
	

	
	

Volumetric	Display	Research	
	

A	Major	Qualifying	Project	Report	

Submitted	to	the	Faculty	of	

Worcester	Polytechnic	Institute	

	

In	partial	fulfillment	of	the	requirements	for	the	

Degree	of	Bachelor	of	Science	

	

By:	

Andrew	Santos	

Oliver	Simon	

	

Advisor:	

Professor	R.	James	Duckworth	

	

	

	

April	26,	2017	



	 	 	
	

	 	 	
	
1	

Abstract	
The	goal	of	this	project	was	to	research	and	develop	a	volumetric	display	system	that	allows	a	three-

dimensional	CAD	file	to	be	displayed	in	real	space.	The	system	used	a	Xilinx	Zynq	SoC	to	process	a	CAD	

model	into	a	series	of	two-dimensional	images	to	be	projected	onto	a	spinning	helicoid	surface	using	

DLP	technology.	The	SoC	contained	a	combination	of	custom	logic	on	FPGA	fabric	as	well	as	software	on	

an	embedded	processor	to	implement	the	unique	system	functionality.	
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Executive	Summary	
Three-dimensional	display	technology	is	a	growing	market,	with	applications	ranging	from	the	

movie	industry	and	gaming,	to	engineering	design,	medicine,	and	advertising.	Currently,	many	

technologies	are	based	on	two-dimensional	screens	and	are	used	with	special	lenses	or	glasses	to	create	

three-dimensional	illusions,	and	there	is	a	lack	of	true	three-dimensional	displays.	The	development	of	

volumetric	display	technologies	is	an	opportunity	to	fill	this	gap.	

This	project	researched	and	developed	a	volumetric	display	system	that	can	display	a	3D	CAD	

model	in	real	space.	An	embedded	end-to-end	solution	was	designed,	however	the	final	system	

implemented	performed	the	main	processing	on	a	PC	instead	of	being	embedded.	Initial	research	

provided	the	necessary	background	on	volumetric	display	methods	and	techniques,	and	the	project	was	

based	on	the	method	of	projecting	onto	a	spinning	helicoid	surface	to	create	a	three-dimensional	image.	

This	is	achieved	by	projecting	the	two-dimensional	intersections	of	a	3D	model	and	helicoid	onto	the	

helicoid	at	the	same	position	of	intersection.	As	the	surface	spins,	each	intersection	corresponding	with	

the	helicoid	position	will	be	projected,	and	at	high	speeds,	creates	a	three-dimensional	image.	A	

simulation	was	developed	in	MATLAB	to	verify	the	concept	and	showed	successful	results.	

The	system	processes	a	.STL	CAD	file	and	generates	two-dimensional	slices	that	are	projected	

onto	a	spinning	helicoid	surface.	An	Avnet	ZedBoard	was	used	as	the	main	development	platform,	which	

features	a	Xilinx	Zynq-7020	System-on-Chip	(SoC)	with	a	dual-core	ARM	Cortex	A9	processor	and	Xilinx	

Artix-7	FPGA	fabric.	The	utilization	of	a	System-on-Chip	(SoC)	provided	an	ideal	platform	to	develop	the	

custom	logic	and	software	required	for	such	a	system.	In	addition,	a	Texas	Instruments	LightCrafter	

development	board	was	used	to	provide	the	DLP	technology	capable	of	meeting	the	frame	rate	

requirements	of	the	system.	

The	designed	embedded	system	can	be	broken	up	into	four	main	parts:	the	Programmable	Logic	

(PL),	Processing	System	(PS),	projection	system,	and	mechanical	hardware.	The	PL	system	was	designed	

using	a	combination	of	custom	logic	and	Xilinx	IP	blocks	to	create	the	memory	interface	and	slice	

processor	modules	that	implement	the	core	data	processing	functionality,	as	well	as	the	encoder	

calibration	module	that	synchronizes	the	motor	with	the	projected	frames.	The	processing	system	is	

comprised	of	multiple	functional	layers.	The	lowest	layer	running	on	the	dual	core	ARM	processor	of	the	

Zynq	is	a	Linux	operating	system	designed	by	Xilinx	called	PetaLinux.	Petalinux	was	chosen	for	its	

versatility	and	interoperability	with	the	FPGA	fabric	and	hardware	designs	thereon.	The	operating	

system	layer	supports	the	embedded	software	created	for	BRAM	access,	voxelization	processing,	and	

image	generation	from	raw	slice	data.	Finally,	the	mechanical	system	consists	of	the	rotational	
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hardware,	the	frame,	and	the	rotary	encoder.	The	rotational	hardware	is	driven	by	a	DC	motor	that	can	

spin	the	hardware	at	a	rate	fast	enough	for	a	smooth	projection.	This	hardware	includes	the	helical	

projection	surface,	the	encoder	wheel,	and	the	steel	shaft	on	which	the	aforementioned	pieces	are	

mounted.	The	encoder	wheel	has	two	sets	of	holes	arranged	in	two	circular	tracks,	a	track	with	home	

positions	and	a	general	encoder	track.	Used	in	tandem,	these	two	sets	of	holes	are	necessary	to	track	

the	absolute	rotational	position	of	the	motor.	The	encoder	circuitry	consists	of	phototransistors	and	

infrared	LEDs	that	detect	when	a	new	position	has	been	passed	due	to	IR	light	being	sensed	through	the	

holes	of	the	encoder	wheel.	The	frame	was	constructed	of	steel	channel,	with	mounts	for	the	motor,	

encoder	circuitry	housing,	and	projector.	

The	datapath	of	the	designed	embedded	system	begins	with	voxelization	in	the	processing	

system.	This	is	the	process	of	converting	the	.STL	mesh	model	into	a	graphical	representation	in	3D	

space	on	a	three-dimensional	grid	(x,y,z).	This	data	is	written	into	memory	to	be	accessed	by	the	PL.	

From	there,	the	PL	system	is	enabled	and	the	memory	interface	reads	the	voxel	data,	which	is	then	fed	

into	the	slice	processor	module.	The	slice	processor	module	calculates	the	two-dimensional	intersection	

between	the	object	to	be	displayed	and	each	helix	rotation,	and	the	slice	data	is	written	back	into	BRAM	

by	the	memory	interface	to	be	accessed	in	the	PS.	An	embedded	bitmap	generation	program	in	the	PS	

then	reads	the	slice	data	and	generates	.bmp	files	to	be	sent	to	the	LightCrafter.	Once	all	slice	images	

have	been	generated,	the	LightCrafter	is	configured	in	the	PS,	the	encoder	module	is	enabled,	and	the	

motor	is	switched	on.	When	the	encoder	module	detects	the	home	position,	the	projection	initiates.	The	

LightCrafter	utilizes	an	input	trigger,	displaying	each	consecutive	frame	only	once	its	corresponding	

position	is	detected	by	the	encoder	module,	thus	allowing	a	synchronized	system	that	displays	a	three-

dimensional	image.	

The	implemented	system	successfully	created	a	volumetric	display	system	that	converts	a	3D	

CAD	file	into	a	three-dimensional	image,	however	aspects	of	the	processing	modules	were	left	off-board	

due	to	timing	constraints	and	the	scope	of	the	project.	In	the	designed	system,	the	voxelization,	slicing,	

and	LightCrafter	configuration	would	be	embedded	in	the	Zynq	SoC,	however	this	functionality	was	kept	

on	a	PC	using	MATLAB	for	the	voxelization	and	slicing,	and	a	GUI	provided	by	Texas	Instruments	for	the	

LightCrafter	configuration.		The	goals	set	for	the	mechanical	system,	slicing	algorithm,	voxelization	

algorithm,	projection,	and	motor	synchronization	were	all	individually	met	to	create	functional	

components	of	a	volumetric	display.	The	Zynq	SoC	has	been	proven	to	be	the	best	platform	for	the	

implementation	of	the	project	due	to	its	versatility	and	performance.	Future	work	might	include	

embedding	the	voxelization	algorithm	into	the	system,	more	accurate	handling	and	consideration	of	
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projection	distortion,	as	well	as	improving	the	connectivity	between	and	the	eventually	the	unification	

of	the	Zynq	SoC	and	DLP	hardware.	This	would	result	in	a	true	end-to-end	system.	
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Chapter	1:		Introduction	

A	three-dimensional	display	allows	a	user	to	perceive	a	three-dimensional	image.	As	opposed	to	

a	two-dimensional	display,	a	three-dimensional	display	allows	for	the	perception	of	depth.	The	evolution	

of	three-dimensional	displays	comprises	an	array	of	different	technologies	and	applications.	From	

movies	and	gaming	consoles	to	mechanical	design	and	human	anatomy,	the	market	for	such	displays	

continues	to	grow.	Three-dimensional	display	technologies	can	be	split	up	into	three	main	categories:	

stereoscopic,	autostereoscopic,	and	automultiscopic	displays.	Out	of	these	three,	automultiscopic	

displays	are	the	only	systems	that	can	display	multiple	angles	of	an	image	at	once	[1].	

Stereoscopic	displays	create	an	illusion	of	depth	using	equipment	such	as	special	glasses,	

commonly	used	in	the	movie	industry.	Autostereoscopic	displays	on	the	other	hand	display	three-

dimensional	images	without	the	need	for	special	gear	or	lenses,	such	as	what	is	found	on	the	Nintendo	

3DS.	Automultiscopic	displays,	however,	are	able	to	display	multiple	angles	at	once,	allowing	a	viewer	to	

move	around	and	view	an	image	at	different	angles	[1].	

Volumetric	displays	are	an	example	of	an	automultiscopic	system,	displaying	an	image	within	a	

three-dimensional	volume.	This	allows	multiple	viewers	to	move	around	and	see	a	three	dimensional	

image	simultaneously	at	different	angles	without	the	need	for	special	visual	effects	or	lenses	[1].	The	

term	volumetric	implies	that	the	image	is	displayed	in	three	dimensions,	as	opposed	to	using	a	flat	

screen	or	using	parallax	or	holographic	techniques.		One	type	of	volumetric	display	in	particular	utilizes	

projecting	onto	a	swept	volume	to	create	a	three	dimensional	image	[2].	

The	purpose	of	this	project	was	to	research	and	design	a	functional,	self-contained	

automultiscopic	volumetric	display	system	capable	of	displaying	a	3D	CAD	file	in	real	space.	The	project	

was	based	on	the	volumetric	display	method	of	projecting	onto	a	spinning,	swept	helix	to	create	a	three-

dimensional	image.	The	design	consisted	of	a	mechanical	hardware	system,	projection	system,	

programmable	logic,	and	processing	software	that	all	worked	together	to	display	a	three-dimensional	

object	in	real	space.	

This	report	will	detail	the	steps	taken	during	the	design	and	creation	of	a	volumetric	display	

system,	starting	with	research	conducted	into	volumetric	display	concepts	and	design	methods.	The	

technology	required	for	such	system	is	explored	and	immediately	following	are	the	steps	taken	to	design	

and	implement	each	section	of	the	system.	The	steps	taken	to	test	each	area	of	the	system	and	results	

obtained	from	the	testing	are	explored	next.	Lastly,	the	overall	results	of	the	research	and	finalized	

design	and	implementation,	including	conclusions	drawn	from	the	project,	are	discussed.	 	
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Chapter	2:	Background	

This	chapter	presents	information	from	background	research	conducted	on	relevant	topics	for	

creating	the	volumetric	display	system.	This	included	gaining	an	understanding	of	volumetric	display	

concepts	and	the	technology	required	to	develop	such	a	system.		

	

2.1	Volumetric	Display	Concepts	

According	to	Barry	G.	Blundell,	volumetric	displays	“enable	the	depiction	of	three-dimensional	

(3D)	images	within	a	transparent	volume	(image	space).”	)	[3]	His	research	stated	that	a	volumetric	

display	has	three	subsystems:	image	space	formation,	voxel	generation,	and	voxel	activation	[3].		

