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Abstract 
 

Ultrasound has developed from 2D into 3D ultrasound in recent years. 3D ultrasound gives 

enhanced diagnostic capabilities and can make it easier for less trained people to interpret 

ultrasound images. In general there are two ways of getting a 3D ultrasound image : By using a 

2D array scanner (giving 3D images directly) or by using a series of 2D scans and combine 

these scans to build a 3D volume. The only practical scanning technique that can be used for 

portable systems is freehand scanning that combines a series of 2D images. 

3D images acquired by using a conventional ultrasound transducer and the freehand scanning 

technique are, however, often misaligned laterally and have unevenly spacing. These errors can 

be corrected if the position associated with each 2D image is known. Commercially available 

positioning systems use magnetic or optical tracking, but these systems are very bulky and not 

portable. 

We have proposed another way to get the position by tracking on the skin surface. This is done 

by obtaining digital images of the surface at a very high rate and then cross correlating each 

image to reveal the change in position. Accumulating these changes will then give the correct 

location (in two dimensions) relative to a starting point. Correct volume and surface rendering 

can therefore be achieved when a scan is done. 

A custom-made housing was made to mount an optical sensor to the ultrasound transducer. The 

optical sensor was placed in the housing and the hardware circuit from an optical mouse was 

used to interface to a USB interface. An implementation with an optical fiber was also made 

since this could fit easily to the transducer handle. 

In Windows a custom-made mouse driver was used to extract the position information from the 

sensor. This driver allowed multiple mouse devices in the system and removed the acceleration 

of the mouse, giving a correct transfer of the position. 
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A DLL (Dynamic Link Library) was used to interface to a 3D ultrasound software called 

Sonocubic. Using the DLL and a custom modified version of Sonocubic 3D construction software 

has allowed a correct compensation of the acquired ultrasound images. 

To validate the accuracy of the optical sensor an optical mouse was placed in an XY-recorder to 

compare the acquired position with the actual position. The test revealed that the accuracy of 

the optical sensor is very high. A 55 mm movement of the sensor gave a deviation of 0.56 mm 

which is well within the expected result. 

A computer generated phantom was made to see if the compensation algorithm was working. 

The test revealed that the compensation algorithm and the software is working perfectly. Next a 

vessel phantom was scanned to see that the compensation algorithm (lateral compensation) 

was working in real life. The test showed that a correct lateral compensation was made. Finally 

3D phantoms were custom made to test the accuracy of the system by estimation of a known 

volume. The system was able to estimate the volume in a phantom within an accuracy of 6 %. 

Performance of the system with direct imaging, using the optical sensor and a lens, was 

compared to an implementation with an optical fiber, two lenses and the optical sensor. The 

optical fiber was difficult to implement since the image contrast was degraded severely through 

the optical fiber and the lenses. This made it difficult for the correlation algorithm to function 

correctly and tracking could therefore not be done on a skin surface. 

Code for an FPGA was made in VHDL to extract the actual images from the optical sensor and 

display them directly on a computer screen. This was necessary to see how well the sensor was 

in focus. This proved to be a really useful tool for adjusting the optical system for maximal 

contrast. 

The optical tracking on a skin surface is a good way to assist a user doing a freehand scanning 

to get images without geometric distortion. Furthermore, it is the only real positioning system 

for a portable system. One requirement for this system is, however, that the object being 

  page 3 of 135 



scanned is flat and does not curve or vary vertically. For most  applications this is not the case, 

and we are therefore proposing an implementation with microgyros that is able to give angle 

information as well. This would give the system a total of up to 5 instead of just 2 degrees of 

freedom. The status of this is currently that it can be easily implemented in the DLL, but it is not 

implemented in the 3D reconstruction software, Sonocubic. 
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1 Introduction 

1.1 Motivation 

Fast treatment is critical in saving people's life when they are injured. Triage is therefore of the 

highest importance whether it is on the battlefield, on the road in a car accident or in an 

emergency room. Ultrasound can be used for this purpose, but often the ultrasound equipment 

is bulky and difficult to carry around. Some small systems do, however, exist on the market, 

which makes it possible to use ultrasound at places it is difficult to access. An example of such a 

system is the Terason 2000 ultrasound scanner shown in Fig. 1. 

