

Project Number. GFP 1106

ORACLE HTML5 RICH WEB APPLICATION

A Major Qualifying Project Report:

submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

 Degree of Bachelor of Science

by:

Anyansi, Onyedikachi Jeffrey

Lonergan, Ian Patrick

Date: April 23, 2012

Approved:

Professor Gary F. Pollice, Major Advisor

1. HTML5

2. jQuery

3. Web Development

 i

Abstract

When a data-intensive Web application has no connection to the server, usability

becomes impossible or, at a minimum, very problematic. No matter how a connection

becomes unavailable, using the application or between accesses, users can suddenly find

they are unable to get any work done until a connection is reestablished. Oracle™

approached us with this problem, and our project is aimed at providing a possible

solution to this issue, allowing a local user to continue their work regardless of the status

of the connection. We developed a proof-of-concept framework that would show it is

possible to allow developers to build Web applications capable of this.

 ii

Acknowledgements

 We would like to give thanks to everyone who has guided and assisted us in

throughout our project.

 First and foremost we wish to thank Gary Pollice, our project advisor, for helping

bring the project to fruition at every step of the way and always pointing us to the best

resources we needed to accomplish our research and development.

 We also give our thanks to Abhijit Kumar, our main contact at Oracle, who set us

on the right path for developing a framework capable of satisfying the needs of a real

business.

 Thanks also go to Oracle for providing us with this opportunity to work on and

learn from an excellent and pioneering project.

Table of Contents

Abstract .. i

Acknowledgements ... ii
List of Illustrations ... iii
1. Introduction ... 1
2. Background ... 2

2.1 The Growing Mobile Ecosystem.. 2

2.2 How to build the client ... 4
2.3 JavaScript Tools and Libraries ... 10
2.4 Client-side Storage ... 21
2.4.1 Native solutions -- MySQL™ ... 22

2.4.2 Browser-based Storage ... 22
3. Methodology ... 24

3.1 Server and Client Application .. 24

3.1.1 Requirements ... 24

3.1.2 Application Proposal .. 25

3.1.3 Building the Server .. 26

3.1.4 Building the Client ... 28

3.2 The Framework .. 29
3.2.1 Abstracting the Request to the Framework .. 30

3.2.2 Supplying API for Communication with the Server 31

3.2.3 Queuing Requests .. 32

3.2.4 Implementing Local Storage .. 33

3.2.4 Various Bug Fixes and Improvements ... 34

4. Results and Analysis ... 35
5. Future Work and Conclusions .. 36

5.1 Future Work ... 36
5.2 Conclusion .. 38

References ... 40

 iii

List of Illustrations

Figure 1 - Mobile Web Usage Growing. from: "Internet Trends" (2012) 3

Figure 2 - Web Storage Browser Support. courtesy: html5rocks.com 24

Figure 3 - Standard Server/Client Representation .. 26

Figure 4 - Server API .. 27

Figure 5 - DataTables Plugin With Data... 28

Figure 6 - Editing Data with Jeditable .. 29

Figure 7 – Specifying the API .. 32

 1

1. Introduction

For our project, we were approached by Oracle with a problem: data-driven Web

applications, when the connection to the server disappears, become unable to function.

They requested that we develop a proof-of-concept framework that would allow Web-

developers to, when working with a RESTful server application, continue modifying data

locally even when the connection to the server is broken. Mobile devices can have issues

working when a connection is no longer available, which can occur because of general

interference, travelling, and any other situations where access to the Internet is prohibited

or impossible.

Solving the issue of being able to continuously modify data when a connection to

the server is no longer available, and once connected again, have all local changes

reflected to the server data, would allow more rapid development of Web applications

that heavily rely on modification of data. As mobile devices become more common, it

becomes more important to have ways of dealing with temporary or extended connection

downtime. With a framework capable of handling this, the weight of the work would

shift off the shoulders of the developer.

We first researched JavaScript frameworks and methods of persistent storage on

HTML5 client applications. Once our research was settled, and in order to demonstrate

and test our proof-of-concept, we developed a simple Web application as might exist

today. The application we eventually settled on developing in concert with our

framework was a tool for allowing teachers to update grades and comment on an

 2

assignment. This application was suitable to the needs of Oracle and showing how our

framework could work.

We then began building the framework and converted our test application to use it

instead of the normal methods of communicating with the server. As the framework

grew we implemented more features, ranging from the modest ability to perform multiple

types of HTTP requests to fully implementing persistent storage on the client that lasted

even if the application was closed before all changes were sent to the server.

We organize this paper as follows. The “Background” section reviews the current

state of the field of HTML 5 and Web development. The “Methodology” section

discusses our work in developing the simple server and clients, along with our

framework. “Results and Analysis” discusses the outcome of the project, our

accomplishments, and Oracle’s response to what we developed. In “Future Work and

Conclusions” we outline possible future changes to the framework and how it might be

implemented, how it might impact Web development, and what we have learned and

gained from its development and our studies.

2. Background

In this section, we will describe the research that we did for this project.

2.1 The Growing Mobile Ecosystem

Oracle wanted their application to be supported by all devices. They specifically

emphasized the need for the application to be on mobile devices. In 2007, Apple®

 3

released the iPhone®.
1
 Shortly after, Google™ released their own smartphone, the

Android™. With the advent of smart phones and tablet devices, mobile computing

quickly became a new platform for software developers to target. One could now run

applications on a phone or tablet device and is no longer confined to a desktop or laptop

computer.

This was important for the software development industry. New applications were

born in this platform and new companies that specifically targeted tablet devices rose to

prominence. The mobile movement is continuing to gain steam and it quickly became

clear that mobile computing was here to stay. It is estimated that by 2014 there will be

more people connected to the Internet via mobile devices than from desktop computers.
2

Figure 1 - Mobile Web Usage Growing. from: "Internet Trends" (2012)

1 (Honan, 2007)
2 (Meeker, Devitt & Wu, 2010)

 4

The mobile movement has shown no signs of slowing down. Companies that were

once dedicated to desktop devices, such as Microsoft®, quickly began to push into this

new mobile arena. Applications which software mainly ran on Internet-connected desktop

devices such as the social network Facebook™ and mapping service Google Maps™

started porting their applications to mobile devices. Just recently, a struggling game

company OMGPOP™, who created over 50 games for the desktop-Web, reluctantly

started creating mobile games. Their most recent mobile game Draw Something™ was

runoff success. A company who was once nearing collapse instantly started bringing in

large amounts of revenue daily. OMGPOP quickly got snatched up by game company

Zynga™, another large company trying to push into mobile, in a 210 million dollar

acquisition.
3

As more people are connecting to the Internet via mobile devices, more

companies are hopping on the mobile bandwagon and creating applications for the

mobile ecosystem. When creating a new application, developers now need to strongly

consider whether or not to support the growing mobile platform.

