

Project Number. GFPMS08

Microsoft MQP

A Major Qualifying Project Report:

submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by:

Jared Renzullo

Tyler Boone

Date: 24 April 2008

Approved:

Professor Gary F. Pollice, Major Advisor

1. Microsoft

2. API

3. Power Management

Page i

Abstract

The MQP presented in this document was completed at Microsoft in Redmond, WA between

January and March 2008. The project was to design, implement, and test a power management

application programming interface (API) for use in the .NET framework. The API interfaces

with existing Windows APIs for power management, some of which are new to Microsoft

Windows Vista, to provide a limited subset of functionality to .NET developers.

Page ii

Acknowledgements

We’d like to thank Microsoft for providing us with the opportunity and resources to complete

this project. We’d also like to thank our mentor, Melitta Andersen and the BCL team, namely

Matt Ellis and Robert Villahermosa.

Page iii

Table of Contents

Abstract .. i
Acknowledgements ... ii
Table of Contents ... iii
List of Tables ... iv

1. Introduction ..1
2. Background ...3
3. Methodology ...9

3.1 Design .. 9

Original Design ... 9

Revised Design ... 12

Final Design ... 12

Design Decisions .. 12

UML (API only) .. 13

Usage Scenarios .. 14

3.2 Implementation .. 16

Details .. 16

Design Patterns .. 19

3.3 Testing ... 19

Testing Focuses .. 19

Test Design .. 21

Framework .. 21

Tools .. 21

Tactics .. 22

Implementation ... 23

Coverage .. 27

3.4 Example ... 28

4. Results and Analysis ...28
5. Conclusions ..30

6. Glossary ..32
7. References ..33

Page iv

List of Tables

Figure 1 ... 5

Figure 2: Shutdown Blocking Screen ... 8

Figure 3: Original API .. 10

Figure 4: Power Schemes & Power Settings .. 11

Figure 5: Final API ... 13

Figure 6 ... 15

Figure 7 ... 15

Figure 8 ... 15

Figure 9 ... 16

Figure 10 ... 25

Figure 11: Lines of Code .. 29

Page 1

1. Introduction

The .NET Framework is a programming framework which supports a variety of languages

including: C++, C#, Visual BASIC and Python; which are all currently among the top 10 most

popular programming languages (1). A programming framework is a system that application

developers can utilize to make writing applications easier. Frameworks differ from libraries in

that libraries are used along with code to accomplish a task, whereas applications can be said to

be “built upon” a framework. A framework thus provides a layer of abstraction to program

developers as opposed to simply a set of functionality. Managed code refers to all code written

on the .NET framework which is compiled to intermediate language (IL) and executed by the

Common Language Runtime (CLR). Unmanaged code refers to any code which is compiled

directly to machine code. In this MQP, we use the term “unmanaged code” to refer to C or C++

code compiled into Windows native executables. The .NET framework provides the ability for

managed code to interact with unmanaged code. The framework also encapsulates difficult

operations in a Base Class Library (BCL). The BCL simplifies common programming functions

such as file reading and writing, XML parsing, etc.

Microsoft introduced several new APIs as part of the Windows Vista operating system, one

of which is an updated power management API. The power management API allows code to

query the system’s current power state (i.e. battery, AC, etc), register for power notifications (i.e.

when the power source changes, when the battery life changes, etc), handle shutdown

notifications, and more. For this MQP, we designed, implemented, tested, and deployed an API

for managed code to easily access the unmanaged API. Currently in order to access Vista’s

power management API, .NET programmers have to use platform invoke (p/invoke) to directly

access the function calls. P/invoke requires the programmer to have knowledge of the .NET data

Page 2

marshaling system as well as Win32 data types and other advanced concepts. In an effort to

simplify access to Vista’s new power management features, Microsoft decided a managed API

should be developed which would encapsulate all aforementioned advanced concepts. We

worked as part of the BCL team to design this managed API. Normal project teams in the CLR

group are composed of a dedicated program manager, one or two developers and one or two

testers; however, we both acted as program manager, developer, and tester for the project.

The project began with the managed API’s initial design. The original intent was to utilize

the majority of the Win32 power management library’s functionality. After discussions with

members of the power management team in the Windows group, it was decided that much of the

original API’s functionality does not need to be exposed in a managed library. The managed

APIs are a means to make certain features easy to use for application developers, and some of the

low-level operations are more in the realm of systems developers. The new API supports

registering for various power notifications such as current power source changes and battery life

changes as well as querying for values directly.