 

 

 

 

 

Fig. 1 - Terason 2000 ultrasound system 

 

As part of my work from January to May 2004 here at WPI I was developing a portable 

ultrasound system for TATRC (Telemedicine and Advanced Technology Research Center), the so 

called 2nd generation portable ultrasound system. This was done with Prof. Peder C. Pedersen 

and Prof. R.J. Duckworth. The work resulted in an ultrasound system integrated into a vest (see 

Fig. 2) that it was possible to carry around on the battlefield or in an ambulance. 
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Fig. 2 - Portable 2nd generation ultrasound system 

 

The system is based on the Terason 2000 ultrasound scanner. To this we have added a small 

embedded PC that is placed in a pocket in the back. A microphone is used together with a 

speech recognition system that was customized for this system by Dalys Sebastian [1]. Finally 

there is an optical viewer through which it is possible to see the ultrasound image that is 

acquired by system. The work presented in this thesis is a continuation of the results we 

achieved with this system. In short, the idea is to add 3D capabilities to the portable system. 

Traditionally experienced ultrasonographers have visually imagined how a 3D representation of 

a scanned object or pathology looks based on a series of 2D ultrasound scan planes put 

together in their head. We took this idea a step further and provide an actual 3D representation 

on a computer screen, making it easier for less trained people to interpret ultrasound data. The 

3D representation of the data gives a lot of redundancy and makes it easier for the mind to 

visualize what is scanned. This makes it possible to get a fast diagnosis of a patient. 
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There are a number of different methods that can be used to obtain a 3D ultrasound image. 

One of these is shown in Fig. 3. As it can be seen this implementation needs a large mechanical 

motor to move the transducer, which makes it a bit impractical. There are, however, 

implementations where the motor is built into the transducer itself. Another problem is that the 

size of the volume that can be scanned is limited to the volume that is swept by the transducer 

when it is rotating. This limits the ultrasound scans to small volumes. 

 

Fig. 3 - 3D Rotational Motorized Scan [4] 

 

In recent years a new technique using a 2D array transducer has been developed. The idea is 

the same as with the mechanical rotation, but instead of having a motor mechanically move the 

transducer, the direction of the ultrasound beam is steered electronically. The advantage with 

this method is that it is very fast, which makes it possible to capture 3D ultrasound images in 

real time - also called 4D ultrasound. But the same limitation exists for the field of view as 

described above. Another limitation in terms of portable ultrasound is that the available 3D 

implementations on the market, which control the sweep of the scan planes, are not particularly 

suitable for portable ultrasound. 

The only real solution on the market for portable 3D ultrasound is to use a scanning technique 

called free-hand scanning. The goal is to move the ultrasound transducer in a straight scan path 

with a constant speed, as if the transducer was mounted in a motor as shown in Fig. 4. In 

practice, a straight scan path at a constant speed is difficult to achieve. 
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Fig. 4 - Ultrasound transducer mounted in a motor driven linear fixture [4] 

 

For practical purposes the motor is unwanted and instead a position system can be used to 

determine the position of the transducer. By using the position information the necessary 

compensations can be made and a correct 3D image can be obtained. How this can be done will 

be described in detail in this thesis. 

 

The position systems used today are bulky and impractical, especially for portable ultrasound 

[2],[3]. An example called "Flock of Birds" is shown in Fig. 5. As it can be seen, the position 

system is quite big, and it requires a number of fixed devices to be placed in the room where 

the scanning takes place, making it far from portable. The "Flock of Birds" gives 6 degrees of 

freedom. 

