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Abstract

Deep learning allows mobile applications to provide novel and useful fea-

tures. However, the current deep inference paradigm is built on top of uti-

lizing server-centric deep learning models, leading to high demand for com-

putational resources. For the resources-constrained platforms such as mobile

devices, the model with low computational cost and memory requirement is

more desired. Besides the current studies on model compression methods, we

addressed the resource-efficiency problem from the following four aspects:

1) Collaborative inference. Traditional paradigms to support mobile deep in-

ference falls into either cloud-based or on-device—both require access to an

entire pre-trained model. As such, the efficacy of mobile deep inference is

limited by mobile network conditions and computational capacity. In this

study we investigate collaborative inference, a means to split inference com-

putation between mobile devices and cloud servers, to address the limitations

of traditional inference through techniques such as image compression or

model partition.

2) Recurrent attention model (RAM). As an alternative of expensive CNN,

RAM was proposed as a computationally efficient model for CV tasks. In

this thesis, we investigate the attention model for classification problems in-

volving multiple ROIs. We design a double RNN architecture to disentangle

the potential conflict in RAM, and propose a reward mechanism to train the

model using the guidance information of ROIs.



3) Dynamic inference, an emerging technique that reduces the computational

cost of deep neural networks. One way to achieve dynamic inference is

to leverage multi-branch neural networks that apply different computations

on input data by following different branches. In this study, we investigate

the problem of designing a flexible multi-branch network and early-exiting

policies that can adapt to the resource consumption to individual inference

request. We propose a lightweight branch structure that also provides fine-

grained flexibility for early-exiting and leverages the Markov decision pro-

cess (MDP) to automatically learn the early-exiting policies.

4) Resource-efficient Multi-Task Learning. Multi-task learning (MTL) is a

promising paradigm for improving the test accuracy of deep learning mod-

els that have to train with limited datasets. In this study, we investigate the

problem of Resource-efficient Multi-Task Learning (MTL), where the goal is

to design a resource-friendly model that suits resource-constrained inference

environments. We proposed a novel solution for fine-grained parameter shar-

ing, called FiShNet, which can learn how to share parameters directly on the

training data. FiShNet can achieve high accuracy comparable to soft-sharing

approaches, while only consuming a constant computational and memory

cost per task.
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1

Introduction

1.1 Motivation

Deep convolutional neural networks (CNNs) have achieved good accuracy on computer

vision tasks such as image classification [5, 6, 7], object detection [8, 9, 10], semantic

segmentation [11, 12, 13]. Such flourishing can be attributed to the deep multi-layer ar-

chitectures of CNN, which lead to high model capacity and very strong feature extracting

ability. The modern CNNs can easily have tens, hundreds and even thousands layers [6].

So the model can fit and learn on large datasets consisting of millions of samples.

However, the accuracy improvement is often accompanied by higher demand for com-

putational resources. For example, the ResNet-50 has 3.8 billion FLOPs for computa-

tional cost and 23 million trainable parameters, and the VGG-16 has 15.3 billion FLOPs

and 138 million parameters. In many real-world applications, visual recognition tasks

are performed on computationally resource-constrained platforms, e.g. mobile phones,

robotics, self-driving car. These platforms either are sensitive to energy cost so can’t sup-

port intensive computations, or have limited memory space so can’t accommodate large

models. To utilize these resource-intensive models in deployment scenarios such as mo-

1



1.1 MOTIVATION

bile devices, prior work proposed techniques such as model pruning [14, 15], low-rank

factorization [16, 17], knowledge distillation [18, 19], and efficient CNN [20, 21].

The above previous studies mainly focus on the view of models. I considered the effi-

cient inference problem from a complementary direction, i.e. making use of properties of

the tasks and datasets. As the basic inductive biases of our works, we have the following

assumptions: 1) Attention assumption: the goals of some CV tasks are only relevant

to the information in one or some regions of the image. 2) Instance-difficulty assump-

tion: for some CV tasks, the difficulty of inference is varying from sample to sample. 3)

Multi-task assumption: some CV tasks can share the same features.

It is not hard to see how the three assumptions are related to the goal of efficient

inference. The traditional neural networks apply the same computation on all regions

of an image and all instances of a task. But the attention assumption implies that it is

not necessary to scan over the entire image for some tasks. And the instance-difficulty

assumption implies that we can spend different computational costs on different instances

of a task. Further, the multi-task assumption implies the memory space of task-specific

models can be saved by sharing parameters among them. However, some multi-task

learning (MTL) techniques may sacrifice the computational efficiency to achieve high

performance, which inspires us to study the efficient MTL model.

In this thesis, I addressed the efficient inference problem from the following four

topics: (i) Mobile-cloud collaborative inference (based on attention assumption); (ii)

Recurrent attention model (based on attention assumption); (iii) Dynamic inference

(based on instance-difficulty assumption); (iv) Efficient multi-task learning (based on

multi-task assumption). In the next section, simple introductions of the four topics will

be presented.

The three assumptions behind the above topics potentially indicate that the models

should have some discrete behaviours. E.g. extracting a sub-region from an image, stop-
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ping the forward propagation at a layer, or deciding to share a convolutional filter among

several task-specific CNNs. So the models proposed in the four topics can be summaized

in a paradigm: an architecture consists of an inference module e.g. a classifier, and an-

other module to perform discrete actions. The learning process of the paradigm may mix

the standard back propagation with REINFORCE algorithm [22] or reparameterization

trick [23], due to the potential needs of handling non-differentiable functions.

1.2 Topics

1.2.1 Topic 1: Mobile-Cloud Collaborative Inference

To leverage deep neural networks to provide novel features, mobile applications either

use powerful cloud servers, i.e., cloud-based inference, or directly run them on-device,

i.e., mobile-based inference. Cloud-based inference allows the use of complex mod-

els [5, 6, 24, 25] (thus higher inference accuracy), but requires mobile applications to

send a non-trivial amount of data over mobile networks. To use mobile-based inference,

one needs to use lightweight models [20, 21, 26]; even so mobile-based inference per-

formance can be hindered by limited on-device resources, e.g., CPU and battery life. To

address the limitations of cloud-based and mobile-based inference, an inference paradigm

called collaborative inference was proposed recently [27, 28]. Collaborative inference al-

lows inference execution to be split between mobile devices and cloud servers, and its

goal is to achieve the balance between on-device cost and data transmission cost. The

current collaborative inference methods are mainly based on model partition, of which

the optimal solutions for reducing on-device cost and data transmission cost are usually

not the same. In this thesis, we explore a collaborative inference method based on hard

attention mechanism.
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1.2.2 Topic 2: Recurrent Attention Model

To achieve sublinear computational costs, many attention-based classification techniques

(especially hard attention methods) have been proposed [29, 30]. For example, the Re-

current Attention Model (RAM) [29] is an attention-based model, trained using reinforce-

ment learning (RL), which maintains a constant computational cost w.r.t. the size of input

image. The very basic assumption behind RAM is the important contents related to a spe-

cific visual task are at one or multiple regions of images. The regions of interest (ROIs)

can be found by an agent in a recurrent process. At each recurrent step, the sensor of

the agent only accesses partial information. But the history of the past steps can be sum-

marized into a hidden state of the agent, i.e. a global representation which indicates the

next ROI to look at and the final result of the task to predict. In this thesis, we study the

problem of how to alleviate the overfitting issue of recurrent attention models under the

multi-ROI setting for small datasets.

1.2.3 Topic 3: Dynamic Inference by Multi-branch Network

Dynamic inference is an emerging technique that aims to reduce the resource consump-

tion, e.g., computational cost, of deep neural network during inference. A prominent ap-

proach of dynamic inference centers around the use of multi-branch networks [31, 32, 33],

i.e., networks that consists of more than one output layer, for handling the natural diffi-

culty variations exhibited in real-world samples. Ideally, the multi-branch network spends

just enough computation for each sample, instead of applying the same amount of compu-

tation. We refer to the scenarios of using branch classifiers as early-exiting. Existing work

on dynamic inference with multi-branch network [32, 33] mainly focused on improving

the accuracies of the branch classifiers, and used handcrafted policies for deciding the ex-

iting branches. For example, Teerapittayanon et al. devised a rule-based policy that uses
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the entropy of the logits outputted by the branch classifier as an uncertainty measure [31].

One of the limitations of this rule-based policy is the requirement of domain experts in

setting the threshold. In this thesis, we explore a multi-branch network architecture with

a trainable early-exiting policy.

1.2.4 Topic 4: Resources-efficient Multi-task Learning

Multi-task learning (MTL) is a promising paradigm to improve the test accuracy of deep

learning models that have to train with limited datasets. By allowing task-specific models

to share useful information with one another, MTL in essence increases the aggregated

training datasets for related tasks [34]. Two common ways to support such informa-

tion sharing are: (i) hard-sharing where parameters are shared among the task-specific

networks and (ii) soft-sharing where feature maps are shared. Concretely, hard-sharing

approaches often employ hand-coded policies which result in static and coarse-grained

information sharing. In contrast, soft-sharing techniques can learn fine-grained feature

sharing directly from multi-task datasets by providing inputs access to fused feature maps.

Consequently, MTL models that achieve state-of-the-art accuracy are often ones using

soft-sharing. However, the high accuracy of soft-sharing based MTL models comes with

the expensive resource requirement in inference phase that grows linearly with the num-

ber of tasks. Such high resource requirement of soft-sharing based MTL models impedes

the wide deployment to mobile devices. In this thesis, we discuss how to combine the

efficiency advantage of hard sharing and the performance advantage of soft sharing.

1.3 Dissertation Outline

The rest of this thesis is organized as follows.

In the Chapter 2, we approach the problem of collaborative inference, by considering
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the collaboration requirement from the outset and redesigning the deep neural networks.

We proposed a novel collaborative model named CINET, to balance mobile bandwidth

consumption, on-device computational cost, and inference accuracy. In short, CINET

consists of a lightweight network on device to extract small but important regions of an

input image, and a complex network hosted in cloud to perform the cumbersome part of

inference.

In the Chapter 3, we focus on the multi-attention classification problem, where each

image involves multiple objects, i.e. regions of interest (ROIs). The label of an image

is determined jointly by multiple ROIs through complex relationships. Under the setting

of multiple ROIs, the recurrent attention model is more prone to overfit the data when

the training set is small. To handle this challenge, we proposed a model that utilizes the

guidance information for multiple ROIs in each image and works well with small training

datasets. We designed a new reward mechanism to utilize both the given ROI locations

and the label from each training image. We proposed a novel attention model consisting

of two separate RNNs that are trained simultaneously.

In the Chapter 4, we investigate the problem of designing a flexible multi-branch net-

work and early-exiting policies that both can be learned in conjunction from the training

dataset. First, we formulate the trade-off between classification accuracy and efficiency as

the computational-sensitive classification problem. Then we design a novel multi-branch

network structure that provides fine-grained flexibility for early-exiting with negligible

resource increase. Last, we formulate the early-exiting problem as a Markov decision

process (MDP) and use a policy gradient method without sampling to efficiently train

good performant policies.

In the Chapter 5, we investigate the problem of resource-efficient multi-task learn-

ing with the key goal of designing a resource-friendly MTL model that achieves high

accuracy comparable to soft-sharing approaches while only consumes constant resource
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w.r.t. the number of tasks. We formulate the resource-efficient MTL problem as a fine-

grained filter sharing learning problem, i.e., learning how to share filters at any given

convolutional layers among multiple tasks. To solve this problem, We propose a novel

architecture called FISHNET which can be directly implemented and trained with exist-

ing deep learning frameworks such as Pytorch. Once trained, FISHNET can effectively

support single-task inference scenarios by only loading the task-specific network.

In the Chapter 6, we make the conclusion of this dissertation, and provide a direction

for future work.
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CINET: A Collaboration-aware Deep

Neural Network

2.1 Motivation

To leverage deep neural networks to provide novel features, mobile applications either use

powerful cloud servers, i.e., cloud-based inference, or directly run them on-device, i.e.,

mobile-based inference, as shown in Figure 2.1. Cloud-based inference allows the use of

complex models [5, 6, 24, 25] (thus higher inference accuracy), but requires mobile ap-

plications to send non-trivial amount of data over mobile networks, leading to high data

transmission. To use mobile-based inference, one needs to use mobile-specific models

such as MobileNet, SqueezeNet, or ShuffleNet [20, 21, 26]; even so mobile-based infer-

ence performance can be hindered by limited on-device resources, e.g., CPU and battery

life.

To address the limitations of cloud-based and mobile-based inference, an inference

paradigm called collaborative inference was proposed recently [27, 28]. Collaborative

inference allows inference execution to be split between mobile devices and cloud servers
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Figure 2.1: The problem of mobile-cloud collaborative inference. The goal is to perform
image classification on a mobile device by collaborating with a cloud server. The mobile
device can send some data to the server to aid in the inference process, which will reduce the
computational cost on the mobile device but increase the data transmission cost.

as demonstrated in Figure 2.1. Prior work on collaborative inference focuses on either re-

ducing network data transmission and the impact on inference accuracy of such reduction

or partitioning schemes that split the inference computation across mobile devices and

cloud servers [27, 35, 36]. In this work, we approach the problem of collaborative in-

ference from a complementary perspective, by considering the collaboration requirement

from the outset and redesigning the deep neural networks.

Designing deep learning models that effectively support collaborative inference has

the following two key challenges. First, the on-device submodel needs to balance mobile

bandwidth consumption, on-device computational cost, and inference accuracy. For ex-

ample, using more complex on-device model structure can effectively reduce the required

network data transmission, but can also increase on-device computation. Second, both the

on-device and cloud submodels should be trained in tandem without requiring additional

time-consuming and manual annotations. Prior work on object detection [8, 9, 10] is a

potential candidate for detecting image regions to send to the cloud, but often requires
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access to annotated locations during training [8].

Our design of models that are suitable for collaborative inference is centred around

two key insights. First, in many real-world scenarios, the results of image classification

often only depend on a small image portion. Second, the task to identify the important

image portion, i.e., extraction, is often easier than the classification. Note our key insights

are similar to prior work in dynamic capacity networks [37].

2.2 Problem Formulation

In this section, we first define the problem of mobile-cloud collaborative inference and

outline key research challenges followed by our design principles.

Mobile-cloud Collaborative Inference. In this chapter, we study the problem of improv-

ing the performance, including mobile computational need, mobile data transmission,

and inference accuracy, of an emerging paradigm called mobile-cloud collaborative in-

ference. At a high level, collaborative inference allows one to split the model computation

across mobile devices and cloud servers as demonstrated in Figure 2.1. We approach the

problem of efficient collaborative inference by redesigning deep neural networks that are

collaboration-aware, unlike existing works in collaborative inference [27, 28, 35, 36]. We

focus on the problem of image classification and propose a new neural network design in

this work. To use our proposed collaborative inference solution, mobile applications use

an on-device sub-model that outputs a smaller-size representation P of the original image

I . Afterwards, mobile applications send P to the cloud model server which generates and

sends back the predicted label for I .

Key Challenges. One of the key challenges in designing collaborative inference is to

achieve low mobile computational and transmission cost simultaneously without impact-

ing classification accuracy. Partitioning existing successful deep neural networks, e.g.,

10
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AlexNet [5], can satisfy accuracy goal but often violate either computational or transmis-

sion goals. For example, the first two convolutional layers of AlexNet takes up a large

portion of inference computation, making it less ideal to run on mobile devices. Fur-

ther, the output feature maps of early layers are usually quite large which undermines the

mobile-cloud transmission cost.

Design Principles. In designing deep neural networks that are suitable for collaborative

inference, we follow the key design principles below: (i) Reducing mobile computational

cost. The required on-device computation directly impacts the mobile energy consump-

tion, as well as the inference response time. Lower computational cost saves mobile

battery life and helps with mobile user experiences. (ii) Reducing mobile transmission

cost. Similar to computational cost, the required transmitted data also affects mobile en-

ergy consumption. Further, it is beneficial to send less data as ways to preserve mobile

data plan. (iii) Achieving comparable classification accuracy. Last but not the least, we

should achieve the computational and transmission goals without sacrificing accuracy as

it is important to application utility.

2.3 CINET: the Proposed Method

2.3.1 Overall Structure

We propose CINET, an extractor-classifier model that enables efficient mobile-cloud col-

laborative inference. With low on-device computational complexity and low mobile net-

work data consumption, CINET can be trained in an end-to-end manner with existing

image classification dataset, without additional annotations. As shown in Figure 2.2, the

extractor submodel runs on the mobile device and is responsible to extract a smaller-size
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Figure 2.2: An example of CINET structure for mobile-cloud collaborative inference.

representation P of the original image I . The size of P is predefined during training

time, and determines the mobile transmission savings. The classifier submodel runs on

the cloud server and is designed to be as complex as needed for the specific classification

task to generate labels based on P . In other words, we assume the use of powerful cloud

servers that can execute inference requests without imposing latency bottlenecks.

Key Insights. The design of CINET centers two key insights. First, for a specific image

classification task, the image usually contains a lot of contents that are irrelevant to its

label. In other words, the label-related object may only occupy a small region of the

image [29, 30]. For example, to determine whether the image contains a cat or a dog, we

often do not have to look at the entire image. Instead, we can only focus on a smaller

image region, e.g., faces or eyes. Second, the computational cost to identify the region of

important objects can be significantly lower than classification [37]. For example, locating

a face in the image often requires fewer filters in the convolutional layers than classifying

one. This is because the former only needs to recognize a rough outline whereas the latter

requires considering a lot of more details.

2.3.2 On-device Extractor Submodel

The extractor is a convolutional neural network that runs on mobile devices. It consists of

several convolutional layers followed by max pooling, hidden fully-connected layers and

a final regression layer outputting the transformation parameters θ = (tx, ty, sx, sy). Here
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tx and ty denote a 2D translation, while sx and xy denote a 2D scaling. The mapping from

the coordinate (xP , yP ) of the cropped image P to the coordinate (xI , yI) of the original

image I is parameterized by θ:

xI
yI

 =

sx, 0, tx
0, sy, ty



xP

yP

1

 . (2.1)

Based on the above coordinate transformation, CINET performs an image cropping

operation on I to obtain the patch P . Then the cloud-based classifier takes P as input and

predicts the label of I . Here we focus on describing the extractor network as it directly

impacts the mobile computational and transmission cost. To lower the computational

cost, we use as few filters as possible in convolutional layers. In our experiments, the

extractor network has only two convolutional layers. The first convolutional layer has

two filters and the second one has four filters. As demonstrated later in Section 2.4,

CINET achieves good classification accuracy even with limited number of convolutional

layers. The reason we did not use fully connection layers even though they are often more

computational efficient is due to limited mobile memory—fully connected layers have a

large number of parameters.

2.3.3 Image Cropping Operations

The On-device extractor yields the transformation parameters θ, indicating which part of

the image should be cropped and sent to the cloud-based classifier. The design of the

extraction can be viewed as an instance of hard attention mechanism. There are multiple

ways to implement hard attention on visual tasks. Here we discuss two approaches to

crop the image given θ.
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Direct cropping: The transformation parameters θ defines a rectangle region on the

original image. The simplest idea is to directly crop this region and then reshape it to our

predefined crop shape.