2.2 How to build the client

Because Oracle’s application needed to support all these devices, we had to

determine the best way to build a client. We considered using Java™. Java is supported

by all desktop computers and is the language used to build Android applications. Java’s

3 (Cutler, 2012)

 5

guiding principle is “Write once, run anywhere”.
4
 However, one cannot use Java to

develop native applications on the iPhone. The iPhone is a major mobile platform, which

made it impossible to just ignore it. Due to this, developing a native application seemed

like it was a lost cause. There is no single language that you can use to develop native

applications on all desktop operating systems as well as mobile operating systems. This is

because applications for the iPhone are coded using Objective-C, whereas on Android

applications are developed in Java.

Next, we considered building a Web client application that would be run in a

browser. Any desktop computer would be able to run the application as long as there was

a working browser on the system and most desktop operating systems come with at least

one browser installed. Mobile devices come with a browser as well, so building a Web

application using JavaScript could be a potential solution. A JavaScript-based application

runs through the browser so it would require no extra work to have the application

supported by all these various devices.

2.2.1 State of the Art in Web Application Development

Before we could finalize our design decisions, we had to make sure that

JavaScript in the browser was capable of being used to build full-featured, high

performance applications. When browsers first appeared, their initial function was to

render static Web pages retrieved from the Web. Creating dynamic applications was quite

more complicated than that.

4 (Bacon, Vechev, Cheng, Grove, Hind, Rajan & Yahav. 2005)

 6

The present is quite different. We have been exposed to Facebook, Twitter, and

other sites that housed complex Web applications. They proved that building such

applications can be done, and that sites no longer need to be a collection of static pages.

We delved a bit deeper in order to see how such feats were accomplished.

In April of 2004, Google released Gmail™, a full-featured dynamic email

application on the Web
5
. Then in the beginning of 2005, Google released Google Maps, a

Web mapping service application. Both of these applications were revolutionary at the

time as they ditched the conventional static page-fetching methodology that many other

sites were using. Gmail and Google Maps were highly complex and sophisticated

applications.

In 2000, a technique called XMLHTTP was used in Microsoft’s Outlook Web

Access. XMLHTTP was a way of dynamically retrieving XML files over the Internet

(HTTP).
6
 Google started to use this technique in Google Maps and Gmail for querying

and fetching data from the server in the background, without requiring a page refresh

from the browser. It was not until these applications were released in 2005 that the term

‘Ajax’ (Asynchronous JavaScript and XMLHTTP) was coined to describe this

methodology.
7
 With their liberal usage of Ajax, Google popularized this technique.

8
 They

showed Web developers that it was possible to build highly dynamic Web applications.

This led to a new era of Web applications and now dynamic features can be found on

sites all over the Internet.

5 (Google, 2004)
6 (Hopmann, 2007)
7 (Swartz, 2005)
8 (Asleson & Schutta, 2005)

 7

Another new emergent technology that proved to us that the Web was easily

capable of supporting complex applications was the advent of HTML5. HTML5 is

technically the fifth revision of HTML. However, when people refer to HTML5, they

generally use it to mean the new HTML tags introduced in HTML5, the new stylesheet

techniques introduced in CSS3, and the new JavaScript APIs. HTML5 is an umbrella

term for these new advancements in Web development.

The new technologies in HTML5 are specifically created to facilitate the

development of complex applications. It contains new abilities for Web developers such

as 2D graphics rendering and vector graphics, offline Web application, timed media

playback, local Web storage, a drag and drop interface between the Web page and your

local computer, geolocation, document editing, WebSockets and more.

These new tools make creating Web applications simpler and easier for the Web

developer as well as giving the developer power to do more complex actions through the

Web page. HTML5 is particular useful for mobile devices. Recently Web developers have

started using HTML5 to target mobile devices and creating HTML5 mobile applications.

These are applications that use the Web as a platform but aim to rival the power, ability

and features, of a native mobile application. Many developers find this method of

development to be enticing since HTML5 applications automatically target all mobile

devices and a developer no longer needs to code different applications for each mobile

operating system. It is also useful because the application does not need to be approved

by Apple in order to appear on their App Store™. The application is no longer bound by

the closed application ecosystem that Apple has on their iPhone and iPad®. Building

mobile applications this way also has the advantage of being able to continuously update

 8

the application. When publishing a native application through the Apple App Store or the

Google Android Market anytime the application developer needs to update their

application, they need to submit a new version to the App Store. And in Apple’s case, the

new update will need to get approved which can take some time and prevent developers

from releasing quick bug fixes. However, HTML5 applications can update whenever they

want simply by changing the JavaScript code that the server sends to the mobile device.

2.2.2 Restful Architectures

We decided on creating a Web-based application using JavaScript and some new

HTML5 technologies. We next researched on server-side design. Oracle had a

requirement that the server we communicated with use a RESTful architecture.

REST stands for Representational State Transfer. It is a style of software

architecture used for distributed systems. In software an architectural style generally

refers to a set of design rules that identify the kinds of components and connectors that

may be used to compose a system or subsystem.
9
 A service can be considered ‘RESTful’

if it adheres to certain REST principles. The REST architectural style was developed

alongside HTTP 1.1. As such, the World Wide Web’s guiding principles are what the

REST architectural style is about. The World Wide Web itself can be considered the

largest implementation of a REST architectural style. RESTful architectures are generally

seen on the Internet.

9 (Shaw & Clements, 1996)

 9

REST is a key design idiom that embraces a stateless client-server architecture in

which the Web services are viewed as resources and can be identified by their URLs.

REST is an analytical description of the existing Web architecture, and thus the interplay

between the style and the underlying HTTP protocol appears seamless.
10

A RESTful API design makes use of 4 HTTP protocol verbs: GET, POST, PUT,

and DELETE. GET is used to retrieve a resource from the server. This resource is most

commonly Web pages, however it can be used to get JSON objects or xml representations

of data. POST is commonly used to send data or information to the server. It is commonly

used in input forms to send user-input information, such as the user’s contact

information. PUT modifies data that already exists in the server. And DELETE simply

tells the server to delete some specific data. These last two are generally used in

conjunction with a database located on the server. However each of these verbs can be

mapped to database actions on a server.

For example, in the teacher application, the application would make a GET

request in order to retrieve all the grades for a particular application. It would use a POST

request whenever the teacher registers a new student or adds a new assignment. The

POST request would cause a new student/assignment row to be created in the database.

