.

The model is optimized in Pytorch [206] by minimizing log softmax plus categorical

cross entropy loss via the Adam [205] quasi-Newton method over 20 epochs in mini-batches

of size 256. The following Adam [205] parameters are used: α = 0.0442, β = (0.9, 0.98),

ε = 1 × 10−9, γ = 0.1 with 4,000 warm up steps. No early stopping is implemented, and

batch normalization [123] is used. Currently, it was observed the strongest perturbations

are those crafted exploiting Neural Networks (NNs) with skip connections, also known as

ResNets [207], as a new attack surface [208]. Consequently, we opt to forgo skip connec-

tions, despite their advantage in training deep models that are robust to vanishing gradient

problems.

4.2.3 Adversary Goals and Description

An adversarial perturbation is defined as a signal is added to another signal which is

given to a ML model during either training or testing with the intent of causing incorrect

estimation or classification during the testing phase of the ML model’s deployment. This

interaction can be generally described as:

x∗ = x+ εη, (4.6)

85

Figure 4.6: One i.i.d. captured perturbation and non-adversarial signal for each modulation class from the
connected USRP N210 SDRs from our implementation of the RML2018.01A [3] dataset. These visualizations
are over sampled by 8 SPS.

where the perturbation η is scaled by ε and added to the original signal x to form a perturbed

sum of the signal and scaled perturbation, x∗. If the trained ML model’s predictions are

described as f(x) = ŷ, then the perturbations are crafted using the observed or estimated

prediction loss function of the model given a signal:

L(f(x∗), y) > L(f(x), y), (4.7)

with the expectation that increasing the loss will decrease the performance metrics of the

deployed model (i.e., F1-score, precision, recall, AUC, ROC, IoU, mAP). The reason for the

scalar or mask ε was originally to craft computer vision perturbations that are imperceptible

to the human eye, but generally used to minimize the perturbation according to the metric

and scheme of choice. Broadly speaking, ε can be either constrained, ||ε||p = δ, to a

fixed value or optimized, arg minε f(||ε||p), to achieve a minimum or maximum result for a

specified constraint function. Typically, ε minimizing is defined by the vector norm metric

for some chosen p, most commonly p ∈ {0, 1, 2,∞}:

||ε||p =

(n∑
i=1

||ηi||p
)1/p

, (4.8)

86

which can be interpreted as designing perturbations to have a maximum number of changes,

sum of absolute value of change, sum of squared change, and magnitude of largest change,

respectively.

Finally, ε can take the form of a scalar that effects all elements of the perturbation signal

equally, or it can take the form of a mask or signal that scales some elements more or less

than others.

The adversarial threat model, or philosophy that guides the crafting of perturbations,

can be described by a number of attributes including adversarial falsification, adversary

knowledge, adversary specificity, and attack frequency:

• Adversarial falsification: The perturbation is crafted to achieve false positive or

false negative predictions.

• Adversary knowledge: The perturbation is crafted with full knowledge of the

trained ML model (white box) or only knowing a history of queries, or observed

inputs and outputs of the ML model (black box).

• Attack frequency: Perturbations may be crafted after one query (black) or gradient

computation (white), or improved over a number of repeated queries or gradient

computations.

• Adversary specificity: The perturbation is crafted to achieve a targeted false pre-

diction or any false non-targeted prediction.

Surveys of adversarial attacks and countermeasures are available on these topics from

references [6, 60–62]. Since gradient-based white box attacks leverage their knowledge to

take small steps in directions of steep or unstable loss, the theory behind most counter-

measures is to increase the “flatness” of trained models loss function, or otherwise require

perturbations to be larger in magnitude to achieve the same increase in loss. This serves the

dual purpose of generalizing the model well to unexpected statistical behavior in the testing

data partition. On the other hand, black box perturbation countermeasures leverage the

transferability attribute, which holds as long as non-linear activation functions produce out-

puts that are distributed primarily around their linear region of operation. Consequently,

countermeasures for these attacks carefully reduce or mask the linear behavior of classifiers.

In this work, we implemented several different attacks to confirm, deny, or establish

best practices presented in leading ML data domains. Due to the variation of perturba-

87

tions and non-adversarial signals, we define a generalized, adaptive scaling factor based on

perturbation energy Ep for all attacks:

ε =

√
10

Es
Ep
/10∑n

i=1 |xi|2

||η||1
, (4.9)

where x is the information signal and η is the perturbation signal, which achieves the desired

signal (Es) to perturbation energy ratio:

Es
Ep

= 10 log10

(∑n
i=1 |xi|2∑n
i=1 |ηi|2

)
. (4.10)

The choice of Es
Ep

represents the importance placed by the transmitter on each of the two

objectives, being receiver BER and eavesdropper classification PPV:

PPV =
TP

TP + FP
. (4.11)

Given a finite power constraint, it is intuitive that amplifying all samples equally would

result in the lowest BER. Yielding some of that power to strategically amplify some samples

more than others grants the transmission a measure of obfuscation from fragile ML-based

classifiers, at a cost to BER proportional to the power given up. If the transmitter has

an objective eavesdropper PPV, the optimal choice for the Es
Ep

ratio cannot be determined

without a PPV feedback loop (see [79, 80]) from the eavesdropper to the transmitter, even

in a white box scenario where all ML weights and classification rules are known. However, if

the wireless channel is well known, as it is in many full duplex links, a BER objective could

be used to choose a necessary signal energy, while using the remaining power constraint for

perturbation energy.

The attacks used in this work include FGSM [59]:

x∗ = x+ εsign(∇xJ(x, ytrue)), (4.12)

where ytrue is the ground truth label of x, a relatively simple and efficient attack when

compared to the others in this work which minimizes p(ytrue|x∗). Additionally, we use the

88

One-Step Least Likely (stepLL) attack [5]:

x∗ = x− εsign(∇xJ(x, yLL)), (4.13)

where yLL is the least likely predicted class of x as determined by a classifier, which uses

the least likely class of the signal according to the class scores of the model to maximize

p(yLL|x∗). This attack is used for adversarial training [5] because FGSM [59] perturbations

are substantially deterministic and correlated to the true label. Consequently, adversarial

models trained with FGSM attacks classified adversarial data more accurately than non-

adversarial test data, while those trained with y]textLL attacks does not. We visualize some

stepLL perturbations in Figure 4.6. Finally, we use the Iterative Least Likely (iterLL)

attack [5]:

x∗j+1 = Clipx,−ε,ε{x∗j − αsign(∇xJ(x, yLL)},

x∗0 = x, j = 0, ..., N
(4.14)

which achieves more powerful perturbations than its one step equivalent by recomputing

the direction of the gradient multiple times. In our work, we sample the number of itera-

tions N ∼ U(2, 10) and compute the iteration step size as a ratio, α = 2ε
N . We leave the

investigation of Projected Gradient Descent (PGD) [5] to future work.

4.3 Signal Dependent Perturbation Design

In this section, we present an approach employing two constraints on perturbation craft-

ing that, to the best of the author’s knowledge, have not been used in state-of-the-art wire-

less works. We utilize our modified RML2016.10A [143] dataset, FGSM [59] attacks, and

the VT-CNN2 [2] modulation classifier.

4.3.1 Constructive Perturbations

We describe a novel constraint in the design of adversarial perturbations crafted to fool

the model presented in Section 4.2.1, which can be applied to any state-of-the-art pertur-

bation, such as those surveyed in Section 4.2.3. We assume the perturbation constraint

does not allow for the transmitter to add perturbations that subtract, or add deconstruc-

tively, with the transmitted signal. Deconstructive perturbations may increase the number

89

(a) Time-domain In-Phase (b) Frequency-domain

Figure 4.7: A visualization of a single pre-channel QPSK signal and CFGSM perturbations in the time-
domain (a). CFGSM perturbations are signal-dependent and do not add deconstructively with the informa-
tion being transmitted. We also display 78,125 QPSK signals and their constrained FGSM perturbations in
a 512-bin FFT averaged by frequency bin (b), showcasing how much energy of the FGSM perturbations is
attenuated because of their OOB frequencies.

Algorithm 10 Signal dependent perturbation crafting constraints.

1: procedure Given perturbation η, transmitted signal x, and pulse shaping
filter h

2: Enforce constructive addition constraint
3: for i = 1, ..., n do
4: if sign(xi) 6= sign(ηi) or i%I 6= 0 then
5: ηi=0
6: end if
7: end for
8: Enforce bandwidth equivalence constraint
9: η∗ = η ∗ h

10: Scale perturbation to meet power requirement

11: ε =

√
10

Es
Ep

/10 ∑n
i=1 |xi|2

||η∗||1
12: Add perturbation to signal
13: x∗ = x+ εη∗

14: end procedure

of classification errors made by the adversarial eavesdropper, but at a significant cost to

the BER of the communications chain. By setting the indices of the perturbation with

opposite signs with respect to the transmitted signal to zero, the effectiveness of the pertur-

bations is lessened, but the addition of the perturbation ceases to decrease communication

effectiveness for phase and frequency-based modulation schemes. Note that this constraint

is not beneficial for amplitude-based modulation schemes, where a large perturbation of

90

signage matching that of the original signal will cause significant bit errors, even before

transmission. Then, power allocated for the perturbation that is saved by this step should

be allocated evenly across all remaining, non-zero perturbation indices. Using this con-

straint, the use of perturbations should not cause a single bit error before transmission. We

call this constrained perturbation a Constructive-FGSM (CFGSM) perturbation.

4.3.2 Bandwidth Equivalent Perturbations

We present a second novel constraint for use in designing adversarial perturbations

crafted to fool the model presented in Section 4.2.1, which may also be used for any state-

of-the-art perturbation such as those described in Section 4.2.3. We assume the transmitter

should implement a perturbation constraint that causes perturbations and the transmitted

signal to have be Bandwidth Equivalent (BWE). The intuition of this constraint is that Out-

Of-Band (OOB) energy is doubly wasteful. First, samples of the transmitted signal that are

amplified by the perturbation are attenuated by the intended receiver’s RFFE filters (i.e.,

Band Pass Filters (BPF) and Low Pass Filters (LPF)) ubiquitous in all radio systems if the

frequency of those samples is OOB. Consequently, the BER of the communications link is

increased, which is not in the interest of the transmitter that designed these perturbations.

Second, it is assumed that an eavesdropper would design an RFFE that isolates the signal

from channel noise after the signal detection stage or by using channel meta data, which

would also attenuate OOB perturbation energy. This would allow the eavesdropper to lower

the perturbations power and increase their modulation classification PPV, which again is

not in the interest of the transmitter designing perturbations. We note at this point that

perturbations cannot be properly crafted before pulse shaping because data at that stage

in the transmit chain do not properly represent the distribution of data being sent over the

wireless channel. Both constraints are presented in Algorithm 10.