Bilinear sampling function: Given the transformation parameters θ, we can concate-

nate a spatial transformer layer with bilinear sampling kernel [38] at the end of our ex-

tractor submodel. We can then calculate the pixel value P (xP , yP ) of the cropped patch

P with the bilinear mapping from pixel values I(i, j) of original image I:

P (xP , yP ) =
W∑
j=1

H∑
i=1

I(i, j)F (xI , i)F (yI , j), (2.2)

F (a, b) = max(0, 1− |a− b|). (2.3)

Here W and H are the width and height of the I , and (xI yI) is the coordinate on I

as defined in Equation (2.1). The cropped image P is then sent to the classifier in the

cloud. In our current design of CINET, we adopt this method instead of direct cropping

as explained further below in section 2.3.5.

2.3.4 In-cloud Classifier Submodel

The in-cloud classifier takes the cropped image from the mobile device as input and re-

turns the final class of the original image. When designing the in-cloud submodel, we

focus on achieving the goal of inference accuracy as it is often safe to assume that cloud

servers have ample computational and memory resources. Therefore, one can use exist-

ing successful deep neural networks such as AlexNet [5], GoogleNet [25] or ResNet [6]

for the in-cloud classifier. When leveraging these existing models, one might need to use
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an additional image cropping operation, such as the those discussed in Section 2.3.3, to

rescale the cropped image to match the predefined input layer size. For simplicity, we

designed a new CNN from scratch as shown in Figure 2.2 in CINET. The input layer of

our in-cloud classifier is the same size as the cropped image and therefore only requires a

simple identical mapping.

2.3.5 Training Considerations

CINET consists of the on-device extractor and the in-cloud classifier, forming an end-to-

end collaborative neural network. As these two submodels are connected by the image

cropping operation, the training algorithm is determined by the chosen cropping opera-

tion.

Justifications of Our Image Cropping Choice. Although cropping images with the

bilinear sampling function is more complicated than direct cropping, training with it is

much easier. This is because the operation is differentiable. In this case, we can train

CINET using the standard back-propagation algorithm under the supervision of image

labels [38]. Instead, if choosing to use the direct cropping, one needs to consider and

address the problem of propagating the gradient of classification loss from the classi-

fier submodel to the extractor submodel. One possible way is to use the policy gradient

method in the form of REINFORCE algorithm [22] to train the extractor, similar to what

was proposed by Mnih et al. [29]. However, training with the policy gradient methods

can take a long time to converge. As such, we chose to use the bilinear sampling function

as the cropping operation when designing CINET.

Hyperparameters Considerations. In addition to the choice of cropping operations, pa-

rameters such as the size of P and specificity of datasets can also complicate the training

process. For example, ideally we want to set the size of P as small as possible to reduce

the required transmitted data to the cloud. In our current design, we set the size to be
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10×10, which is only 1% of the original image size. However, the small extract size

means at the early stage of training, P often does not contain meaningful objects. Even

worse, for datasets with large black background, e.g., MNIST dataset, it often means

sending tensors of zeros to the classifier which further leads to back-propagate gradients

of zeros to the extractor. We use two hyper-parameter techniques to mitigate such prob-

lems.

• Weight Initialization. We initialize all weights in the framework by Gaussian distri-

bution with mean=0 and standard deviation=0.02. However if we use small standard

deviation for the final regression layer of the extractor network, the transformation pa-

rameters θ of different samples can be very close to each other. Given that we prefer

small cropped size, having a larger initial variance of θ could increase the chance to

extract the object. As such, it can be helpful to boost the early-stage training. In our

experiments, we used 0.2 for standard deviation to initialize the final regression layer

of the extractor network.

• Penalty on Scaling Transformation. When training CINET, we want to avoid the on-

device extractor to learn an easy way instead of the correct way to extract the objects.

In the easy way, the extractor submodel can simply output a large enough scaling trans-

formation that covers the entire original image I . In essence, the cropped image P is

merely a downsampled version of I . Such strategies may overfit the training data be-

cause important content can be lost in the process of downsampling. In addition, since

we chose to design the extractor submodel using very few filters (with the goal to reduce

the on-device computational cost), it is therefore more likely for the extractor to learn

the easy way. To counter this problem, we add the penalty on scaling transformation

into the loss function.
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Table 2.1: Architecture of CNNs on transformed digit MNIST dataset(left) and Fashion
MNIST(right). All CNNs have two fully connected layers with 100 and 50 neurons respec-
tively, before the output layer.

Method Filters in each Number of
conv layer conv layers

CNN1 (128, 256, 256) 3
CNN2 (64, 128, 256) 3
CNN3 (32, 64, 128) 3
CNN4 (8, 64, 128) 3
CNN5 (8, 16, 64) 3
CNN6 (4, 8, 32) 3
CNN7 (4, 8, 16) 3

Method Filters in each Number of
conv layer conv layers

CNN1 (64, 128, 128, 256, 256) 5
CNN2 (32, 64, 128, 256, 256) 5
CNN3 (16, 32, 64, 28, 128) 5
CNN4 (4, 16, 32, 64) 4
CNN5 (2, 8, 8, 128) 4

- - -
- - -

Table 2.2: Architecture of ResNets on CelebA dataset. The ResNets use 1 convolutional
layer at beginning, i.e. conv 1, followed by 4 stacks of residual blocks, i.e. conv 2x, ...,
conv 5x. The number of filters is doubled at each stack.

Method Number of Filters in conv 1
residual blocks and conv 2x

ResNet1 (3, 4, 6, 3) 32
ResNet2 (2, 2, 2, 2) 2
ResNet3 (2, 2, 0, 0) 2

2.4 Experimental Evaluations

We evaluate the effectiveness of CINET using three key performance metrics, i.e., classi-

fication accuracy, on-device computational cost, and mobile data transmission cost. We

compare the performance of CINET to four inference baselines using two transformed

MNIST datasets and CelebA dataset (all with JPEG variants). We summarize and high-

light our key results below.

• Accuracy vs. On-device Computational Cost. Comparing to on-device inference, CI-

NET achieved comparable inference accuracy to the second best CNN while only used

20% computational cost of the fastest CNN. We discuss more details in Section 2.4.2.

• Accuracy vs. Mobile-Cloud Data Transmission Cost. CINET significantly reduced

the mobile data transmission, incurring only 1% of the cloud-based inference that sent
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original image data to the cloud server. When comparing to image compression based

techniques including traditional JPEG and DeepN-JPEG [35], CINET achieved up to

50% higher inference accuracy with similar data transmission cost. More details can

be found in Section 2.4.3.

• On-device Computational Cost vs. Mobile-Cloud Data Transmission Cost. Comparing

to the collaborative inference with model partitions, CINET incurred lower on-device

computation and mobile-cloud data transmission costs for both datasets. We discuss

more details in Section 2.4.4.

2.4.1 Experiment Setup

We describe the performance metrics, datasets, models and their hyperparameters, as well

as inference baselines we compare to.

Performance Metrics. The computational cost is measured by the number of floating-

point multiplication. The data transmission cost is measured by the number of non-zero

values sent from the mobile device to the server. We should notice that the three met-

rics can’t be apply for all baselines. For example, on-device inference doesn’t send data

to sever, so it has no data transmission cost. And in-cloud inference and collaborative

inference based on image compression has no or negligible computational cost on device.

Transformed Digit and Fashion MNIST Datasets. We constructed two new datasets

from the original digit and fashion MNIST datasets, obtained through TensorFlow and

Keras API respectively. Both original MNIST datasets constain 60k images in the train-

ing set and 10k in the test data. For each digit/fashion image, we embedded it into the

black background of size 100× 100 pixels and then performed random scaling and trans-

lation of the embedded image. For transformed digit images, we further injected noise

that consists of ten 2D sine waves with different phases and frequencies chosen from a

Uniform distribution (0, 2π) and a Gaussian distribution (µ = 5, δ = 5).
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CelebA Dataset. We performed experiments on the real-world dataset CelebA. CelebA

has 162770 training samples and 19962 test samples. The original CelebA has 40 dif-

ferent labels. In this paper, we only use the “Smiling” label to evaluate our CINET and

baselines.

Inference Baselines. We use four different inference approaches, with accompanying

convoltuional models summarized in Table 2.1, including two traditional and two collab-

orative inference mechanisms.

• On-device inference. For each transformed MNIST dataset, we trained a series of CNN

models with decreasing number of filters, as shown in Table 2.1. We describe com-

mon hyperparameter settings below. For CelebA dataset, we compared with three

ResNets of different architecture settings, as listed in the Table 2.2, and a simplified

MobileNet V2, with one MobileNet blocks per bottleNeck and expanding rate of 1.

These CNN models are assumed to run on mobile devices and are used as baselines for

understanding the computational cost and inference accuracy trade-offs.

• In-cloud inference. Further, from Table 2.1 we selected the most accurate CNN model,

i.e., CNN1, for each transformed MNIST dataset, and assume these CNNs to be hosted

on the cloud servers. We trained the CNNs on original datasets as well as on the JPEG-

decompressed counterparts of original datasets, with both high and low JPEG quality.

• Collaborative Inference with DeepN-JPEG [35]. DeepN-JPEG is a neural network-

based image compression technique that aims to reduce data transmission while mini-

mizing the impact on accuracy by preserving useful information to classification tasks.

To implement DeepN-JPEG, we generated the quantization table used for image com-

pression based on the statistical information of the datasets [35].

• Collaborative Inference with Model Partitions. Prior work on model partition tech-

niques focused on identifying the best layer-wise partition point to split the inference
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computation across mobile devices and cloud servers [27, 28]. In our evaluations, we

tested all possible partition points, i.e., layers, for the most accurate CNNs from Ta-

ble 2.1. Each partition scheme is labeled as cut- followed by the layer name such as

cut-conv3. A partition scheme defines where the layers are executed. For example, with

cut-conv3 all layers before the third conv layer will be executed on the mobile device

and the rest on the cloud server. By evaluating all possible partitions, we can estab-

lish the performance of the optimal model partition policy, to which we will compare

CINET to.

Hyperparameter Settings. Here we introduce the hyperparameters used in our evalu-

ations. (i) Common settings for CINET and baselines: For experiments on both Trans-

formed Digit and MNIST Datasets, we set the number of epoch = 12, batch size = 64,

decay rate of leaning rate is 0.1. We adopt the dropout for all models. For both CINET

and CNNs, the size of filter window for convolution is 5 × 5 and 2 × 2 for pooling. (ii)

CINET setting: The initial leaning rate = 0.01. On the MNIST and fashion MNIST, The

extractor has two convolutional layers, each followed by a max-pooling layer. The con-

volutional layers have very few filters, which are 2 in the first layer and 4 in the second.

There is a fully connected hidden layer consists of 50 neurons before final regression

layer. The size of cropped image sent to classifier in the cloud is 10× 10. On the CelebA,

the extractor is same with the MobileNet baseline. We use bilinear sampling to crop im-

age. The weight of penalty on scaling transformation is 0.1. The classifier of the CINET

also has two convolutional layers, of which the number of filters are 128 and 256. The

convolutional layers are followed by two fully connected layers, of which the number of

neurons are 100 and 50. All the weights in both the extractor and the classifier are initial-

ized from the Gaussian distribution of which the mean is zero and the standard deviation

is 0.02, The final regression layer of extractor uses the standard deviation of 0.2. (iii)

Baseline setting: We set the initial learning to 0.1 for all CNNs listed in Table 2.1 except
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Table 2.3: Results on transformed MNIST dataset. For in-cloud deployment, the model used
is the CNN1 in Table 2.1(left). We use JPEG(H) and JPEG(L) to denote the high quality and
low quality used to compressed the images, respectively.

Deployment Method Test Computational Transmission
Accuracy cost on device cost

(%) (MFLOPS) (# non-zero integer)
Higher better Lower better Lower better

On-device

CNN1 96.20 3060 -
CNN2 93.98 1040 -
CNN3 93.52 264 -
CNN4 92.22 162 -
CNN5 91.73 26 -
CNN6 86.39 7 -
CNN7 83.52 5 -

In-cloud

Original 96.20 - 10000
JPEG(H) 95.79 - 1343
JPEG(L) 40.15 - 116
DeepN-JPEG(H) 96.07 - 1298
DeepN-JPEG(L) 42.20 - 119

Collaborative CiNet 93.74 1 100

CNN4 and CNN5 on the right tablular; these two CNNs used an initial learning rate is

0.01.

2.4.2 CINET vs. On-Device Inference

We study the computation and accuracy trade-offs on all three datasets by comparing CI-

NET to different deep learning models (see Table 2.1 and Table 2.2). To evaluate their

computational costs, we assume all CNNs will run on mobile devices, i.e., executing these

models will not incur any mobile-cloud data transmission cost.

Table 2.3 compares both on-device computational cost and average inference accuracy

between all baseline CNNs and CINET on transformed MNIST dataset. As expected,

the achieved inference accuracy decreases with the computational cost for the baseline

CNNs. However, CINET struck the balance between the on-device computational cost

and inference accuracy with the help of the in-cloud classifier submodel. For example, CI-

NET incurred the lowest computational cost at about 20% compared to the fastest CNN7
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Table 2.4: Results on transformed fashion MNIST dataset. For in-cloud deployment, the
model used is the CNN1 in Table 2.1 (right).

Deployment Method Test Computational transmission
Accuracy cost on device cost

(%) (MFLOPS) (# non-zero integer)
Higher better Lower better Lower better

On-device

CNN1 82.54 3060. -
CNN2 82.38 1000 -
CNN3 80.65 122 -
CNN4 78.63 21 -
CNN5 66.47 6 -

In-cloud

Original 82.54 - 10000
JPEG(H) 82.13 - 547
JPEG(L) 78.58 - 131
DeepN-JPEG(H) 79.97 - 509
DeepN-JPEG(L) 77.75 - 152

Collaborative CiNet 82.29 1 100

and at merely 0.5% compared to CNN3 whose accuracy was 0.22% lower.

We also observed similar trends when evaluating on the transformed fashion MNIST

dataset. Table 2.4 shows that the computational cost of CINET was only 0.001% and

0.002% of that of CNNs (i.e., CNN1 and CNN2) with comparable inference accuracy,

by 0.34% and 0.18%, respectively. Further, CINET only incurred about 14.7% computa-

tional cost compared to the fastest CNN5 but achieved 16% better accuracy.

Lastly, we compared CINET to ResNet and MobileNet V2 on the CelebA dataset,

containing more complicated images of human faces. Table 2.5 shows that the com-

putational cost of CINET was only 0.04% and 0.16% of that of ResNets (i.e., ResNet1

and ResNet2) with comparable inference accuracy, by 1.01% and 0.22%, respectively.

Further, CINET has similar computational cost compared to the fastest on-device model

MobileNet V2 but achieved 4.06% better accuracy.

In summary, these results support our hypothesis that finding the essential content

for classification can be much more computational efficient than directly classifying the

entire image. Deploying the extractor submodel instead of a complete CNN model on-

device can reduce the computational complexity by two to three orders of magnitude,
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Table 2.5: Results on CelebA dataset. For in-cloud deployment, the model used is the
ResNet1 in Table 2.2.

Deployment Method Test Computational Transmission
Accuracy cost on device cost

(%) (MFLOPS) (# non-zero integer)
Higher better Lower better Lower better

On-device

ResNet1 92.04 21.32 -
ResNet2 91.25 5.58 -
ResNet3 87.18 3.14 -
MobileNet V2 86.97 0.9 -

In-cloud

Original 92.04 - 38804
JPEG(H) 91.15 - 3136
JPEG(L) 87.62 - 1295
DeepN-JPEG(H) 91.07 - 2980
DeepN-JPEG(L) 88.44 - 1163

Collaborative CiNet 91.03 0.9 256

with negligible accuracy loss.

2.4.3 CINET vs. Image Compression Based Inferences

We focus on evaluating the trade-offs between inference accuracy and mobile-cloud data

transmission. The baseline CNNs run in the cloud server and therefore do not incur on-

device computational cost.

Table 2.3 compares the performance of CNN1 from Table 2.1 and CINET on the trans-

formed digit MNIST dataset. CINET, with a crop size of 10 × 10, only incurred 1% of

data transmission cost but at the cost of 2.46% lower accuracy when comparing to send-

ing original images to CNN1. Further, we compare CINET with two image compression

techniques, i.e., traditional JPEG algorithm and a deep learning based compression called

DeepN-JPEG [35]. For JPEG, we chose two quality levels of 50 and 0.5 as the former is a

common configuration and the latter achieves the same data transmission cost as CINET.

We then trained the in-cloud CNN1 with the images that were first compressed with the

corresponding JPEG configuration and then decompressed. We followed the same strat-

egy described above to choose two quality levels 50 and 0.15 for DeepN-JPEG and then
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trained with CNN1 again.

Table 2.3 shows that using the CNN1 trained with higher JPEG quality only incurred

10% data transmission cost with a decrease of 0.41% in inference accuracy, when com-

pared to sending the original images. This result supports the common sense that JPEG

can preserve the essential information with about 10% compression rate. However, for

CNN1 trained with images of lower JPEG quality, its accuracy was 50% lower than that

of CINET. Such accuracy loss can be attributed to the background 2D sine noises. We can

further observe that DeepN-JPEG achieved an increase of 2.2% in accuracy with similar

data transmission cost when comparing to JPEG of similar configurations. Similarly, the

accuracy of CNN1 trained with DeepN-JPEG(L) was again 50% lower than CINET while

incurring the same data transmission cost.

We also observed similar results on the transformed fashion MNIST dataset. For ex-

ample, Table 2.4 shows that the accuracy of CINET was 0.34% lower than the CNN1

trained on original image, but with only 0.01% of the data transmission cost. When

trained with images compressed and decompressed with higher JPEG quality, the accu-

racy of CNN1 was 0.27% lower than that of CNN1 trained on original images. For CNN1

trained with lower JPEG quality, it incurred the same data transmission cost but 3.63%

lower accuracy than CINET. Interesting, classification-aware DeepN-JPEG had slightly

lower accuracy than JPEG for this dataset. As one of the key differences between these

two datasets is the existence of low-frequency noise, such accuracy discrepancy might be

caused by DeepN-JPEG’s ability to remove such noise.

Lastly, we compared the CINET to the baselines on the CelebA dataset. Table 2.5

shows that the data transmission cost of CINET was only 0.006%, 0.081% and 0.085%

of that of ResNets trained on original images, and images transmitted by high-quality

JPEG and DeepN-JPEG, with neglectable loss of accuracy, by 1.01%, 0.12% and 0.04%,

respectively. Using JPEG(L) and DeepN-JPEG(L), the accuracy are 3.41% and 2.59%
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lower than CINET, and still have about 5X data transmission costs.

In summary, these results suggest that lower compression quality can lead to the loss

of important content for classification. Further, the performance differences can also be

attributed to the design goals of JPEG and CINET. JPEG aims at recovering the whole

image whereas CINET aims at finding the important content for classification. As such

when there are a lot of label-irrelevant contents, JPEG still has to try to recover them

whereas CINET can simply avoid them. CINET demonstrated its ability to achieve lower

data transmission cost and higher inference accuracy, when compared to image compres-

sion based techniques.

2.4.4 CINET vs. Collaborative Inference with Model Partition

We focus on comparing the on-device computation and the data transmission cost between

CINET and the optimal model partition.