Image	space	formation	is	the	system	or	method	used	to	implement	the	physical	image	space.	

Voxel	generation	is	the	technique	used	to	produce	a	visible	graphical	unit	to	describe	a	point	in	three	

dimensional	space.	It	is	parallel	to	what	a	pixel	is	for	2D	images.	As	opposed	to	voxel	generation,	voxel	

activation	is	the	technique	used	to	produce	the	3D	image	in	space.	Blundell	also	defines	two	important	

variables	in	a	volumetric	display:	voxel	activation	capacity,	and	fill	factor	[3].	These	variables	give	a	

metric	that	defines	the	effectiveness	of	a	volumetric	display	implementation.	

Voxel	activation	capacity	is	defined	as	the	‘total	number	of	voxels	activated	during	a	refresh	period’:	

(1)	

P	is	the	number	of	voxels	that	can	be	activated	simultaneously,	T	is	the	time	it	takes	to	generate	a	voxel,	

and	f	is	the	image	refresh	frequency.	

Fill	factor	is	the	‘percentage	of	available	voxel	sites	that	can	be	activated	during	an	image	refresh	period:	

(2)	

Na	is	the	activation	capacity,	Nl	is	the	number	of	possible	voxel	locations.	

		

2.1.1	Swept	Helix	Approach	

The	project	focused	on	the	swept	helix	approach	to	creating	a	volumetric	display	system,	based	

on	research	by	Y.	Jian,	J.	Feng,	and	S.	Chun-lin	[4]	and	Michel	David	[2].	The	research	discusses	the	key	

concepts	of	a	swept	helix	volumetric	display	and	approaches	to	the	design.		

David’s	work	states	that	a	volumetric	display	can	be	created	by	projecting	a	series	of	2D	

intersections	of	a	model	onto	a	helicoid	surface	rotating	at	a	fast	rate	in	order	to	create	the	volumetric	
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display	phenomenon.	An	example	of	a	cube	is	shown	below	in	Figure	2-1.	The	colored	lines	below	the	

helicoid	represents	the	2D	images	being	projected.	

	

	
Figure	2-1	-	Cube	intersections	with	Helicoid	[2]	

	

In	order	to	achieve	a	volumetric	image,	the	projection	surface	(helicoid)	needs	to	be	spinning	at	

a	minimum	of	15	rotations	per	second	to	provide	a	clear,	stable	image.	The	resolution	of	the	image	is	

dependent	upon	the	frame	rate	of	the	projection.	The	quality	of	the	resolution	can	be	described	using	

the	angle	of	retrieved	data,	or	the	number	of	frames	projected	per	rotation.	For	example,	a	36-degree	

resolution	would	mean	10	images/rotation	at	15	rotations/sec	or	150	images/sec.	A	36-degree	

resolution	would	require	a	projector	with	a	frame	rate	of	150	Hz.	

A	swept	helix	is	more	advantageous	for	a	volumetric	display	than	a	plane	as	it	enlarges	the	

image	space	and	improves	the	dead	zone	[4].	A	dead	zone	is	an	area	where	there	is	a	lack	of	voxels.	It	is	

affected	by	characteristics	such	as	the	image	space	shape	and	size.	Jian	and	co.	found	that	a	helix	more	

adequately	utilizes	space	and	minimizes	the	dead	zone	over	a	planar	shape.	

	

2.1.2	Model	Processing	

The	conversion	from	a	3D	mesh	model	into	a	volumetric	image	involves	a	series	of	processing	

steps,	namely	voxelization	and	slicing.	

	

3D	Mesh	Models	

3D	objects	can	be	constructed	and	represented	in	computer	aided	design	tools	using	polygon	

meshes.	These	meshes	are	a	collection	of	vertices,	edges,	and	faces	that	are	used	to	define	a	three-

dimensional	object	in	a	computer	model	[5].	Below	in	Figure	2-2	is	an	example	of	a	cube	represented	in	

these	parameters:	

	



	 	 	
	

	 	 	
	

12	

	
Figure	2-2	-	Cube	expressed	as	vertices,	edges,	faces	[6]	

	

The	use	of	polygon	meshes	is	vast	in	computer	graphics,	as	each	object	can	be	expressed	using	

the	mathematical	parameters	mentioned	for	computer	modelling	applications.	Below	in	Figure	2-3	is	an	

example	of	a	dolphin	represented	using	triangle	meshes:	

	

	

	
Figure	2-3	-	Dolphin	Triangle	Mesh	[6]	

	

Mesh	models	may	consist	of	triangles,	quadrilaterals,	or	other	convex	polygons	to	model	an	

object.	A	number	of	different	file	formats	currently	exist	that	use	polygon	mesh	modeling	to	store	3D	

object	data.	This	includes	.3ds,	.obj,	.stl,	and	many	others.	These	file	formats	consist	of	different	

structures,	but	essentially	store	the	same	type	of	data	(vertices,	faces,	edges)	[5].	The	mathematical	

representation	of	three-dimensional	objects	in	computer	modelling	makes	it	possible	for	manipulation	

and	conversion	into	the	necessary	data	representation	for	a	volumetric	display.	
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Voxelization	

According	to	a	paper	from	Nanjing	University	[7],	a	significant	step	in	converting	a	mesh	model	

into	the	2D	slices	is	voxelization.	This	concept	is	discussed	and	presented	as	far	back	as	1996	in	a	paper	

by	Mark	Jones	[8]	where	he	describes	voxelization	as	“the	term	given	to	the	process	of	converting	data	

from	one	source	type	into	a	three	dimensional	volume	of	data	values.”	This	involves	converting	the	3D	

mesh	model	into	graphical	data	with	x,	y,	and	z	variables.	The	paper	from	Nanjing	University	presents	

this	concept	using	the	Stanford	Bunny	[9]	as	an	example,	as	seen	in	Figure	2-4:	

	

	
Figure	2-4	-	Stanford	Bunny	3D	model	[7]	

	

The	process	involves	taking	the	3D	model	(Figure	2-4a),	and	mapping	it	to	the	3D	space	it	will	be	

projected	onto	(Figure	2-4b).	The	mapping	is	in	the	form	of	x,	y,	and	z	variables	(voxels).	In	the	example	

given,	the	voxels	are	set	as	a	binary	pattern,	with	1	indicating	the	object	and	0	indicating	the	absence	of	

the	object.	Figure	2-4c	shows	the	same	3D	model	represented	in	voxels	instead	of	the	mesh.	

The	voxelization	of	a	mesh	model	is	essentially	an	approximation,	converting	the	geometric	

representation	of	the	model	into	a	set	of	voxels	of	desired	resolution.	This	is	discussed	in	a	paper	by	S.	

Patil	and	B.	Ravi	[10]	which	discusses	different	methods	to	implement	the	voxelization	process,	and	

presents	an	algorithm	for	voxelization.	The	method	used	in	the	development	of	their	algorithm	is	the	

‘ray-stabbing’	method.	This	method	creates	a	‘bounding	box’,	or	three-dimensional	grid	around	the	

mesh	model	(Figure	2-4b),	and	calculates	the	intersections	between	a	ray	that	traverses	along	the	x-axis,	

with	the	normal	vectors	of	the	triangular	mesh	facets	of	the	model.	The	ray	traverses	through	the	x-axis	

along	the	y-axis	at	each	z-axis	layer	to	generate	a	three-dimensional	binary	approximation	of	the	mesh	

model,	thus	achieving	voxelization.	
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The	size	and	resolution	for	a	swept-helix	volumetric	display	is	determined	by	the	size	of	the	

projection	surface	and	the	resolution	of	the	projector.	Below	is	how	the	projection	surface	can	be	seen	

to	match	the	voxel	mapping	above.	This	is	displayed	in	Figure	2-5:	

	
Figure	2-5	-	Helicoid	Voxel	Representation	[7]	

	

Slicing	

Converting	the	volume	data	into	2D	slices	is	then	done	by	calculating	the	intersections	of	the	

volume	data	with	the	helicoid	at	each	position	as	it	rotates.	Below	in	Figure	2-6	is	an	example	of	the	

intersection	slices:	

	
Figure	2-6	-	Stanford	Bunny	Helicoid	Intersection	Slices	[7]	

	

The	three	dimensional	intersection	must	be	calculated	and	then	converted	into	a	two-

dimensional	slice	to	be	projected.	
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2.2	Motor	Technology	

One	vital	piece	in	many	systems	with	radial	motion	is	the	motor.	There	are	many	kinds	of	

motors,	each	with	its	advantages	and	disadvantages.	Although	often	related,	different	kinds	of	motors	

are	suited	for	different	applications.	There	are	numerous	categories	of	small	electric	motors	that	are	

powered	by	a	direct	current	power	source.	These	include	DC	motors,	servomotors,	and	stepper	motors.		

Aptly	named,	a	DC	motor	runs	when	driven	by	a	direct	current	voltage	source.	The	rate	at	which	

the	motor	spins	is	correlated	to	the	motor’s	input	voltage.	These	motors	are	often	not	directly	driven	

using	changing	voltage	levels,	however.	At	high	frequencies,	the	average	voltage	of	a	pulse	width	

modulated	signal	acts	indistinguishably	from	a	constant	source	at	the	same	voltage.	Because	a	PWM	

(Pulse	Width	Modulation)	signal	is	oftentimes	easier	to	generate	than	a	differential	constant	voltage	

source,	DC	motors	are	oftentimes	driven	using	PWM.	

There	are	two	primary	types	of	DC	motors.	These	are	the	brushed	DC	motor	and	brushless	DC	

motor.	Brushed	DC	motors	utilize	a	physical	electronic	connection	—	called	a	brush	—	between	the	

voltage	source	and	coils	on	the	motor’s	shaft	to	control	which	coils	are	positively	charged	and	which	

coils	are	negatively	charged,	effecting	further	rotation	of	the	shaft.	Brushed	DC	motors	are	very	simple	

mechanically	and	are	easy	and	inexpensive	to	produce.	Their	continued	use,	however,	causes	the	brush	

to	wear	out	over	time	and	the	motor	will	lose	a	large	amount	of	energy	as	heat.	

A	brushless	DC	motor,	as	the	name	might	imply,	does	not	have	this	connection	between	the	

stator	and	the	shaft.	Instead	of	the	shaft	having	mounted	coils	such	as	those	on	a	brushed	DC	motor,	a	

brushless	DC	motor	has	a	permanent	magnet	mounted	to	the	shaft	while	the	coils	are	mounted	to	the	

stator.	Hall-effect	(magnetic	field)	sensors	are	used	to	detect	the	rotation	of	the	permanent	magnet	and	

appropriately	charge	the	correct	coils	to	positive,	negative,	or	ground.	Brushless	DC	motors	require	

internal	circuitry	to	drive	the	coil	voltages,	making	them	more	expensive	and	complicated	to	produce	

than	a	brushed	DC	motor.	The	lack	of	mechanical	contact,	however,	allows	for	a	longer	life	and	greater	

power	efficiency	in	rotation,	which	in	turn	allows	brushless	DC	motors	to	rotate	faster	at	a	given	voltage	

than	a	brushed	DC	motor.	These	motors	are	often	used	in	applications	such	as	aviation	due	to	their	

power	to	weight	ratio	[11].	