The PUT request would be used whenever the teacher would try to modify a grade they

already recorded for a student. And the DELETE request of course would be used to

remove any of the information that the teacher was in charge of.

10 (Tyagi, 2006)

 10

A RESTful API maps URLs for each of these verbs to specific actions on the

server. For example, doing a GET request on this URL http://exampleapp.com/student/8

would send back all the data of the student who has an id of 8 in the database. Likewise a

DELETE request to that URL would simply delete all of that information.

Dynamic applications tend to use Ajax to query a server that uses a RESTful API.

The application would query the server in the background and the server API would be

dedicated to serving data back to the client. It would also maintain the database and keep

handle any of the database queries the client requested of it.

Using a RESTful architecture simplifies development. By restricting the actions

to a defined set of verbs and by creating a set of guidelines through this architectural

style, Web developers can spend less time thinking about how they want their client and

server to communicate. They could just use the verbs dictated by conventional RESTful

practices to model their application logic. RESTful applications also facilitate simple and

easy to understand APIs. This way, when using a third-party API in your application, you

no longer need to spend time trying to understand the API style for each different third

party. Instead, the RESTful pattern makes the various APIs more homogenous and easy

to understand.

2.3 JavaScript Tools and Libraries

After we completed our research on RESTful architectures, we started thinking

about how we were going to actually build the application. Once we decided on using

JavaScript, Oracle told us that they wanted us to do research on JavaScript libraries, tools

and frameworks. A library is a set of programs built on top of a language in order to give

http://exampleapp.com/student/8

 11

the programmer the power to do more things. Libraries can be created for a plethora of

reasons. They can be used to extend the functionality of a language, make tasks using a

programming language easier to do, or even provide a framework for structuring your

programs application logic.

Oracle wanted us to determine which libraries would be the best for helping us

solve this problem. In order to properly ascertain which tools might useful, we looked at

any JavaScript resources we could get our hands on.

2.3.1 jQuery

 jQuery was one of the first libraries we looked at. At first glance, jQuery is a free

and open-source library dedicated to making cross-browser DOM manipulation simple.

However, there are many other useful things contained under jQuery’s hood that make

JavaScript development easier. jQuery is described as the “Write less, do more,

JavaScript library.”
11

Many programmers would agree that jQuery truly is a wonderful resource for

JavaScript development. jQuery is ubiquitous on the Web. Most of the sites that you see

using JavaScript are being supported by jQuery under the hood. jQuery is being used by

most of large entities on the Web such as Google, Netflix™, Mozilla.org™, Wordpress™,

etc. It has become so prevalent that some newcomers to JavaScript development confuse

function calls from jQuery’s libraries with actual native JavaScript code. It’s used by over

11 (The jQuery Project, 2011)

 12

55% of the top 10000 Web sites and is known as the most popular JavaScript library on

the Internet
12

.

 jQuery was initially released on August 26, 2006. It was developed by John Resig

because he wanted to fix a problem that he was having with developing on the Web. A

decade ago, JavaScript was widely regarded as simply a toy scripting language. There

were not many people actively working on making JavaScript a better language, and

there also was not an accepted way to do many common tasks in JavaScript. However as

the Web grew in popularity, and more groups and companies started using the Internet in

more legitimate ways, JavaScript development grew more popular. Since more

developers were going to spend more time dedicated to that platform, JavaScript

development needed to be stronger and easier.

One frustrating problem with JavaScript development is that different browsers

used JavaScript in different ways. If a developer writes JavaScript code that works in one

browser, there was a good chance that it did not work in a different browser. This made

JavaScript development somewhat unattractive as the programmer is forced to write

different code for each browser he wanted to support. This is problem that John Resig set

out to solve by creating a JavaScript library that would provide one consistent API. An

API that works no matter which browser was being used.

jQuery’s API was focused on DOM manipulation. DOM stands for ‘document

object model’. The DOM a cross platform convention for representing and interacting

with objects in HTML, XHTML, and XML documents. It represents all the different

sections that are displayed on a Web page. When you’re developing for the Web, there are

12 (Builtwith.com, 2012)

 13

many times when you’d want to manipulate some of the objects displayed on the Web

page. That is where jQuery comes in. It provides a well-thought out library for selecting

and manipulating those DOM objects.

jQuery allows you to ‘query’ the DOM for different objects. You can use any

attribute of an object for grabbing an object (or objects) out of the DOM. For example,

say this html element existed on the Web page:

Contact

 In order to get jQuery to ‘select’ this object from the DOM, you could do

something like:

jQuery(‘[name=”contact”]’)

 This returns a DOM element (or a list of DOM elements) where the name

attribute equals “contact”. The jQuery function takes a selector string that represents the

query you are giving it. That function will return a jQuery object, which wraps around the

HTML DOM element. With this jQuery object, you can perform many jQuery library

functions on that DOM element.

 There are some shorthand selector strings that you can use for the common

queries that occur. You can use the ‘.’ to specify the class attribute. The selector string

‘.navigation-link’ could also be used to select the link element above. You can also use

the ‘#’ symbol to specify ids. The jQuery function is aliased to ‘$’. The dollar sign

symbol is commonly seen in jQuery code used in place of the jQuery function.

var contact_link = $(‘#contact’)

 In this example, the link element is selected by querying against its ID. The

jQuery object containing the link DOM element is stored in a JavaScript variable called

 14

contact_link. jQuery allows the programmer to perform different actions on the element.

For example, you could change the site that the link points to.

contact_link.attr(‘href’, ‘http://Oracle.com’)

 This line of code changes the ‘href’ attribute of the link element in the DOM.

Now whenever someone clicks that link, it would take them to Oracle.com instead of the

contact page of the current Web site.

 That’s just the tip of the iceberg however. jQuery’s DOM manipulation

capabilities extend far beyond that. You can delete elements from the page, change the

styling on specific elements, move elements, animate elements and much more. jQuery is

not only for DOM manipulation however. Over the years functionality for doing other

common things has crept its way into the jQuery library.

 Another major problem that jQuery solves is cross-browser Ajax requests. Ajax

stands for Asynchronous JavaScript and XML. It is a Web technique that facilitates

asynchronous Web-development.

Using Ajax, a Web site can send and retrieve information to and from a server

asynchronously (in the background). This way, the site and server can communicate

without ever having to refresh the Web page. Google Gmail popularized this technique by

showing developers that it can help you build full-fledged Web applications online by

using asynchronous requests to the server.

 jQuery provides a simple interface for using Ajax. It contains a function properly

called ‘ajax’ that you can call from jQuery. Using the .ajax() function, a developer must

simply specify the action that they want the browser to perform in the background, the

information that they need to be sent, and also the URL they want the browser to send the

 15

information to. Ajax() can also take a callback function as an argument, which will be ran

whenever the request to the server comes back.