Table 2.6 shows the performance of CNN1 from Table 2.1 and CINET on the trans-

formed digit MNIST dataset. As this CNN1 consists of three convolutional (conv) lay-

ers, two fully-connected (fc) hidden layers, and a final classifier layer, we evaluated the

performance under all five layer-wise partition schemes. As we can see, the on-device

computational cost increased as the partition point moves toward the output layer, with

a significant jump from the first partition scheme, i.e., cut-conv1, to the next, i.e., cut-

conv2. The latter in the CNN the partition point is, the more computation it incurs. This

is expected as more model layers need to be executed on the mobile device. However,

we observe a different trend with the data transmission cost. Specifically, the mobile data

transmission cost lowered as the partition point moves toward the output layer. Again,

this is expected as feature maps of later conv layers have lower dimension and the last

fully connected layer only generates data as little as what are needed for classification

labels. In short, the optimal partition point for achieving the lowest computational cost,
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i.e., cut-conv1, and for the lowest data transmission cost, i.e., cut-fc2, can not be achieved

at the same time under the model partition approach. In constrast, CINET was able to

balance these two design goals, achieving low data transmission cost (as low as cut-fc1)

and an order of magnitude lower computational cost than cut-conv1. We observe similar

benefits of CINET on the Transformed fashion MNIST dataset.

In summary, CINET demonstrated its ability to balance on-device computation and

mobile data transmission cost, when compared to model partition techniques.

2.4.5 Impact of Hyperparameters

Lastly, we evaluate the impact of two important hyperparameters on CINET’s inference

accuracy.

• Extraction Size specifies the size of the on-device extractor submodel’s output and

directly impact the required data to send to the cloud. Figure 2.3(a) shows that both

the training and the test accuracy increase with the extraction size. This demonstrates

the importance of setting sufficiently large extraction size as we observed underfitting

with smaller extraction size. However, naively increasing extraction size is not ideal

as larger extraction size leads to higher data transmission cost. We also observed that

both accuracies plateaued at extraction size of 10× 10, which can save up to 16X data

transmission cost compared to larger extraction sizes. Our results suggest the need

to carefully tune the extraction size to trade-off between data transmission cost and

inference accuracy under different application scenarios.

• L2 Penalty Weight controls how aggressive the on-device extractor submodel scales

up the mapped region in the original image. Figure 2.3(b) shows that models can

overfit, indicated by the large gap between training and test accuracy, without using

L2 penalty. This is because the on-device submodel is more likely to output a low-

resolution version of the original image by scaling transformation to cover the whole
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Table 2.6: Comparisons with model partitions on the transformed digit MNIST dataset(left)
and fashion MNIST(right). We partitioned the CNN, with the structure of each of the CNN1
in the left and right of Table 2.1, at all possible layer-wise partition points. The computational
(Comp) and data transmission (trans) cost are shown.

Partition Point Comp Trans
Cost Cost

conv1 32 320000
conv2 2040 160000
conv3 3060 43200

fc1 3060 100
fc2 3060 50
- - -
- - -

CINET 1 100

Partition Point Comp Trans
Cost Cost

conv1 16 160000
conv2 528 80000
conv3 784 20000
conv4 922 12500
conv5 1000 4096

fc1 1000 100
fc2 1000 50

CINET 1 100
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Figure 2.3: Impacts of Hyper-parameters on classification accuracy.

image. We observe that with the weight of penalty of 0.1, both the training and test ac-

curacy were at their respective high. This is because larger penalty forces the extractor

submodel to focus on cropping small region. However, if the penalty is too large, the

extractor might have troubles with larger region of interests. In summary, our results

suggest the importance of choosing reasonable penalty to help the extractor submodel

to crop the important label-related image content.

2.5 Related Work

Collaborative Inference with Model Partition. Han et al. [39] proposed to generate a

resource-efficient variant for a given network, then provide a run-time system called MC-
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DNN which split the generated network into two fragments and execute them each on

mobile device and cloud server. Kang et al. [27] developed Neurosurgeon, an automatic

model partition scheme that can adapt to different hardware environments and model

structures. Li et al. [28] proposed to quantize the on-device model partition to further

reduce the computational and memory requirement on the mobile device. Our design

of the collaboration-aware models can be regarded as a way to partition a new model

optimally.

Image Compression. JPEG, as one of the widely used image compression algorithm,

allows adjusting quality of compression to trade-off between image size and quality. It

typically achieves 10:1 compression with little perceptible loss in image quality. A num-

ber of recent works explored the use of convolutional neural network [40] or autoen-

coder [41] as an alternative to compress image data. However, these works often only

care about recovering the original image content without concerning the impact on the

classification. Recently, Xie et al. proposed to rework traditional image compression

algorithm JPEG through modifying quantization table based on the gradients of neural

network-based image classifier [36]. Similarly, Liu et al. proposed a dataset aware com-

pression algorithm that adjusts the quantization table with the statistical information of

training dataset [35]. Our work shares similar design goal with the recent classification-

aware compression algorithm for reducing network data transmission without impacting

classification accuracy.

Hard Attention Mechanism. The hard attention mechanism that aims at reducing the

computational and memory cost shares similar goals with our work. Minh et al. proposed

a recurrent attention model [29] on visual learning tasks that leverages REINFORCE

algorithm for training. Similarly, CINET also uses REINFORCE algorithm if the direct

cropping operation is used. Jaderberg et al. proposed spatial transformer network (STN)

that performs spatial transformation at any feature map [38]. CINET follows similar
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design when using bilinear image sampling to crop image. However, CINET differs from

STN in that STN was designed to learn invariance to transformation while CiNet focuses

on reducing computational and transmission cost for collaborative inference.
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3

Recurrent Networks for Guided

Multi-Attention Classification

3.1 Motivation

Recurrent Attention Model (RAM) [29] is an attention-based model, trained using rein-

forcement learning (RL), which maintains a constant computational cost w.r.t. the number

of image pixels for image classification. RAM moves its visual attention sensor on the

input image and takes a fixed number of glimpses of the image at each step. RAM has

demonstrated superior performance on high-resolution image classification tasks, making

a strong case for the use of attention-based methods under this setting.

In this chapter, we focus on the multi-attention classification problem, where each

image involves multiple objects, i.e. regions of interest (ROIs). The label of an image

is determined jointly by multiple ROIs through complex relationships. For example, in

brain network classification, each fMRI scan contains multiple brain regions whose rela-

tionships with each other may be affected by a neurological disease. In order to predict

whether a brain network is normal or abnormal, we need to examine the pairwise rela-
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Figure 3.1: An example of the guided multi-attention classification problem. Each image
contains two written digits (ROIs) at varying locations. The label of the image is determined
by the sum of the two digits, e.g. the label 10 = (9 + 1). The locations of the digits are
provided as guidance to the system in the small training set, but are not available during
inference. An attention-based model moves its visual sensor (controlled by a policy function)
over the image and extracts patches (glimpses) to predict the image label.

tionships between different brain regions. If we focus on just a single brain region, we

may not have enough information to correctly predict the brain network’s label. Many

other visual recognition tasks also involve multiple ROIs, as illustrated in Figure 3.1.

Current works on attention-based models largely assume that a large-scale training

set (e.g., millions of images) is available, making it possible to learn ROI locations auto-

matically. However, in many applications like medical imaging, only a small number of

training images are available. Such applications raise two unique challenges for attention-

based models: (1) It is usually hard to learn the locations of the ROIs directly from the

data. (2) Even if the models manage to find the ROIs given the small number of samples,

the models can easily overfit, as demonstrated in Figure 3.2.

One of our key insights is that by learning the locations of the ROIs in addition to

the content inside each ROI, an attention-based model can achieve higher accuracy even

with small-scale training set. Fortunately, in many applications with a small number of

training samples, it is usually possible for human experts to provide the locations of the

ROIs, e.g., locations of brain regions. In this paper, we studied a new problem called
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Figure 3.2: The unique challenge of attention-based classification with only a small num-
ber of training samples. A classifier will overfit if it learns to use the locations instead of the
contents of ROIs. To prevent overfitting, a classifier should avoid “memorizing” locations in
a low-resolution glimpse and focus on the high-resolution glimpse. Meanwhile, a “locator”
network should utilize the low-resolution glimpse to determine where to move the sensor next.

guided multi-attention classification, as shown in Figure 3.1. The goal of guided multi-

attention classification is to train an attention-based model on a small-scale dataset by

utilizing the guidance, i.e., the locations of ROIs in each image, to avoid overfitting.

Despite its value and significance, the guided multi-attention classification has not

been studied in this context so far. The key research challenges are as follows:

Guidance of Attention: One key problem is how to learn a good policy using the guid-

ance information (i.e., ROIs’ locations). Such guidance is only available during training

which requires careful design to ensure that the model still performs well without it at

inference time. Moreover, there can be a large number of possible trajectories covering

these ROIs in each training image.

Limited number of samples: Conventional attention-based models usually require a

large dataset to train the attention mechanism. With small datasets, the attention-based

models can easily overfit by using the locations of ROIs instead of the contents in each
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region to build a classification model. As shown in Figure 3.2, to avoid overfitting, the

classifier of the attention-based model should avoid using the low-resolution glimpse,

i.e., containing the ROI locations, but instead focus on the high-resolution glimpse, i.e.,

containing the content of each ROI. On the other hand, the “locator” network which deter-

mines where the sensor should move next, should use the low-resolution glimpse instead.

In this chapter, we propose a model, called Guided Attention Recurrent Network

(GARN), for the multi-attention classification problem. Different from existing attention-

based methods, GARN utilizes the guidance information for multiple ROIs in each image

and works well with small training datasets. We designed a new reward mechanism to

utilize both the given ROI locations and the label from each training image. We proposed

a novel attention model consisting of two separate RNNs that are trained simultaneously.

Empirical studies on three different visual tasks demonstrate that our guided attention ap-

proach can effectively boost model performance for multi-attention image classification.

3.2 Problem Formulation

In this section, we formally define the multi-attention classification problem. We are

given a small set of N training samples D = {(Ii,Ri, yi)}Ni=1. Here, Ii ∈ RW×H×C

denotes the i-th image with dimensions W × H × C and label yi ∈ L. Furthermore,

L represents the label space, i.e., {0, 1} for binary classification, and {1, · · · , Nc} for

multi-class classification, where Nc is the number of categories. Ri = {`ij}nij=1 is a set of

locations of the ROIs in image Ii. Here `ij = (xij, yij) ∈ R2, where 0 ≤ xij ≤ W and

0 ≤ yij ≤ H , indicates the center of the j-th ROI in the i-th image. The label yi is only

determined by the objects/contents within these ROIs.

Region of Interest (ROI): In the multi-attention classification problem, each ROI is a part

of the image that contains information pertinent to the label of the image. For instance,
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in an fMRI image of the human brain, each ROI is one of the brain regions related to a

certain neurological disease.

The goal of multi-attention classification is to learn a model f : RW×H×C 7→ L.

Specifically, we are interested in learning an attention-based model, which interacts with a

test image I that iteratively extracts useful information from a test image through multiple

steps. In each step, the attention model obtains a glimpse, i.e., patch, Xt of the image I

around a queried location. The attention-based model contains a policy function for visual

attention π(ht) = (xt+1, yt+1). Here, ht represents the hidden state of the model at the

t-th step of interaction with the image while (xt+1, yt+1) represents the location where the

attention mechanism wants to obtain the next glimpse, at step t+ 1, on the test image I.

In this paper, we focus on studying the guided multi-attention classification problem,

which has the following properties: (1) training set size (i.e., |D|) is small; (2) image size

is large; (3) the class label of each image is related to multiple ROIs – for instance, the

sum (label) of multiple digits (ROIs) in an image, or the correlation (label) between the

activities of different brain regions (ROIs) in an fMRI scan; and (4) ground-truth locations

of ROIs are only provided for a small training set.

3.3 Our Proposed Method: GARN

3.3.1 RAM Background

Our proposed approach is inspired by the RAM model introduced by Mnih et al. [29]. In

RAM, an RL agent interacts with an input image through a sequence of steps. At each

step, guided by attention, the agent takes a small patch (or glimpse) of a certain part of

the image. The model then updates its internal state with the information provided by the

observed glimpse and uses this to decide the next location to focus its attention on. After

several steps, the model makes a prediction on the label of the image. Overall, RAM
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consists of a glimpse network, a core network, a location network, and an action network.

•Glimpse network takes a sensor-provided glimpse, Xt, of the input image at time t and

encodes it into a “retina-like” glimpse representation, xt.

• Core network is a recurrent neural network. It obtains a new internal state by taking

the glimpse representation and combining this with its current internal state. The internal

state is a hidden representation which encodes the history of interactions between the

agent and the input image.

• Location network takes the internal state at time t and outputs a location, `t, which

is where the sensor will be deployed at the next step. Each location, `t, is assigned a

corresponding task-based reward.

• Action network takes the internal state at time t as input and generates an action at.

When RAM is applied to image classification, only the final action, which is used to

predict the image label, is utilized. The action earns a reward of 1 if the prediction is

correct, otherwise reward is 0.

The t-step agent’s interactions with the input image can be denoted as a sequence

S1:t = (x1, `1, a1,x2, `2, a2, · · · ,xt). RAM learns a function which maps S1:t to a distri-

bution over all possible sensor locations and agent actions. The goal is to learn a policy

which determines where to move and what actions to take that maximizes reward.

3.3.2 Dual RNN Structure

Conventional attention-based methods tend to rely on large-scale datasets for training.

However, in many real-world applications, such as medical imaging, the number of avail-

able images can be relatively small. For instance, the neuroimaging dataset that Zhang et

al. [42] studied had less than a hundred samples. As we illustrated in Figure 3.2, training

attention-based methods on smaller scale training data leads to some unique challenges.

Our key insight is as follows. Instead of trying to learn the locations of the various
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Figure 3.3: GARN overview. The proposed GARN model consists of two RNNs, one for
locating ROIs and the other for classification. The glimpse sensor extracts several image
patches of different scales and feeds them to two glimpse networks, fRG and fCG . fRG is the
glimpse network of the RNN which locates ROIs while fCG belongs to the classification RNN.
The glimpses fed to both fRG and fCG are from the same location given by the network fL with
a potentially different number of glimpse scales.

ROIs as well as the relevant content in each of the ROIs using a single network, like

conventional approaches, we divide this process into two connected sub-processes. To

make the most of the small number of training images and to fully leverage the power

of expert-provided guidance (e.g., locations of ROIs), we design a guided multi-attention

model with two complementary RNNs (see Figure 3.3). The first RNN is used to locate

ROIs in the image while the second one is used solely for classification. While the two

RNNs take patches of an image at the same position as input, we expect them to remember

different things about the input due to a difference in their function.

We now introduce our proposed model architecture. In the subsequent discussions,

we will use the same notations as [29]. Let Linear(x) denote a linear transformation

W>x + b with weight matrix W and bias b. On the other hand, Rect(x) = max(x, 0)

denotes the ReLU activation.
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3.3.2.1 RNN for Locating ROI

Our RNN for locating ROIs consists of four parts: glimpse sensor, glimpse network, core

network, and location network.

• Glimpse sensor: Given an image I, a location ` = (i, j) and a glimpse scale s, the

sensor extracts s square patches Pm, for m = 1, · · · , s, centered at location (i, j). The

side of the (m+ 1)th patch is twice that of the mth patch. All s patches are then scaled to

the smallest size, concatenated, and flattened to a vector x.

• Glimpse network (fRG ): As shown in Figure 3.3, the glimpse network is composed of

3 fully connected (FC) layers: (1) the first FC layer encodes the sensor signal x: xh =

Rect (Linear (x)); (2) the second FC layer encodes the location of the sensor `: `h =

Rect(Linear(`)); (3) the third FC layer encodes the concatenation of xh and `h: g =

Rect(Linear(xh, `h)). The glimpse representation g is the output of fRG .

• Core network (fRH ): Given the glimpse representation gt and hidden internal state

ht at time step t, the core network updates the internal state using the following rule:

fH(gt,ht) = ht+1. The hidden state ht+1 now encodes the interaction history of the

agent up to time t. We use basic LSTM cells to form fH .

• Location network (fL): At time step t, the next location `t is stochastically determined

by the location network. We assume that `t is drawn from a 2D Gaussian distribution. The

Gaussian distribution’s mean vector µ is outputted by the location network fL, which is

a fully connected layer µt = Tanh (Linear (ht)). The covariance matrix is assumed to be

fixed and diagonal.

3.3.2.2 RNN for Classification

This RNN also consists of four parts: glimpse sensor, glimpse network, core network,

action network.

• Glimpse sensor: It is similar to the glimpse sensor above, and the two sensors look

37



3.3 OUR PROPOSED METHOD: GARN

Label 
= 
10

locations
 of 

ROIs

Locations
on

Sensor
Trajectory

fG

R

fH

R

fL

fG

C

fH

C

fCF

Cross entropy
Loss

predicted
Label

Glimpse sensor

Supervised Learning

Training Sample

KL-divergence
(reward)

Mixture 
Gaussian 

Distribution

REINFORCE Algorithm

Mixture 
Gaussian 

Distribution

RNN RNN

Mean vector

Mean vector

Figure 3.4: Training overview. The proposed GARN model consists of two RNNs that are
trained simultaneously. The RNN for classification is trained using cross-entropy loss. Mean-
while, we trained the RNN for locating ROIs using the KL divergence between two Mixture
Gaussian distributions as the reward for the REINFORCE algorithm.

at the same position at each step. However, in this paper, we use a dual-scale sensor

for classification while a triple-scale sensor is used for finding ROIs. Intuitively, this is

because the classifier only needs the higher resolution glimpses while the “locator” RNN

may benefit from the lower resolution glimpse which covers a wider area.

• Glimpse network (fCG ): Similar to fRG , fCG is also composed of three FC layers with

similar functions. The FC layer to encode location is shared with fRG . However, fCG does

not share weights with fRG for the other two FC layers. This is because the glimpse image

here has 1 or 2 scales while fRG takes an image with 3 scales.

• Core network (fCH ): The same as fRH , but their weights are not shared. fCH combines

the output of fCG at the current step with the previous hidden state to obtain a new hidden

state.

• Action network (fCF ): Takes the last hidden state hRn as input and outputs a label

prediction. The action network fCF (hn) = ap is a three-layer fully connected network

with ReLU activations for its hidden layers.
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3.3 OUR PROPOSED METHOD: GARN

3.3.3 Reward and Training

The interaction between our model and an image (Figure 3.4) can be denoted by two se-

quences. The first, SR1:n =
(
xR1 , `1,x

R
2 , `2, · · · ,xRn

)
, is generated by the RNN for finding

ROIs while the second, SC1:n =
(
xC1 , `1,x

C
2 , `2, · · · ,xCn ,y

)
, is encoded by the classifica-

tion RNN. We can view this as a case of Partially Observable Markov Decision Process

[29]. Here, the true state of the environment is static but unknown.

The RNN for classification is trained using cross-entropy loss which is commonly

used in supervised learning. Here we mainly discuss the training of the second RNN. We

use θ to denote the parameters of the RNN (i.e., fRG , fRH and fL). The goal is to learn a

policy π(`i|SR1:i−1; θ) that maximizes the expectation of reward:

J(θ) = Ep(SR1:n;θ)

[
n∑
i=1

r`i|SR1:i−1

]
(3.1)

3.3.3.1 Reward

We denote r`i|SR1:i−1
as the reward for the generated location at the i-th step. Originally,

in [29], all rewards r`i|S1:i
are set to 1 if the classification is correct, otherwise a uniform

reward of 0 is given. However, such assumptions can be problematic when training with

only a small number of images, e.g., the model can get high reward by overfitting the

training sample without seeing the true ROIs. To mitigate such problem, we designed a

reward function based on the ground truth ROI locations:

1. Construct two mixture Gaussian distributions P1 and P2, of which the mean vectors

correspond to the locations in fL and the ground truth locations of ROIs, respectively.