4.3.3 Constraint Analysis

To quantify the effectiveness of the constraints presented in Section 4.3.1 and Sec-

tion 4.3.2, we perform a simulation to observe their impact on receiver BER and eaves-

dropper modulation classification PPV. To provide an objective benchmark for our BER

results (Figure 4.8), we plot the non-coded theoretical limit for the QPSK modulation class,

and consequently plot PPV results (Figure 4.9) for only the QPSK class as well. Each data

91

Figure 4.8: Non-coded BER for QPSK test signals for different uses and quantities of perturbation energy
allocations. Noise and signal energy are fixed and equal at Es/N0 = 0 dB. When the perturbation energy
allocation is re-allocated to the signal, and the signal is amplified uniformly, the SNR increases and BER
decreases. The FGSM attack that is not signal dependent interferes with the transmission and increases BER
proportional to the amount of energy allocated. The constructive FGSM attack only amplifies a subset of half
(1/I) of the indexes, such that BER decreases very slowly as the amount of energy allocated increases, but
this is not the primary objective of increasing Ep, and this attack importantly does not increase BER. This
crucially allows, if the transmitter’s operator has chosen a Es to satisfy a maximum BER requirement, the
guarantee that the use of perturbations, for any Ep, will not increase BER and compromise that requirement.
Many such Quality of Service (QoS) guarantees are mandatory in wireless protocols, and can be difficult to
enforce in ML applications. BWE attacks are slightly lower BER than their non-BWE equivalent attacks
because their energy is not filtered out by the LPF.

92

Figure 4.9: Modulation classification PPV for QPSK test signals for different uses and quantities of
perturbation energy allocations. Noise and signal energy are fixed and equal at Es/N0 = 0 dB. When the
perturbation energy allocation is re-allocated to the signal, and the signal is amplified uniformly, the SNR
increases and the signal is easier for the eavesdropper to classify. The BWE FGSM attack is the most
effective because no energy is filtered out, and the energy constraint is used optimally. The constructive
FGSM attacks are less effective because a lot of energy is used on a subset of the samples rather than a little
energy on the whole set, and the effectiveness of perturbations is proportional to the sum of amplitudes, not
power.

93

point is computed by averaging 10,000 signals or bits for PPV or BER results, respectively.

For BER computations, we employ the same RRC pulse shaping filter used by the simulated

transmitter as a matched filter and assume the presence of AWGN only. Additionally we

visualize the effect of our two constraints on a single QPSK signal in Figure 4.7.

Our results show that CFGSM perturbations contain a greater number of high-frequency

components compared to FGSM perturbations due to similar time domain characteristics

to impulse trains than square waves. Consequently, CFGSM perturbations are even more

attenuated by a LPF if the BWE constraint is not enforced, which can be observed by a

larger gap in the classification PPV between the BWE CFGSM and CFGSM than BWE

FGSM and FGSM. Our classification results show the BWE CFGSM perturbations are only

slightly less effective at fooling models other than BWE FGSM perturbations depending

on SNR and perturbation strength, while guaranteeing that BER is only decreased with

perturbations strength, never increased. This allows for the transmitter to be designed

with guaranteed BER bounds while obfuscating its signals from eavesdroppers, a design

consideration not seen in any other adversarial modulation classification work. In duplex

radio systems where the wireless channel can be accurately estimated and it is determined

that the transmitter has sufficient power to meet system BER requirements, our results show

that a transmitter implementing these perturbation constraints can obfuscate its frequency

or phase-based modulation scheme from eavesdroppers with zero cost to communication

effectiveness.

4.4 Adversarial Training

In this section, we investigate the inverse of the problem of the perturbation crafting

previously discussed in Section 4.3. Perturbation countermeasures are studied here by

implementing the adversarial training scheme outlined in [5] using our RML2018.01A [3]

inspired dataset and the VGG10 [4] inspired modulation classifier from Section 4.2.2, and all

attacks presented in Section 4.2.3. We do so using perturbations crafted after first training

a non-adversarial model, as in [209], such that we transfer the knowledge of the end results

of training. The idea behind adversarial training is to train the model using mini-batches

94

with both perturbations and non-adversarial signals:

Loss =
1

(m− k) + λk

(m−k∑
i=1

L(x, ytrue) + λ
k∑
i=1

L(x∗, ytrue)

)
, (4.15)

where m is the mini-batch size, k is the number of adversarial examples per mini-batch, L(·)
is categorical cross entropy loss, and λ is the weighting of learning step size for adversarial

versus non-adversarial training examples. In this work, we use m = 256, k = 38, and

λ = 1 such that we achieve what is an effectively equivalent training scheme as seen in [5],

who choose m = 32, k = 16, and λ = 0.3. We quantify the similarity of these parameter

choices as mλ
k = 0.15. As in [5], we randomly vary perturbation strength such that the

adversarial trained model generalizes well to test-stage perturbations of different strengths.

We accomplish this variation using a truncated Gaussian distribution as:

ε∗ = Clipε,0,1{ε+ δ},

δ ∼ N (0, 1/2),
(4.16)

and refer to the value of Es/Ep for this scheme as “sweeping”. We perform the costly,

relative to computer vision, training schemes presented in this section using a Intel Xeon

Gold 6248 CPU node with 20 cores and 192 GB of RAM, and one NVIDIA Volta V100

GPU node with 32 GB of RAM.

4.4.1 Evaluation of Non-Adversarial Model

In evaluating the non-adversarial training scheme, we made a number of discoveries. We

found that Frequency Shift Keying (FSK) modulation classes are the most difficult to fool,

with only three false positives across all modulation orders of FSK in an FGSM attack.

This is due to the frequency shifts between each symbol being so large, as well as due to the

uniqueness of the FSK constellations with respect to amplitude and phase shifting schemes.

The crafting of frequency-domain perturbation is the subject of ongoing research and will

be the focus of a subsequent publication. When stronger attacks, deeper models, or larger

perturbation energy are used, more FSK signals are fooled. We found that FGSM attacks

perform better than stepLL attacks, because they lower the class score of the true class

rather than increased the score of the least likely class. We also observed that the iterLL

attack is the most effective attack because it most accurately ascends the gradient due to

95

(a) Non-adversarial training (b) Adversarial training

(c) Cascade adversarial training

(d) Ensemble adversarial training

Figure 4.10: Our offline non-adversarial (a), adversarial (b), cascade (c), and ensemble (d) training
schemes mostly follow those outlined in [5], although we decouple training by only generating perturbations
from already trained models, as in [6]. Additionally, unlike any other work, we evaluate our model using
perturbations crafted from gradients computed from the ultimate model, and do so using online, physical
signal captures. Our reasoning is that if our system is vulnerable to an attack once, it can be attacked again,
and to assume that the attack is done without knowledge of our countermeasure is overly optimistic. Each
model and dataset is i.i.d., and the training of the ultimate model is always done with the same number of
weight updates as outlined in Section 4.2.2. For instance, if we produce a parallel set of adversarial training
data using three models, we would train the ultimate model using three sets of 1.4/3 million signals for 20
epochs each.

96

(a) Physical test (b) Physical sweeping Es/Ep FGSM test

(c) Physical sweeping Es/Ep stepLL test (d) Physical sweeping Es/Ep iterLL test

(e) Physical fixed Es/Ep stepLL

Figure 4.11: A class-by-class analysis of the effectiveness of each attack and strength of attack on the
non-adversarial trained VGG10 model. Most false positives belong to the same one or two classes. IterLL
attacks are the strongest, followed by FGSM, and stepLL. FSK classes are the most difficult to fool due
to large frequency shifts between each symbol. Perturbations sent over a physical channel are slightly less
effective than perturbations transmitted over a simulated wireless channel.

97

taking multiple, smaller steps. Additionally, most test sets showed that, when attacked,

they attempt to fool all classifications to be one of a few classes. For instance, 57% of false

positives caused by iterLL attacks on the non-adversarial trained model belonged to the

256FSK class, 23% to the 8 Amplitude Shift Keying (ASK) class, and 20% to all other

classes. Finally, we observed that increasing perturbation strength decreases modulation

classification PPV, which is to be expected. Specifically, Es/Ep = 0 dB stepLL attacks are

required to approach a PPV equal to that of a zero rule classifier, and that Es/Ep > 35

dB stepLL attacks had no effect on physical test PPV. On average, perturbations sent

over a physical channel are slightly less effective, relative to non-adversarial PPV, than

perturbations transmitted over a simulated wireless channel.

4.4.2 Evaluation of Cascade and Parallel Models

Parallel [6] and cascade [209] adversarial training are parallel and sequential, respec-

tively, methods of decoupling the generation of adversarial training examples from the

model being trained. The theory behind parallel decoupling is that perturbations are trans-

ferable between models and that parallel adversarial training schemes will achieve a better

approximation of the underlying distribution of perturbations than adversarial training

using perturbations crafted from a single pre-trained model, providing greater protection

against black box attacks or new white box attacks generated by the fully trained model.

The knowledge transferred by a parallel set of perturbations is statistically diverse and

high variance, competing with non-adversarial training data for learning capacity in small

models [6], such that under fitting occurs if the model size is not increased appropriately.

The theory behind cascade adversarial schemes is that each iteration of training transfers

additional information about how perturbations are crafted from already trained models to

the ultimate model. We hypothesize there is some number of cascade training iterations and

parallel set size that is optimal for a given scenario, and seek to identify the performance

trends of these schemes via physical experimentation on models trained offline.

The number of training samples and number of training epochs for the ultimate model

were held constant across all of these schemes (Figure 4.10) such that the resulting PPV of

each scheme will be the result of the knowledge transferred by training perturbations and

not the duration of training or quantity of data.

In Table 4.1, adversarial training maintains about 26% of its protection against current

98

Table 4.1: Effect of various adversarial training schemes on the modulation classification PPV of different
partitions of data. stepi−1 perturbations refers to testing models using perturbations from the same distri-
bution as training set perturbations, where stepi perturbations refers to testing model using perturbations
crafted after adversarial training. The adversarial training maintains ∼ 26% of its protection against cur-
rent step physical attacks compared to physical attacks crafted during training. Furthermore, as in [6], the
model trained by the parallel training scheme is more accurate when evaluated on adversarial data at the
cost of non-adversarial accuracy. In [6], this gain is seen only for black box attacks, not white box attacks.
Our current step white box attacks are analogous to black box attacks from the perspective of adversarial
training because test-phase perturbations are crafted from a different set of weights than that from which
training perturbations are crafted. Finally, we observed that the cascade adversarial training scheme follows
the same trend as the parallel scheme but with greater magnitude.