 The Ajax function handled all the complex JavaScript code for doing Ajax under

the hood. It works properly for all the major browsers so the Web developer doesn’t have

to worry about whether or not his Ajax implementation would for a different browser.

Ajax will be a major technique we’re going to make use of in this Oracle project, so a

library that makes it easier to perform use this tech will be very useful.

 A major factor that attracted us to jQuery was just how ubiquitous it was. There is

a massive number of plugins built on top of jQuery that gives developers even more

power. Making plugins for jQuery was also incredibly simple, so we would be able to use

jQuery for the amazing features it gives us as well as have it be a hosting platform for the

code we write to solve the problem Oracle gave us. The ubiquity of jQuery had another

huge benefit; if we ever got stuck on a problem using jQuery, all we need to do is Google

the problem and it was highly likely that someone else stumbled upon the same problem.

We would not have trouble finding help on the Internet for our issues. All these beneficial

factors made the decision to use jQuery an easy one to make. It was simply the best tool

to help up build out the solution to Oracle’s problem.

2.3.2 Prototype

 Prototype is a JavaScript framework that aims to ease development of dynamic

Web applications.
13

 Prototype is a suite of JavaScript functionality that makes it easier

13 (Prototype.org 2012)

 16

for developers to do a wide array of different tasks such as DOM manipulation and

Ajax handling. Sam Stepehnson created Prototype in February of 2005 as part of the

foundation for Ajax support in Ruby on Rails, a server side framework for the

programming language ruby that tries to make developing Web applications as easy

as possible.14

It is quite similar to jQuery. However, unlike jQuery, the way prototype handles

DOM manipulation is by extending the DOM objects
15

. This means that the prototype

framework directly gives the DOM objects new methods instead of creating a wrapper

around the object like jQuery does. Many JavaScript experts discourage extending the

prototypes of the base JavaScript objects, so Prototype has received much criticism due to their

implementation. These issues, among other reasons directly led to Prototype not being as

widely adopted as jQuery. We chose jQuery over prototype because of Prototype lacks wide

scale adoption and because we felt that jQuery’s API for DOM manipulation and Ajax

handling was much more intuitive and user-friendly.

2.3.3 Google Closure Tools

Google closure tools are an assortment of various JavaScript libraries that serve a

wide-array of different uses. These are a collection of tools that Google uses in-house that

they decided to open-source for the shared benefit of the Web development community.

14 (Prototype.org 2012)

15 (Kangax, 2012)

 17

Closure tools was used to build full-features applications like Google Docs™, Gmail, the

Google+™ social network, Google Maps, and more
16

.

Google Closure Library is a large assortment of various libraries that each

provides the developer with useful functionality. It consists of a large set of reusable UI

widgets and controls, and from lower-level utilities for DOM manipulation, server

communication, animation, data structures, unit testing, rich-text editing, and more.

The closure compiler is a JavaScript optimizer that parses JavaScript code and

produces a heavily compressed code for use in production. The compiler works by:

 Removing white space

 Replacing variable/function names with smaller variable names. (for example: var

username would get changed to var b)

 It completely removes any functions that don’t ever get called.

The closure compiler is designed to work in conjunction with the massive Closure library.

Since the Closure libraries contain libraries for facilitating a very wide assortment of

functionality, the libraries in the Closure library suite all together take up way too much

space. However, the value of all being able to choose functions and objects from all those

libraries is very important. Google Closure compiler makes the space no longer an issue.

Because of the compilers minimization ability, developers can just simply use whichever

function/object from any one of the Closure libraries without worrying about how much

space the entire language will take up. The compiler would just completely get rid of any

16 (Google, 2012)

 18

of the code in those libraries that is not being used in the application. This way Google

can keep adding more useful libraries to the Closure library without remorse.

 Closure templates is a tool for easily generating HTML and UI elements from

server side code. It can be used with both Java and JavaScript. Templates can be

generated both server-side and on the client. The Closure Linter is a program that

enforces the guidelines enforced by Google’s JavaScript style guide. A linter is utility that

parses code and points out any syntactical or semantic issues that the linter finds in the

code. Closure Stylesheets is a system that supports a number of Google extensions to the

standard CSS language. It is a platform that makes writing CSS much easier and more

programmatic.

All of these tools are used extensively in Google applications so it is clear that they

are battle tested and reliable. Google is also one of the most successful Web companies

and they build some of the most innovative Web applications in terms of pushing Web

technology forward. Because of this, the closure tools are bound to be full of some of the

most useful and state-of-the-art JavaScript development tools. Despite all this, we chose

not to use it for our project. We had trouble finding examples of people outside of Google

using it so we did not know how non-Google developers felt about the tools. We also had

no prior experience using the Closure system so it would have been a somewhat steep

learning curve to figure out how all the different parts work together.

 19

2.3.4 Dojo Toolkit

 The Dojo toolkit is an open source JavaScript library that was created to make

cross-platform JavaScript development easier and quicker. Like jQuery and Prototype,

Dojo includes functionality for performing asynchronous requests. Dojo comes with

Dijit, a widget system. Dijit contains a collection of widgets that provide useful features

such as map creating, 2d vector drawing, sortable tables, dynamic chars, and more. The

widgets seemed to be centered on displaying views in the browser. Making graphical

applications with Dijit seem to be its primary use case. Dijit is perhaps the most enticing

aspect of the Dojo toolkit. Dojo also includes mechanisms for facilitating data storage

on both the client and the server. Dojo seems to be a useful tool, however, it did not

fit the needs of this project. There was no real graphical focus in our app and Dojo’s

asynchronous API was not as clean and intuitive as jQuery’s.

2.3.5 Ext JS

 ExtJS is another Web framework whose goal is to facilitate the creation of

interactive Web applications. ExtJS was initially created as an add-on the Yahoo User

Interface library, but it quickly spun off into a standalone framework. In the beginning,

ExtJS would make use of either jQuery or prototype under the hood to perform actions

like DOM manipulation and Ajax requests, but in further versions, ExtJS removed these

dependencies. Like Dojo, ExtJS’s primary usecase is for building highly graphical Web

applications. ExtJS seems to be incredibly useful for Web applications that have many

 20

moving graphical elements. Also like Dojo, ExtJS didn’t seem to be a good fit for our

project.