The standard deviations are hyperparameters, and we used 0.2 by default.

2. The reward in the Equation (3.1) is the negative of the Kullback-Leibler divergence

between P1 and P2, which is commonly used for estimating the difference between two
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Table 3.1: Summary of experimental datasets.
CharacteristicTask Comparing Adding Brain network

two digits two digits classification

Dataset size 2k-20k 2k-20k 2k-8k
Feature size 80× 80 80× 80 91× 91× 10

Number of classes 2 19 2
Ratio of the dominant class 0.5 0.09 0.5

Number of ROIs 2 2 4

distributions.

Dkl(P1||P2) =
∑
i

p1(i) ln
P1(i)

P2(i)
(3.2)

When P1 is exactly the same as P2, the KL divergence is 0. Hence, the closer the

locations of the glimpses are to the actual ROIs, the higher the reward.

3.3.3.2 Gradient Calculation

We use REINFORCE algorithm [22] to maximize J [29]. The gradient of J can be

approximately by:

∇θJ =
1

m

m∑
j=1

n∑
i=1

∇θlog
(
π
(
`ji |S

j
1:i−1; θ

))
rj (3.3)

where m denotes the number of episodes and n denotes the total number of steps.

3.4 Experiments

To evaluate our proposed method, GARN, we first conducted experiments on two variants

of the MNIST dataset, similar to [30]. We then tested on real-world fMRI data with

synthetic regions and labels. More details about each dataset can be found in Table 3.1.

3.4.1 Compared Methods

• Fully Connected Neural Network (FC): We compare with a fully connected neural

network with two hidden layers. The first hidden layer of the FC is composed by 100
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Figure 3.5: Performance of multi-attention classification on three different tasks. Undering
each setting, the size of test set is same with training set. Our proposed guided attention re-
current network (GARN) achieves up to 30% higher accuracy with a small number of training
samples, compared to other baseline models. As the number of training samples increases,
our GARN model still outperforms others by 5%.

neurons, and the second layer by 50. A final classification layer with the appropriate

number of outputs is attached at the end.

• Convolutional Neural Network (CNN): We designed a CNN that consists of two con-

volutional layers. Each convolutional layer performs convolution with ReLU activations

followed by average pooling. We then connect this to an FC network with an architecture

that is the same as described above.The convolutional layers have 128 and 256 neurons,

respectively. The filter sizes for convolution and pooling are 5×5 and 2×2, respectively.

• Recurrent Attention Model (RAM): We built a recurrent attention model based on

[29] with a sensor crop size of 20× 20 and three glimpse scales. In the glimpse network,

we use two fully connected layers which each has 128 neurons to encode the cropped

image as well as the location vector. Finally, a third FC layer with 256 neurons is used

to encode the glimpse representation. We use a 256-cell LSTM as our core network. The

location network has two layers: the hidden layer has 128 neurons, and an output layer

with 2 neurons (using tanh activations) indicating the location coordinates. The action

network (classifier) is a fully connected network whose architecture is identical to FC

described above.

• Recurrent Attention Model with Hints (HRAM): To demonstrate the usefulness of
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guidance information, particularly when training with a small dataset, and also for a fair

comparison, we implemented a variant of RAM with hints (i.e., guidance information).

Architecture-wise, HRAM is identical to RAM. We trained HRAM with the locations of

the ROIs with the standard deviation for calculating KL divergence at 0.2.

• Guided Attention Recurrent Network (GARN): This is our proposed model which

consists of two RNNs. The RNN for locating ROIs consists of a glimpse network, a core

network, and a location network. The RNN for classification consists of another glimpse

network, another core network, and an action network (i.e., classifier). Each RNN has the

same architecture as their counterpart in the baseline RAM. But the RNN for classification

only uses one glimpse scale, instead of three, in its glimpse network fCG .

In the next section, for all attention baselines and proposed GARN, we use 8 glimpses

in the task 1 and 2, and 20 glimpses in the task 3. In the section of parameter discussion,

we will try more parameter settings.

3.4.2 Performance Evaluation

We evaluate the performance of GARN and the other methods on three different classi-

fication tasks: comparing two digits, adding two digits, and brain network classification.

We introduce each task in more detail in the subsequent discussion. However, before we

do so we would first like to highlight two important findings in our performance evalua-

tion:

Importance of Guidance Information: We see in Figures 3.5(a)-3.5(c) that, across

all three tasks, the methods with guidance information (GARN and HRAM) perform

substantially better than others when the number of training samples is small. When the

number of training samples start to increase, the other methods close the gap in terms of

performance but guidance-based methods are still superior.

Importance of Separating Functions: Here, we see in Figures 3.5(a) and 3.5(b) that
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Figure 3.6: The brain network classification task on fMRI data.

when we have sufficient training samples, RAM catches up to HRAM. However, we find

that across all three tasks GARN still performs the best. This hints at the importance

of using two separate networks that each focus on one of the two important functions:

locating ROIs and classification.

3.4.2.1 Task 1: Comparing Two Digits

In this task, we constructed a new dataset based on the MNIST dataset. For each sample,

we randomly selected two MNIST images, resize them to 14 × 14, and embedded them

into a black background of size 80× 80. We randomly sampled two locations around the

coordinates (16, 16) and (64, 64) for embedding these two digits. These digits were set

to be far-apart in order to force the attention-based methods to learn a policy that has to

move for longer distances. We assigned the label 0 to a sample if the digit on the lower

right region is larger than the one on the upper left region; otherwise, the label is set to 1.

Figure 3.5(a) compares the test accuracies of our proposed GARN and the four base-

line models. When there are only 2k training samples, GARN achieves 6% higher accu-

racy than the best performing baseline HRAM – RAM modified with additional guidance

information. This highlights the importance of designing separate RNNs for locating

ROIs location and classification. In addition, the improved test accuracy of HRAM over
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RAM, especially for smaller training datasets, highlights the importance of using ROIs’

locations during training, whenever possible.

3.4.2.2 Task 2: Adding Two Digits

Next we evaluated our proposed model on determining the sum of two digits embedded

in an image. We used the same training images from Task 1 and labeled each sample with

one out of 19 possible classes. This task is inherently more difficult than the first task due

to the larger number of classes and the fact that images with the same label can look very

different, e.g., an image consisting of 1 and 9 and an image of 2 and 8 both have the same

label.

In Figure 3.5(b), we demonstrate that GARN outperforms all baselines for training

datasets with size ranging from 2k to 20k samples. Interestingly, when there are only 2k

training samples, all baselines but HRAM perform poorly – similar to random guessing.

HRAM increases the test accuracy by 30%, again indicating the usefulness of providing

guidance information in settings when we only have limited data. Lastly, GARN achieves

more than 70% test accuracy even with 2k training samples and gradually increases its

accuracy to 90% with 20k training samples. Our results indicate that GARN is effective in

avoiding overfitting even for relatively complex tasks, with very small number of training

samples.

3.4.2.3 Task 3: Brain Network Classification in fMRI

Lastly, we studied the performance of GARN on a brain network classification problem

that reflects settings in the real-world. At a high level, this classification task aims to

determine whether a human subject has a certain brain disorder (e.g., concussion, bipolar

disorder or Alzheimer disease) from fMRI data. An fMRI sample is a 4D image. Essen-

tially, it is a series of 3D brain images captured over time. From a given fMRI sample, we
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can construct a weighted graph called a functional brain network with nodes in the graph

denoting regions and time-series correlations between regions being the weighted edges.

Such correlations are calculated from associated time sequences and reflect the functional

interactions between brain regions [43]. In this work, we used regions in the Default

Mode Network (DMN), one of the most prominent function networks 1. We designed

a classification taks which requires understanding of the relationships between different

regions in DMN. Figure 3.6 summarizes the steps in constructing the dataset.

In more details, we constructed a synthetic brain network dataset from real-world

fRMI data with 31 samples following these steps:

1. We normalize the brain shape of all subjects by aligning them to the MNI152 stan-

dard brain template 2. This allows us to align all the regions from different fMRI

images and helps us identify brain ROIs.

2. For each raw fMRI image, we carefully select six regions of the DMN. These re-

gions are: left/right posterior cingulate gyrus, left/right angular gyrus, and left/right

Medial frontal gyrus [44]. We further combine the regions that are visually close

to each other, e.g., the left/right posterior cingulate gyrus, and the left/right Medial

frontal gyrus.

3. To ensure all four DMN regions are included, we extracted a 3D slice with shape =

[width = 91, height = 91, time length = 10] at the position z = 51 from each fMRI

image. This gives us a total of 31 fMRI images which we used as a basis to construct

a larger synthetic dataset. We used two complementary approaches (Figure 3.6-2),

i.e., associating each fMRI image with randomly generated time sequences and

changing the DMN locations by randomly scaling each fMRI image.

1https://en.wikipedia.org/wiki/Default_mode_network
2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
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Figure 3.7: Performance of GARN with different number of glimpses. The number of
glimpses heavily depends on the number of ROIs. More glimpses help avoid overfitting, but
the benefits decrease as the number of training samples increase.

4. To determine the label for each new fMRI image, we first built a simple brain net-

work that is a complete graph of four DMN locations. We then calculated the Pear-

son correlation between each pair of DMN locations based on their time sequences.

An fMRI image is labeled as “normal” if all pairwise correlations are higher than

0.6, otherwise it is labeled as “abnormal”.

We can see from Figure 3.5(c) that our proposed GARN significantly outperforms all

baselines by up to 2%-20% accuracy, even with a small number of training samples.

HRAM achieves about 8% higher accuracy compared to RAM, suggesting the use-

fulness of utilizing ROIs locations during training. Lastly, neither the CNN nor the FC

models work well with small training dataset.

3.4.3 Discussion on Parameters

We evaluated two important hyperparamaters, i.e., the number of glimpses and the number

of sensor scales.

The number of glimpses represents how many chances we give the model to move

the sensor around. More glimpses equals a longer sensor trajectory which typically cor-

responds to a higher likelihood of gathering more information from the image. In Fig-

ure 3.7, we compared the test accuracies of models given different numbers of glimpses.
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Figure 3.8: Performance of GARN with different number of sensor scales. Having smaller
number of scales for the classification RNN helps to avoid overfitting with fewer training
samples. This also indicates the need for designing two seperate RNNs in multi-attention
classification problem.

For tasks one and two which only contain two ROIs, we set the glimpse number to be

four and eight, respectively. For task three, we set the glimpse number to be five, ten, and

twenty, respectively. The choices of glimpse numbers are based on the number of ROIs

to increase the likelihood of capturing ROIs with stochastically generated locations. In

Figure 3.7(a) and Figure 3.7(b), we can see that GARN achieves higher accuracies with

eight glimpses than four glimpses. The accuracy gap decreases as the training samples

increases. This is likely because the four-glimpse agent has fewer chances of hitting all

the ROIs. Figure 3.7(c) shows the impact of different number of glimpses on brain clas-

sification task. Given that there are four ROIs in the Default Mode Network, the minimal

required number of glimpses is higher than the first two tasks. Having access to more

training samples can alleviate the need for more glimpses per sample, as indicated by the

shrinking accuracy gaps between ten and twenty glimpses at 8k training samples. Our

results suggest that our GARN can effectively avoids overfitting on smaller datasets.

Next we discuss the impact of the number of sensor scales on test accuracy. Recall that

our GARN uses two glimpse networks, fRG and fCG , to locate ROIs and for classification.

Each glimpse network can be configured with a different number of sensor scales for

each glimpse. We used three scales for fRG , similar to the original RAM. We vary the

number of sensor scales from one to three for fCG which is the agent for classification as
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demonstrated in Figure 3.8(a).

In Figure 3.8(b) and 3.8(c), we compared the test accuracies for different number

of sensor scales. Our results show that for both tasks, using fewer scales under smaller

training samples achieve higher test accuracies. This suggests that using more and larger

scales may lead to overfitting especially when the training datasets are small. One po-

tential reason is that larger scale contains information, e.g., black background, that is not

useful for classification. However, such information can be useful for locating ROIs. This

suggests that it is useful to separately configure the number of scales for locating ROIs

and classification, as we did in GARN by designing two separate RNNs.

3.5 Related Work

To the best of our knowledge, this work is the first to address the problem of guided

multi-attention classification.

Image classification and object recognition: Image classification has become a widely

studied topic. Over the past decade, deep neural networks such as CNNs have achieved

significant improvement in image classification accuracy [5]. However, these CNNs of-

ten incur a disproportionately high computation cost to detect a small object in a large

image. A number of works [8, 45, 46] have attempted to address this problem of high

computational cost, but in a non end-to-end way. Others [47, 48, 49], on the other hand,

have formulated the task of object detection as a decision task, similar to our work.

Classification on fMRI data: The task of classifying fMRI data can be formulated as

a special case of multi-object image classification. Most recent work analyzing fMRI

study one or more of the following related sub-tasks: brain region detection [50, 51],

brain network discovery, and classification [52, 53]. However, neuroimaging datasets are

inherently quite challenging to work with due to their high noise, their high dimension-
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ality, and small sample sizes. It was not until very recently that researchers started to

propose end-to-end solutions, such as CNN based methods [54] which solve both brain

network discovery and classification coherently [55]. Different from existing work, we

use a guided attention-based model which can locate brain regions and do classification

as well, without requiring additional information such as time sequences from ROIs as

input [55].

Attention model: Recently, researchers have begun to explore attention-based deep learn-

ing models for visual tasks [30, 49, 56, 57] and natural language processing [58, 59].

Specifically, Mnih et al. [29] proposed the recurrent attention model (RAM) to tackle

the issue of high computation complexity when dealing with large images. Other work

based on RAM have also tackled the problems of multi-object recognition and depth-

based person identification [30, 60]. Most recently, Tariang [61] proposed a recurrent

attention model to classify natural images and computer generated images. The struc-

ture and training method are similar with [29, 30], while it uses a CNN to implement

its glimpse network. Meanwhile, Zhao [62] combined a recurrent convolutional network

with recurrent attention for pedestrian attribute recognition, which uses a soft attention

mechanism instead of the hard attention used by RAM. Another recent study leveraging

the soft attention mechanism is [63], which uses recurrent attention residual modules to

refine the feature maps learned by convolutional layers. In the areas of person identifica-

tion, sequence generation, image generation, some other works [64, 65] are also utilize

both attentional processing as well as RNNs.
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4

EPNET: Learning to Exit with Flexible

Multi-Branch Network

4.1 Motivation

Dynamic inference is an emerging technique that aims to reduce the resource consump-

tion, e.g., computational cost, of deep neural network during inference. A prominent ap-

proach of dynamic inference centers around the use of multi-branch networks [31, 32, 33],

i.e., networks that consists of more than one output layer, for handling the natural diffi-

culty variations exhibited in real-world samples. Ideally, the multi-branch network spends

just enough computation for each sample, instead of applying the same amount of compu-

tation, as illustrated in Figure 4.1. For example, easier samples can use earlier prediction

branches while the harder ones go through the normal forward propagation. We refer

to the scenarios of using branch classifiers as early-exiting. One of the key challenges

in achieving efficient dynamic inference is being able to adapt the resource consumption

to individual inference request without impacting the inference accuracy. Existing work

on dynamic inference with multi-branch network [31, 32, 33] used handcrafted policies
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Figure 4.1: The problem of dynamic inference for image classification tasks. Our goal is to
design a CNN that can adapt its execution to the inference request difficulty, to achieve high
inference accuracy and low computational cost.

for deciding the exiting branch per inference, as shown in Figure 4.2. As these policies

require domain experts in setting the threshold, the performance is subject to external fac-

tors such as resource fluctuation or sample difficulty. Further, prior networks only provide

a few adapting options, with a smaller number of branch exits. This limits the network’s

ability to adapt to smaller changes, i.e., less flexible.

In this work, we investigate the problem of designing a flexible multi-branch network

and early-exiting policies that can be learned in conjunction from the training dataset.

Designing a flexible multi-branch network requires attending to the tension between the

number of branches and the additional parameters and computational cost. In particular,

we need an efficient network structure that sufficiently represents the search space of the

early-exiting policies, while being mindful about the additional cost associated with the

early-exiting controllers. Additionally, when designing the controllers, we need to explic-

itly consider the trade-off between the classification accuracy and resource efficiency.
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Figure 4.2: Early-exiting policies for multi-branch networks. A learning-based policy has
two key advantages over the rule-based policies: (i) does not require human interference; (ii)
can lead to better policies.

4.2 Problem Formulation

In this work, we target the dynamic inference problem of image classification. Given a

set of samples D={I1, I2, ..., IN}, where Ii ∈ Rx×y×c denotes a image, and a user-defined

resource sensitivity value β, our goal is to design a multi-branch model M that balances

the classification accuracy and resource cost trade-offs.

To learn Mθ that is parameterized by θ, we design an optimization metric called ben-

efit score B as:

B(D,Mθ, β) = Acc(D,Mθ)− β × C(D,Mθ), (4.1)

Here the Acc(D,Mθ) is the average accuracy of Mθ on D, and C(D,Mθ) is the average

computational cost of Mθ on D. The parameters θ is obtained by maximizing the benefit

score S, and will be used to decide how to perform the classification task. In our formula-

tion, if the resource is ample, we can set β to be 0 which turns to a traditional classification

problem. We can set β to a larger value when the resource is more constrained.
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4.3 EPNET: the Proposed Method

We first describe the overall architecture and design of our proposed multi-branch models

EPNET. We then detail our formulation of the early-exiting problem in Section 4.3.3,

followed by how to effectively train the early-exiting controllers in Section 4.3.3.

4.3.1 Model Structure Overview

Our proposed EPNET consists of three components: the main branch network fm, branch

classifiers fa, and early-exiting controllers fc. Figure 4.3 illustrates an example structure.

4.3.1.1 Main Branch Network

The main branch network fm (the leftmost component in Figure 4.3(a)) takes the image

as the input and can produce classification result independently with the final classifier

layer. To enable as many exits as possible, we attach additional branch classifiers fa

(described below) at every convolutional layer except the last one. Larger number of

branch classifiers provides the early-exiting controllers fc more flexibility to adapt to dy-

namic inference environments such as varying sample difficulties and fluctuating system

resources.

Additionally, the ideal property of fm is the monotonically increasing accuracy with

the number of the layers, i.e., the branch classifiers attached to the latter layers should have

higher accuracy than earlier layers. In this work, we adopt the ResNet [6] as the main

branch network architecture. Other potential implementations of fm include networks

with short-cut connections such as DenseNet [7].

In short, the main branch network should be designed around two key principles: (i)

enabling as many exits as possible; (ii) maintaining monotonically accuracy increase with

exits.
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Figure 4.3: An example of our proposed EPNET, a multi-branch network with learnable
early-exiting policies. The overall structure consists of three parts: main branch fm, branch
classifiers fa, and early-exiting controllers fc.

4.3.1.2 Branch Classifiers

As shown in Figure 4.3(b), we need a branch classifier f ia for each exit i. In our current

implementation, f ia is attached to the i-th convolutional layer of fm. For a main branch

network with a total of N convolutional layers, we need a set of branch classifiers fa

represented as {f ia, i ∈ {1, 2, .., N − 1}}.