Training Scheme

PPV Clean Adversarial Parallel Cascade

Training 99.85 99.85 99.90 99.90

Clean Test 99.22 99.15 98.22 95.74

Clean physical Test 96.35 96.80 96.21 92.71

stepLLi−1 Test - 76.07 - -

stepLLi−1 physical Test - 75.22 - -

stepLLi Test 70.45 73.58 70.53 77.63

stepLLi physical Test 68.67 70.39 71.88 81.53

Table 4.2: An investigation of “label leaking” [5] occurring when using FGSM adversarial training schemes,
justifying the use of the stepLL attack in training over the use of the FGSM attack. While we do not see
evidence of label leaking for this dataset, we find that stepLL training yielded higher protection against
iterative and FGSM attacks than FGSM training, which are the most dangerous attacks.

Training Scheme

PPV Clean FGSM stepLL

Training 99.85 99.73 99.85

Clean physical Test 96.35 96.14 96.80

stepLL physical Test 68.67 76.70 70.39

iterLL physical Test 44.42 42.12 44.49

FGSM physical Test 59.23 60.94 64.96

99

step attacks compared to attacks used in training. Additionally, the ultimate models trained

using the parallel training scheme perform worse in all scenarios except for attacks crafted

using a model other than that used in adversarial training, or that their robustness is

transferable at the cost of regularization. Finally, these models trained using the cascade

scheme follow the same trends, but to a greater magnitude than parallel training schemes.

4.4.3 Label Leaking

Label leaking is described in [5] as when adversarial training with the use of ground

truth labels in attacks such as FGSM [59] results in a trained model that tests better

on adversarial data than non-adversarial data for an individual signal, with and without

its added perturbation. Specifically, a label has leaked for a test signal if x∗ is classified

correctly but x is not. Label leaking is not possible in our experiments since we disjoint

crafting by discarding x when we craft x∗, as in [6], which is one of the reasons we have

used such a technique. However, we can still interpret the modulation classification PPV

obtained on i.i.d. populations of adversarial and non-adversarial test signals to determine

if models have been over trained with perturbations. This is because the intuition behind

label leaking is that ground truth based attacks perform a deterministic transform on data

that is highly correlated to the ground truth. As a consequence, if we define the PPV ratio

of a model as:

PPV ratio =
PPV(x∗)

PPV(x)
, (4.17)

then test sets with leaked labels will achieve a PPV ratio > 1.

To validate the presence and severity of label leaking in wireless experiments and contrast

those findings with those in relatively high dimension, zero noise computer vision works [5],

we implement the adversarial training methodology presented by Figure 4.10 with FGSM

attacks. In Table 4.2, we do not see evidence of label leaking, but we do see evidence that

stepLL training resulted in more robust models against iterative and FGSM attacks than

FGSM training.

4.4.4 Evaluation of Models Trained with Iterative Attacks

In [5], the authors found that adversarial training with iterative attacks did not train

models robust to iterative attacks. They hypothesized that they did not have the computa-

tional resources to train their Inception v3 [210] model on ImageNet [211] data with a large

100

Table 4.3: IterLL attacks are significantly more effective than stepLL attacks. StepLL training offer almost
no defense against iterLL attacks. We are able to achieve iterLL trained models with a small level of defense
against iterLL attacks, and higher defense against stepLL and FGSM attacks with no significant loss to
non-adversarial performance.

Training Scheme

PPV Clean stepLL iterLL

Training 99.85 99.85 99.89

Clean physical Test 96.35 96.80 96.65

FGSM physical Test 59.23 64.96 65.06

stepLL physical Test 68.67 70.39 76.21

iterLL physical Test 44.42 44.49 45.88

enough learning capacity to learn the complex distribution of iterative attacks. In [212], the

authors reduced the computational cost of iterative Projected Gradient Descent (PGD) [5]

attack training by generating Canadian Institute for Advanced Research (CIFAR)-10 and

CIFAR-100 [213] adversarial perturbations during training by using the gradient computed

for SGD, rather than computing it again. They achieve a moderate level of protection at a

very low computational cost.

In this work, we performed iterLL adversarial training using a RML2018.01A inspired

dataset to see what degree of protection we may obtain from iterLL and other attacks. We

do so without the dual-use of the gradient as in [212] because crafting perturbations during

training rather than after does not disjoint crafting as in [6]. Additionally, we hypothesized

that our relatively low dimension data (i.e., 8192 features/example for the RML2018.01A

inspired dataset versus 544509 average features/example for ImageNet [211]), relatively

smaller model (i.e., 18.2 × 106 parameters in our VGG10 inspired model versus 24 × 106

parameters in Inception v3), and several years of computational resource advancements

(i.e., Volta 100 versus Tesla K80 Graphics Processing Units (GPUs)) will render the dual-

use unnecessary.

In Table 4.3, we observed that iterLL attacks are 206% more effective than stepLL

attacks for our dataset, model, and attack parameters. Additionally, stepLL training offered

no significant defense against iterLL attacks, prompting the need for an iterLL training

scheme. The results of our iterLL training are very positive, showing an increased defense

against all attacks without losing non-adversarial performance. Most notably, it is the only

101

Table 4.4: Effect of model capacity on adversarial training, evaluated using physical test data. We find
that adversarial training prevents overfitting from occurring when training our VGG10 model scaled by
ρ = 4. We additionally find that stepLL perturbations crafted after adversarial training are more effective
against deeper models, indicating a model capacity trade-off between non-adversarial and adversarial test
classification PPV. Models that are too shallow additionally make lower confidence classifications than deep
models, such that they are easier to fool. “Clean” is short hand for non-adversarial data.

Training Scheme

ρ = 0.5 ρ = 1 ρ = 2 ρ = 4

PPV Clean stepLL Clean stepLL Clean stepLL Clean stepLL

Training 99.71 99.71 99.85 99.85 99.89 99.88 99.90 99.89

Clean physical Test 95.46 96.06 96.35 96.80 97.47 97.49 97.40 97.54

stepLL physical Test - 58.04 - 70.39 - 58.89 - 37.80

training scheme that achieved any level of protection against iterative attacks.

4.4.5 Model Capacity

In other works [5], the authors were unable to find a model deep enough to over fit in the

presence of adversarial training using the stepLL method. In their work, and in ours, model

width is scaled by increasing the number of convolutional filters in every convolutional layer

by a factor ρ. While our model utilizes batch normalization to some effect, we do not find

dropout to improve test-stage PPV.

In this work, we investigated the effectiveness of stepLL adversarial training as a reg-

ularizer in wireless experiments. We hypothesized that the relatively low dimension data,

relatively small models, and several years of computational resource improvements will make

it more feasible to scale to extreme ρ values.

In Table 4.4, we were able to scale ρ ∈ [0.5, 4] before running out of memory. We

found that at ρ = 4 the non-adversarial trained VGG10 began to over fit to training data

because it had a lower physical test data classification PPV than the ρ = 2 non-adversarial

trained model. However, with adversarial training, the model is regularized and physical

test data classificaiton PPV continues to increase with ρ. Additionally, deeper models were

more vulnerable to adversarial perturbations, which can be explained by [59], where it was

shown that FGSM perturbations increased the magnitude of activations by ε × n × m,

where m is the average value of weights in a layer and n is the number of weights in a

layer. We hypothesized that by increasing ρ, we are increasing n, such that perturbations,

all else equal, will have a greater impact on classification PPV. We tested this hypothesis

102

by computing the ratio of mean class score magnitudes between clean physical and stepLL

physical test data for adversarial trained models with ρ = 1 and ρ = 4. We obtained

resulting ratios of 0.39 and 0.33, failing to reject our hypothesis that perturbations increase

the magnitude of class scores, on average, proportional to the number of weights in each

layer of a CNN.

We observed that the shallow ρ = 0.5 model is also more vulnerable to attacks. One

potential explanation for this is it made lower confidence classifications that are easier to

fool. To test this, we computed, for physical test sets, the average difference in class scores

between the largest and second largest class scores for ρ = 0.5 and ρ = 1 adversarial trained

models. We found that they had an average top and second top class score difference of

71.97 and 91.11, respectively, failing to reject our hypothesis that the shallow model makes

less confident classifications.

Consequently, we determined that model width must be carefully managed in adversar-

ial training schemes to ensure that the model is deep enough to learn the non-adversarial

and adversarial datasets, deep enough to make high-confidence classifications that require

large changes to class scores to cause false positives, and shallow enough as not to be-

come vulnerable to the compounding attribute of attacks. Additionally, we concluded that

this trade-off is relatively advantageous for adversarial training of wireless spectrum sens-

ing, signal classification, and modulation classification when compared to computer vision

tasks, which tend to require much deeper models to learn relatively high dimension data

distributions that have large state spaces.

4.5 Chapter Summary

We performed in Section 4.4, and outlined the details in Section 4.2.2, the first physical

adversarial ML-based modulation class eavesdropping experiment. Given the significant

research interest in modulation classification [3, 39, 199, 214–217] and adversarial wireless

ML [76–82, 85, 86] this novel experiment is a significant real-world validation for many

theoretical works that have experimented largely with simulated channel models and signals.

In Section 4.3, we addressed two theoretical shortcomings we have seen in the design of

perturbations in other works having to do with the bandwidth and sign constraints of

signals.

Our simulations and experiments presented in chapter 4 yielded a number of findings

103

and confirmations to the state-of-the-art, including:

• Training a CNN offline using channel models can achieve high accuracy modulation

classification performance on physical signals.

• A constructive constraint can be added to adversarial perturbation crafting to enforce

adversarial amplification, in which the transmitter’s goals of maximizing communica-

tions capabilities do not conflict with those of evasion.

• A BWE constraint can be added to adversarial amplification, in which both evasion

and communication metrics can be improved at the cost of passing the perturbation

through a pulse shaping filter.

• Physical Adversarial amplification of a transmitter can reduce the classification accu-

racy of an eavesdropping receiver’s trained ML classifier to as low as guessing despite

phase, frequency, and amplitude noise sources from both the RFFE and the channel.

• Adversarial training of the eavesdropping receiver using simulated channel models can

achieve some level of defense against adversarial amplification, where the best results

are achieved when adversarial training is done using perturbations crafted from a fully

trained, i.i.d. non-adversarial model.

• Label leaking does not appear to occur in low-dimensional data domains.

• Parallel and cascade adversarial training schemes over-emphasize adversarial examples

during training, reducing testing accuracy for non-adversarial data. This defeats the

primary objective of adversarial training, which is to increase robustness without

sacrificing non-adversarial performance

• A measure of protection against iterative attacks is possible with iterLL training.

• The model width of the eavesdropping receiver must be carefully managed to achieve

an “elbow” point in the trade-off between non-adversarial and adversarial test per-

formance. Specifically, we found the CNN must be wide enough to make correct and

high confidence classifications, wide enough to have the learning capacity for both ad-

versarial and non-adversarial PDFs, and thin enough as not to compound the increase

to the loss function caused by perturbations.

