
DigSafe Technical Manual

Remy Allegro, Nathaniel Breiter, Deanna Rice, Carl Runci, Yonatan Weiner

May 6, 2021

Contents

1 How to Use this Guide 2
1.1 Purpose of this Guide . 2
1.2 Audience . 2
1.3 Text Conventions . 2
1.4 User Attention Words . 2
1.5 Related Documentation . 2

2 Introduction 3
2.1 System Overview . 3

3 Cable Detection Arm 4
3.1 Mechanical . 4
3.2 Detector . 4

4 Spray Arm 7
4.1 Mechanical . 7
4.2 Electrical . 10
4.3 Code Base . 13
4.4 Spray Actuation . 14

5 Robot Control 15
5.1 Clearpath Husky Drivers . 15
5.2 Onboard Router . 15
5.3 Cellular Modem . 18
5.4 Jetson TX2 . 19
5.5 LiDAR . 20
5.6 GPS . 20
5.7 Rosbridge . 26
5.8 Raspberry Pi 4 . 27

6 Control Application 28
6.1 ArcMap Setup . 28
6.2 Developing Add-Ins for ArcMap . 31

1

1 How to Use this Guide

1.1 Purpose of this Guide

This document provides brief, step-by-step instructions for the development of the DigSafe Buried Cable
Detection robot with the intent to assist the following year’s MQP team in their next iteration. It is designed
to be a general guide of all the subsystems as they stand at the end of the 2020-21 DigSafe MQP team.

1.2 Audience

This guide is intended for upcoming MQP teams with the intent of providing a base platform to assist their
endeavor of the next iteration of the DigSafe Buried Cable Detection MQP.

1.3 Text Conventions

This guide uses the following conventions:

• Bold indicates user actions For example:
Type 0, then press bold: Enter for each of the remaining fields

• Italic text indicates new or important words and is also used for emphasis. For example:
Before analyzing, always prepare fresh matrix.

1.4 User Attention Words

Two user attentions words appear in WPI user documentation. Each word implies a particular level of
observation or action as described below:

Note: Provides information that may be of interest of help but is not critical to the use of the product.

IMPORTANT! Provides information that is necessary for proper instrument operation, accurate operating
procedures, or safe use of the robot.

1.5 Related Documentation

The paper contains numerous embedded links to GitHub repositories and some eternal links, some of which
are private. Members of a DigSafe MQP team can access that code by logging into GitHub, for all other
users the link will appear as not available.

The followings related documents are also utilized with this system but are not located specifically with a
subsystem:

• For details on operating the Husky A100 chassis see the Husky A100 User Guide. Important points
include battery charging, battery placement, e-stop operation, general operation, and safety guide-
lines.

• ”Dig Safe® is a not-for-profit clearinghouse that notifies participating utility companies of your plans
to dig. In turn, these utilities (or their contract locating companies) respond to mark out the location of
their underground facilities. Dig Safe is a free service, funded entirely by its member utility companies.”

A link to their website can be found here: DigSafe

• Eversource, our sponsor, has a mission to bring a strong commitment to providing safe, reliable and
sustainable electric, gas and water service.

A link to their website can be found here: Eversource

2

https://github.com/DigSafeMQP2020/HuskyA100-UserGuide
http://www.digsafe.com/
https://www.eversource.com/content/ema-c

2 Introduction

2.1 System Overview

Figure 1: CAD render of DigSafe Buried Cable Detection robot May 2021

Through this project we seek to design and construct a robot which is capable of assisting Eversource
and its technicians in their responsibility to mark buried power lines upon consumer request. Key to this
goal is the intention to automate the parts of the cable-marking task which do not require human skills or
judgement. This will allow the robot to work alongside a human operator, and free them to perform parts of
a cable marking task which are more difficult and cannot be easily automated. In support of this objective
of human-robot “coworking,” the robot we seek to design must perform its tasks quickly and efficiently, at
speeds at least equivalent to a human operator. Achieving this sort of speed would allow a technician-robot
pair to complete cable marking tasks significantly faster than a single technician is able to currently, pro-
viding Eversource with expanded capacity to mark cables without requiring them to hire a larger number
of technicians than they currently employ. Additionally, the development of user manuals, research of so-
cietal impacts, communication and project management, and navigating engineering projects while amidst
COVID-19 will provide an opportunity to develop personally in our soft skills as an engineer.