One of the key design challenges for branch classifiers is to balance its resource re-

quirement and classification accuracy. Considering the following example. In order for

an exit i to be a valid exit, the total computational cost of exiting through f ia should not

exceed that of exiting through f i+1
a . This indicates an upper bound of computational bud-

get, e.g., the difference between the two consecutive convolutional layers, when designing

the branch classifiers. This computational budget has to be shared with the early-exiting

controllers, further restricting our design space.

Similarly, the memory consumption of branch classifiers, i.e., number of parameter,

is also a big problem. In classic CNN structure, the 3D feature map outputed by last
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convolutional layer is flattened and fed to a fully connected layer, where the most of

the parameters belong to. This suggests that simply attaching a classifier layer to every

convolutional layer may lead the memory consumption to increase by multiple times.

Instead, we design the f ia with the structure of GAP-FC-SoftMax. Here the GAP is a

global average pooling layer and FC is a fully connected layer. We chose to use the GAP

layer because it significantly reduce the resource requirement of the branch classifiers.The

input of f ia is the 3D activated feature map generated by the i-th convolutional layer.

In short, the branch classifiers should: (i) comply to the resource consumption pattern

of the main branch network layers; and (ii) without impacting the accuracy.

4.3.2 Early-exiting Controllers

Lastly, our EPNET requires a set of early-exiting controllers fc = {f ic , i ∈ {1, 2, .., N −

1}} that regulates the usage of each exit i.

We design f ic as a two-part network, i.e,. f iin and f icat, to preserve the information

of features outputted by both the GAP layer and the logits outputted by f ia. This allows

our controllers to perform at least as well as previously proposed rule-based policy [31,

32, 33]. Both of the fin and fcat are in the form of stacked blocks FC-BN-ReLU, except

for the last activation of fcat which should be Sigmoid function. Here BN is a batch

normalization layer.

Specifically, f iin takes the 3D activated feature map generated by the i-th convolutional

layer as input and outputs a 1D vector v. This 1D vector v and the logits outputted

by f ia are concatenated and used as the input to f icat who then output a scalar signal

p ∈ [0, 1]. From the Bernoulli distribution paramiterized by p, we sample a stopping

signal s ∈ {0, 1}. If s = 0, the forward propagation in main branch fm will continue

until another controller f jc at j-th convolutional layer outputs s = 1, or reaches the final

classifier in fm. If s = 1, the forward propagation is immediately stopped and the model
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output the label predicted by the current branch classifier f ic .

4.3.3 Learning the Early-exiting Policy

We formulate the early-exiting problem as a Markov decision process (MDP) problem

M = (S,A, T,R), where the environment is E = (fm, fa, D). We describe the state set

S, Action set A, Transformation table T and Reward R in detail below. The early-exiting

policy π can be learned through maximizing the expected reward Eπ(R), once fm and fa

are trained.

States set S. We define a state si as (mi, yi) where mi is the outputted vector at the

GAP layer after the i-th convolutional layer of fm, and yi is the logits outputed by f ia.

Additionally, S contains a distinguish state sab called absorbing state. The MDP stops

when any states transition to sab. In our case, sab represents the state when the controller

decides to stop and exit from exit i. Lastly, we define the start sate s0 = I where I denotes

an image from D.

Action set A. The MDP only has two actions: ”stop at current exit” or ”continue to

forward propagation”. Here we denote it as A = {0, 1}, where 0 is ”stop” and 1 is

”continue”. Ones the agent takes action a = 1, the state transfer to sab. So given a image

x, the trajectory set T of agent can be denotes as T = {(x, 0n, 1)|n ∈ {0, 1, ..., N − 1}},

where 0n means a succession of 0 of length n, and N is the total number of branch exits.

Transformation table T . T = {P (s, a, s′)|s, s′ ∈ S, a ∈ A}, where P (s, a, s′) is the

probability that state s transfer to s′ by taking action a. In this study, the T is deterministic

so that all P (s, a, s′) = 1 if π(s, a) = s′, otherwise P (s, a, s′) = 0.

Reward R. Given a Image x from D and a cost sensitivity β. If the agent stop at the

i-th exit, the trajectory is τ = (x, 0i−1, 1). The reward R(τ) is the Benefit({x}, fi, β)

defined in Eq 4.1. Here fi is the sub-network from the input layer of the main network
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fm to the output layer of i-th branch classifier f ia.

4.3.4 Training Consideration of the Controllers

The main branch fm and additional branch classifiers fa can be trained by simply sum-

ming their cross entropy loss together [31]. Here We mainly describe two approaches

to train the controllers fc. We compare their ability to find early-exiting policy in Sec-

tion 4.4.8.

The first option is to leverage REINFORCE algorithm [22] to train the early-exiting

controllers as following.

∇θEπ(R) ≈
1

m

m∑
j=1

n∑
i=1

∇θlog
(
π
(
aji |s

j
i ; θ
))
Rj (4.2)

π (ai|si; θ) =



f ic(si) ai = 1, si 6= sab

1− f ic(si) ai = 0, si 6= sab

1 ai = 1, si = sab

0 ai = 0, si = sab

(4.3)

Here m is the number of episode, and n denotes the length of a trajectory, i.e.the

number of exits. s, a, R are the states, actions, rewards defined in the previous section.

But the classic REINFORCE rule is based on sampling and Markov Chain Monte

Carlo approach (MCMC), which could be inefficient in our task. For example, if the

dynamic model has 9 additional branches, the trajectory τ = (x, 09, 1) may have very low

chance to be sampled. This is because it requires all the controllers to output continue.

The low sampling efficiency can cause well known drawback of REINFORCE, the high
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variance of policy gradient.

The second option, which we used for training the controllers in this work, is to

directly compute the exact gradient of Eπθ(R) as following.

∇θEπ(R) =
n∑
j=1

∇θ

n∏
i=1

(
π
(
aji |s

j
i ; θ
))
Rj (4.4)

The gradient computation is feasible because of two important properties of our MDP.

First, The environment E = (fm, fa,D) is a given and the only randomness comes from

the policy π itself. Second, given an image and a multi-branch network of N branches,

the size of trajectories set is T = {(x, 0i, 1)|i ∈ {0, 1, ..., N − 1}} with size N . In our

current design N is bounded by the number of convolutional layers which varies from

tens to a couple hundreds given current popular CNNs. As such, N is small enough that

we don’t need sampling.

4.4 Experimental Evaluations

We evaluate our proposed EPNET with three datasets and compare to two types of base-

lines. We summarize and highlight our key results below.

• Accuracy and resource comparisons to baselines. We show that EPNET outperforms

all baselines including ResNet, and both rule-based and manually-tuned early-exiting

policies applied to multi-branch models [31, 32, 33].

•Adaptivity of EPNET. In Section 4.4.7, we demonstrate EPNET’s ability to effectively

choose the appropriate branch exit based on both the classification difficulty of samples

and the computational cost sensitivity of the resource-constrained platform.
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             = 8 - 0
             = 8
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             = 9 - 1
             = 8

Figure 4.4: Example of samples in our Max-Min MNIST dataset. This dataset contains sam-
ples of three difficulty levels. The ratios for easy, medium, and hard levels are 2:1:1.

4.4.1 Data Sets

We used the following three widely used datasets for image classification task to evaluate

the performance of our EPNET.

•Max-Min MNIST dataset. We created this dataset of three difficulty levels, based on

the original MNIST, to evaluate the effectiveness of early-exiting policy. Figure 4.4 illus-

trates corresponding image examples. We constructed the easy samples by embedding the

original MNIST digits into a 50 × 50 black background and reusing the original labels.

The medium-level samples had two digits embedded in the 50 × 50 black background,

with the labels being the absolute difference between the two digits. Finally, the hard-

level samples had twice as many digits as the medium-level ones and were assigned the

labels in the same way. For each sample, the locations of digits were generated from the

2D uniform distribution. We used the ratios of 2:1:1 for easy, medium and hard levels

for both training and test sets, respectively. The total numbers of training and test images

were 60000 and 10000 respectively, the same as the original MNIST dataset.

• Multi-scale Fashion MNIST. We created this dataset based on the original Fashion

MNIST. Figure 4.5 illustrates corresponding image examples, which could be categorized
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Type 1

 Label = Sandal

Type 2 Type 3 Type 4

 Label = T-shirt Label = Coat  Label = T-shirt

Figure 4.5: Example of samples in Multi-scale Fashion MNIST dataset. This dataset contains
four different types of samples, with equal proportion.

to four types. We constructed the Type 1 by embedding the original Fashion MNIST

objects into a 50 × 50 black background and reusing the original labels, the objects are

scaled to the 0.6 times of its original size. For the Type 2 and 3, the objects are scaled to

the 1.5 times of its original size. The Type 4 contains two objects, one is large, another is

small, and its label is decided by the small objects. In the Type 1, 3, 4, the locations of

object were generated from the 2D uniform distribution. For Type 2, the object is fixed at

the center. We used the ratios of 1:1:1:1 for each type, respectively. The total numbers

of training and test images were 60000 and 10000 respectively, the same as the original

Fashion MNIST dataset.

• CIFAR-10. We used the original CIFAR-10 dataset which consists of 50k training

and 10k test images of 32 × 32 pixels, respectively. For training we adopted the data

augmentation technique used in the [6]. Specifically, each image was zero-padded with

4 pixels on each side, then randomly cropped to produce 32 × 32 resolution. Further,

training images were flipped horizontally with 0.5 probability and the pixel values were

normalized by subtracting channel means and dividing by channel standard deviations.
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4.4.2 Baseline Methods

We compared to two types of baselines: (i) a state-of-the-art image classification model;

and (ii) early-exiting policies.

• ResNet [6]. We not only compared with ResNet, but also used ResNet as the main

branch network fm of proposed EPNET. We made the following changes to the original

ResNet structure to account for the image size difference between our chosen datasets

and the ImageNet dataset of which ResNet was designed for.

These changes are: (i) we removed the first conv layer and the first pooling layer; (ii)

the first conv layer in the first residual block was performed by stride of 2.

• BranchyNet [31]. We chose a representative entropy-based early-exiting policy as

described in BranchyNet [31]. At a high level, BranchyNet works by comparing the

entropy of logits of an exiting branch to a predefined threshold and halting the forward

propagation in main branch if the logits entropy is lower. We used the recommended

entropy thresholds of 0.2 and 0.3 for the baselines and denoted them as BranchyNet-

0.2 and BranchyNet-0.3, respectively. We also compared the BranchyNet with dynamic

thresholds, denoted as BranchyNet-oracle, which was constructed as following: (i) the

thresholds are manually tuned; (ii) by using the results of our EPNET as a guidance for

searching the thresholds.

• Softmax-gated policy. This baseline leverages the maximum value of the softmax

probability and compares the probability to a given threshold for early-exiting [32, 33].

We denoted the baseline as Softmax-gate-γ where γ is the threshold. Given the logits of

a branch classifier, if the maximum value of the softmax probability is larger than 1− γ,

the model halt the forward propagation. On each dataset, we pick two thresholds. By

the smaller γ the network can achieve the high accuracy close to our EPNET. By the

larger γ the network can maintain low computational cost close to EPNET. Similar with

BranchyNet, we also compare with Softmax-gate with dynamic thresholds, denoted as
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Figure 4.6: The benefit score comparison on all three datasets. We observe that our proposed
EPNET outperformed two types of baselines.

Softmax-gate-oracle.

For fair comparisons, our EPNET uses the same structure as its ResNet for its main

branch network fm. Further, EPNET shares the same structure and parameters of fm and

fa with the BranchyNet and Softmax-gated policy.

4.4.3 Evaluation Methodology

We evaluated the effectiveness of EPNET on all three datasets with following two metrics.

The first metric we chose is the benefit score that was defined in the Equation (4.1).

This metric allows us to compare our EPNET to baselines in a unified way. In each task,

we firstly set the cost sensitivity to β × 0.01, where β−1 is the order of magnitude of

the average comutational cost (FLOPS) of a single convolutional layer in the EPNET

used. Then we increase the cost sensitivity each time by adding β × 0.01 to the previ-

ous cost sensitivity. So we can observe how the methods’ performances change against

the decreasing available resources. Under each setting of cost sensitivity, we retrain the

controllers and keep the rest part of EPNET fixed.

We also used a metric, referred to as budget-constrained accuracy, for understanding

the effectiveness of early-exiting [32, 33]. To calculate the budget-constrained accuracy,

we first define a computational budget and then use it as a barrier for determining the

accuracy. For example, in the case of CIFAR-10, we used our EPNET’s total computa-
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tional cost (FLOPS) over the test dataset as the computational budget, and evaluated all

baseline models. For baseline models that did not finish all test images within the budget,

we assigned labels in an uniformly random way to the remaining test images. We use

accb to denote the resulting budget-constrained accuracy.

4.4.4 Performances on Max-Min MNIST Dataset

We first describe the network structure and parameter settings we used in EPNET for

training on the Max-Min MNIST dataset, followed by the performance comparison to its

respective baselines.

Network structure setting. For the main branch network fm, we used a ResNet with

12 convolutional layers. The first four layers each has 32 filters, followed by another

four layers with 64 filters. The last two convolutional layers are of 128 filters. We down-

sampled by using a stride of 2 for convolution when the number of filters changed between

layers. To construct the early exits, we used a single-layer classifier f ia that takes the input

of the i-th convolutional layer of fm. This resulted in a total of 12 potential exits. On i-th

exit, The classifier f ia is a single fully-connected layer. The controller f ic consists of two

fully-connected networks fin and fcat, where the fin has 10, 10, 10 units in each layer,

and the fcat has 10, 10, 1 units in each layer.

Parameter setting. We adopted the Kaiming initialization [66] and BN [67] without

dropout when training the main and branch classifiers fm and fa, respectively. We used

a mini-batch size of 64 and momentum of 0.9. We set the initial learning rate to be 0.1.

We trained the classifiers for a total of 60 epochs. Once the classifiers were trained, we

fixed the classifiers and train the controllers fc. The mini batch size is 64, and the initial

learning rate is 0.01. We trained the controllers for a total of 60 epochs as well.

Result and discussion. Figure 4.6(a) compares the benefit score achieved by different
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baselines and our EPNET.

We have the following three key observations. First, the EPNET greatly outperforms

all baselines, and the gap of performance grows as the cost sensitivity grows. At begin-

ning the cost sensitivity is small (2 × 10−7), the EPNET outperforms the best baseline

Softmax-gate-oracle by 3.11. When cost sensitivity reaches 1 × 10−6, the gap between

the scores of EPNET and Softmax-gate-oracle increases to 10.17. Second, the ability to

learn the early-exiting policy from dataset is the reason of the superiority of EPNET. The

performances of oracle baselines with dynamic thresholds and the branchyNet-0.2 / 0.3

are very close, indicating the thresholds 0.2 and 0.3 recommended in [31] are suitable for

this dataset, while tuning the thresholds can’t bring obvious benefit. In contrast, the gaps

between the EPNET and the oracle baselines are much larger than the differences among

the early-exiting baselines. This results may indicate the EPNET learns much better rep-

resentation of the confidence of the classification than the rule-based methods. Third, The

ResNet’s benefit score is worst because it only focuses on accuracy while has the highest

computational cost.

Table 4.1 shows the comparison on budgeted batch classification. The accuracy of

EPNET is 95.51%, which is higher than the best baseline Softmax-gate-0.2 by 7.35%.

The BranchyNet-0.2 and 0.3 can’t finish within the budget. We have to rise the threshold

to 0.95, then the BranchyNet’s computational cost meets the limitation of budget. But its

accuracy is only 84.13% which is 11% lower than EPNET. The ResNet with same struc-

ture of the EPNET’s main branch network, can only achieve 46.86% under the limited

budget, which is 48.65% lower than the EPNET. Compared with ResNet without budget

limitation, the EPNET’s accuracy is only 0.18% lower than it, while saves about 50% of

computation. Even when the budget limitation is removed for the baselines except for

ResNet, their accuracies are all lower than EPNET by at least 1%.
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Table 4.1: Results of budgeted classification. The budget of each task is the total computa-
tional cost of proposed method on the whole dataset. The results are reported as test accuracy
constrained by budget (accb) (rank), test accuracy (acc*), and whether the classification fin-
ished before the budget ran out.

Dataset Model accb(%) acc(%) Completion

Max-Min
MNIST

Proposed 95.51 (1) 95.51 3
BrachyNet-0.2 67.65 (5) 93.71 7
BrachyNet-0.3 70.82 (4) 93.03 7
BrachyNet-0.95 84.13 (3) 84.13 3
softmax-gated-0.2 87.76 (2) 87.76 3
softmax-gated-0.01 61.53 (6) 94.59 7
ResNet 46.86 (7) 95.69 7

Multi-Scale
Fashion MNIST

Proposed 88.68 (1) 88.68 3
BrachyNet-0.2 61.09 (5) 88.41 7
BrachyNet-0.3 68.11 (4) 87.88 7
BrachyNet-0.6 85.68 (2) 85.68 3
softmax-gated-0.2 85.38 (3) 85.38 3
softmax-gated-0.01 49.88 (6) 88.69 7
ResNet 32.14 (7) 89.92 7

CIFAR-10

Proposed 88.61 (1) 88.61 3
BrachyNet-0.2 86.54 (4) 88.35 7
BrachyNet-0.3 87.83 (2) 87.83 3
softmax-gated-0.1 87.53 (3) 87.53 3
softmax-gated-0.01 71.72 (5) 88.76 7
ResNet 47.82 (6) 89.89 7

4.4.5 Performances on Multi-scale Fashion MNIST

Next we study the effectiveness of the EPNET on Multi-scale Fashion MNIST dataset.

Network structure setting. We used the same network structure as described in Sec-

tion 4.4.4 for the Max-Min MNIST dataset.

Parameter setting. We adopted the Kaiming initialization [66] and BN [67] without

dropout when training the classifiers (i.e,. fm and fa) and the controllers fc, respectively.

For the classifiers, we used a mini-batch size of 128 and momentum of 0.9. We set the

initial learning rate to be 0.1 and divide the learning rate by 10 every 100 epochs. We

trained the classifiers for a total of 300 epochs. Once the classifiers were trained, we fixed

the classifiers and trained the controllers fc. The mini batch size is 128, and the initial
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learning rate is 0.01. After 50 epochs the learning rate was reduced to 0.001, then we

trained the controllers for another 50 epochs.

Result and discussion. Figure 4.6(b) shows the performances of each model according

to the benefit score. Similar with Max-Min MNIST dataset, we make the following two

key observations. First, the EPNET always outperforms all the baselines and the gaps

between EPNET and the baselines are very clear. When the cost sensitivity is 2 × 10−7,

the benefit score of the EPNET is 85.25, and the score of best baseline BranchyNet-oracle

is 83.48. When the cost sensitivity reaches 1×10−6, the benefit score of EPNET is 74.68,

and the best baseline, Softmax-gate-oracle is 71.01. Second, the performances of oracle

baselines are almost the same with the Softmax-gate-0.2, indicating 0.2 is already a good

threshold. Therefore manually tuning the threshold did not make a big difference. Similar

to the discussion of the previous dataset, this observation reflects that the performance of

the rule-based polices are limited by their confidence/uncertainty measure.