The	second	kind	of	motor,	the	servomotor,	is	often	found	in	systems	that	require	a	high	degree	

of	rotational	precision	such	as	robotics	and	manufacturing	equipment.	A	servomotor	operates	by	taking	

in	a	PWM	signal	and	using	the	duty	cycle	to	rotate	to	a	specific	angle.	This	is	accomplished	by	using	a	

standard	DC	motor	that	is	connected	to	a	radial	encoder.	The	output	of	the	encoder	is	fed	into	a	PID	

(Proportional-Integral-Derivative)	controller	in	order	to	ensure	rotational	accuracy	of	the	system.	Servos	
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are	often	limited	to	a	confined	rotational	range,	however	there	are	also	servos	that	do	not	contain	these	

limitations	and	can	rotate	freely	[12].	

Stepper	motors,	like	servos,	are	often	found	in	high	precision	applications	such	as	

manufacturing	and	robotics.	These	motors	are	often	meant	to	be	used	in	high-torque,	low-speed	

applications.	A	stepper	motor	has	a	discrete	number	of	steps	per	revolution	and	will	always	rotate	to	the	

next	before	continuing.	This	allows	for	control	as	precise	as	the	number	of	steps	in	the	motor.	There	are	

numerous	kinds	of	stepper	motors	that	are	driven	in	various	ways,	however	the	core	concept	of	driving	

each	is	the	same:	charging	the	correct	coils	inside	the	motor	to	the	correct	voltages	in	order	to	rotate	

the	shaft	[13].	

	

2.3	Projection	Technology	

Most	modern	day	consumer	level	projection	systems	use	one	of	three	primary	technologies:	

DLP	(Digital	Light	Processing),	LCD	(Liquid	Crystal	Display),	and	laser	scanners.	There	are	also	numerous	

hybrids	between	these	technologies,	such	as	LCoS	(Liquid	Crystal	on	Silicon)	and	laser-driven	LCD	and	

DLP	projectors.	Each	of	these	technologies	has	areas	and	applications	where	it	excels	as	well	as	

drawbacks.	

Texas	Instruments	created	DLP	technology	in	the	late	1980’s.	The	technology	uses	a	DMD	

(Digital	Micromirror	Device)	to	reflect	light	through	a	system	of	optical	lenses	to	project	an	image	[14].	

Each	mirror	on	the	DMD	represents	one	or	more	pixels	in	the	end	projection.	The	mirrors	modulate	

rapidly	between	reflecting	light	through	the	optical	system	and	reflecting	light	onto	a	heatsink.	This	

modulation	produces	various	intensities	of	light	at	each	mirror,	allowing	for	complex	gradients	or	rapid	

binary	patterns.	DLP	technology	is	used	in	many	areas	from	consumer	and	cinema	projection	systems	to	

manufacturing	and	rapid	prototyping	equipment.	Multibit	color	projection	using	DLP	is	achieved	by	

rapidly	switching	between	a	number	of	colored	light	sources	whilst	simultaneously	switching	the	DMD	

to	represent	the	correct	color	intensities	[15].	Many	DLP	projectors	used	in	residential	settings	use	a	

halogen	lamp	paired	with	rapidly	spinning	color	wheel	with	three	or	four	colors.	Many	modern	

commercial	projectors	utilize	colored	LEDs	or	laser	technology	to	generate	a	brighter	image	with	fewer	

visible	artifacts	in	the	projection.	

Laser	projection	is	also	used	in	many	applications,	from	live	entertainment	to	industrial	scanning	

and	even	printing.	One	or	more	lasers	are	projected	against	galvanometers	with	mirrors	attached,	called	

scanners.	One	scanner	controls	the	X	axis	of	the	projection	and	the	other	the	Y	axis.	Unlike	DLP	and	LCD	

technology,	laser	projection	produces	a	vector	image.	This	means	that	the	image	produced	through	laser	
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projection	does	not	have	discrete	pixels,	but	rather	is	composed	of	mathematical	curves	that	represent	

the	image.	This	is	because	the	laser	projects	as	the	scanners	move,	generating	a	continuous	line	[16].	In	

polychromatic	applications,	numerous	lasers	are	combined	into	a	single	beam	by	internal	optics	of	the	

projector.	

The	final	projection	technology	is	LCD.	Found	anywhere	from	monitors	to	research	equipment,	

LCD	works	on	a	similar	principle	to	DLP:	different	intensities	of	light	are	allowed	to	pass	for	each	

individual	pixel.	Where	DLP	and	LCD	differ,	however,	is	how	they	achieve	this	goal.	Whereas	DLP	uses	an	

array	of	mirrors	to	reflect	light,	LCD	projection	uses	a	panel	full	of	liquid	crystals	to	modulate	light	

passing	through	[17].	There	are	two	common	layouts	for	polychromatic	LCD	projection	systems,	which	

are	single	LCD	and	3LCD.	A	single	LCD	system	will	use	a	single	LCD	panel	with	subpixels	for	each	of	red,	

green,	and	blue,	while	a	3LCD	system	uses	a	separate	LCD	panel	designated	to	each	aforementioned	

color.	

	

2.4	Hardware	Platform	Overview	

Two	hardware	platforms	were	chosen	for	this	project.	These	are	the	Avnet	ZedBoard	and	Texas	

Instruments	DLP	LightCrafter	EVM.	Both	of	these	platforms	possess	unique	functionality	important	to	

the	design	goals	of	the	project.	

	

2.4.1	ZedBoard	

The	Avnet	ZedBoard	is	an	evaluation	kit	that	utilizes	a	Xilinx	Zynq-7000	SoC.	The	board	is	called	

as	such	because	it	stands	for	the	'Zynq	Evaluation	and	Development	Board.'	The	specific	member	of	the	

Zynq-7000	SoC	family	that	the	Zedboard	Utilizes	is	the	Zynq	XC7Z020.	For	the	purposes	of	simplicity,	

Zynq-7000	and	Zynq	XC7Z020	are	used	interchangeably.	The	Zynq-7000	is	a	system	on	a	chip	that	

includes	both	a	dual-core	ARM	Cortex	A9	processing	system	(PS)	as	well	as	FPGA	fabric	for	the	

programmable	logic	(PL).	The	PL	is	run	off	of	an	on-board	100MHz	clock	while	the	PS	is	supplied	by	a	

33.33MHz	clock.	The	ZedBoard	Can	be	seen	in	Figure	2-7.	
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Figure	2-7	–	ZedBoard	[18]	

	

The	Xilinx	FPGA	fabric	is	equivalent	to	a	Xilinx	Artix-7	FPGA	and	contains	85,000	logic	cells,	

106,400	flip-flops,	and	53,200	LUTs.	The	FPGA	fabric	also	contains	contains	140	modules	of	36Kb	Block	

RAM	(BRAM).	The	ARM	processor	contains	256Kb	of	on-chip	memory,	8	Direct	Memory	Access	(DMA)	

channels,	as	well	as	peripheral	interfaces	for	UART,	CAN,	I2C,	SPI,	GPIO,	USB	2.0	OTG,	and	Tri-mode	

Gigabit	Ethernet.	In	order	for	the	PL	to	communicate	with	the	PS,	the	Zynq-7000	series	includes	a	

number	of	AXI	busses	and	16	internal	interrupts	between	the	two	sections	of	the	SoC	[19].	The	full	Zynq-

7000	SoC	system	is	displayed	below	in	Figure	2-8:	
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Figure	2-8	-	Zynq	Platform	Overview	[20]	

	

Along	with	the	Zynq-7000	SoC,	the	ZedBoard	also	contains	two	Micron	DDR3	chips	that	have	a	

total	memory	of	512MB.	The	ZedBoard	also	has	a	slot	for	an	SD	card,	allowing	the	ARM	processor	to	

boot	an	external	operating	system.	On	the	board	the	USB	2.0	OTG,	Ethernet,	UART,	VGA,	HDMI,	and	

CAN	are	broken	out	to	their	respective	connectors,	with	UART	being	broken	out	to	a	USB	to	UART	

interface.	The	board	also	features	numerous	inputs	and	outputs.	The	inputs	include	seven	push	buttons	

and	eight	switches	while	the	outputs	include	8	LEDs	and	an	OLED	display	[21].	A	comprehensive	

ZedBoard	block	diagram	can	be	seen	in	Figure	2-9.	
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Figure	2-9	–	ZedBoard	Platform	Overview	[22]	

	

2.4.2	LightCrafter	EVM	

The Texas	Instruments	LightCrafter	DLP	EVM	is	an	evaluation	kit	for	DLP	projection	technology.	

The	LightCrafter	utilizes	a	0.3"	DMD	with	a	total	of	415,872	mirrors	in	a	diamond	pattern	with	a	width	of	

608	mirrors	and	a	height	of	684	mirrors.	When	running	the	board	in	one-bit	monochrome	mode,	a	

4000Hz	frame	rate	is	achievable.	The	optics	of	the	LightCrafter	produce	a	throw	ratio	of	1.66	and	can	

produce	a	minimum	diagonal	image	at	10"	and	a	maximum	at	60"	[23].	The	LightCrafter	can	be	seen	in	

Figure	2-10.	
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Figure	2-10	-	LightCrafter	[24]	

	

The	DMD	and	light	engine	of	the	LightCrafter	are	controlled	using	a	combination	of	a	digital	

video	processor	and	FPGA.	The	FPGA	receives	input	directly	from	DVI	(miniHDMI)	and	an	external	

trigger.	Other	inputs	such	as	camera,	USB,	UART,	and	MicroSD	are	taken	in	by	a	digital	video	processing	

chip	running	an	embedded	Linux	operating	system.	This	video	processing	chip	has	GPIO	and	digital	video	

connections	with	the	FPGA,	which	is	in	turn	responsible	for	processing	and	streaming	video	and	LED	

color	data.	These	two	streams	of	data	are	sent	to	the	DMD	controller	and	LED	driver	respectively	[23].	

The	full	system	block	diagram	can	be	seen	in	Figure	2-11.	
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Figure	2-11	–	LightCrafter	Diagram [23] 
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Chapter	3:	Algorithm	Development	&	System	Simulation	

The	data	processing	of	the	volumetric	display	system	was	initially	implemented	in	MATLAB	for	

development	and	simulation.	The	voxelization	and	slicing	algorithms	were	developed	as	MATLAB	scripts	

before	their	implementations	in	software	and	custom	logic.	In	addition,	a	simulation	was	created	of	the	

volumetric	display	system	as	a	proof-of-concept.		

	

3.1	Data	Processing	Flow	

The	conversion	of	the	mesh	model	into	a	two-dimensional	slice	involves	two	main	processes:	

voxelization	and	slicing.	The	designed	system	utilizes	these	processes	in	three	steps:	voxelize	the	object	

and	helix,	calculate	the	three-dimensional	intersection,	and	generate	the	two-dimensional	slice.	This	is	

outlined	in	Figure	3-1	below:	

	
Figure	3-1	-	Data	Processing	

	

This	process	is	repeated	for	each	helix	rotation	position	in	order	to	generate	the	slices	necessary	for	the	

full	volumetric	display.	

	

3.2	Voxelization	Algorithm	

The	voxelization	algorithm	was	developed	using	a	MATLAB	package	created	by	Adam	

Aitkenhead	[25].	The	package	includes	a	voxelization	script	that	converts	a	.STL	file	into	a	binary	voxel	

representation	as	a	three-dimensional	array.	The	script	was	based	on	the	research	of	Patil	and	Ravi	

mentioned	previously	[10].		The	package	included	an	example	voxelization	script	which	was	modified	to	

suit	the	needs	of	the	project	by	adding	features	such	as	the	generation	of	three-dimensional	figures	of	

the	voxelized	object	as	well	as	the	manipulation	of	the	output	data	to	suit	the	needs	of	the	slicing	

algorithm.		

