
Automatic Emotion Detection in Text Messages using Supervised
Learning

by

Maryam Hasan

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Computer Science

January 15 2021

APPROVED:

Professor Elke A. Rundensteiner
Department of Computer Science
Worcester Polytechnic Institute
Advisor

Professor Kyumin Lee
Department of Computer Science
Worcester Polytechnic Institute
Committee Member

Professor Craig Wills
Department of Computer Science
Worcester Polytechnic Institute
Head of Department

Professor Emmanuel Agu
Department of Computer Science
Worcester Polytechnic Institute
Committee Member

Professor Wei Ding
Department of Computer Science
University of Massachusetts Boston
External Committee Member

2 Dissertation – Maryam Hasan

Contents

1 Introduction 8
1.1 Applications of Emotion Detection in Text Messages 8
1.2 Challenges of Detecting Emotion in Social Networks 9
1.3 Model of Emotion . 11

1.3.1 Basic Emotions Model . 11
1.3.2 Dimensional Model of Emotion . 12

1.4 State-of-the-Art . 12
1.4.1 Lexicon-based Classification . 12
1.4.2 Emotion Classification using Machine Learning 13
1.4.3 Emotion Classification using Deep Learning 14

1.5 Research Objectives for Emotion Classification in Text 15
1.5.1 Collecting Text Data with Emotion Labels 16
1.5.2 Selecting Emotion Classes . 17
1.5.3 Extracting and Representing Features 17

1.6 Proposed Approaches for Emotion Analysis in Text Messages 19
1.6.1 Emotex: A Supervised Learning Approach using Static Feature Vectors 19
1.6.2 DeepEmotex: A Deep Learning Approach using Distributed Feature

Vectors . 19
1.6.3 EmotexStream: A Framework for Analyzing Emotion in Live Streams

of Text Messages . 20
1.7 Contributions . 21
1.8 Road Map . 22

2 Related Work on Text Classification 23
2.1 Emotion Classification in Text . 23

2.1.1 Lexicon-based Methods . 23
2.1.2 Machine Learning Methods . 24
2.1.3 Deep Learning Methods . 25

2.2 Transfer Learning for NLP Tasks . 26
2.2.1 Pre-training Methods . 26
2.2.2 Fine-tuning Methods . 28

3 Emotex: A Supervised Learning Approach to Detect Emotion in Text Messages 30
3.1 Introduction . 30
3.2 Emotex: Proposed Approach to Classify Emotion in Text Messages 30

Dissertation – Maryam Hasan 3

3.2.1 Collecting Labeled Data . 33

3.2.2 Word Representation for Emotion Classification 34

3.2.3 Feature Selection for Capturing Emotion 36

3.2.4 Classifier Selection for Emotion Detection 37

3.3 Emotex Experimental Results . 39

3.3.1 Collecting Labeled Data and Building the Emotex Classifiers 39

3.3.2 Emotex: Hard Classification Results 40

3.3.3 Emotex: Soft Classification Results . 42

3.3.4 Comparing Emotex with Lexical Approaches 44

3.4 Evaluating the Emotex Labeling Method . 45

3.4.1 Comparing Hashtag Labels with Crowdsourced Labels 46

3.4.2 Comparing Hashtag Labels with Expert Labels 46

3.5 Conclusion . 47

4 DeepEmotex: A Deep Learning Approach to Detect Emotion in Text Messages 49
4.1 Introduction . 49

4.2 Background Knowledge about Neural Networks Models 50

4.2.1 Convolutional Neural Networks (CNNs) 50

4.2.2 Sequence Modeling: Recurrent Neural Networks (RNNs) 51

4.2.3 Long Short-Term Memory (LSTM) . 53

4.3 Distributed Feature Representation . 54

4.3.1 Word Representation . 54

4.3.2 Sentence Representation . 64

4.4 Transfer Learning . 66

4.4.1 Transfer Learning Overview . 66

4.4.2 Transfer Learning Methods . 68

4.4.3 Transformer . 70

4.5 DeepEmotex: A Deep Learning Approach to Classify Emotion in Text using
Sequential Transfer Learning . 76

4.5.1 DeepEmotex: A Sequential Transfer Learning Model 77

4.5.2 DeepEmotex: A Transfer Learning Model using Universal Sentence
Encoder . 78

4.5.3 DeepEmotex: A Transfer Learning Model using Bidirectional En-
coder Representations from Transformers 83

4.6 DeepEmotex: Experimental Results . 86

4.6.1 DeepEmotex: Emotion Dataset . 86

4.6.2 DeepEmotex: Experimental Results of Fine-tuning USE 87

4 Dissertation – Maryam Hasan

4.6.3 DeepEmotex: Experimental Results of Fine-tuning BERT 87
4.6.4 Evaluating DeepEmotex . 88

4.7 Conclusion . 90

5 EmotexStream: A Framework for Analyzing Emotion in Live Streams of Text
Messages 92
5.1 Introduction . 92
5.2 Proposed Approach to Detect Emotion-Intensive Moments in Live Streams

of Messages . 93
5.3 EmotexStream Experimental Results . 97

5.3.1 Classifying Emotion in Live Streams of Tweets 97
5.3.2 Case Study: Detecting Emotion-bursts in Live Tweet Streams 98

5.4 Conclusion . 99

6 Conclusion and Future Directions 101
6.1 Contributions . 101
6.2 Impact of Research . 102
6.3 Future Directions . 104

Dissertation – Maryam Hasan 5

Abstract

Emotion detection from text is the task of detecting affective states from natural
language artifacts including comments, reviews, messages, and social media posts.
Emotion detection tools could potentially be employed in several fields from social
science, political science, public health research to marketing research.

In this dissertation, we study the problem of detecting and analyzing emotion in
textual data using traditional machine learning and deep learning methods. Emotion
detection entails classifying text into categories of emotions such as happiness, sad-
ness, and anger. Supervised emotion classification is challenging due to the limited
number of labeled data resources. Moreover, it is further complicated due to involving
a high-dimensional feature space and a large number of emotion categories.

This dissertation designs, develops, and evaluates three innovative strategies. First,
we develop Emotex, a supervised emotion classification approach using static feature
vectors. Feature extraction is a fundamental building block of emotion classification
systems. To solve the problem of the high-dimensional feature space, Emotex relies on
hand-crafted features selected from lexicons for deriving word-emotion association.
Emotex utilizes embedded hashtags to automatically label the emotions expressed in
text messages. It builds a large corpus of emotion-labeled messages with no manual
effort to train emotion classifiers. Our experimental results show that Emotex models
were able to achieve about 90% accuracy on test data for multi-class emotion classifi-
cation.

Emotex requires extensive hand-crafted features to achieve high performance due
to diverse ways of representing emotions in different domains. Such hand-crafted
features are time consuming to create and may be incomplete. To solve this problem,
we develop a deep learning approach called DeepEmotex that learns emotion-specific
features based on the input textual context instead of using static hand-crafted features.
In particular, DeepEmotex learns emotion-specific features using sequential transfer
learning. For this, we develop a sequential transfer learning framework to fine-tune
the pre-trained language models.

More precisely, DeepEmotex utilizes two state-of-the-art pre-trained models,
known as BERT and Universal Sentence Encoder (USE). We analyze the adaptation
or fine-tuning phase during which the pre-trained knowledge is transferred to our
emotion classification task. We fine-tune our models on a total of 300,000 tweets as our
training dataset, validate on 60,000 tweets and use 180,525 tweets as our test dataset.
By fine-tuning USE, an overall accuracy of 91% on our test dataset is achieved. Us-
ing different batch sizes to fine-tune BERT, we achieve 92% accuracy on our test data.
We also evaluate the performance of DeepEmotex models in classifying emotion in
EmoInt benchmark dataset. DeepEmotex models obtain state-of-the-art performance
on classifying emotion in the benchmark dataset. Evaluation results show that the
proposed BERT model outperforms the state-of-the-art result using the Bi-directional-
LSTM-CNN model [48] by 3%.

6 Dissertation – Maryam Hasan

After developing emotion classification models, we deploy the trained models to
analyze live streams of tweets. For this, we develop a framework called EmotexStream.
First, a binary classifier separates tweets with explicit emotion from tweets without
emotion. Then, our emotion classification models are utilized for a fine-grained emo-
tion classification of tweets with explicit emotion. We also propose an online method
to measure public emotion and detect abrupt changes in emotion as emotion-burst
moments in live text streams. Through a series of case studies we confirm that the
proposed methods are able to detect emotion-critical moments during real-life events.

Dissertation – Maryam Hasan 7

Acknowledgments

I am thankful to many people who made my Ph.D. possible and enjoyable. I would
like to express my sincere appreciation to my advisor Professor Elke A. Rundensteiner.
I would like to thank Professor Rundensteiner for her patience, motivation, enthusiasm,
and immense knowledge guiding me through my Ph.D. program.

My special thank you goes to my dissertation committee members Professor Emmanuel
Agu and Professor Kyumin Lee for careful reading of this manuscript and improving it by
their thoughtful suggestions. Especially, I am very grateful to Professor Emmanuel Agu,
for regularly meeting with me for two years to guide me in the early stage of my research.
His attention to detail improved the quality of my research. His valuable feedback on my
early research work eventually became my first full papers. I am thankful to Professor
Kyumin Lee for joining my dissertation committee and providing feedback on my dis-
sertation. I thank Professor Wei Ding for her time and support as an external committee
member.

I would also like to thank all members of the DSRG group for listening to my presenta-
tions and enriching them by bright ideas and critical comments. I would like to thank all
research collaborators in DSRG. I thank Worcester Polytechnic Institute for supporting me
as a teaching assistant during the first three years of my PhD program.

An honorable thank you goes to my family. I thank my parents, for their love and en-
couragement to pursue my education, even when it goes beyond boundaries of language
and geography. I also appreciate my husband, Professor Mojtaba Azadi for his uncondi-
tional support in completing this dissertation. Without his support, I would face many
difficulties while doing this. A special thank you goes to my dear daughter Alia Azadi for
her endless kindness, love, and hugs.

8 Dissertation – Maryam Hasan

1 Introduction

In recent years, there has been a great deal of interest in automatically identifying opin-
ions, emotions, and sentiments in text. This is due to the rapid growth of social networks,
product reviews, discussion forum posts, blogs, microblog posts, and the easy access to a
massive subjective and emotional data in the digital format.

What people think and how they feel plays a huge part in their decision making. In
particular, emotion plays a critical role in our daily performance affecting many aspects
of our lives including social interaction, behavior, attitude, and decision-making [125].
Understanding human emotion patterns and how the people feel play an essential role in
various applications including public health and safety, emergency response, and urban
planning.

Text is a particularly important source of data for detecting emotion because the bulk of
textual data ranging from microblogs, emails, to SMS messages on a smart phone that has
become increasingly available. The rapid growth of emotion-rich textual data makes a ne-
cessity to automate identification and analysis of people’s emotion expressed in text [125].

Social networks and microblogging tools (e.g., Twitter and Facebook) are increasingly
used by individuals to share their opinions and feelings in the form of short text messages
(e.g., texts about normal life and opinion on current issues and events) [30]. This results in
massive amounts of text messages that can be analyzed for a wide range of insights.

Text messages posted on social networks (commonly known as tweets or microblogs)
may also contain indicators of emotions of individuals such as happiness, anxiety, and
depression. This makes social networks a large corpus of textual data that is rich with
emotional content, which can be mined for a variety of purposes. Such networks are
appropriate data sources for behavioral studies, especially for studying the emotions of
individuals as well as larger populations. Interesting applications of behavioral studies,
include detecting mood after a disaster, analyzing political mood, or understanding emo-
tion about certain products. Therefore, social networks such as Twitter provide valuable
information to observe crowd emotion and behavior and study a variety of human behav-
ior and characteristics [123].

1.1 Applications of Emotion Detection in Text Messages

Increasing evidence suggests that emotion detection and screening built around social me-
dia [25, 89, 41, 105] will be effective in many applications. In particular, Twitter provides
valuable opportunities to observe public mood and behavior. The development of robust
textual emotion sensing technologies promises to have a substantial impact on public and
individual health and urban planning. Such emotion mining tools, once available, could

Dissertation – Maryam Hasan 9

potentially be employed in a large variety of applications ranging from population level
studies of emotions, the provision of mental health counseling services over social media,
and other emotion management applications. The census bureau and other polling orga-
nizations may be able to use the emotion mining technology to estimate the percentage
of people in a community experiencing certain emotions and correlate this with current
events and various other aspects of urban living conditions. This type of technology can
also enhance early outbreak warning for public health authorities so that a rapid action
can take place [56].

The emotion mining tools could also be used by counseling agencies to monitor emo-
tional states of individuals or to recognize anxiety or systemic stressors of populations [43].
For instance, university counseling centers could be warned early about distressed stu-
dents that may require further personal assessment.

Moreover, studying public emotion promises to be of great value in several fields from
social science, political science, public health research to market research, that are inter-
ested in aggregate emotion instead of individual cases. It could assist government agen-
cies in recognizing growing public fear or anger associated with a particular decision or
event or in helping them to understand the publics emotional response toward controver-
sial issues or international affairs. In some cases rapidly gaining such insights as well as
getting a deeper understanding on trends associated with positive versus negative emo-
tion propagation across a population can be critical. The analysis of emotion during real-
life events helps to realize the public emotion regarding the event. Important events are
often discussed widely in social networks. Public emotion analysis can aid public health
researchers by providing them with (1) a low-cost method to detect emotion-critical events
across different sub-populations; (2) useful knowledge for identifying at-risk populations;
and (3) a method to formulate new hypotheses about the impact of real-time events on
populations.

1.2 Challenges of Detecting Emotion in Social Networks

Emotion analysis is a more challenging problem than the binary sentiment classification.
While both tasks suffer from the implicit nature of natural language, emotion analysis is
further complicated due to the greater number of classification categories (i.e., emotion
classes).

Additionally, there is no fixed number or types of emotions, as different models of
emotion have been proposed by psychologists. Each model defines a slightly different set
of emotions. Categorizing emotion into distinct classes is more difficult not only because
emotion detection in general requires deeper insights, but also because of the similarities

10 Dissertation – Maryam Hasan

between different emotions which make clean classification a challenge. Sometimes emo-
tion classes are even hard for human annotators to distinguish. One notable example in
this regard is anger and disgust [7]

The emerging field of multi-class emotion recognition which entails classifying text into
several categories of emotion such as happiness, sadness, anger, and more), have remained
under-explored due to numerous reasons elaborated in the following.

• Casual style of microblog data: Text messages are usually written in a casual style. They
may contain numerous grammatical and spelling errors along with abbreviations
and slang words. While the use of informal language and short messages has been
previously studied in the context of sentiment analysis [37, 87, 13, 60], the use of such
language in the context of emotion mining has been much less studied.

• Data sparsity: Data sparsity occurs in social networks due to the large amount of in-
formal textual information. The reason of data sparsity in Twitter is the fact that a
great percentage of tweet’s terms occur fewer than 10 times [109] in the entire corpus.
This phenomenon, which causes data sparsity, has an impact on the overall perfor-
mance of emotion analysis. One study focused on reducing data sparsity of tweets
was presented by Saif et al. [109]. They proposed semantic smoothing to reduce data
sparsity.

• Large feature space: In text classification each word is a feature. Social text streams
have generated a large amount of textual data with high features and dimensions.
The use of a global vocabulary of millions of words creates a huge feature space and
is not efficient.

• Changes in features: Relevancy of features may change over time. When a new event
or topic is created, new features (words) are appeared that were not considered in
the original feature space.

Other than the above challenges related to the problem of text classification, there are
also some specific challenges specific to emotion classification as below:

• Semantic ambiguity of text messages: Human emotions as well as the texts expressing
them are ambiguous and subjective. This makes it difficult to accurately infer and
interpret the author’s emotional states.

• Fuzzy boundaries of emotion classes: Emotions are complex concepts with fuzzy bound-
aries and with variations in expression. Thus, modeling and analyzing the human
affective behavior is a challenge for automated systems [40].

Dissertation – Maryam Hasan 11

• Difficulty of emotion annotation: In order to train an automatic classifier, supervised
learning methods require labeled data. It would be time consuming, tedious and
labor-intensive to manually label text messages for the purpose of training a classifier
for emotion detection.

• Inconsistent annotators: While crowdsourcing emotion labels have been explored,
human annotators may not be reliable. A human annotator’s judgement of the emo-
tions in a text message is likely to be subjective and inconsistent. Consequently, dif-
ferent annotators may classify the same text message into different emotion classes,
as confirmed by our user study in Section 3.4.

1.3 Model of Emotion

The emotion models have mainly been studied based on two fundamental approaches:
basic emotions model and dimensional model [108].

1.3.1 Basic Emotions Model

According to the basic emotion model humans have a small set of basic emotions, which are
discrete and detectable by an individual’s verbal/nonverbal expression [35]. Researchers
have attempted to identify a number of basic emotions which are universal among all peo-
ple and differ one from another in important ways. A popular example is a cross-cultural
study by Paul Ekman et al. [35], in which they concluded that six basic emotions are anger,
disgust, fear, happiness, sadness, and surprise. Subsequently, many works in the field
of emotion detection in texts have been conducted based on this basic emotion model
[16, 96, 112, 66]. For example, Bollen et al. extracted six dimensions of affect including ten-
sion, depression, anger, vigour, fatigue, confusion from Twitter to model public emotion
[16].

However, the main drawback of such basic emotion models is that there is no consen-
sus amongst theorists on which human emotions should be included in the basic set of
emotions. Moreover, the basic emotions doesn’t cover all the variety of emotion expressed
by humans in texts. People usually express non-basic, subtle and complex emotions. This
problem can’t be resolved by using a finer granularity, because the emotions expressed in
texts are ambiguous and subjective. For instance, “surprise” as a basic emotion can indi-
cate negative, neutral or positive valence. Also using a finer granularity of emotion makes
the distinction of one emotion from another an issue in emotion classification. Therefore,
a small number of discrete emotions may not reflect the complexity of the affective states
conveyed by humans [108].

12 Dissertation – Maryam Hasan

1.3.2 Dimensional Model of Emotion

In contrast to the basic emotion model which defines discrete emotions, the dimensional
model defines emotion on a continuous scale. This model characterizes human emotions
by defining their positions along two or three dimensions. Many dimensional models
incorporate two fundamental dimensions of emotions namely, valence (i.e., pleasure) and
arousal (i.e., activation or stimulation) [108].

The most widely used dimensional model is the Circumplex model of Affect proposed
by Russell [107]. As shown in Figure 1, the model suggests that emotions are distributed
in a two-dimensional circular space, containing valence and arousal dimensions. Instead
of a small number of discrete categories, this model defines the emotion in terms of latent
dimensions (e.g., arousal and valence). The horizontal axis presents pleasure and measures
how positive or negative a person feels. The vertical axis presents activation and measures
if one is likely to take an action. Although the Circumplex model is a well-known model
and has long been validated and studied by emotion and cognition theorists, it has rarely
been used by computational approaches for automatic emotion analysis in texts [20].

1.4 State-of-the-Art

This section surveys prior works on classifying emotion in texts. Emotion classification
methods can be divided into lexicon-based methods and supervised learning methods.

1.4.1 Lexicon-based Classification

lexicon-based approaches relies on labeled dictionaries to calculate the emotional orien-
tation of a text based on the words and phrases that constitute it. Agrawal and An [4]
presented an unsupervised context-based methodology that does not depend on affect
lexicons. Therefore their model is flexible to classify texts beyond Ekman’s model of six
basic emotions.

Another unsupervised approach presented by Calvo et al. [20] using dimensional
emotion model, instead of categorical model. They used a normative database ANEW
[18] to produce three-dimensional vectors (valence, arousal, dominance) for each docu-
ment. They compared this method with different categorical approaches. For the cate-
gorical approaches three dimensionality reduction techniques: Latent Semantic Analysis
(LSA), Probabilistic Latent Semantic Analysis (PLSA) and Non-negative Matrix Factoriza-
tion (NMF) were evaluated. Their experiments showed that the categorical model using
NMF and the dimensional model tend to perform best.

An important limitation to the lexicon-based method is the small size of available lexi-
cal resources, which has an effect on performance at the cost of low recall.

Dissertation – Maryam Hasan 13

Another disadvantage of lexicons is that they contain direct affective words, that refer
explicitly to the emotional states. In contrast, indirect affective words have an implicit
connection to the emotional concepts depending on the context that they appear in [112].

1.4.2 Emotion Classification using Machine Learning

The use of lexicons is not the only approach for emotion detection. Many researchers
applied supervised learning methods to identify emotion in texts. Supervised classifica-
tion methods require an emotion-annotated data set and a statistical learning algorithm.
Choudhury et al. [25] detected depressive disorders by measuring behavioral attributes
including social engagement, emotion, language and linguistic styles, ego network, and
mentions of antidepressant medication. They utilized these behavioral features to build a
binary classifier that can predict whether an individual is vulnerable to depression. They
crowdsourced data from Twitter users who have been diagnosed with mental disorders.
Similar to our emotion model, they considered four emotional states: positive affect, neg-
ative affect, activation, and dominance. They used the LIWC lexicon for computing posi-
tive and negative affects and the ANEW lexicon for computing activation and dominance.
Their models showed an accuracy of 70% in predicting depression.

Another work by Qadir et al. [97] learned a list of emotion hashtags using a bootstrap-
ping framework. They started with a small number of manually defined seed hashtags.
For each seed hashtag, they searched Twitter for tweets that contained the hashtag and la-
beled them with the emotion class of the hashtag. They used these labeled tweets to train
supervised emotion classifiers. Then, the emotion classifiers were applied to a large pool
of unlabeled tweets to identify candidate emotion hashtags. They collected hashtags for
five emotion classes including affection, anger, anxiety, joy and sadness.

Purver et al. [96] trained supervised classifiers for emotion detection using automati-
cally labeled Twitter messages. They used the 6 basic emotions identified by Ekman [35]
including happiness, sadness, anger, fear, surprise and disgust. They used a collection of
Twitter messages, all marked with emoticons or hashtags corresponding to one of six emo-
tion classes, as their labeled data. Their method did better for some emotions (happiness,
sadness and anger) than others (fear, surprise and disgust). Their work is similar to ours,
however they used categorical emotion model which is different than our dimensional
emotion model based on the Circumplex model of affect [107]. Also, their overall accuracy
(60%) was lower than the accuracy achieved by our approach.

Another supervised learning work with categorical emotion models was developed
by Suttles and Ide [117]. They classified emotion according to a set of eight basic bipolar
emotions defined by Plutchick, namely, anger, disgust, fear, happiness, sadness, surprise,
trust and anticipation. Similar to our method to collect emotion-labeled data, they used

14 Dissertation – Maryam Hasan

emoticons and emotion-hashtags to collect a large set of labeled data and produce emotion
classifiers.

1.4.3 Emotion Classification using Deep Learning

Recently, text classification task has seen some success in switching from linear models
such as support vector machines to non-linear neural-network models. Some researchers
used neural network models to learn dense word embeddings. Bengio et al. [15] trained
word embeddings using a neural language model together with the model’s parameters.
Collobert and Weston demonstrated the power of pre-trained word embeddings [26, 27].
They established word embeddings and a neural network architecture that many of to-
day’s approaches were built upon. Mikolov et al. [75], brought word embedding to the
front through creation of word2vec. Word2vec is a toolkit enabling training and use of
pre-trained embeddings. A year later, Pennington et al. [92] introduced GloVe, a com-
petitive set of pre-trained embeddings. They trained word embeddings by building a
co-occurrence matrix for a given corpus, which contains how frequently words co-occur
together in the corpus. Word2vec is a predictive model, whereas GloVe is a count-based
model.

Some researchers studied the effectiveness of neural-network models for sentiment
classification in text. Ren. et al. [104] proposed a context based neural network model for
Twitter sentiment analysis by incorporating contextualized features from relevant Tweets
into the model in the form of word embedding vectors. They showed that significant im-
provements can be achieved by modeling the context of a given target tweet as a set, using
neural pooling functions to extract the most useful features from tweets automatically.

Tang et al. [119] proposed learning sentiment specific word embedding (SSWE), which
encodes sentiment information in the continuous representation of words. They devel-
oped three neural networks to effectively incorporate the supervision from sentiment po-
larity of text (e.g. sentences or tweets). They applied SSWE as features in a supervised
learning framework for Twitter sentiment classification.

Yoon Kim [57] trained a simple CNN with one layer of convolution on top of word2vec
vectors. His results showed that unsupervised pre-training of word vectors is an impor-
tant ingredient in deep learning for NLP. They also described a simple modification to
the architecture to allow the use of both pre-trained and task-specific vectors by having
multiple channels.

Poria et al. [95] present a novel way of extracting features from short texts, based
on the activation values of an inner layer of a deep convolutional neural network. For
this, they train a deep convolutional neural network (CNN) on a training corpus with
hand-annotated sentiment polarity labels. However, instead of using it as a classifier, as

Dissertation – Maryam Hasan 15

Yoon Kim [57] did, they used the values from its hidden layer as features for a much more
advanced classifier, which gives superior accuracy. They concatenated the obtained feature
vectors and fed the resulting long vector into a supervised classifier.

Severyn and Moschitti [110] also studied sentiment classification using deep learning
system. Similar to Yoon Kim [57] their network is composed of a single convolutional
layer followed by a non-linearity, max pooling and a soft-max classification layer. They
proposed a three-step process to train the parameters of their network for sentiment clas-
sification: (i) word embeddings were initialized using a neural language model, which
was trained on a large unsupervised collection of tweets; (ii) they used a convolutional
neural network to further refine the embeddings on a large distant supervised corpus; (iii)
the word embeddings and other parameters of the network obtained at the previous stage
are used to initialize the network, which is then trained on a supervised corpus.

Another work for sentiment classification using deep learning system was developed
by Zhou et al. [137] using deep feature selection methods in natural language processing.
They proposed a novel semi-supervised learning algorithm called active deep network by
using restricted Boltzmann machines (RBMs). They applied unsupervised learning based
on labeled reviews and abundant unlabeled reviews and then used active learning to iden-
tify and select reviews that should be labeled as training data.

Some researchers developed feature selection methods using deep learning models. Li
et al. [64] developed a method for selecting input features in a deep neural network for
multi-class data. They used elastic net to add a sparse one-to-one linear layer between the
input layer and the first hidden layer of a multi-layer perception and select most impor-
tant features according to their weights in the input layer given after training. They then
applied their deep feature selection method to solve the problem of enhancer-promoter in-
teraction using genomics data. The method that they developed using elastic net is a new
shrinkage approach that is flexible to be applied in different deep learning architectures.
Zou et al. [138] also developed a feature selection model using deep neural network. Their
method formulates the feature selection problem as a feature reconstruction problem. It
is implemented as an iterative algorithm, which is based on Deep Belief Network in an
unsupervised learning way to train the inquired reconstruction weights.

1.5 Research Objectives for Emotion Classification in Text

Our goal is to automatically detect emotion in text messages in social networks. For
this, we develop supervised machine learning methods to classify the messages into their
emotional states. Supervised learning methods achieve high accuracy in text classifica-
tion [126]. However they require a set of training records, such that each record is labeled

16 Dissertation – Maryam Hasan

with a class value. The training data is used to construct a classification model, which re-
lates the features in the underlying input data to one of the class labels. The classification
model is used to predict a class label for a test instance.