2.3.6 Underscore.js

 Underscore is a library unlike the ones mentioned in this paper thus far. Underscore

is a utility-belt library for JavaScript that provides a lot of the functional programing

support that you would expect in Prototype.js (or Ruby), but without extending any of the

built-in JavaScript objects.
17

 Underscore is a small open-source JavaScript library that

was designed to complement jQuery. It provides functions such as map, filter, invoke and

many 60+ more functions that are typical in functional languages. It also provides list

comprehensions similar to those seen in Python. Underscore also includes a lightweight

testing suite as well as a lightweight templating library. The functions that Underscore

provides would be incredibly useful if we were building a full-featured application as

opposed to a proof of concept, so we did not find need for it in our project.

2.3.7 Node.js

 Oracle specifically asked us to look into Node.js as it was being talked about quite

a bit in the Web developer community. Node.js is a platform built on Chrome's JavaScript

runtime for easily building fast, scalable network applications. Node.js uses an event-

driven, non-blocking I/O model that makes it lightweight and efficient, perfect for data-

17 (DocumentCloud, 2012)

 21

intensive real-time applications that run across distributed devices
18

. Node.js was released

very recently and since then it amassed a large dedicated following of coders.

 Node.js is actually not a client-side JavaScript framework that is interesting

because JavaScript has only been known to run on browsers in the client. Node.js actually

lets the developer write JavaScript code on the server. It takes the functional callback

style that JavaScript is well known for and creates a platform that facilitates the

development of Web servers that can take in multiple requests concurrently. JavaScript

code in Node.js is all asynchronous using callbacks, so it is unlike developing normal

JavaScript.

This method has gained quite a bit of steam in the Web development community.

It allows the developer to write JavaScript both on the client and the server. Front end

engineers who were already proficient with JavaScript can now use their JavaScript

ability to make servers that can wither the storm of high trafficked Web applications.

The work we did for this project was going to be client-side and Oracle had

already started working on the server portion of their application so node.js didn’t have a

place in our tool kit.

2.4 Client-side Storage

The solution we came up with required the client to be able to store data locally.

In order to get this to work, we needed to research the different methods that existed for

doing that storage.

18 (NodeJS.org, 2012)

 22

2.4.1 Native solutions -- MySQL™

 Our first option was using a conventional database locally. Oracle is the creator of

the world’s most popular open source database, MySQL.
19

 MySQL is a widely used and

battle tested relational database that’s gained adoption by a large chunk of software

developers everywhere. It also had another advantage in that it was built by Oracle so

they would have no issue implementing the system into their application.

 The problem with using this native storage system however is that the database

would need to be stored somewhere on the user’s local system. The application would

also need to have read write access to the file system, specifically the location where the

database is stored. And the user’s local machine must be able to run C and C++ in order

to run the MySQL application. These requirements would not have been an issue on

desktop machines. However, on mobile devices, we run into all sorts of problems. Firstly,

the iOS (iphone and ipad operating system) does not allow read/write access to the file

system for app developers. This is presumably for security reasons. It would also not be

possible to run the application on either android or iOS. Mobile devices were Oracle’s

most needed platform for this application, so these problems discounted the use of native

storage solutions. We had to look instead towards storage solutions built into the browser.

2.4.2 Browser-based Storage

 Browser-based storage solutions would work well since they can be supported by

any device that has a browser that adopts the storage system. Some new developments in

HTML5 brought developers some new storage capabilities. HTML5 Local Storage is a

19 (MySQL.com, 2012)

 23

simple key-value pair based store. Web Storage is a W3C specification that provides

functionality for storing data on the client side until the end of a session (Session

Storage), or beyond (Local Storage). It is much more powerful than traditional cookies,

and easier to work with.
20

 A developer would use a simple native JavaScript API to

interface with html5 Local Storage. While useful, a simple key-value store would make it

difficult for the client to represent the state of a database since databases have more

complicated data storage formats.

 WebSQL and IndexedDB are two more new storage solutions HTML5 provides

with us. They are both built on top of HTML5 local storage and provide a system much

more akin to traditional databases. WebSQL is a relational and gives the developer all the

features (and strain) expected from conventional relational database systems such as

MySQL. IndexedDB fits in somewhere between simple Local Storage and full-featured

WebSQL. It supports indexes like those of relational databases, so searching objects

matching a particular field is fast; you don't have to manually iterate through every object

in the store.
21

 Both of these higher level solutions would fit perfectly for our application since

we needed to replicate the data in a database into the client storage. Using something that

is already similar to conventional databases would have made the process of developing

the application go much smoother.

 However, there was one major issue. Like most of the problems that existed with

some of the other solutions we researched, it had to do with support. Both IndexedDB

20 (Opera.com, 2012)
21 (HTML5rocks.com, 2012)

 24

and WebSQL are not supported by most browsers and devices.

Figure 2 - Web Storage Browser Support. courtesy: html5rocks.com

Simple HTML5 Local Storage was however supported by nearly all browsers and is

supported on all devices (include mobile). HTML5 turned out to be the only storage

solution that we could move forward with. In order to accomplish the task of replicating

the database locally, we would need to build a custom solution on top of Local Storage.

3. Methodology

Our work was divided into three primary sections: research (the results of which are

covered in Section 2), generation of the client and server application, and building of the

eventual framework for interaction.

3.1 Server and Client Application

3.1.1 Requirements

 Oracle had several requirements before we began building our application in

order to test our eventual framework with:

 25

 Keyed towards business applications, managing life-cycles of several entities

o Related to each other (1:1, 1:n)

o Read and written from a database

 Application relies on RESTful data services

 Client should be able to modify data regardless of connection to server

o Data should be modified locally when unable to send to server

o Changes to data should persist even if application is closed

 Application should run on mobile devices

o Tablets (iPad)

o Laptops

3.1.2 Application Proposal

 To begin our work on the framework we first had to propose to Oracle an

application to design and develop, with which we would eventually build the framework

capable of handling modifying data regardless of connection to the server. Our original

proposal was to build a computer process metric monitoring application that would

continuously update a chart of data as new data became available (which would be

randomly generated on the server at a specific interval). This proposal was rejected

because the standard business case that was being aimed for involved updating and

creating of new records on the client side, which would then be sent to the server once a

connection was available.

 Our second proposal was to develop an application that would allow teachers to

update grades and comments on an assignment, with a standard connection between the

server and the client (See Figure 3.1). This allowed a teacher to begin grading

assignments at school on a laptop, but continue grading them if they leave the office and

no longer have a connection to the server at the school. This would allow them to

 26

continue inputting grades during travel or from home (even if no VPN is available into

the school). This proposal was accepted by Abhijit, our main contact at Oracle.