The	voxelization	script	takes	in	a	.STL	file	and	a	specified	grid	size	for	the	voxelized	object.	The	

output	of	the	script	is	a	three-dimensional	array	representing	the	x,	y,	and	z	dimensions	of	the	voxel	
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grid.	A	‘1’	represents	where	the	object	is	present,	and	‘0’	represents	its	absence	or	the	background.	The	

original	script	also	generated	figures	of	the	mesh	model	(Figure	3-2),	as	well	as	three	two-dimensional	

figures	of	the	voxelized	result	(Figure	3-3).	The	script	was	modified	to	generate	a	single	three-

dimensional	figure	of	the	voxelized	result.	

	

CAD	Models	

To	test	the	voxelization	algorithm,	several	CAD	models	were	utilized.	A	car	model	from	the	

National	University	of	Singapore’s	STL	Library	[26]	was	selected	as	an	example	of	the	object	to	be	

projected,	and	a	helix	model	was	created	to	be	voxelized	as	well.		

	

Voxelization	Script	Testing	

The	voxel	grid	size	was	initially	selected	as	100x100x100.	The	results	using	the	original	script	

(without	modification)	are	shown	in	Figures	3-2	and	3-3:	

	
Figure	3-2	-	Car	Mesh	Model	

	
Figure	3-3	-	Voxelized	Car	Model	(unmodified	script)	
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The	modified	script	was	then	tested	to	generate	a	three-dimensional	figure	instead	of	the	three	

separate	angles,	and	the	result	can	be	seen	in	Figure	3-4:	

	
Figure	3-4	-	Voxelized	Car	Model	(modified	script)	

	

3.3	Slicing	Algorithm	

The	slicing	algorithm	was	created	as	an	extension	to	the	voxelization	MATLAB	script.	The	

algorithm	traverses	through	each	position	of	the	three-dimensional	arrays	for	the	voxelized	object	and	

helix	and	constructs	a	new	array	as	a	result.	At	each	array	index,	the	bit	for	the	object	and	helix	are	

compared.	If	they	are	both	set	to	1	at	that	position,	an	intersection	has	been	found,	and	the	bit	for	the	

new	array	is	set	to	1,	otherwise,	it	is	set	to	0.	To	generate	the	two-dimensional	intersection,	the	same	

process	is	followed	but	a	two-dimensional	array	is	constructed,	but	the	z	dimension	is	ignored.	If	an	

intersection	is	found	in	the	x-y	plane	at	any	level,	the	x-y	bit	in	a	two-dimensional	array	will	be	set	to	1.	

The	output	of	the	script	generates	a	figure	with	the	three-dimensional	intersection,	as	well	as	the	two-

dimensional	slice.	

	

Slice	Algorithm	Testing	

The	car	model	was	sliced	with	the	helix	using	the	resulting	data	from	voxelization.	The	results	of	

the	process	can	be	seen	in	Figure	5-3.	
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(a)	 (b)	 (c)	
Figure	3-5	-	(a)	20x20x20	car	voxel	model	(b)	20x20x20	helix	voxel	model	(c)	20x20	car	slice		

	

The	test	showed	successful	results,	verified	by	rotating	the	3D	intersection	to	view	the	x-y	plane	

and	comparing	it	with	the	2D	result.	Furthermore,	the	test	utilized	a	voxel	grid	size	of	20x20x20	grid	to	

verify	adequate	resolution	with	less	voxels.	This	was	a	significant	consideration	for	the	PL	design	in	

terms	of	memory	resource	requirement	discussed	further	in	this	report.		

	

3.4	System	Simulation	

The	voxelization	and	slicing	scripts	were	expanded	to	be	able	to	simulate	the	full	volumetric	

display	system.	This	included	being	able	to	generate	slices	for	each	helix	rotation.	MeshLab	was	used	to	

re-orient	the	original	.STL	model	of	the	helix	to	the	desired	rotation	angles.	The	rotated	models	were	

then	saved	to	be	voxelized	in	MATLAB.	The	goal	was	to	generate	20	slices,	thus	an	angle	of	180/20	=	9	

degrees	was	used	for	each	rotation,	as	the	same	intersections	are	found	after	180	degrees.	In	Figure	3-6	

are	a	few	examples	of	the	rotated	helix	models:	

	

	
	

Figure	3-6	-	Rotated	helix	models	
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The	script	was	then	made	to	read	in	each	.STL	file	and	perform	the	voxelization	and	slice	

algorithm	(both	3d	and	2d)	for	each	rotation	(with	the	car	model	used	previously),	saving	the	results	to	

the	working	directory.	The	script	essentially	simulates	the	volumetric	display	concept	fully,	generating	a	

final	image	with	each	rotation	slice	combined.	The	results	for	slices	1,	10,	and	19	are	shown	below	in	

voxelized	form	intersecting	the	helix	voxel	models	in	Figure	3-7,	2D	form	after	being	sliced	in	Figure	3-8,	

and	in	recombined	3D	form	in	Figure	3-9:	

	

3D	intersections	

	
Figure	3-7	-	3D	intersections	

	

2D	Intersections	

	
Figure	3-8	-	2D	intersections	
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Combined	3D	result	

	 	
(a)	 (b)	

Figure	3-9	-	(a)	voxelized	car	model,	(b)	combined	helix	slice	result	
	

As	seen	above,	the	simulation	successfully	reconstructed	the	car	model	using	the	helix	slices.	The	code	

for	the	MATLAB	scripts	can	be	found	in	Appendix	A.	
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Chapter	4:	System	Design	&	Implementation	

The	following	chapter	describes	the	design	and	implementation	of	each	aspect	of	the	system.	

The	overall	design	is	presented	and	each	functional	module	is	expanded	upon.	

	

4.1	Embedded	System	Design	

The	goal	of	the	project	was	to	research	and	develop	an	end-to-end	volumetric	display	system.	

The	team	focused	on	the	swept-helix	approach,	and	designed	a	system	as	is	shown	in	Figure	4-1	below:	

	
Figure	4-1	-	System	Design	

	

The	system	takes	in	a	3D	CAD	model	and	converts	it	into	two-dimensional	images	to	be	

projected	onto	a	spinning	helix.	This	is	achieved	through	a	series	of	processing	steps,	utilizing	both	the	

ARM	processor	and	FPGA	fabric	of	the	Zynq	SoC.	The	design	can	be	split	up	into	four	main	categories:	

projection,	processing	system,	programmable	logic,	and	mechanical	hardware.	Each	of	the	following	

sections	will	describe	the	design	and	implementation	of	each	aspect,	as	well	as	discuss	the	

modifications,	tradeoffs	and	limitations	in	implementing	the	design.	

	

4.2	Projection	

The	requirement	for	the	projector	is	to	have	a	high	enough	frame	rate	to	generate	a	stable	

volumetric	image.	The	designed	system	displayed	40	frames	over	a	single	rotation,	and	the	rate	of	the	

motor	must	be	at	least	15	rotations/second	as	found	in	the	background	research.	This	results	in	15*40	

frames/seconds,	or	600	Hz.	The	LightCrafter	EVM	was	selected	as	it	is	able	to	achieve	such	rates.	
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In	order	to	successfully	display	a	volumetric	image,	the	projector	needed	to	be	set	up	to	the	

correct	specifications.	In	order,	these	included	display	mode,	pattern	count,	input	trigger	mode,	LED	

color,	exposure,	and	input	trigger	delay.	The	display	mode	needed	for	projecting	a	pattern	of	binary	

bitmaps	at	high	speeds	is	referred	to	by	Texas	Instruments	as	“Stored	Pattern	Sequence”	mode.	Because	

there	were	twenty	images	in	a	cycle,	the	pattern	count	was	then	set	to	20.	The	LightCrafter	received	

input	pulses	that	had	an	active	high,	so	the	input	trigger	mode	was	set	to	“External	(Positive)”	to	signify	

that	the	input	trigger	was	both	active	and	acted	on	a	rising	pulse	edge.	The	exposure	and	trigger	delay	

were	both	left	at	0	µS	so	the	image	would	remain	bright	and	the	frame	would	change	directly	at	the	

pulse	edge.	After	these	settings	were	changed	the	series	of	images	was	loaded	onto	the	LightCrafter.	A	

view	of	the	required	settings	can	be	seen	in	the	screenshot	of	the	LightCrafter	GUI	application	in	Figure	

4-2.	

	
Figure	4-2	-	LightCrafter	GUI	

	

Because	the	projector	does	not	produce	a	perfect	isometric	projection	beam,	an	effort	was	made	to	

adjust	for	the	cone	angle	of	the	LightCrafter.	This	was	accomplished	by	creating	an	alternative	helical	

model	for	use	in	slicing.	This	new	helicoid	was	deformed	along	the	upwards-facing	axis,	decreasing	radial	

size	in	correlation	with	the	1.66:1	throw	ratio	defined	by	the	LightCrafter’s	optics.	Orthogonality	of	the	
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beam	was	not	taken	into	account	in	correlation	with	the	isometric	quality	of	the	beam.	This	deformed	

helicoid	can	be	seen	in	Figure	4-3.	

	

	
Figure	4-3	-	Conical	Helix	

	

	

4.3	Processing	System	

The	embedded	system	design	required	a	number	of	pieces	of	software	to	meet	the	goals	of	the	

processing	system	design.	These	were	implemented	in	the	C	language	and	built	on	an	embedded	Linux	

operating	system	in	order	to	utilize	the	ARM	processor	of	the	ZedBoard.	The	system	design	can	be	seen	

in	Figure	4-4.	



	 	 	
	

	 	 	
	

32	

	
Figure	4-4	-	PS	Block	Diagram	

	

4.3.1	PetaLinux		

An	operating	system	was	chosen	over	a	bare-metal	approach	to	programming	the	ARM	

processor	for	two	main	reasons.	These	reasons	are	the	need	for	filesystem	access	and	the	requirement	

for	libraries	that	are	included	with	various	operating	systems.	The	filesystem	was	needed	to	interact	

with	the	original	STL	file	as	well	as	the	generated	images,	and	the	libraries	were	needed	for	interfacing	

with	the	LightCrafter’s	provided	API.		PetaLinux,	a	Linux	distribution	provided	by	Xilinx	for	use	on	their	

FPGA	products,	was	chosen	to	be	the	base	layer	for	all	processing	system	functionality.	Because	the	

operating	system	is	designed	for	use	on	a	Zynq	SoC,	there	is	inherent	functionality	that	allows	for	ease	

of	communication	between	the	PL	and	PS	of	the	overall	digital	system.	The	PetaLinux	operating	system	

provides	a	base	layer	and	framework	on	which	all	other	processing	functionality	was	built.	This	includes	

direct	GPIO	and	BRAM	access	as	well	as	standard	Linux	libraries,	USB	functionality,	and	filesystem	

access.	

	

4.3.2	Voxelization	and	PS-PL	Interface	

The	embedded	system	design	included	the	voxelization	algorithm	as	an	embedded	software	

application	that	generated	the	voxel	data	and	writes	this	data	into	memory	in	the	PL	system.	However,	

due	to	the	scope	of	the	project,	the	voxelization	algorithm	was	kept	as	a	MATLAB	script.	The	script	may	

be	converted	into	a	C	application	using	MATLAB	Coder,	but	the	tool	did	not	support	all	the	functions	

necessary	in	the	voxelization	package.	The	conversion	process	would	involve	further	research	of	the	

voxelization	algorithm	and	its	programming,	which	was	outside	the	scope	of	the	project.	
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The	PS-PL	interface	was	investigated,	however	due	to	the	timing	constraints	of	the	project,	the	

implementation	was	left	out	of	the	final	system.	BRAM	access	in	PetaLinux	is	can	be	achieved	through	

the	combination	of	two	methods.	The	first	of	these	methods	is	the	use	of	the	mmap	Linux	system	call	to	

access	a	memory	managed	device,	in	this	case	BRAM.	The	second	is	assigning	each	hardware	device,	

such	as	the	GPIO	and	BRAM	interfaces,	as	a	device	in	the	Userspace	IO	(UIO)	in	PetaLinux.	The	creation	

of	a	UIO	driver	creates	a	file	in	the	/dev/	folder	of	the	Linux	filesystem.		