In order to train a classification model from labeled texts, sentences or messages should
be represented as a vector of numerical features. Feature representation is needed to con-
vert text content into a numeric vector representation, which can then be utilized to train a
classification model. It is important to know how features are represented in text classifi-
cation. Thus, to accomplish the emotion classification task, the major challenges discussed
below must be tackled.

1.5.1 Collecting Text Data with Emotion Labels

While supervised learning methods achieve high accuracy, they require a large corpus of
texts labeled with the emotion classes they express [126]. The training data is used to
construct a classification model, which relates the features in the underlying input data to
one of the class labels. The classification model is used to predict a class label for a test
instance.

Prior works have mostly utilized manually labeled data. Crowdsourcing is a popular
approach for labeling data, in which humans manually infer and then annotate each mes-
sage with the emotion it expresses [25, 30, 89]. Crowdsourcing tools such as Amazon’s
mechanical turk facilitate access to manual data labelers. However manually labeling of
Twitter messages with the emotions they express faces numerous challenges as previously
outlined, including the inconsistency of human labelers (See Section 1.2). Therefore, in-
stead we investigate using hashtags (user-selected keywords) in Twitter messages as vi-
able alternative to manual labeling. The use of hashtags in tweets is very common. Twitter
contains millions of different user-defined hashtags. Wang et al. showed that 14.6% of
tweets in a sample of 0.6 million tweets had at least one hashtag [126]. We make the ob-
servation that in many cases the hashtag keywords may correspond to the author’s own
classification of the main topics of their message. A study by Wang et al. showed that
emotion hashtags in about 93% of their sample tweets are relevant and reflect the writer’s
emotion [125].

We thus conjecture that emotional hashtags inserted by authors indicate the main emo-
tion expressed by their Twitter message. For example, a tweet with the hashtag ”#de-
pressed” can be interpreted as expressing a depressed emotion, while a tweet containing
the hashtag ”#excited” as expressing excitement. By using embedded hashtags to auto-
matically label the emotions expressed in text messages, we build a large corpus of la-
beled messages to train classifiers with no manual effort. This approach overcomes the
need for manual labeling and yields a completely automatic scheme for labeling a massive

Dissertation – Maryam Hasan 17

repository of Twitter messages. This strategy could equally be applied in other mining
applications where labeling is required.

1.5.2 Selecting Emotion Classes

Another challenge for automated emotion detection is that emotions are complex concepts
with fuzzy boundaries and with individual variations in expression and perception. We
define the emotion classes based on the Circumplex model of affect [107].

In our emotion classification work, we utilize the Circumplex model of affect by con-
sidering four major classes of emotion: Happy-Active, Happy-Inactive, Unhappy-Active,
and Unhappy-Inactive. As shown in Figure 1, the defined four classes of emotion are dis-
tinct, yet describe a wide range of emotional states as they cover four dimensions of the
Circumplex model.

Figure 1: Circumplex model of affect including 28 affect words by J. A. Russell, 1980. [107]

1.5.3 Extracting and Representing Features

Feature representation is essential in natural language processing (NLP) and text classi-
fication. It has a significant influence on the performance of many NLP tasks. A word
representation is a mathematical object associated with each word, called a vector. This
means representing them in a way that computer can understand. Therefore before any
NLP task, words or phrases should be represented as a n-dimentional vector of numerical
features. Each dimension’s value of this vector corresponds to a semantic or grammati-
cal feature of the word [121]. Two different statistical methods for computing the feature

18 Dissertation – Maryam Hasan

vectors are presented in the following sections.

1.5.3.1 One-Hot Encoding

One-hot encoding creates a feature vector with dimension 1 × N for each word, where
N is the size of the vocabulary, and only one dimension is on. For a single word the
corresponding column is filled with the value one and the rest are zero valued.

Despite its simplicity, this model usually demonstrate good performance on NLP tasks
including sentiment analysis. Many text classification methods use one-hot encoding be-
cause of its simplicity and efficiency for classification purposes [3]. However, one-hot rep-
resentation of a word suffers from several disadvantages [63]. The word vectors created
using the one-hot encoding is very large and sparse. The feature vector has the same length
as the size of the vocabulary [121]. Considering the large size of training dataset, the num-
ber of words in the vocabulary tends to be extremely large. Thus, the feature vector of each
word would become excessively large and sparse.

Moreover, it ignores the word orders, and thus different sentences can have exactly
the same representation, as long as the same words are used. Another problem is that this
model doesn’t capture word similarities and semantics. Bag-of-words model has very little
sense about the semantics of the words or more formally the distances between the words.
This means that words “sad”,“upset” and “apple” are equally distant despite the fact that
semantically, “sad” should be closer to “upset” than “apple” [63].

These limitations of one-hot word representations have prompted researchers to inves-
tigate distributed methods for inducing word representations.

1.5.3.2 Distributed Representation

Distributed representation methods exploit word co-occurrences to build dense, low-dimensional
and real-valued vectors of words [71]. Distributed representations are dense and low-
dimensional vectors, with each factor in the vector representing some distinct informative
feature of the word. Each entry in the vector represents a distinct informative property.
These representations can capture semantic or syntactic regularities in language [79]. In
this model, words with similar meaning can be correspond to close vectors.

Distributed representations (the real values of the vector entries) can be obtained using
neural network models [15]. Recent works for learning vector representations of words us-
ing neural network models have succeeded in capturing fine-grained semantic and syntac-
tic regularities [15, 26, 121, 75]. They are all based on learning a distributed representation
for each word, called a word embedding using neural networks. The word embeddings
are typically learned using neural networks as the underlying predictive model [15].

Dissertation – Maryam Hasan 19

Distributed representations developed in the context of statistical language modeling
by Bengio et al. [15] using feed-forward neural network models. Collobert et al. [26] and
Turian [121] developed a system where word representations are used with state-of-the-art
classifiers to improve performance in many NLP tasks. Mikolov et al. learned distributed
word embeddings in the context of recurrent neural network models [76, 77].

1.6 Proposed Approaches for Emotion Analysis in Text Messages

In this dissertation, we study emotion analysis in social networks. To detect and analyze
the emotion expressed in text messages, we classify the messages into their emotional
states.

For decades, machine learning methods solving NLP problems have been based on
linear models (e.g., SVM and logistic regression) trained on very high dimensional, sparse
and hand-crafted features [133]. In the last few years, neural networks based on dense vec-
tor representations have been producing superior results on various NLP tasks [133]. This
trend is sparked by the success of word embeddings [78, 76] and deep learning methods
[111]. Deep learning models automatically learn multiple layers of feature representations
for NLP tasks and thus reduce the need for hand-crafted features [133].

We propose two learning approaches to classify emotion in text messages: a machine
learning approach using static feature vectors and a deep learning approach using dis-
tributed feature vectors. We summarize the proposed approaches in the picture 2.

1.6.1 Emotex: A Supervised Learning Approach using Static Feature Vectors

In the first approach we develop a supervised machine learning approach called Emotex
to classify emotion expressed in text messages. Emotex collects a large dataset of emotion-
labeled messages from Twitter. The messages are pre-processed and converted into feature
vectors. Emotex uses the sparse one-hot model to represent each tweet as a feature vector.
The feature vector in Emotex is static. The features are selected based on a predefined set
of emotion lexicons. Then these vectors are subsequently utilized to train emotion classifi-
cation models. Emotex utilizes a number of classification methods for text categorization,
including Bayesian classifiers, decision trees, and support vector machines (SVM). We se-
lect Naive Bayes as a probabilistic classifier, SVM as a decision boundary classifier, and
decision tree as a rule based classifier.

1.6.2 DeepEmotex: A Deep Learning Approach using Distributed Feature Vectors

Emotex requires extensive hand-crafted features due to diverse ways of representing emo-
tion in different domains. Such hand-crafted features are time-consuming to create and

20 Dissertation – Maryam Hasan

Figure 2: Summary of proposed approaches.

may be incomplete. To solve this problem, we develop a deep learning approach called
DeepEmotex to extract distributed dense features based on the input context instead of
using static hand-crafted features. DeepEmotex learns emotion-specific features using se-
quential transfer learning.

Sequential transfer learning consists of two stages: A pre-training phase and an adap-
tation phase. The pre-training causes the model to learn general-purpose knowledge that
can then be transferred to downstream tasks [101]. Often, pre-training objective is to learn
general-purpose word or sentence representations [78, 58]. In the adaptation phase, the
knowledge of the trained model is transferred to the target task. We utilize state-of-the-art
pre-trained neural network models and fine-tune them to do our target emotion classifica-
tion task.

1.6.3 EmotexStream: A Framework for Analyzing Emotion in Live Streams of Text
Messages

After developing emotion classification models, we deploy the trained models to ana-
lyze live streams of tweets in a series of case studies. For this application, we develop
a two-stage framework called EmotexStream. A binary classifier in the first stage sepa-

Dissertation – Maryam Hasan 21

rates tweets with explicit emotion from tweets without emotion. The second stage utilizes
our emotion classification models for a multi-class emotion classification of tweets with
explicit emotion. We propose an online method to measure public emotion and detect
abrupt changes in emotion as emotion-intensive moments in live text streams. We then
utilize EmotexStream system to measure public emotion and detect emotion-burst mo-
ments in live stream of tweets. EmotexStream system is able to detect emotion-critical
moments during real-life events in a series of case studies.

We develop DeepEmotex models after EmotexStream system. Thus, DeepEmotex mod-
els are not deployed to classify live streams of tweets using EmotexStream framework.

1.7 Contributions

Overall, we made the following contributions in this dissertation:

• Proposed a method to overcome the vague boundaries of emotion classes: We ad-
dress this issue using a two-pronged approach. First, we define the emotion classes
based on the Circumplex model of affect [16]. Instead of a small number of discrete
categories, this model defines the emotion in terms of latent dimensions (e.g., arousal
and valence). Second, a soft (i.e., fuzzy) classification approach is proposed to mea-
sure the probability of assigning a message into each emotion class, in addition to a
typical classification that simply assigns one single emotion class to each text mes-
sage in a deterministic manner.

• Proposed a distant supervision method to collect emotion-labeled data: We con-
jecture that emotional hashtags inserted by authors indicate the main emotion ex-
pressed by their Twitter message. This approach overcomes the need for manual la-
beling and yields a completely automatic scheme to obtain large amounts of labeled
data. This strategy could equally be applied in other applications where labeling is
required to automatically obtain large amounts of supervised data.

• Developed and evaluated machine learning models to classify emotion in text: We
develop the Emotex system to automatically classify emotion expressed in text mes-
sages. Emotex uses sparse one-hot model to represent feature vectors. The features
are selected based on a predefined set of emotion lexicons. We train emotion classi-
fication models and report their soft and hard classification results. We evaluate the
classification accuracy of Emotex by comparing it with the lexical approach. Classi-
fication accuracy of Emotex is about 90%, while the accuracy of the lexical approach
is about 66%.

22 Dissertation – Maryam Hasan

• Developed and evaluated neural transfer learning models to classify emotion in text:
We develop a deep learning framework called DeepEmotex to classify emotion in
text messages. DeepEmotex learns emotion-specific features based on the input tex-
tual context using sequential transfer learning. For this, DeepEmotex develops meth-
ods for fine-tuning pre-trained language models to learn emotion specific features
which are more contextually aware of a new domain. We analyze the adaptation or
fine-tuning phase during which the pre-trained knowledge is transferred to our emo-
tion classification task. Using the state-of-the-art pre-trained models, we achieved
92% classification accuracy on our test data. We also evaluate the performance of
DeepEmotex models in classifying emotion in the benchmark datasets. DeepEmotex
models were able to correctly classify emotion in 70% of the the benchmark dataset.

• Proposed a method to detect emotion-burst moments during real-life events: We
develop EmotexSream framework to classify live streams of tweets. We propose an
online method to measure public emotion and detect emotion-intensive moments.
Our method can be used for real-time emotion tracking during social events. We
evaluate EmotexStream framework by conducting several case studies using live and
unfiltered streams of tweets during social events.

1.8 Road Map

The dissertation is organized as follows. Section 1 provides the introduction and motiva-
tion of this dissertation. Section 2 surveys the recent literature in the fields of text clas-
sification and emotion detection in text by highlighting the various supervised learning
approaches and deep learning techniques generally employed.

Details of our Emotex system to classify emotion in text messages are illustrated in
Section 3. This section describes Emotex framework and its experimental and evaluation
results. Section 4 proposes DeepEmotex, our deep learning framework to classify emotion
using sequential transfer learning and fine-tuning the pre-trained models for our emotion
classification task. This section provides some background knowledge about neural net-
works, distributed representations, and transfer learning. Then, it describes details about
DeepEmotex framework and its experimental and evaluation results. Section 5 illustrates
the proposed approach to detect and analyze public emotion in text streams, followed by
our case studies.

Dissertation – Maryam Hasan 23

2 Related Work on Text Classification

This section surveys prior works on classifying emotion in texts. Then, the current research
on using Transfer learning for NLP tasks are reviewed.

2.1 Emotion Classification in Text

Emotion detection methods can be divided into lexicon-based, machine learning, and deep
learning methods.

2.1.1 Lexicon-based Methods

Most research on textual emotion recognition is based on building and employing emotion
lexicons [73, 84, 112]. Lexicon-based methods rely on lexical resources such as lexicons, set
of words or ontologies. They usually start with a small set of seed words. Then they boot-
strap this set through synonym detection or on-line resources to collect a larger lexicon.
Ma et al. [73] searched WordNet for emotional words for all 6 emotional types defined by
Ekman [35]. They then assigned weights to those words according to the proportion of
Synsets with emotional association that the words belong to. Strapparava and Mihalcea
[112] constructed a large lexicon annotated for six basic emotions: anger, disgust, fear, joy,
sadness and surprise. They used linguistic information from WordNet Affect [113].

In another work, Choudhury et al. [30] identified a lexicon of more than 200 moods
frequently observed on Twitter. Inspired by the Circumplex model, they measured the va-
lence and arousal of each mood using mechanical turk and psychology literature sources.
Then, they collected posts which had at least one of the moods in their mood lexicon as
indicated by a hashtag at the end of a post.

Mohammed et al. [82] and Wang et al. [125] collected emotion-labeled tweets using
hashtags for several basic emotions including joy, sadness, anger, fear, and surprise. They
showed through experiments that emotion hashtags are relevant and match with the an-
notations of trained judges. Canales et al. also collected emotion-labeled corpora using
a bootstrapping process [21]. They annotated sentences from blogs posts based on the
Ekman’s six basic emotions [35].

Recently, researchers have explored social media such as Twitter to investigate its po-
tential to detect depressive disorders. Park et al. [89] ran studies to capture the depressive
mood of users in Twitter. They studied 69 individuals to understand how their depressive
states are reflected in their tweets. They found that people post about their depression and
even their treatments on social media. Their results showed that participants with depres-
sion exhibited an increased usage of words related to negative emotions and anger in their

24 Dissertation – Maryam Hasan

tweets. Another effort for emotion analysis on Twitter data was undertaken by Bollen et al.
[16]. They extracted 6 basic emotions (tension, depression, anger, vigor, fatigue, confusion)
using an extended version of POMS (Profile of Mood States). They found that social, po-
litical, cultural and economic events have a significant and immediate effect on the public
mood.

2.1.2 Machine Learning Methods

Machine Learning methods apply statistical algorithms on linguistic features, which can
be supervised or unsupervised. A few researchers applied supervised learning methods to
identify emotions in texts. Choudhury et al. [25] detected depressive disorders by measur-
ing behavioral attributes including social engagement, emotion, language and linguistic
styles, ego network, and mentions of antidepressant medication. Then they leveraged
these behavioral features to build a statistical classifier that estimates the risk of depres-
sion. They crowdsourced data from Twitter users who have been diagnosed with mental
disorders. Their models showed an accuracy of 70% in predicting depression.

Another work accomplished by Qadir et al. [97] to learn lists of emotion hashtags using
a bootstrapping framework. Starting with a small number of seed hashtags, they trained
emotion classifiers to identify and score candidate emotion hashtags. They collected hash-
tags for five emotion classes including affection, anger, anxiety, joy and sadness.

Purver et al. [96] tried to train supervised classifiers for emotion detection in Twitter
messages using automatically labeled data. They used the 6 basic emotions identified by
Ekman [35] including happiness, sadness, anger, fear, surprise and disgust. They used
a collection of Twitter messages, all marked with emoticons or hashtags corresponding
to one of six emotion classes, as their labeled data. Their method did better for some
emotions (happiness, sadness and anger) than others (fear, surprise and disgust). Their
work is similar to ours, however they used categorical emotion models and their overall
accuracies (60%) were much lower than the accuracy achieved by our approach.

Another supervised learning work with categorical emotion models is done by Suttles
and Ide [117]. They classify emotions according to a set of eight basic bipolar emotions
defined by Plutchick including anger, disgust, fear, happiness, sadness, surprise, trust and
anticipation. This allows them to treat the multi-class problem of emotion classification as
a binary problem for opposing emotion pairs.

An unsupervised method was proposed by Agrawal and An [4]. They presented an
unsupervised context-based approach based on a methodology that does not depend on
any existing affect lexicon, therefore their model is flexible to classify texts beyond Ek-
man’s model of six basic emotions. Another unsupervised approach was developed by
Calvo et al. [20]. They proposed an unsupervised method using dimensional emotion

Dissertation – Maryam Hasan 25

model. They used a normative database ANEW [18] to produce tree-dimensional vec-
tors (valence, arousal, dominance) for each document. They also compared this method
with different categorical approaches. For the categorical approaches three dimensional-
ity reduction techniques: Latent Semantic Analysis (LSA), Probabilistic Latent Semantic
Analysis (PLSA) and Non-negative Matrix Factorization (NMF) were evaluated. Their ex-
periments showed that the categorical model using NMF and the dimensional model tend
to perform best.

2.1.3 Deep Learning Methods

Recently, approaches which employ deep learning methods for emotion and sentiment
detection in text have been proposed. They use word embeddings as input, which already
encode some semantic and syntactic information. Lai et al. [61] proposed recurrent CNNs
to capture contextual information as far as possible when learning word representations.
They also employ a max-pooling layer that automatically explores the words with key
roles in text classification to capture the key components in texts. Their model outperforms
CNN and Recursive neural networks based on four different text classification datasets.

Ren. et al. [104] proposed a context based neural network model for Twitter sentiment
analysis by incorporating contextualized features from relevant Tweets into the model in
the form of word embedding vectors. They showed that significant improvements can be
achieved by modeling the context of a given target tweet as a set, using neural pooling
functions to extract the most useful features from tweets automatically. Another context-
sensitive method for sentiment classification proposed by Teng et al. [120]. Their method is
based on a simple weighted-sum model, using bidirectional LSTM to learn the sentiment
strength, intensification and negation of lexicon sentiments in composing the sentiment
value of a sentence.

Qian et al. [98] presented a linguistically regularized LSTM for the task. The proposed
model incorporates linguistic resources such as sentiment lexicon, negation words and
intensity words into the LSTM in order to capture the sentiment effect in sentences more
accurately. Wang et al. [124] combined CNN and LSTM. They proposed a regional CNN-
LSTM model, which consists of two parts: regional CNN and LSTM, to predict the valence
and arousal ratings of text.

Felbo et al. [36] used millions of emoji occurrences in social networks as noisy labels
for pre-training neural models in order to learn richer representations of emotional con-
texts. To capture the context of each word they use two bidirectional LSTM layers with
1024 hidden units (512 in each direction), with an attention layer that takes all of LSTM
layers as input using skip-connections. Through emoji prediction on a dataset of 1.2 bil-
lion tweets containing one of 64 common emojis they obtain state-of-the-art performance

26 Dissertation – Maryam Hasan

for sentiment, emotion and sarcasm detection using a single pre-trained model. Their re-
sults confirm that the distant supervision to a more diverse set of noisy labels enables the
models to learn better representations of emotional content in text and obtain better per-
formance for detecting sentiment, emotions and sarcasm.

Abdul-Mageed and Ungar [1] build a dataset of tweets including fine-grained emo-
tions. Then they develop Gated Recurrent Neural Networks (GRNNs) across 24 fine-
grained types of emotions. Koper et al. [59] predict emotion intensity in tweets by ap-
plying deep learning method with extended lexicons of affective norms. They show that
domain-specific embeddings (trained on twitter data) perform superior to other embed-
dings.

Some researchers predict emotion in textual dialogues. Luo and Wang [72] fine-tune
BERT model to predict emotion in dialogues by choosing from four emotion classes, joy,
sadness, anger, and neutral. They use datasets consisting of scripts from the TV show,
Friends, and the anonymous Facebook chat logs named EmotionPush. Chatterjee et al.
[23] use BiLSTM model to infer the underlying emotion from textual dialogues by choosing
from four emotion classes, happy, sad, angry, and other. Another method to classify emo-
tion in dialogues is developed by Al-Omari et al. [5]. They classify EmoContext dataset
into happy, sad, angry and other. They use GloVe embeddings and features extracted from
AffectiveTweets. They also extract word contextual embeddings from BERT model. These
vectors feed feed-forward and BiLSTM models to obtain predictions. Their result show
that the performance of the system is increased by extracting BERT embeddings then feed-
ing them into an BiLSTM network.

2.2 Transfer Learning for NLP Tasks

Transfer learning, where a model is first pre-trained on a data-rich task before being fine-
tuned on a downstream task, has emerged as a powerful technique in natural language
processing (NLP). Recent advances in transfer learning for NLP have come from a wide
variety of developments, such as new pre-training objectives, model architectures, and
fine-tuning methods. A survey of Some pre-training objectives and fine-tuning methods
are provided in this section. They have produced a wide landscape of pre-training objec-
tives [52, 31, 131, 34], and fine-tuning methods [52, 93, 51].

2.2.1 Pre-training Methods

Recently, it has become increasingly common to pre-train the entire model on a data-rich
task. The main utility of transfer learning is the possibility of leveraging pre-trained mod-
els. Ideally, this pre-training causes the model to develop general-purpose abilities and

Dissertation – Maryam Hasan 27

knowledge that can then be transferred to downstream tasks [101].

Modern techniques for transfer learning on NLP tasks often pre-train a language model
using unsupervised learning of neural networks on a diverse corpus of unlabeled text.
They are then followed by discriminative fine-tuning on each specific task. This approach
has recently been used to obtain state-of-the-art results in many of the most common NLP
benchmarks [31, 52, 94, 131, 68, 62, 34, 99, 100].

Beyond its empirical strength, unsupervised pre-training for NLP is particularly at-
tractive because unlabeled text data is available enormously. Neural networks have been
shown remarkable scalability, i.e. they often achieve better performance simply by train-
ing a larger model on a larger dataset [101]. This synergy has resulted in a great deal of
recent work developing transfer learning methodology for NLP tasks, which has produced
a wide landscape of pre-training objectives [52, 31, 131, 34].

Dai et al. [29] pre-trained a neural network to fine-tune a language model. Through
pre-training phase they captured some linguistic information using LSTM models. With
pre-training, they were able to achieve strong performance in text classification tasks. The
weights obtained from pre-training can then be used as an initialization for the standard
LSTMs. They found that a simple pre-training step can significantly stabilize the training
of LSTMs. However their model requires millions of in-domain documents to achieve
good performance, which severely limits its applicability.

Howard and Ruder [52] proposed Universal Language Model Fine-tuning (ULMFiT),
a transfer learning method that can be applied to NLP tasks. ULMFiT can be used to
achieve transfer learning for NLP tasks. They introduced techniques for fine-tuning a lan-
guage model by gradual unfreezing to retain previous knowledge and avoid catastrophic
forgetting during fine-tuning.

Another work by Radford et al. [99] pre-trained a neural network using a language
modeling objective and then fine-tuned it on a target task with supervision. They made
use of task-aware input transformations during fine-tuning to achieve effective transfer
while requiring minimal changes to the model architecture. They chose transformer net-
works to capture longer range linguistic structure. They demonstrated the effectiveness
of their model on a wider range of tasks including natural language inference, paraphrase
detection and story completion.

Peters et al. [94] introduced a new type of deep contextualized word representation
called ELMo (Embeddings from Language Models). ELMo vectors are learned functions
of the internal states of a deep bidirectional language model (biLM), which is pre-trained
on a large text corpus. They used hidden representations from a pre-trained language as
auxiliary features while training a supervised model on the target task. This involves a
substantial amount of new parameters for each separate target task.

28 Dissertation – Maryam Hasan

More recently, Raffel et al. [101] pre-trained a standard Transformer using a simple
denoising objective and then separately fine-tuned on each of their downstream tasks. we
require minimal changes to our model architecture during transfer. Instead of fine-tuning
all of the models parameters, they focus on two alternative fine-tuning approaches that
update only a subset of the parameters of their model.

BERT (Bidirectional Encoder Representations from Transformers) [31] is another pre-
trained model that has achieved state-of-the-art performance in many NLP tasks. BERT is
one of the key innovations in the recent progress of contextualized representation learning
[31, 52, 94, 99]. The idea behind the progress is that even though the word embedding [92,
78] layer (in a typical neural network for NLP) is trained from large-scale corpora, training
a wide variety of neural architectures that encode contextual representations only from
the limited supervised data on end tasks is insufficient. Unlike ELMo [94] and ULMFiT
[52] that are intended to provide additional features for a particular architecture that bears
humans understanding of the end task, BERT adopts a fine-tuning approach that requires
almost no specific architecture for each end task. This is desired as an intelligent agent
should minimize the use of prior human knowledge in the model design. Instead, it should
learn such knowledge from data [129].

RoBERTa [68] showed that the performance of BERT can further improved by small
adaptations to the pre-training process. While RoBERTa was able to improve the perfor-
mance for several supervised tasks, there is no significant difference between BERT and
RoBERTa for generating sentence embeddings [103].

2.2.2 Fine-tuning Methods

It is impractical to train language models from scratch with limited computational re-
sources. Instead, it is practical to adapt language models pre-trained from formal texts
to another domains.

One approach is the setting where all parameters of a model are pre-trained on an unsu-
pervised task before being fine-tuned on individual supervised tasks. While this approach
is straightforward, various alternative methods for training the model on downstream/-
supervised tasks have been proposed. In this section, we compare different schemes for
fine-tuning the model [101].

It has been argued that fine-tuning all of the models parameters can lead to suboptimal
results, particularly on low-resource tasks [93]. Early results on transfer learning for text
classification tasks advocated fine-tuning only the parameters of a small classifier that was
fed sentence embeddings produced by a fixed pre-trained model [114, 28, 69, 58]. Alterna-
tive fine-tuning approaches update only a subset of the parameters.

As an alternative, some researchers proposed transfer with adapter modules. Adapter

Dissertation – Maryam Hasan 29

modules yield a compact and extensible model. They add only a few trainable parameters
per task, and new tasks can be added without revisiting previous ones. The parameters
of the original network remain fixed, yielding a high degree of parameter sharing [51].
The idea of “Adapter layers” [51], is motivated by the goal of keeping most of the original
model fixed while fine-tuning. Adapter layers are additional dense-ReLU-dense blocks
that are added after each of the preexisting feed-forward networks in each block of the
Transformer. These new feed-forward networks are designed so that their output dimen-
sionality matches their input. This allows them to be inserted into the network with no ad-
ditional changes to the structure or parameters. When fine-tuning, only the adapter layer
and layer normalization parameters are updated. The main hyper-parameter of this ap-
proach is the inner dimensionality of the feed-forward network, which changes the num-
ber of new parameters added to the model [101].