104

Chapter 5

Conclusion & Future Work

In this dissertation, we began in chapter 1 by motivating our work, presenting the

state-of-the-art, technical challenges, and our contributions. The basics of the UL and

SL algorithms used in the research contribution were discussed in sections in chapter 2.

Specifically, CNNs and related SL algorithms were presented by Section 2.1, guidelines for

implementing SL by Section 2.2, DPGMMs and related UL algorithms by Section 2.3, and

adversarial perturbations by Section 2.4. Research contributions of this dissertation were

presented in chapter 3 and chapter 4, which secure localization networks from spoofers via

clustering and obfuscate communication links from SL-based eavesdroppers via perturba-

tions, respectively.

5.0.1 Research Achievements

The proposed opportunistic, self-organizing, stationary transmitter, jointly localizing

and classifying methodology demonstrated in chapter 3 that:

• Locating transmitters in low meta data scenarios with high accuracy is possible.

• The N = 229 spatial test set was able to recognize every statistically different RSS

population as verified by a Kruskal-Wallis (kW) test.

• That test classified the source radio of transmissions with a 76.4% indicator variable

PPV (93.7% when accounting for missed cluster detections).

• The detected transmitters were localized with an average of 1.71 meter variance and

1.19 meter bias.

105

• We confirmed the Gaussian assumption of our clustering algorithm by failing to deny

that the PointNet CNN’s location predictions were Gaussian distributed. We accom-

plished this verification via an AD test with critical statistics A∗2 = 1.0 and observed

statistics A2 = 0.39, 0.66 for x-axis and y-axis samples, respectively.

Our simulations and experiments presented in chapter 4 yielded a number of findings

and confirmations to the state-of-the-art, including:

• Training a CNN offline using channel models can achieve high accuracy modulation

classification performance on physical signals.

• A constructive constraint can be added to adversarial perturbation crafting to enforce

adversarial amplification, in which the transmitter’s goals of maximizing communica-

tions capabilities do not conflict with those of evasion.

• A BWE constraint can be added to adversarial amplification, in which both evasion

and communication metrics can be improved at the cost of passing the perturbation

through a pulse shaping filter.

• Physical Adversarial amplification of a transmitter can reduce the classification accu-

racy of an eavesdropping receiver’s trained ML classifier to as low as guessing despite

phase, frequency, and amplitude noise sources from both the RFFE and the channel.

• Adversarial training of the eavesdropping receiver using simulated channel models can

achieve some level of defense against adversarial amplification, where the best results

are achieved when adversarial training is done using perturbations crafted from a fully

trained, i.i.d. non-adversarial model.

• Label leaking does not appear to occur in low-dimensional data domains.

• Parallel and cascade adversarial training schemes over-emphasize adversarial examples

during training, reducing testing accuracy for non-adversarial data. This defeats the

primary objective of adversarial training, which is to increase robustness without

sacrificing non-adversarial performance

• A measure of protection against iterative attacks is possible with iterLL training.

106

• The model width of the eavesdropping receiver must be carefully managed to achieve

an “elbow” point in the trade-off between non-adversarial and adversarial test per-

formance. Specifically, we found the CNN must be wide enough to make correct and

high confidence classifications, wide enough to have the learning capacity for both ad-

versarial and non-adversarial PDFs, and thin enough as not to compound the increase

to the loss function caused by perturbations.

5.0.2 Open Questions

Based on the outcomes of the research presented in chapter 3, several open challenges

and opportunities for further research remain:

• The SL-based multilateration could be improved: The current state-of-the-art [155–

160] uses a de-noising auto encoder with unlabelled data and a CNN multilateration

algorithm. We attempted multiple data generation schemes, but determined we did

not have enough data to properly train a semi-supervised algorithm, and did not

gather unlabelled data. The PointNet CNN architecture was what worked best for

us, but our architecture design and hyper-parameter search was not exhaustive.

• A clustering algorithm: While a DPGMM seemed like the natural choice given the

data set, there exist a number of clustering algorithms that do not require the num-

ber of clusters to be specified, including affinity propagation [218], mean shift [219],

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [220], Or-

dering Points To Identify Cluster Structure (OPTICS) [221], and Balanced Iterative

Reducing and Clustering using Hierarchies (BIRCH) [222].

• Measure performance with different metrics: While we use bias, variance, MSE, and

precision metrics, there may exist other metrics that serve as a better comparison of

clustering in the context of beacon localization and verification. Potential metrics in-

clude precision, Receiver Operating Characteristic (ROC), and Area Under the Curve

(AUC).

• Capture a new data set: Costs constrained our number of receivers used, quality

of hardware, and duration of our experiment. This resulted in a data set that is

challenging at both the regression and clustering stages. Popular benchmarking data

sets are by design very large relative to the data’s variance such that results produced

107

from the data are low variance and reproducible. Of particular interest is the collection

of a TDoA set of features, which are more robust to adversarial attacks than RSS-

based features [57].

We acknowledge the complexity and breadth of the research area of demodulation eva-

sion by offering the following open challenges to the wireless ML security community:

• It is possible that our CNN simply do not have the learning capacity to learn all three

PDFs from the parallel adversarial training scheme, or the complex perturbations

from the cascade adversarial training scheme. We leave it to future work to determine

the right balance of model width with these training schemes and those factors already

researched in this chapter on the topic of model capacity.

• The task of maximizing the protection offered by the various adversarial training

schemes presented in this chapter is unique to each dataset and SL model. We leave

it to the reader to tune all hyper-parameters involved to improve the regularizing and

protective effects of adversarial training for their scenario. We also note here that we

did not pursue a determined tuning effort in this work to maximize regularization and

robustness, but merely to determine trends.

• While we did not investigate the use of distillation, masking, semi-supervised de-

tection, and network verification, we encourage the continued investigation of these

methods as viable counter-measures to adversarial perturbations.

• An analysis of countering black box attacks, which are lower assumption, lower per-

forming, and easier to implement in real systems. Such a study still has yet to be

studied in an physical, experimental setting.

• The use of ensemble training, or multiple “ultimate models” that vote in a weighted

scheme to determine classifications, will improve robustness and regularization of clas-

sifiers further, despite the full visibility of such a scheme to the adversary. We leave

this task as an open challenge, specifically to determine the trade-offs between bag-

ging, boosting, and stacking ensemble training schemes [179] in this scenario.

• The use of activation embedding regularization [209] in the low-dimension data space

of wireless signals.

108

Bibliography

[1] S. M. Kay, “The multifamily likelihood ratio test for multiple signal model detection,”

IEEE Signal Processing Letters, vol. 12, no. 5, pp. 369–371, May 2005.

[2] N. E. West and T. O’Shea, “Deep architectures for modulation recognition,” in 2017

IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN),

March 2017, pp. 1–6.

[3] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based radio signal

classification,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1,

pp. 168–179, 2018.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[5] A. Kurakin, I. Goodfellow, S. Bengio et al., “Adversarial examples in the physical

world,” 2016.

[6] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, “En-

semble adversarial training: Attacks and defenses,” arXiv preprint arXiv:1705.07204,

2017.

[7] N. Strom, “Scalable distributed dnn training using commodity gpu cloud computing,”

in Sixteenth Annual Conference of the International Speech Communication Associa-

tion, 2015.

[8] Y. Roh, G. Heo, and S. E. Whang, “A survey on data collection for machine learning:

a big data-ai integration perspective,” IEEE Transactions on Knowledge and Data

Engineering, 2019.

109

[9] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free approach to paralleliz-

ing stochastic gradient descent,” Advances in neural information processing systems,

vol. 24, pp. 693–701, 2011.

[10] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional

neural networks,” CoRR, vol. abs/1905.11946, 2019. [Online]. Available: http:

//arxiv.org/abs/1905.11946

[11] M. Bkassiny, Y. Li, and S. K. Jayaweera, “A survey on machine-learning techniques

in cognitive radios,” IEEE Communications Surveys and Tutorials, vol. 15, no. 3, pp.

1136–1159, Third 2013.

[12] M. A. Alsheikh, S. Lin, D. Niyato, and H. Tan, “Machine learning in wireless sensor

networks: Algorithms, strategies, and applications,” IEEE Communications Surveys

and Tutorials, vol. 16, no. 4, pp. 1996–2018, Fourthquarter 2014.

[13] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A survey of machine learn-

ing techniques applied to self-organizing cellular networks,” IEEE Communications

Surveys and Tutorials, vol. 19, no. 4, pp. 2392–2431, Fourthquarter 2017.

[14] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep learning for iot

big data and streaming analytics: A survey,” IEEE Communications Surveys and

Tutorials, vol. 20, no. 4, pp. 2923–2960, Fourthquarter 2018.

[15] J. Wang, C. Jiang, H. Zhang, Y. Ren, K. C. Chen, and L. Hanzo, “Thirty years of

machine learning: The road to pareto-optimal wireless networks,” IEEE Communi-

cations Surveys Tutorials, vol. 22, no. 3, pp. 1472–1514, 2020.

[16] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial neural networks-

based machine learning for wireless networks: A tutorial,” IEEE Communications

Surveys Tutorials, vol. 21, no. 4, pp. 3039–3071, 2019.

[17] A. L. Buczak and E. Guven, “A survey of data mining and machine learning methods

for cyber security intrusion detection,” IEEE Communications Surveys and Tutorials,

vol. 18, no. 2, pp. 1153–1176, Secondquarter 2016.

[18] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizutani,

“State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s in-

http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946

110

telligent network traffic control systems,” IEEE Communications Surveys and Tuto-

rials, vol. 19, no. 4, pp. 2432–2455, Fourthquarter 2017.

[19] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless networks: A

comprehensive survey,” IEEE Communications Surveys and Tutorials, vol. 20, no. 4,

pp. 2595–2621, Fourthquarter 2018.

[20] R. Kumar Dwivedi, S. Pandey, and R. Kumar, “A study on machine learning ap-

proaches for outlier detection in wireless sensor network,” in 2018 8th International

Conference on Cloud Computing, Data Science Engineering (Confluence), 2018, pp.

189–192.

[21] M. Kulin, C. Fortuna, E. De Poorter, D. Deschrijver, and I. Moerman, “Data-driven

design of intelligent wireless networks: An overview and tutorial,” Sensors, vol. 16,

06 2016.

[22] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wireless

networking: A survey,” CoRR, vol. abs/1803.04311, 2018. [Online]. Available:

http://arxiv.org/abs/1803.04311

[23] Y. Liu, S. Bi, Z. Shi, and L. Hanzo, “When machine learning meets big data: A

wireless communication perspective,” IEEE Vehicular Technology Magazine, vol. 15,

no. 1, pp. 63–72, 2020.