The newly revised design was sent to a program manager on the BCL team for review. By

following his suggestions, the API was condensed into a centralized class which made the usage

scenarios simpler. After incorporating these changes, we conducted a design review where all

members of the BCL team had a chance to comment on the design. Present at this review were

developers, testers, technical writers, and program managers. Minimal changes were made to the

design as a result of the review.

After completing the design, the next step was to actually implement the API as well as

develop a test plan and test cases. The test plan contains an overview of the feature being tested

Page 3

as well as a description of how each component of the feature will be tested. Any specific notes

or boundary conditions to consider during testing are included in the spec.

The remainder of this document includes a detailed look at the API’s design, implementation,

and testing stages. Chapter 2, the background section, includes a more detailed look at the .NET

framework and the advanced Windows programming concepts that were encapsulated as a result

of the project. A brief history of Microsoft is also presented. In chapter 3, the methodology

section, details on what software engineering concepts and design patterns were utilized in the

design and development phases are included. A detailed look at the new managed API is given.

Code samples demonstrate usage of the new API. An in depth look at the design decisions made

during the design phase is also given. The methodology section also contains information about

the testing portion of the project and how certain hurdles specific to testing a power management

API were dealt with. Chapter 4, the results and analysis section, provides a look at the quality of

the code written for the API. Code metrics are discussed as well as reactions from the BCL team

on the final product. Chapter 5, the conclusions section, overviews the relative successes and

failures of the project as well as the lessons learned.

2. Background

Microsoft Corporation began as a partnership between two computer enthusiasts, Bill Gates

and Paul Allen in 1975. The company grew steadily during the 1970’s, shipping versions of

Microsoft BASIC on multiple platforms. In the early 1980’s, Microsoft developed the Microsoft

Disk Operating System (MS-DOS) which ran on the IBM personal computer as well as a

multitude of other platforms (2). Microsoft also developed software such as a word processor,

Page 4

spreadsheet application, and flight simulator. In 1985, Microsoft released the first version of its

operating system called Windows (2). In the 1990’s, eight versions of Windows were released,

starting with Windows 3.0 and ending with the release of Windows 98 Second Edition (3).

Today, the company generates over fifty billion dollars in revenue per year and is a clear leader

in software (4).

A dynamic-link library (DLL) is a Microsoft file type, meant to save both memory and disk

space. Code common to multiple programs is compiled to a DLL, loaded into memory, and then

used by multiple different processes. Microsoft Windows includes many different DLLs which

can be accessed by programs in order to interact with Windows’ features. The power

management API includes functions in several different DLLs such as PowrProf.dll,

Kernel32.dll, and User32.dll. For a C++ application to access Vista’s power management

features, the programmer includes the proper header files and links with the proper library files

(.lib). The necessary DLLs are accessed at runtime.

The managed API we created was written entirely in C#, a language created by Microsoft in

2001 for the .NET framework. C# is an object-oriented programming language, similar to both

Java and C++. Like Java, which runs on its virtual machine, C# runs on the .NET CLR. C# can

call functions written in unmanaged C++ using platform invoke (p/invoke). Essentially an

unmanaged DLL is imported and a C# signature is written which targets a function in the DLL.

The C# programmer needs to be aware of data marshaling, moving data from one language to

another. Windows programs written in C++ do not use the exact same data types as C#. At a

very basic level, the programmer enters the C# data types in the p/invoke signature which

correspond to the data types in the unmanaged function signature. For example, if the

unmanaged function has two parameters, a HANDLE and a SHORT, the managed signature will

Page 5

have an IntPtr and an Int16. Sometimes it is also necessary to explicitly tell the CLR how to

marshal some data types. For example, when filling a managed struct with data from an

unmanaged struct, if one of the members of the unmanaged struct is an eight bit boolean and the

managed version is an thirty-two bit bool, the data needs to be explicitly marshaled as one byte.

If the data is not explicitly marshaled, the managed bool will contain one byte from the proper

member as well as three bytes from the struct’s next member. Figure 1 shows an example

p/invoke signature that includes marshaling of parameters and the return type.

Figure 1

Windows Vista includes new power management functionality through its API for

developers. Programs are able to query the system for current power information i.e. the current

power source, current battery life, etc. In addition to querying current power information,

programs can register to receive notifications of six different power events. The first event that

can be registered is a power personality change event. A power personality can be one of three

values: High Performance, Power Saver, and Automatic. In the Windows control panel for

power management, users select a power plan to use. A power plan contains a set of values for

all power management settings. Every power plan (including user created ones) is assigned a

power personality, which identifies the power plan’s intent to programs. By registering for a

power personality change event, programs can modify their behavior to reflect the new power

personality. For example, if the power personality is changed from High Performance to Power

Page 6

Saver, a program might stop performing power intensive background tasks and use only

necessary functionality.