The second alternative fine-tuning method is “gradual unfreezing” [52]. In gradual
unfreezing, more and more of the model’s parameters are fine-tuned over time. Gradual
unfreezing was originally applied to a language model architecture consisting of a single
stack of layers. In this setting, at the start of fine-tuning only the parameters of the final
layer are updated, then after training for a certain number of updates the parameters of
the second-to-last layer are also included, and so on until the entire network’s parameters
are being fine-tuned [101].

30 Dissertation – Maryam Hasan

3 Emotex: A Supervised Learning Approach to Detect Emotion in
Text Messages

3.1 Introduction

Social networks and microblogging tools (e.g., Twitter, Facebook) are increasingly used by
individuals. Using these platforms, users express their opinions and share their feelings
in the form of short text messages (e.g., texts about normal life and opinion on current
issues and events) [30]. These messages (commonly known as tweets or microblogs) may
also contain indicators of emotions of individuals such as happiness, anxiety, and depres-
sion. In fact, social networks contain a large corpus of public real-time data that is rich
with emotional content. This makes them appropriate data sources for behavioral studies,
especially for studying emotions of individuals as well as larger populations. Therefore,
social networks such as Twitter provide valuable information to observe crowd emotion
and behavior and study a variety of human behavior and characteristics [123]. Methods to
analyze these data provide an opportunity to conveniently and deeply explore and under-
stand human behavior and emotion patterns.

Increasing evidence suggests that emotion detection and screening built around social
media [25, 89, 41, 105] will be effective in many applications. In particular, Twitter provides
valuable opportunities to observe public mood and behavior. The development of robust
textual emotion sensing technologies promises to have a substantial impact on public and
individual health and urban planning. To detect and analyze the emotion expressed in text
messages, we develop a machine learning approach to automatically classify the messages
into their emotional states.

The rest of this chapter is organized as follows. Details of our proposed methods to de-
tect and analyze emotion in text streams are illustrated in Section 3.2. Section 3.3 includes
our extensive experimental results about different tasks of our approach. Evaluating our
labeling method is described in Section 3.4. Finally we conclude this chapter in Section 3.5.

3.2 Emotex: Proposed Approach to Classify Emotion in Text Messages

To detect and analyze the emotion expressed in text messages, we develop a supervised
learning approach to automatically classify the messages into their emotional states.

While supervised learning methods achieve high accuracy, they require a large corpus
of texts labeled with the emotion classes they express [126]. Prior works have mostly
utilized manually labeled data. Crowdsourcing is a popular approach for labeling data,
in which humans manually infer and then annotate each message with the emotion it
expresses [25, 30, 89]. Crowdsourcing tools such as Amazon’s mechanical turk facilitate

Dissertation – Maryam Hasan 31

access to manual data labelers. However manually labeling of Twitter messages with the
emotions they express faces numerous challenges as previously outlined, including the
inconsistency of human labelers (See Section 3.1). Therefore, instead we investigate us-
ing hashtags (user-selected keywords) in Twitter messages as viable alternative to manual
labeling. The use of hashtags in tweets is very common. Twitter contains millions of dif-
ferent user-defined hashtags. Wang et al. showed that 14.6% of tweets in a sample of 0.6
million tweets had at least one hashtag [126]. We make the observation that in many cases
the hashtag keywords may correspond to the author’s own classification of the main top-
ics of their message. A study by Wang et al. showed that emotion hashtags in about 93%
of their sample tweets are relevant and reflect the writer’s emotion [125].

We thus conjecture that emotional hashtags inserted by authors indicate the main emo-
tion expressed by their Twitter message. For example, a tweet with the hashtag ”#de-
pressed” can be interpreted as expressing a depressed emotion, while a tweet containing
the hashtag ”#excited” as expressing excitement. By using embedded hashtags to automat-
ically label the emotions expressed in text messages, we build a large corpus of emotion-
labeled messages to train classifiers with no manual effort. This approach overcomes the
need for manual labeling and yields a completely automatic scheme for labeling a massive
repository of Twitter messages. This strategy could equally be applied in other mining
applications where labeling is required.

Another challenge for automated emotion detection is that emotions are complex con-
cepts with fuzzy boundaries and with individual variations in expression and perception.
We address this issue using a two-pronged approach. First, we define the emotion classes
based on the Circumplex model of affect [107]. Instead of a small number of discrete cat-
egories, this model defines the emotion in terms of latent dimensions (e.g., arousal and
valence). We utilize the Circumplex model by considering four major classes of emotion:
Happy-Active, Happy-Inactive, Unhappy-Active, and Unhappy-Inactive.

Second, a soft (i.e., fuzzy) classification approach is proposed, which classifies each
message into multiple emotion classes with different probabilities (i.e., weights), instead
of forcing each message to be in one emotion class only.

An important challenge for emotion classification in texts is feature selection and word
representation. A word representation is a mathematical object associated with each word,
called a vector. Therefore before any classification task, words or phrases should be rep-
resented as a n-dimensional vector of numerical features. Several statistical methods have
been developed for word or phrase representation. Emotex uses one-hot encoding and
creates a vector for each word with filled zeros, except one dimension. Despite its sim-
plicity, this model usually demonstrate good performance on classification tasks including
sentiment analysis [3]. However, the word vectors created using the one-hot encoding is

32 Dissertation – Maryam Hasan

very large and sparse. The feature vector has the same length as the size of the vocabu-
lary [121]. To solve the problem of high-dimensional feature space, we select an emotion
lexicon as the set of input vocabulary, instead of all the words in the input dataset.

By utilizing the above ideas, we develop a supervised learning system called Emotex
to automatically classify text messages into our defined classes of emotion described in
Section 1.3.2. Emotex is developed as an offline system and includes three parts. The first
part involves data acquisition and collecting training data. The second part is related to
feature representation and the third part creates the emotion classifiers. Figure 3 shows
the process flow of Emotex. Emotex collects a large dataset of emotion-labeled messages
from Twitter. The messages are then preprocessed and converted into feature vectors. We
select certain features and represent each tweet in the training set as a numerical feature
vector using one-hot model. The numerical feature vectors annotated with emotion la-
bels are used to train emotion classification models. These models then classify unlabeled
messages into an appropriate emotion class.

Emotex classification algorithms will receive a sample of training points from our la-
beled dataset D, which we will denote by

D = (t1, e1), ..., (tn, en), ti ∈ T , ei ∈ Eclass (1)

where T is the set of all tweets in the labeled dataset D, and Eclass is the set of emotion
labels. Based on the Circumplex model of emotion [107] we defined Eclass as below:

Eclass = {happy active, happy inactive, unhappy active, unhappy inactive}
Our emotion classifier is a function that maps a sample tweet t from our test dataset to

an emotion class e.

e = f(t), t ∈ T , e ∈ Eclass (2)

This section now describes each part of the Emotex pipeline.

Mul$class	

Models	

	

Test	

Data	

	

Extracted
Emotions

	

Training	

Data	

	

Feature	
 	

Vectors	

Task1

Task3

Task2 Collecting
Labeled

Data

Selecting
Features

Training
Multi-class
Classifiers

Figure 3: Model of Emotex

Dissertation – Maryam Hasan 33

Class Emotion Hashtags
Happy-
Active

#elated,#overjoyed,#enjoy,#joyful,#excellent,#feelhappy,#happy,#sohappy,
#veryhappy,#happytweet#superhappy,#blessed,#feelblessed,#amazing,
#wonderful,#excited,#proud,#enthusiastic,#delighted
Sample: Thankful for unexpected time with one of my best friends #happy

Happy-
Inactive

#calm,#calming,#peaceful,#quiet,#silent,#serene,#convinced,#consent,
#contented,#contentment,#satisfied,#relax,#relaxed,#relaxing,#sleepy,
#sleepyhead,#asleep, #resting, #restful,#placid
Sample: ready for a relaxing day of doing nothing #relax

Unhappy-
Active

#nervous,#anxious,#tension,#afraid,#fearful,#angry,#stressed,#stress,
#distressed,#distress,#stressful,#annoyed,#annoying, #worried,#tense,
#bothered,#disturbed, #irritated,#furious, #mad
Sample: I have my speech in less than minutes #nervous

Unhappy-
Inactive

#sad,#ifeelsad,#feelsad,#sosad,#verysad,#sorrow,#supersad,#disappointed,
#miserable, #hopeless, #depress,#depressed, #depression,#fatigued,#gloomy,
#suicidal,#downhearted, #hapless,#dispirited
Sample: Sometimes people let you down and it hurts. #sad

Table 1: List of hashtags for each emotion class

3.2.1 Collecting Labeled Data

An emotion-labeled corpus and an emotion lexicon are the two necessary resources for our
Emotex system. We utilize hashtags to automatically annotate text messages with emotion
and collect a large corpus of emotion-labeled messages. These messages then serve as a
labeled dataset for training classifiers. Figure 4 shows the steps of collecting labeled data.
We first need to define a list of emotion hashtags to collect emotion-labeled messages.
For this, we exploit the set of 28 affect words from the Circumplex model (as shown in
Figure 1) as the initial set of keywords and extend them using WordNet’s synsets [?].
We use the extended set of keywords to detect emotion hashtags. Then, we collect tweets
which contain one or more hashtags that fall in our defined list of emotion hashtags. This
way we assure that we have tweets labeled with our defined emotion classes described
in Section 1.3.2. Hashtags that are directly interleaved in the actual tweet text are more
likely to represent a part of the content of the tweet itself [30, 125]. Therefore, we only
collect the tweets which contain the emotion hashtags at the end. We also didn’t collect
retweets, which begin with the“RT” keyword. Table 1 presents the final list of hashtags
used to collect labeled data for each class.

Using this approach we are able to collect a large number of tweets with various emo-
tion hashtags with no manual effort. Another major advantage of this approach is that
it gives us direct access to the author’s own intended emotional state, instead of relying
on the possibly inconsistent and inaccurate interpretations of third-party annotators about

34 Dissertation – Maryam Hasan

what an author of a tweet may have felt. We utilize Twitter’s stream API to automatically
collect tweets and filter them by emotion-hashtags. After collecting the same number of
tweets for each emotion class, the labeled tweets are then preprocessed to mitigate mis-
spellings and casual language used in Twitter using the following rules:

Identifying
Emotion Hash-

tags

Data

Preprocessing

Collecting
Labeled
Tweets

Twitter Streaming API

Labeled	
 	

Data	

	

WordNet	

Synsets	

Seed	

Keywords	

Figure 4: Model of labeled data collection

• User IDs and URLs: In addition to the message body, tweets contain the ID of the
user and URL links. They are marked separately for later processing.

• Text normalization: Tweets often contain abbreviations and informal expressions.
All abbreviations are expanded (e.g., “won’t” to “will not”). Words with repeated
letters are common. Any letter occurring more than two times consecutively is re-
placed with one occurrence. For instance, the word “happyyyy” will be changed into
“happy”.

• Conflicting hashtags: Some tweets may contain hashtags from different emotion
classes. For example tweet ”Got a job interview with At&t... #nervous #happy.”,
includes the hashtag #nervous from Unhappy-Active class and the tag #happy from
Happy-Active class. Tweets with conflicting hashtags are removed from our labeled
data, as they illustrate a mixture of different emotions.

• Hashtags at end of tweets: We consider emotion hashtags at the end of the tweets as
emotion labels. Therefore, as part of preprocessing, emotion hashtags are stripped
off from the end of tweets. For instance, the tags “#disappointed” and “#sad” are re-
moved from the tweet “No one wants to turn up today. #disappointed #sad”. Hash-
tags that are directly interleaved in the actual tweet text represent part of the content
of the tweet and are not removed.

3.2.2 Word Representation for Emotion Classification

Word representation is essential in text classification. It has a significant influence on the
performance of classification. A word representation is a mathematical object associated
with each word, called a vector. This means representing them in a way that computer

Dissertation – Maryam Hasan 35

can understand. Therefore before any classification task, words or phrases should be rep-
resented as a n-dimentional vector of numerical features. Each dimension’s value of this
vector corresponds to a semantic or grammatical feature of the word [121] Different sta-
tistical methods for computing the word vectors have been developed including one-hot
vectors and dense vectors. Emotex system uses One-Hot Encoding to represent each tweet
as a numerical vector. Using this model, We represent each word as a completely indepen-
dent token.

3.2.2.1 One-Hot Encoding

One-hot vector represent every word as an R|V |×1 vector with all 0s and one 1 at the index
of that word in the vocabulary. In this notation |V | is the size of the vocabulary. For a single
word the corresponding column is filled with the value one and the rest are zero valued.

The occurrence (or frequency, or TF-IDF) of each word in text is used as a numeric
value which is then transformed into a feature vector using a one-hot representation. Each
word is associated with its own dimension. Each dimension in the resulted feature vector
represents a feature. Dimensionality of the vector is same as number of distinct features.
Features are completely independent from one another. Such a representation is essentially
independent of the sequence of words in the texts. Some example word vectors in this type
of encoding would appear as the following:

W a =


1

0

...

0

 ,W at =


0

1

...

0

 , ...,W zebra =


0

0

...

1


Despite its simplicity, this model usually demonstrate good performance on text classi-

fication tasks including sentiment and emotion analysis. Many text classification methods
use one-hot encoding because of its simplicity and efficiency for classification purposes [3].
However, one-hot representation of a word suffers from several disadvantages [63]. Text is
a particular kind of data in which the word attributes are sparse and high dimensional [3].
The word vectors created using the one-hot encoding are very large and sparse. The word
vectors have the same length as the size of the vocabulary [121]. Considering the large size
of training dataset, the number of words in the vocabulary tends to be extremely large.
Thus, the numerical vector of each word would become excessively large and sparse.

Another problem of one-hot encoding is that this model doesn’t capture word simi-
larities and semantics. Bag-of-words model has very little sense about the semantics of
the words or more formally the distances between the words. This means that words

36 Dissertation – Maryam Hasan

“sad”,“upset” and “apple” are equally distant despite the fact that semantically, “sad”
should be closer to “upset” than “apple” [63].

To overcome the problem of this high-dimensional feature space, we select an emo-
tion lexicon as the set of unigram features. As a result, our feature space only contains
the emotional words from the emotion lexicons instead of all the words in our training
dataset. This method reduces the size of feature space dramatically, with minimal loss of
informative terms.

3.2.3 Feature Selection for Capturing Emotion

In order to train a classifier from labeled data, messages or tweets should be represented as
a vector of numerical features. Feature selection and text representation are primary tasks
for text classification. Feature selection and representation are especially important in text
classification due to the high dimensional of text features and the existence of irrelevant
and noisy features. In general, text can be represented in different ways as described below
[3].

We represent each tweet as a vector of numerical features using one-hot encoding. This
vector encodes features such as words, part-of-speech tags or other linguistic and semantic
information of the input text. Thus, a set of features that illustrate the emotion expressed
by each tweet is needed. We investigate the effectiveness of different features. We use
single words, also known as unigrams, as the baseline features for comparison. Other
features explored include emoticons, punctuations, and negations.

3.2.3.1 Unigram Features

Unigrams or single word features have been widely used to capture sentiment or emotion
in text [37, 87, 96]. Let {f1, f2, ..., fm} be our predefined set of unigrams that can appear in
a tweet. Each feature fi in this vector is a word occurring in the list of tweets in our dataset.
However, with the large breadth of topics discussed in microblogs, the number of words
in our input dataset tends to be extremely large. Thus, the one-hot feature vector of each
message would become excessively large and sparse (i.e., most features will have a value
of zero). To overcome the problem of this high-dimensional feature space, we select an
emotion lexicon as the set of unigram features. As a result, our feature space only contains
the emotional words from the emotion lexicons instead of all the words in our training
dataset. This method reduces the size of feature space dramatically, with minimal loss of
informative terms.

We use different emotion lexicons in our system, including ANEW lexicon (Affective
Norms for English Words) [18], LIWC dictionary (Linguistic Inquiry and Word Count) [91],

Dissertation – Maryam Hasan 37

and AFINN [85]. LIWC is a dictionary of several thousands words and prefixes, grouped
into psychological categories. We use emotion-indicative categories including positive
emotions, negative emotions, anxiety, anger, sadness, and negations. ANEW lexicon con-
tains 2477 affect words, each rated for its valence and arousal on a 1-9 scale. AFINN was
created to include a new word list specifically for microblogs.

3.2.3.2 Emoticon Features

Other than unigrams, emoticons are also likely to be useful features to classify emotion in
texts as they are textual portrayals of emotion in the form of icons. Emoticons tend to be
widely used in sentiment analysis. Go et al. and Pak et al. [37, 87] used the western-style
emoticons to collect labeled data. There are many emoticons to express happy, sad, angry
or sleepy emotion. The list of emoticons that we use can be found in our paper [44].

3.2.3.3 Punctuation Features

Other features potentially helpful for emotion detection are punctuations (i.e., question
mark, exclamation mark and combination of them). Users often use exclamation marks
when they want to express their strong feelings. For instance, the tweet “I lost 4lb in
3 days!!” expresses strong happiness and the tweet “we’re in december, which means
one month until EXAMS!!!” represents a high level of stress. The exclamation mark is
sometimes used in conjunction with the question mark, which in many cases appears to
convey a sense of astonishment. For example the tweet “You don’t even offer high speed,
yet you keep overcharging me?!” indicates an astonished and annoyed feeling.

3.2.3.4 Negation Features

As our last feature, we select negation to address errors caused by tweets that contain
negated phrases like “not sad” or “not happy”. For example the tweet, “I’m not happy
about this trade.” should not be classified as a happy tweet, even though it has a happy
unigram. To tackle this problem we define negation as a separate feature. We select the list
of phrases indicating negation from the LIWC dictionary.

3.2.4 Classifier Selection for Emotion Detection

A number of classification methods have been commonly used for text classification, in-
cluding Bayesian classifiers, decision trees, support vector machines (SVM), and Neural
Networks. To classify emotion we explored three different classifiers. We selected Naive

38 Dissertation – Maryam Hasan

Bayes as a probabilistic classifier, SVM as a decision boundary classifier, and decision tree
as a rule based classifier.

Using the training set a classifier function f : (X → y) is developed that assigns a class
label y to an input feature vector X and is used to classify future unlabeled instances. The
input vector X encodes features such as words, part-of-speech tags or other linguistic and
semantic information of the input text. The output vector y is the emotion class.

One of the challenges of automated emotion detection is that emotions are complex
concepts with fuzzy boundaries and with many variations in expression. Also, emotion
perception is naturally subjective. Thus, it is difficult to achieve a common consensus to
which emotion class each text message belongs to. As shown in our user studies described
in Section 3.4, people often have different perceptions about emotion expressed in texts.
Furthermore, a small number of discrete emotion classes may not reflect the complexity of
the emotional states conveyed by humans. Typical classifiers assume clearly demarcated
and non-overlapping classes. They may not assign emotion labels to some messages with
high confidence and classify them either incorrectly or correct mostly by chance. Therefore,
simply assigning one single emotion class to each text message in a deterministic manner
may not perform well in practice.

To overcome this issue we use a two-pronged approach. First, we define the emotion
classes based on a dimensional model (See Section 1.3.2). Second, a soft (fuzzy) classifi-
cation approach is proposed to measure the strength of each emotion class in association
with the message under classification. In soft classification, the prediction results become
less explicit by assigning each message a soft label that indicates how likely each emo-
tion would be perceived. More details about hard and soft classification of emotion are
described bellow.

3.2.4.1 Hard and Soft Classification of Emotion

For classifying emotion, we utilize two types of classification: soft and hard classification.
In general, a classifier is a function that assigns an emotion label y to an input feature
vector x:

y = f(x), x ∈ X, y ∈ Y (3)

where X is the set of all feature vectors from the tweets in the input dataset, and Y is the
set of emotion labels.

Some classifiers such as support vector machines make decision boundaries between
different classes. Other classifiers are probabilistic classifiers meaning that they assign a
probability distribution over a set of classes to an input x ∈ X .

Dissertation – Maryam Hasan 39

P (Y = y|x), x ∈ X, y ∈ Y (4)

In hard classification each message can only belong to one and only one class. Soft
classifiers measure the degree to which a message belongs to each class, rather than dedi-
cating the message to a specific class [?]. In decision boundary classifiers, soft labels can
be estimated based on decision scores. In probabilistic classifiers soft labels can refer to the
class conditional probabilities, and a hard classification label can be produced based on the
largest estimated probability.

y = maxy{P (Y = y|x), x ∈ X, y ∈ Y } (5)

For example, a sample tweet could be 65% likely to be happy, 18% likely to be relaxed, 9%
likely to be angry, and 8% likely to be sad. Since the maximum probability of the tweet is
65%, it can be assigned to the happy class.

Naive Bayes and logistic regression are probabilistic classifiers which produce a prob-
ability distribution over output classes. Other models such as support vector machines do
not produce probabilities. They instead return decision scores which are proportional to
the distance from the separating hyperplane. They classify input data (here, tweets) with
certain decision scores, which can be considered as soft labels. However, these scores may
not correspond with class membership probabilities, since the distance from the separat-
ing hyperplane is not exactly proportional to the chances of class membership [?]. Some
methods have been developed to convert the results of these classifiers into class mem-
bership probabilities. A common method is to apply Platt scaling [?], which learns the
following sigmoid function defined by the parametersA andB on the decision scores s(x):

P (Y = y|x) = 1

1 + eAs(x)+B
(6)

Zadrozny and Elkan proposed another method by using isotonic regression when suf-
ficient training data is available [?].

3.3 Emotex Experimental Results

In this experiment we collect enough labeled data to build emotion classifiers as described
in Section 3.2.

3.3.1 Collecting Labeled Data and Building the Emotex Classifiers

To collect emotion-labeled data, we first identify a list of emotion hashtags as explained in
Section 3.2.1. Using the list of keywords from the Circumplex model (see Figure 1), a set of

40 Dissertation – Maryam Hasan

Class Happy-
Active

Happy-
Inactive

Unhappy-
Active

Unhappy-
Inactive

Total

#Tweets before
pre-processing

40000 41000 44000 41000 166000

#Tweets after pre-
processing

34000 30000 37000 34000 135000

Table 2: Number of tweets collected as labeled data

emotion hashtags for each class was obtained. Then, we searched for the tweets containing
these emotion hashtags and found more emotion hashtags from these tweets, such as the
tag ”#ifeelsad”. At the end, a set of 20 unique emotion hashtags was collected for each
emotion class. The objective was to assure that the tags of each class constitute emotions
which are different compared with the emotions of the other classes. Using the identified
hashtags, labeled data was collected for three weeks between December 26 and January 15.
We used Twitter Stream API to collect data from online stream of tweets, which contains a
1% random sample of all tweets. Figure 5 presents the distribution of four classes of tweets
that we labeled using hashtags during and after the new year vacation. It shows that the
number of happy tweets after vacation is less than the number of happy tweets during
vacation by about 13%. More interestingly, the number of unhappy tweets after vacation
is more than twice the number of unhappy tweets during vacation. It also shows that the
number of active tweets during the vacation are higher than the number of active tweets
after vacation by about 4%.

To train our emotion classifiers we select equal size random samples for each emotion
class from our collected labeled tweets. In fact, we do random under-sampling to create
a balanced training dataset with equal number of samples in each class [?]. The number
of samples in each emotion class is large enough to train classifiers. Table 2 represents
the number of labeled tweets selected for each class before and after pre-processing. The
removal of noisy tweets during pre-processing decreased the number of tweets by 19%.
We explore the usage of different features (see Section 3.2.3). Table 3 lists the distribution
of features in the collected data after pre-processing.

As described in Section 3.2.4.1 we utilize two types of classification including soft and
hard classification. The emotion classification results using soft and hard classification are
elaborated below.

3.3.2 Emotex: Hard Classification Results

We used two folds of our labeled data to train classifiers and one fold for testing. We used
WEKA to train Naive Bayes, and decision tree models and we used SVM-light [55] with a

Dissertation – Maryam Hasan 41

77%	

11%	

6%	
 7%	

65%	

8%	

15%	

12%	

66%	

9%	

14%	

11%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

Happy-­‐Ac3ve	
 Happy-­‐Inac3ve	
 Unhappy-­‐Ac3ve	
 Unhappy-­‐Inac3ve	

Emo.on	
 Classes	

Dec	
 26	
 -­‐	
 Jan	
 4	

Jan	
 4	
 -­‐	
 Jan	
 8	

Jan	
 8	
 -­‐	
 Jan	
 15	

Figure 5: Distribution of four classes of emotion in collected tweets during and after the new year
vacation.

Features Happy
icon

Sad
icon

Angry
icon

Sleepy
icon

Negation Punctuation

#Tweets with a
feature

5800 1320 1020 270 9050 19450

%Tweets
with a feature

4.3% 1% 0.7% 0.2% 6.7% 14.5%

Table 3: Distribution of features in the collected data

linear kernel to train the SVM classifier.
The classification results are evaluated in terms of F-measure (β = 1), defined as:

2× precision× recall / (precision+ recall)

Tables 4 presents precision, recall and F-measure of Naive Bayes, decision tree, and SVM
using different features based on 3-fold cross validation. As it shows, decision tree achieved
the highest accuracy using all the features. SVM achieved the highest accuracy using un-
igrams only, while Naive Bayes achieved the highest accuracy using unigrams and nega-
tions. Although a decision tree classifier provides high accuracy, it is slow. Therefore it is
not practical for big datasets. SVM-light [55] runs fast and provides the highest accuracy.

The F-measure (β = 1) values of the SVM model in classifying four emotion classes
using different features are presented in Figure 6. Class unhappy-active got the highest
F-score. The active classes (i.e., happy-active and unhappy-active) achieved the highest
F-score using unigrams only. However for the other classes the highest F-score is achieved
using unigrams and punctuations. Across all emotion classes, the unigram-trained model

42 Dissertation – Maryam Hasan

Features
Naive Bayes SVM Decision Tree

Prec. Rec. FM Prec. Rec. FM Prec. Rec. FM

Unigram 87.7 86.3 86.3 90.3 89.7 90 89.6 89.5 89.5

Unigram
Emoticon

87.6 86.4 86.4 89.3 88.8 89 89.7 89.6 89.6

Unigram
Punctuation

87.1 86.6 86.6 90.4 89.3 89.9 89.8 89.7 89.7

Unigram
Negation

87.9 86.9 86.9 89.5 88.8 89.1 89.9 89.6 89.7

All-
Features

87.3 87 86.9 90.2 89.5 90 90.1 89.9 90

Table 4: Precision, Recall and F-Measure (β = 1) of SVM, Naive Bayes and Decision Tree using
different features

gave the highest overall F-score, and among other features punctuation performed second
best.