 

 

 

 

 

Fig. 5 - Flock of Birds by Ascension Technology [2] 
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We therefore decided to develop a new and much smaller position system to assist a user trying 

to make a free-hand ultrasound scan. The system is based on an optical sensor that is found in 

optical mice. The sensor is tracking on the skin surface and gives 2 degrees of freedom. In the 

following chapters it will be described how this system was developed and interfaced with the 

ultrasound scanner software that we used. Finally the system's ability to do volume estimations 

and visualize scanned objects will be shown. 

1.2 Overview of this thesis 

Chapter 2 - System overview : This chapter gives an introduction to how this system is designed 

(and implemented). The idea is to give a basic understanding of the system before describing 

the details in the following chapters. 

Chapter 3 - The Optical Position Sensor : This chapter describes the basic functionality behind 

an optical mouse and the accuracy of it. It is described how images can be extracted from the 

sensor for visualization, which is important for verifying that the images captured by the optical 

sensor are in focus. Two different implementations, one with an optical fiber and one without, is 

tested. Finally a comparison between the different implementations is made. 

Chapter 4 - Software and interfacing : This chapter describes how the optical sensor was 

interfaced to the software. It also describes how the data transfer is made between the 

applications used. Finally a test is made to see if the system is working on computer generated 

image data. 

Chapter 5 - Volume Estimations : In this chapter the complete system is tested in a real life test. 

This is done on a customized 3D ultrasound phantom that was created in our lab. The system is 

tested for it's ability to do volume estimations and to make a 3D reconstruction. 

Chapter 6 - Conclusion : This chapter contains the conclusions for the work presented in this 

thesis and gives recommendations for future work. 
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The appendix part of this thesis contains : 

Appendix A - Detailed information about the CCD-array viewer, which is used for capturing the 

image that the optical sensor is photographing. 

Appendix B - The code that was made for interfacing the optical sensor to the software. 

Appendix C - The Matlab algorithm that was used for filtering and calculating the volume of the 

tested ultrasound phantom. 

Appendix D - The customized Teratest code for testing 

Appendix E - The customized Pos3D.dll code for testing  
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2 System Overview 

2.1 Introduction 

As I expect the reader to be quite unfamiliar with the architecture of the system described in 

this thesis I have made this section to provide a short overview of it. This should make it easier 

to see the "big picture" in this thesis. 

The development of an ultrasound system with 3D capabilities is described in this thesis. The 

system is based on a PC and a Terason 2000 ultrasound transducer that is commercially 

available at a price around $30,000. The Terason 2000 ultrasound system is shown in Fig. 6. 

 

 

 

 

 

Fig. 6 - Terason 2000 Ultrasound Scanner connected to laptop 
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We used a Terason 2000 system to developed a second generation wearable ultrasound system, 

which was fitted into a photographers vest. This was made from January-April 2004. The key 

components in the system are shown in Fig. 7. 

 

 

 

 

 

 

Fig. 7 - 2nd generation wearable ultrasound system 

 

Based on this system we want to implement the 3D capabilities. As explained in the introduction 

(chapter 1), 3D makes the interpretation of ultrasound images easier. The development of an 

optical position sensor is described in this thesis. The position sensor is used to track the 

position of the ultrasound transducer (in the Terason 2000 system) on the surface of the skin. 