Another power event that programs can receive notifications for is a power source change

event. A power source can be AC power, a battery, or an Uninterruptable Power Source (UPS).

Programs should be aware when the power source changes for several reasons. If the power

source changes to a UPS, programs should immediately save all unsaved work and prepare for

the system to shutdown at any time. A UPS is very short term and is only meant to keep the

system on long enough after a power failure to be shut down properly. If relevant, programs

should also modify behavior when the power source changes from AC to battery. Programs

should do all they can to maximize battery life. In addition to a power source change, programs

can be notified when the battery life changes. How often the notification is sent is dependent on

the individual system, but battery life is always rounded to a whole percent. This notification

can be used, for instance, to prepare for unexpected shutdown when the battery life is low.

Programs can register for a system busy notification. This notification is sent when the

system is not likely to enter an idle state in the near future. It is mainly useful to programs

wanting to perform background tasks. If the system is already busy, it’s safe for background

tasks to be run since there is no danger of preventing the system from idling. Windows can also

send a notification when the system enters or exits away mode. This notification, however, is

not supported by our managed API as it was determined to be an infrequently used feature.

The last notification programs can register for is a change in monitor status. A notification is

sent whenever the system turns the monitor off because of user inactivity. It is also sent when

the monitor is turned back on. When the monitor is turned off, applications with graphics should

Page 7

stop rendering content to the screen in order to save power. When the monitor is turned back on,

rendering can continue. (5)

In Windows Vista, Microsoft introduced new shutdown blocking capabilities for programs.

Previously in Windows XP, programs were notified when a shutdown was occurring so they

could display a warning to the user for whatever reason, i.e. a notepad document was modified

but not saved or a CD was in the middle of burning. In Windows Vista, the process is more

streamlined. A distinct UI prompt is given to the user during a system shutdown. The UI shows

all currently open programs, each with an optional reason for why the program needs to remain

open. This can be viewed inFigure 2: Shutdown Blocking Screen. From this screen, shutdown

is either canceled or confirmed at which point all programs have five seconds before they are

automatically closed. Through the Windows API, programs are able to block shutdown

proactively and set a reason, which is displayed in the UI prompt. (6)

Page 8

Figure 2: Shutdown Blocking Screen

Page 9

3. Methodology

3.1 Design

Original Design

The original design was created in an effort to include (just about) everything in the Win32

power management API. We took great pains while creating this design to follow all the design

guidelines presented in the Framework Design Guidelines book (7). Following these rules, we

hardly had any properties (34) as compared to methods (188). While the book suggests using

Properties instead of getters and setters, it says not to use a property when the operation can take

longer than direct memory access. This design is massive and it is fortunate that we scaled it

down. Here are some metrics for the original design:

 Public methods: 188

 Public properties: 34

 Public fields: 0

 Public events: 6

 Public types: 24

o 19 classes

o 1 interface

o 4 enumerations

Page 10

Figure 3: Original API

Figure 3 comprises the managers and the custom EventArgs. In an effort to compartmentalize the

various functionalities the managers were broken into 4 submanagers. All of them were going to be

singletons available from the PowerManagers static class. Most of the events fire custom EventArgs

that contain information about the event. For instance, the BatteryLifeRemainingEventArgs contains

Page 11

the percentage of battery life remaining. The PowerSettingManager is used to create and modify

power settings as well as list the setting subgroups. The PowerSchemeManager is used to create and

modify power schemes.

Figure 4: Power Schemes & Power Settings

Figure 4 shows the structure of the power settings and power schemes. A Power scheme is a set

of values for each power setting for both AC power and DC power. There are two types of

power settings as noted by the PowerSettingType. EnumeratedStrings are power settings where

the user selects one of a given list of choices. BoundedIntegers are settings that have integral

values and can have a minimum and a maximum.

Page 12

Revised Design

The revised design was created after some feedback from the power management team in the

Windows group. They were concerned about the managed API providing too much low-level

functionality. With their help, we determined some of the primary scenarios for the managed

application developer. The revised design focused on those instead of trying to expose all of the

intricacies of the native API.

Final Design

After receiving feedback on our design from BCL program manager Justin van Patten, we

redesigned our API. Following a design review, the API’s design was finalized.