	

4.3.3	LightCrafter	API	

The	LightCrafter	API	is	a	set	of	software	libraries	provided	by	Texas	Instruments.	These	were	

needed	to	create	software	that	interacts	with	the	LightCrafter	EVM.	Because	the	ZedBoard	is	a	headless	

embedded	system,	software	needed	to	be	written	for	PetaLinux	that	replaced	the	GUI	LightCrafter	

Control	program	that	had	previously	been	used	on	a	workstation	PC.	The	LightCrafter	control	program	

was	written	using	calls	to	the	LightCrafter	API	provided	by	Texas	Instruments.	The	control	program	

works	by	first	checking	the	connection	to	make	sure	the	LightCrafter	is	connected	and	is	visible	as	an	

RNDIS	ethernet	gadget.	The	program	then	goes	through	and	changes	the	projection	mode	to	‘Stored	

Image	Sequence’	and	sets	the	color,	sequence	length,	and	trigger	type	before	uploading	all	the	images	

to	the	projector.	The	trigger	type	is	set	to	‘External	(positive)’	because	the	output	from	the	ZedBoard	is	

an	active	high	signal,	so	the	LightCrafter	must	be	triggered	on	the	rising	clock	edges	rather	than	the	

falling	clock	edges.	The	LightCrafter	API	code	can	be	seen	in	its	entirety	in	Appendix	B.	

	

4.3.4	Bitmap	Generation		

The	bitmap	conversion	program	takes	in	a	bit	array	representation	of	the	sliced	and	flattened	

data	and	turns	it	into	one	of	the	images	that	is	uploaded	to	the	LightCrafter.	The	bitmap	generation	

happens	in	four	main	steps:	initial	file	creation,	data	processing,	image	padding,	and	writing	to	the	file.	

The	LightCrafter	takes	in	a	one-bit	BMP	file,	so	a	header	for	this	format	is	first	generated	by	the	

software.	A	BMP	file	has	two	headers,	a	generic	file	header	and	a	data	header	specific	to	the	bitmap	

format	[27].	Both	of	these	must	be	formatted	properly	in	order	to	generate	a	useable	image.	

First	the	file	header	is	generated	and	it	is	given	a	signature	unique	to	the	BMP	format.	Next	the	

total	file	size	and	header	length	are	calculated	and	placed	into	their	respective	spots	in	the	header.	The	

second	part	of	formatting	the	file	correctly	is	the	BMP	data	header.	This	includes	information	such	as	

the	size,	pixel	density,	and	bit	depth	of	the	image.	All	of	the	needed	values	are	calculated	and	placed	

into	their	respective	spots	in	the	data	header.	
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Next	the	input	data	must	be	scaled	and	formatted	to	fit	the	projector.	This	is	accomplished	by	

copying	the	data	out	of	memory	and	then	scaling	the	data	by	a	factor	of	25.	The	data	is	scaled	by	

iterating	through	each	pixel	in	the	scaled	array	and	mapping	it	to	a	pixel	in	the	source	array.	This	can	be	

seen	demonstrated	in	Figure	4-5,	which	shows	first	an	array	being	scaled	and	then	the	image	result	of	a	

scaled	array.	

	

Input	Data	 Output	Image	

[0x00,0xff,0x00, 

0x00,0xff,0x00, 

0x00,0xff,0x00, 

0x00,0xff,0x00, 

0x00,0xff,0x00, 

0x00,0xff,0x00, 

0x00,0xff,0x00, 

0x00,0xff,0x00, 

0xff,0x00,0xff, 

0xff,0x00,0xff, 

0xff,0x00,0xff, 

0xff,0x00,0xff, 

0xff,0x00,0xff, 

0xff,0x00,0xff, 

0xff,0x00,0xff, 

0xff,0x00,0xff, 

0x00,0xff,0x00, 

0x00,0xff,0x00, 

0x00,0xff,0x00, 

0x00,0xff,0x00, 

0x00,0xff,0x00, 

0x00,0xff,0x00, 

0x00,0xff,0x00, 

0x00,0xff,0x00]	

	

Figure	4-5	-	Conversion	Example	
	

After	the	pixels	are	scaled,	they	are	padded	in	order	to	bring	each	row	of	pixels	to	a	multiple	of	

four	bytes	to	prevent	image	skew.	The	added	padding	brings	the	image	to	608x684	pixels,	which	

matches	the	resolution	required	by	the	LightCrafter.	The	data	is	then	written	to	the	BMP	file	in	order.	
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First	the	file	header	is	written	followed	by	the	data	header.	Before	the	actual	image	data	is	written,	

however,	a	color	table	is	included	to	state	which	two	colors	are	represented	by	the	monochrome	

bitmap.	The	full	bitmap	file	stack	can	be	seen	in	Figure	4-6	below.	For	more	information	about	the	BMP	

generation	code,	see	Appendix	C.	

	

1	 File	Header	(14	bytes)	

2	 Data	Header	(32	bytes)	

3	 Color	Table	(2*4	bytes)	

4	 Image	Data	(51,984	bytes)	

	

	

Figure	4-6	-	Bitmap	Structure	

	

4.4	Programming	Logic	

The	programmable	logic	system	consists	of	the	slice	processor,	encoder,	and	processing	system	

interface.	A	block	Diagram	of	the	full	design	can	be	seen	in	Figure	4-7	below:	

	
Figure	4-7	-	Programmable	Logic	System	

	

The	system	was	designed	and	implemented	in	Verilog,	using	a	combination	of	custom	IP	and	

Xilinx	IP	blocks.	The	only	external	input	and	output	to	the	system	is	for	the	encoder	module,	which	

handles	the	projection	synchronization.	
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4.4.1	Memory		

A	significant	aspect	in	the	PL	design	was	the	memory	requirement	of	the	system.	The	data	sent	

from	the	processing	system	is	a	20x20x20	array	representing	the	voxelized	object,	thus	20x20x20,	or	

8000	bits	are	required	for	storage	of	one	3D	model.	The	complete	system	requires	twenty-one	3D	

models:	one	for	the	object,	and	twenty	for	each	helix	rotation.	In	addition,	memory	is	required	to	store	

the	twenty	two-dimensional	slices	generated,	needing	20x20	or	400	bits	for	each	2D	slice.	This	results	in	

a	total	of	21*8000	+	20*400	bits,	or	176000	bits.	

The	Zynq	SoC	features	140	x	36Kb	blocks	of	RAM,	with	each	block	having	a	maximum	bus-width	

of	75	bits.	These	blocks	of	memory	can	be	generated	using	Xilinx	IP,	namely	the	Block	Memory	

Generator.	The	generator	allows	the	configuration	of	custom	BRAM,	allowing	the	specification	for	the	

width	and	depth	for	the	data	to	be	stored	within	the	block.	The	system	was	designed	so	that	each	three-

dimensional	model	would	be	stored	in	its	own	block	RAM	for	easy	access,	and	all	twenty	of	the	2D	slices	

would	be	stored	in	a	single	block	to	be	accessed	by	the	PS,	resulting	in	a	total	utilization	of	22	blocks	of	

RAM.	The	Block	Memory	Generator	also	allows	for	the	memory	to	be	pre-initialized	with	data.	This	

allowed	the	twenty	helix	models	to	be	preloaded	into	the	memory	blocks	using	memory	initialization	

files	(.coe)	containing	the	voxel	data	for	each	helix	rotation.		

	

4.4.2	Slice	Processor	

The	slice	processor	finds	the	intersection	between	the	voxelized	object	and	helix,	and	converts	it	

into	two-dimensional	slice	data.	This	is	done	for	each	helix	rotation.	The	overall	design	can	be	seen	in	

Figure	4-8.	
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Figure	4-8	-	Slice	Processor	

	

The	use	of	custom	logic	for	these	modules	allows	for	fast,	parallel,	computations	of	the	

intersections.	The	slice	processor	is	activated	by	an	enable	signal	sent	through	GPIO	from	the	processing	

system,	which	activates	the	read	module	of	the	slice	processor.	The	read	module	extracts	the	voxel	data	

of	the	object	from	BRAM,	as	well	as	the	voxel	data	of	the	helix.	It	contains	twenty	memory	blocks,	each	

containing	the	data	of	one	helix	rotation	as	mentioned	above.	Each	block	of	memory	has	a	data	bus	

width	of	50	bits	and	a	depth	of	160	bits,	and	the	module	reads	from	one	BRAM	at	a	time.	The	module	

selects	a	new	memory	block	to	read	from	once	each	address	has	been	visited	from	the	previous	block.	

The	read	module	design	can	be	seen	in	Figure	4-9.	
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Figure	4-9	-	Read	Module	Design	

	
The	output	of	the	read	module	populates	the	8000	registers	for	a	full	model.	Once	all	the	data	of	

a	helix	is	extracted,	the	slice	module	is	enabled	to	generate	the	two-dimensional	slice	data	for	that	

rotation.	The	slice	module	performs	two	operations	-	calculating	the	three-dimensional	intersection	and	

then	converting	it	into	two-dimensional	slice	data.	Instead	of	traversing	through	the	three-dimensional	

array	as	done	in	the	simulation,	the	three-dimensional	intersection	is	calculated	by	a	bitwise	AND	of	the	

object	and	helix	data,	and	the	two-dimensional	slice	is	calculated	by	mapping	each	x	and	y	position	on	

every	z	level	to	the	same	bit	on	the	20x20	array.	This	allows	for	a	faster	parallel	computation	of	the	

intersection.		

Once	the	slice	is	generated,	the	write	module	takes	the	output	from	the	slice	module	as	its	main	

input,	stores	each	slice	in	a	slice	buffer,	and	writes	the	slices	into	BRAM	as	seen	in	Figure	4-10.	
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Figure	4-10	-	Slice	Processor	Write	Module	

	

The	read_count	counts	from	0	to	19	in	order	to	load	the	20	slices	into	buffer	registers.	The	

buffers	are	then	fed	into	a	multiplexer,	which	selects	one	slice	at	a	time	to	be	written	into	BRAM.	The	

BRAM	has	a	32-bit	data	width,	thus	each	slice	is	fed	into	another	multiplexer	to	feed	the	data	in	

sequentially.	The	read_count	begins	at	the	input	enable	signal.	When	all	slices	have	been	read	in,	

write_next	and	write_count	are	enabled	to	allow	for	the	BRAM	write	operations	to	occur.	This	module	is	

enabled	simultaneously	with	the	slice	module.	Once	each	slice	has	been	written	into	BRAM,	the	

processing	system	can	commence	reading	the	data	to	generate	the	bitmap	images	for	projection.	The	

code	for	the	slice	processor	can	be	found	in	Appendix	E.	

	

4.4.3	Encoder	Module	

The	encoder	module	is	an	integral	part	of	the	projection	control	system	that	enables	

synchronization	between	the	spinning	helix	and	projected	frames.	The	module	takes	in	the	home	and	

helix	position	signals	from	encoder	circuitry	as	its	inputs	and	outputs	a	pulse	signal	that	is	sent	to	the	

LightCrafter.		

The	module	has	two	states	-	standby	and	active.	The	module	is	initialized	in	its	standby	state,	

and	its	functionality	is	to	detect	the	home	position.	The	home	position	is	the	starting	position	of	the	

helix	where	the	first	frame	is	to	be	projected.	While	in	standby	state,	there	is	no	output	to	the	
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LightCrafter.	The	signals	coming	from	the	encoder	circuitry	are	active	low,	thus	the	home	signal	is	

detected	when	there	is	a	logic	0	in	the	‘home’	input.	Once	detected,	the	module	is	put	into	its	active	

state,	where	the	helix	position	signal	input	is	directed	as	the	pulse	signal	output.	Thus,	for	every	new	

position	detected,	the	next	frame	is	triggered	for	projection.	The	encoder	module	code	can	be	seen	in	

Appendix	F.	