Figure 3 - Standard Server/Client Representation

3.1.3 Building the Server

 Since the goal of the project was the generation of the framework and not the

application, we wanted to finish the sample application was quickly as possible. We then

built a simple server that would communicate as any other HTML5 application would

work, with which we could then go forward and implement with our framework instead

of the standard Ajax queries. We designed an API for the server that would allow a

teacher to give grades and comments to assignments in their classes (See Figure 2). The

 27

server was written in Python using Flask, a micro-framework for Web development.
22

This allowed us to have a functioning server within two days of beginning the writing. A

database was put into place containing a small number of classes, students, and grades,

with which we could begin working with the server.

Figure 4 - Server API

 Requests to the server are passed by a combination of data embedded directly into

the URL and sent as part of the parameter. The server responded to all GET requests with

a JSON array, containing a list of JSON objects representing the array of results from the

database.

22
(Ronacher, 2012)

 28

3.1.4 Building the Client

 Once the server was completed, we began work on a client to interact with the

server, as any other modern HTML5 application might today. Using our research of

HTML5 and the requirements set forth by Oracle, we decided that the best JavaScript

framework to use in building this application would be jQuery, due to its already

extensive usage and support (Detailed in Background).

 In order to display the grade information, we decided upon the usage of a jQuery

plugin called DataTables, which allowed for easy implementation of many features for

viewing a list of data (See Figure 3.3).
23

 This allowed for ease of showing the data once

it was retrieved from the server. The data, in the first iteration of the application, was

retrieved through a simple Ajax GET request to the server.

Figure 5 - DataTables Plugin With Data

 In order to modify the data once it was shown, we decided to use another jQuery

plugin, called Jeditable, which allowed editing of cells in the table in place (See Figure

23
(Jardine, 2012)

 29

3.3).
24

 Once the change was made and the user hit enter, an event was triggered, calling a

function that in turn performed an Ajax PUT request, updating the specified data.

Figure 6 - Editing Data with Jeditable

 This base application worked fine while the application had a connection to the

Internet (and the server), but once a connection was lost, attempted updates to the server

returned error messages. With the basic application in place, we began working on the

framework.

3.2 The Framework

 The framework was developed piece by piece, adding in additional code to solve

new problems. The coding was all done as part of a jQuery plugin, which we expanded

to solve problems one at a time. First the four main request types were separated into

functions in the framework that could handle performing the actual Ajax requests. The

next step was to come up with a method of specifying the API of the server to the

framework. After this a queue was implemented to handle all requests so if the

connection to the server was lost the requests could be performed when it was re-

24
(Tuupola, 2012)

 30

established. The final step was to implement the persistent storage and modification of

local data, even when the application is closed and the connection to the server is

missing.

 Every step of the framework generation was tested individually using the

JavaScript test suite QUnit. Our code was also ran against JSHint, which is used to

ensure that JavaScript code follows a set of standard conventions.
25

3.2.1 Abstracting the Request to the Framework

 The first implementation of the framework had four functions, doPut, doGet,

doPost, doDelete. Each function took two arguments, the URL and an associative

array of parameters to pass to the URL. GET requests were performed synchronously as

to return the result of the requests to the application, whereas all other requests were

performed asynchronously. This solved the problem of abstracting most of the request

away from the client, but did nothing to solve the issue of what to do when the

connection was lost.

 At this point we essentially had the same application as when we began coding

the framework, but the client no longer had to manually perform the Ajax requests.

However, the framework relied completely on the developer manually supplying the full

URL and all relevant data as an associative array.

25
(Kovalyov)

 31

3.2.2 Supplying API for Communication with the Server

 At this point, with the ability of the framework to perform the four critical

requests, we began work on determining how to specify the API for communicating

between the framework and the server. Our initial reasoning brought us to two

possibilities for specifying this: through a GET request to the server that would return the

API or by specifying the API to the framework in the client. The API in either case

would specify all necessary URLs and parameters for communication between the client

and the server.

 We settled on specifying the API through the client, because this provided the

necessary DOM element that all jQuery functions had to be called on (jQuery acts on

DOM objects). Custom tags were used to specify the communication protocol for a

specific URL (See Figure 3.5). The server was modified to include a new URL called

“test” which was used solely to tell if the server was connected, and so long as it returns a

200 OK the client knows it is connected. At this point, performing any request required

now that you just specify the type of request to perform, the item to retrieve, and the

parameters. The framework built the URL with regex replacement of any missing

parameters and passed the rest of them in as the normal data for the request.

 32

Figure 7 – Specifying the API

3.2.3 Queuing Requests

 Brainstorming methods to queue the changes being made to the server, it was

decided to store all required information for every request when there was no connection

to the server such that the application could perform the requests once a connection to the

server was re-established. Bringing up our thoughts to Professor Pollice, he confirmed

this method of storing all required data to be performed later was a variation of a design

pattern called the command pattern, and is what we used in this iteration (and the final

version) of the application. We implemented a simple FIFO stack to hold the list of

requests. Every single request is added to the stack and, if a connection to the server

exists, every request is processed (until the connection no longer exists).

 33

 This solved the first major problem with the application. Now, if the connection

to the server went down in the middle of the client interaction, so long as the page was

not refreshed, when the connection came back every change was sent over the server

successfully. However, if the application were closed, the changes would be lost.

3.2.4 Implementing Local Storage

 Our research led us to believe that the best solution for storing information locally

for when the server connection could disappear was Local Storage, due to its steady

adoption by all major browsers (including tablet browsers). Our work first focused on

ensuring that our GET requests stored the information they received on the client in a

persistent manner.

 We changed the functions to now include a parameter for tableID that we would

use to identify what subset of the data we wanted to access, specifically so we could

access a particular item again later by referencing the same tableID. This meant that

we stored the GET request results under “appName.item.tableID”. To store the data

we used the stringify method of JSON to convert the array of JSON objects retrieved

from the server into a string that we could store in Local Storage. When a GET request

was performed on the same data (identified by the tableID) and a connection was

unavailable, we instead use to parseJSON method of jQuery to return the original JSON

array.

 With this implemented, after every change to a local table, we simply had to

perform another GET request on that subset to update the local table. However, this was

inefficient, especially with larger data sets. Instead, we needed a way to modify the local

 34

data whenever we performed a POST, PUT, and DELETE request, so that it would match

the source data. This was first done by implementing three functions, localPut,

localPost, and localDelete. Each function worked by emulating their purpose in a

RESTful environment. This, however, for PUT and DELETE requests, required that we

created a unique identifier, which named aaRecordID, for each row within a subset,

which could be anything so long as it was still unique to that row within that subject. We

modified the server to return a unique aaRecordID for each row.