As show in the Table 4.1, on the budgeted batched classification, the accuracy of

EPNET is 88.68%, which is higher than all the baselines by at least 3%. The ResNet with

same structure of the EPNET’s main branch network, can only achieve 32.14% under

the limited budget, which is 56.54% lower than the EPNET. Both the branchyNet-0.2

and branchyNet-0.3 can’t finish the whole test set before the budget runs out. We have

to increase the threshold to 0.6 to fit the budget, and the accuracy of branchyNet-0.2 is

85.68%. Even the budget limitation is removed, branchyNets’ accuracies are still lower

than EPNET, which may indicate their measurements of confidence, i.e.the entropy of

logits, may be not feasible in this task.

4.4.6 Performances on CIFAR-10

Lastly we study the effectiveness of the EPNET on CIFAR-10.

Network structure setting. For the main branch network fm, we used a ResNet with
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Figure 4.7: Cumulative exiting rate on the Multi-scale Fashion MNIST. The cost sensitivity
was 2× 10−7.
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(c) The cost sensitivity is 2×
10−6

Figure 4.8: Cumulative exiting rate of samples with varying difficulties on the Max-Min
MNIST dataset.

10 convolutional layers. The structure is similar with the previous task but only has two

convolutional layers of 128 filters. For the controller of i-th branch, the fin has 100, 10,

10 units in each layer, and the fcat has 100, 100, 50, 1 units in each layer.

Parameter setting. The most of the parameters are same with the Multi-scale Fashion

MNIST. Additionally we used the weight decay of 0.0001 to train the classifiers. Also,

for training of controllers, we set the batch size = 64.

Result and discussion: Figure 4.6(c) shows the performance of each model according

to the benefit score. The gaps between EPNET and baselines are not as large as on the

other datasets. The reason may be the difficulties of the samples are not as obvious as

the other two datasets. So we test the models under more settings of cost sensitivity. The

key observations are: First, even though the sores of all models are very close to each
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Figure 4.9: The distribution of accuracy and exiting rate. The cost sensitivities for each
dataset are 5× 10−7, 2× 10−7, 2× 10−7.

Table 4.2: Performance comparison of different controller layer configurations.

Configuration Neurons in fin Neurons in fcat Benefit Score Accuracy (%) Total network Computation (FLOPS) Controller Computation (FLOPS)

1 [10, 10, 10] [10, 10, 1] 82.40 88.42 1.203× 107 0.107× 104

2 [50, 10, 10] [50, 50, 1] 83.17 88.45 1.054× 107 0.724× 104

3 [100, 10, 10] [100, 100, 50, 1] 83.51 88.61 1.019× 107 2.419× 104

4 None [100, 100, 50, 1] 82.99 88.37 1.074× 107 1.700× 104

other at beginning, the gap between the scores of EPNET and the baselines with fixed

thresholds increases quickly. When cost sensitivity reaches 5 × 10−6, the score gap is

up to 10.17. Second, even though the oracle baselines are granted “unfaire” advantages,

i.e.their thresholds are tuned by hand and the searching is hinted by the results of EPNET,

our EPNET still slightly outperforms them. When the cost sensitivity is small (5× 10−7),

the EPNET outperforms the best baseline Softmax-gate-oracle by 0.2. Then their gap of

benefit score grows to 1.2 as the the cost sensitivity grows to 5× 10−6.

Table 4.1 compares the budget-constrained accuracy and contains the model test accu-

racy for reference. We observe that among all tested baseline models, only two were able

to complete within the computational budget. Even so, BranchyNet-0.3 and Softmax-gate-

0.1 had 0.78% and 1.08% lower accuracies than our EPNET, respectively. Compared to

the ResNet-11 that shared the same main branch structure, our EPNET achieved 40%

higher budget-constrained accuracy. Our results demonstrate the effectiveness of our EP-

NET in operating with stringent resource.
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Figure 4.10: Average benefit score during the training phase. The cost sensitivities for each
dataset are 5× 10−7, 2× 10−7, 2× 10−7.

4.4.7 Case Study: EPNET’s Adaptivity to Classification Difficulty

The desired controller should be able to identify the samples which are easy to be classi-

fied at early stage. This property is well supported by the experiment on Max-Min MNIST

and Multi-scale Fashion MNIST, which consist of samples of different difficulty levels in

term of classification.

Multi-scale Fashion MNIST. In Figure 4.7 we show the cumulative exiting rate over all

exits for the Multi-scale Fashion MNIST. The curves that are closer to top-left corner are

more tend to exit at earlier branch exits. About 90% of Type 1 samples stop before exit-

5. The reason may be the objects in Type 1 are very small, so the shallower layers are

sufficient to model them. The 80%-stop point of Type 2 and Type 3 samples are exit-6 and

exit-8 respectively. It makes sense because compared with Type 1, the Type 3 samples

have larger objects that require down-sampling to capture the objects. Compared with

Type 2, the locations of object of Type 3 is random, so it is also more difficult than the

Type 2. The Type 4 is at most bottom-right, because the samples are harder than other

types due to they have two objects and need to tell which one is larger.

Max-Min MNIST. The similar finding is more obvious on the Max-Min MNIST. Fig-

ure 4.8(a) shows when the cost sensitivity is 5 × 10−7, the easy samples mainly stop at

the second, third and fourth exit. The medium samples mainly stop at 8-th exit. The
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hard samples mainly stop at 10-th and 11-th exit. This result indicates the controller

learns to predict the easy samples at shallow stage and leave the hard samples to the deep

stage, thus the computational cost is saved. Figure 4.8(a) shows when the cost sensitiv-

ity increases to 2.5 × 10−6, the controller tends to left-shift the exiting distribution of all

samples, because the model is more sensitive to the computational cost. As show in the

Figure 4.8(c), when the cost sensitivity reaches 5×10−6, something interesting happened.

The controller chose to output the hard and medium samples at the first exit, even before

the easy cases! The reason is to correctly classify the hard samples, we have to use the

deep layers, but the computation cost is much larger than the benefit of correct classifi-

cation, as the cost sensitivity is large now. So in this case, outputting the hard cases at

beginning is reasonable.

All datasets.

For each exit, Figure 4.9 shows its accuracy on whole test set (denoted as accw), and

on the exited samples (denoted as acce), as well as the exiting rate. On all the datasets,

the acce is much higher than the accw at beginning. This reflects that the controller f ic can

effectively find the samples which the classifier f ia can confidently predict, even without

knowing the ground truth of sample difficulty. As the depth increases, the accw increases

while the acce drops to below than accw. The reason is the easy cases have exited at

previous branches, leaving the hard cases to the later branches.

4.4.8 Training Discussion

Now we discuss the training step use different method. As we have statemented, the early

exiting problem can be viewed as a reinforcement learning task, and could be solved by

classic REINFORCE algorithm based on Markov chain Monte Carlo (MCMC) to esti-

mate the gradients. Here we show the training process using our EPNET and MCMC in

the Figure 4.10. As we can see, on three datasets, the training reward of both method
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increased very quickly at beginning, then slow down. The EPNET always keeps higher

reward at each iteration step comparing with the MCMC REINFORCE algorithm. Es-

pecially on the Multi-scale Fashion dataset, the reward curve of MCMC REINFORCE

algorithm has large fluctuation, even we already add the baseline to reduce the variance

of policy gradient. On the contrary, our EPNET not only achieves higher reward, but also

has much smaller fluctuation on the reward increasing curve. We think the reason may be

our EPNET use the gradient of the exact expectation of reward instead of the estimation

based on MCMC.

4.4.9 Parameter Discussion

Lastly, we discuss the impact of the structure of controller on our EPNET performance.

We train and test the EPNET on the CIFAR-10 under four configurations of controller, as

show in the Table 4.2. Each configuration corresponds to different computational com-

plexities. As we can see, increasing the depth and width of the controllers on each branch

lead to higher computational cost of the controller (first three rows). However, the slightly

higher computational cost on controller led to two orders of magnitude reduction in com-

putational cost on whole network and better accuracy. This is because more complex

controllers are better in learning the early-exiting policies.

Compared with Config 3, i.e.the best configuration in Table 4.2, the Config 4 use the

similar structure of fcat but without fin, which means the controllers in Config 4 only use

the logits to decide to stop or continue, neglecting the original information in the feature

vector after GAP layer. So its performance is worse than Config 3. Even though Config

4 uses a larger controller than Config 2, its performance on benefit score, classification

accuracy and computational cost are worse than Config 2. This result support our idea that

combining the pooled feature vector and logits can improve the controller’s performance.
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4.5 Related Work

Rule-based Early-exiting. Teerapittayanon et al. proposed a multi-branch network

named BranchyNet [31], which added several additional branches on CNNs including

LeNet, AlexNet and ResNet. On each branch, the early exiting is controlled by the

threshold of logit entropy. Huang et al. proposed a novel model called MSDNet, of

which the structure is a stack of multiple DenseNet, for addressing the impacts of the

multi-branch structure on the accuracy of branch classifier [32]. MSDNet is designed

to provide coarse-level features to earlier branches and reduce the interference between

branches. Li et al. further studied the problem of potential negative impacts of gradients

from multiple branches and proposed methods to collaboratively improve the training of

branches [33]. Both [32] and [33] used the softmax probability for making early-exiting

decisions. Our work propose a learning-based early-exiting approach for better adapting

to inference environment.

Dynamic Inference on CNNs.

Figurnov et al. proposed a spatial adaptive inference architecture called SACT [68]

that can skip convolution within a residual block. Specifically, SACT calculates a halting

score during every convolution in a residual block and decides whether to skip the next

convolution in the same residual block. Veit et al. proposed a dynamic inference model

called ConvNet-AIG [69] that aims to only execute the layers related to the category

of input image. Concretely, ConvNet-AIG used a small network as a gated function to

decide whether to execute a residual block or just jump over it through the shortcut link.

Simiarly, Bengio et al. [70] proposed a method to dropout some units of a layer in neural

network. Wang et al. proposed SkipNet [71] that leverages reinforcement learning to

identify the suitable shallow networks per sample. Our work focuses on the co-design of

a multi-branch network and its early-exiting policy for efficient dynamic inference.
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Dynamic Inference on RNNs.

Minh et al. proposed a recurrent attention model (RAM) [29] on visual learning tasks.

RAM can learn to only attend to the important regions without scanning the entire image,

similar to SACT [68]. On the task of time series classification, Hartvigsen et al. [72]

proposed a novel model EARLIEST to jointly minimize the classification error and the

execution time of the model. Both RAM and EARLIEST and the works mentioned

above [70, 71] are trained by REINFORCE algorithm. Our work also leverages reinforce-

ment learning to obtain the early-exiting policy. As our MDP has much smaller searching

space, our proposed controller can be trained in an efficient non-sampling fashion.
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5

FISHNET: Fine-Grained Filter Sharing

for Resource-Efficient Multi-Task

Learning

5.1 Introduction

Multi-task learning (MTL) is a promising paradigm to improving the test accuracy of

deep learning models that have to train with limited datasets. Two common ways to sup-

port such information sharing are: (i) hard-sharing where parameters are shared among

the task-specific networks and (ii) soft-sharing where feature maps are shared. Con-

cretely, hard-sharing approaches often employ hand-coded policies which result in static

and coarse-grained information sharing. In contrast, soft-sharing techniques can learn

fine-grained feature sharing directly from multi-task datasets by providing inputs access

to fused feature maps.

Consequently, MTL models that achieve state-of-the-art accuracy are often ones using

soft-sharing. However, the high accuracy of soft-sharing based MTL models comes with
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Figure 5.1: Resource-efficient MTL. Three tasks are being learned on a multi-task dataset.
The goal is to train a model for all three tasks that can be deployed on mobile devices with
limited computational resources.

the expensive resource requirement (both training and inference phases) that grows lin-

early with the number of tasks. For example, at inference phase, even when the end user

is only interested in one out of the many tasks, all the task-specific models need to run

to produce the inference response. Concurrently, resource-constrained end-user devices

such as security camera or mobile devices are emerging as a natural fit for MTL models

where high test accuracy is desirable for many related tasks. Figure 5.1 illustrates one

such use cases. Unfortunately, the high resource requirement of soft-sharing based MTL

models impedes the wide deployment to these resource-constrained devices.

In this paper, we investigate the problem of resource-efficient multi-task learning with

the key goal of designing a resource-friendly MTL model that achieves high accuracy

comparable to soft-sharing approaches while only consumes constant resource w.r.t. the

number of tasks. In other words, we aim to incorporate the best of both the soft-sharing

(high accuracy) and hard-sharing (low resource consumption) into a new class of models.
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The key challenge in designing resource-efficient MTL models lies in providing flexi-

ble and fine-grained sharing among tasks without incurring undesirable resource over-

head. Fine-grained sharing and flexibility allow enlarging the search space which is use-

ful for improving the potential amount of information sharing among different tasks and

for adapting to different data distributions. Traditional hard-sharing approaches often

employ coarse-grained layer-based sharing which then result in a fixed sharing struc-

ture, e.g., a tree-based structure that allow tasks to share layers that are closer to the

input layer as illustrated in Figure 5.2B). Although existing soft-sharing approaches al-

low finer-grained sharing, they often incur more resource overheads both at the training

and inference phases.

To address the above-mentioned challenges, we formulate the resource-efficient MTL

problem as a fine-grained filter sharing learning problem, i.e., learning how to share filters

at any given convolutional layers among multiple tasks. We propose a novel architecture

called FISHNET which consists of two parts: the task-specific CNNs parameterized by
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φ, and the filter allocators, parameterized by θ, that control what parameters to share

among tasks-specific CNNs. Figure 5.2C) illustrates an example architecture with six

tasks. In particular, the filter allocators learns to select the best filter from each filter pool

for each task. Additionally, we introduce three techniques to handle the non-differentiable

actions when training the allocators. Our proposed FISHNET architecture can be directly

implemented and trained with existing deep learning frameworks such as Pytorch. Once

trained, FISHNET can effectively support single-task inference scenarios by only loading

the task-specific network.

5.2 Problem Formulation

In this paper, we study the problem of resource-efficient multi-task learning (MTL) on su-

pervised vision tasks. Given a set ofN supervised learning tasks T = {t1, t2, ..., tN}, each

task tk is associated with a task-specific model Mk and a dataset Dk = (Xk, Yk), where

Xk is a set of images and Yk is a set of labels. Multi-task learning is based on the key

assumption that all the tasks or some of them are related. Our goals of resource-efficient

MTL are two-folds: 1) to improve the performance on each task by sharing information,

i.e. features or parameters, among the M = {M1,M2, ...,MN}; 2) to satisfy the resource

constraints for each task-specific CNNs. Specifically, we consider the following two con-

straints: (i) The computational complexity of inference on one task should not grows with

the number of tasks, i.e. |T|; (ii) the total size of all intermediate feature maps outputted

by convolutions on one task should not grows with |T|.

In this study, we focus on enabling fine-grained hard sharing across the M = {M1,M2, ...,MN},

and assume all Mk has the same architecture. Thus we formulate the resource-efficient

MTL as a fine-grained filter sharing learning problem.

Specifically, given a multi-task learning problem P = (T,M,D), let’s use the fkij to
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denote the i-th filter in the j-th convolutional layer of Mk, the task-specific CNN for the

task tk ∈ T. For all k in {1, 2, ..., |T|}, the filters fkij are picked from a pool of filters

Fij = {f1, f2, ...fN}. The goal of filter-level hard sharing is to learn a policy that selects

the best filter for each Mk ∈ M to improve its performance on its corresponding task

tk ∈ T.

It is easy to see that the filter-level hard sharing naturally satisfies the resource con-

straints of the MTL problem. That is, to perform inference on a task tk, we only need

to run a single network Mk consisting of filters chosen by the learned filter selection

policy. Consequently the computational complexity and total memory consumption of

intermediate feature maps are constant w.r.t |T|. Furthermore, our filter-level sharing can

be considered as a generalized version of the traditional hard sharing problem. That is, if

Ma andMb decide to share the parameters between filter faij and f bij , they just need to pick

the same filter from the pool Fij . The solution space S of filter-level hard sharing prob-

lem is defined on the filter pools Fij of all filters in architecture of Mk. The traditional

tree-shape hard sharing methods belong to a subset of S.

5.3 FISHNET: Resource-efficient MTL via Fine-grained

Sharing

5.3.1 Overall Structure

The proposed FISHNET consists of two parts: 1) The task-specific CNNs, which have the

same architecture, and work for each task as a normal CNN respectively. We only want

to share the parameters in convolutional layers, and every CNN should keep its own BN

layers and fully-connected layers after convolutions. 2) The allocator units, which decide

the way of sharing parameters across task-specific CNNs. The goal of this study is to
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design a mechanism that can learn the task-specific CNNs as well as the allocator units

directly and synchronously from the training set.

5.3.2 Learning Fine-grained Filter Sharing

In this section, we show the idea that our hard sharing mechanism can be expressed in an

equivalent form of normal convolutional networks, which can be easily implemented by

open-source deep-learning library e.g. Tensorflow or Pytorch. We will introduce the basic

block of FISHNET which is aimed to implement the filter picking for a convolutional

layer, as show(shown) in Figure 5.3. In the following notations, we omit the index of the

convolutional layer.

Given the task set T, let’s start from a convolutional kernel φk for task tk. Suppose

the φk ∈ RCin×H×W×Cout , it means φk consists of Cout filters fko ∈ RCin×H×W , and

o ∈ (1, 2, ..., Cout). Here, Cin is the number of input channel, H is the height, and
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W is the width. Given the channel index o, the filter fko for each task tk is selected

from a filter candidate set Fo. Here we assume the pool size |Fo| are all the same for

o ∈ (1, 2, ..., Cout).

To share the parameters across φ1, φ2, ..., φ|T|, we concat the filters in the F1, F2, ...,

FCout together to form a large convolutional kernel φ
F
:

φ
F
=

Cout⋃
o=1

Fo (5.1)

It is obvious that the kernel φ
F

contains all candidate filters. Then given an input

X ∈ RH×W×Cin , we perform convolution on X by the kernel φ
F
, resulting a feature map

A:

A = φ
F
∗X (5.2)

Here the A ∈ RH×W×Cout|Fo|, where every |Fo| channels are outputted by the filters

from the same candidate set Fo. To clarify the further calculation, A is reshaped to H ×

W × Cout × |Fo|. Then let’s consider how to generate the output(feature maps) for each

task. For a certain task tk, there is an allocator unit θko ∈ R|Fo| corresponding to each filter

candidate set Fo. The Softmax(θko ) parameterize a |Fo|-way categorical distribution over

Fo, from which the choice of filters are sampled. We use the one-hot vector cko ∈ R|Fo| to

denote the choice of filters from Fo for task tk:

cko ∼ Categorical(|Fo|, θko) (5.3)

Because the choice of the filter is equivalent to the choice of the feature map, the

feature map Ak
o ∈ RH×W for task tk is calculated by the following way:
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Ak
o =

|Fo|∑
m=1

ckomAom (5.4)

Here ckom is the m-th scalar element in cko , Aom is the 2D slice in A given the output

channel index o and candidate index m in the |Fo|. Once we have the feature maps Ak
o

for task tk, we can pick the corresponding filters from each candidate set Fo, and form a

convolutional kernel φk for task tk:

φk =
Cout⋃
o=1

{
fm|fm ∈ Fo, c

k
om = 1

}
(5.5)

We can see the block of FISHNET has two kinds of parameters: 1) the large convo-

lutional kernel φ
F
; 2) the parameters of allocator units θ = {θko |o ∈ {1, 2, ..., Cout}, k ∈

{1, 2, ..., |T|}}. Once the the φ
F

and θ are trained from dataset, we can pick the trained

filters to form a task-specific convolutional layer for each task. By stacking this block, it

can learn to share the filters across CNNs of any architecture for any number of tasks in

a searching space tuned by the pool size |Fo|. The φ
F

can be simply trained by standard

backward propagation. We will discuss how to train the θko in the next section.