	

4.4.4	PS	Interface	and	PL	System	Integration		

The	programmable	logic	system	interacts	with	the	processing	system	via	the	Zynq7	Processing	

System	IP	block,	which	wraps	the	ARM	processor	to	enable	communication	between	the	custom	logic	

and	software.	Communication	between	the	two	systems	is	necessary	to	be	able	to	transfer	the	

voxelization	data	from	PS	to	PL,	and	the	slice	data	from	PL	to	PS.	In	addition,	the	custom	logic	modules	

are	activated	through	GPIO	signals	sent	from	the	PS.	The	communication	between	the	two	systems	was	

configured	using	an	Advanced	eXtensible	Interface	(AXI)	bus,	which	provides	the	interface	for	both	

memory	and	GPIO.		

	

Processing	System	Wrapper	

The	Zynq7	IP	block	integrates	the	processing	system	with	the	programmable	logic	system.	This	

allows	the	PS	to	have	access	to	both	on-chip	and	external	memory,	PL	clocks,	and	additional	I/O	

peripherals.	The	PS	interface	configuration	can	be	customized	using	the	user	interface	of	the	IP	block	as	

seen	in	Figure	4-11	below:	
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Figure	4-11	-	Zynq7	Processing	System	GUI	

	

Settings	such	as	the	peripherals,	system	boot-mode,	clocks,	and	the	PS-PL	interface	can	be	

configured	by	the	user.	The	PS	was	configured	to	have	USB,	UART,	and	SD	card	peripherals.	The	USB	

peripheral	allows	the	LightCrafter	to	be	connected,	UART	allows	a	connection	between	the	headless	PS	

system	and	a	host	PC,	and	the	SD	card	peripheral	allows	the	system	to	be	booted	from	an	operating	

system	residing	on	an	SD	card.	In	addition,	the	PS	was	configured	with	an	AXI	interface	for	

communication	with	BRAM	and	GPIO.	

	

Advanced	eXtensible	Interface	

AXI	is	a	protocol	adopted	by	Xilinx	as	an	interconnection	between	IP	cores	[28].	Specifically,	AXI	

enables	an	interconnection	for	memory-mapped	IO.	An	AXI	interconnection	was	generated	in	the	PL	

system	to	create	the	necessary	connections	with	the	PS.	The	interconnect	was	automatically	generated	
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as	part	of	Vivado’s	‘run	block	automation’	tool	in	block	design	mode,	creating	the	necessary	abstractions	

for	a	simple	connection.		

The	AXI	interconnect	was	used	for	both	the	GPIO	and	BRAM	connections	in	the	PL.	An	AXI	BRAM	

controller	was	generated	using	Xilinx	IP	that	allows	the	PS	system	to	access	the	on-chip	BRAM	in	PL.	Two	

blocks	of	RAM	were	generated	in	the	top	level	design	of	the	PL	for	the	separate	read	and	write	

operations	of	the	datapath.	The	first	BRAM	is	used	to	store	the	voxel	data	written	from	PS	to	be	read	in	

PL,	and	the	second	BRAM	is	to	store	the	slice	data	written	by	PL	to	be	read	back	into	PS.		

	

System	Integration	

The	PS	wrapper,	AXI	interconnect,	and	block	memory	cores	were	integrated	into	a	single	block	

design	as	seen	in	Figure	4-12	below:	

	
Figure	4-12	-	PL	System	Block	Diagram	

	

In	order	to	connect	the	block	design	with	the	custom	slice	processor	and	encoder	IP,	the	GPIO	

and	BRAM	ports	were	configured	as	external	ports.	A	top-level	module	was	then	created	using	Verilog	

that	instantiated	and	connected	the	module	above	with	the	slice	processor	and	encoder	modules	to	

complete	the	comprehensive	programmable	logic	system.	The	full	PL	system	code	can	be	seen	in	

Appendix	G.	
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4.5	Mechanical	System	

In	order	to	produce	a	volumetric	image,	a	rotational	hardware	system	needed	to	be	created	to	

spin	and	track	the	helical	projection	screen.	A	frame	also	needed	to	be	constructed	in	order	to	mount	

rotational	system	and	projection	system.		The	mechanical	system	consists	of	three	main	components:	

the	encoder,	the	rotational	hardware,	and	the	frame.	The	purpose	of	the	design	was	to	prioritize	

stability	and	structure	around	the	rotational	hardware	whilst	maintaining	the	proper	distances	between	

the	helix	and	the	projector.	An	image	of	the	full	system	can	be	seen	in	Figure	4-13	below.	

	

	
Figure	4-13	-	Mechanical	System	Photograph	

	

One	requirement	of	the	system	was	to	synchronize	the	motor	with	the	projection,	in	order	to	

generate	a	correct	image.	The	encoder	was	designed	to	allow	the	system	to	track	both	the	rate	of	

rotation	as	well	as	absolute	rotational	position.	This	was	accomplished	through	the	inclusion	of	both	a	

forty-position	encoder	as	well	as	two	home	positions.	The	home	position	marks	the	starting	point	of	the	

rotational	sequence.	Two	home	positions	were	included	due	to	the	radial	symmetry	of	the	helix	at	180°.	

These	two	home	positions	act	identically,	but	the	inclusion	of	both	halves	the	worst-case-scenario	wait	
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time	for	the	system	to	become	synchronized.	In	order	to	track	this,	40	encoder	positions	were	included	

equidistant	from	each	other	around	the	perimeter	of	the	encoder	below	the	home	position.	Each	

position	indicates	a	new	frame	to	be	projected.	A	computer-generated	model	of	this	encoder	can	be	

seen	in	Figure	4-14.	

	

	
Figure	4-14	-	Encoder	Wheel	

	

The	encoder	circuitry	consists	of	two	phototransistors	and	two	infrared	LEDs.	Pulling	low	when	

they	sense	light	over	a	certain	threshold,	the	phototransistors	are	mounted	across	from	the	LEDs	with	

the	beam	of	both	LEDs	centered	on	and	perpendicular	to	each	track	on	the	encoder	wheel.	This	allows	

for	the	encoder	and	home	positions	on	the	wheel	to	be	separately	tracked.	The	LEDs	and	

phototransistors	share	a	common	power	source,	however	the	outputs	are	separated	and	fed	into	

separate	inputs	of	the	ZedBoard.	A	circuit	diagram	for	the	two	LED/phototransistor	pairs	can	be	seen	in	

Figure	4-15.	Information	about	the	wire	color	coding	scheme	can	be	found	in	Appendix	H.	
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Figure	4-15	-	Encoder	Circuitry	
	

The	rotational	hardware	was	selected	to	allow	for	the	helical	load	to	spin	at	a	rate	fast	enough	

to	project	a	steady	image	at	a	constant	speed.	The	motor	selected	was	a	brushed	motor	with	a	power	

draw	under	full	load	of	6W.	This	motor	was	chosen	due	to	cost,	speed,	and	ease	of	integration	into	the	

design.	The	motor,	a	Hyongyang	HRS-755S,	is	low	cost	and	advertised	for	applications	in	high-speed	

applications	such	as	in	cordless	leaf	blowers	and	hedge	trimmers.	The	motor	also	has	easily	accessible	

mounting	points	that	were	utilized	in	coupling	the	rotational	system	to	the	rest	of	the	hardware.	In	

order	to	prevent	the	helix	from	freely	rotating	around	a	circular	shaft	whilst	spinning,	a	D-shaft	–	named	

for	its	shape	–	was	chosen	to	allow	for	the	shaft	coupler,	shaft	collars,	encoder	wheel,	and	helix	to	easily	

limit	non-motor	radial	motion	while	simultaneously	maintaining	easy	vertical	motion	to	assemble	and	

disassemble	the	components.	

In	order	to	hold	each	piece	of	the	mechanical	system	together,	a	frame	was	constructed	from	

steel	angle	channel	and	acrylic.	Two	acrylic	panels	were	designed	for	the	frame	in	order	to	mount	the	

motor	and	LightCrafter	to	the	system.	These	two	mounting	plates	were	laser	cut	from	acrylic	sheets	and	

attached	to	the	steel	frame	using	L-brackets.	The	motor	plate,	as	seen	in	Figure	4-16a,	was	designed	to	

accommodate	the	shaft	of	the	motor	along	with	two	screws	to	allow	for	the	motor	face	to	be	mounted	

flush	with	the	panel.	The	projector	mount	seen	in	Figure	4-16b	was	designed	to	utilize	three	slots	in	the	

acrylic.	The	wide	center	slot	is	to	allow	the	projected	image	to	pass	through	the	panel	uninterrupted	

while	the	two	outer	slots	are	for	mounting	the	projector	to	the	panel,	allowing	for	sliding	to	adjust	and	

calibrate	the	image.	



	 	 	
	

	 	 	
	

46	

	

	 	

Figure	4-16a	-	Motor	Mount	 Figure	4-16b	-	Projector	Mount	
	

After	investigation	into	a	number	of	possible	techniques	to	create	the	helix,	extrusion-based	3D	

printing	was	decided	to	be	the	most	feasible.	Due	to	restrictions	of	the	3D	printer	used	for	

manufacturing,	the	helix	was	split	into	three	pieces	in	order	to	allow	it	to	fit	on	the	bed	of	the	printer.	

Nylon	was	used	as	the	print	material	due	to	its	low	cost,	high	strength,	and	lightweight	nature.	The	

housing	for	the	encoder	circuitry	was	also	3D	printed.	This	enclosure	was	designed	both	to	allow	for	

easy	mounting	to	the	frame	and	to	provide	ample	headroom	to	the	rotating	encoder	wheel.	
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4.6	Final	System	Implementation	

Due	to	the	timing	constraints	and	scope	of	the	project,	the	final	system	implementation	

processed	the	CAD	file	on	a	PC.	This	included	voxelization,	slicing,	generating	bitmap	images,	and	

configuring	the	LightCrafter.	Figure	4-17	shows	the	original	embedded	system	design.	The	modules	

highlighted	in	green	were	implemented	on	a	PC	for	the	final	implementation,	and	the	module	in	blue	

was	implemented	on	the	ZedBoard:	

	

	
Figure	4-17	–	Embedded	Design	Modifications	

	

The	PC	was	connected	to	the	LightCrafter	via	USB,	and	the	ZedBoard	was	connected	to	both	the	

encoder	circuitry	and	the	LightCrafter	(see	Appendix	H).	This	is	shown	in	Figure	4-18	below:	

	

	
Figure	4-18	-	Final	System	Implementation	
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The	CAD	file	was	processed	in	MATLAB	for	voxelization	and	slicing	using	the	simulation	script.	

The	script	generated	the	twenty	slices	and	were	automatically	saved.	These	images	were	then	converted	

to	the	necessary	resolution	(608x684)	and	file	type	(monochrome	bitmap).	The	LightCrafter	GUI	was	

then	used	to	configure	the	LightCrafter	for	stored	pattern	sequence,	and	the	20	bitmaps	were	uploaded.	

The	motor	is	turned	on	once	the	images	have	been	uploaded	to	the	LightCrafter,	and	the	projection	

commences	when	the	home	position	is	detected	by	the	encoder.	The	integration	of	these	parts	create	

the	complete	volumetric	display	system.	
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Chapter	5:	System	Testing	&	Results	

In	order	to	ensure	that	every	piece	of	the	project	was	functional,	a	strict	and	comprehensive	set	

of	testing	guidelines	was	developed	for	each	part.	This	section	outlines	the	steps	taken	to	test	each	part	

of	the	project	as	well	as	the	results	from	testing.	