87	

87.5	

88	

88.5	

89	

89.5	

90	

90.5	

91	

91.5	

92	

Unigram	
 Unigram	
 &	

Emo4con	

Unigram	
 &	

Punctua4on	

Unigram	
 &	

Nega4on	

All	
 Features	

F-­‐
m
ea
su
re
	
 (%

)	

Features	

Happy-­‐Ac4ve	
 Happy-­‐Inac4ve	
 Unhappy-­‐Ac4ve	
 Unhappy-­‐Inac4ve	
 Average	

Figure 6: The F-measure (β = 1) of SVM model to classify four emotion classes using different
features

3.3.3 Emotex: Soft Classification Results

We utilize a probabilistic classifier to measure the soft label based on the probability of
assigning a tweet to each emotion class. In this experiment, we run Naive Bayes classifier
on our training dataset and produce the class membership probabilities for each tweet.

Dissertation – Maryam Hasan 43

Then the tweets whose maximum probability are higher than a predefined threshold are
classified to the class with the maximum probability. The probability threshold is a tun-
ing parameter of the system. We use the test set ROC curve to find a good probability
threshold by resampling. For instance, the tweet ”I can live for months on a good com-
pliment.” is 65% likely to belong to the happy-active class, 18% likely to belong to the
happy-inactive class, 9% likely to belong to the unhappy-active class, and 8% likely to be-
long to the unhappy-inactive class. Since the maximum probability of this tweet is 65%, it
therefore can be classified as a happy-active tweet. As another example, the tweet “Miss
you already!” is 19% likely to belong to the happy-active class, 24% likely to belong to
the happy-inactive class, 25% likely to belong to the unhappy-active class, and 32% likely
to belong to the unhappy-inactive class. The maximum probability of this tweet is 32%,
which is fairly small. Thus the tweet cannot be classified with a high enough certainty to
render a hard classification.

Figure 7 shows the results of running Naive Bayes classifier on our labeled data with
the probability threshold of 50% (Table 2 provides details about our labeled data). As it
shows 81% of tweets are classified with the maximum probability higher than the thresh-
old of 50%, where a hard label will be emerged by our system. Only 4% of these tweets
are classified wrongly. However, 52% of the tweets whose maximum probability are lower
than the threshold are classified inaccurately. In fact, tweets with low confident classifica-
tion make an error rate of 52%, thus no hard label will be recommended by the system. The
results confirm the fact that if tweets are classified with low certainty (i.e., low maximum
probability), the classification results have a high error rate. This justifies our approach of
forcing a hard classification only for a certain level of confidence.

19%	
 81%	

Maximum	
 Probability	
 Lower	
 than	
 Threshold	

Maximum	
 Probability	
 Higher	
 than	
 Threshold	

Correctly	

classified	

48%	

Wrongly	

classified	

52%	
 Correctly	

classified	

96%	

Wrongly	

Classified	

4%	

Figure 7: Distribution of classified tweets based on maximum probability with threshold =50%

Based on our observation shown in Figure 7 tweets with low maximum probability
have a higher error rates, we thus separate them in our analysis. In fact, we only consider
tweets that are classified with high maximum probability in our analysis.

44 Dissertation – Maryam Hasan

#Tweets Precison Recall FMeasure
No Filtering 134,100 88% 83.7% 86%
Removing
tweets with low
max-probability

108,516 96% 94.4% 95.8%

Table 5: Classification results of Naive Bayes after removing tweets with low maximum probability

Table 5 shows the accuracy of classification before and after filtering out the tweets
with maximum probability lower than the threshold of 50%. As it shows the accuracy has
increased by 9.8%, after filtering out the tweets whose maximum probability scores are
lower than the threshold of 50%.

3.3.4 Comparing Emotex with Lexical Approaches

Existing methods for text classification can be categorized into two main groups: lexical
methods and supervised learning methods [66]. To further benchmark the performance of
Emotex in classifying emotional messages, we compare it with the lexical approach.

The lexical approach has been previously studied in the context of emotion classifica-
tion [112, 30, 32]. Lexical methods classify the emotion expressed in texts based on the
occurrence of certain words. A lexicon of emotion words is created, in which each word
belongs to an emotion class. Text messages are then classified using this emotion lexicon,
typically by employing frequency counts of terms. The lexical methods may consider only
terms of the lexicon directly or may associate numerical weights with these terms.

Lexical methods are based on shallow word-level analysis, and can recognize only sur-
face features of the text. They usually ignore semantic features (e.g., negation) [66]. More-
over they rely on an emotion lexicon, which is difficult to construct a comprehensive set of
emotion keywords. The creation of emotional lexicon is both time consuming and labor-
intensive, and requires expert human annotators.

A variety of Emotion lexicons including ANEW lexicon [18], WordNet Affect [113],
and LIWC dictionary [91] have been developed. To compare the results of Emotex with
the lexical approach we utilize ANEW lexicon, which contains 2477 affect words that are
rated for valence and arousal on a 1-9 scale. To classify messages using ANEW lexicon, the
average valence and arousal of each message is estimated using the following formulas:

V alencetweet =

∑n
i=1 vifi∑n
i=1 f i

(7)

Arousaltweet =

∑n
i=1 aifi∑n
i=1 f i

(8)

Dissertation – Maryam Hasan 45

Emotion Classes
Emotex Lexical Method

Prec. Rec. FM Prec. Rec. FM

Happy-Active 84.2 95.4 89.5 54.4 60.6 57.3
Happy-Inactive 94.3 84.4 89.1 64.2 58.5 61.2
Unhappy-Active 91.4 90.5 91 79.4 44 56.6
Unhappy-Inactive 91.2 88.4 89.9 91.5 52.5 66.7

Table 6: Comparing the classification results of Emotex with ANEW lexical approach based on
precision, recall and F-measure (β = 1).

where n is the number of affect words occurring in the tweet, fi is the frequency of the ith
affect word, and vi and ai are the valence and arousal of the ith affect word respectively.

Then using the following heuristic the message can be easily classified: Less than 5
means low arousal/valence, more than 5 means high arousal/valence, and equal to 5 is
neutral. For example, the tweet “Family and friends made this Christmas great for me.”
with the affect words family, friends and Christmas, the valence and arousal values are as
following:

V alence = (7.74 + 7.65 + 7.8) / 3 = 7.73

Arousal = (5.74 + 4.8 + 6.27) / 3 = 5.60

Since both valence and arousal are larger than five, the tweet is labeled as happy-active. We
compare the performance of Emotex with the lexical approach in classifying our labeled
data shown in Table2. Table 6 lists the classification results of Emotex and the lexical ap-
proach in classifying different emotion classes. As the table shows, the F-score of Emotex
is about 24% higher than the lexical approach utilizing ANEW lexicon.

3.4 Evaluating the Emotex Labeling Method

In the preceding sections, we have assumed that hashtags are true labels of the emotions
expressed in text messages. However, the question still remains whether this assump-
tion is correct. To answer this question, we need to determine whether human annotators
would categorize texts into the same emotion classes selected by automatic labeling using
hashtags. To evaluate the accuracy of hashtags as emotion labels, we performed two user
studies in which two different classes of annotators participated. First, psychology experts
(counselors and psychology graduate students) and then psychology novices (the crowd)
were asked to classify texts into emotion classes.

46 Dissertation – Maryam Hasan

3.4.1 Comparing Hashtag Labels with Crowdsourced Labels

This user study compares the accuracy of emotion labels that are created automatically
using hashtags with labels made by non-expert annotators (the crowd). We design the
study by randomly selecting 120 tweets (i.e., 30 tweets from each emotion class) from our
collected emotion-labeled tweets (see Section 3.3.1). The tweets are shuffled to make their
order random. Any embedded hashtags were removed from these 120 tweets as they
are to serve as potential labels. Then the participants were asked to indicate the emotion
expressed in each message by selecting the pleasure level (high for happy or low for un-
happy), and the arousal level (high for active or low for inactive). We recruited labelers
from the students in an introductory psychology class at Worcester Polytechnic Institute.
Our user study was run online using the Qualtrics 1 survey system for three months. 60
students participated and 49 students completed the survey.

The perception of emotions expressed in texts tends to be subjective and diverse. As
expected, inconsistencies occurred in the answers, such that in some cases different partici-
pants categorized the same text into different classes. Thus, we measure to what degree the
participants agreed on the level of pleasure or activation of each tweet. We utilized Fleiss-
Kappa to measure the level of agreement between a fixed number of labelers in classifying
subjects. The Fleiss-Kappa value for inter-labeler agreement of the pleasure level of tweets
was 0.67, which corresponds to a substantial agreement. This value for the activation level
was 0.25 which shows a low level of agreement. In summary, although the annotators
substantially agreed on the level of pleasure, there was a relatively low agreement among
them for the level of activation. This conclusion can be explained by the fact that authors
of text messages tend to express pleasure in explicit and unambiguous terms. For example,
the tweet “Final weeks is going to be a death of me!” shows sadness. However it does’t
clearly indicate the level of arousal (i.e., activation).

The result of this study indicates that the labels created by non-experts to classify emo-
tion in texts are not sufficiently reliable. This casts doubt on the use of the crowd (i.e., via
Amazon Mechanical Turk) for this particular task of emotion classification. Note that par-
ticipants in our study are a relatively notable crowd, as they are students in psychology
that are trained to do user studies and have a general interest.

3.4.2 Comparing Hashtag Labels with Expert Labels

As the results of previous study indicates the level of agreement among crowd labelers is
not sufficient to be able to consider them as ground truth especially for evaluating hashtag
labels. Instead we sought the help of domain experts for labeling. We asked three psychol-

1http://www.qualtrics.com

Dissertation – Maryam Hasan 47

Labeler Pleasure
level

Activation
level

Crowd Labeler 0.67 0.25
Expert Labeler 0.84 0.64

Table 7: Comparing Fleiss-Kappa values of crowd and expert labelers

Expert Counseling
Director

Trained
Expert1

Trained
Expert2

Experts
Consensus

Accuracy 81% 81% 84% 88%
Table 8: Accuracy of hashtag labels based on expert labels

ogy experts to manually label 120 tweets (the same set of tweets that had been utilized in
Section 3.4.1). One of the experts is the director of counseling at WPI Student Development
and Counseling Centre. The other two experts are graduate students in psychology who
have been trained to classify emotions.

The Fleiss-Kappa measure of agreement between experts for the pleasure level of tweets
is 0.84 which constitutes a high level of agreement. This value for the activation level is
0.64 which shows a substantial agreement. Table 7 lists the Fleiss-Kappa values of crowd
labelers versus expert labelers. The agreement between experts is much higher than the
agreement between crowd labelers. These results indicate that emotion labeling by trained
experts is more reliable. It thus is more appropriate to be utilized as the ground truth.
However, we note that if experts are used to label messages, crowdsourcing will be pro-
hibitively expensive.

We now utilize the expert labels to evaluate the accuracy of hashtags. Table 8 lists the
accuracy of hashtags based on expert labels. Hashtag labels are same as expert labels in 102
tweets. There are 14 tweets for which their hashtag labels are different from the expert la-
bels. Also there is no consensus among experts about 4 tweets. Therefore, in about 88% of
the cases, emotions indicated by hashtags embedded in tweets accurately captured the au-
thor’s emotion indicated by the ground truth (i.e., expert labels). Most of the mismatches
between hashtags and expert labels belong to the arousal level of tweets (i.e., active or
inactive), which is not an intuitive concept to understand by non-psychologists.

3.5 Conclusion

In this research, we study the problem of automatic emotion detection in text messages.
We develop and evaluate a supervised machine learning approach to automatically clas-
sify emotion in text messages. We develop a system called Emotex to create models for
classifying emotion. Our experiments show that created models correctly classify emotion

48 Dissertation – Maryam Hasan

in 90% of text messages. Created models were able to achieve about 90% accuracy for
multi-class emotion classification.

We have investigated the use of hashtags in Twitter messages that indicate the emotion
expressed by tweets as viable alternative to manual labeling. This approach overcomes the
need for manual labeling and yields a completely automatic scheme for labeling a massive
repository of Twitter messages. To address the problem of fuzzy boundary and variations
in expression and perception of emotions, a dimensional emotion model is utilized to de-
fine emotion classes. Furthermore, a soft (fuzzy) classification approach is proposed to
measure the probability of assigning a message into each emotion class.

Dissertation – Maryam Hasan 49

4 DeepEmotex: A Deep Learning Approach to Detect Emotion in
Text Messages

4.1 Introduction

Deep learning has emerged as a powerful machine learning technique that now has pushed
the boundary of innovations in the field of Natural Language Processing and produced
state-of-the-art results in many NLP applications. Applying deep learning to sentiment
and emotion analysis has also become very popular recently.

For decades, machine learning methods solving NLP problems have been based on
shallow models (e.g., SVM and logistic regression) trained on very high dimensional,
sparse and hand-crafted features [133]. In the last few years, neural networks based on
dense vector representations have been producing superior results on various NLP tasks
shattering prior winning scores [133]. This trend is sparked by the success of word em-
beddings [78, 76] and deep learning methods [111]. Deep learning models automatically
learn multiple layers of feature representations for NLP tasks and thus reduce the need for
hand-crafted features [133].

Collobert et al. [5] demonstrated that a simple deep learning framework outperforms
most state-of-the-art approaches in numerous NLP tasks including named-entity recogni-
tion (NER), semantic role labeling (SRL), and POS tagging. Since then, numerous complex
deep learning based algorithms have been proposed to solve difficult NLP tasks.

Recent deep neural network-based approaches have achieved remarkable successes on
text classification tasks by learning from hundreds of thousands of input data [6]. In order
to obtain a model that performs well on a new dataset from another domain or task suf-
ficient number of labeled examples is required by supervised learning methods. In some
real-world applications, the labeled data may not be enough to learn an efficient classifier
in the domain of interest. Transfer learning promises to improve this situation by trans-
ferring knowledge from a general-purpose source task to a more specialized target task.
The main idea behind transfer learning is to borrow labeled data or extract knowledge
from some related domains to help a machine learning algorithm to achieve greater per-
formance in the downstream task [130].

The structure of this chapter is as follows: Section 4.2 reviews major deep learning
related models and methods applied to natural language tasks including convolutional
neural networks (CNNs) and recurrent neural networks (RNNs). Section 4.3 introduces
the concept of distributed representation, the basis of sophisticated deep learning models.
Section 4.4 describes the recent approaches of transfer learning, attention mechanisms and
using transformer models for language-related tasks. Finally, Section 4.5 describes our

50 Dissertation – Maryam Hasan

proposed approach, DeepEmotex, to detect emotion using transfer learning, following by
the experimental and evaluation results in Section 4.6.

4.2 Background Knowledge about Neural Networks Models

Deep neural networks have achieved considerable success in varied tasks in text. Varia-
tions of Recurrent Neural Networks, such as Long Short Term Memory networks (LSTM)
and Bidirectional LSTM (BiLSTM) have been effective in modeling sequential information
[36]. Also, Convolutional Neural Networks (CNN) has proven their ability to decipher
abstract concepts from raw signals in text domains [57].

4.2.1 Convolutional Neural Networks (CNNs)

CNN is a special type of feedforward neural network originally employed in the field of
computer vision. Figure 8 shows a CNN model for an example sentence. In CNN, different
filters are used to scan the input realized by convolution layers. Following the convolu-
tional layer, a subsampling (or pooling) layer is usually used to reduce the dimension of
the representation, this reduces the number of features and the computational complexity
of the network [134]. After pooling layers, CNN uses a fully connected layer and then a
softmax readout layer with output classes for classification.

Figure 8: Convolutional neural network [57].

Convolutional layers in CNN play the role of feature extractor. The convolutional fil-

Dissertation – Maryam Hasan 51

ters of a CNN model learn local features by enforcing a local connectivity between neu-
rons of adjacent layers. As a result, CNN is useful for text classification as it finds strong
local features regarding class membership. However, these features can appear in differ-
ent places in the input. For example, in document classification a single key phrase (or an
n-gram) can help in determining the topic of the document without knowing where they
appear in the document. CNN can determine such discriminative phrases in a text with a
max-pooling layer. Thus, convolutional and pooling layers help the CNN to extract these
local indicators, regardless of their positions in sentences [134].

CNN models have achieved high performance in NLP tasks. CNN has the capability of
capturing local correlations of spatial or temporal structures. For sentence modeling, CNN
model achieves outstanding results in extracting n-gram features at different positions of
a sentence through its convolutional filters [136].

4.2.2 Sequence Modeling: Recurrent Neural Networks (RNNs)

Recurrent neural networks or RNNs are a family of neural networks whose connections
between neurons form a directed cycle. Therefore, they are a natural choice for sequence
modeling tasks [118]. Figure 9 depicts the dynamics of the RNN network. It shows a
simple RNN containing a single, self connected hidden layer. Unlike feedforward neural
networks, RNNs can process a sequence of inputs, which makes it popular for processing
sequential data [39]. An RNN can map from the previous inputs to each output. The key
point is that the recurrent connections allow a memory of previous inputs to persist in the
network’s internal state, and therefore influence the network output. A useful method to
visualise RNNs is to unfold the network along the input sequence. Figure 10 shows part
of an unfolded RNN after one time step. Note that the unfolded graph (unlike Figure 9)
contains no cycles. Each node represents a layer of network units at a single time step.

The information travels through the neural network from input neurons to the output
neurons, while the error is calculated and propagated back through the network to update
the weights. In RNNs the information travels through time, which means that information
from previous time steps is used as input for the next time steps. The cost or the error
function can be calculated at each time step. The gradient descent algorithm finds the
global minimum of the cost function that is an optimal setup for the network. The problem
is that the influence of a given input on the hidden layer, and therefore on the output, either
decays or blows up exponentially as it cycles around the network’s recurrent connections.
This problem is often called the vanishing or exploding gradient problem [90]. It happens
due to numeric underflow or overflow, i.e., when the multiplication of derivative terms
during back-propagation become extremely small or very large.

In practice, standard RNNs suffer from the inability to learn long-term dependencies

52 Dissertation – Maryam Hasan

Figure 9: A simple recurrent net with one input unit, one output unit, and two recurrent hidden
units [65].

Figure 10: The recurrent network of Figure 9 unfolded across time with one time step [65].

due to vanishing/exploding gradient problem. In other words, when the length of the
input sequence (i.e., the gap between two time steps) becomes large, RNNs are unable
to remember the dependencies between inputs which are far apart in the sequence. To
avoid the problem of vanishing (or exploding) gradient in the standard RNN, Long Short-
term Memory RNN (LSTM) and other variants were designed for better remembering
and memory accesses [136]. Different types of RNN have been developed to deal with
the shortcomings of the standard RNN model including Bidirectional RNN, LSTM net-

Dissertation – Maryam Hasan 53

work, and attention mechanisms. Their main purpose is to enable more memory size into
RNNs. Specifically, attention mechanism accomplishes this by enabling direct connections
between any two nodes far away, therefore reducing the length of flow.

4.2.3 Long Short-Term Memory (LSTM)

LSTM is a special type of RNN, which is capable of learning long-term dependencies. In
order to cope with the problem of vanishing and exploding gradients, the LSTM architec-
ture replaces the normal neurons in an RNN with LSTM cells with a little memory. LSTM
is similar to a standard recurrent neural network with a hidden layer, except that the sum-
mation units in the hidden layer (see Figure 9) are replaced by memory units [65]. These
cells are wired together and they have an internal state that helps to remember errors over
many time steps.

Figure 11 illustrates an LSTM memory unit with a single cell. In the original LSTM cell,
there are two gates: one learns to scale the incoming activation and one learns to scale the
outgoing activation. The cell can thus learn when to incorporate or ignore new inputs and
when to release the feature to other cells. The input to a cell is feeded into all gates using
individuals weights [65].

Figure 11: LSTM memory cell representation. The self-connected node is the internal state s. The
diagonal line indicates that it is linear, i.e. the identity link function is applied. The blue dashed
line is the recurrent edge, which has fixed unit weight. Nodes marked π output the product of their
inputs. All edges into and from π nodes also have fixed unit weight [65].

LSTM was first introduced in 1997 by Hochreiter and Schmidhuber [50]. Over the

54 Dissertation – Maryam Hasan

past decade, LSTM has re-emerged as a successful architecture for solving many sequence
modeling tasks including many natural language processing tasks [39]. LSTM has proved
successful at a range of various NLP tasks requiring long range memory, including learn-
ing context free languages [115], machine translation [116], and text classification [136].

4.3 Distributed Feature Representation

Text is a particular kind of data in which the word attributes are sparse and high dimen-
sional. [3]. In order to train a classifier from labeled texts, words or sentences should be
represented as a vector of numerical features. Feature representation plays an important
role in text classification. Feature representation is needed to convert text content into a
numeric vector representation, which can then be utilized to train classification models.

In this section, we will discuss some of the methods which are used for feature repre-
sentation in text classification.

4.3.1 Word Representation

Distributed representation expresses a word as a dense real-valued vector of low dimen-
sion. Each word is positioned into a multi-dimensional space. In this model, words with
similar meaning can be correspond to close vectors. Distributed representations (i.e., em-
beddings) are mainly learned through context. Distributed representation methods exploit
word co-occurrences to build vectors of words. The main idea behind this approach is Dis-
tributional Hypothesis. According to the Distributional Hypothesis, words that appear in
similar contexts tend to have similar meanings. Thus, distributed vectors try to capture the
characteristics of the neighbors or context of a word. The main advantage of distributed
vectors is that they capture similarity between words. Therefore, words with similar con-
texts have similar representations [71].

Distributed word representations (i.e., word embeddings) are dense and low-dimensional
and real-valued vectors of words, with each factor in the vector representing some distinct
informative feature of the word. Each entry in the vector represents a distinct informa-
tive property. These representations can capture semantic or syntactic regularities in the
language [79].

Neural network models have been developed to learn low-dimensional vector repre-
sentations of words. Recent works for learning vector representations of words using neu-
ral networks have succeeded in capturing fine-grained semantic and syntactic regularities
[15, 26, 121, 75].

The vector representations are typically learned using neural networks as the underly-
ing predictive model [15]. In this approach, each word is represented by a vector which is

Dissertation – Maryam Hasan 55

concatenated or averaged with other word vectors in a context, and the resulting vector is
used to predict other words in the context.

Distributed vectors or Word embeddings are often used as the first data processing
layer in a deep learning model. Typically, these vectors are pre-trained by optimizing an
auxiliary objective in a large unlabeled corpus, such as predicting a word based on its
context [75, 78]. The word vectors learned using neural networks encode many linguistic
and semantic patterns. Thus, these embeddings have proven to be efficient in capturing
context similarity. Moreover, due to the smaller dimensionality of these these vectors,
they are fast and efficient in computing core NLP tasks. Deep learning based NLP models
represent words, phrases and even sentences using these embeddings.

Distributed representations developed in the context of statistical language modeling
by Bengio et al. [15]. Authors proposed a neural language model which learned dis-
tributed representations for words. They argued that these word embeddings, once com-
piled into sentence representations using joint probability of word sequences, achieved an
exponential number of semantically neighboring sentences.

Collobert et al. [26] developed a system using a convolutional architecture that shares
representations across the tasks of language modeling, part-of-speech tagging, chunking,
named entity recognition, semantic role labeling, and syntactic parsing. It was the first
work to show the utility of pre-trained word embeddings as a useful tool for NLP tasks.
The authors proposed a neural network architecture that forms the foundation to many
current approaches. However, the immense popularization of word embeddings was due
to [78]. Mikolov et al. [78] proposed the continuous bag-of-words (CBOW) and skip-gram
models to efficiently construct high-quality distributed vector representations.

Another method for training word embedding is the Global Vectors model (GloVe), de-
veloped by Pennington et al. [92]. GloVe, builds a co-occurrence matrix for the entire cor-
pus, which tabulates how frequently words co-occur with one another in a given corpus.
GloVe is based on the word-context matrix [92], in which each row corresponds to a word
and each column corresponds to a context. The element in the matrix is relevant to the co-
occurrence times of the corresponding word and context. The source code for the GloVe
model, as well as trained word vectors can be found at nlp.stanford.edu/projects/glove/.

Several natural language tasks such as reading comprehension and text classification
have benefited from pre-trained word embeddings [78, 92] that are either fine-tuned for
a specific task or held fixed. Below, we describe word2vec approach [78] to create word
embeddings.

56 Dissertation – Maryam Hasan

4.3.1.1 Word2vec

Word2vec is a popular implementation of neural network based algorithm for training
the word embeddings developed by Mikolov et al. [78]. They introduced an efficient
method for learning high-quality vector representations of words from large amounts of
unstructured text data. Unlike most of the previously used neural network architectures
for learning word vectors, training of word2vec embeddings does not involve dense matrix
multiplications. This makes the training extremely efficient: an optimized single-machine
implementation can train on more than 100 billion words in one day [75].

The word2vec vectors explicitly encode many linguistic and semantic patterns. Many
of these patterns can be represented as linear translations, i.e., adding two word vectors re-
sults in a vector that is a semantic composite of the individual words. Figure 12 illustrates
ability of the word2vec model to automatically learn the concepts and the relationships
between them. During the training Mikolov et al. did not provide any supervised infor-
mation about what a capital city means. For example, the result of a vector calculation
vec(“Madrid”) - vec(“Spain”) + vec(“France”) is closer to vec(“Paris”) than to any other
word vector. This compositionality suggests that a non-obvious degree of language un-
derstanding can be obtained by using basic mathematical operations on the word vector
representations [78]. The code for word2vec is available at code.google.com/p/word2vec/
[75].

Word2vec trains a neural network to predict the nth word given words [1, ..., n1] or the
other way round. They proposed the continuous Bag-of-Words (CBOW) and Skip-Gram
(SG) models to efficiently construct high-quality distributed vector representations. The
CBOW model predicts a target word (e.g., “wearing”) from its context words across a win-
dow of size k (e.g., “the boy is - a hat”, where “-” denotes the target word). On the other
hand, the skip-gram model does the inverse, by predicting the context words given the tar-
get word. The context words are assumed to be located symmetrically to the target words
within a distance equal to the window size in both directions. In unsupervised settings,
the word embedding dimension is determined by the accuracy of prediction. As the em-
bedding dimension increases, the accuracy of prediction also increases until it converges
at some point, which is considered the optimal embedding dimension as it is the short-
est without compromising accuracy [133]. Statistically, the CBOW model smooths over a
great deal of distributional information. It is effective for smaller datasets. However, the
Skip-Gram model performs better for larger datasets [134].

Dissertation – Maryam Hasan 57

Figure 12: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of coun-
tries and their capital cities [78].

4.3.1.2 Continuous Bag of Words Model (CBOW)

The CBOW model is a simple fully connected neural network with one hidden layer (see
Figure 13). The input layer consists of the one-hot encoded context words x1, x2, ..., xc in a
word window of size C and vocabulary of size V . The hidden layer is an N-dimensional
vector h. The output layer is output word y in the training example which is one-hot
encoded. The one-hot encoded input vectors are connected to the hidden layer via a V ×N
weight matrix W and the hidden layer is connected to the output layer via a V ×N weight
matrix W ′.

CBOW predicts a target word given its context. For this, the first step is to evaluate the
output of the hidden layer. This is computed by:

h =
1

C
W (

C∑
t=1

xi)

which is the average of the input vectors weighted by the matrix W . Next step is to
compute the inputs to each node in the output layer:

uj = v′wj

T · h

where v′j is the jth column of the output matrix W ′. Finally, the output of the output
layer is computed. The output yj is obtained by passing the input uj throughout the soft-

58 Dissertation – Maryam Hasan

max function:

yj = P (wyj |w1, w2, ...wc) =
exp(uj)∑V
j=1 exp(u

′
j)

The Weight matricesW andW ′ are learned through back-propagation. First, the weight
matrices are randomly initialized. Then, training examples are sequentially fed into the
model and observe the error which is some function of the difference between the expected
output and the actual output.