 We also added the queue of local changes to what was being stored in Local

Storage, because we noticed that, while the local data was being locally changed

correctly, our changes were not being sent to the server if we reloaded the application. At

this point we also fixed an issue with the client believing it was connected to the server

even when no connection existed. This was due to the client keeping a cache of the test

URL response, which it would default to when the connection was not detected. By

specifying not to use a cache in the Ajax request, we averted this issue.

3.2.4 Various Bug Fixes and Improvements

We also added the queue of local changes to what was being stored in Local

Storage, because we noticed that, while the local data was being locally changed

correctly, our changes were not being sent to the server if we reloaded the application. At

this point we also fixed an issue with the client believing it was connected to the server

even when no connection existed. This was due to the client keeping a cache of the test

URL response, which it would default to when the connection was not detected. By

specifying not to use a cache in the Ajax request, we averted this issue.

 35

Based on feedback from Abhijit, we worked on combining repeated code sections

that were common to several functions, putting them in separate functions and calling

them as needed. Our doPut, doGet, doPost, and doDelete were renamed to PUT,

GET, POST, and DELETE, respectively, for aesthetic purposes and ease of use. We also

worked on modularizing the code, ensuring that all access to Local Storage was done

through a set of two functions, one for setting and one for getting. This allows for the

code to be easily modified in the future for different methods or storing data to be

handled depending on the capabilities of the current browser.

A similar approach was taken for handling the results of GET requests; a single

function is now is in place which can be modified to determine what format the data is in

and perform the conversion to JSON (in case the server sends data in XML, CSV, or

some other format). We also changed the framework to no longer be dependent on the

server to set the aaRecordID parameter on each row retrieved from a GET request. These

changes were put in place to minimize the amount of requirements on a server that would

be used with the framework, making the framework almost completely independent from

the server. With this done, our work on the framework was completed.

4. Results and Analysis

 The framework that has been developed acts as a proof-of-concept for an

advanced system of handling communications between a server and a client that allows

data and changes made to data to persist even when the connection between the server

and the client does not. This allows for developers of client-side Web applications to

rapidly build data-intensive applications that can continue to modify data even when

 36

offline without having to create their own methods for handling data when there is no

server connection available.

 This is specifically useful for programmers of applications that will be used on

mobile platforms with wireless connections, such as laptops, tablet computers, and smart

phones, where the Web connection may be especially poor, where traveling prohibits

access to the Internet, or where there is no VPN available to access the needed resources.

With the framework in place, all of these issues are solved by providing a new API for

communication with the server that handles most of these issues. The code is also built

in a manner such that it can easily be modularized, and changes that would most likely be

implemented in the future would not require any significant rewrites to the code, only the

addition of new code in the form of a handler.

 The original response from Oracle on the framework was positive, though they

had some suggested changes to the framework. These changes were either implemented

or documented as to how they might be put in place (under Future Work). The

application met our goals set at the start of the project, and we were able to program an

ability to generalize the code for use with a variety of server beyond what we had

originally intended.

5. Future Work and Conclusions

5.1 Future Work

 Going forward, there is additional work that can be done to expand the usage of

the framework to handle inter-table dependencies and triggers, storing of local data when

Local Storage is not available on a client, dealing with different communication

 37

protocols, and enabling better handling of conflicting changes in the database. These

additions could be implemented by Oracle or even as part of a further MQP. With these

changes to the proof-of-concept framework it would be suited to be deployed into more

general usage.

 The first piece of future work to implement would be an emulation of triggers as

they are used in modern databases. This could be implemented by the client during the

init function querying a URL specific to this framework on the server which specifies a

list of existing triggers in the database. The application could then parse the list of

triggers and generate an array of functions simulating the triggers that can be called as

appropriate on the local data stores. These solutions most likely would involve the

storage of additional information on the client.

 When Local Storage is unavailable, the current code defaults to storing the

local data in a simple array, which as mentioned previously means that the application

can continue running when a connection is unavailable, but reloading it means all

changes are lost. The code is, however, written in a fashion that it could be easily

modularized, meaning that once the client browser's capabilities are determined, the

appropriate handler function given the capabilities of the browser and browser version

can be specified. All of this can be determined and set during the init function.

 Since the application was developed in such a modularized fashion, different

communication protocols with the server can also be handled in an easy fashion. Once

the client knows the format of the data it is receiving from the client, the framework

could choose an appropriate conversion method, depending on if the data received is in

XML, CSV, XHTML, HTML, or any other format, to convert the data received into the

 38

JSON form used by the framework. There are several possible methods for determining

what form the data is being sent to the client in; this could be done through the client

requesting the communication protocol at the start during the init function or simply

through reading the MIME-type of each GET response.

 There is also the issue of two clients changing the same information. A common

current method of solving this is to keep a time-stamp on every record and, when one

record is changed in two locations, the second client to perform the change receives a

message asking it whether it wishes to overwrite the other client's changes. This would

also involve keeping a record of every request that has been sent but has not yet received

a response from. There is, however, a potential issue in a single client making multiple

changes to the same data, which could also trigger the same warning when it should not

be necessary. This could be solved by combining multiple posts to the same data into a

single request when possible.

5.2 Conclusion

 The framework proof-of-concept we have created has the potential to be a

powerful and widely used tool in the hands of developers, and once further developed it

could be a popular tool for the development of data-intensive HTML5 Web applications.

The development of the application has also been a great opportunity to work with Oracle

and expand our experiences and knowledge in cutting-edge Web-development, especially

dealing with HTML5 application development and jQuery.

 During the process of researching the current field of Web-development and

building our own jQuery framework we have gained a great deal of practical skills and

 39

technical expertise that will surely be useful in the future. With the ever-growing

importance of Internet applications in the current market, we have gained many

marketable skills and solid proof that we cannot just work in the field, but even create

innovative models in Web-development.

 We have demonstrated that it is possible to build an application that is fully

capable of keeping records of transactions when there is no connection to the server

available, and then sending the transactions to the server once the connection is re-

established. It also is able to modify the local data at the same time, ensuring that the

local data reflects the server data should be once the changes are actually pushed through

(in the case that the connection is unavailable). Any RESTful server capable of sending

data in the form of a JSON array can be used with our framework, and with a few small

modifications to our framework other data forms could be used as well.