[24] T. J. O’Shea and J. Hoydis, “An introduction to machine learning communications

systems,” CoRR, vol. abs/1702.00832, 2017. [Online]. Available: http://arxiv.org/

abs/1702.00832

[25] D. Crevier, AI: The Tumultuous History of the Search for Artificial Intelligence. USA:

Basic Books, Inc., 1993.

[26] N. Benvenuto, M. Marchesi, F. Piazza, and A. Uncini, “Non linear satellite radio links

equalized using blind neural networks,” in [Proceedings] ICASSP 91: 1991 Interna-

tional Conference on Acoustics, Speech, and Signal Processing, 1991, pp. 1521–1524

vol.3.

http://arxiv.org/abs/1803.04311
http://arxiv.org/abs/1702.00832
http://arxiv.org/abs/1702.00832

111

[27] S. Benedetto, E. Biglieri, and R. Daffara, “Modeling and performance evaluation of

nonlinear satellite links-a volterra series approach,” IEEE Transactions on Aerospace

and Electronic Systems, vol. AES-15, no. 4, pp. 494–507, 1979.

[28] S. A. Billings, S. Chen, and M. J. Korenberg, “Identification of mimo non-linear

systems using a forward-regression orthogonal estimator,” 1989, address: London.

[Online]. Available: https://eprints.soton.ac.uk/251146/

[29] D. Tank and J. Hopfield, “Simple ’neural’ optimization networks: An a/d converter,

signal decision circuit, and a linear programming circuit,” IEEE Transactions on

Circuits and Systems, vol. 33, no. 5, pp. 533–541, 1986.

[30] J. Bruck and M. Blaum, “Neural networks, error-correcting codes, and polynomials

over the binary n-cube,” IEEE Transactions on Information Theory, vol. 35, no. 5,

pp. 976–987, 1989.

[31] S. Chen, G. Gibson, C. Cowan, and P. Grant, “Adaptive equalization of finite

non-linear channels using multilayer perceptrons,” Signal Processing, vol. 20, no. 2,

pp. 107 – 119, 1990. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/016516849090122F

[32] D. Kunz, “Channel assignment for cellular radio using neural networks,” IEEE Trans-

actions on Vehicular Technology, vol. 40, no. 1, pp. 188–193, 1991.

[33] B. Aazhang, B. . Paris, and G. C. Orsak, “Neural networks for multiuser detection

in code-division multiple-access communications,” IEEE Transactions on Communi-

cations, vol. 40, no. 7, pp. 1212–1222, 1992.

[34] W. . Fang, B. J. Sheu, O. T. . Chen, and J. Choi, “A vlsi neural processor for image

data compression using self-organization networks,” IEEE Transactions on Neural

Networks, vol. 3, no. 3, pp. 506–518, 1992.

[35] M. Ibnkahla, N. J. Bershad, J. Sombrin, and F. Castanie, “Neural network modeling

and identification of nonlinear channels with memory: algorithms, applications, and

analytic models,” IEEE Transactions on Signal Processing, vol. 46, no. 5, pp. 1208–

1220, 1998.

https://eprints.soton.ac.uk/251146/
http://www.sciencedirect.com/science/article/pii/016516849090122F
http://www.sciencedirect.com/science/article/pii/016516849090122F

112

[36] K. Iba, “Reactive power optimization by genetic algorithm,” IEEE Transactions on

Power Systems, vol. 9, no. 2, pp. 685–692, 1994.

[37] J. J. Hopfield, “Neural networks and physical systems with emergent collective com-

putational abilities,” Proceedings of the national academy of sciences, vol. 79, no. 8,

pp. 2554–2558, 1982.

[38] H. L. Southall, J. A. Simmers, and T. H. O’Donnell, “Direction finding in phased

arrays with a neural network beamformer,” IEEE Transactions on Antennas and

Propagation, vol. 43, no. 12, pp. 1369–1374, 1995.

[39] A. K. Nandi and E. E. Azzouz, “Algorithms for automatic modulation recognition of

communication signals,” IEEE Transactions on Communications, vol. 46, no. 4, pp.

431–436, 1998.

[40] F. C. Hoppensteadt and E. M. Izhikevich, “Pattern recognition via synchronization in

phase-locked loop neural networks,” IEEE Transactions on Neural Networks, vol. 11,

no. 3, pp. 734–738, 2000.

[41] R. C. Daniels, C. M. Caramanis, and R. W. Heath, “Adaptation in convolutionally

coded mimo-ofdm wireless systems through supervised learning and snr ordering,”

IEEE Transactions on Vehicular Technology, vol. 59, no. 1, pp. 114–126, 2010.

[42] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehicles: op-

portunities, barriers and policy recommendations,” Transportation Research Part A:

Policy and Practice, vol. 77, pp. 167–181, 2015.

[43] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso, A. Forechi,

L. F. R. Jesus, R. F. Berriel, T. M. Paixão, F. W. Mutz, T. Oliveira-Santos, and A. F.

de Souza, “Self-driving cars: A survey,” Clinical Orthopaedics and Related Research,

vol. abs/1901.04407, 2019. [Online]. Available: http://arxiv.org/abs/1901.04407

[44] C. Rödel, S. Stadler, A. Meschtscherjakov, and M. Tscheligi, “Towards autonomous

cars: The effect of autonomy levels on acceptance and user experience,” in

Proceedings of the 6th International Conference on Automotive User Interfaces and

Interactive Vehicular Applications, ser. AutomotiveUI ’14. New York, NY, USA:

http://arxiv.org/abs/1901.04407

113

Association for Computing Machinery, 2014, pp. 11:1–11:8. [Online]. Available:

http://doi.acm.org/10.1145/2667317.2667330

[45] M. Ibrahim, M. Torki, and M. Elnainay, “Cnn based indoor localization using rss

time-series,” 06 2018.

[46] S. A. Miller and B. R. Heard, “The environmental impact of autonomous

vehicles depends on adoption patterns,” Environmental Science & Technology,

vol. 50, no. 12, pp. 6119–6121, 2016, pMID: 27285419. [Online]. Available:

https://doi.org/10.1021/acs.est.6b02490

[47] R. Domı́nguez, E. Onieva, J. Alonso, J. Villagra, and C. González, “Lidar based

perception solution for autonomous vehicles,” in 2011 11th International Conference

on Intelligent Systems Design and Applications, Nov 2011, pp. 790–795.

[48] J. Janai, F. Güney, A. Behl, and A. Geiger, “Computer vision for autonomous vehicles:

Problems, datasets and state-of-the-art,” Clinical Orthopaedics and Related Research,

vol. abs/1704.05519, 2017. [Online]. Available: http://arxiv.org/abs/1704.05519

[49] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.

Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba, “End to

end learning for self-driving cars,” Clinical Orthopaedics and Related Research, vol.

abs/1604.07316, 2016. [Online]. Available: http://arxiv.org/abs/1604.07316

[50] J. Dickmann, J. Klappstein, M. Hahn, N. Appenrodt, H. Bloecher, K. Werber, and

A. Sailer, “Automotive radar the key technology for autonomous driving: From detec-

tion and ranging to environmental understanding,” in 2016 IEEE Radar Conference

(RadarConf), May 2016, pp. 1–6.

[51] W. Rahiman and Z. Zainal, “An overview of development GPS navigation for au-

tonomous car,” in 2013 IEEE 8th Conference on Industrial Electronics and Applica-

tions (ICIEA), June 2013, pp. 1112–1118.

[52] M. Zhou, X. Qu, and S. Jin, “On the impact of cooperative autonomous vehicles

in improving freeway merging: A modified intelligent driver model-based approach,”

IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 6, pp. 1422–

1428, June 2017.

http://doi.acm.org/10.1145/2667317.2667330
https://doi.org/10.1021/acs.est.6b02490
http://arxiv.org/abs/1704.05519
http://arxiv.org/abs/1604.07316

114

[53] D. Moser, P. Leu, V. Lenders, A. Ranganathan, F. Ricciato, and S. Capkun,

“Investigation of multi-device location spoofing attacks on air traffic control

and possible countermeasures,” in Proceedings of the 22nd Annual International

Conference on Mobile Computing and Networking, ser. MobiCom ’16. New York,

NY, USA: Association for Computing Machinery, 2016, p. 375–386. [Online].

Available: https://doi.org/10.1145/2973750.2973763

[54] M. Schäfer, P. Leu, V. Lenders, and J. Schmitt, “Secure motion verification using the

doppler effect,” in Proceedings of the 9th ACM Conference on Security & Privacy in

Wireless and Mobile Networks, 2016, pp. 135–145.

[55] M. Schäfer, V. Lenders, and J. Schmitt, “Secure track verification,” in 2015 IEEE

Symposium on Security and Privacy, 2015, pp. 199–213.

[56] M. Monteiro, A. Barreto, T. Kacem, J. Carvalho, D. Wijesekera, and P. Costa,

“Detecting malicious ads-b broadcasts using wide area multilateration,” in 2015

IEEE/AIAA 34th Digital Avionics Systems Conference (DASC). IEEE, 2015, pp.

4A3–1.

[57] S. Capkun and J.-P. Hubaux, “Secure positioning of wireless devices with application

to sensor networks,” in Proceedings IEEE 24th Annual Joint Conference of the IEEE

Computer and Communications Societies., vol. 3. IEEE, 2005, pp. 1917–1928.

[58] Y. Chen, W. Trappe, and R. P. Martin, “Attack detection in wireless localization,” in

IEEE INFOCOM 2007-26th IEEE International Conference on Computer Commu-

nications. IEEE, 2007, pp. 1964–1972.

[59] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial

examples,” 2015.

[60] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and defenses for

deep learning,” IEEE transactions on neural networks and learning systems, vol. 30,

no. 9, pp. 2805–2824, 2019.

[61] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, “The

limitations of deep learning in adversarial settings,” in 2016 IEEE European sympo-

sium on security and privacy (EuroS&P). IEEE, 2016, pp. 372–387.

https://doi.org/10.1145/2973750.2973763

115

[62] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical

black-box attacks against machine learning,” in Proceedings of the 2017 ACM on Asia

conference on computer and communications security, 2017, pp. 506–519.

[63] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversar-

ial perturbations,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017, pp. 1765–1773.

[64] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting adversarial

perturbations,” arXiv preprint arXiv:1702.04267, 2017.

[65] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik, and

A. Swami, “Practical black-box attacks against deep learning systems using

adversarial examples,” CoRR, vol. abs/1602.02697, 2016. [Online]. Available:

http://arxiv.org/abs/1602.02697

[66] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense to

adversarial perturbations against deep neural networks,” in 2016 IEEE Symposium

on Security and Privacy (SP). IEEE, 2016, pp. 582–597.