Similarity and difference compared with soft sharing: Although the proposed FISH-

NET belongs to hard sharing method, its architecture looks more like a soft sharing

method in the training phase. If we relax the |Fo|−dimension vector cko from a one-

hot vector to a common vector wk
o ∈ R|Fo|, FISHNET is somehow similar to the famous

Cross-stitch network in the manner of weighted adding the feature maps from all task-

specific network (but be attention that they are still very different in the network architec-

ture). From this view, the FISHNET learns a discrete feature fusion in the training phase,

and naturally breaks down into common single CNNs for each task in the testing phase.
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That’s why the FISHNET can learn fine-grained and flexible sharing structure as what soft

sharing methods do and still be time and space efficient as naive hard sharing.

5.3.3 Training Considerations

5.3.3.1 Train the Allocator by Gumbel-Softmax Method

Given a filter candidate set Fo, the filter choice cko for task tk is drown from the policy

πθko , which parameterized by allocator unit θko associated with Fo. The sampling in Eq. 5.3

is a non-differentiable operation, so θ can’t be directly trained by the standard backward

propagation. To solve this problem, we use the Gumbel-Softmax method [23] to train the

allocator.

Gumbel-Softmax: The first step, we generate a random vector g ∈ R|Fo|, in which

the scalar element gm, m ∈ 1, 2, ..., |Fo| is drawn from a standard Gumbel distribution

Gumbel(0,1). Then the choice cko ∈ R|Fo| can be generated in a alternative but equivalent

way:

cko = one-hot (argmin
m

[gm + log πθko (m)]) (5.6)

In the above equation, the argmin is still a non-differentiable operation. According

to [23], the one-hot and argmin can be relaxed by using Softmax function with tempera-

ture τ ∈ (0,+∞), thus we get a approximate calculation of cko :

cko ≈ Softmax (
g + log πθko

τ
) (5.7)

The higher τ causes the cko to get closer to the uniform distribution, and the lower

τ causes the cko to get closer to the categorical distribution. By the Eq 5.7, the cko is
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differentiable. So we can train the parameters θko of allocators with backward propagation,

as well as the parameters φk of task-specific networks. As we prefer a deterministic

system, the proposed FISHNET will be firstly trained by Gumbel-Softmax for several

epochs, then we fix the filter choice cko calculated by Eq. 5.6, and continue to train the φk.

5.3.3.2 Alternative Training Methods

In the experiment of this paper, we used the Gumbel-Softmax trick described above to

train our FISHNET, due to its simplicity of implementation. Here we also provide another

two ways for training.

Network Architecture Searching methods: We can also cast the training of FISHNET

in the form of Network Architecture Searching (NAS) problem. Under this setting, we

prefer to solve it by the gradient-based searching methods e.g. DARTS [73]. The basic

idea could be:

1) Divide the training samples to two parts Dtrain and Dval.

2) Train the task-specific networks on Dtrain and the allocator units on Dval. The

two parts can be trained alternately by turns: first fix the allocator units and train the

task-specific networks, then fix the task-specific networks and train the allocator units.

3) At last fix the allocator units and train the task-specific networks on bothDtrain and

Dval.

As following the default setting of DARTS, we can directly use the Softmax probabil-

ities of the allocator weights to train the sharing mechanism. This may allow us to get rid

of the static behaviour during training, compared with Gumbel-Softmax trick.

Policy gradients based methods: Another way to handle the non-differentiable sampling

operation is the policy gradients methods which are originally and mainly used in the

reinforcement learning problems. Here we don’t need to define the searching of sharing

weights as a Markov process but view it as a simple multi-armed bandit problem. The
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sampled choices cko can be viewed as an action, and the associated reward could be the

number of correctly predicted tasks. Then the problem can be solved by the REINFORCE

rule [22]. However, the policy gradients methods usually have a very high variance in

terms of the estimated gradients.

5.3.4 Regularization on Sharing

In the experiment, our FISHNET is solely trained by the summation of losses from dif-

ferent tasks. It implies that, in theory, the FISHNET can possibly learn to not share

parameters and converge to exactly the single task networks. As suggested by [74], we

can add a regularization term to encourage the FISHNET to share weights. For the filters

fk1ij and fk2ij from two tasks tk1 and tk1, given the layer index i and channel index j, the

regularization may take form of the KL-divergence KL(πθk1ij ||πθk1ij ).

However, if the naive hard sharing method can fit the training set, the above regular-

ization term may push the model to share as many filters as possible, so our FISHNET

may be downgraded to the naive hard sharing. As we will show later in the experiment,

although the naive hard sharing method can fit the training sample very well, its test

accuracy may be often lower than the soft sharing methods and FISHNET. This result

indicate encouraging sharing may have a potential risk related to the ”negative transfer”

phenomenon [75]. On the contrary, the sharing policies in the previous studies [2, 74, 76]

are also solely trained by task loesses, and usually bring good test performance. This mo-

tivates us to use another way for regularization on sharing. As stated in previous sections,

given an index i of convolutional layer and index j of filter, the filters f tij of each task t,

are picked from several candidate sets Fij . If we want to let the CNNs share more or fewer

filters, we can simply tune the value of |Fij|. The hyperparameter |Fij| can only affect the

probability of the choice of filters, but not encourage the CNNS to share as many filters

as possible, so the MTL model will not reduce to the naive hard sharing model.
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100

100

T1: Label = “equal”          #cylinder(warm color) = #sphere(cool color) = 1

T2: Label = “equal”          #small shpere = #large cube = 1

T3: Label = “equal”          #rubber cube = #metal cylinder = 0

T4: Label =  57        Encode [cube, shpere, cylinder, sphere] to 2010 (ternary)

T5: Label =  57        Encode [cube, shpere, cylinder, sphere] to 2010 (ternary)

T6: Label =  45        Encode [cube, shpere, cylinder, sphere] to 1200 (ternary)

T7: Label =  32        Encode [cube, shpere, cylinder, sphere] to 1012 (ternary)

T8: Label = 1           #red cylinder = 1      

T9: Label = 2           #yellow sphere  +  #green sphere = 1+1

T10: Label = 2         #red sylinder  +  #yellow sphere =  1+1

T11: Label = 0         No cube is in blue or green

T12: Label = 1         #yellow shpere = 1    

T13: Label = 1         #red sylinder = 1 

Image Labels Explanation

Shape  = {cylinder, cube, sphere}

Color  = {red, yellow, green, blue, brown, 
purple, cyan, gray}
Size  = {large, small}

Material  = {rubber, metal}

Attributes

Figure 5.4: An example of the CLEVR-sharing tasks.

5.4 Experimental Evaluations

5.4.1 Multi-task Learning Datasets

We generate two datasets for evaluating the accuracy and computation complexity of our

FISHNET on multi-task learning. First, we leverage and modify the code for CLEVR [77],

an image dataset that is widely used in multi-task learning [78] and continual learning

[79], and render new CLEVR images. Specifically, for each image, we place four objects

at fixed regions. The attributes of object (shape, materials, color, size) are uniformly sam-

pled. Figure 5.4 shows an example image. Based on these new CLEVR images, which

we refer to CLEVR-sharing data set, we generate four groups of multi-task learning prob-

lems which are summarized in Table 5.1. Second, we leverage the original digit MNIST

dataset and generate a new dataset, referred to as MNIST-sharing, by randomly picking

two images from the original dataset and concatenating them together to build a new sam-

ple. Based on the MNIST-sharing dataset, we generate four tasks each with 2000 training
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Label = (5+7)%10 = 2
(a) Task (a+b)%10

Label = ABS(8-5) = 3
(b) Task ABS(a-b)

Label = MAX(3, 9) = 9
(c) Task MAX(a,b)

Label = MIN(2, 1) = 1
(d) Task MIN(a,b)

Figure 5.5: Examples of four tasks from our MNIST-sharing dataset.

images and 10000 testing images. These four tasks are: (i) calculating the sum of two

digits and then mod 10; (ii) calculating the absolute difference between two digits; (iii)

calculating the maximum of two digits; (iv) calculating the minimum of two digits. For

the task 2 and 4, we randomly pick the left or right half of an image to flip its gray degree.

Figure 5.5 shows an example image for each task.

5.4.2 Baselines

We compare FISHNET to three categories of approaches: (i) hard-sharing multi-task net-

work; (ii) soft-sharing multi-task networks [1, 2]; (iii) and single-task networks. More-

over, we perform a breakdown study of our proposed FISHNET by comparing it to two

weaker versions: (i) FISHNET (random) where the filters of each task-specific CNNs

are randomly chosen from the filter pools when we initialize the model. This baseline is

very similar to the Task-Routing model proposed by Strezoski et al. [80]. (ii) FISHNET

(|F| = 1) where each of the filter pool has only one filter. so it is very similar to the
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Table 5.1: Tasks on our CLEVR-sharing dataset. We define a total of 16 tasks that form
four groups of multi-task learning problems.

Group Task ID Label set Description

Group 1 & 4 T1 {more, less, equal} Comparing the # cylinder (warm color) and # sphere (cool color)
Group 1 T2 {more, less, equal} Comparing the #sphere (small) and #cube (large)
Group 1 T3 {more, less, equal} Comparing the #cube (rubber) and #cylinder (metal)
Group 1 & 2 T4 {0, 1, 2, ..., 80} Denote the image by a 4 bit ternary number: encode the objects to {0,1,2} based on their shape
Group 2 T5 {0, 1, 2, ..., 80} Same with above, but encode the objects based on their shape and color
Group 2 T6 {0, 1, 2, ..., 80} Same with above, but encode the objects based on their shape and size
Group 2 T7 {0, 1, 2, ..., 80} Same with above, but encode the objects based on their shape and material
Group 3 T8 {0, 1, 2, 3, 4} Counting the total # of cube and cylinder, in the color of red or green
Group 3 T9 {0, 1, 2, 3, 4} Counting the total # of cube and sphere, in the color of yellow or green
Group 3 T10 {0, 1, 2, 3, 4} Counting the total # of sphere and cylinder, in the color of red or yellow
Group 3 T11 {0, 1, 2, 3, 4} Counting the # of cube, in the color of blue or green
Group 3 T12 {0, 1, 2, 3, 4} Counting the # of sphere, in the color of yellow or brown
Group 3 T13 {0, 1, 2, 3, 4} Counting the # of cylinder, in the color of red or cyan
Group 4 T14 {0, 1, 2, ..., 80} Same with T4, but the color is sampled from {red, yellow}
Group 4 T15 {more, less, equal} Same with T2, but the color is sampled from {brown, purple}
Group 4 T16 {more, less, equal} Same with T3, but the color is sampled from {cyan, blue}

Table 5.2: The encoding rule for task group 2: By encoding the each of the four objects
in an image to 0,1,2 in the clockwise order, the image is denoted by a 4-bit ternary number
which serves as the label. The total number of possible labels is 34 = 81.

Digits T4 (shape only) T5 (shape + color) T6 (shape + size) T7 (shape + material)

0 sphere sphere(warm color), cylinder(cool) sphere(small), cylinder(large) sphere(rubber), cylinder(metal)
1 cylinder cylinder(warm color), cube(cool) cylinder(small), cube(large) cylinder(rubber), cube(metal)
2 cube cube(warm color), sphere(cool) cube(small), sphere(large) cube(rubber), sphere(metal)

naive hard sharing, but its task-specific CNNs have their own BN layers which are not

shared with each other. When the images of different tasks are generated from the same

distribution, FISHNET (|F| = 1) is almost same with the naive hard sharing. So We only

compared with this baseline in the experiments where the images of different tasks are

generated from different distributions.

For hard-sharing, we adopt a common setting that appears in the comparison in related

studies [1, 2, 74, 76, 81] where the convolutional layers, as well as the following BN,

ReLU, and pooling layers, are shared across all tasks; and each task has its own fully-

connected layers and output layer. For soft-sharing, we compare both the cross-stitch

network [1] and the NDDR network [2]. The former is one of the first proposed soft-

sharing network for multi-task learning while the latter represents the current state-of-

the-art. Both soft-sharing networks let each task has its own network, i.e., the parameters

are not shared. For cross-stitch network, the feature maps at certain layer outputted by
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Table 5.3: The results (test accuracy) of all methods (× complexity) on task group 1
(rank)”.

Model T1 T2 T3 T4

FISHNET (×1) 87.90(1) 98.05(1) 80.55(3) 95.20(2)
FISHNET (random) (×1) 68.40(5) 74.20(6) 68.70(5) 89.00(4)
Hard sharing (×1) 70.15(4) 92.90(5) 75.50(4) 85.45(4)
Single nets (×1) 65.90(6) 79.05(5) 62.85(6) 70.25(6)
NDDR (×4) 82.20(3) 94.90(3) 80.65(2) 96.00(1)
Cross-stitch (×4) 87.75(2) 95.30(2) 83.05(1) 93.35(3)

Table 5.4: The results (test accuracy) of all methods (× complexity) on task group 2(rank)”.

Model T4 T5 T6 T7

FISHNET (×1) 96.40(2) 94.45(2) 93.95(3) 91.20(2)
FISHNET (random) (×1) 91.65(4) 57.20(4) 86.60(4) 73.80(4)
Hard sharing (×1) 78.35(5) 20.25(5) 64.80(5) 29.95(5)
Single nets (×1) 70.25(6) 8.70(6) 57.25(6) 14.05(6)
NDDR (×4) 99.30(1) 98.75(1) 98.45(1) 98.30(1)
Cross-stitch (×4) 94.55(3) 92.20(3) 94.50(2) 90.15(3)

all tasks are weighted added together and feed to the next layer. For NDDR, it uses

1× 1 convolution and BN for feature fusion instead of the weighted sum. For single task

networks, we train one convolutional network for each task. Tasks within the same group

use the same architecture. As these convolutional networks also serve as the backbone

for the multi-task networks (hard sharing, soft sharing, and our proposed FISHNET), the

corresponding results are insightful baselines.

5.4.3 Hyperparameter Settings

Network architecture: For the CLEVR-sharing tasks, we use a Resnet with 10-layer as

the single task network and backbones of the MTL sharing models. The number of filters

are [8, 8, 16, 32, 64] for the conv layer (or the residual blocks). Each residual block

has two conv layers. We set the pool size |F| of filters equal to the number of tasks |T|

in each group. For the MNIST-sharing tasks, we use a simple CNN with 4 conv layers

and 2 FC layers. The number of conv filters are [8, 16, 32, 64]. Each conv layer is
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Table 5.5: The results (test accuracy) of all methods (× complexity) on task group 3(rank)”.

Model T8 T9 T10 T11 T12 T13

FISHNET (×1) 98.80(1) 89.10(1) 84.90(2) 80.90(1) 99.30(1) 86.20(1)
FISHNET (|F| = 1) (×1) 98.35(2) 81.90(2) 85.50(1) 68.10(3) 99.30(1) 72.25(3)
FISHNET (random) (×1) 79.95(4) 72.00(4) 65.65(4) 61.50(4) 45.70(7) 62.50(4)
Hard sharing (×1) 45.80(5) 48.10(5) 51.90(5) 32.05(6) 42.90(4) 37.10(5)
Single nets (×1) 98.15(3) 79.75(3) 78.20(3) 76.15(2) 97.85(3) 74.85(2)
NDDR (×6) 34.85(7) 38.35(7) 36.35(7) 30.60(7) 30.25(6) 27.80(7)
Cross-stitch (×6) 38.85(6) 39.85(6) 50.50(6) 34.30(5) 34.05(5) 38.40(6)

Table 5.6: The results (test accuracy) of all methods (× complexity) on task group 4(rank)”.

Model T1 T14 T15 T16

FISHNET (×1) 63.15(4) 89.00(1) 92.90(1) 64.80(2)
FISHNET (|F| = 1)(×1) 63.95(3) 58.40(2) 86.65(3) 63.85(3)
FISHNET (random) (×1) 62.40(5) 52.05(4) 91.10(2) 61.05(4)
Hard sharing (×1) 65.75(2) 16.15(7) 72.10(6) 39.80(7)
Single nets (×1) 60.30(7) 55.02(3) 83.15(5) 69.35(1)
NDDR (×4) 69.55(1) 36.10(5) 85.30(4) 40.75(6)
Cross-stitch (×4) 61.50(6) 28.20(6) 58.15(7) 54.75(5)

followed by a BN [67], ReLU, and max-pooling layer. The number of hidden FC layers

are [100, 50]. Each hidden FC layer is followed by a 1D BN and ReLU. We tested the

FISHNET using different settings of |F| which are disscussed detailly in the section 5.4.6.

For Cross-stitch and NDDR soft-sharing networks, the feature fusion is performed after

every downsampling operation.

Hyperparameter for training: For all tasks, we used the Kaiming initialization [66].

For the CLEVR-sharing tasks, we first train the proposed FISHNET by 20 or 40 epochs

until the total classification loss is converged to below 1. Then we fix the learned network

architecture and train the network by another 20 epochs. The batch size is 50 and the

learning rate is 0.01. For FISHNET and all baselines, we set the weight decay to be

0.0001. For the MNIST-sharing tasks, we first train the proposed FISHNET by 20 epochs

until the total classification loss is converged to below 1. Then we fix the learned network

architecture and train the network by another 10 epochs. The batch size is 16 and the
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Table 5.7: The results (test accuracy) of all methods (× complexity) on MNIST
tasks(rank)”.

Model (a+b)%10 ABS(a,b) MAX(a,b) MIN(a,b)

FISHNET (best) (×1) 94.16(1) 92.23(1) 95.53(1) 95.07(1)
FISHNET (|F| = 4) (×1) 92.64(4) 89.68(4) 94.14(4) 94.08(4)
FISHNET (|F| = 2) (×1) 93.61(3) 92.08(2) 95.18(2) 94.88(2)
FISHNET (|F| = 1)(×1) 93.94(2) 90.44(3) 95.13(3) 94.26(3)
FISHNET (random) (×1) 86.83(7) 69.35(8) 91.98(7) 89.52(7)
Hard sharing (×1) 75.04(9) 52.46(9) 88.54(9) 84.75(9)
Single nets (×1) 85.26(8) 74.25(7) 91.37(8) 87.04(8)
NDDR (×1) 87.14(6) 83.79(6) 92.29(6) 91.23(5)
Cross-stitch (×1) 88.09(5) 83.81(5) 92.68(5) 89.68(6)

learning rate is 0.01. There is no weight decay for all methods.

5.4.4 Summary of Key Findings

We compare the performance of FISHNET to all baselines described in Section 5.4.2 on

both the test accuracy and the inference computation complexity. Before we go to the

details, we summarize our three key findings as follows and will detail the comparison

for each multi-task group subsequently.

The results on tasks from the same distribution: When the images of each task are

from the same distribution, we find the proposed FISHNET can achieve comparable per-

formance as the state-of-the-art soft sharing methods, i.e. NDDR and cross-stitch. While

the computational complexity and memory cost of FISHNET is only 1/n of the soft shar-

ing method, here n is the number of tasks in a group.