3

3 Cable Detection Arm

3.1 Mechanical

The Cable Detection Arm consists of a Vivax-Metrotech vLoc3 Pro-RTK cable detection wand, a turntable
system which rotates the wand across a 90 degree arc, and an Arduino-based microphone system which
interprets the sound produced by the detection wand to determine the presence or absence of a cable.

Figure 2: Exploded View of Cable Detection Wand

3.2 Detector

The Vivax-Metrotech vLoc3 Pro-RTK cable detector was supplied to us by Eversource along with charging
hardware and a swappable battery. This detector provides a variety of features and operational modes, and
has the capability to connect to GPS services and internet-based cloud services. The detector case also
holds an additional operation manual.

4

3.2.1 Operational Mode

In order to work with the microphone circuit we developed, the cable detector must be in ”Omni-Peak” mode.
This mode causes the detector to emit a 594Hz noise when it is not over an energized cable, and no noise
when it is over one. Our microphone circuit was designed with this in mind.

3.2.2 Microphone Circuit

Figure 3: Circuit Diagram of the Cable Detection Sound Sensor

The circuit shown above contains two major components - a filter which isolates the 594Hz signal from the
microphone, and an amplifier which scales the signal output by the filter to be from 0V to 5V, instead of
from 3.3V to 5V. The microphone itself is currently mounted on a miniature breadboard within an enclosure
designed to mount over the wand’s speaker.

5

Figure 4: Circuit and Microphone Mounted to Cable Detector

3.2.3 Codebase

The Arduino connected to the microphone circuit runs C code written in Visual Studio which runs a rolling
sum of the last 50 voltage readings from the amplifier. If this sum is greater that .06V, it considers the sound
to be on and publishes a uint16 ’1’ to the ”detector msg” topic via rosserial. If this sum is less than .06V, it
publishes a uint16 ’0’ instead.

6

4 Spray Arm

The following sections present the Spray Arm components in their state as of May 2021.The sections are
broken down in the four major elements of mechanical, electrical, code base, and spray actuation.

Figure 5: Spray Arm attached to robot

4.1 Mechanical

The spray arm is a 2DoF arm with links of identical length. At present, the link lengths are decided by the
print bed of a Prusa 3D printer (fitted to max X-Y capacity). The spray gun is attached at the end with a few
screws pinning it into a slot.

7

4.1.1 Exploded View & BOM

Figure 6: Exploded View of Arm Assembly

Num Part Quantity Link

1 3D Printed Base 1 CAD
2 Pololu Gear Motors 2* Pololu
3 Pololu Mounting Hub 2 Pololu
4 Thrust Bearing Washer 4 McMaster
5 Thrust Bearing 2 McMaster
6 3D Printed First Link 1 CAD
7 3D Printed Second Link 1 CAD

*The arm uses two different Pololu 37D Metal Gearmotors, a 131:1 gear ratio motor for the first link and a
70:1 motor for the second.

8

https://www.pololu.com/category/116/37d-metal-gearmotors
https://www.pololu.com/product/1999
https://www.mcmaster.com/5909K54/?SrchEntryWebPart_InpBox=5909K41
https://www.mcmaster.com/5909K41/?SrchEntryWebPart_InpBox=5909K41

4.1.2 Assembly of the Spray Arm

To duplicate, remodel, disassemble, or construct the spray arm, please see the assembly of the current
spray arm.

To assemble the spray arm physical model:

1. Attach appropriate 37D motors to each 3D printed link using M3 screws (Screwing farther than 3mm
into the motor can impact the gearing).

2. Glue the upper washers to the bottom of each link.
Note: We used a two part epoxy.

3. Attach the mounting hubs to the base and first link using M3 screws.
IMPORTANT! Make sure the set screw holes are lined up the the notches to access them later.

4. Set a washer and thrust bearing into the base and first link.
Neither was fastened down.

5. Put the first link on top of the base.
Make sure the flat side of the motor’s d-shaft is lined up with the mounting hub’s set screw holes.

6. Insert both the upper and lower set screws using the access notches.
Note: Loctite is highly recommended.

7. Repeat previous two steps attaching the second link to the first.

8. Mount Limit Switches, using plastic to plastic glue or M2 screws.
Note: The current first link has a limit switch mount built into the print, but due to an oversight using it
requires mounting the limit switch on the side.