[67] O. Poursaeed, I. Katsman, B. Gao, and S. Belongie, “Generative adversarial pertur-

bations,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2018, pp. 4422–4431.

[68] N. Akhtar, J. Liu, and A. Mian, “Defense against universal adversarial perturbations,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2018, pp. 3389–3398.

[69] A. Fawzi, O. Fawzi, and P. Frossard, “Analysis of classifiers’ robustness to adversarial

perturbations,” Machine Learning, vol. 107, no. 3, pp. 481–508, 2018.

[70] W. Zhou, X. Hou, Y. Chen, M. Tang, X. Huang, X. Gan, and Y. Yang, “Transferable

adversarial perturbations,” in Proceedings of the European Conference on Computer

Vision (ECCV), 2018, pp. 452–467.

[71] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust adversarial

examples,” in Proceedings of the 35th International Conference on Machine Learning,

http://arxiv.org/abs/1602.02697

116

ser. Proceedings of Machine Learning Research, J. Dy and A. Krause,

Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 284–293. [Online]. Available:

https://proceedings.mlr.press/v80/athalye18b.html

[72] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song, “Natural adversarial

examples,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), June 2021, pp. 15 262–15 271.

[73] V. L. Thing and J. Wu, “Autonomous vehicle security: A taxonomy of attacks and

defences,” in 2016 IEEE International Conference on Internet of Things (iThings) and

IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical

and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 2016, pp. 164–

170.

[74] S. Prasanna and S. Rao, “An overview of wireless sensor networks applications and

security,” International Journal of Soft Computing and Engineering (IJSCE), vol. 2,

no. 2, pp. 2231–2307, 2012.

[75] M. Winkler, K.-D. Tuchs, K. Hughes, and G. Barclay, “Theoretical and practical

aspects of military wireless sensor networks,” Journal of Telecommunications and

Information Technology, pp. 37–45, 2008.

[76] M. Sadeghi and E. G. Larsson, “Adversarial attacks on deep-learning based

radio signal classification,” CoRR, vol. abs/1808.07713, 2018. [Online]. Available:

http://arxiv.org/abs/1808.07713

[77] B. Kim, Y. E. Sagduyu, K. Davaslioglu, T. Erpek, and S. Ulukus, “Over-the-air ad-

versarial attacks on deep learning based modulation classifier over wireless channels,”

2020.

[78] B. Flowers, R. M. Buehrer, and W. C. Headley, “Evaluating adversarial evasion at-

tacks in the context of wireless communications,” IEEE Transactions on Information

Forensics and Security, vol. 15, pp. 1102–1113, 2020.

[79] ——, “Communications aware adversarial residual networks for over the air evasion

attacks,” in MILCOM 2019 - 2019 IEEE Military Communications Conference (MIL-

COM), 2019, pp. 133–140.

https://proceedings.mlr.press/v80/athalye18b.html
http://arxiv.org/abs/1808.07713

117

[80] M. DelVecchio, V. Arndorfer, and W. C. Headley, “Investigating a spectral deception

loss metric for training machine learning-based evasion attacks,” Proceedings of the

2nd ACM Workshop on Wireless Security and Machine Learning, Jul 2020. [Online].

Available: http://dx.doi.org/10.1145/3395352.3402624

[81] J. Maroto, G. Bovet, and P. Frossard, “Safeamc: Adversarial training for robust

modulation recognition models,” 2021.

[82] L. Zhang, S. Lambotharan, G. Zheng, B. A. Sadhan, and F. Roli, “Countermeasures

against adversarial examples in radio signal classification,” IEEE Wireless Commu-

nications Letters, pp. 1–1, 2021.

[83] N. Carlini and D. Wagner, “Defensive distillation is not robust to adversarial exam-

ples,” arXiv preprint arXiv:1607.04311, 2016.

[84] J. H. Cho and B. Hariharan, “On the efficacy of knowledge distillation,” in Proceedings

of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 4794–

4802.

[85] R. Sahay, C. G. Brinton, and D. J. Love, “A deep ensemble-based wireless receiver

architecture for mitigating adversarial attacks in automatic modulation classification,”

IEEE Transactions on Cognitive Communications and Networking, pp. 1–1, 2021.

[86] K. W. McClintick and A. M. Wyglinski, “Reproduction of” evaluating adversarial

evasion attacks in the context of wireless communications” and” convolutional radio

modulation recognition networks”,” in Proceedings of the Workshop on Benchmarking

Cyber-Physical Systems and Internet of Things, 2021, pp. 1–5.

[87] D. Meng and H. Chen, “Magnet: A two-pronged defense against adversarial

examples,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, ser. CCS ’17. New York, NY, USA: Association

for Computing Machinery, 2017, p. 135–147. [Online]. Available: https:

//doi.org/10.1145/3133956.3134057

[88] G. Jin, S. Shen, D. Zhang, F. Dai, and Y. Zhang, “Ape-gan: Adversarial perturbation

elimination with gan,” in ICASSP 2019 - 2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 3842–3846.

http://dx.doi.org/10.1145/3395352.3402624
https://doi.org/10.1145/3133956.3134057
https://doi.org/10.1145/3133956.3134057

118

[89] B. Flowers, R. M. Buehrer, and W. C. Headley, “Evaluating adversarial evasion at-

tacks in the context of wireless communications,” 2019.

[90] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statistical

view of boosting,” Annals of Statistics, vol. 28, p. 2000, 1998.

[91] M. A. Nielsen, “Neural networks and deep learning,” Determination Press, 2015.

[92] S. Y. Fei-Fei Li, Justin Johnson, “Cs231n convolutional neural networks for visual

recognition,” http://cs231n.github.io/, Stanford University, April 2018.

[93] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper

Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[94] S. Kay, Fundamentals of Statistical Signal Processing: Detection theory, ser. Prentice

Hall Signal Processing Series. Prentice-Hall PTR, 1998. [Online]. Available:

https://books.google.com/books?id=vA9LAQAAIAAJ

[95] T. S. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling, “Gauge equivariant

convolutional networks and the icosahedral CNN,” CoRR, vol. abs/1902.04615, 2019.

[Online]. Available: http://arxiv.org/abs/1902.04615

[96] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-

chines,” in Proceedings of the 27th International Conference on Machine Learning

(ICML-10), J. Furnkranz and T. Joachims, Eds., 2010, pp. 807–814.

[97] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification,” CoRR, vol. abs/1502.01852,

2015. [Online]. Available: http://arxiv.org/abs/1502.01852

[98] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu, “Advances in optimizing

recurrent networks,” CoRR, vol. abs/1212.0901, 2012. [Online]. Available:

http://arxiv.org/abs/1212.0901

[99] T. Tieleman and G. Hinton, “RMSprop Gradient Optimization.” [Online]. Available:

http://www.cs.toronto.edu/∼{}tijmen/csc321/slides/lecture slides lec6.pdf

[100] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for

online learning and stochastic optimization,” EECS Department, University of

https://books.google.com/books?id=vA9LAQAAIAAJ
http://arxiv.org/abs/1902.04615
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1212.0901
http://www.cs.toronto.edu/~{}tijmen/csc321/slides/lecture_slides_lec6.pdf

119

California, Berkeley, Tech. Rep. UCB/EECS-2010-24, Mar 2010. [Online]. Available:

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-24.html

[101] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,

vol. abs/1412.6980, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980

[102] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever,

“Deep double descent: Where bigger models and more data hurt,” CoRR, vol.

abs/1912.02292, 2019. [Online]. Available: http://arxiv.org/abs/1912.02292

[103] N. Qian, “On the momentum term in gradient descent learning algorithms,”

Neural Networks, vol. 12, no. 1, pp. 145 – 151, 1999. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0893608098001166

[104] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free approach

to parallelizing stochastic gradient descent,” in Advances in Neural Information

Processing Systems, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,

and K. Q. Weinberger, Eds., vol. 24. Curran Associates, Inc., 2011,

pp. 693–701. [Online]. Available: https://proceedings.neurips.cc/paper/2011/file/

218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf

[105] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. a. Ranzato,

A. Senior, P. Tucker, K. Yang, Q. Le, and A. Ng, “Large scale distributed

deep networks,” in Advances in Neural Information Processing Systems, F. Pereira,

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds., vol. 25. Curran Associates,

Inc., 2012, pp. 1223–1231. [Online]. Available: https://proceedings.neurips.cc/paper/

2012/file/6aca97005c68f1206823815f66102863-Paper.pdf

[106] B. McMahan and M. Streeter, “Delay-tolerant algorithms for asynchronous

distributed online learning,” in Advances in Neural Information Processing

Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and

K. Q. Weinberger, Eds., vol. 27. Curran Associates, Inc., 2014, pp.

2915–2923. [Online]. Available: https://proceedings.neurips.cc/paper/2014/file/

5cce8dede893813f879b873962fb669f-Paper.pdf

[107] S. Zhang, A. Choromanska, and Y. LeCun, “Deep learning with elastic averaging

sgd,” 2015.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-24.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1912.02292
http://www.sciencedirect.com/science/article/pii/S0893608098001166
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/218a0aefd1d1a4be65601cc6ddc1520e-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5cce8dede893813f879b873962fb669f-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5cce8dede893813f879b873962fb669f-Paper.pdf

120

[108] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-

ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga,

S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-

war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden,

M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: Large-scale machine

learning on heterogeneous distributed systems,” 2016.

[109] H. Robbins, “A stochastic approximation method,” Annals of Mathematical Statistics,

vol. 22, pp. 400–407, 2007.

[110] J. Lucas, R. S. Zemel, and R. B. Grosse, “Aggregated momentum: Stability

through passive damping,” CoRR, vol. abs/1804.00325, 2018. [Online]. Available:

http://arxiv.org/abs/1804.00325

[111] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” CoRR, vol.

abs/1212.5701, 2012. [Online]. Available: http://arxiv.org/abs/1212.5701

[112] T. Dozat, “Incorporating nesterov momentum into adam,” 2016.

[113] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and beyond,” CoRR,

vol. abs/1904.09237, 2019. [Online]. Available: http://arxiv.org/abs/1904.09237

[114] I. Loshchilov and F. Hutter, “Fixing weight decay regularization in adam,” CoRR,

vol. abs/1711.05101, 2017. [Online]. Available: http://arxiv.org/abs/1711.05101

[115] J. Ma and D. Yarats, “Quasi-hyperbolic momentum and adam for deep learning,”

CoRR, vol. abs/1810.06801, 2018. [Online]. Available: http://arxiv.org/abs/1810.

06801

[116] A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach, and

J. Martens, “Adding gradient noise improves learning for very deep networks,” 2015.

[117] D. Mishkin and J. Matas, “All you need is a good init,” 2016.