This is basically done in the same way as a regular optical desktop mouse tracks on the surface 

of a desktop. A block diagram of the hardware is shown in Fig. 8. A PC running on Windows XP 

is used as the platform. The Terason ultrasound scanner and a position sensor is connected to 

this PC. Inside the PC there are programs which take care of acquiring and displaying the 

ultrasound data. 
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PC

Terason Ultrasound 
Scanner

Positioning 
Sensor

 

 

 

 

Fig. 8 - Block diagram of the hardware 
 
 

2.2 Software Setup 

The positioning device we are using is able to track in two dimensions (that is, it has two 

degrees of freedom). But any kind of device that is able to give a position can be used. The 

software consists of three applications that all run in Windows XP : 

• Terason - Ultrasound scanner software 
• Sonocubic - 3D rendering software 
• Mouse Filter Driver - Mouse driver with a so called filter 

 

They are interconnected as shown in Fig. 9. The Terason application acquires ultrasound data 

from a Terason ultrasound scanner, processes the data and creates a video image. This image 

or scan plane is then sent to Sonocubic for three dimensional rendering. Every time Sonocubic 

receives a scan plane it asks a so called mouse filter driver for the current position of the 

position sensor and thereby the scanner. With the positioning information it is possible for 

Sonocubic to position the scan planes correctly so a correct 3D image can be displayed. In the 

following I will describe each of the three software applications. 
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Fig. 9 - Simple block diagram of the 3D imaging system 

 

2.3 Terason 

Terason is the manufacturer of the ultrasound scanner. With the scanner comes a software 

program that is also called Terason. It interfaces to the hardware in the ultrasound scanner. It 

takes care of transferring the data obtained by the ultrasound scanner and by means of a scan 

converter it translates the data into a video format. This video information can then be 

transferred to Sonocubic for 3D rendering. 
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2.4 Sonocubic 

Sonocubic is basically a 3D rendering software program. It is made so it captures images from 

an analog video input through a frame grabber and stores them in a memory location. After a 

sequence of scan planes or video images has been recorded, a 3D rendering can be done. But 

instead of having an analog video interface and a frame grabber, images are transferred 

digitally from Terason using a shared memory location (a memory where both programs can 

write and read to/from). This is done using a series of BMP (bitmap) images, that are 

transferred uncompressed and without loss. 

2.5 Mouse Filter Driver and Interface 

The mouse filter driver and interface is not an application as such. It consists, as the name 

indicates, of a mouse driver and a small program code called a dynamic link library (DLL). The 

driver captures the position information from the mouse and filters it out from the Windows 

driver stack so that the cursor is not moved on the screen. The dynamic link library then 

interfaces the driver to Sonocubic. Sonocubic therefore loads this DLL at runtime (in the start up 

phase). In this way Sonocubic has direct access to get the scanner positions whenever it is 

necessary. 
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3 The Optical Position Sensor 

3.1 Introduction 

After giving a short introduction to the system in the previous chapter, this chapter will describe 

how the optical sensor works and how we have used it. 

A standard optical mouse can be used for tracking movements on a surface. The requirements 

for the surface is that it has to be uneven or to have an optical pattern. These requirements are 

indeed fulfilled for the human skin. A simple test where the optical mouse is moved over the 

skin reveals that it is possible to track on the skin. If the optical sensor circuitry inside the 

mouse is taken out and mounted on the side of an ultrasound transducer, it can therefore be 

used to track the movement of the transducer with respect to the skin. This can be utilized to 

create a 3D image using freehand scanning even if the scan speed is not constant or the scan 

path is not straight on the surface. 

3.2 Design of an Optical Computer Mouse 

In Fig. 10 the hardware setup of an optical mouse is shown. The main components are the 

sensor, the lens/light pipe and the LED. The LED is illuminating the surface with light that comes 

from an angle. This reveals discontinuities in the roughness of the surface since shadows are 

created. These shadows can be used to track on. The mouse works by acquiring images of the  

 

 

 

 

Fig. 10 - Components in an optical mouse [9] 
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surface on which it moves at a very high rate. This is done through the lens that puts the 

surface being tracked on in focus. Each captured image is called a frame, and the speed at 

which the surface is photographed is therefore given in frames per second (fps). In the Agilent 

ADNS-2610 chip [9], which is the optical sensor used in this project, this takes place at a rate of 

1,500 fps. The resolution of the optical sensor is very low, since each image only consists of 

18x18 pixels. 