 Overall, the project was a success. While we were not able to implement every

possible feature, we were able to build and test a sample Web application as might exist

today, build a framework that abstracted communication with the server and allowed the

client to continue working regardless of the connection to the server, and modify our test

application so that it would use our framework. GET, PUT, POST, and DELETE requests

were fully implemented for the communications specified, and it worked during all

testing. For those features we weren’t able to develop, we did implement modular

functions that would make any changes easy to perform. Our code base will surely be

useful for further development, we have learned a great deal, and are very thankful for

the opportunity we were given to work on such a ground-breaking project.

 40

References

Asleson, R., & Schutta, N. T. (2005). Foundations of Ajax. Foundations. Apress.

Retrieved from http://www.amazon.com/dp/1590595823

Bacon, D. F., Vechev, M. T., Cheng, P., Grove, D., Hind, M., Rajan, V. T., Yahav, E., et

al. (2005). High-level real-time programming in Java. Proceedings of the 5th ACM

international conference on Embedded software EMSOFT 05, 35(10), 68-78. ACM

Press. Retrieved from http://portal.acm.org/citation.cfm?doid=1086228.1086242The

jQuery Project. (2011). jQuery: The Write Less, Do More, JavaScript Library.

Physical Review E. jQuery. Retrieved from http://jquery.com/

Comparison of JavaScript frameworks. (n.d.). Retrieved from

http://en.wikipedia.org/wiki/Comparison_of_JavaScript_frameworks

Cutler, K.-M. (2012). Done Deal: Zynga Gets “Draw Something” Phenom By Acquiring

OMGPOP. (We’re Hearing $210M.) | TechCrunch. Retrieved April 25, 2012, from

http://techcrunch.com/2012/03/21/done-deal-zynga-gets-draw-something-phenom-

by-acquiring-omgpop-were-hearing-210m/

Dixit, S. (2012). Web Storage: easier, more powerful client-side data storage -

Dev.Opera. Retrieved April 25, 2012, from http://dev.opera.com/articles/view/Web-

storage/

DocumentCloud. (n.d.). Underscore.js. Retrieved April 25, 2012, from

http://documentcloud.github.com/underscore/

Google. (2004). Google Gets the Message, Launches Gmail. Retrieved April 25, 2012,

from http://www.google.com/press/pressrel/gmail.html

Google. (n.d.). Closure Tools — Google Developers. Retrieved April 25, 2012, from

https://developers.google.com/closure/

Honan, M. (n.d.). apple unveils iphone. 2007. Retrieved April 25, 2012, from

http://www.macworld.com/article/1054769/iphone.html

Hopmann, A. (n.d.). Story of XMLHTTP » Alex Hopmann’s Blog. 2007. Retrieved April

26, 2012, from http://www.alexhopmann.com/story-of-xmlhttp/

Jardine, A. (2012). DataTables. Retrieved April 20, 2012, from http://datatables.net/

jQuery Usage Statistics. (n.d.). Retrieved April 25, 2012, from

http://trends.builtwith.com/javascript/jQuery

http://www.amazon.com/dp/1590595823
http://portal.acm.org/citation.cfm?doid=1086228.1086242
http://jquery.com/
http://en.wikipedia.org/wiki/Comparison_of_JavaScript_frameworks
http://techcrunch.com/2012/03/21/done-deal-zynga-gets-draw-something-phenom-by-acquiring-omgpop-were-hearing-210m/
http://techcrunch.com/2012/03/21/done-deal-zynga-gets-draw-something-phenom-by-acquiring-omgpop-were-hearing-210m/
http://dev.opera.com/articles/view/Web-storage/
http://dev.opera.com/articles/view/Web-storage/
http://documentcloud.github.com/underscore/
http://www.google.com/press/pressrel/gmail.html
https://developers.google.com/closure/
http://www.macworld.com/article/1054769/iphone.html
http://www.alexhopmann.com/story-of-xmlhttp/
http://datatables.net/
http://trends.builtwith.com/javascript/jQuery

 41

Kangax. (n.d.). Perfection kills » What’s wrong with extending the DOM. Retrieved

April 25, 2012, from http://perfectionkills.com/whats-wrong-with-extending-the-

dom/

Kovalyov, A.About JSHint. Retrieved April 14 from http://www.jshint.com/about/

Meeker, M., Devitt, S., & Wu, L. (2010). Internet Trends. Retrieved April 25, 2012, from

http://www.morganstanley.com/institutional/techresearch/pdfs/Internet_Trends_041

210.pdf

node.js. (n.d.). Retrieved April 25, 2012, from http://nodejs.org/

Oracle. (n.d.). MySQL :: The world’s most popular open source database. Retrieved

April 25, 2012, from http://www.mysql.com/

Prototype JavaScript framework: Easy Ajax and DOM manipulation for dynamic Web

applications. (n.d.-a). Retrieved April 25, 2012, a from http://prototypejs.org/

Prototype JavaScript framework: The Prototype Core Team. (n.d.-a). Retrieved April 25,

2012, a from http://prototypejs.org/core

Ronacher, A. (2012). Flask. Retrieved April 20, 2012, from http://flask.pocoo.org/

Shaw, M., & Clements, P. (1996a). Toward boxology. Joint proceedings of the second

international software architecture workshop (ISAW-2) and international workshop

on multiple perspectives in software development (Viewpoints ’96) on SIGSOFT '96

workshops - (pp. 50-54). New York, New York, USA: ACM Press. Retrieved from

http://dl.acm.org/citation.cfm?id=243327.243352

Swartz, A. (n.d.). a brief history of ajax (aaron swartz’s raw thought). 2005. Retrieved

April 26, 2012, from http://www.aaronsw.com/weblog/ajaxhistory

Tuupola, M. (2012). Jeditable - edit in place plugin for jQuery. Retrieved April 20, 2012,

from http://www.appelsiini.net/projects/jeditable

Tyagi, S. (2006). restful Web services. Retrieved April 25, 2012, from

http://www.oracle.com/technetwork/articles/javase/index-137171.html

http://perfectionkills.com/whats-wrong-with-extending-the-dom/
http://perfectionkills.com/whats-wrong-with-extending-the-dom/
http://www.jshint.com/about/
http://www.morganstanley.com/institutional/techresearch/pdfs/Internet_Trends_041210.pdf
http://www.morganstanley.com/institutional/techresearch/pdfs/Internet_Trends_041210.pdf
http://nodejs.org/
http://www.mysql.com/
http://prototypejs.org/
http://prototypejs.org/core
http://flask.pocoo.org/
http://dl.acm.org/citation.cfm?id=243327.243352
http://www.aaronsw.com/weblog/ajaxhistory
http://www.appelsiini.net/projects/jeditable
http://www.oracle.com/technetwork/articles/javase/index-137171.html