9

4.2 Electrical

Control of the Spray Arm is done with a SAMD21 Dev board. Pin headers stuck in the breadboard offer
easy connect/disconnect for the motors and limit switches.

Figure 7: Spray Arm Control System

10

Figure 8: Spray Arm Control Wiring Diagram

11

4.2.1 Hardware

The following hardware was used as part of the control system.

Arduino: SparkFun SAMD21 Dev Breakout
Note: The SparkFun SAMD21 Mini Breakout would also work and has a smaller footprint. Hookup guides
for both can be found here.

Dual H-Bridge: Dual MC33926 Motor Driver Carrier

4.2.2 Motor Connections

Each joint in the arm is directly rotated with a motor. The motors are two Pololu branded DC motor and are
controlled with 12V output from the screw terminals on the MC33926. In order to control the motors:

• Each motor requires three (3) pins from the SAMD. Two (2) to indicate direction and one (1) for a
PWM wave.
Note: Make sure that one using a PWM capable pin on the SAMD

• The six(6) pin motor terminals are plugged directly into pin headers on the breadboard, as seen in
Figure 8.

4.2.3 Encoders

Each motor has an inline quadrature encoder used for position control of the joint. The quadrature encoder
power and output lines are also part of the six (6) pin motor terminals. To operate the encoders:

• Each encoder needs 5V power and a ground.

• The encoders have a ton of internal resistance, so a single 10K resistor tied to ground drops the output
from 5V to 3.3V.
This allows the 3.3V logic SAMD21 to read the value.

4.2.4 Limit Switches

There are two limit switches, used to calibrate the arm and prevent it crashing into the robot. We used these
limit switches from Odoo. They include:

• 3.3V power

• ground

• data line

Note: They are attached to the SAMD21 leading to a pin header for easy removal if needed.

12

https://www.sparkfun.com/products/13672
https://www.sparkfun.com/products/13664
https://learn.sparkfun.com/tutorials/samd21-minidev-breakout-hookup-guide/example-serial-ports
https://www.pololu.com/product/1213
https://odoo.cs.wpi.edu/shop/product/limit-switches-3-pins-852?search=limit

4.3 Code Base

See the README for the ros motor controller GitHub repository for information regarding Arduino control
of the Spray Arm.

We have also started implementing higher-level control located at the spray-control Github repository. This
code is not completed, but outlines a method for sending motor control instructions from shapes to the 2DoF
arm as shown in Figure 9. Additional node interactions and details are described in the README.md file of
the related repository.

Figure 9: Spray Arm Node Interaction

13

https://github.com/DigSafeMQP2020/ros_motor_controller
https://github.com/DigSafeMQP2020/spray-control

4.4 Spray Actuation

The trigger is actuated with a 6V high powered servo from Odoo. This aluminum servo horn is used as well
(the servo is powerful enough to destroy a plastic one). 40 degrees of travel is ideal for fully pressing and
depressing the trigger.

Here is an image of the final system:

Figure 10: Spray Actuation System

14

https://usa.banggood.com/4PCS-JX-PDI-HV5932MG-360-Coreless-30KG-Metal-Gear-Large-Torque-Digital-Servo-For-RC-Robot-p-1536342.html?cur_warehouse=CN
https://odoo.cs.wpi.edu/shop/product/25t-round-type-servo-horn-robot-arm-aluminum-alloy-cnc-standard-metal-rocker-servo-accessories-1421?search=servo

5 Robot Control

5.1 Clearpath Husky Drivers

We used the Husky ROS packages, see 5.4 for more information.

5.2 Onboard Router

Figure 11: tp-link AC1750

The router located on board the robot is a tp-link Archer C7/AC1750. In order to connect to the router and
use rosbridge v2 to communicate with the robot, you need to configure it correctly. The following section
walks through some changes we made and highlights important numbers to remember.

When the router is first turned on it has the user define key parameters. These are currently configured as
follows:
Admin: DigSafeWPI

SSID: digsafe_husky

Password: digsafe21

If the router is factory reset, you’ll need to redefine these.

To access the router’s settings, visit tplinkwifi.net after connecting to one of its Wi-Fi networks.