Thus, the first step in the process of learning the weight matrices W and W ′ is to define
the loss function. The objective is to maximize the conditional probability of the output
word given the input context, therefore the CBOW’s loss function is as follows:

LCBOW (c, i) = − logP (wo|wi)

LCBOW (c, i) = −uj + log
V∑
j=1

exp(u′j)

LCBOW (c, i) = −vTwo
· h+ log

V∑
j=1

exp(v′wj

T · h)

The next step is to compute gradient descent of this error with respect to the elements
of both weight matrices and correct them in the direction of this gradient.

4.3.1.3 The Skip-gram Model

Skip-gram is used to predict the context words for a given target word in a sentence or a
text [78]. Here, the target word is input while the context words are output. As there is
more than one context word to be predicted the model becomes slightly complex. It can be
simplified further by breaking down each (target, context words) pair into (target, context)
pairs such that each context consists of only one word.

In the skip-gram model (see Figure 14) x represents the one-hot encoded vector corre-
sponding to the input word and y1, y2, . . . yc are the one-hot encoded vectors correspond-
ing to the output words in the training instance. The V ×N matrix W is the weight matrix
between the input layer and hidden layer whose ith row represents the weights corre-
sponding to the word in the vocabulary. This weight matrix contains the vector encodings
of all of the words in the vocabulary (as its rows). Each output word vector also has an
associated V × N output matrix W ′. There is also a hidden layer consisting of N nodes.
The output of the hidden layer hi is simply the weighted sum of its inputs. Since the input

Dissertation – Maryam Hasan 59

Figure 13: The CBOW model architecture: predicts the target word given the context words. [78].

vector x is one-hot encoded, the weights coming from the nonzero element will be the only
ones contributing to the hidden layer. Therefore, the outputs of the hidden layer for the
input x such that xk = 1 and xk′ = 0 for all k′ 6= k, will be equivalent to the kth row of W .

h = xTW =W(k,.)

In the same way, the inputs to each of the output words is computed by the weighted
sum of its inputs. Therefore, the input to the jth node of each output word is:

uj = v′wj

T · h

where v′j is the jth column of the output matrix W ′. Finally, the output of the output
layer is computed. The output of the jth node of the cth output word can be computed via
the following softmax function:

yc,j = P (wc,j = wo,c|wi) =
exp(uc,j)∑V
j=1 exp(u

′
j)

(9)

This value is the probability that the output of the jth node of the cth output word is

60 Dissertation – Maryam Hasan

equal to the actual value of the jth index of the cth output vector.

So far, the inputs are propagated forward through the network to produce outputs.
Now, the error gradients can be derived to learn bothW andW ′matrices via back-propagation.
The first step in deriving the gradients is defining a loss function. This loss function will
be:

LSkip(c, i) = − logP (wo1, wo2, . . . woc|wi)

where wi is the input target word and wo1, wo2, . . . woc are the context words within a
window of size c. The loss function is simply the probability of the output words (the
words in the input word’s context) given the input target word. The objective of the skip-
gram model is to maximize the log of this probability.

LSkip(c, i) = − log

C∏
c=1

exp(uc,j)∑V
j=1 exp(u

′
j)

LSkip(c, i) = −
C∑
c=1

uc,j + C log
V∑
j=1

exp(u′j)

With this loss function, the weight matrices W and W ′ are learned through back-
propagation. First, the weight matrices are randomly initialized. Then, we compute the
gradients with respect to the unknown parameters W and W ′ and at each iteration update
them.

4.3.1.4 Negative Sampling

The softmax formulation is impractical because the cost of computing P (woj |wi) is propor-
tional to the size of vocabulary |V |, which is often huge. Note that the summation over |V |
is computationally huge. This means summing across all words in the vocabulary is really
expensive and will slow down training and testing of neural language models. Estimating
the parameters of probabilistic models of language such as probabilistic neural models in-
volves evaluating partition functions by summing over an entire vocabulary, which may
be millions of words. Therefore estimating the parameters of such models become compu-
tationally expensive. [121].

Several approaches have been proposed to eliminate that linear dependency on vocab-
ulary size and allow scaling to very large training corpora [121]. Noise Contrastive Estima-
tion (NCE) by Mnih and Kavukcuoglu [80] and negative sampling by Mikolov et al. [75]
are two related strategies in order to deal with this computational problem. Both papers
propose scalable new approaches to learn word embeddings. Although they are superfi-

Dissertation – Maryam Hasan 61

Figure 14: The Skip-gram model architecture: predicts the surrounding words given the current
word. The training objective is to learn word vector representations that are good at predicting the
nearby words [78].

cially similar, NCE is a general parameter estimation technique, while negative sampling
is useful for learning word representations but not as a general-purpose estimator.

Noise Contrastive Estimation (NCE) is an alternative to the softmax, introduced by
Gutmann and Hyvarinen [42], and applied to natural language modeling by Mnih and
Teh [81]. NCE assumes that a good model should be able to differentiate data from noise
using logistic regression.

While NCE can be shown to approximately maximize the log probability of the soft-
max, the skip-gram model is only concerned with learning high-quality vector representa-
tions, so negative sampling just simplifies NCE as long as the vector representations retain
their quality. In fact, the objective of negative sampling is to learn high-quality word rep-
resentations rather than achieving low perplexity on a test set, as is the goal in language
modeling.

Mikolov et al. [78] proposed negative sampling to optimize the softmax formula and
speed up training. For every training step, instead of looping over the entire vocabulary,

62 Dissertation – Maryam Hasan

they just sample several negative examples. They approximate the ratio of Equation 9
using sigmoid functions and k randomly-sampled words, called negative samples. In this
ratio, the numerator computes the similarity between the target word w and the context
c (as measures by their dot product). The denominator computes the similarity between
all other words in the vocabulary and the target word w. The objective is to maximize
the ratio in the Equation 9 so that the words that appear closer together in text have more
similar vectors than the words that do not. So, to make this computation cheap, instead
of summing across all words they only sum across a few negative words i.e words that
don’t belong to the same context as the target word. They sample from a noise distribution
whose probabilities match the ordering of the frequency of the vocabulary.

The paper [78] says that selecting 5-20 words (i.e., negative samples) works well for
smaller datasets, and only 2-5 words (i.e., negative samples) should be enough for large
datasets. An example for negative sampling is that if volleyball appears in the context of
sports, then the vector of sports is more similar to the vector of volleyball, than the vectors of
several randomly chosen words (e.g. math, democracy, queen, animal), instead of all other
words in the vocabulary.

Let’s consider a pair (w, c) of a word and a context. Did this pair come from the training
data? Let’s denote the probability that (w, c) come from the corpus data by p(D = 1|w, c).
Correspondingly, p(D = 0|w, c) = 1 − p(D = 1|w, c) is the probability that (w, c) is not in
the corpus data (i.e., it is noise) [38]. Let’s assume there are parameters θ controlling the
distribution: p(D = 1|w, c; θ). The goal is now to find parameters to maximize the proba-
bility that a word and a context being in the training data if it indeed is, and maximize the
probability that a word and a context not being in the training data if it indeed is not. We
take a simple maximum likelihood approach of these two probabilities. By assuming the
probability that the target and context words co-occur to be independent of their position
in the training data, this objective can be computed as:

argmax
θ

∏
(w,c)∈D

p(D = 1|w, c; θ)
∏

(w,c)∈D′
p(D = 0|w, c; θ)

= argmax
θ

log
∏

(w,c)∈D

p(D = 1|w, c; θ)
∏

(w,c)∈D′
(1− p(D = 1|w, c; θ))

= argmax
θ

∑
(w,c)∈D

log p(D = 1|w, c; θ) +
∑

(w,c)∈D′
log(1− p(D = 1|w, c; θ))

The quantity p(D = 1|c, w; θ) can be defined using sigmoid function:

p(D = 1|w, c; θ) = 1

1 + e−vc.vw

Dissertation – Maryam Hasan 63

The resulting objective is:

= argmax
θ

∑
(w,c)∈D

log
1

1 + e−vc.vw
+

∑
(w,c)∈D′

log(1− 1

1 + e−vc.vw
)

= argmax
θ

∑
(w,c)∈D

log
1

1 + e−vc.vw
+

∑
(w,c)∈D′

log
1

1 + evc.vw

If we let σ(vc.vw) = 1
1+e−vc.vw we get:

= argmax
θ

∑
(w,c)∈D

log σ(vc.vw) +
∑

(w,c)∈D′
log σ(−vc.vw) (10)

Note that D′ is a “negative” corpus (i.e., a corpus with false sentences such as “stock
boil fish is toy”).

As you see it converted to a binary classification task (y = 1 as positive class, y = 0 as
negative class). As we need labels to perform this binary classification task, we designate
all context words c (i.e., all words in window of the target word) as true labels (y = 1,
positive sample), and k randomly selected from corpora as false (y = 0, negative sample).

The Equation 10 presents the negative sampling objective of Mikolov et al. for the
entire corpusD∪D′ . Their equation presents it for one example (w, c) ∈ D and k examples
(w, cj) ∈ D

′
(see Equation 4 in Mikolov et al. paper [78]). Thus the task is to distinguish

the target word w from draws from the noise distribution using logistic regression, where
there are k negative samples for each data sample. The experiments indicate that values
of k in the range 5− 20 are useful for small training datasets, while for large datasets the k
can be as small as 2− 5.

Both NCE and negative sampling have the noise distribution as a free parameter. Mikolov
et al. investigated a number of choices for the noise distribution and found that the uni-
gram distribution U(w) raised to the power of 3/4 (i.e., U(w)3/4/Z) outperformed signifi-
cantly the unigram and the uniform distributions. Therefore, in order to selsct k negative
samples, Mikolov et al. construct k samples (w, c1), ..., (w, ck) for each (w, c) ∈ D, where
each cj is drawn according to its unigram distribution raised to the 3/4 power, as shown
below:

P (wi) =
f(wi)

3/4∑W
j=1 f(wj)

3/4

The main difference between the Negative sampling and NCE is that NCE needs both
samples and the numerical probabilities of the noise distribution, while Negative sam-
pling uses only samples. While NCE approximately maximizes the log probability of the

64 Dissertation – Maryam Hasan

softmax, this property is not important for learning word representations. [78].

4.3.2 Sentence Representation

Similar to word embeddings (i.e., Word2Vec, GloVE, ELMo, or Fasttext), sentence em-
beddings embed a full sentence into a vector space. These sentence embeddings inherit
features from their underlying word embeddings [9]. In practice, a sentence embedding
might look like the following example:

“Rest in piece Kobe” = [0.2 , 0.1 , -0.3 , 0.9 , ...]
Researchers have developed different methods to compute embeddings that capture

the semantics of word sequences (i.e., phrases, sentences, and paragraphs). They devel-
oped methods ranging from simple additional composition or averaging of the word vec-
tors to sophisticated architectures such as convolutional neural networks and recurrent
neural networks [9].

The current trend to embed word sequences or sentences is toward development of
neural network architectures including and recursive networks based on non-syntactic hi-
erarchical structure [135]. Other neural network structures such as convolution neural
networks have been studied to create sentence embeddings [57, 53, 47]. Recurrent neural
networks (RNNs) using long short-term memory (LSTM) capture long-distance depen-
dency and have also been used for modeling sentences [118].

Most work in supervised learning for NLP builds task-specific representations of sen-
tences rather than general-purpose ones [114]. Many neural NLP systems are initialized
with pre-trained word embeddings but learn their representations of words in context
from scratch, in a task-specific manner from supervised learning [57, 53]. For example,
some researchers used pre-trained word embeddings for sentiment analysis [110, 119, 95].
However, learning these representations reliably from scratch is not always feasible, espe-
cially in low-resource settings. Some recent work has addressed this by learning general-
purpose sentence representations [58, 127, 49, 28, 74, 86, 22, 31].

Wieting et al. [127] learned general-purpose, paraphrastic sentence embeddings by
starting with standard word embeddings and modifying them based on supervision from
the Paraphrase pairs dataset (PPDB), and constructing sentence embeddings by training a
simple word averaging model. This simple method leads to better performance on textual
similarity tasks than a wide variety of methods and serves as a good initialization for tex-
tual classification tasks. However, supervision from the paraphrase dataset seems crucial,
since they report that simple average of the initial word embeddings does not work very
well.

Encoder-decoder models have been successful at learning semantic representations
[69]. Skip-Thought [58] trains an RNN encoder-decoder architecture to predict the sur-

Dissertation – Maryam Hasan 65

rounding sentences of an encoded passage. Skip-Thought model consists of an encoder
RNN that produces a vector representation of the source sentence and a decoder RNN that
sequentially predicts the words of adjacent sentences. skip-thought vectors are an exten-
sion of the skip-gram model for word embeddings [78] to sentences. Skip-thought vectors
learn re-usable sentence representations from weakly labeled data to capture similarity
in terms of discourse context. Unfortunately, these models take weeks or often months
to train [114, 69]. Arora et al. [9], however, demonstrate that simple word embedding
averages are comparable to more complicated models like skip-thoughts. Hill et al. [49]
showed, that the task on which sentence embeddings are trained significantly impacts
their quality.

InferSent [28] uses labeled data of the Stanford Natural Language Inference (SNLI)
dataset [17] and the MultiGenre NLI dataset [128] to train a BiLSTM network with max-
pooling over the output. Conneau et al. [28] showed that InferSent consistently outper-
forms unsupervised methods like SkipThought.

Encoder-decoder based sequence models are known to work well, but they are slow to
train on large amounts of data. On the other hand, bag-of-words models train efficiently
by ignoring word order [114, 69]. Another work for learning sentence representations pro-
posed by Logeswaran and Lee [69] by training an encoder architecture faster than previous
methods. Given an input sentence, their model chooses the correct target sentence from a
set of candidate sentences, instead of generating the target sentence. It has used objectives
to rank candidate next sentences, given a representation of the previous sentence.

Universal Sentence Encoder [22] trains a transformer network and augments unsuper-
vised learning with training on SNLI dataset. It showed a significant improvement by
leveraging the Transformer architecture, which is based on attention mechanisms. Previ-
ous works [28, 22] found that SNLI dataset is suitable for training sentence embeddings.

BERT (Bidirectional Encoder Representations from Transformers) [31] is a bi-directional
pre-training model back-boned by the Transformer network, a deep hybrid neural network
with feed forward layers and self-attention layers. In prior work [69], only sentence em-
beddings are transferred to down-stream tasks, however BERT transfers all parameters
to initialize end-task model parameters. BERT achieved state-of-the-art results for various
NLP tasks, including sentence classification, Semantic textual Similarity, and sentence-pair
regression.

Recently, Reimers and Gurevych developed t Sentence-BERT (SBERT) [103] to create
sentence embeddings. They fine-tuned SBERT on MultiGenre NLI dataset [128]. SBERT
embeddings significantly outperform other state-of-the-art sentence embedding methods
like InferSent [28] and Universal Sentence Encoder [22].

66 Dissertation – Maryam Hasan

4.4 Transfer Learning

Existing supervised algorithms work well only if the training and test data are represented
by the same features and drawn from the same distribution. Furthermore, the performance
of these algorithms heavily rely on collecting high quality and sufficient labeled training
data to train a statistical model to make predictions on the unlabeled data. When the dis-
tribution changes, most statistical models need to be rebuilt using newly collected labeled
data. However, it is expensive or impossible to collect the needed training data and rebuild
the models in many real world applications. This problem has become a major bottleneck
of making machine learning methods more applicable in practice [88].

In the real world, we observe many examples of transfer learning. For example, learn-
ing to play the electronic organ may help learning the piano. The study of transfer learning
is motivated by the fact that people can intelligently apply knowledge learned previously
to solve new problems faster and more efficient. In machine learning applications, it is
expensive or impossible to collect sufficient training data to train models to use in each
domain of interest. It would be more practical if we could reuse the training data and
knowledge that is already extracted from some related domains/tasks to learn a precise
model to use in the domain of interest. In such cases, knowledge transfer or transfer learn-
ing between tasks or domains become more crucial and desirable to reduce the need and
effort to re-collect the training data.

Transfer learning can be largely beneficial in text classification. It would be helpful if
we could transfer the text classification knowledge into the a new domain. One application
where the need for transfer learning may arise is sentiment classification. Let’s consider
the task of classifying the reviews on a product, into positive and negative reviews. For
this classification task, we need to first collect many reviews of the product and annotate
them. Since the distribution of review data among different types of products can be dif-
ferent, to maintain good classification performance, we need to collect a large amount of
labeled data for each product in order to train the review classification models. However,
collecting enough labeled data for various products can be expensive. To reduce the effort
for annotating reviews for various products, we may adapt a classification model that is
trained on some products to learn classification models for some other products. In such
cases, transfer learning can save a significant amount of labeling effort.

4.4.1 Transfer Learning Overview

The effectiveness of transfer learning has given rise to a diversity of approaches. As shown
in Figure 15, transfer learning aims to borrow labeled data or extract the knowledge from
one or more related source tasks and applies the knowledge to solve a target task [88].

Dissertation – Maryam Hasan 67

Transfer learning, allows the domains, tasks, and distributions used in training and testing
to be different. It can be defined as below:

Figure 15: Traditional learning Versus Transfer Learning [88].

Definition 1. (Transfer Learning): Given a source domain DS and learning task TS , a target do-
mainDT and a learning task TT , transfer learning aims to improve learning of the target predictive
function fT (·) in DT using the knowledge in DS and TS , where DS 6= DT , or TS 6= TT .

In the above definition, a domain is a pair D = {X,P (x)}. Thus, DS 6= DT implies that
either (1) the feature spaces between the source dataset and the target dataset are different,
i.e. XS 6= XT , or (2) their distributions are different, i.e. P (xS) 6= P (xT). As an example, in
text classification, case (1) corresponds to when the two sets of documents are described in
different languages, and case (2) may correspond to when the source domain documents
and the target domain documents focus on different topics [88, 70, 8].

Similarly, a task is defined as a pair T = {Y, P (y|x)}. Thus, the condition TS 6= TT

implies that either (1) the label spaces between the domains are different, i.e. YS 6= YT

, or (2) the conditional probability distributions between the domains are different; i.e.
P (YS |XS) 6= P (YT |XT). In text classification example, case (1) corresponds to the situation
where source domain has binary document classes, whereas the target domain has multi
classes to classify the documents to. Case (2) corresponds to the situation where the source
and target documents are very unbalanced in terms of the user-defined classes [88].

When the target and source domains are the same, i.e. DS = DT , and their learning
tasks are the same, i.e., TS = TT , the learning problem becomes a traditional machine
learning problem. Based on whether the feature spaces or label spaces are identical or
not, we can further categorize transfer learning into two settings: 1) homogenous transfer
learning, and 2) heterogenous transfer learning [130].

68 Dissertation – Maryam Hasan

Homogeneous and heterogenous transfer learning can be defined as follows:

Definition 2. (Homogeneous Transfer Learning): Given a source domain DS and learning task
TS , a target domain DT and a learning task TT , homogeneous transfer learning aims to improve
learning of the target predictive function fT (·) in DT using the knowledge in DS and TS , where
XS ∩XT 6= ∅ , and YS = YT , but P (xS) 6= P (xT) or P (yS |xS) 6= P (yT |xT).

Based on the above definition, the feature spaces between domains are overlapping,
and the label spaces between tasks are identical in homogeneous transfer learning. The
difference between domains or tasks is caused by the marginal distributions or predictive
distributions. Approaches to homogeneous transfer learning can be summarized into three
categories: 1) instance transfer approach, 2) feature-representation transfer approach, 3)
model-parameter transfer approach, and 4) relational-knowledge transfer approach [88,
130].

Recently, some researchers have already started to consider transfer learning across
heterogeneous feature spaces or non-identical label spaces. heterogeneous transfer learn-
ing can be defined as follows[130]:

Definition 3. (Heterogeneous Transfer Learning): Given a source domain DS and learning task
TS , a target domain DT and a learning task TT , heterogeneous transfer learning aims to improve
learning of the target predictive function fT (·) in DT using the knowledge in DS and TS , where
XS ∩XT = ∅ , or YS 6= YT .

Based on the definition, heterogeneous transfer learning can be further categorized
into two contexts: 1) transferring knowledge across heterogeneous feature spaces, and 2)
transferring knowledge across different label spaces [130].

4.4.2 Transfer Learning Methods

The two most common transfer learning techniques in NLP are feature-based transfer and
fine-tuning. Features-based transfer involves pre-training real-valued embeddings vec-
tors. These embeddings may be at the word level [78] or sentence level [22]). The embed-
dings are then fed to custom downstream models.

Fine-tuning approaches involve copying the weights from a pre-trained network and
tuning them on the downstream task. Recent work shows that fine-tuning often enjoys
better performance than feature-based transfer [52].

Both feature-based transfer and fine-tuning require a new set of weights for each task.
Fine-tuning is more parameter efficient if the lower layers of a network are shared between
tasks. Consider a function (neural network) with parameters w as φw(x). Feature-based
transfer composes φw with a new function, Xv, to yield Xv(φw(x)). Only the new, task

Dissertation – Maryam Hasan 69

specific, parameters, v, are then trained. Fine-tuning involves adjusting the original pa-
rameters, w, for each new task, limiting compactness.

4.4.2.1 Instance Transfer Approach

The first approach is transferring Knowledge of Instances, which assumes that certain
parts of the data in the source domain can be reused for learning in the target domain by
re-weighting. Instance re-weighting and importance sampling are two major techniques
in this context [88, 130].

A motivation of the instance-transfer approach is that although the source domain la-
beled data cannot be reused directly, part of them can be reused for the target domain after
re-weighting or re-sampling. An assumption behind this approach is that the source and
target domains have a lot of overlapping features, which means that the domains share
similar support. Based on whether labeled data are required or not in the target domain,
the instance transfer approach can be further categorized into two contexts: 1) no target
labeled data are available, and 2) a few target labeled data are available [130, 88].

In the first context of instance-transfer approach, no labeled data are required but a lot
of unlabeled data are assumed to be available in the target domain. In this context, most
instance-transfer methods are deployed based on an assumption that PS(y|x) = PT (y|x),
and motivated by importance sampling [130, 88].

In the second context of the instance-transfer approach, a few target labeled data are
assumed to be available. Different from the first context, in this context, most approaches
are proposed to weight the source domain data based on their contributions to the classi-
fication accuracy for the target domain [130, 88].

4.4.2.2 Feature Representation Transfer Approach

A second case can be referred to as feature-representation transfer approach. As described
in the previous section, for the instance transfer approach, a common assumption is that
the source and target domains have a lot of overlapping features. However, in many real-
world applications, the source and target domains may only have some overlapping fea-
tures, which means that many features may only have support in either the source or target
domain. In this case, most instance transfer methods may not work well. The feature-
representation transfer approach is promising to address this issue.

An intuitive idea behind the feature-representation transfer approach is to learn a good
feature representation for the source and target domains such that based on the new rep-
resentation, source domain labeled data can be reused for the target domain. In this sense,
the knowledge to be transferred across domains is encoded into the learned feature rep-

70 Dissertation – Maryam Hasan

resentation. With the new feature representation, the performance of the target task is
expected to improve significantly. Specifically, the feature-representation-based approach
aims to learn a mapping φ(·) such that the difference between the source and target do-
main data after transformation, φ(xSi)’s and φ(xTi)’s, can be reduced. In general, there
are two ways to learn such a mapping φ(·) for transfer learning. One is to encode specific
domain or application knowledge into learning the mapping, the other is to propose a gen-
eral method to learn the mapping without taking any domain or application knowledge
into consideration [130, 88].

4.4.2.3 Parameter Transfer Approach

The first two categories of approaches to transfer learning are in the data level. The
instance-transfer approach tries to reuse the source domain data after re-sampling or re-
weighting, while the feature-representation-transfer approach aims to find a good feature
representation for both the source and target domains such that based on the new feature
representation source domain data can be reused. Different from these two categories of
approaches, a third category of approaches to transfer learning can be referred to as the
model-parameter-transfer approach, which assumes that the source and target tasks share
some parameters. A motivation of this approach is that a well-trained source model has
captured a lot of structure, which can be transferred to learn a more precise target model.
In this way, the transferred knowledge is encoded into the model parameters [130, 88].

4.4.3 Transformer

Early results on transfer learning for NLP leveraged recurrent neural networks [52, 94], but
it has recently become more common to use models based on the Transformer architecture
[122]. The standard Transformer architecture proposed by Vaswani et al. [122]. The Trans-
former was initially shown to be effective for machine translation, but it has subsequently
been used in a wide variety of NLP settings due to its improved performance. Transformer
models attain state-of-the-art performance in many NLP tasks, including translation, ques-
tion answering, and text classification problems [122, 31, 99].

The primary building block of the Transformer is self-attention. Self-attention is a vari-
ant of attention [12] that processes a sequence by replacing each element by a weighted
average of the rest of the sequence. Figure 16 shows the model architecture of the original
transformer [122]. The encoder-decoder Transformer implementation originally-proposed
by Vaswani et al. [122]. The original Transformer consisted of an encoder-decoder archi-
tecture and was intended for sequence-to-sequence tasks [116].

Dissertation – Maryam Hasan 71

Figure 16: Model architecture of a Transformer [122].

Figure 17 shows a Transformer of 2 stacked encoders and decoders 2. First, an input
sequence of tokens is mapped to a sequence of embeddings, which is then passed into
the encoder. The encoder consists of a stack of encoders. Each encoder is broken down
into two sub-components: self-attention and feed-forward neural network. The encoder’s
inputs first flow through a self-attention layer. Self-attention layer helps the encoder look
at other relevant words in the input sentence as it encodes a specific word. The outputs
of the self-attention layer are fed to a feed-forward neural network. The exact same feed-
forward network is independently applied to each position. Layer normalization [10] is
applied to the input of each sub-component. Then the outputs are send out upwards to
the next encoder [102].

The decoder is similar in structure to the encoder except that it includes a standard
encoder-decoder attention mechanism after each self-attention layer that attends to the
output of the encoder. The encoder-decoder attention layer helps the decoder focus on
relevant parts of the input sentence. The self-attention mechanism in the decoder also uses
a form of auto-regressive or causal self-attention, which only allows the model to attend
to past outputs. The output of the final decoder block is fed into a dense layer with a

2http://jalammar.github.io/illustrated-transformer/

72 Dissertation – Maryam Hasan

softmax output, whose weights are shared with the input embedding matrix. All attention
mechanisms in the Transformer are split up into independent “heads” whose outputs are
concatenated before being further processed [102].

Figure 17: A Transformer of 2 stacked encoders and decoders.

While the Transformer was originally introduced with an encoder-decoder architec-
ture, recent works on transfer learning for NLP use alternative architectures. It has re-
cently also become common to use models consisting of a single Transformer layer stack,
with varying forms of self-attention used to produce architectures appropriate for lan-
guage modeling [99] or classification and span prediction tasks [31, 131].

Below, we describe two methods that utilize Transformers for text classification includ-
ing BERT [31] and Universal Sentence Encoder [22].