Design Decisions

The native Windows API allows programmers to block shutdown before one has been

initiated. When designing the shutdown blocking portion of the API, we considered several

possibilities. One possible design was to only allow for reactive shutdown blocking. Users

could register for two events using the API, SessionEnding and SessionEnded. The

SessionEnding event is triggered whenever a user initiates a system shut down or log off. The

SessionEnded event is triggered when the system is actually shutting down. In order to block

shutdown, a programmer would access the SessionEnding’s event argument in their event

handler. The argument would be an object which could be used to block shutdown and set the

reason for blocking. The problem with this approach is that it does not allow for proactive

shutdown blocking unlike the Vista API.

An alternative design includes both the SessionEnding and SessionEnded events, but

instead of passing an object as an event argument to SessionEnding in order to block shutdown, a

separate BlockShutdown method is used. With this design, shutdown can be blocked proactively

Page 13

and reactively. The BlockShutdown method also handles blocking shutdown in multiple places

in a single process. Shutdown can be blocked when a CD is being burned, for instance, with a

reason of “CD is burning.” Shutdown can also be blocked when a setting has been modified, but

not yet saved with a reason of “Unsaved settings.” In this example, if a shutdown is initiated, the

Windows UI would show the process with the reason set to, “CD is burning.” and on a separate

line, “Unsaved settings.”

UML (API only)

Figure 5: Final API

Figure 5 contains the UML for the final API we designed. The PowerManager class is a static

class which is used to register for events, block shutdown, and query or set certain power related

Page 14

values. ShutdownUnblocker is a class which is returned after blocking shutdown. The class can

be used to change the reason for blocking and also to unblock shutdown.

Usage Scenarios

 Register/unregister a function to be called when…

o The power personality changes

o The system power source changes

o The battery capacity changes

o The system is busy

o The monitor turns on or off

 Battery

o Determine what power source the system is using (i.e. battery)

o Check if the battery is currently charging or discharging

o Get the approximate amount of time the system has left given current power usage.

 Tell the system to keep the monitor on indefinitely

 Set the system to never idle

 Block the computer from shutting down, while also providing a reason to the user for the

blockage

 Determine if a battery and/or UPS is present on the system.

Figure 6 is a code sample for registering for a power source change event and determining what

the current power source is.

Page 15

Figure 6

Figure 7 is a code sample which shows how to tell Windows to never shut down the monitor (i.e.

for a video player).

Figure 7

Figure 8 is a code sample for determining if the monitor is currently on.

Figure 8

Figure 9 is another code sample showing how to block system shutdown.

Page 16

Figure 9

3.2 Implementation

 Details

The unmanaged Windows functions used by our API are accessed via p/invoke in a static

class called NativeMethods. It is Microsoft convention to include p/invoke calls in such a

class. In addition to the Win32 specified function signatures, the NativeMethods file also

contains all the structures needed by the functions. A thin wrapper of the native methods is

provided in a static class called Power. This class handles all low level Win32 behavior,

such as output parameters, memory allocation, etc. All code in our API which needs to

access any unmanaged power management functions makes calls directly to the Power class,

never to NativeMethods.

The power notification events for power personality change, power source change,

system busy, battery life change, and monitor status all use the native method

RegisterPowerSettingNotification. The problem with this method is that it requires a

window handle as one of its parameters. Whenever the event being registered occurs,

Windows sends a message to the window with the specified handle. In order to make the

Page 17

API flexible enough to be used by multiple types of applications, a hidden form is used to

handle all notifications. When an event is registered with the API in the PowerManager

class, the MessageManager class is called. The MessageManager class stores all event

handlers once they are registered to a particular event. The class also contains the hidden

form as one of its members. RegisterPowerSettingNotification is then called with the handle

from the hidden form as well as the id of the event as parameters. Windows sends messages

to forms through their WndProc method. When a power notification (Windows message) is

received, if the notification is of an updated value, the PowerManager class updates its

internal cache of the value and then calls all registered event handlers for the notification.

The shutdown blocking mechanism uses an internal ShutdownManager class. This class

acts as a mediator to the various ShutdownUnblockers that are active in the system. The

shutdown manager uses p/invoke to control the reason for blocking shutdown. When a

ShutdownUnblocker is created or its reason is changed, it notifies the ShutdownManager so

that it can change the reason. The ShutdownManager also handles the SessionEnding and

SessionEnded events. When an application calls the BlockShutdown method, it gets back a

ShutdownUnblocker. It must keep track of this object, because if there are no references to it

the garbage collector will finalize it. The ShutdownUnblocker has a destructor that will

cause it to unblock shutdown when it is garbage collected. This might cause inconsistent

behavior in poorly written code; however, we felt it prudent to err on the side of caution and

unblock the shutdown. If this was not the case, then a program that did not do anything with

the ShutdownUnblocker would block shutdown for as long as the application was running.