15

https://github.com/husky/husky
https://www.tp-link.com/us/home-networking/wifi-router/archer-c7/
tplinkwifi.net

5.2.1 Configuring the local network

You can change the network names and passwords using this menu. It’s suggested you have separate 2.4
and 5.2 GHz networks because some devices, such as a Raspberry Pi, only support 2.4.

5.2.2 Router IP

You’ll want to note the IP address being used by the router.

16

5.2.3 Static IP

This menu is used to force a connected computer to always be assigned the same internal IP. In the
screenshot above, a Raspberry Pi has been assigned 192.168.0.231 as its static internal IP. Which IP
number isn’t important, but you’ll want a consistent IP to port forward and to connect with rosbridge. Make
sure to note the exact local IP of the Jetson for use elsewhere.

5.2.4 Port Forwarding

To use rosbridge you’ll also need to forward the port being used as a websocket to allow access to devices
other than the Jetson. By default that’s port 9090, which is being forwarded in the screen shot above.

17

5.3 Cellular Modem

Figure 12: Netgear Cellular Modem

For the robot we used a NETGEAR 4G LTE Modem. After purchasing a prepaid 4G capable sim card, you’ll
want to activate it inside the modem through the provider’s website. To do so will require the ICCID located
on the card and the modem’s IMEI, which can be found on the bottom of the modem. Once a cell signal
is received, the modem should be connected to the router with an Ethernet cable to the router’s ”modem”
port.

18

https://www.netgear.com/home/mobile-wifi/lte-modems/lb1120/

5.4 Jetson TX2

The following are steps for installing Ubuntu 18.04 and all needed programs/files to get started working with
the Husky A100 using ROS.

To install Ubuntu 18.04 on the Jeston TX2:

1. Download L4T 32.5

2. Download and Install Jetpack
Note: See How to install JetPack for installing JetPack.

3. Place the Jetson on a flat work surface outside of the robot

4. Connect the Jetson to a monitor

5. Connect the Jetson to a mouse + keyboard combination device, or a USB hub and then a mouse and
Keyboard to the USB hub

6. Run Ubuntu 18.04 on a host computer

7. Install Nvidia SDK Manager

8. Register for an Nvidia Developer account if you have not already

9. Connect the Jetson to the host computer via a USB to micro USB cable (included with the Jetson)

10. Connect the Jetson to wall power using the included adapter

11. Place the Jetson in recovery mode by pressing and holding the REC button

12. Wait until the Jetson reboots to recovery mode.
There should be a black screen on the connected monitor

13. Open the SDK manager on the host computer.

14. Set the target hardware to JetsonTX2 (it should automatically detect one connected)

15. Click continue, and accept the terms

16. Click continue, and input your Sudo password if necessary

17. Wait for the process to finish. When it is done, the Jetson should boot through the standard Ubuntu
installation process.

18. Accept the licenses, and configure the Jetson as you would any other Linux machine

19. Once setup is complete, run ifconfig to find its IP address, and connect it to the internet

20. Once this process is finished, click finish on SDK manager

21. Run the following command in a terminal window on the Jetson:

$ curl -s https://raw.githubusercontent.com/clearpathrobotics/jetson_setup/

melodic/scripts/tx2_setup.sh | bash -s -- bash HUSKY$_$SETUP.sh

This will install the Husky control packages on the Jetson, along with ROS and other required pro-
grams

22. Wait for the Jetson to reboot. After this completes, it will be ready for installation into the Husky

23. Disconnect the Jetson from wall power after the reboot

24. Place the Jeston inside of the Husky’s service bay

19

https://developer.nvidia.com/embedded/linux-tegra-r325
https://developer.nvidia.com/embedded/jetpack
https://docs.nvidia.com/jetson/jetpack/install-jetpack/index.html
https://developer.nvidia.com/nvidia-sdk-manager

25. Connect the Jetson to the husky’s power supply with the power connector in the service bay

26. Connect the Jetson to the husky using an RS232 to USB converter to connect it the RS232 jack in
the service bay

27. Using the (known) IP of the Jetson, you may now remote into the Jetson and control the husky.

5.5 LiDAR

The robot is currently using a RPLidar S1 for navigation. Slamtec distributes a ROS package for all of their
LiDAR products that integrates well with Clearpath’s navigation stack and rViz. The LiDAR is mounted on a
3D printed base that elevates it over the spray arm.
Our fork: rplidar ros

5.6 GPS

The robot currently uses the Sparkfun GPS-RTK2 Board for GPS localization. Our implementation also
made use of an antenna and ground plate, purchased through Sparkfun.
Note: This implementation requires the use of a USB-C connection.