After each image has been captured a cross-correlation between consecutive images takes place 

in order to determine the direction the mouse has moved in. This is done in hardware inside the 

optical sensor chip and the details of this algorithm is not known. 

The concept is illustrated in Fig. 11, where (a) is the previous frame captured and (b) is the 

current frame. Here the X-coordinate of the mouse (not the image) has changed with -3 while 

the Y-coordinate has changed with -2 since the last frame was captured. 
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Y

X

Y
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Fig. 11 - Concept of an image captured before and after a movement 
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3.3 Pixels and Real World Movements 

The relationship between the actual physical movement and the corresponding pixel movement 

can be calculated. This relation does not only depend on the CCD-array, but also depends on 

the lens being used in front of it. With the HDNS-2100 lens [10] that is designed for the Agilent 

mouse sensors, the resolution of the CCD-array ends up being 400 cpi (counts per inch). This is 

a measure of how many counts or pixel changes the sensor can register and is equivalent to the 

dpi (dots per inch) that is a well-known measure of the resolution of a printer or a scanner. 

Since the HDNS-2100 lens has a 1.00 magnification, 400 cpi is also the resolution of the CCD-

array, but as it can be seen in Fig. 12 this magnification can vary between 0.85 to 1.15, giving a 

340 to 460 variation in the cpi. The background for this variation is based on the mechanical 

assembly requirements that can be found in the HDNS-2100 datasheet [10]. 

 

 

 

 

Fig. 12 - HDNS-2100 Lens design optical performance specifications [9] 

 

From the 400 cpi we can calculate the height and width of a single pixel to be 1/400 inches. In 

mm this is 1/400*25.4 = 0.0635 mm. Thus the CCD-array is covering an area that has the size 

(0.0635 * 18)2 = 1.31 mm2. In order to verify the image size a testpattern was made, and the 

images from the mouse were captured. This was done using a CCD-array image viewer 

(appendix A). This image viewer was done as a part of VHDL-class EE574 with Prof. R. J. 

Duckworth. 
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The results can be seen in Fig. 13. As it can be seen there is a good correspondence with the 

size of the area that is actually covered and the theoretical size (1.31 mm2). This is equal to a 

square with the size 1.14 mm x 1.14 mm. 

 

 

 

 

 

 

 
Fig. 13 - Test patterns and captured mouse images 

 

In terms of position accuracy the worst case occurs when a 45 degree movement takes place, 

that is the same x and y speeds or movement between frames. In this case the change would 

be 0.0635 * sqrt(2) = 0.0898 mm. It is therefore impossible to achieve an overall higher 

accuracy than this. 

3.4 Mouse Movement in Windows XP 

In order to obtain the movement of the mouse it is necessary to find a way to extract the pixel 

movements detected in the CCD-array. In our case this is done in Windows XP. In a normal 

Windows environment a movement of the mouse is translated into a movement across pixels on 

the screen without any direct real world connection. 
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Three major problems occur if the pixel movements on the screen are used directly : 

1 - Hitting the edge of the screen makes the mouse cursor stop  

2 - Increasing the speed of the mouse makes the cursor move faster than it should 

3 - Only one mouse is allowed to be used in Windows 

Ad. 1 - The fact that the mouse is confined to the screen area is called mouse clipping. It is an 

unwanted effect in our application since we are only interested in getting the position of the 

mouse and do not care whether the mouse is within a certain area or not. 

Ad. 2 - In the Windows environment, the so called "acceleration curves" are stored in the 

Windows registry. These are curves with an non-linear characteristic between mouse (real 

world) and pointer (on screen) velocity. 

In Fig. 14 an example of this can be seen with four different mouse acceleration curves. The 

curves are taken from a Microsoft document describing this [11]. 

 

 

 

 

 

 

 

Fig. 14 - Mouse acceleration curves 
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When the mouse is used as a pointing device this feature is useful, since it makes it easier to 

navigate on the desktop. We require, however, a completely linear translation from mouse 

velocity to pointer velocity. 