4.4.3.1 Universal Sentence Encoder (USE)

Google recently introduced Universal Sentence Encoder [22]. The Universal Sentence En-
coder encodes text into high dimensional vectors. The input is variable length English
text and the output is a 512-dimensional vector. The model is trained and optimized for
sentences, phrases or short paragraphs. Universal Sentence Encoder uses a transformer-
network that is trained on a variety of data sources and a variety of tasks with the aim of
dynamically accommodating a wide variety of natural language understanding tasks. A

Dissertation – Maryam Hasan 73

pre-trained version has been made available for TensorFlow.

The Universal Sentence Encoder [22] is more powerful than word embedding, and it is
able to embed not only words but phrases and sentences. As illustrated in Figure 18, the
sentence embeddings can be used to compute sentence level semantic similarity scores that
achieve excellent performance on the semantic textual similarity (STS) Benchmark [22].
When included within larger models, the sentence encoding models can be fine tuned for
specific tasks using gradient based updates [22].

Figure 18: Sentence similarity scores using embeddings from the Universal Sentence Encoder [22].

As illustrated in Figure 19, there are two Universal Sentence Encoders with different
encoder architectures to achieve distinct design goals. The first encoder is based on the
transformer architecture [122], which aims for high accuracy at the cost of greater model
complexity and more resource consumption. The other encoder targets efficient inference
with slightly reduced accuracy by using a deep averaging network (DAN) [54]. In this
model the embeddings for words and bi-grams are averaged together and then used as
input to a deep neural network that computes the sentence embeddings.

The Transformer model constitutes an encoder and decoder. The encoder is composed
of a stack of N = 6 identical layers. Each layer has two sub-layers. The first is a multi-
head self-attention mechanism, and the second is a simple, position-wise fully connected
feed-forward network. They also employed a residual connection around each of the two
sub-layers, followed by layer normalization [122]. The transformer based encoder achieves
the best overall transfer task performance. However, this comes at the cost of computing
time and memory usage scaling dramatically with sentence length.

74 Dissertation – Maryam Hasan

Deep Averaging Network(DAN) is much simpler where input embeddings for words
and bi-grams are first averaged together and then passed through a feedforward deep
neural network (DNN) to produce sentence embeddings. The primary advantage of the
DAN encoder is that compute time is linear in the length of the input sequence.

Both models were trained with the Stanford Natural Language Inference (SNLI) cor-
pus. The SNLI corpus is a collection of 570k human-written English sentence pairs manu-
ally labeled for balanced classification with the labels entailment, contradiction, and neu-
tral, supporting the task of natural language inference (NLI). The sentence embeddings
can be used to compute sentence-level semantic similarity scores. Essentially, the models
were trained to learn the semantic similarity between the sentence pairs.

Figure 19: Model architectures comparison for the Transformer and DAN sentence encoders [22].

4.4.3.2 Bidirectional Encoder Representations from Transformers (BERT)

BERT [31] is another pre-trained model that has achieved state-of-the-art performance in
many NLP tasks. BERT is one of the key innovations in the recent progress of contextu-
alized representation learning [31, 52, 94, 99]. The idea behind the progress is that even
though the word embedding [92, 78] layer (in a typical neural network for NLP) is trained
from large-scale corpora, training a wide variety of neural architectures that encode con-
textual representations only from the limited supervised data on end tasks is insufficient.

Dissertation – Maryam Hasan 75

Unlike ELMo [94] and ULMFiT [52] that are intended to provide additional features for a
particular architecture that bears humans understanding of the end task, BERT adopts a
fine-tuning approach that requires almost no specific architecture for each end task. This
is desired as an intelligent agent should minimize the use of prior human knowledge in
the model design. Instead, it should learn such knowledge from data [129].

Figure 20: Pre-training model architecture of BERT [31]. Ei is the embedding representation, Ti is
the final output and Trm is the intermediate representations of the same token.

As shown in Figure 20 BERT’s model is a multi-layer bidirectional Transformer encoder
based on the original implementation proposed by Vaswani et al. [122]. A word starts with
its embedding representation from the embedding layer. Every layer does some multi-
headed attention computation on the word representation of the previous layer to create
a new intermediate representation. All these intermediate representations are of the same
size. In a 12-layers BERT model a token will have 12 intermediate representations.

BERT adapts pre-training to capture dependencies between sentences via a next sen-
tence prediction task as well as by constructing training examples of sentence-pairs with
input markers that distinguish between tokens of the two sentences [11].

The output embedding of BERT captures the general linguistic information from the
large and general dataset it was trained on. A model can also be fine-tuned to generate an
embedding which is more contextually aware of a new domain. The output of this form
of fine tuning would be another embedding. The goal of fine tuning is thus an embedding
that contains domain specific information.

BERT has two parameter intensive settings: BERTBASE and BERTLARGE. BERTBASE
includes 12 layers, 768 hidden dimensions and 12 attention heads (in transformer) with

76 Dissertation – Maryam Hasan

the total number of parameters, 110M. BERTLARGE contains 24 layers, 1024 hidden di-
mensions and 16 attention heads (in transformer) with the total number of parameters,
340M.

BERT considers only Books Corpus and Wikipedia data sources to pre-train their mod-
els, [11]. Although BERT aims to learn contextualized representations across a wide range
of NLP tasks (to be task-agnostic), leveraging BERT alone still leaves the domain chal-
lenges unresolved (as BERT is trained only on formal texts and has almost no understand-
ing of social media text) [129].

BERT [31] and RoBERTa [68] has set a new state-of-the-art performance on sentence-
pair regression tasks like semantic textual similarity. However, it requires that both sen-
tences are fed into the network, which causes a massive computational overhead: Finding
the most similar pair in a collection of 10,000 sentences requires about 50 million inference
computations (' 65 hours) with BERT [103]. The construction of BERT makes it unsuitable
for semantic similarity search as well as for unsupervised tasks like clustering [103].

4.5 DeepEmotex: A Deep Learning Approach to Classify Emotion in Text using
Sequential Transfer Learning

Detecting emotions in text is a challenging problem because of the semantic ambiguity of
the emotion expression in text and fuzzy boundaries of emotion classes [45]. Moreover,
the context can completely change the emotion for a sentence as compared to perceived
emotion when the sentence is evaluated standalone. For example, the sentence “I started
crying when I realized!” will be perceived as a sad feeling, however considering it in the
context “I just qualified for the scholarship. I started crying when I realized!”, it turns
out to be a happy emotion. Similarly, the sentence “Try to do that again!” is very likely
to be perceived as no-emotion, however a majority will judge it as an Angry feeling with
the context “How dare you make fun of me like that! Try to do that again!”. Therefore,
considering context is important to detect emotion of a text.

Feature selection and representation are important tasks for emotion classification in
texts due to the high dimensionality of text features and the existence of irrelevant fea-
tures. Performance of classification algorithms highly depends on feature selection and
representation [14]. Traditional machine learning systems are based on hand-crafted fea-
tures on NLP tasks. However, creating a complete set of hand-crafted features is very
tedious and time-consuming. Moreover, using a comprehensive set of hand-crafted fea-
tures lead to a huge feature space with sparse and high dimensional feature vectors and is
not efficient.

In contrast, deep learning models automatically learn multiple layers of low dimen-

Dissertation – Maryam Hasan 77

sional feature representations and thus reduce the need for hand-crafted features. Deep
learning methods have been utilized in learning word representations through neural lan-
guage models [78]. Along with the success of deep learning in many other application
domains, deep learning is also popularly used in sentiment and emotion classification in
recent years [133].

4.5.1 DeepEmotex: A Sequential Transfer Learning Model

As described in Section 3, Emotex system [45] exploits the usage of static keywords with
explicit emotional values as emotion-specific features. These features are selected from
predefined sets of emotion lexicons including ANEW lexicon [18] and LIWC dictionary
[91] as described in Section 3.2.3. However, the list of emotion keywords may change in
different domains. Thus, Emotex requires extensive hand-crafted features to achieve high
performance due to diverse ways of representing emotions in different domains. Such
hand-crafted features are time-consuming to create and they are often incomplete. To solve
this problem, we develop a deep learning approach called DeepEmotex to be able to extract
dynamic features based on context instead of using static hand-crafted features.

While deep learning models have achieved state-of-the-art results on many NLP tasks,
these models are trained from scratch, requiring huge datasets, and days to converge [52].
Instead of learning from scratch, transfer learning can be used to transfer knowledge from
a general-purpose domain and task into a more specialized target domain and task [102,
51, 106]. Transfer learning matches the performance of training a deep learning model
from scratch, with much less labeled examples.

Transfer learning can be beneficial in emotion classification. Supervised learning meth-
ods have proven to be promising in emotion classification. However, these methods are
domain dependent, which means that a model built on one domain (e.g., messages on a
specific topic or event) may perform poorly on another domain. The reason is that differ-
ent domain-specific words may be used to express emotion in different domains. Table
9 shows common keywords of two different domains including, death of George Floyd
and Covid-19 epidemic. For example, keywords justice, protest, violent, murder, racism are
domain-specific words of the first domain whereas keywords such as death, disease, fever
are Covid19-specific keywords. Due to the mismatch of common keywords between dif-
ferent domains, an emotion classifier trained on one domain may not work well when
directly applied to other domains. Therefore, cross-domain emotion classification algo-
rithms are highly desirable to reduce domain dependency and manually labeling costs by
transferring knowledge from related domains to the domain of interest [88].

DeepEmotex utilizes sequential transfer learning approach, where source and target
tasks are learned in sequence. That means, models are not optimized jointly as in multi-

78 Dissertation – Maryam Hasan

Death of George Floyd attack, violence, protest, curfew, death,
murder, racism, black lives

Covid-19 Pandemic fever, death, patient, disease, vaccine,
mask, immunity, epidemic

Table 9: Example keywords of different domains

task learning but each task is learned separately [106]. Sequential transfer learning consists
of two stages: a pre-training phase in which general-purpose representations are learned
on a source task or domain, and an adaptation or fine-tuning phase during which the
learned knowledge is transferred to a target task or domain [88].

Most prior work has focused on different pre-training objectives to learn general-purpose
word or sentence representations [78, 58]. A few works have explored the fine-tuning
phase and how to adapt the pre-trained model to a given target task. There are two com-
mon approaches for fine-tuning: The first approach is to use the pre-training network as
a feature extractor [33], where all layers in the model are frozen when fine-tuning on the
target task except the last layer. In this approach the pre-trained representations are used
in a downstream model. Alternatively, the pre-trained model’s parameters are unfrozen
and fine-tuned on a new task [29]. This approach enables to adapt a general-purpose rep-
resentation to many different tasks.

Figure 21 shows our DeepEmotex model. Our model represents input words by their
embeddings. Following the embedding layer, our model consists of a transformer encoder,
followed by a SoftMax classification layer. Gaining a better understanding of the adapta-
tion phase is key in making the most use out of pre-trained representations. Accordingly,
DeepEmotex utilizes two state-of-the-art pre-trained models, known as BERT [31] and Uni-
versal Sentence Encoder [22]. Using these models, we transfer knowledge learned from a
large corpus to our emotion classification model. We then fine-tune DeepEmotex model to
fit to our target emotion datasets.

4.5.2 DeepEmotex: A Transfer Learning Model using Universal Sentence Encoder

Universal Sentence Encoder (USE) [22] is a deep neural network to create universal sen-
tence embeddings. Universal embeddings are pre-trained embeddings obtained from train-
ing deep learning models on a huge corpus. These pre-trained (generic) embeddings can
be used in a wide variety of NLP tasks including text classification, semantic similarity
and clustering.

The Universal Sentence Encoder is trained and optimized for greater-than-word length
text, such as sentences, phrases or short paragraphs. The input is a variable length text. The
Universal Sentence Encoder encodes the input text into 512-dimensional embeddings. The

Dissertation – Maryam Hasan 79

Figure 21: Model of DeepEmotex. The embedding layer learns an embedding that contains the se-
mantic textual information in input text. The learned representations are fed into the classification
layer for emotion prediction.

embeddings are trained on different data sources and tasks with the aim of dynamically
accommodating a wide variety of natural language understanding tasks which require
modeling the meaning of word sequences rather than just individual words.

The USE sentence encoding models are trained on a variety of unsupervised training
data including Wikipedia, web news, web question-answer pages and discussion forums.
The USE models augment unsupervised learning with training on supervised data from
the Stanford Natural Language Inference (SNLI) corpus. The SNLI corpus is a collection
of 570k human-written English sentence pairs manually labeled for classification with the
labels entailment, contradiction, and neutral, supporting the task of natural language in-
ference.

Their key finding [22] is that transfer learning using sentence embeddings tends to out-
perform word embedding level transfer [22]. Essentially, there are two versions of the USE
models. The first version makes use of a Deep Averaging Network (DAN) where input

80 Dissertation – Maryam Hasan

embeddings for words and bi-grams are first averaged together and then passed through
a feed-forward deep neural network (DNN) to produce sentence embeddings [22]. Deep
Averaging Network (DAN) is simpler than the second version. The primary advantage of
the DAN encoder is that its compute time is linear in the length of the input sequence.

The second version makes use of the transformer-network based sentence encoding
model. The transformer encoder is composed of a stack of N = 6 identical layers. Each
layer has two sub-layers. The first is a multi-head self-attention mechanism, and the sec-
ond is a simple, position-wise fully connected feed-forward network, followed by layer
normalization.

Their results [22] demonstrate that the transformer-based encoder achieves the best
overall transfer task performance. However, this comes at the cost of computing time and
memory usage scaling dramatically with sentence length. For our emotion classification
task we use the transformer-based encoder as it achieves better overall performance than
the DAN encoder.

We first define the sentence embedding sub-network that leverages the Universal Sen-
tence Encoder before we describe the design of our emotion classification model. We apply
transfer learning leveraging prior knowledge from pre-trained embeddings to solve a new
task. We utilize transfer learning to fine-tune the sentence embeddings using our collected
emotion-labeled dataset.

We build a feed-forward neural network with two hidden dense layers and the rectified
linear activation function (ReLU). ReLU is a piece-wise linear function with a constant
derivative. ReLU overcomes the vanishing gradient problem. This is good for deep neural
networks which suffer from the vanishing and explosion gradient problem. ReLU is easy
to compute, fast to converge in training and yields good performance in neural networks
[134].

A dense layer is a fully connected layer, meaning all the neurons in a layer are con-
nected to those in the next layer. A dense layer provides learning features from all the
combinations of the features of the previous layer. The input of our model is 512-feature
vectors created using the Universal Sentence Encoder technology. The resulting vector is
then fed into fully connected layers culminating in a softmax layer. We then fine-tune our
model using collected labeled tweets introduced in Section 4.6.1. We fine-tune the embed-
ding weights by setting the trainable parameter to true. Here we leverage transfer learning
in the form of pre-trained embeddings.

The overall model architecture is shown in Figure 22. The input of the model is a
twitter message. First, the embedding layer uses the pre-trained USE model to map a
sentence into its embedding vector. The model that we are using splits the sentence into
tokens, embeds each token and then combines them into context-aware 512-dimension

Dissertation – Maryam Hasan 81

Figure 22: Model of DeepEmotex to classify emotion in the text messages using Universal Sentence
Encoder.

embeddings. Then, the embeddings are passed through a feed-forward neural network
with ReLU activation. It projects the input into 256-dimension embeddings and feeds them
to the classification layer to produce a classification probability. The output of our model
is an emotion classification label. The main objective is to correctly predict the emotion of
each tweet.

82 Dissertation – Maryam Hasan

4.5.2.1 DeepEmotex: Experimental Setup of the Model using Universal Sentence En-
coder

Universal Sentence Encoder model can be fine-tuned to our target task in several ways
by freezing layers to disable parameters updates. One common approach is to use the
network as a feature extractor [33], where all layers in the model are frozen during fine-
tuning on the target task except the last layer. Another common approach is to use the
pre-trained model as an initialization, and thereafter the full model is unfrozen [36]. We
implement both approaches to fine-tune Universal Sentence Encoder. Our first transfer
learning approach is implemented using the following workflow:

• Instantiate a base model and load pre-trained weights into it.

• Freeze all layers in the base model by setting trainable = False.

• Add classification layer (Fully connected layer + SoftMax) on top of the frozen layers.

• Train the new layers on our new dataset.

Next, we implement the second approach. For this, we unfreeze all layers and re-train
the whole model on our dataset for several epochs. This helps fine-tune the model towards
our task by incrementally adapting the pre-trained features to our new data. We fine-
tune the embedding weights by setting trainable=true. Weights are updated (via gradient
descent) to minimize the loss during training. By training all layers of the model we are
able to adjust the parameters across the network during back propagation. Our second
transfer learning approach is implemented using the following workflow:

• Instantiate a base model and load pre-trained weights into it.

• Unfreeze all layers in the base model by setting trainable = True.

• Add classification layer (Fully connected layer + SoftMax) on top of the USE un-
frozen layers.

• Train all the layers on our new dataset to fine-tune the old parameters on the new
dataset.

We use the Universal Sentence Encoder Version 3 3 as our base model. We add a feed-
forward neural network with two hidden layers and the Relu activation function.

We set our batch size to 150 and number of epochs to 20. Batch-size defines the number
of examples will be passed to our model during one iteration, and number of epochs is the

3https://tfhub.dev/google/universal-sentence-encoder-large/3

Dissertation – Maryam Hasan 83

number of times our model will go through the entire training set. We train the model on
our training datasets using Adam optimizer with a learning rate of 0.001. The performance
of the re-trained model is evaluated at the end of training epochs with our test datasets.

4.5.3 DeepEmotex: A Transfer Learning Model using Bidirectional Encoder Represen-
tations from Transformers

The model architecture of DeepEmotex using Bidirectional Encoder Representations from
Transformers (BERT) is shown in Figure 24. The input of the model is a twitter message
and the output is an emotion label. We use the pre-trained BERT model [31] to generate
text representations. BERT learns text representations using a bidirectional Transformer
encoder [122] pre-trained on the language modeling task. Transformers have a sequence-
to-sequence model architecture. The model of each transformer is shown in Figure 16.
Each transformer includes a separate encoder and decoder component. The difference
is in their use of attention known as self-attention. The core architecture consists of a
stack of encoders fully connected to a stack of decoders. Each encoder consists of a self-
attention component and a feed forward network. Each decoder consists of a self-attention
component, an encoder-decoder attention component, and a feed forward component.

Figure 23: Model of DeepEmotex to classify emotion in text messages using pre-trained BERT.

84 Dissertation – Maryam Hasan

Figure 24: Model of Transformer.

4.5.3.1 DeepEmotex: BERT as the Encoding Layer

BERT has several variants based on model configurations. We adopt BERT-base [122] as
our base model. BERT-base consists of an encoder with 12-layer Transformer blocks. For
each block in the encoder, it contains a 12-head self-attention layer and 768-dimensional
hidden layer, yielding a total of 110M parameters. The base model allows inputs up to a
sequence of 512 tokens and outputs the vector representations of the sequence. The input
sequence has one or two segments. The first token of the sequence is always [CLS] which
contains the special classification embedding. Another special token [SEP] is used for
separating segments. In order to facilitate the training and fine-tuning of BERT model, we
transform the input text into [CLS] + text+ [SEP] format.

4.5.3.2 DeepEmotex: Target-specific Classification Layer

We follow Devlin et al. [31] and create a fully-connected layer over the final hidden state
corresponding to the [CLS] input token. During fine-tuning, we optimize the entire model,
with the additional softmax classifier parameters W ∈ RK×H , where H is the dimension
of the hidden state vectors and K = 4 is the number of emotion classes.

Let S = ([CLS], t1, . . . , tm, [SEP], ..., tn) be the input sequence (i.e., Twitter message),
where t1, . . . , tm denotes a sentence with m tokens. For emotion classification task, we
use the final hidden state h = BERT (S) of the first token [CLS] as the representation of
the whole sequence S. A standard softmax classifier added on top of BERT predicts the
probability of emotion label c:

Dissertation – Maryam Hasan 85

x =W · h+ b

P (c|x) = softmax(x) =
exp(x)∑C
k=1 exp(x)

where W is the task-specific weight matrix, and b is the bias vector to be estimated.
We fine-tune all parameters as well as W jointly by maximizing the log-probability of the
correct label.

4.5.3.3 DeepEmotex: Fine-tuning BERT

BERT uses books corpus and Wikipedia data sources to pre-train their models [11]. Al-
though BERT aims to learn contextualized representations across a wide range of NLP
tasks, leveraging BERT alone still leaves the domain challenges unresolved as BERT is
only trained on formal texts and has almost no understanding of social media text [129].
The end tasks from the original BERT paper typically use tens of thousands of examples to
ensure that the system is task-aware [129]. Below, we introduce fine-tuning BERT to boost
the performance of classifying emotion on Twitter messages.

We adopt the pre-trained BERT-BASE and ROBERTA-BASE as the encoding layer of
our DeepEmotex model. We extend them with extra tasks-specific layers and fine-tune the
model on our emotion classification task. We focus on fine-tuning a classification layer
implemented as a standard feed-forward and a softmax layer on top of the pre-trained
BERT.

For fine-tuning the target model, we keep the hyper-parameters the same as in the pre-
training by Devlin [31], except for the batch size, learning rate, and number of training
epochs. The optimal hyper-parameter values are task-specific. Devlin et al. found the
following range of possible values to work well across different tasks [31]:

• Batch size: 32, 64

• Learning rate: 5e-5, 3e-5, 2e-5

• Number of epochs: 2, 3, 4

For our model, we decide to choose a small learning rate, and train with a few epochs.
Because most of transfer learning models suffer from the so-called catastrophic forgetting
problem. That is, the learnt information is erased when learning the new knowledge from
the target domain data. Using an aggressive learning rate such as 6e-4 makes the training
fail to converge. The BERT authors [31] recommend a number of training epochs between
2 and 4. Selecting a large number of epochs may cause over-fitting. As shown in Table 11,

86 Dissertation – Maryam Hasan

we fine-tune our model for 2 epochs with a learning rate of 4e-5. A larger batch size often
results in lower accuracy but faster epochs. In order to find the optimum batch size we
perform several runs of varying batch sizes while keeping other parameters constant.

4.6 DeepEmotex: Experimental Results

After developing DeepEmotex models using USE and BERT, we run several experiments
to fine-tune proposed models based on the emotion-classification task using our input
dataset.

4.6.1 DeepEmotex: Emotion Dataset

To be able to use deep learning for modeling emotion, we needed a large dataset of labeled
tweets. Since there are not many human-labeled datasets publicly available, we collect
tweets with emotion-carrying hashtags as a surrogate for emotion labels [43, 44]. We de-
fined four emotion classes (i.e., joy, relax, anger, and sadness), based on the emotion model
proposed by Circumplex model [107]. We only collect the tweets labeled with these emo-
tions. The details of our data collection process is described in Section 3.2.1.

In order to collect enough tweets to serve as our labeled dataset, we developed a list
of hashtags representing each of four emotion classes proposed by the Circumplex model.
For each emotion class, we prepared a set of hashtags representing the emotion. We then
used the set of hashtags to extract tweets with hashtags. We used Twitter API to crawl
Twitter with hashtags.

One advantage of using hashtags for labeling emotion data, is that the label is assigned
by the writer of the tweet rather than an annotator who could wrongly decide the category
of a tweet. After all, emotion is a fuzzy concept. Another advantage of this method is
obviously that it enables us to acquire a sufficiently large training set to apply fine-tuning
in our transfer learning approach.

4.6.1.1 Pre-processing Collected Tweets

Twitter data is very noisy, not only because of use of non-standard typography (which
is less of a problem here) but due to the many duplicate tweets and the fact that tweets
often have multiple emotion hashtags. Since these reduce our ability to build accurate
models, we clean the data. We first apply some general cleaning. We convert the Tweets
to lower-case letters. We remove Non-ascii letters, urls, “@NAME” and duplicate letters.
We also filter out all retweets based on existence of the token “RT” regardless of its case.
Since our goal is to create non-overlapping categories at the level of a tweet, we also re-
move all tweets with hashtags belonging to more than one emotion of the four emotion

Dissertation – Maryam Hasan 87

Class Happy-
Active

Happy-
Inactive

Unhappy-
Active

Unhappy-
Inactive

Total

#Tweets 148571 195313 149287 47354 540525
Table 10: Number of tweets collected as labeled data

Parameters Epoch Batch sizes Learning rate
Values 2 50,100,150,200,250 4e-5

Table 11: Parameters of fine-tuning BERT and ROBERTA

categories. Table 10 represents the number of labeled tweets selected for each class after
pre-processing.

4.6.2 DeepEmotex: Experimental Results of Fine-tuning USE

We train our models with frozen and unfrozen layers for 20 epochs. The training is con-
ducted on our collected tweets. Our dataset comprises a total of 540,525 tweets labeled
with four emotion classes as described in Section 4.6.1. We first shuffle our labeled datasets
and create train, validation and test datasets. We then train our models on a total of 300,000
tweets as our training dataset, validate on 60,000 tweets and use 180,525 tweets as our test
dataset. The training data is used for fine-tuning and the testing dataset is used for evalu-
ation.

Figure 25 shows the classification accuracy of our two models with frozen and unfrozen
layers on the validation set in terms of micro-average F1 score. As it shows, the accuracy
of our models stabilize at about epoch 14. The final validation results show that our model
with frozen layers gets an accuracy of 90% ± 0.82% (Mean ± Standard deviation) after
training for 20 epochs. The frozen model gets an accuracy of 90.6% on our test dataset.
This is consistent with our validation dataset.

The final validation results show that our model with unfrozen layers gets an accuracy
of 90.6% ± 0.85% (Mean ± Standard deviation) after training for 20 epochs. We get an
accuracy of 91% on our test dataset using the model with unfrozen layers. Comparing the
results of the two models with frozen and unfrozen layers using statistical t-test shows that
the unfreezing approach performed better than the freezing approach (p− value = 0.007).

4.6.3 DeepEmotex: Experimental Results of Fine-tuning BERT

The fine-tuning our BERT model is conducted on collected tweets. Our dataset comprises
a total of 540,525 tweets labeled with four emotion classes as described in Section 4.6.1.
The collected tweets are shuffled and divided into training, validation and test datasets.

88 Dissertation – Maryam Hasan

Figure 25: Emotion Classification Accuracy of fine-tuning USE with frozen and unfrozen layers on
validation set in terms of micro-average F1 score.

We train our models on a total of 300,000 tweets as our training dataset, validate on 60,000
tweets and use 180,525 tweets as our test dataset. The training data is used for fine-tuning
and the testing dataset is used for evaluation. The objective is to correctly predict the
emotion of each tweet.

We fine-tune our BERT model using different batch sizes for 2 epochs. Figure 26 shows
classification accuracy of DeepEmotex models created using different batch sizes to fine-
tune BERT. As it shows the model achieved an accuracy of 91.8% ± 0.2% on our test data
in terms of MCC (Matthews correlation coefficient) score. The highest accuracy 92.1% is
achieved when the batch size is 150.

MCC is a valid and precise metric to measure classification accuracy. Accuracy can
show overoptimistic inflated results on imbalanced datasets. For balanced datasets, accu-
racy and MCC are synonymous [19, 24]. MCC is calculated as the following:

MCC =
TP× TN− FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(11)

4.6.4 Evaluating DeepEmotex

We evaluate the performance of the DeepEmotex models on emotion classification using
benchmark datasets.