Figure 13: GPS Antenna Mounted to Robot

20

https://www.sparkfun.com/products/15872
https://github.com/DigSafeMQP2020/rplidar_ros
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/14986
https://www.sparkfun.com/products/17519

Figure 14: GPS Chip with Antenna Connected

21

5.6.1 Setting up for RTK

The Sparkfun GPS is set up to achieve centimeter level precision using ”real time corrections messages”
or RTCM. In the state of Massachusetts, the provider of these is MassDOT through the MaCORS network.
These corrections are available for free, but you’ll need to sign up for an account on their website. Alongside
your account username and password, you’ll need the url, port, and mountpoint for the corrections source
you want to use. That info can be found in the tables below. We found Northborough to be the closest site
to WPI.

Figure 15: Data Stream Options from MaCORS

22

https://macors.massdot.state.ma.us/SBC

Figure 16: Available Reference Stations

23

5.6.2 Testing GPS chip on Windows

To test the GPS on its own you can use u-center.

This is a GNSS evaluation tool made by the company responsible for the internals of our Sparkfun board.

You can find a tutorial walking though the setup and connection process on Sparkfun’s website.
Note: Although that tutorial is for an older board, the steps are the same.

After setting everything up, our output in the lab looked like this:

Figure 17: u-center from 85P MQP Lab

24

https://www.u-blox.com/en/product/u-center
https://learn.sparkfun.com/tutorials/getting-started-with-u-center-for-u-blox/all

Then you can add RTCM input to take advantage of the board’s RTK Capabilities.

To do this we used RTKLIB, which is a package of open-source RTK utilities.
Note: You’ll also need a Serial-to-USB adapter.

Another Sparkfun Tutorial walking though the process of wiring the adapter and setting up RTKNAVI can be
found here.

For comparison, our setup screens looked like this:

Figure 18: NTKNAVI Serial Settings

Figure 19: NTKNAVI NTRIP Settings

If the RTK light on the GPS starts flashing, it’s successfully receiving RTCM3 messages.
Note: If it turns off, it has a RTK fix, although this probably won’t occur in the lab

25

http://www.rtklib.com
https://learn.sparkfun.com/tutorials/gps-rtk-hookup-guide/all#connecting-the-gps-rtk-to-a-correction-source

5.6.3 GPS Through ROS

The robot uses a set of ROS drivers from ros-agriculture to communicate with the GPS and pass it RTK
corrections. Our forks of those ROS nodes can be found below.
ublox f9p (GPS Driver)
rtcm msgs (Driver Dependency)
ntrip ros (RTCM Corrections)

That last one will require a custom launch file indicating your MaCORS account details and the correc-
tions source you wish to use. Below you’ll find our launch file for reference.

<?xml version="1.0" encoding="UTF-8"?>

<launch>

<node pkg="ntrip_ros" type="ntripclient.py" name="ntrip_ros" output="screen">

<param name="rtcm_topic" value="/rtcm"/>

<param name="ntrip_server" value="macorsrtk.massdot.state.ma.us:31000"/>

<param name="ntrip_user" value="username"/>

<param name="ntrip_pass" value="password"/>

<param name="ntrip_stream" value="RTCM3_MANB"/>

<param name="nmea_gga"

value="$GPGGA,202506.081,4216.550,N,07147.990,W,1,12,1.0,0.0,M,0.0,M,,*72"/>↪→

</node>

</launch>

5.7 Rosbridge

The robot uses the Rosbridge v2 protocol to communicate with the control application (which will be detailed
in the following section) by sending JSON files over a WebSocket connection hosted on-board the robot.
Details about how to install and run a Rosbridge server can be found on the ROS wiki.

Currently the DigSafe robot hosts its RosBridge WebSocket on port 9090. To open that server on it’s own
run the following command on the Jetson.

$ roslaunch rosbridge_server rosbridge_websocket.launch

26

https://github.com/DigSafeMQP2020/ublox_f9p
https://github.com/DigSafeMQP2020/rtcm_msgs
https://github.com/DigSafeMQP2020/ntrip_ros
http://wiki.ros.org/rosbridge_suite/Tutorials/RunningRosbridge

5.8 Raspberry Pi 4

The robot has a Raspberry Pi 4 on board acting as a second ROS node which handles the GPS ROS
packages (see 5.6.3 for details on those packages and how to run them).