One implication of relying on the garbage collector to finalize the ShutdownUnblockers is

that the ShutdownManager could not keep a reference to any of the unblockers. To get

Page 18

around this, each unblocker is assigned a unique key when it is created, and the

ShutdownManager caches the reason string for the unblockers based on this key.

ShutdownUnblocker also implements IDisposable, which allows application to use them

within “using” statements which will automatically unblock shutdown when the scope of the

“using” statement ends.

Because PowerManager caches values, they need to be updated every time the actual

values change. For all properties that are updated by events (PowerSource, BatteryLife,

IsMonitorOn, and PowerPersonality), the first time they are accessed, a dummy event

handler is registered for the corresponding event. This ensures the cached value is updated

every time the actual value changes since the WndProc method will update the value when

the corresponding event is fired.

The MonitorRequired and RequestBlockSleep methods both use the native method

SetThreadExecutionState. MonitorRequired tells Windows to not shut the monitor off when

the system goes idle. A problem we discovered with this method late in the project is that it

does not disable the screen saver. We were going to try to make MonitorRequired also

disable the screen saver, but there was no appropriate way in the Windows API to disable it

on a process by process basis. The screen saver could be disabled globally, but this is not

safe in the case that the program crashes or the process is killed by the user. Normally a

program that wants to block the screensaver will catch the SC_SCREENSAVE message from

windows and consume it without sending it to the DefWndProc method. However, a window

or form only receives this message if it is a top level window. Since our hidden form is not

top level, it does not receive it, and cannot block the screen saver. Applications that want to

do this will need to override the WndProc method themselves and block the screen saver.

Page 19

All other properties and methods had a more straight forward implementation. Properties

not updated by an event are not cached since there is no way to keep the values up to date.

Instead, every call to the property calls the corresponding unmanaged function. The

BatteryState class contains a snapshot of current battery info. In the class’ constructor, data

from a call to the unmanaged function CallNtPowerInformation is marshaled into the class.

 Design Patterns

The PowerManager class in our API provides an easy to use interface to the end user which

is completely different than the unmanaged interface we are trying to wrap, an example of the

façade pattern. The PowerManager class is a façade to the Power class. All of the properties in

the PowerManager class use lazy initialization to increase performance. The value used by a

property is not set until the first time code “gets” that property.

3.3 Testing

Testing Focuses

As part of a comprehensive testing strategy it is necessary to consider much more than

simple code coverage and corner case coverage. While correctness testing is very important,

professional libraries should be thoroughly tested for security vulnerabilities, proper member

visibility, and proper handling of invalid arguments and operations. As part of our

comprehensive testing strategy, we have tests for all the following testing focuses.

1. Visibility Testing

Visibility testing is a test that checks for the proper visibility of all methods, fields, events

and properties. This testing is important to ensure all functionality exposed in the spec is made

public so it can be used by application developers. Furthermore, it is important to make sure

there are no members or classes in the namespace that are public and not specified in the spec.

Page 20

The positive testing is implicit within other testing (if the IsMonitorOn property was private, the

test for that property would not compile), however, the negative testing requires the use of

reflection. Using reflection, we obtain a list of all the classes and ensure that only the API

visible classes are public. We then list all the public members of these classes and ensure there

are no public members not specified in the spec.

2. Correctness Testing

This is the kind of testing that is often thought of as primary testing. This testing should

cover all user scenarios and identified corner cases. This testing focuses on ensuring that, given

valid arguments, state, and environment, the API functions as expected.

3. Negative Testing

Negative testing covers scenarios mostly dealing with catching semantic errors in application

code. The purpose of negative testing is to raise a friendly error message to signal invalid

conditions or arguments. This helps programmers develop applications by making semantic

errors cause the system to fail earlier. This also avoids causing cryptic error messages and

invalid data. One example of invalid data is if an attempt is made to check the battery life

percentage when no battery is attached. While some implementations might return trash values

(0 for instance), it is preferable to throw an exception to alert application developers that the

program is likely doing something wrong.