An issue with many of the benchmark datasets is data scarcity, which is specially prob-
lematic in emotion analysis [36].

To evaluate our DeepEmotex method on emotion detection we make use of EmoInt

Dissertation – Maryam Hasan 89

Figure 26: Classification results of fine-tuning BERT on test dataset using different batch sizes

Emotion Class Joy Sadness Anger
Number of messages 671 656 641

Table 12: Number of messages in each emotion class in EmoInt benchmark dataset

as a benchmark dataset. EmoInt (Emotion Intensity in Tweets) is a dataset of emotions
in tweets from WASSA 2017 [83]. The benchmark dataset provides four emotion classes
including joy, anger, fear, and sadness. We only evaluate the emotion classes happy-active,
unhappy-active, and unhappy-inactive as the happy-inactive emotion is not provided in
the benchmark dataset.

Table 12 lists the number of samples in each class in EmoInt benchmark dataset. As it
shows, there are about equal number of samples belonging to each class.

For evaluating our models with the benchmark dataset, we associate joy with happy-
active, anger with unhappy-active, and sadness with unhappy-inactive. Our fine-tuned
models are utilized to classify the benchmark dataset. The models classify the input bench-
mark dataset into our four emotion classes. The input class joy is correctly classified if it
is labeled as happy-active or happy-inactive. The input class anger is correctly classified
if it is labeled as unhappy-active and the input class sadness is correctly classified if it is
labeled as unhappy-inactive. We measure the classification accuracy of each class using
the following definition:

Accuracy =
Number of correct predictions

Total number of predictions
(12)

90 Dissertation – Maryam Hasan

Emotion
Class

Batch
Size

BERT-
50

BERT-
100

BERT-
150

BERT-
200

BERT-
250

Bi-
LSTM-
CNN

Joy 84% 87% 81% 86% 85% 65.8%
Anger 37% 40% 38% 44% 42% 66.6%
Sadness 81% 78% 80% 81% 72 70.6%
Overall 67% 68% 66% 70% 66% 67.6%

Table 13: Classification accuracy of DeepEmotex using BERT to predict emotion in the benchmark
datasets

Table 13 presents the evaluation results of DeepEmotex’s models created using differ-
ent batch sizes to fine-tune BERT. As it shows, the anger class achieved the lowest accuracy
among all the emotion classes. The joy class achieved the highest accuracy among all the
emotion classes. Among different batch sizes, the highest accuracy in sadness is achieved
by the models created using batch size 50 and 200. Also, the model created by using the
batch size 100 achieved the highest accuracy in joy emotion class. The model created using
the batch size 200 achieved the highest accuracy over all emotion classes.

Table 14 lists the evaluation results of DeepEmotex models created using Universal
Sentence Encoder by freezing and unfreezing the layers. As the table presents the model
created by unfreezing layers achieved higher classification accuracy than the model cre-
ated by freezing layers.

Comparing the evaluation results of Table 13 with Table 14 shows that the models
created using BERT achieved a higher performance than the models created using USE
in classifying emotion in the EmoInt benchmark dataset. The USE models were able to
correctly classify emotion in 58% of the EmoInt benchmark dataset. Our BERT models
achieved 70% accuracy in classifying emotion in the EmoInt dataset. Evaluation results
show that the proposed BERT model outperformed the Bi-LSTM-CNN model [48] for joy
and sadness classes.

4.7 Conclusion

In this research, we study deep learning methods to detect emotion in text messages. We
develop and evaluate deep learning models, called DeepEmotex, to automatically classify
emotion in text messages. DeepEmotex models automatically learn multiple layers of fea-
ture representations for emotion classification and thus reduce the need for hand-crafted
features.

DeepEmotex utilizes sequential transfer learning to apply the knowledge learned from

Dissertation – Maryam Hasan 91

Emotion Class USE-
Freezing
layers

USE-
Unfreezing
layers

Bi-
LSTM-
CNN

Joy 70% 70% 65.8%
Anger 50% 52% 66.6%
Sadness 51% 52% 70.6%
Overall 57% 58% 67.6%

Table 14: Classification accuracy of DeepEmotex using USE to predict emotion in the benchmark
dataset

pre-trained models on large text corpus. DeepEmotex uses Universal Sentence Encoders
and BERT as pre-trained models. These models are fine-tuned to utilize them for our
emotion classification task and obtain state-of-the-art results.

Experimental results and analysis demonstrate the effectiveness of the fine-tuned mod-
els. Created models were able to achieve over 91% accuracy for multi-class emotion clas-
sification on test dataset. DeepEmotex models achieved a higher classification accuracy
than Emotex by more than 2% (See Section 3.3.2).

We also evaluated the performance of the models created using BERT and the models
created using USE in classifying emotion in the EmoInt benchmark dataset. The BERT’s
models were able to correctly classify emotion in 70% of the instances in the benchmark
dataset. Our evaluation results shows that the proposed BERT model outperformed the
Bi-LSTM-CNN model [48] by about 3%.

92 Dissertation – Maryam Hasan

5 EmotexStream: A Framework for Analyzing Emotion in Live
Streams of Text Messages

5.1 Introduction

After developing emotion classification models, we now aim to deploy the trained models
to analyze emotion in live streams of tweets. However analyzing text in real time is chal-
lenging due to the noise and fast-paced nature of tweets in the wild. For this, we develop
a two-stage approach for classifying live streams of tweets.

Twitter messages cover a wide range of subjects. However, since our focus is on emo-
tion detection, we are only interested in processing messages that contain emotions. For
instance, the tweet ”I have a wonderful roommate” conveys a happy emotion and is a
good input to our system. In contrast, the tweet ”It’s time for bed” cannot be identified as
expressing any type of emotion neither happy nor sad. Therefore we aim to identify such
tweets without emotion and eliminate them in a fast pre-classification step. In fact, we
decompose the emotion detection task into two sub-tasks. We first detect tweets without
any identifiable emotion using a binary classifier. Then we conduct a fine-grained emotion
classification on tweets with explicit emotion.

Figure 27 shows our emotion analysis pipeline in classifying the general stream of
tweets [45, 46]. As it shows, after cleaning and preprocessing of tweets we categorize
tweets into two general classes, namely emotion-present and emotion-absent tweets. For
binary classification of tweets we develop an unsupervised method that utilizes emotion
lexicons. Our binary classifier assumes that tweets with no emotion are the ones with-
out any emotional or affective words. Therefore, it classifies tweets containing at least
one affective or emotional word as emotion-present tweets, and classifies tweets without
any affective word as emotion-absent tweets. As we described in Section 3.2.3.1, different
emotion lexicons are available, including ANEW lexicon, LIWC dictionary, and AFINN.
We utilize all the affective words from these three lexicons and create a comprehensive
affective lexicon for our binary classification task.

After binary classification, emotion tweets will then go through the feature selection
and multi-class emotion classifier generated by our Emotex technology to classify them
based on our defined classes of emotion.

We develop DeepEmotex models after EmotexStream system. Thus, DeepEmotex mod-
els are not deployed to classify live streams of tweets using EmotexStream framework.

Dissertation – Maryam Hasan 93

Tweets

No-Emotion
Tweets

Emo$on	
 Tweets	

&	
 Labels	

Preprocessor 	

Emotex
Feature

 Extractor

Emotex
Classifier

Tweets
Feature
Vectors

Emotion-Labeled
Tweets

Binary

Classifier
	

No	
 Emo$on	

Tweets	

Emotion
Tweets

Twitter Stream

Figure 27: EmotexStream: A two-stage approach to classify live streams of tweets

5.2 Proposed Approach to Detect Emotion-Intensive Moments in Live Streams
of Messages

Detecting and measuring emotion in social networks such as Twitter enable us to observe
crowd emotion and behavior. Using EmotexStream we are able to classify live streams
of tweets. We now aim to use our EmotexStream system to measure public emotion and
detect emotion-burst moments in live stream of tweets. We are looking for the percentage
of people in a geographic location experiencing certain emotions during a specific time.
The goal is to explore temporal distributions of aggregate emotion and detect temporal
bursts in public emotion from live text streams.

For this purpose, we first apply our EmotexStream system to automatically detect the
emotion of people from their messages in live stream of tweets. As shown in Figure 28
EmotexStream converts live text streams into streams of emotion classes. Then we ag-
gregate the emotion stream of each class into a time-based histogram to analyze public
emotion trends and discover emotion-evolving patterns over time. We propose an online
method to measure public emotion and detect abrupt changes in emotion as emotion-
intensive moments in live text streams [46]. Before describing our online method to detect
important moments in social streams, we define some concepts in the context of tweet
streams as below:

Definition 4 (Emotion Stream). An emotion stream SE is a continuous sequence of time-ordered
messages M1,M2, · · ·Mr, · · · from a tweet stream, such that each message Mi belongs to a specific
emotion class Ec1 ∈ EClass (EClass is the set of predefined emotion classes defined in Section 3).

In order to estimate the value of a specific emotion class Ec1 among the people in a
geographic location L during a time period [T1, T2], we define a function as below:

Epublic(T1, T2, L,Ec1) =
∑

T1<Ti<T2, Li∈L
F (Mi, Ec1) (13)

where Mi =< Ui, Ti, Li, Ci, Ei > is a tweet message in the emotion stream from the emo-

94 Dissertation – Maryam Hasan

Messages

Emo$on	
 Tweets	

&	
 Labels	

EmotexStream	

Emotion-Labeled
Tweets

Emotion
Streams

e1 e2

e2 e2

e1 e2 ei

ei

ei

Text Stream: Ec1

Ec2

Ecn

Emotion Classes:
M1 M2 Mi

No	
 Emo$on	

Tweets	
 	

No-Emotion
Tweets

…

Figure 28: Converting text streams into emotion streams using EmotexStream

tion class Ei ∈ EClass, posted by user Ui in location Li ∈ L, at the time T1 < Ti < T2, and
F (Mi, Ec1) is an indicator function defined as below:

F (Mi, Ec1) =

1 if Mi ∈ Ec1,

0 Otherwise.
(14)

Using equation 13 we can quantify emotion of a population in a geographic location
and during a time period. We can then analyze such emotion streams to detect temporal
bursts of crowd emotion. These sudden bursts are characterized by a change in the frac-
tional presence of messages in particular emotion classes. Formally, we define such abrupt
changes as “emotion burst”, which can point towards important moments. In order to
detect emotion bursts, we determine the higher or the lower rate at which messages have
arrived to an emotion class in the current time window of length W . Two parameters α
and β are used to measure this evolution rate.

Definition 5 (Emotion Burst). An emotion burst over a temporal window of length W at the
current time Tc is said to have occurred in a geographic region L, if the presence of a specific class
emotion Ec1 during a time period (Tc −W,Tc) is less than the lower threshold α or greater than
the upper threshold β.

In other words, we should have either

Epublic(Tc −W,Tc, L,Ec1) ≤ α (15)

or
Epublic(Tc −W,Tc, L,Ec1) ≥ β. (16)

Now we need to define the upper bound α and lower bound β of public emotion for
each emotion class during a temporal window. If our algorithm is applied offline (i.e.

Dissertation – Maryam Hasan 95

all the tweets are available), the thresholds can be estimated from the average sum over
the whole time period. However in the online approach all the tweets are not available.
Therefore, in the online approach, we compute the thresholds from the tweets in a tempo-
ral sliding window, where the size of the moving window is a parameter.

Figure 29 presents our system for detecting important moments in live text streams.
Emotion streams can be created by applying EmotexStream system to classify tweets ar-
riving in a stream. Let e1, · · · ei, · · · en denote the emotion values of class Ec1 of the tweets
posted within a temporal window of length W in an emotion stream (n is the number of
tweets posted within W). Apparently, e1, · · · ei, · · · en are independent 0-1 random vari-
ables (ei=0 means message Mi doesn’t belong to the emotion class Ec1, and ei=1 means
message Mi belongs to the emotion class Ec1). Emotion aggregator uses Equation 13 to
measure public emotion over a period of time. Based on Equation 13, public emotion
within the temporal window W is defined as below:

Tweets

Emo$on	
 Tweets	
 &	

Labels	

EmotexStream	

Ec2: e1, e2, …

Emotion-Labeled
Tweets

Emotion
Streams

Emotion-Burst

Detector	

Ec1: e1,e2, …

Ecn:e1, e2, …

….

W1 W2

W1 W2

W1 W2 Wi

Emotion Classes:
Wi

Wi

Twitter Stream

Emotion

Aggregator	

Ec1

Ec2

Ecn

Emotion Classes: Emotion
Values

Figure 29: Detecting emotion-bursts in live text streams

Epublic(Tc −W,Tc, L,Ec1) =
∑
i=1...n

F (Mi, Ec1) (17)

where F (Mi, Ec1) is an indicator function of Ec1 and n is the number of tweets posted
withinW . As we know Hoeffding’s inequality provides an upper bound on the probability
that the sum of random variables deviates λ > 0 from its expected value as shown by
Equation 18:

Pr[|X − µ| >= λ] <= 2e−2λ
2/n (18)

where X is the sum of independent random variables X1, X2, · · · , Xn, with E[Xi] = pi,
and the expected value E[X] =

∑
i=1...n

pi = µ.

96 Dissertation – Maryam Hasan

According to the Central Limit Theorem, if n is large then X approaches a normal dis-
tribution. We can use Hoeffding’s inequality to define an upper bound on the probability
that the public emotion Ec1 deviates from its expected value. Using the Hoeffding bound,
for any λ > 0 we have:

Pr[|Epublic(Tc −W,Tc, L,Ec1)− µe| >= λ] <= 2e−2λ
2/n (19)

where µe is the expected number of tweets belong to the emotion class Ec1 in window W

and n is the number of tweets posted within W . Given that n is large in a Tweet Stream,
emotion class Ec1 can be approximated using a normal distribution.

µe = n× Pe

where Pe is the expected rate of the emotion class Ec1.

We use the historical average rate of each emotion class as expected rate Pe for that
emotion class. For example, a weekly window can be used to average the rate of each
emotion class based on all tweets in general. Therefore, other than a sliding detection
window over the recent tweets posted about a topic, we also utilize a larger reference
window to summarize the information about the tweets posted in general. In fact, our
emotion-burst detection methodology utilizes two sliding windows. One small window
that keeps the rate of each emotion class based on the most recent tweets posted about a
topic. Another large reference window that keeps the average rate of each emotion class
based on all the past tweets posted in general.

Now we describe our methodology to automatically discover emotion bursts during a
real life event. First, we create an emotion stream by applying the model created by Emotex
system to classify tweets arriving in a stream based on a predefined set of emotion classes.
As a second step, our emotion burst detection algorithm then aggregates the tweets of
each emotion class into a time-based histogram, using the function in Equation 13. This
aggregation allows us to count the rate of each emotion class in each time period. We
then define a sliding window Wtopic (e.g., daily) over the stream of tweets about a topic
aggregated in temporal bins. We also define a large (e.g., weekly) window Wgeneral over
the general stream of tweets to keep track of the average rate of each emotion class. In
order to perform the burst detection, we continuously monitor the rate of public emotion
for each emotion class within each temporal window Wtopic. Whenever the rate of an
emotion class exceeds the upper threshold β or falls beneath the lower limit α, an emotion
burst is marked as an important moment by keeping its time of occurrence and if it is an
up or down case. Then the system signals the occurrence of the detected moments.

Dissertation – Maryam Hasan 97

5.3 EmotexStream Experimental Results

During this experiment, we apply our emotion classifiers to classify the live streams of
tweets using EmotexStream system (see Section 5.1). In this experiment we also select a
real-life event and detect the emotion-intensive moments using our method described in
Section 5.2. The following sections describe more details about each experiment.

5.3.1 Classifying Emotion in Live Streams of Tweets

To classify emotion in live streams of tweets, we utilize EmotexStream framework pre-
sented in Section 5.1. Based on the EmotexStream system, we first detect emotion-present
tweets and separate them from emotion-absent tweets. Therefore, we utilize our binary
classifier developed using several emotion lexicons. For the binary classification exper-
iment we collect a large amount of general tweets from United States without filtering
them by any specific hashtag or keyword (see Table 15). After cleaning up the noise, we
classify them using our binary classifier. Emotion-present tweets will then go through
the feature selection and multi-class emotion classifier generated by our Emotex system to
classify them based on our defined classes of emotion. Table 15 shows the results of our
binary classification experiment. It is interesting to observe that in a random sample of
tweets the majority does in fact contain identifiable emotion.

We also evaluate the accuracy of our binary classifier through a user study. We ran-
domly select a sample set of general tweets including 50 tweets from the dataset described
in Table 15. Then we ask 25 graduate students to manually classify them. They classified
each tweet into two groups namely, emotion-present tweets versus emotion-free tweets
(i.e., tweets with explicit emotion versus tweets without any emotion). Fleiss-Kappa for
the labelers is 0.28 which shows a fair agreement. The manual label of each sample tweet
is selected based on the majority votes of labelers for that tweet. There were three tweets
which didn’t receive the absolute majority of the votes. We didn’t consider them in our
evaluation. After creating manual labels, we classified the selected sample tweets using
our binary classifier and compared them with manually classified results. The manual la-
bels served as the ground truth labels. We generated our binary classifier results using two
different lexicons LIWC and ANEW.

Table 16 shows the precision, recall and F-measure (β = 1) of the binary classifier
through comparison with the manual classification. As the results show, using a larger
lexicon (i.e., LIWC and ANEW) increased recall and F-measure, compared with using only
one lexicon. Therefore for the binary classification task we use a multi-lexicon by combin-
ing different lexicons. A larger lexicon increases recall, but may decrease precision.

98 Dissertation – Maryam Hasan

Total
Tweets

After pre-
processing

Emotion
Tweets

No-emotion
Tweets

Number 105,134 104,924 56,472 48,452
Percent 100% 99.8% 53.7% 46.1%
Table 15: Results of binary classification in live stream of tweets

Lexicon Precision Recall F-Measure
LIWC 93% 77% 84.3%
ANEW 74% 82% 77.8%
LIWC&
ANEW

78% 95% 85.6%

Table 16: Evaluating binary classification results by comparing them with manually classification
results

5.3.2 Case Study: Detecting Emotion-bursts in Live Tweet Streams

Using EmotexStream we are able to classify live streams of tweets in real-time. We now
use this system to measure and analyze public emotion in a specific location. The objective
of this experiment is to observe the temporal distribution of crowd emotion and detect
important moments during the real-life events. We select the death of Eric Garner in New
York 4 which stirred public protests and rallies with charges of police brutality. Eric Garner
died after a police officer put him in a choke-hold, which caused many discussions on
social media. On December 3, 2014, a grand jury decided not to indict the police officer.
We utilize the Twitter search API to search for tweets containing a specified set of hashtags.
We collected 4K tweets containing the hashtag “Garner” from November 24 2015 until
January 5 2015 posted in New York. After collecting tweets we classify them using our
EmotexStream model (see Section 5.1). Then, the emotion-classified tweets are aggregated
into a daily-based histogram. Finally, using the methodology described in Section 5.2 we
measure public emotion and detect emotion-critical moments.

Figure 30 presents the temporal changes of different classes of emotion in New York
during the selected event. The important moments are also specified in this figure. The dis-
tribution shows a predominance of sad and angry emotions over happy emotion in many
days during the event. In order to predict the important moments as emotion bursts, we
apply a sliding window Wevent of length one day over the emotion stream of tweets aggre-
gated in daily bins, as described in Section 5.2. Also a reference weekly window Wgeneral

is applied over the general stream of tweets to calculate the average rate of each emotion
class. Then, we continuously monitor the frequency rate Epublic(Tc − Wevent, T c, L,Ec1)

over time for each emotion class Ec1. Whenever this rate for an emotion class exceeds the

4https://en.wikipedia.org/wiki/Death of Eric Garner

Dissertation – Maryam Hasan 99

upper threshold of β or falls beneath the lower limit α, an emotion burst is reported.

Table 17 presents the days of abrupt changes in happiness. The second row shows
the frequency rate of emotion bursts which are out of range. The last row shows the low
and high boundaries. Comparing the results of this table with the important moments
specified in Figure 30 confirms that our method is able to detect emotion-critical moments.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

No
v_
24
	

No
v_
25
	

No
v_
26
	

No
v_
27
	

No
v_
28
	

No
v_
29
	

No
v_
30
	

De
c_
1	

De
c_
2	

De
c_
3	

De
c_
4	

De
c_
5	

De
c_
6	

De
c_
7	

De
c_
8	

De
c_
9	

De
c_
10
	

De
c_
11
	

De
c_
12
	

De
c_
13
	

De
c_
14
	

De
c_
15
	

De
c_
16
	

De
c_
17
	

De
c_
18
	

De
c_
19
	

De
c_
20
	

De
c_
21
	

De
c_
22
	

De
c_
23
	

De
c_
24
	

De
c_
25
	

De
c_
26
	

De
c_
27
	

De
c_
28
	

De
c_
29
	

De
c_
30
	

De
c_
31
	

Ja
n_

1	

Ja
n_

2	

Ja
n_

3	

Ja
n_

4	

Ja
n_

5	

Normalized	
 Frequency	
 Happy	

Angry	

Sad	

Police	
 officer	

resigned	
 with	

no	
 severance	

Two	
 NewYork	

officers	
 were	
 killed	

Grand	
 jury	
 decided	
 not	
 to	
 indict	

police	
 officer	
 who	
 put	
 Eric	
 Garner	

in	
 chock	

Grand	
 jury	

decided	
 not	

to	
 indict	

police	
 officer	

who	
 shooted	

Michael	

Brown	

Figure 30: Changes of emotion about selected sad events in New York

Date Nov 26 Nov 29 Dec 19 Dec 20 Dec 27 Dec 28 Dec 30
Happy
Rate

210 175 576 462 463 360 503

Boundary
(α, β)

(360,
936)

(400,
1040)

(641,
1668)

(753,
1957)

(573,
1491)

(461,
1199)

(561,
1459)

Table 17: Detected burst changes in happiness

5.4 Conclusion

We develop a two-stage framework called EmotexStream to classify live streams of tweets.
First it separates tweets with explicit emotion from tweets without any emotion using a
binary classifier. Then it utilizes our emotion classification models to classify the tweets
with explicit emotion into fine-grained emotion classes. Moreover, we propose an online
method to measure public emotion and detect emotion-intensive moments in streams of
text messages which can be used for online emotion tracking.

Finally, we evaluate EmotexStream framework by running some case studies. To eval-
uate EmotexStream, we deploy it to measure crowd emotion and detect emotion-intensive
moments during several real-life events in some cities in US. The evaluation results show
that our proposed method is able to detect emotion-intensive moments during the selected

100 Dissertation – Maryam Hasan

events.

Dissertation – Maryam Hasan 101

6 Conclusion and Future Directions

In this dissertation, we have made contributions to the area of emotion analysis in natural
language messages.

This chapter concludes the work described in this dissertation. A brief summary of
contributions and the research impact are presented in Sections 6.1 and 6.2. Avenues of
future work are discussed in Section 6.3.

6.1 Contributions

In this research we first utilized linear supervised learning to detect emotion in texts, and
the idea of considering Twitter hashtags as automatic emotion labels [44, 45]. We validated
the effectiveness of utilizing our hashtag-based labeling concept through two user studies,
one with psychology experts and the other with the general crowd [43].

We then extend our Emotex system and develop a framework, called EmotexStream
[45, 46] to analyze emotion in live streams of text messages. We propose an online method
to measure public emotion and detect emotion-intensive moments. To evaluate Emo-
texStream, we deploy it to measure public emotion and investigate its temporal distri-
bution during several real-life events in a geographic location (e.g., a city). The evaluation
results show that our proposed method is able to detect emotion-intensive moments dur-
ing the events.

Furthermore, we studied deep learning models to classify emotion in texts. We uti-
lized transfer learning to fine-tune the pre-trained models. We presented and evaluated
different methods for transfer learning scenarios. We utilized state-of-the-art pre-trained
models including USE and BERT and fine-tune them for our emotion classification task us-
ing our domain-specific emotion datasets. Experimental results and analysis demonstrate
the effectiveness of the fine-tuned models. Created models were able to achieve over 91%
accuracy for multi-class emotion classification on test dataset.

In particular, we made the following major contributions in this dissertation:

• Overcoming the vague boundaries of emotion classes: We address this issue using a
two-pronged approach. First, we define the emotion classes based on the Circumplex
model of affect [16]. Instead of a small number of discrete categories, this model
defines the emotion in terms of latent dimensions (e.g., arousal and valence). Second,
a soft classification approach is proposed to measure the probability of assigning a
message into each emotion class, in addition to a typical classification that simply
assigns one single emotion class to each text message in a deterministic manner.

102 Dissertation – Maryam Hasan

• Proposed a distant supervision method to collect labeled data: We conjecture that
emotional hashtags inserted by authors indicate the main emotion expressed by their
Twitter message. This approach overcomes the need for manual labeling and yields a
completely automatic scheme to obtain large amounts of labeled data. This strategy
could equally be applied in other applications where labeling is required to automat-
ically obtain large amounts of supervised data.

• Emotion detection using supervised machine learning: We develop the Emotex sys-
tem to automatically classify emotion expressed in text messages. Emotex uses sparse
one-hot model to represent feature vectors. The features are selected based on a pre-
defined set of emotion lexicons. We train emotion classification models and report
their soft and hard classification results. We evaluate the classification accuracy of
Emotex by comparing it with the lexical approach. Classification accuracy of Emotex
is about 90%, while the accuracy of the lexical approach is about 66%.

• Emotion detection using neural transfer learning: We develop a deep learning frame-
work called DeepEmotex to classify emotion in text messages. DeepEmotex learns
emotion-specific features based on the input textual context using sequential trans-
fer learning. For this, DeepEmotex develops methods for fine-tuning the pre-trained
language models to learn emotion-specific features. We analyze the adaptation or
fine-tuning phase during which the pre-trained knowledge is transferred to our emo-
tion classification task. Using the state-of-the-art pre-trained models, we achieve 92%
classification accuracy on our test dataset. DeepEmotex models achieved a higher
classification accuracy than Emotex by more than 2%.

We also evaluate the performance of DeepEmotex models in classifying emotion in
the benchmark datasets. DeepEmotex models were able to correctly classify emotion
in 70% of the samples in EmoInt benchmark dataset.

• Emotion-burst detection during social events: We develop EmotexSream framework
to classify live streams of tweets. We propose an online method to measure public
emotion and detect emotion-intensive moments. Our method can be used for online
emotion tracking during social events. We evaluate EmotexStream framework by
conducting several case studies using live and unfiltered streams of tweets during
real-life events.

6.2 Impact of Research

Social networks such as Twitter provide valuable information to observe crowd emotion
and behavior and study a variety of human behavior and characteristics [123]. Such net-

Dissertation – Maryam Hasan 103

works are appropriate data sources for studying the emotions of individuals as well as
larger populations. Interesting applications of behavioral studies include detecting mood
after a disaster, analyzing political mood, or understanding emotion about certain prod-
ucts.

Increasing evidence suggests that emotion detection and screening will be effective
in many health applications [25, 89, 41, 105]. The development of robust textual emo-
tion sensing technologies promises to have a substantial impact on public and individual
health and urban planning. Such emotion mining tools, once available, could potentially
be employed in a large variety of applications ranging from population level studies of
emotions, the provision of mental health counseling services over social media, and other
emotion management applications.