To set up the Raspberry Pi 4 and using it as a second ROS node:

1. Download the 18.04.5 LTS Server image

2. Flash the Raspberry Pi using the Raspberry Pi Imager

3. Follow the standard Ubuntu Server setup steps

4. From the fresh installation, run the following commands to setup ROS, setup ROS master connection
to the Jetson TX2, and install needed packages:

sudo add-apt-repository universe

sudo add-apt-repository multiverse

sudo add-apt-repository restricted

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" >

/etc/apt/sources.list.d/ros-latest.list'↪→

sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key

C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654↪→

sudo apt update

sudo apt install ros-melodic-ros-base

echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc

echo "export ROS_MASTER_URI='http://digsafe:11311'" >> ~/.bashrc

sudo echo "192.168.0.242 digsafe" >> /etc/hosts

source ~/.bashrc

sudo apt install python-rosdep python-rosinstall python-rosinstall-generator

python-wstool build-essential↪→

Note: If needed, replace the IP address with the corresponding IP address of the Jetson TX2

The Raspberry Pi 4 is now setup and ready to communicate and run distributed ROS nodes.

27

https://cdimage.ubuntu.com/releases/18.04/release/
https://www.raspberrypi.org/blog/raspberry-pi-imager-imaging-utility/
https://ubuntu.com/tutorials/install-ubuntu-server#1-overview

6 Control Application

For a more in depth tutortial on using ArcMap see the ArcGIS Desktop 10.8 quick start guide.

6.1 ArcMap Setup

Figure 20: ArcMap Main UI

To properly use the extension, you will need to install python packages to the ArcMap python environment.
To install the required packages please use the Manual Install or Pip Install sections below:

28

https://desktop.arcgis.com/en/arcmap/latest/get-started/setup/arcgis-desktop-quick-start-guide.htm

6.1.1 Manual Install

To install packages:

1. Open the python terminal within ArcMap (see Figure 21)

Figure 21: ArcMap Open Internal Python Terminal

2. Run the following command in the python terminal (Fig 22) to locate the ‘site-packages‘ directory

>> sys.path

29

Figure 22: ArcMap Python Terminal

3. Copy and paste any needed packages to the ‘site-packages‘ directory, ensuring that the top level of
the package contains an init .py file

6.1.2 Pip Install

Alternatively, you can also install them using the pip package manager.
To install pip:

1. Open a command prompt

2. Navigate to C:\Python27\ArcGIS10.8\Scripts in the command prompt

3. Run the following commands to install the required packages at their specific versions (These ver-
sions support Python 2.7, which is the latest version ArcMap can run)

> pip.exe install autobahn==19.11.2

> pip.exe install incremental==17.5.0

> pip.exe install roslibpy==1.1.0

> pip.exe install twisted==20.3.0

30

6.2 Developing Add-Ins for ArcMap

For detailed instructions on creating a Python Add-In for ArcMap see Creating a Python add-in application
extension from ESRI.

Our Add-In can be found here. The key file is located at Install/ArcGISAddins addin.py.

To install the Add-In:

1. Save your changes to the Python file

2. Optional: change version number in config.xml

3. Run the Python file makeaddin.py to generate the extension

4. Double-click the newly generated file ArcGISAddins.esriaddin to install in ArcMap

31

https://desktop.arcgis.com/en/arcmap/latest/analyze/python-addins/creating-an-add-in-application-extension.htm
https://desktop.arcgis.com/en/arcmap/latest/analyze/python-addins/creating-an-add-in-application-extension.htm
https://github.com/DigSafeMQP2020/arcmap-py

	How to Use this Guide
	Purpose of this Guide
	Audience
	Text Conventions
	User Attention Words
	Related Documentation

	Introduction
	System Overview

	Cable Detection Arm
	Mechanical
	Detector

	Spray Arm
	Mechanical
	Electrical
	Code Base
	Spray Actuation

	Robot Control
	Clearpath Husky Drivers
	Onboard Router
	Cellular Modem
	Jetson TX2
	LiDAR
	GPS
	Rosbridge
	Raspberry Pi 4

	Control Application
	ArcMap Setup
	Developing Add-Ins for ArcMap