4. Platform Testing

Platform testing ensures that the code is allowed to run when the operating system is a high

enough version, and that a PlatformException is thrown when the code is run on an operating

system that does not meet the minimum requirements. The spec lists the platform required for

all the methods and properties to be used. The minimum requirements range from Windows

2000 to Vista for some of the newer native APIs. This testing is required because all of our

Page 21

functionality is backed by a Win32 API that we call with p/invoke. Since the .NET assemblies

are not compiled with the Win32 SDK header files and are compiled once for all platforms, we

cannot rely on compile time directive and compile time and link time checks. P/invoke uses

dynamic library loading, and because of this, if we did not do platform checking, the p/invoke

attempts would generate unfriendly exceptions that would be hard for an application developer to

debug and diagnose.

Test Design

Framework

In our testing we used the Visual Studio built-in unit testing framework (8). This

framework is extremely similar to JUnit 4.0 (9). Each test is a class, which can have any number

of test methods. The class is instantiated one time and then all tests in that class are run. You

can have setup and teardown methods for the entire class, and setup and teardown methods for

the individual functions. All of these methods are identified by annotations as they are in JUnit

4.0.

Tools

During the development process we used Visual Studio’s built in test runner to run the

unit tests. However, the BCL testing team does not use these kinds of tests. Their testing tool is

a simple online system. A test consists of an optional setup program, an optional cleanup

program, and the test program. The test program is simply an executable file that the online tool

can be configured to pass command line arguments to, if necessary. The test is marked as a pass

if the test program returns with exit code 0, otherwise it is marked as a fail.

To use this tool, we developed a command line tool that takes the name of a test as a

command line argument and runs it. Furthermore, it can take the name of a class and run the

Page 22

entire class or run all classes. This program serves as a makeshift test runner for the framework

that is designed to comply to the standards for their tool. The command line tool runs the

required setup and teardown methods, and generates nice clean reports for the test runner to read

should the test report a failure.

Tactics

There were many challenges to overcome in the testing of the API. One of the most

glaring and important was the fact that all of the events in the framework are triggered by

Windows events. We looked into a tool used to generate these events, but this proved unfruitful.

The only tool that was found was a tool that would make the power management functions return

certain values that you want them to return. This would not have allowed us to automate all of

our testing because it does not have a way to inject events into Windows so that power status

events, like power source change events, will be sent to our API. While this might have allowed

us to be somewhat less dependent on running the tests on a computer with a battery, it would not

have allowed us to make all the tests run on one computer. This would have been only a partial

solution; the benefits were miniscule; and it would have taken a lot of time to integrate this tool

into the tests. For these reasons we chose not to use this tool.

We used two different strategies to achieve the appropriate level of coverage. Ideally we

would like to have full coverage in automated code; however, this is not possible because of the

way the code interfaces with Windows. The two strategies are important to ensure that as much

code as possible is covered by automated tests, while also achieving complete coverage. The

first strategy was manual testing. A separate application was created that the person running the

tests interacts with. The program instructs the test runner to perform activities that will generate

events. An example of this strategy is a test that tells the user to unplug the laptop (this test must

be run on a laptop) from the AC power to generate a power source change event. When the AC

Page 23

power is disconnected, it causes Windows to fire a power source change event, which the test

waits for. Upon receiving the event, the application reports that the test is a success. If the user

indicates that he has removed the battery, yet the test has received no events, the test is marked

as a failure.

The second strategy used involves using reflection to simulate the Windows events as

close as possible to where Windows interacts with our code. Whenever a test is started, the

testing code uses reflection to get the instance of the hidden form within the implementation of

our API that is used to receive messages from Windows. Then we call the WndProc method on

this form using a Message object that we created to be as close as possible to the Message object

that would be sent from Windows.

Implementation

The tests had to be designed to overcome some of the limitations of the Visual Studio

unit testing framework. For instance, all the tests are run in the same process, hence any

singletons in the API will persist between tests. This is not desired for some tests, because it

does not allow us to cover all the functionality. The query tests query for values like: the battery

life percentage remaining; if a battery is present; if the monitor is on; and what power source the

computer is running on. The API gets these values by registering for change notifications with

Windows and then caching the values. If an earlier test had added a change notification handler

for the event that corresponds to these values, then the query test would not be valid since it

would just be returning the cached value. To circumvent this problem, we created a console

application that the unit test launches in a separate process. The console application prints to

standard out the value from the query, and the unit test reads the redirected standard out to get

the value. It then checks this value against the value obtained from the API which already has

the value cached.

Page 24

We created a number of Visual Studio projects to perform different tasks for some of the

tests. Here is the list of projects created for the testing and a brief explanation of their purpose:

1. PowerManagementTest

This is the main project for the automated unit testing. This is the Visual Studio unit

testing project that uses the built in unit testing framework.