The results on tasks from different distributions: When the images of each task are

from different distributions, we find the FISHNET outperforms all baselines by a wide

margin. The performances of the naive hard sharing, cross-stitch and NDDR can be

even worse than networks trained on single task, because the problematic effect caused

by sharing BN operations [82]. This finding supports our design that the tasks-specific

networks should not share the BN layers for tasks from different distributions.
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Comparison with other sharing policies: We compared FISHNET with the single task

networks, the naive hard sharing (or FISHNET (|F| = 1) when the tasks are from different

distribution), and the FISHNET (random). They can be viewed as three trivial cases of

FISHNET, which are sharing no convolutional filters, sharing all convolutional filters, and

randomly sharing convolutional filters, respectively. In the following four experiments,

FISHNET outperforms all of the trivial versions by a wide margin, which provided a

concrete evidence that the sharing structure learned by FISHNET is non-trivial.

5.4.5 Performance of CLEVR-sharing Tasks

5.4.5.1 Performance on Group 1

In group 1, the tasks are comparing the number of certain classes. The details of the tasks

are listed in the Table 5.1. As the original setting of CLEVR, The shape of objects is uni-

formly sampled from {”sphere”, ”cylinder”, ”cube”}. The material is uniformly sampled

from {”metal”, ”rubber”}. The size is uniformly sampled from {”large”, ”small”}. The

color is uniformly sampled from a set of 8 colors. We generate 2000 training images for

each tasks, and all tasks share the same 2000 test images.

Results and analysis: The results are shown in Table 5.3. The performances of the pro-

posed FISHNET and the soft sharing models are very close to each other. What’s more,

the FISHNET achieved highest average accuracy across four tasks, while its computa-

tional cost and size of feature maps are as small as the hard sharing network and single

task networks, which is only 25% of the soft sharing methods. This reflects the FISHNET

can learn flexible sharing structure as the soft sharing models, and keep low computa-

tional and memory cost as the naive hard sharing. Besides, the FISHNET’s performance

on each task is higher than the naive hard sharing by 5%-17%, and higher than FISHNET

(random) by 12%-24%. indicating the sharing solution learned by FISHNET is not triv-
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ial. The single task networks have the lowest accuracies, indicating the MTL methods

can greatly alleviate overfitting on these tasks.

5.4.5.2 Performance on Group 2

In group 2, the images are represented by 4-bit ternary numbers, by encoding objects to

0,1,2 in the clockwise order. The detailed encoding rules are listed in Table 5.2. We use

the same training and test sets of group 1 here, but the labels are different.

Results and analysis: The results are shown in Table 5.4. The NDDR outperforms all

other methods on these tasks. Our FISHNET is only secondary to NDDR, but notice

that FISHNET has only 25% computational and memory cost of NDDR and Cross-stitch.

Compared with the FISHNET (random), FISHNET’s performance on each task is higher

by 4.75%, 37.25%, 7.35%, 17.40%. The accuracy gap between FISHNET and naive hard

sharing is up to 74%, which is even larger than that in group 1. Although the accuracies

of hard sharing are much lower than other MTL methods, it’s still much better than the

single task networks. We can see that the tasks in group 2 are harder than group 1, since

they are all 81-class classification problems and the networks need to recognize all shapes

on all tasks. We think that is the main reason that the accuracy gaps are increased a lot.

5.4.5.3 Performance on Group 3

In group 3, the tasks are counting the number of certain objects. The details of the con-

cerned objects are listed in the Table 5.1. We generated 1000 training samples and 2000

test samples for each task in group 3. This setting is different with the previous two ex-

periments: the tasks’ test sets are not shared. The reason is the concerned objects are

different across tasks, and we keep the classes balanced in all training sets and test sets.

As a result, the samples from different groups are not from the same distribution.

Results and analysis: The results are shown in the Table 5.5. This time our FISHNET
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outperforms all baselines. The performances of FISHNET and its trivial version FISHNET

(|F| = 1) are close to each other on the tasks T2, T10, and T12. However, on the rest tasks

FISHNET greatly outperforms the FISHNET (|F| = 1) by 7%, 13%, 11%. Compared

with another trivial version FISHNET (random), its accuracies are lower than FISHNET

by 12%-44%. We notice that all the hard and soft sharing baselines’ performances are

even much lower than single task networks. The same phenomenon will be found in the

next experiment too. Comparing the results of hard sharing with FISHNET (|F| = 1)

which is almost same with hard sharing but doesn’t share the BN layers, we can see the

problem is caused by the shared BN layers. We will provide a detailed discussion latter

in the section 5.4.7.

5.4.5.4 Performance on Group 4

We generated 1000 training samples and 2000 test samples for each task. The tasks in

group 4 are almost same with those in group 1, but their colors of objects are from very

different distributions. As listed in the Table 5.1, the tasks T14, T15, and T16 share no

colors. So it may make this group harder than the previous three groups for multi-task

learning.

Results and analysis: The results are shown in the Table 5.6. Once again, our FISHNET

outperforms all baselines in terms of average accuracy. Although on the tasks T1 and T16,

the performances of FISHNET are not highest, all the methods get very similar accuracies

on these two tasks. FISHNET clearly defeats the baselines (except for our trivial versions)

by at least 34% and 7% on T14 and T15 respectively. The performances of FISHNET on

T14, T15, T16 are higher than FISHNET (|F| = 1) by 30%, 6%, 1%, and slightly lower

on T1 by 0.8%. Also, FISHNET outperforms another trivial version FISHNET (random)

on all tasks by up to 37%. Again, the naive hard sharing, cross-stitch, and NDDR don’t

show advantages compared with single-task networks.
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Table 5.8: The results comparison of the MTL baselines when the BN layers are in the
training mode (denoted as modelname+) v.s. in the testing mode.

Group 3 of CLEVR-sharing Group 4 of CLEVR-sharing MNIST-sharing

Model T8 T9 T10 T11 T12 T13 T1 T14 T15 T16 (a+b)%10 ABS(a-b) MAX(a,b) MIN(a,b)

Hard sharing 45.80 48.10 51.90 32.05 42.90 37.10 65.75 16.15 72.10 39.80 75.04 52.46 88.54 84.75
Hard sharing+ 91.65 70.65 77.05 67.20 91.70 72.20 64.20 61.55 74.20 63.70 79.21 58.28 90.06 85.92
Cross-stitch 38.85 39.85 50.50 34.30 34.05 38.40 61.50 28.20 58.15 54.75 88.09 83.81 92.68 89.68
Cross-stitch+ 61.55 56.65 55.70 56.60 60.20 56.75 63.30 60.10 83.80 66.40 88.19 83.45 92.37 91.08
NDDR 34.85 38.35 36.35 30.60 30.25 27.80 69.55 36.10 85.30 40.75 87.14 83.79 92.29 91.23
NDDR+ 54.05 52.05 49.00 51.05 51.10 49.55 70.15 87.75 83.65 68.95 89.31 84.36 93.00 92.23

5.4.6 Performance of MNIST-sharing Tasks

Results and analysis: We evaluate the performance of FISHNET by using different hy-

perparameter |F|, which is the size of the filter pool. The results are shown in table 5.7.

The best result is achieved by setting |F| = 2 for the first two convolutional layers and

|F| = 4 for the rest two convolutional layers, and we denote it as FISHNET (best). It

outperforms the naive hard sharing, NDDR, and cross-stitch by 5%-19%, 9%-40%, 3%-

7% and 4%-11% on the four tasks respectively. The FISHNET (|F| = 1) outperforms the

naive hard sharing by 18%, 40%, 6% and 10% on each task, indicating the importance

of not sharing BN layers. We also notice the FISHNET (|F| = 1)’s performances are

close to the FISHNET (best). The reason may be all the tasks are based on the ten digits

serving as the low level features. So sharing all convolutional layers is very close to the

perfect policy in this context. However, the FISHNET (best) and FISHNET (|F| = 2) are

both slightly better than FISHNET (|F| = 1), showing the FISHNET can learn effective

policies for sharing parameters.

5.4.7 Impact of Batch Normalization on MTL

As we have shown in the results of group 3 and 4 on the CLEVR-sharing dataset, the

performances of naive hard sharing, cross-stitch, and NDDR are terribly declined and can

even be lower than the single task networks. The reason is the images of each task in

group 3 and 4 are generated from different distribution, and in the default setting of the
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(d) Results on T4

Figure 5.6: The performances under different number of training samples on T1, T2, T3,
T4 in the task group 1 of CLEVR-sharing.

above methods, the batch normalization operations are shared across tasks. Be attention

that although the parameters in BN layers are not shared in the soft sharing methods,

the input from a single tasks must run through all the task-specific networks, so the non-

parametric normalization is shared by all tasks. However, the BN uses the statistics of

the mini-batch for normalization during training, while in the testing uses the statistics

tracked in the whole training phase. When the mini-batches from different tasks have

very different statistics, the outputs of the BN layer for the same input in the training

and testing can be very different! In this case, the lower training loss does not bring lower

testing error. The similar finding is also been discovered by Bronskill et al [82]. To clearly

demonstrate this problem, we also recorded the testing performances on these baselines

in the training mode of BN, and compared them with their original results in testing mode

in the table 5.8. On the group 3 of Clevr-sharing tasks, the MTL baselines in the training
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mode achieve about 20% up to 40% improvements compared with themselves in testing

mode. In group 4, the gaps are from 10% up to 50%. We also compared the naive hard

sharing with FISHNET (|F| = 1) in table 5.7. It shows the latter using non-shared BN

layers can boost the accuracies greatly.

5.4.8 Impact of Training Data Sizes

In this section, we show more details about the comparison of FISHNET and the baselines

under the different size of training set. Here we use the tasks in group 1 as an example.

As shown in the Fig 5.6, FISHNET can always achieve comparable accuracies as the

soft sharing methods. Especially when the size of the training set is small, e.g. 1000 or

2000, FISHNET may even outperform all baselines. The gap between the naive hard shar-

ing method and FISHNET (and soft sharing methods) is clear when the training samples

are less than or equal to 2000. All the MTL methods have clearly better performances

than the single tasks networks. But as more training samples are available, all the meth-

ods achieve higher and higher accuracies and may converge to the same degree (see the

results on T2 and T4). These results may indicate our FISHNET can achieve better per-

formance than the state-of-the-art soft sharing methods when the training set is small, and

also keep its computational and memory cost as small as the naive hard sharing and single

task networks.

5.5 Related Work

Hard Sharing for Multi-task Learning. Hard sharing is the most common sharing

method used in multi-task learning. The very basic example is to sharing all convolu-

tional layers across the task-specific networks but using different fully-connected layers

at the end. This method is wildly used as a baseline and lower bound of computational
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and space cost in recent researches on multi-task learning [1, 2, 74, 76, 81]. Finding

an effective parameter sharing structure usually requires handcraft design by human ex-

perts. In recent years, some studies tried to search the parameter automatically. Lu et

al. [83] proposed a bottom-up searching algorithm to find the sharing structure adapting

to a dataset. The basic idea is to start from train a naive hard sharing network, then split

the deepest layer into groups and retrain the network, then repeat this process until reach-

ing the input layer. Guo et al. [84] proposed to learn the sharing structure directly from

a dataset, which is similar to ours. They formulated the problem in the form of network

architecture searching and defined a trainable searching space. Both Lu et al. and Guo

et al.’s methods yield tree-shape sharing structures. Bragman et al. [85] proposed a filter

grouping method that allocates each convolutional filter to one of the task-specific groups

or a task-shared group and can learn a graph-shape sharing structure. This study is simi-

lar to our FISHNET, however it mainly focuses on two-tasks scenarios. Recently Sun et

al. [74] proposed a novel method named Adashare which can learn a very flexible sharing

policy. This work is mainly motivated by the dynamic inference methods [69, 71] which

can learn to ”jump over” the convolutional layers to reduce the time complexity. In the

context of Adashare, the different tasks can learn different ”jumping” policies on a shared

network, resulting in a graph-shape sharing structure. Strezoski et al. [80] proposed a

task routing method applying randomly generated binary masks for different tasks, on the

feature maps learned by a single model, which is very similar to our trivial version FISH-

NET (random). Compared with our FISHNET, the solution space of Adashare and Task

routing are restricted within a single CNN, while FISHNET’s solution space is tunable as

it is controlled by the pool size |Fij| which is a hyperparameter.

Soft Sharing for Multi-task Learning. Soft sharing is different from hard sharing in

that it doesn’t share parameters but the learned feature maps across different tasks. Misra

et al. [1] proposed the Cross-stitch network, which consists of two parts: the task-specific
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networks and the cross-stitch units. At certain layers, the cross-stitch units for a given

task weighted add the feature maps from all tasks, outputting a mixed feature map and fit

it into the next layer of the network of this task. Gao et al. [2] proposed a novel soft shar-

ing method named NDDR-CNN. Different from Cross-stitch, NDDR leverage the 1 × 1

convolution and batch normalization for feature fusion. In this way, NDDR can fuse the

feature maps with different channels, so it enables multi-task learning to be applied on

networks with different architectures. Based on NDDR, Gao further et al. proposed a

method named MTL-NAS [76]. As shown in its name, this method leveraging the NAS

technique to explore the sharing links between feature maps at any possible intermediate

layers. Recently, Liu et al. [81] proposed an attention-based method named MTAN aim-

ing to reduce the complexity of soft sharing. MTAN uses a single main network shared

by all tasks, which is similar to the hard sharing, but also has a specific attention module

for each task, outputting task-specific soft attention masks. Then the masks are applied

on the feature maps outputted by the main network, yielding the task-specific representa-

tions. Since the attention modules have very small architectures compared with the shared

main network, the overall complexity of MTAN can be much lower than the previous soft

sharing methods.

Dynamic Inference on Neural Networks. Figurnov et al. proposed a spatial adaptive

inference architecture called SACT [68] that can skip convolution within a residual block.

Specifically, SACT calculates a halting score during every convolution in a residual block

and decides whether to skip the next convolution in the same residual block. Veit et

al. proposed a dynamic inference model called ConvNet-AIG [69] that aims to only ex-

ecute the layers related to the category of the input image. Concretely, ConvNet-AIG

used a small network as a gated function to decide whether to execute a residual block

or just jump over it through the shortcut link. Similarly, Bengio et al. [70] proposed a

method to drop out some units of a layer in a neural network. Wang et al. proposed Skip-
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Net [71] that leverages reinforcement learning to identify the suitable shallow networks

per sample. Dynamic inference is also used in applications based on RNN. Minh et al.

proposed a recurrent attention model (RAM) [29] on visual learning tasks. RAM can

learn to only attend to the important regions without scanning the entire image, similar

to SACT [68]. On the task of time series classification, Hartvigsen et al. [72] proposed

a novel model EARLIEST to jointly minimize the classification error and the execution

time of the model. Both RAM and EARLIEST and the works mentioned above [70, 71]

are trained by REINFORCE algorithm.
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6

Conclusion and future work

6.1 Conclusion

In this dissertation, I study four problems.

In chapter 2, we identified the need to design collaboration-aware deep neural net-

works for efficient mobile inference. We proposed CINET, deep neural networks for

image classification, that leverages key insights of avoiding sending non-essential data to

cloud servers to simultaneously reduce on-device computational cost, lower mobile net-

work data transmission cost, and maintain high inference accuracy. Our evaluations of

CINET on three datasets demonstrated that CINET reduced mobile computation by up

to three orders of magnitude, lowered mobile data transmission by 99%, and had small

inference accuracy differences of 0.34%-2.46%, compared to four inference approaches

including two collaborative inference approaches.

In chapter 3, we first formulated the Guided Multi-Attention Classification problem.

We then proposed the use of a guided attention recurrent network (GARN) to solve the

problem. Our proposed method addresses the challenges of training with only a small

number of samples by effectively leveraging the guidance information in the form of ROI
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locations. Specifically, GARN learns to identify the locations of ROIs and to perform

classifications using two separate RNNs. We performed extensive evaluations on three

multi-attention classification tasks. Our results across all three tasks demonstrated that

GARN outperforms all baseline models. In particular, when the training set size is limited,

we observed up to a 30% increase in performance.

In chapter 4, we co-designed the multi-branch networks and the early-exiting policies

in the context of dynamic inference. Our proposed solution, referred to as EPNET, ad-

dressed two key challenges, namely (i) designing the learning objective to balance both

accuracy and efficiency; and (ii) explicitly considering the resource overhead associated

with the early-exiting policies. Concretely, we designed a lightweight branch structure

and cast the early-exiting problem as a Markov decision process. This enables EPNET

to make exiting decisions per convolutional layer through the learned policy. Compar-

isons of EPNET on three datasets to two types of baselines demonstrate its efficacy in

classification accuracy, adaptivity to sample difficulty, and resource budgets.

In chapter 5, we studied the problem of Resource-efficient Multi-task Learning (MLT)

with the key goal of designing a resource-friendly MLT model. Our work is primarily

motivated by two aspects. First, in many real-world applications, there is an increas-

ing demand of running MTL models on resource-constrained devices such as mobile or

IoT devices. Second, existing state-of-the-art MTL models often overlook the resource

requirement during inference phase. To satisfy the practical deployment requirements

of low resource consumption and high accuracy (even with limited training dataset),

we proposed a novel solution called FISHNET for fine-grained parameter sharing. In

a nutshell, FISHNET can learn how to share parameters directly on training data (akin

to soft-sharing) while only consuming a constant computational cost per task (similar

to hard-sharing). In other words, FISHNET distills the benefits from both hard-sharing

and soft-sharing approaches and enables fine-grained filter sharing among any number of
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task-specific CNNs of different architectures. Our extensive evaluations on two datasets

including the popular CLEVR showed that FISHNET achieves comparable or better accu-

racy than state-of-the-art soft-sharing approaches on several multi-task problems, while

only consuming a fraction of resources. Furthermore, our ablation study showed that

FISHNET can effectively learn the policy and that unlike existing MTL sharing (hard and

soft) approaches, FISHNET is not subject to the accuracy degradation from the widely

used batch normalization technique.

6.2 Future work: Global Filter Sharing for Resource-

Efficient Multi-Task Learning

Although the FISHNET can learn hard sharing policy from dataset, there are still two

problems remain. First, it can only learn to share the parameters among networks with

the same architecture. The second, FISHNET can’t share filters at different depths. These

two problems may prevent the usage of hard sharing in many scenarios in the real world.

Here are two examples:

Example 1. Given a task of telling cat from other animals, and another task of predict-

ing the breed of cat. The second task is more difficult than the first one, so we should use

networks of different sizes to fit each of them respectively. Also, the two tasks are related,

so sharing parameters or features between the networks for the two tasks may alleviate

overfitting.

Example 2. Given two tasks that both require recognizing human faces, the human

faces in the images of one task are small and are big in another task. It’s not hard to see

the similar facial features could be shared by the two task-specific CNNs, but they need

to capture the feature at different depths.

A hard sharing method that can solve the above two problems should be able to share
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parameters among filters of different shapes. Here I present a possible framework for

future study: Instead of assigning each filter a candidates pool, we may let all filters in

all CNNs share a single pool. The candidates in the pool have the same shape. We keep

an allocator and a reshaper module for every filter. The allocator picks a candidate from

the pool, as we did in FISHNET. Then the reshaper transforms the shape of the picked

candidate to match that of the corresponding filter, and assigns the result to the filter.
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