	

5.1	Processing	System	

5.1.1	PetaLinux	

PetaLinux	was	tested	by	building	the	operating	system	successfully	and	loading	it	to	an	SD	card	

with	two	partitions,	one	for	the	boot	disk	and	one	for	the	root	filesystem.	These	partitions	were	aptly	

named	“BOOT”	and	“rootfs”	as	per	the	PetaLinux	documentation.	The	operating	system	was	then	

booted	on	the	ZedBoard	and	the	functionality	was	checked.	The	software	being	run	on	top	of	the	OS	

layer	was	tested	in	a	similar	manner,	as	its	compilation	coincided	with	the	PetaLinux	compilation.	

Although	both	PetaLinux	and	the	software	compiled	successfully	and	ran	on	the	ZedBoard,	functionality	

in	numerous	pieces	of	software	was	not	working,	as	is	explained	in	the	following	sections.	

	

5.1.2	LightCrafter	API	

The	LightCrafter	software	was	initially	tested	successfully	on	a	PC.	Sample	images	were	placed	in	

a	folder,	the	LightCrafter	was	connected,	and	the	software	was	then	run	under	Ubuntu.	The	LightCrafter	

was	successfully	loaded	with	the	images	and	responded	to	the	input	trigger	while	projecting	using	the	

correct	LED.	

The	LightCrafter	control	program	was	then	tested	in	the	PS	by	compiling	it	with	PetaLinux,	

attaching	the	LightCrafter	via	USB	OTG	to	the	ZedBoard,	and	running	the	program.	Although	the	

program	successfully	ran	without	issue,	it	could	not	utilize	the	RNDIS	connection	to	the	LightCrafter	over	

USB	OTG.	Numerous	steps	were	taken	to	resolve	this	by	altering	the	PetaLinux	kernel	configuration,	

however	no	steps	taken	proved	effective.	The	underlying	cause	of	the	RNDIS	connectivity	issue	is	

unknown.		

	

5.1.3	Bitmap	Generation	

The	bitmap	generation	software,	while	successfully	run	on	the	development	PC,	produced	a	

segmentation	fault	when	run	on	the	ZedBoard.	This	problem	arises	due	to	the	limited	resources	of	the	

ZedBoard	and	the	program	running	out	of	virtual	memory.	This	is	due	to	the	need	to	allocate	an	array	
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for	the	output	image	and	the	temporary	array	residing	in	program	memory.	When	testing	the	bitmap	

generation	software	on	the	development	workstation	PC,	testing	included	the	generation	of	multiple	

sizes	of	images	as	well	as	using	multiple	patterns	as	the	source	data.	Results	showed	that	due	to	the	

BMP	specifications	output	images	that	did	not	include	an	x	dimension	divisible	by	four	bits	would	be	

skewed	unless	otherwise	padded.	The	program	also	worked	only	for	a	select	number	of	patterns,	

resulting	in	improperly	scaled	data	for	other	patterns.	The	cause	of	this	behavior	was	narrowed	down	to	

an	error	in	the	scaling	algorithm.	

	

5.2	Programmable	Logic	

Each	functional	block	in	the	PL	was	tested	individually	to	verify	the	functionality	of	each	module	

before	doing	integrated	tests.	The	following	sections	outline	the	tests	performed	and	explain	the	results.	

	

5.2.1	BRAM	read/write	

Custom	logic	to	read	and	write	from	BRAM	was	tested	to	verify	that	the	data	being	both	read	

and	written	was	accurate.	In	addition,	the	memory	initialization	files	were	configured	and	tested	to	

verify	accurate	data	as	well.	

	

BRAM	Memory	Initialization	

A	block	RAM	was	configured	to	load	with	an	initialization	(.coe)	file.	This	file	contained	the	initial	

contents	to	be	loaded	on	the	BRAM.	The	file	simply	required	a	radix	and	data	vector	to	define	the	

desired	contents.	The	memory	initialization	was	tested	by	loading	4	data	elements	of	8-bits	each:	0xAA,	

0xBB,	0xCC,	0xDD.	The	BRAM	was	configured	to	have	a	data	bus-width	of	8	bits	and	a	depth	of	4	bits	

(four	addresses	/	elements).	The	memory	block	was	instantiated	into	a	test	bench	to	determine	

successful	data	initialization	and	read	functionality.	The	results	are	shown	in	Figure	5-1	below:	

	
Figure	5-1	-	Memory	Initialization	Test	Bench	Results	
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The	BRAM	was	then	modified	to	have	a	data	bus-width	of	4000	bits	and	depth	of	2,	and	was	

tested	again.	The	results	of	the	4000-bit	data-bus	test	can	be	seen	in	Figure	5-2:	

	

	
Figure	5-2	-	4000-bit	Data	Initialization	Test	Bench	Results	

	

As	displayed	in	Figures	5-1	and	5-2,	both	tests	showed	successful	results	for	reading	pre-loaded	

data.	This	was	used	for	the	final	implementation,	as	the	helix	data	was	be	pre-loaded	in	the	system.	

	

Sequential	Read	Module	

The	read	module	in	the	slice	processor	contains	20	memory	blocks,	each	containing	the	data	of	

one	helix	rotation.	This	was	simulated	in	a	test	design	with	each	block	of	memory	configured	with	a	data	

bus-width	of	50	bits,	and	a	depth	of	160	bits.	The	module	reads	from	one	BRAM	at	a	time,	with	the	

doutb	of	one	module	being	the	output	of	the	module.	The	module	then	selects	a	new	memory	block	to	

read	from	once	each	address	has	been	visited	from	the	previous	block.	Once	each	memory	block	has	

been	visited,	the	module	will	stop	reading	from	memory	(enable	is	low).	The	design	was	implemented	

with	4	blocks	of	memory	in	a	test	bench	with	the	following	results.	These	results	can	be	seen	in	Figures	

5-3a	and	5-3b.	

	
Figure	5-3a	-	Testbench	results	
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Figure	5-3b	-	Testbench	results	

	

As	seen	in	the	figures	above,	the	module	successfully	read	all	the	data	from	memory	block	0,	

and	showed	a	successful	switch	to	memory	block	1.	The	doutb	values	were	also	validated	by	comparing	

them	to	the	memory	initialization	files.	This	test	verified	the	sequential	read	functionality	of	the	custom	

logic	and	allowed	for	expansion	to	the	full	20	block	implementation.	

	

5.2.2	Slice	Processor	

Each	functional	module	within	the	slice	processor	was	tested	before	integrating	them	into	a	

single	functional	unit.	This	included	the	slice	module,	sequential	reading,	and	sequential	writing.	

	

Slice	Module	

The	slice	module	was	initially	tested	using	a	3x3x3	grid	to	verify	functionality.	The	inputs	to	the	

module	were	a	fully	voxelized	cube	for	the	3D	object	(obj)	and	a	slanted	plane	outline	as	the	intersecting	

surface.	Image	representations	of	these	are	shown	below:	

	

	
Figure	5-4	-	3D	object	(left)	and	intersecting	surface	(right)	
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The	expected	processing	would	result	to	the	following:	

	

  27’b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	

& 27’b 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1	

--------------------------------------------------------------------	

27’b1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1	

--------- CONVERT TO 2D-------	

=> 9’b1 1 1 1 0 1 1 1 1	

	

The	test	bench	was	simulated	and	showed	the	expected	result	as	seen	in	Figure	5-5.	

	
Figure	5-5	-	Testbench	results	

	

The	module	was	then	implemented	in	hardware	using	the	ZedBoard	to	display	the	2D	result	on	

a	VGA	display.	The	following	test	module	was	designed	and	implemented.	The	module	to	test	slicing	

using	VGA	can	be	seen	in	Figure	5-6.	
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Figure	5-6	-	Slice	test	module	block	diagram	

	

The	same	inputs	were	used	(generated	within	the	Verilog	code)	as	the	test	bench.	The	9-bit	

output	was	mapped	to	the	corresponding	3x3	grid	and	resulted	in	the	image	shown	in	Figure	5-7.	

	

	
Figure	5-7	-	Hardware	Implementation	Result	
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The	initial	tests	were	then	expanded	for	the	20x20x20	resolution.	To	do	so,	a	20x20x20	VGA	

display	grid	was	designed	and	implemented.	By	default,	the	grid	would	display	as	all	purple	(indicating	

an	output	of	all	zeros)	as	seen	in	Figure	5-8:	

	
Figure	5-8	-	Blank	20x20x0	grid	

	

Each	square	on	the	grid	was	mapped	to	a	bit	that	corresponds	to	the	output	of	the	slice	module	

(twoD).	When	a	bit	is	equal	to	1,	it	set	the	corresponding	square	to	white.	The	functionality	of	the	grid	

was	tested	using	to	verify	the	bits	were	mapped	to	the	corresponding	squares	before	testing	the	slice	

module.	The	slice	module	was	then	implemented	using	the	voxel	models	of	the	car	and	helix	exported	

from	the	MATLAB	simulations	as	inputs.	The	results	are	shown	in	Figure	5-9b	with	the	MATLAB	result	for	

comparison	in	Figure	5-9a:	

	
	

(a)	 (b)	
Figure	5-9	-	(a)	MATLAB	slice	results	(b)	Hardware	implementation	results	

	
	 The	results	showed	a	successful	implementation	of	the	slicing	module,	with	the	20x20	grid	

output	showing	the	exact	same	result	as	the	MATLAB	simulation.	The	VGA	test	module	code	can	be	seen	

in	Appendix	D.	
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Sequential	Slices	

The	slice	module	was	then	integrated	with	the	sequential	read	module	to	ensure	the	system	

was	able	to	load	the	helix	data	for	each	rotation,	and	generate	the	slices.	This	test	module	directed	the	

output	of	the	BRAM	read	to	the	slice	module,	and	the	slice	module	was	enabled	once	the	BRAM	read	

module	had	finished	loading	the	entire	model.	The	module	was	tested	in	a	testbench	and	the	results	can	

be	seen	in	Figure	5-10:	

	
Figure	5-10	-	PL	Slice	Simulation	Results	

	

The	figure	shows	slice_en	going	high	after	surf_count	has	reached	9f,	indicating	that	0	to	159	

data	addresses	had	been	read	from	and	loaded	ready	for	slicing.	The	slice_en	bit	enables	the	voxel	slice	

module,	and	the	output	twoD	was	produced,	representing	a	2D	slice.	The	simulation	showed	successful	

results	in	loading	and	slicing	all	20	models.		

	

Full	Slice	Processor	Testing	

The	final	aspect	was	to	integrate	the	writing	module	into	the	slice	processor	system.	The	module	

was	integrated	into	the	top	level	slice	processor	design	and	was	simulated	with	the	whole	system.	The	

full	system	testbench	results	can	be	seen	in	Figure	5-11:	
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Figure	5-11	-	PL	Slice	Processor	Simulation	

	

The	simulation	showed	successful	results	for	the	control	of	the	write	module.	The	waveform	

above	shows	that	the	moment	that	read_count	reaches	the	last	slice,	thus	writing	will	be	enabled	

(write_en	goes	high).	As	write_en	goes	high,	the	appropriate	din	and	address	is	generated	for	the	BRAM	

write	operation.	
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5.2.3	Encoder	Module	

The	encoder	module	was	tested	using	a	testbench	to	simulate	the	encoder	circuitry.	The	test	

cases	verified	that	the	pulse	signal	follows	the	opposite	of	the	input	of	the	encoder	signal,	but	only	after	

the	home	signal	has	been	detected.	As	seen	in	Figure	5-12,	the	testbench	showed	successful	results	for	

the	encoder	module:		

	
Figure	5-12	-	Encoder	Module	Test	Results	

	
In	addition,	the	encoder	hardware	implementation	was	tested	in	with	the	mechanical	and	

projection	system.	The	encoder	circuitry	was	connected	to	the	ZedBoard,	and	an	output	was	connected	

to	the	LightCrafter	(see	Appendix	H).	The	ZedBoard	was	programmed	and	the	functionality	of	the	

encoder	module	was	verified	by	turning	the	encoder	wheel	by	hand.	A	test	image	sequence	was	used	

and	showed	successful	results,	with	each	frame	triggered	upon	each	positoin	detected	by	the	encoder.	