2. PowerManagementTestHelper

This is a console application that is run in a separate processes to query values in the

PowerManager class without ever registering for the events.

3. PowerManagementTestRunner

This is a console application that can be used by Microsoft’s test team to run the

Visual Studio unit tests from their intranet test manager. This application uses

reflection to find all the testing methods in PowerManagementTest and runs them just

like Visual Studio runs them.

4. NativeHelpers

This is a C++ library that uses native Win32 API calls and structures to check the

validity of the battery information from PowerManager

5. ShutdownTestSecondProcess

This is used by the shutdown test to ensure that two separate programs can block

shutdown independently of each other.

6. ManualTests

This is a Windows Forms application that is used for the required manual tests.

7. PinvokeHelpers

This is a class library that the tests use to provide a common place to access the

windows API. Initially each project had the native methods that they required;

however, this caused a lot of code duplication and copy and paste issues.

Figure 10 shows the dependencies between all these projects.

Page 25

Figure 10

 The automated tests in PowerManagementTests cover almost all of the logic in

VistaBridge. The only logic not covered by these tests is error handling code for windows API

failures which we cannot generate. The automated tests do all the visibility testing, platform

testing, negative testing, and most of the correctness testing.

 By looking at code coverage only, one could not tell that the automated tests were not

adequate. The deficiency in the automated tests is that the testing code is simulating Windows

messages to the API, and thus, if the Windows message is different in some way, it could cause

the code to fail in an application even after passing the automated test for that exact condition.

Page 26

For this reason, we created the manual test program that requires the user to take action so that

Windows sends the required messages to the program. One of the tests prompts the user to

change the power source being used, and then requires that the user verify that the program

generated a list of the correct power sources.

 Not all of the manual tests are as interactive as the power source change test though. For

example, the test for the monitor turning on/off requires no user interaction, but is a manual test,

because there must be no mouse or keyboard activity during the test. If the test was run in an

automated environment, it could not be guaranteed that nobody was using that computer at the

time, and hence there could be false positive or false negative results.

 The manual testing is used to cover only the interactions between Windows and our code

that could not be tested by the automated tests. This includes tests for keeping the monitor on;

keeping the system awake; receiving system busy notifications; receiving power source change

events; receiving battery life change notifications; and receiving monitor status change

notifications. The power personality events are not tested by the manual tests because the

automated testing changes the power scheme which prompts Windows to generate power

personality change events.

 The manual testing program has a GUI which includes a list of all the manual tests that

the user can run. After a test is run, the result is recorded in the application and the test shows up

in the list colored coded to reflect the result (green = pass, yellow = inconclusive, red = fail).

There is also a text box on the GUI that provides information for tests about why it failed or why

it was inconclusive. Tests can only be run one at a time, and while they are running they have

access to a panel on the GUI to show controls to the user. Most of the tests provide information

as the test is running with a text box, and allow user interaction through buttons. Tests that

Page 27

require the user to wait for something to happen (like the monitor to turn off after a minute)

include a progress bar to show the test’s progress. The tests that require the user to wait also

change the power settings so that the time to wait is minimized. The program attempts to change

these settings back to their original values, however, if the user kills the manual test program

with the task manager, there is a chance that the settings will not be reset.

Coverage

Since the manual testing’s only purpose is to test the interaction between Windows and

our code, coverage information is not important for it. However, the automated tests’ purpose is

to exercise all the code in the implementation of the API. Calculating code coverage is not

straightforward for these tests. This is due to the automated tests requiring a variety of

platforms. To run all the unit tests, suites must be dispatched such that all of these conditions are

met: the computer does not contain a battery; the computer contains a battery; the computer is

running Windows Vista; the computer is running Windows XP; the computer is running a

version of Windows earlier than XP.

To calculate the code coverage, we ran the tests on the required platforms and looked at

the code coverage. We then merged the coverage result in Visual Studio. This did not yield

percentage information, but did give us line-by-line information. We used this information to

estimate the code coverage. The only lines, that we found, that were not covered were lines

handling error conditions from the Windows API. These lines could not be tested without

injecting faults into Windows. There are 11 lines that are not covered, which equates to 2.6% of

the implementation. With this information, we feel confident in stating that our code coverage is

97%.

Page 28

3.4 Example

We created a sample application to show developers how to use our API. The application is

a Windows form which displays (and updates when changed) the current power source and

battery life. The application also blocks shutdown and counts the number of times shutdown is

attempted. Lastly, there are buttons to keep the monitor on and prevent the computer from

sleeping. The sample application was also used as a quick demo during our final presentation at

Microsoft.