[118] S. K. Kumar, “On weight initialization in deep neural networks,” CoRR, vol.

abs/1704.08863, 2017. [Online]. Available: http://arxiv.org/abs/1704.08863

http://arxiv.org/abs/1804.00325
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1904.09237
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1810.06801
http://arxiv.org/abs/1810.06801
http://arxiv.org/abs/1704.08863

121

[119] C. Cortes, M. Mohri, and A. Rostamizadeh, “L2 regularization for learning kernels,”

arXiv preprint arXiv:1205.2653, 2012.

[120] Y. Li and F. Liu, “Whiteout: Gaussian adaptive noise regularization in deep neural

networks,” 2018.

[121] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” Journal

of Machine Learning Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available:

http://jmlr.org/papers/v15/srivastava14a.html

[122] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by

reducing internal covariate shift,” in Proceedings of the 32nd International Confer-

ence on International Conference on Machine Learning - Volume 37, ser. ICML’15.

JMLR.org, 2015, pp. 448–456.

[123] ——, “Batch normalization: Accelerating deep network training by reducing internal

covariate shift,” in International conference on machine learning. PMLR, 2015, pp.

448–456.

[124] M. Kulin, T. Kazaz, I. Moerman, and E. D. Poorter, “End-to-end learning from

spectrum data: A deep learning approach for wireless signal identification in

spectrum monitoring applications,” CoRR, vol. abs/1712.03987, 2017. [Online].

Available: http://arxiv.org/abs/1712.03987

[125] R. N. Bracewell and R. N. Bracewell, The Fourier transform and its applications.

McGraw-Hill New York, 1986, vol. 31999.

[126] J. Neter, M. H. Kutner, C. J. Nachtsheim, W. Wasserman et al., “Applied linear

statistical models,” 1996.

[127] K. P. F.R.S., “On lines and planes of closest fit to systems of points in

space,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal

of Science, vol. 2, no. 11, pp. 559–572, 1901. [Online]. Available: https:

//doi.org/10.1080/14786440109462720

[128] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics

and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–52, 1987.

http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1712.03987
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720

122

[129] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural

Information Processing Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 2672–2680.

[Online]. Available: http://papers.nips.cc/paper/5423-generative-adversarial-nets.

pdf

[130] D. P. Kingma and M. Welling, “An introduction to variational autoencoders,”

Foundations and Trends in Machine Learning, vol. 12, no. 4, pp. 307 – 392, 2019.

[Online]. Available: http://dx.doi.org/10.1561/2200000056

[131] S. Chib and E. Greenberg, “Understanding the metropolis-hastings algorithm,” The

american statistician, vol. 49, no. 4, pp. 327–335, 1995.

[132] C. K. Carter and R. Kohn, “On gibbs sampling for state space models,” Biometrika,

vol. 81, no. 3, pp. 541–553, 1994.

[133] R. M. Neal, “Annealed importance sampling,” Statistics and computing, vol. 11, no. 2,

pp. 125–139, 2001.

[134] W. R. Gilks and P. Wild, “Adaptive rejection sampling for gibbs sampling,” Journal of

the Royal Statistical Society: Series C (Applied Statistics), vol. 41, no. 2, pp. 337–348,

1992.

[135] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” J.

Mach. Learn. Res., vol. 13, no. null, pp. 281–305, Feb. 2012.

[136] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and

model selection.” Morgan Kaufmann, 1995, pp. 1137–1143.

[137] A. Liaw, M. Wiener et al., “Classification and regression by randomforest,” R news,

vol. 2, no. 3, pp. 18–22, 2002.

[138] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning

and an application to boosting,” Journal of computer and system sciences, vol. 55,

no. 1, pp. 119–139, 1997.

[139] M. Kalli, J. Griffin, and S. Walker, “Slice sampling mixture models,” Statistics and

Computing, vol. 21, pp. 93–105, 01 2011.

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://dx.doi.org/10.1561/2200000056

123

[140] D. M. Blei and M. I. Jordan, “Variational inference for dirichlet process mixtures,”

Bayesian Analysis, vol. 1, pp. 121–144, 2005.

[141] J. Chen, J. Zhu, Y. W. Teh, and T. Zhang, “Stochastic expec-

tation maximization with variance reduction,” in Advances in Neural In-

formation Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle,

K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates,

Inc., 2018, pp. 7967–7977. [Online]. Available: http://papers.nips.cc/paper/

8021-stochastic-expectation-maximization-with-variance-reduction.pdf

[142] T. Rydén, “Em versus markov chain monte carlo for estimation of hidden markov

models: a computational perspective,” Bayesian Analysis, vol. 3, no. 4, p. 659–688,

2008. [Online]. Available: https://projecteuclid.org/euclid.ba/1340370402

[143] T. J. O’Shea, J. Corgan, and T. C. Clancy, “Convolutional radio modulation recog-

nition networks,” in International Conference on Engineering Applications of Neural

Networks. Springer, 2016, pp. 213–226.

[144] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep learning based radio

signal classification,” IEEE Journal of Selected Topics in Signal Processing, vol. 12,

no. 1, pp. 168–179, Feb 2018.

[145] Y. Cui and S. S. Ge, “Autonomous vehicle positioning with gps in urban canyon

environments,” IEEE transactions on robotics and automation, vol. 19, no. 1, pp.

15–25, 2003.

[146] I.-S. Koh and K. Sarabandi, “Polarimetric channel characterization of foliage for per-

formance assessment of gps receivers under tree canopies,” IEEE Transactions on

Antennas and Propagation, vol. 50, no. 5, pp. 713–726, 2002.

[147] R. L. Fante and J. J. Vaccaro, “Wideband cancellation of interference in a gps receive

array,” IEEE Transactions on Aerospace and Electronic systems, vol. 36, no. 2, pp.

549–564, 2000.

[148] R. H. Mitch, R. C. Dougherty, M. L. Psiaki, S. P. Powell, B. W. O’Hanlon, J. A.

Bhatti, and T. E. Humphreys, “Signal characteristics of civil gps jammers,” in Pro-

http://papers.nips.cc/paper/8021-stochastic-expectation-maximization-with-variance-reduction.pdf
http://papers.nips.cc/paper/8021-stochastic-expectation-maximization-with-variance-reduction.pdf
https://projecteuclid.org/euclid.ba/1340370402

124

ceedings of the 24th International Technical Meeting of the Satellite Division of The

Institute of Navigation (ION GNSS 2011), 2011, pp. 1907–1919.

[149] K. A. Fisher, “The navigation potential of signals of opportunity-based time difference

of arrival measurements,” 2005.

[150] J. F, Raquet, and M. Mikel, “Issues and approaches for navigation using signals of

opportunity,” 01 2007.

[151] J. Morales, P. F. Roysdon, and Z. M. Kassas, “Signals of opportunity aided inertial

navigation,” 2016.

[152] C. Yang, T. Nguyen, and E. Blasch, “Mobile positioning via fusion of mixed signals of

opportunity,” IEEE Aerospace and Electronic Systems Magazine, vol. 29, no. 4, pp.

34–46, 2014.

[153] J. A. McEllroy, “Navigation using signals of opportunity in the am transmission

band,” AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL

OF ENGINEERING, Tech. Rep., 2006.

[154] I. Guvenc and C.-C. Chong, “A survey on toa based wireless localization and nlos

mitigation techniques,” IEEE Communications Surveys & Tutorials, vol. 11, no. 3,

pp. 107–124, 2009.

[155] V. Moghtadaiee, A. G. Dempster, and S. Lim, “Indoor localization using fm radio

signals: A fingerprinting approach,” in 2011 International Conference on Indoor Po-

sitioning and Indoor Navigation, 2011, pp. 1–7.

[156] C. Xiao, D. Yang, Z. Chen, and G. Tan, “3-d ble indoor localization based on denoising

autoencoder,” IEEE Access, vol. 5, pp. 12 751–12 760, 2017.

[157] X. Zhang, J. Wang, Q. Gao, X. Ma, and H. Wang, “Device-free wireless localization

and activity recognition with deep learning,” in 2016 IEEE International Conference

on Pervasive Computing and Communication Workshops (PerCom Workshops), 2016,

pp. 1–5.

[158] M. Mohammadi, A. Al-Fuqaha, M. Guizani, and J. Oh, “Semisupervised deep rein-

forcement learning in support of iot and smart city services,” IEEE Internet of Things

Journal, vol. 5, no. 2, pp. 624–635, 2018.

125

[159] M. Ibrahim, M. Torki, and M. Elnainay, “Cnn based indoor localization using rss

time-series,” 06 2018.

[160] A. Niitsoo, T. Edelhäußer, and C. Mutschler, “Convolutional neural networks for

position estimation in tdoa-based locating systems,” in 2018 International Conference

on Indoor Positioning and Indoor Navigation (IPIN), 2018, pp. 1–8.

[161] I. N. Sneddon, Fourier transforms. Courier Corporation, 1995.

[162] P. P. Gandhi and S. A. Kassam, “Optimality of the cell averaging cfar detector,”

IEEE Transactions on Information Theory, vol. 40, no. 4, pp. 1226–1228, 1994.

[163] R. Zhou, Y. Xiong, G. Xing, L. Sun, and J. Ma, “Zifi: Wireless lan discovery via

zigbee interference signatures,” in Proceedings of the sixteenth annual international

conference on Mobile computing and networking, 2010, pp. 49–60.

[164] A. Norrdine, “An algebraic solution to the multilateration problem,” in Proceedings of

the 15th international conference on indoor positioning and indoor navigation, Sydney,

Australia, vol. 1315, 2012.

[165] S. Sonoda and N. Murata, “Neural network with unbounded activation functions

is universal approximator,” Applied and Computational Harmonic Analysis, vol. 43,

no. 2, pp. 233–268, 2017.

[166] J. T. Chiang, J. J. Haas, J. Choi, and Y.-C. Hu, “Secure location verification us-

ing simultaneous multilateration,” IEEE Transactions on Wireless Communications,

vol. 11, no. 2, pp. 584–591, 2011.

[167] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and

Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[168] S.-h. Jung, B.-c. Moon, and D. Han, “Unsupervised learning for crowdsourced indoor

localization in wireless networks,” IEEE Transactions on Mobile Computing, vol. 15,

no. 11, pp. 2892–2906, 2015.

[169] L. Li, W. Yang, and G. Wang, “Hiwl: An unsupervised learning algorithm for indoor

wireless localization,” in 2013 12th IEEE International Conference on Trust, Security

and Privacy in Computing and Communications. IEEE, 2013, pp. 1747–1753.

126

[170] Y. Li, X. Hu, Y. Zhuang, Z. Gao, P. Zhang, and N. El-Sheimy, “Deep reinforcement

learning (drl): Another perspective for unsupervised wireless localization,” IEEE In-

ternet of Things Journal, vol. 7, no. 7, pp. 6279–6287, 2019.