	

5.3	Mechanical	System	

The	encoder	circuitry	was	tested	to	ensure	a	reliable	and	consistent	signal	whilst	rotating.	This	

was	accomplished	by	measuring	the	output	of	both	encoder	sensors	using	a	digital	oscilloscope.	The	

widths	of	both	the	home	position	pulse	and	encoder	pulse	measured	to	be	640µs	when	spinning.	The	

encoder	testing	included	motor	testing	by	measuring	speed	whilst	spinning	under	full	load.	This	equates	

to	1.563kHz,	which	is	well	below	the	4KHz	maximum	input	trigger	constraint	of	the	LightCrafter.	It	can	

be	seen	below	in	Figures	5-13a	and	5-13b	that	both	sets	of	pulses	appear	consistent	and	occur	at	a	

consistent	rate.	The	encoder	signal	is	represented	by	the	second	channel	in	both	oscillograms	while	the	

home	position	is	displayed	on	the	first.	The	encoder	module	takes	an	active	low	signal	due	to	the	

phototransistors	pulling	low,	therefore	the	pulses	occur	when	the	high	signal	falls	low.	
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Figure	5-13a	-	Encoder	Detail	View	 Figure	5-13b	-	Home	Position	Detail	View	

	

	

5.4	Full	System	Tests	

The	final	system	implementation	was	tested	to	verify	the	functionality	of	the	volumetric	display	

system.	The	Stanford	Bunny	model	[9]	was	used	to	do	so.	The	results	for	each	stage	of	the	system	are	

presented	below.	

	

Voxelization	&	Slicing	

The	first	stage	of	the	system	was	to	voxelize	the	Bunny	model.	The	MATLAB	system	simulation	

script	was	utilized	to	generate	a	voxelized	model	with	a	grid	size	of	20x20x20	as	seen	in	Figure	5-14	

below:	

	
Figure	5-14	-	Voxelization	Results	
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Slicing	

The	next	stage	of	the	system	was	to	slice	the	voxelized	model.	The	MATLAB	simulation	script	

accomplished	this	by	running	the	slicing	algorithm	with	the	Bunny	model	and	a	voxelized	model	of	every	

helix	rotation	position.	The	results	of	two	slices	are	shown	in	Figure	5-15	below:	

	
Figure	5-15	-	Slicing	Results	

	

The	slices	generated	were	verified	with	the	three-dimensional	intersections	generated	by	the	

script,	to	ensure	that	the	x-y	plane	was	captured	accurately.	The	MATLAB	generated	figures	were	then	

converted	into	monochrome	bitmap	files	with	a	size	of	608x684	(a	requirement	for	LightCrafter	

configuration)	using	Microsoft	Paint.		

	

Projection	

The	LightCrafter	was	then	configured	to	Stored	Pattern	Sequence	mode,	with	the	external	

trigger	setting	activated	using	the	LightCrafter	GUI.	The	20	bitmaps	of	the	slices	were	uploaded	to	the	

LightCrafter	ready	for	projection.	The	ZedBoard	was	then	programmed	with	the	encoder	module,	and	

the	DC	motor	was	switched	on.	The	projection	sequence	commenced	once	a	home	position	was	

detected,	and	the	resulting	volumetric	image	can	be	seen	in	Figure	5-16.	
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Figure	5-16	-	Volumetric	Display	Result	

	

The	voxelization	and	slicing	algorithms	showed	successful	results,	and	the	projection	system	was	

able	to	generate	a	three-dimensional	image.	Looking	closely	at	Figure	5-16	above,	individual	voxels	can	

be	seen	within	the	cylindrical	shape	of	the	spinning	helix,	and	a	visible	figure	is	observed.	However,	the	

image	was	distorted,	and	the	bunny	model	was	difficult	to	distinguish.	The	distortion	is	in	part	due	to	

the	angle	of	projection	of	the	LightCrafter.	In	addition,	the	Stanford	Bunny	model	was	not	conically	

distorted	to	account	for	the	cone	angle	of	the	LightCrafter.	Even	though	the	image	was	somewhat	

distorted,	the	results	of	the	system	was	considered	a	success	due	to	its	ability	to	project	a	static,	visibly	

voxelized	volumetric	image.		

	 	



	 	 	
	

	 	 	
	

62	

Chapter	6:	Conclusion	

	This	project	successfully	created	a	volumetric	display	system	that	displays	a	3D	CAD	file	into	a	

three-dimensional	volume.	The	final	system	implemented	processed	a	CAD	model	on	a	PC	to	generate	

the	two-dimensional	slices,	configured	the	LightCrafter	using	a	GUI,	and	controlled	the	projection	

synchronization	using	encoder	circuitry	and	custom	logic	on	the	Zynq	SoC.	

The	research	conducted	on	volumetric	display	concepts	and	CAD	file	manipulation	resulted	in	

the	development	of	working	voxelization	and	slicing	algorithms.	These	can	be	used	to	simulate	a	

volumetric	display,	as	well	as	generate	the	slice	images	to	be	projected	from	a	PC.	Custom	logic	for	

slicing	was	successfully	designed,	implemented	and	tested	to	showcase	the	hardware	processing	

functionality	in	the	system.	Additionally,	the	implementation	of	PetaLinux	on	the	ARM	Processor	

allowed	for	experimentation	and	testing	of	an	embedded	operating	system	as	well	as	the	testing	of	

embedded	software	applications.	A	complete	projection	control	system	was	also	successfully	designed,	

built,	and	tested,	including	mechanical	hardware,	a	3D	printed	helix,	and	encoder	module	that	was	

capable	of	tracking	helix	rotational	positions	and	the	synchronization	of	the	motor	with	projected	

frames.	

Although	many	aspects	of	the	embedded	design	were	successfully	implemented	in	simulation,	

the	team	was	unable	to	implement	these	into	the	final	system	implementation.	In	order	to	transform	

the	project	deliverables	into	a	full	end-to-end	embedded	system,	multiple	items	that	were	in	the	

proposed	and	simulated	design	but	not	in	the	final	implementation	must	be	taken	into	account.	First,	

the	voxelization	software	was	not	fully	developed	in	C	and	thus	was	not	implemented	in	PetaLinux.	This	

is	due	to	time	constraints	and	project	scope.	This	holds	equally	true	for	the	bitmap	generation	software,	

which	attempts	to	utilize	more	resources	such	as	virtual	memory	than	the	Zynq-7000	SoC	has	available	

to	it.	The	deliverable	also	relies	on	a	connection	to	a	PC	in	order	to	load	the	projection	images	because	

the	USB	connectivity	with	the	LightCrafter	using	RNDIS	could	not	be	implemented	on	the	ZedBoard	due	

to	time	and	technology	constraints.	Although	many	attempts	were	made	to	mend	the	connection	issue,	

a	solution	could	not	be	found.	The	functional	deliverable	relies	on	the	voxelization	being	completed	in	

MATLAB	and	the	LightCrafter	being	configured	using	a	workstation	PC.	

There	are	also	various	items	that	were	not	taken	into	account	in	the	initial	design	process.	Each	

component	of	the	designed	system	relies	on	a	separate	power	source	while	ideally	a	final	product	would	

utilize	a	single	power	source	responsible	for	every	component.	The	motor	is	also	not	controlled	by	the	

system	but	instead	must	be	manually	started	after	both	the	projector	and	projection	control	system	are	

ready	for	the	rotation	to	begin.	
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The	Zedboard	and	Zynq	SoC	proved	to	be	the	ideal	platform	for	the	research	and	development	

of	the	system.	The	combination	of	the	embedded	processor	and	programmable	hardware	provided	

flexibility	in	the	experimentation	and	development	of	the	different	processing	modules,	allowing	for	

changes	in	the	system	design.	The	SoC	would	be	ideal	for	a	complete	embedded	system	to	reap	the	

benefits	of	both	software	and	hardware	processing.	

6.1	Future	work	

There	are	various	components	of	the	system	that	can	be	improved	upon	through	future	work.	

One	important	issue	that	is	apparent	with	both	the	current	design	and	physical	system	is	the	lack	of	

distortion	compensation.	The	cone	angle	has	been	compensated	for	by	using	a	conically-distorted	helix	

to	slice	the	model,	however	the	angle	of	the	beam	out	of	the	projector	is	not	directly	tangent	to	the	

normal	vector	of	the	projector	lens	and	thus	needs	to	be	taken	into	account	by	the	slicing	algorithm.	

Other	future	work	would	involve	unifying	the	Zynq	SoC	platform	and	DLP	platform	onto	a	single	piece	of	

hardware.	Both	systems	utilize	an	FPGA	for	parallel	processing	and	a	future	unification	would	allow	the	

two	systems	to	share	FPGA	fabric,	removing	the	need	for	the	RNDIS	USB	connectivity	as	well	as	the	need	

to	bring	the	slices	back	into	the	processing	system	for	the	generation	of	bitmaps.	This	also	would	lower	

latency	in	that	the	LightCrafter	would	not	need	to	rely	on	its	own	onboard	Linux	system.	In	addition,	the	

resolution	of	the	projected	image	can	be	improved	from	20x20x20	for	a	better	quality	image.	This	may	

require	the	use	of	external	DDR3	memory	as	opposed	to	the	sole	use	of	on-chip	block	RAM	to	meet	

memory	capacity	requirements	of	increased	resolution.		
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Appendices	
	

Appendix	A:	MATLAB	Simulation	Code	
The	System	Simulation	MATLAB	script	can	be	found	in:		

VDR_MQP_FILES/MATLAB Algorithm and 
Sims/Mesh_voxelization/VOXELIZE_SLICE_SIMULATION.m 

	
Appendix	B:	LightCrafter	API	Code	

The	LightCrafter	API	code	can	be	found	in:		
VDR_MQP_FILES/PS System/lightcrafter_code_arm/main.c	

 

Appendix	C:	Bitmap	Generation	Code	
The	Bitmap	Generation	code	can	be	found	in:	

VDR_MQP_FILES/PS System/bmpgen.c	
	

Appendix	D:	Slice	Module	Test	Code	
The	Slice	Test	with	the	VGA	display	Vivado	Project	archive	can	be	found	in:	

VDR_MQP_FILES/PL System/Slice_Test.xpr.zip 

	
Appendix	E:	Slice	Processor	Code	

The	Slice	Processor	Vivado	Project	archive	can	be	found	in:	
VDR_MQP_FILES/PL System/Slice_Processor.xpr.zip 
	

Appendix	F:	Encoder	Module	Code	
The	Encoder	Module	Vivado	Project	archive	can	be	found	in:	

VDR_MQP_FILES/PL System/Encoder_Module.xpr.zip 
	

Appendix	G:	Full	PL	System	Code	
The	Full	PL	System	Vivado	Project	archive	can	be	found	in:	

VDR_MQP_FILES/PL System/Full_PL_System.xpr.zip 
 

Appendix	H:	Wire	Color	Guide	
The	color	coded	wires	of	the	system	are	connected	to	the	ZedBoard	pins	as	seen	in	the	following	

image.	Please	refer	to	the	ZedBoard	Hardware	User's	Guide	for	pinout	locations.	

	