4. Results and Analysis

Our finished product is a complete API usable in any .NET language. The sample

application we created demonstrates how easy it is to begin writing “power aware” code with

very few lines of code. We gave a final presentation at Microsoft to members of the BCL team,

the VistaBridge team (the team maintaining this project in the future), and other members of the

CLR group. Overall, everyone was very impressed with our project. The VistaBridge team was

very happy with the end result and they believe they will be able to take over the project without

any problems.

We have a suite of both automated and manual tests which verify our API is working

properly. The automated tests can be run any time a change is made to the code base to verify

there have been no breaking changes, making maintenance considerably easier.

The finished project consisted of 3227 lines of code. Of these, 423 were in the API

implementation, 2,645 were testing, and 159 were in the sample application. This implies that

the implementation was about 13% of the coding effort. Put another way, the ratio of testing

Page 29

code to implementation code is about 6.2:1. This ratio is high, but is not surprising to us. We

further break down the lines of testing code into purpose in Figure 11.

Lines Use

1334 Automated testing

967 Manual Testing

423 Implementation

344 Code used for automated and manual testing

159 Sample application

3227 Total

Figure 11: Lines of Code

Page 30

5. Conclusions

At the start of the project, we were not sure which project we would be doing. We were

given a list of four projects to choose from, but over time we came to learn that two projects

were already completed and one required support from the Windows shell team which we were

not likely to get in such a short timeframe. The remaining project was the power management

project, which we began working on about three weeks in. Had we begun working on the power

management project from the get go, we would’ve had time to complete or at least start a second

project.

Of the design, development, and testing phases, the design phase provided the biggest

opportunity for learning. We were able to work closely with members of the BCL team to refine

our design. The design meeting for our API gave us some insight into how features are normally

designed at Microsoft. It also was an excellent opportunity for us to receive feedback from

people of all disciplines. Program managers, developers, and testers all have unique insights into

the design of a feature and having them all there really helped shape our design.

Of development and testing, the testing portion of the project was significantly larger

than the development. Due to the inability to easily test most power management features,

testing became more complicated than usual. While development required hours of thought to

ensure maximum performance in addition to thread safety, testing required many hours of

understanding and using reflection to simulate Windows messages. This was probably the most

surprising aspect of the project and had there been an existing tool to simulate Windows

messages, the project would be considerably smaller.

Considering the time spent fabricating the initial design of the API, a main lesson learned on

this MQP is to always check with dependent projects before designing an interface to them. Had

Page 31

we talked with the Windows power management team before designing our API, we could’ve

saved hours of work spent on a design that was not wanted. We were, however, able to work

with them for the remainder of the project to ensure our design was only exposing useful

behavior.

Page 32

6. Glossary

BCL – Base Class Libraries

CLR – Common Language Runtime

IL – Intermediate Language

p/invoke – Platform Invoke; Used to call unmanaged functions from managed code.

Page 33

7. References

1. TIODE Software. TIOBE Programming Community Index for November 2007. TIOBE

Software Official Site. [Online] [Cited: 11 12, 2007.] http://www.tiobe.com/tpci.htm.

2. Project, The History of Computing. Microsoft's timeline from 1975 - 1990. [Online] April

15, 2007. [Cited: November 12, 2007.]

http://www.thocp.net/companies/microsoft/microsoft_company.htm.

3. Windows history: Windows products history. [Online] [Cited: November 12, 2007.]

http://www.microsoft.com/windows/WinHistoryDesktop.mspx.

4. Microsoft Investor Relations. Quarterly Earnings Report: Fiscal Year 2007 – Quarter 4.

[Online] [Cited: November 12, 2007.]

http://www.microsoft.com/msft/download/fy07/letterhead_Q4.doc.

5. Registering for Power Events (Windows). [Online] http://msdn2.microsoft.com/en-

us/library/aa373195(VS.85).aspx.

6. Application Shutdown Changes in Windows Vista. [Online] http://msdn2.microsoft.com/en-

us/library/ms700677.aspx.

7. Cwalina, Krzysztof and Abrams, Brad. Framework Design Guidelines. s.l. : Pearson

Education, Inc., 2006.

8. Michaelis, Mark. A Unit Testing Walkthrough with Visual Studio Team Test. MSDN.

[Online] March 2005. [Cited: March 1, 2008.] http://msdn2.microsoft.com/en-

us/library/ms379625(VS.80).aspx.

9. JUnit.org. [Online] [Cited: 3 1, 2008.] www.junit.org.