The census bureau and other polling organizations may be able to use the emotion min-
ing technology to estimate the percentage of people in a community experiencing certain
emotions and correlate this with current events and various other aspects of urban living
conditions. This type of technology can also enhance early outbreak warning for public
health authorities so that a rapid action can take place [56].

The emotion mining tools could also be used by counseling agencies to monitor emo-
tional states of individuals or to recognize anxiety or systemic stressors of populations [43].
For instance, university counseling centers could be warned early about distressed stu-
dents that may require further personal assessment.

Moreover, studying public emotion promises to be of great value in several fields from
social science, political science, public health research to market research, that are inter-
ested in aggregate emotion instead of individual cases. It could assist government agencies
in recognizing growing public fear or anger associated with a particular decision or event
or in helping them to understand the public’s emotional response toward controversial
issues or international affairs. In some cases rapidly gaining such insights as well as get-
ting a deeper understanding on trends associated with positive versus negative emotion
propagation across a population can be critical.

The analysis of emotion during real-life events helps to realize the public emotion re-
garding the event. Important events are often discussed widely in social networks. Pub-
lic emotion analysis can aid public health researchers by providing them with (1) a low-
cost method to detect emotion-critical events across different sub-populations; (2) useful
knowledge for identifying at-risk populations; and (3) a method to formulate new hy-
potheses about the impact of real-time events on populations.

104 Dissertation – Maryam Hasan

6.3 Future Directions

The work presented in this dissertation outlines emotion detection in text. While the al-
gorithms presented in this research represent significant progress in detecting emotion in
text documents, there are still many interesting research directions that deserve further
pursuit.

1. Sarcasm detection: Researchers on sarcasm detection work hard to identify sarcastic
comments with high accuracy, as human emotions and attitudes are often ambiguous
[2]. It is difficult for the machine to identify sarcastic statements. Sarcasm detection
is faced by the problem of limited-sized labeled training data. The problem of con-
structing manually labeled sarcasm datasets is even far more severe as sarcasm is
a remarkably rare positive class [2]. This makes sarcasm detection challenging for
supervised learning methods.

2. Mental disorder detection: An interesting application of this research is to identify
mental disorders. Social networks contain a large corpus of textual data that is rich
with emotional content, which can be mined for a variety of purposes. Such net-
works are appropriate data sources for behavioral studies, especially for studying
emotions of individuals as well as larger populations. Therefore, social networks
such as Twitter provide valuable information to observe crowd emotion and behav-
ior and study a variety of human behavior and characteristics [123].

3. Enhanced embeddings: One possible way of further enhancing the text represen-
tations, or specifically word embeddings, includes exploring dynamic embeddings,
where the learned embeddings can be tweaked or updated with respect to evolv-
ing connotation of words over time [132]. Specifically, each word in a different time
frame (e.g., years) is represented by a different vector. For example, apple which
was traditionally only associated with fruits, is now also associated with a technol-
ogy company. For this reason, understanding and tracking word evolution is useful
for time-aware knowledge extraction tasks (e.g., public emotion analysis), and other
applications in text mining. To this end, word embeddings can be learned with a
temporal bent, for capturing time-aware meanings of words.

Yet another avenue of future work could explore topic-enhanced word embeddings
[67], where topic information is incorporated along with emotion information in or-
der to generate more coherent text representations. The basic idea of topic-aware
word embeddings is that, we allow each word to have different embeddings under
different topics. For example, the word apple indicates a fruit under the topic food,
and indicates a company under the topic information technology (IT).

Dissertation – Maryam Hasan 105

4. Multi-Source domain adaptation: With the advent of multiple emotion detection cor-
pora, multi-source domain adaptation provides an interesting future research direc-
tion. Multi-source domain adaptation is a setting where data from not one but multi-
ple source domains are available for training. By leveraging the variability from mul-
tiple data sources collected under different contexts, multi-source emotion learning
might be able to provide robust and global systems. Multi-source emotion learning
can also lay a foundation for modeling various aspects of human behavior other than
emotion (e.g., mood, anxiety), where only a limited number of datasets with a small
number of data samples are available. Multi-source domain adaptation has not been
explored for automatic emotion detection task, which makes it a great future research
direction.

5. Unifying emotion labels in different domains: A potential challenge in automatic
emotion recognition lies in the fact that the various datasets might include different
types of emotional labels. This challenge can introduce high mismatch among dif-
ferent domains. Understanding and modeling associations between cross-domain
emotions can potentially contribute toward more accurate emotion inferences in real-
life. Synchronizing the various spectrum of emotion may provide additional bene-
fits, which we leave for future exploration.

6. Cross-Cultural and Cross-Linguistic emotion detection: Emotions can be expressed
in different ways across different cultures and languages. The relation of a word to
emotion concepts may depend on cultural aspects that can be inferred from extensive
word usage rather than from what can be found in dictionaries. Cross-language
computational studies are challenging, compelling, and they can have an important
practical value, for example when addressing topics such as emotions, negotiation
and conflict. It would be beneficial to examine potential discrepancies related to the
linguistic style for building global emotion recognition systems across cultures.

106 Dissertation – Maryam Hasan

References

[1] M. Abdul-Mageed and L. Ungar. Emonet: Fine-grained emotion detection with
gated recurrent neural networks. In Proceedings of the 55th annual meeting of the asso-
ciation for computational linguistics (volume 1: Long papers), pages 718–728, 2017.

[2] G. Abercrombie and D. Hovy. Putting sarcasm detection into context: The effects of
class imbalance and manual labelling on supervised machine classification of twitter
conversations. In Proceedings of the ACL 2016 student research workshop, pages 107–113,
2016.

[3] C. C. Aggarwal and C. Zhai. Mining text data. Springer Science & Business Media,
2012.

[4] A. Agrawal and A. An. Unsupervised emotion detection from text using semantic
and syntactic relations. In Proceedings of the The 2012 IEEE/WIC/ACM International
Joint Conferences on Web Intelligence and Intelligent Agent Technology-Volume 01, pages
346–353. IEEE Computer Society, 2012.

[5] H. Al-Omari, M. A. Abdullah, and S. Shaikh. Emodet2: Emotion detection in english
textual dialogue using bert and bilstm models. In 2020 11th International Conference
on Information and Communication Systems (ICICS), pages 226–232. IEEE, 2020.

[6] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin, B. C. Van Es-
esn, A. A. S. Awwal, and V. K. Asari. The history began from alexnet: A comprehen-
sive survey on deep learning approaches. arXiv preprint arXiv:1803.01164, 2018.

[7] S. Aman and S. Szpakowicz. Identifying expressions of emotion in text. In Interna-
tional Conference on Text, Speech and Dialogue, pages 196–205. Springer, 2007.

[8] A. Arnold, R. Nallapati, and W. W. Cohen. A comparative study of methods for
transductive transfer learning. In ICDM Workshops, pages 77–82, 2007.

[9] S. Arora, Y. Liang, and T. Ma. A simple but tough-to-beat baseline for sentence
embeddings. 2016.

[10] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[11] A. Baevski, S. Edunov, Y. Liu, L. Zettlemoyer, and M. Auli. Cloze-driven pretraining
of self-attention networks. arXiv preprint arXiv:1903.07785, 2019.

[12] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[13] L. Barbosa and J. Feng. Robust sentiment detection on twitter from biased and noisy
data. In Proceedings of the 23rd ACL: Posters, pages 36–44. Association for Computa-
tional Linguistics, 2010.

Dissertation – Maryam Hasan 107

[14] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–
1828, 2013.

[15] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language
model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

[16] J. Bollen, H. Mao, and A. Pepe. Modeling public mood and emotion: Twitter senti-
ment and socio-economic phenomena. ICWSM, 11:450–453, 2011.

[17] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large annotated corpus for
learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

[18] M. M. Bradley and P. J. Lang. Affective norms for english words (anew): Instruction
manual and affective ratings. Technical report, Citeseer, 1999.

[19] J. Brown. Classifiers and their metrics quantified. Molecular informatics, 37(1-
2):1700127, 2018.

[20] R. A. Calvo and S. Mac Kim. Emotions in text: dimensional and categorical models.
Computational Intelligence, 29(3):527–543, 2013.

[21] L. Canales, C. Strapparava, E. Boldrini, and P. Martnez-Barco. Exploiting a boot-
strapping approach for automatic annotation of emotions in texts. In Data Science
and Advanced Analytics (DSAA), 2016 IEEE International Conference on, pages 726–734.
IEEE, 2016.

[22] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant,
M. Guajardo-Cespedes, S. Yuan, C. Tar, et al. Universal sentence encoder. Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018.

[23] A. Chatterjee, K. N. Narahari, M. Joshi, and P. Agrawal. Semeval-2019 task 3: Emo-
context contextual emotion detection in text. In Proceedings of the 13th International
Workshop on Semantic Evaluation, pages 39–48, 2019.

[24] D. Chicco and G. Jurman. The advantages of the matthews correlation coefficient
(mcc) over f1 score and accuracy in binary classification evaluation. BMC genomics,
21(1):6, 2020.

[25] M. D. Choudhury, M. Gamon, S. Counts, and E. Horvitz. Predicting depression via
social media. In ICWSM’13. The AAAI Press, 2013.

[26] R. Collobert and J. Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th international
conference on Machine learning, pages 160–167. ACM, 2008.

[27] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natu-
ral language processing (almost) from scratch. Journal of Machine Learning Research,
12(Aug):2493–2537, 2011.

108 Dissertation – Maryam Hasan

[28] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes. Supervised learning
of universal sentence representations from natural language inference data. Pro-
ceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2017.

[29] A. M. Dai and Q. V. Le. Semi-supervised sequence learning. In Advances in neural
information processing systems, pages 3079–3087, 2015.

[30] M. De Choudhury, S. Counts, and M. Gamon. Not all moods are created equal!
exploring human emotional states in social media. In ICWSM’12, 2012.

[31] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics, 2018.

[32] P. S. Dodds and C. M. Danforth. Measuring the happiness of large-scale written
expression: Songs, blogs, and presidents. Journal of happiness studies, 11(4):441–456,
2010.

[33] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf:
A deep convolutional activation feature for generic visual recognition. In Interna-
tional conference on machine learning, pages 647–655, 2014.

[34] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou, and H.-W.
Hon. Unified language model pre-training for natural language understanding and
generation. arXiv preprint arXiv:1905.03197, 2019.

[35] P. Ekman. Basic emotions. Handbook of cognition and emotion, 98:45–60, 1999.

[36] B. Felbo, A. Mislove, A. Søgaard, I. Rahwan, and S. Lehmann. Using millions of
emoji occurrences to learn any-domain representations for detecting sentiment, emo-
tion and sarcasm. In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 1615–1625, 2017.

[37] A. Go, R. Bhayani, and L. Huang. Twitter sentiment classification using distant su-
pervision. CS224N Project Report, Stanford, pages 1–12, 2009.

[38] Y. Goldberg and O. Levy. word2vec explained: Deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

[39] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT
press Cambridge, 2016.

[40] H. Gunes, B. Schuller, M. Pantic, and R. Cowie. Emotion representation, analysis
and synthesis in continuous space: A survey. In Automatic Face & Gesture Recognition
and Workshops (FG 2011), 2011 IEEE International Conference on, pages 827–834. IEEE,
2011.

Dissertation – Maryam Hasan 109

[41] B. Guthier, R. Alharthi, R. Abaalkhail, and A. El Saddik. Detection and visualization
of emotions in an affect-aware city. In Proceedings of the 1st International Workshop
on Emerging Multimedia Applications and Services for Smart Cities, pages 23–28. ACM,
2014.

[42] M. U. Gutmann and A. Hyvärinen. Noise-contrastive estimation of unnormalized
statistical models, with applications to natural image statistics. Journal of Machine
Learning Research, 13(Feb):307–361, 2012.

[43] M. Hasan, E. Agu, and E. Rundensteiner. Using hashtags as labels for supervised
learning of emotions in twitter messages. In Proceedings of the ACM SIGKDD Work-
shop on Healthcare Informatics, HI-KDD, 2014.

[44] M. Hasan, E. Rundensteiner, and E. Agu. Emotex: Detecting emotions in twitter
messages. In Proceedings of the Sixth ASE International Conference on Social Computing
(SocialCom 2014). Academy of Science and Engineering (ASE), USA, 2014.

[45] M. Hasan, E. Rundensteiner, and E. Agu. Automatic emotion detection in text
streams by analyzing twitter data. International Journal of Data Science and Analyt-
ics, 7(1):35–51, 2019.

[46] M. Hasan, E. Rundensteiner, X. Kong, and E. Agu. Using social sensing to discover
trends in public emotion. In 2017 IEEE 11th International Conference on Semantic Com-
puting (ICSC), pages 172–179. IEEE, 2017.

[47] H. He, K. Gimpel, and J. Lin. Multi-perspective sentence similarity modeling with
convolutional neural networks. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1576–1586, 2015.

[48] Y. He, L.-C. Yu, K. R. Lai, and W. Liu. Yzu-nlp at emoint-2017: Determining emotion
intensity using a bi-directional lstm-cnn model. In Proceedings of the 8th Workshop
on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages
238–242, 2017.

[49] F. Hill, K. Cho, and A. Korhonen. Learning distributed representations of sentences
from unlabelled data. arXiv preprint arXiv:1602.03483, 2016.

[50] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[51] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo,
M. Attariyan, and S. Gelly. Parameter-efficient transfer learning for nlp. arXiv
preprint arXiv:1902.00751, 2019.

[52] J. Howard and S. Ruder. Universal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146, 2018.

[53] B. Hu, Z. Lu, H. Li, and Q. Chen. Convolutional neural network architectures for
matching natural language sentences. In Advances in neural information processing
systems, pages 2042–2050, 2014.

110 Dissertation – Maryam Hasan

[54] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III. Deep unordered compo-
sition rivals syntactic methods for text classification. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 1681–1691,
2015.

[55] T. Joachims. Making Large-Scale SVM Learning Practical. In B. Schölkopf, C. J.
Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning,
Cambridge, MA, USA, 1999. MIT Press.

[56] N. Kanhabua and W. Nejdl. Understanding the diversity of tweets in the time of out-
breaks. In Proceedings of the 22nd international conference on World Wide Web companion,
pages 1335–1342. International World Wide Web Conferences Steering Committee,
2013.

[57] Y. Kim. Convolutional neural networks for sentence classification. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1746–1751, 2014.

[58] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fi-
dler. Skip-thought vectors. In Advances in neural information processing systems, pages
3294–3302, 2015.

[59] M. Köper, E. Kim, and R. Klinger. Ims at emoint-2017: Emotion intensity prediction
with affective norms, automatically extended resources and deep learning. In Pro-
ceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and
Social Media Analysis, pages 50–57, 2017.

[60] E. Kouloumpis, T. Wilson, and J. Moore. Twitter sentiment analysis: The good the
bad and the omg! In ICWSM’11. The AAAI Press, 2011.

[61] S. Lai, L. Xu, K. Liu, and J. Zhao. Recurrent convolutional neural networks for text
classification. In AAAI, volume 333, pages 2267–2273, 2015.

[62] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. Albert: A
lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

[63] Q. Le and T. Mikolov. Distributed representations of sentences and documents. In
Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages
1188–1196, 2014.

[64] Y. Li, C.-Y. Chen, and W. W. Wasserman. Deep feature selection: Theory and appli-
cation to identify enhancers and promoters. In International Conference on Research in
Computational Molecular Biology, pages 205–217. Springer, 2015.

[65] Z. C. Lipton, J. Berkowitz, and C. Elkan. A critical review of recurrent neural net-
works for sequence learning. arXiv preprint arXiv:1506.00019, 2015.

Dissertation – Maryam Hasan 111

[66] H. Liu, H. Lieberman, and T. Selker. A model of textual affect sensing using real-
world knowledge. In Proceedings of the 8th international conference on Intelligent user
interfaces, pages 125–132. ACM, 2003.

[67] Y. Liu, Z. Liu, T.-S. Chua, and M. Sun. Topical word embeddings. In Twenty-ninth
AAAI conference on artificial intelligence. Citeseer, 2015.

[68] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

[69] L. Logeswaran and H. Lee. An efficient framework for learning sentence represen-
tations. Sixth International Conference on Learning Representations (ICLR), 2018.

[70] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G. Zhang. Transfer learning using
computational intelligence: a survey. Knowledge-Based Systems, 80:14–23, 2015.

[71] L. Lucy and J. Gauthier. Are distributional representations ready for the real
world? evaluating word vectors for grounded perceptual meaning. arXiv preprint
arXiv:1705.11168, 2017.

[72] L. Luo and Y. Wang. Emotionx-hsu: Adopting pre-trained bert for emotion classifi-
cation. arXiv preprint arXiv:1907.09669, 2019.

[73] C. Ma, H. Prendinger, and M. Ishizuka. Emotion estimation and reasoning based on
affective textual interaction. In Affective computing and intelligent interaction, pages
622–628. Springer, 2005.

[74] B. McCann, J. Bradbury, C. Xiong, and R. Socher. Learned in translation: Contex-
tualized word vectors. In Advances in Neural Information Processing Systems, pages
6294–6305, 2017.

[75] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word represen-
tations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[76] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. Recurrent neural
network based language model. In Eleventh annual conference of the international speech
communication association, 2010.

[77] T. Mikolov, S. Kombrink, L. Burget, J. Černockỳ, and S. Khudanpur. Extensions of
recurrent neural network language model. In 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5528–5531. IEEE, 2011.

[78] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

[79] T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities in continuous space word
representations. In Proceedings of the 2013 Conference of the North American Chapter of

112 Dissertation – Maryam Hasan

the Association for Computational Linguistics: Human Language Technologies, pages 746–
751, 2013.

[80] A. Mnih and K. Kavukcuoglu. Learning word embeddings efficiently with noise-
contrastive estimation. In Advances in neural information processing systems, pages
2265–2273, 2013.

[81] A. Mnih and Y. W. Teh. A fast and simple algorithm for training neural probabilistic
language models. arXiv preprint arXiv:1206.6426, 2012.

[82] S. M. Mohammad. # emotional tweets. In Proceedings of the First Joint Conference on
Lexical and Computational Semantics, pages 246–255. Association for Computational
Linguistics, 2012.

[83] S. M. Mohammad and F. Bravo-Marquez. WASSA-2017 shared task on emotion in-
tensity. In Proceedings of the Workshop on Computational Approaches to Subjectivity, Sen-
timent and Social Media Analysis (WASSA), Copenhagen, Denmark, 2017.

[84] A. Neviarouskaya, H. Prendinger, and M. Ishizuka. Textual affect sensing for so-
ciable and expressive online communication. In Affective Computing and Intelligent
Interaction, pages 218–229. Springer, 2007.

[85] F. A. Nielsen. A new anew: evaluation of a word list for sentiment analysis in mi-
croblogs. In Proceedings of the ESWC2011 Workshop on ’Making Sense of Microposts’:
Big things come in small packages, volume 718, pages 93–98, May 2011.

[86] M. Pagliardini, P. Gupta, and M. Jaggi. Unsupervised learning of sentence embed-
dings using compositional n-gram features. arXiv preprint arXiv:1703.02507, 2017.

[87] A. Pak and P. Paroubek. Twitter as a corpus for sentiment analysis and opinion
mining. In Proceedings of the Seventh conference on International Language Resources and
Evaluation (LREC’10), Valletta, Malta, may 2010. ELRA.

[88] S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

[89] M. Park, C. Cha, and M. Cha. Depressive moods of users portrayed in twitter. In
Proc. of the ACM SIGKDD Workshop on Healthcare Informatics, HI-KDD, 2012.

[90] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pages 1310–1318, 2013.

[91] J. W. Pennebaker, M. E. Francis, and R. J. Booth. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Associates, page 71, 2001.

[92] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word repre-
sentation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

Dissertation – Maryam Hasan 113

[93] M. Peters, S. Ruder, and N. A. Smith. To tune or not to tune? adapting pretrained
representations to diverse tasks. arXiv preprint arXiv:1903.05987, 2019.

[94] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-
moyer. Deep contextualized word representations. arXiv preprint arXiv:1802.05365,
2018.

[95] S. Poria, E. Cambria, and A. Gelbukh. Deep convolutional neural network textual
features and multiple kernel learning for utterance-level multimodal sentiment anal-
ysis. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 2539–2544, 2015.

[96] M. Purver and S. Battersby. Experimenting with distant supervision for emotion
classification. In Proceedings of the 13th EACL, pages 482–491. Association for Com-
putational Linguistics, 2012.

[97] A. Qadir and E. Riloff. Bootstrapped learning of emotion hashtags# hashtags4you.
WASSA 2013, page 2, 2013.

[98] Q. Qian, M. Huang, J. Lei, and X. Zhu. Linguistically regularized lstms for sentiment
classification. arXiv preprint arXiv:1611.03949, 2016.

[99] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving lan-
guage understanding by generative pre-training. URL https://s3-us-west-2. amazon-
aws. com/openai-assets/researchcovers/languageunsupervised/language understanding pa-
per. pdf, 2018.

[100] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models
are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

[101] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

[102] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,
and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[103] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084, 2019.

[104] Y. Ren, Y. Zhang, M. Zhang, and D. Ji. Context-sensitive twitter sentiment classifica-
tion using neural network. In AAAI, pages 215–221, 2016.

[105] B. Resch, A. Summa, P. Zeile, and M. Strube. Citizen-centric urban planning
through extracting emotion information from twitter in an interdisciplinary space-
time-linguistics algorithm. Urban Planning, 1(2):114–127, 2016.

114 Dissertation – Maryam Hasan

[106] S. Ruder, M. E. Peters, S. Swayamdipta, and T. Wolf. Transfer learning in natural lan-
guage processing. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Tutorials, pages 15–18, 2019.

[107] J. A. Russell. A circumplex model of affect. Journal of Personality and Social Psychology,
39:1161–1178, 1980.

[108] J. A. Russell and L. F. Barrett. Core affect, prototypical emotional episodes, and
other things called emotion: Dissecting the elephant. Journal of personality and social
psychology, 76(5):805, 1999.

[109] H. Saif, Y. He, and H. Alani. Alleviating data sparsity for twitter sentiment analysis.
CEUR Workshop Proceedings (CEUR-WS. org), 2012.

[110] A. Severyn and A. Moschitti. Twitter sentiment analysis with deep convolutional
neural networks. In Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 959–962. ACM, 2015.

[111] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. Re-
cursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods in natural language processing,
pages 1631–1642, 2013.

[112] C. Strapparava and R. Mihalcea. Learning to identify emotions in text. In Proceedings
of the 2008 ACM symposium on Applied computing, pages 1556–1560. ACM, 2008.

[113] C. Strapparava and A. Valitutti. Wordnet affect: an affective extension of wordnet. In
Proceedings of 4th International Conference on Language Resources and Evaluation, LREC,
volume 4, pages 1083–1086, May 2004.

[114] S. Subramanian, A. Trischler, Y. Bengio, and C. J. Pal. Learning general purpose dis-
tributed sentence representations via large scale multi-task learning. arXiv preprint
arXiv:1804.00079, 2018.

[115] M. Sundermeyer, R. Schlüter, and H. Ney. Lstm neural networks for language mod-
eling. In Thirteenth annual conference of the international speech communication associa-
tion, 2012.

[116] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In Advances in neural information processing systems, pages 3104–3112, 2014.

[117] J. Suttles and N. Ide. Distant supervision for emotion classification with discrete bi-
nary values. In International Conference on Intelligent Text Processing and Computational
Linguistics, pages 121–136. Springer, 2013.

[118] K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representations from
tree-structured long short-term memory networks. In IN PROC. ACL. Citeseer, 2015.

Dissertation – Maryam Hasan 115

[119] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin. Learning sentiment-specific
word embedding for twitter sentiment classification. In ACL (1), pages 1555–1565,
2014.

[120] Z. Teng, D. T. Vo, and Y. Zhang. Context-sensitive lexicon features for neural sen-
timent analysis. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 1629–1638, 2016.

[121] J. Turian, L. Ratinov, and Y. Bengio. Word representations: a simple and general
method for semi-supervised learning. In Proceedings of the 48th annual meeting of the
association for computational linguistics, pages 384–394. Association for Computational
Linguistics, 2010.

[122] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017.

[123] S. Wakamiya, L. Belouaer, D. Brosset, R. Lee, Y. Kawai, K. Sumiya, and C. Claramunt.
Measuring crowd mood in city space through twitter. In International Symposium on
Web and Wireless Geographical Information Systems, pages 37–49. Springer, 2015.

[124] J. Wang, L.-C. Yu, K. R. Lai, and X. Zhang. Dimensional sentiment analysis using a
regional cnn-lstm model. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), volume 2, pages 225–230, 2016.

[125] W. Wang, L. Chen, K. Thirunarayan, and A. P. Sheth. Harnessing twitter big data for
automatic emotion identification. In 2012 International Conference on Social Computing
(SocialCom), pages 587–592. IEEE, 2012.

[126] X. Wang, F. Wei, X. Liu, M. Zhou, and M. Zhang. Topic sentiment analysis in twitter:
a graph-based hashtag sentiment classification approach. In Proceedings of the 20th
ACM international conference on Information and knowledge management, pages 1031–
1040. ACM, 2011.

[127] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu. From paraphrase database to
compositional paraphrase model and back. Transactions of the Association for Compu-
tational Linguistics, 3:345–358, 2015.

[128] A. Williams, N. Nangia, and S. R. Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

[129] H. Xu, B. Liu, L. Shu, and P. S. Yu. Bert post-training for review reading comprehen-
sion and aspect-based sentiment analysis. arXiv preprint arXiv:1904.02232, 2019.

[130] Q. Yang, Y. Zhang, W. Dai, and S. J. Pan. Transfer learning. Cambridge University
Press, 2020.

[131] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. Xlnet:
Generalized autoregressive pretraining for language understanding. arXiv preprint
arXiv:1906.08237, 2019.

116 Dissertation – Maryam Hasan

[132] Z. Yao, Y. Sun, W. Ding, N. Rao, and H. Xiong. Dynamic word embeddings for
evolving semantic discovery. In Proceedings of the eleventh acm international conference
on web search and data mining, pages 673–681, 2018.

[133] T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep learning
based natural language processing. ieee Computational intelligenCe magazine, 13(3):55–
75, 2018.

[134] L. Zhang, S. Wang, and B. Liu. Deep learning for sentiment analysis: A survey. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4):e1253, 2018.

[135] H. Zhao, Z. Lu, and P. Poupart. Self-adaptive hierarchical sentence model. In Twenty-
Fourth International Joint Conference on Artificial Intelligence, 2015.

[136] C. Zhou, C. Sun, Z. Liu, and F. Lau. A c-lstm neural network for text classification.
arXiv preprint arXiv:1511.08630, 2015.

[137] S. Zhou, Q. Chen, and X. Wang. Active deep learning method for semi-supervised
sentiment classification. Neurocomputing, 120:536–546, 2013.

[138] Q. Zou, L. Ni, T. Zhang, and Q. Wang. Deep learning based feature selection
for remote sensing scene classification. IEEE Geoscience and Remote Sensing Letters,
12(11):2321–2325, 2015.