[171] L. Li, W. Yang, M. Z. Alam Bhuiyan, and G. Wang, “Unsupervised learning of indoor

localization based on received signal strength,” Wireless Communications and Mobile

Computing, vol. 16, no. 15, pp. 2225–2237, 2016.

[172] K. W. McClintick, M. Page, T. Wickramarathne, and A. M. Wyglinski, “Machine

learning-based roadside vehicular traffic localization via opportunistic wireless sens-

ing,” in 2019 IEEE Global Conference on Signal and Information Processing (Glob-

alSIP), 2019, pp. 1–5.

[173] R. Kaune, “Accuracy studies for tdoa and toa localization,” in 2012 15th International

Conference on Information Fusion. IEEE, 2012, pp. 408–415.

[174] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets

for 3d classification and segmentation,” CoRR, vol. abs/1612.00593, 2016. [Online].

Available: http://arxiv.org/abs/1612.00593

[175] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, “Unsupervised learning of

invariant feature hierarchies with applications to object recognition,” in 2007 IEEE

conference on computer vision and pattern recognition. IEEE, 2007, pp. 1–8.

[176] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional

neural network,” in 2017 International Conference on Engineering and Technology

(ICET). Ieee, 2017, pp. 1–6.

[177] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification,” in Proceedings of the IEEE international

conference on computer vision, 2015, pp. 1026–1034.

[178] D. Opitz and R. Maclin, “Popular ensemble methods: An empirical study,” Journal

of artificial intelligence research, vol. 11, pp. 169–198, 1999.

[179] M. Sewell, “Ensemble learning,” RN, vol. 11, no. 02, pp. 1–34, 2008.

[180] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

http://arxiv.org/abs/1612.00593

127

[181] J. Tellinghuisen, “Least squares with non-normal data: estimating experimental vari-

ance functions,” Analyst, vol. 133, no. 2, pp. 161–166, 2008.

[182] Y. Zhou, J. Li, and L. Lamont, “Multilateration localization in the presence of anchor

location uncertainties,” in 2012 IEEE Global Communications Conference (GLOBE-

COM). IEEE, 2012, pp. 309–314.

[183] C. Jo and C. Lee, “Multilateration method based on the variance of estimated distance

in range-free localisation,” Electronics Letters, vol. 52, no. 12, pp. 1078–1080, 2016.

[184] A. Savvides, H. Park, and M. B. Srivastava, “The n-hop multilateration primitive

for node localization problems,” Mobile Networks and Applications, vol. 8, no. 4, pp.

443–451, 2003.

[185] “Ts508 quickstart guide - maxitpms,” https://www.maxitpms.com/u/cms/www/

201804/TS508 Quick%20Guide V3.pdf, accessed: 2022-01-01.

[186] A. Kolodgie, P. Berges, R. Burrow, M. Carman, J. Collins, S. Bair, G. D. Moy,

J. M. Ernst, and A. J. Michaels, “Enhanced tpms security through acceleration timed

transmissions,” in MILCOM 2017 - 2017 IEEE Military Communications Conference

(MILCOM), 2017, pp. 35–39.

[187] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis,”

Journal of the American statistical Association, vol. 47, no. 260, pp. 583–621, 1952.

[188] A. Tharwat, “Classification assessment methods,” Applied Computing and Informat-

ics, 2020.

[189] W. Stefansky, “Rejecting outliers in factorial designs,” Technometrics, vol. 14, no. 2,

pp. 469–479, 1972.

[190] F. W. Scholz and M. A. Stephens, “K-sample anderson–darling tests,” Journal of the

American Statistical Association, vol. 82, no. 399, pp. 918–924, 1987.

[191] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense of

security: Circumventing defenses to adversarial examples,” in International conference

on machine learning. PMLR, 2018, pp. 274–283.

https://www.maxitpms.com/u/cms/www/201804/TS508_Quick%20Guide_V3.pdf
https://www.maxitpms.com/u/cms/www/201804/TS508_Quick%20Guide_V3.pdf

128

[192] ——, “Obfuscated gradients give a false sense of security: Circumventing defenses

to adversarial examples,” in Proceedings of the 35th International Conference on

Machine Learning, ser. Proceedings of Machine Learning Research, J. Dy and

A. Krause, Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 274–283. [Online]. Available:

https://proceedings.mlr.press/v80/athalye18a.html

[193] Y.-S. Wang, T.-W. Weng, and L. Daniel, “Verification of neural network control policy

under persistent adversarial perturbation,” arXiv preprint arXiv:1908.06353, 2019.

[194] C. R. Serrano, P. M. Sylla, and M. A. Warren, “Generate and verify: Semantically

meaningful formal analysis of neural network perception systems,” arXiv preprint

arXiv:2012.09313, 2020.

[195] D. Gopinath, G. Katz, C. S. Pasareanu, and C. Barrett, “Deepsafe: A data-driven

approach for checking adversarial robustness in neural networks,” arXiv preprint

arXiv:1710.00486, 2017.

[196] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An

efficient smt solver for verifying deep neural networks,” in International Conference

on Computer Aided Verification. Springer, 2017, pp. 97–117.

[197] N. S. Alagha and P. Kabal, “Generalized raised-cosine filters,” IEEE Transactions on

Communications, vol. 47, no. 7, pp. 989–997, 1999.

[198] I. W. Selesnick and C. S. Burrus, “Generalized digital butterworth filter design,”

IEEE Transactions on Signal Processing, vol. 46, no. 6, pp. 1688–1694, 1998.

[199] N. E. West and T. J. O’Shea, “Deep architectures for modulation recognition,” 2017.

[200] F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/fchollet/keras

[201] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov,

“Improving neural networks by preventing co-adaptation of feature detectors,” arXiv

preprint arXiv:1207.0580, 2012.

[202] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward

neural networks,” in Proceedings of the thirteenth international conference on artificial

intelligence and statistics. JMLR Workshop and Conference Proceedings, 2010, pp.

249–256.

https://proceedings.mlr.press/v80/athalye18a.html
https://github.com/fchollet/keras

129

[203] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in

Proceedings of the fourteenth international conference on artificial intelligence and

statistics. JMLR Workshop and Conference Proceedings, 2011, pp. 315–323.

[204] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow:

Large-scale machine learning on heterogeneous distributed systems,” CoRR, vol.

abs/1603.04467, 2016. [Online]. Available: http://arxiv.org/abs/1603.04467

[205] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[206] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and

S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,”

in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates,

Inc., 2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[207] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet

and the impact of residual connections on learning,” in Thirty-First AAAI Conference

on Artificial Intelligence, 2017.

[208] D. Wu, Y. Wang, S.-T. Xia, J. Bailey, and X. Ma, “Skip connections matter: On

the transferability of adversarial examples generated with resnets,” arXiv preprint

arXiv:2002.05990, 2020.

[209] T. Na, J. H. Ko, and S. Mukhopadhyay, “Cascade adversarial machine learning reg-

ularized with a unified embedding,” arXiv preprint arXiv:1708.02582, 2017.

http://arxiv.org/abs/1603.04467
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

130

[210] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the in-

ception architecture for computer vision,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.

[211] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-

scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision

and Pattern Recognition. Ieee, 2009, pp. 248–255.

[212] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis,

G. Taylor, and T. Goldstein, “Adversarial training for free!” arXiv preprint

arXiv:1904.12843, 2019.

[213] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny im-

ages,” 2009.

[214] H. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and

Modulation Theory, ser. Detection, Estimation, and Modulation Theory. Wiley,

2004. [Online]. Available: https://books.google.com/books?id=K5XJC fMMAwC

[215] H. L. V. Trees, Detection, Estimation, and Modulation Theory: Radar-Sonar Signal

Processing and Gaussian Signals in Noise. Melbourne, FL, USA: Krieger Publishing

Co., Inc., 1992.

[216] C. Park, J. Choi, S. Nah, W. Jang, and D. Y. Kim, “Automatic modulation recog-

nition of digital signals using wavelet features and svm,” in 2008 10th International

Conference on Advanced Communication Technology, vol. 1, 2008, pp. 387–390.

[217] T. J. O’Shea and J. Corgan, “Convolutional radio modulation recognition networks,”

CoRR, vol. abs/1602.04105, 2016. [Online]. Available: http://arxiv.org/abs/1602.

04105

[218] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,”

science, vol. 315, no. 5814, pp. 972–976, 2007.

[219] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space

analysis,” IEEE Transactions on pattern analysis and machine intelligence, vol. 24,

no. 5, pp. 603–619, 2002.

https://books.google.com/books?id=K5XJC_fMMAwC
http://arxiv.org/abs/1602.04105
http://arxiv.org/abs/1602.04105

131

[220] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for

discovering clusters in large spatial databases with noise.” in kdd, vol. 96, no. 34,

1996, pp. 226–231.

[221] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: Ordering points

to identify the clustering structure,” ACM Sigmod record, vol. 28, no. 2, pp. 49–60,

1999.

[222] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data clustering method

for very large databases,” ACM sigmod record, vol. 25, no. 2, pp. 103–114, 1996.

	List of Figures
	List of Tables
	Introduction
	Motivation
	State-of-the-Art
	Technical Challenges
	Contributions
	Contents & Structure
	Related Works

	An Overview of Related Machine Learning Topics
	SL Overview
	LSR
	Logistic/Softmax Regression
	CNN

	SL Guidelines
	Weight Updates
	Weight Initialization
	Model Regularization
	Data Representation
	Data Pre-Processing
	Data Augmentation
	Hyper-Parameter Validation
	Ensemble Learning

	UL and Mixture Models
	Adversarial Perturbations
	Chapter Summary

	Machine Learning-Based Parameterized Fingerprinting for Unknown Number of Transmitters
	Introduction
	Overview of Localization Model
	Proposed Multilateration Framework
	Signal Detection and Pre-Processing
	Input Feature Estimation
	Multilateration
	Inference

	Experimental Results
	Experiment Implementation Details
	Label Generation Via Surveying
	CNN Training
	CNN Testing & UL Inference

	Chapter Summary

	Physical Eavesdropper Evasion: Signal Dependent Perturbation Design and Adversarial Training
	Introduction
	Assumptions

	System Model
	Signal Dependent Waveforms and Classifier
	Adversarial Training Waveforms and Classifier
	Adversary Goals and Description

	Signal Dependent Perturbation Design
	Constructive Perturbations
	Bandwidth Equivalent Perturbations
	Constraint Analysis

	Adversarial Training
	Evaluation of Non-Adversarial Model
	Evaluation of Cascade and Parallel Models
	Label Leaking
	Evaluation of Models Trained with Iterative Attacks
	Model Capacity

	Chapter Summary

	Conclusion & Future Work
	Research Achievements
	Open Questions

	Bibliography