After doing some research I found out that it was fairly easy to overcome both problem 1 and 2 

from the previous page by using the Microsoft DirectX technology. DirectX is a technology that 

gives the programmer control of the actual hardware at a low level. The great advantage is 

primarily speed, and it was therefore designed to be used by game programmers. An example 

of the DirectX's use of a Windows driver stack can be seen in Fig. 15. In this example Direct 

Input, that is a part of the DirectX technology, is used to get inputs directly from the hardware. 

This is routed directly into the application where we want to use the positioning information. 

 

 

 

 

 

 

 

 

Fig. 15 - DirectX rerouting of positioning information in Windows driver stack 

 

  page 27 of 135 



The requirement of having several mouse devices operate simultaneously was, however, not 

easily implemented and it seems like it is forbidden in the Windows world. Windows appears to 

be a single mouse environment! 

However, I found that the solution to my problems was to use a mouse filter driver. A group of 

researchers at University of Aarhus in Denmark had already developed a mouse filter driver that 

could solve my problems [7]. Furthermore they had uploaded all the source code for the mouse 

filter driver to a website called sourceforge.com. Sourceforge is a place where people share 

projects that can be used free of charge. This project is called cpnmouse and in the following I 

will refer to it using this name. 

Using the cpnmouse driver made it possible for me to reroute the input from the mouse, like it 

also was done in Direct Input as described earlier. In this way the mouse information never 

reaches the top of the Windows driver stack and the mouse movement does not affect the 

cursor position - just what is needed in our case. It also eliminates the need for developing a 

new interface to the computer where for example a microcontroller could have been used to 

interface to the computer instead. 

3.5 Verification of Position Accuracy 

In order to use the mouse as a positioning device it is necessary to verify how accurate it is. To 

do this an experiment was made where an optical computer mouse is mounted on an X-Y 

recorder. The X-Y recorder is designed to carry a pen and to record on a piece of paper the 

voltages on the X and Y inputs. The pen was removed and the mouse was mounted. Paper 

(which has an irregular pattern) was placed in the recorder and is assumed to be a reasonable 

representation of the human skin. 
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Fig. 16 - XY recorder with mouse mounted 

 

The mouse was moved in a predefined pattern in order to record it's accuracy. Since the arm 

that holds the mouse is very long, the orientation of the mouse is affected when the recorder 

changes the direction of movement. Another problem is the yawing (a rotation about the 

vertical axis) of the mouse, since it is very difficult to align it 100% with the vertical axis. 

Although the mouse could be mounted in a more rigid way, this setup can still be used to test 

whether the accuracy of the mouse is good enough or not. 

Three patterns were recorded : A horizontal, a vertical and a slanted curve. The movement 

measured in CCD pixels was stored in the mousetracker program using the DirectInput feature 

of Microsofts DirectX technology (note that it is not necessary to use multiple mice for the 

testing and I therefore do not need the cpnmouse driver here). A CCD pixel movement is the 

number of pixels that the CCD array in the mouse has detected due to the mouse movement 

since the last image was detected. The CCD array has a resolution of 400 cpi (counts per inch). 

This means that sweeping the mouse over a distance of one inch will register a movement of 

400 pixels. 
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After the mouse movement has been stored in the program memory it was written to the disk. 

Thereafter it can be read into Matlab and the curve in Fig. 17 can be plotted. 

 

Fig. 17 - Mouse movement using XY recorder 

 

In Fig. 17 the mouse has been moved 55 mm in the X, Y and both directions. In the graph a 

movement of 55 mm corresponds to 875 pixels (this exact value was found in the datasets I 

recorded and used to plot the graphs in Fig. 17). This value deviates only 0.56 mm from the 

expected result : 

 

 Eq. 1 

mm
inch mm mm

count pixel

Expected mm
pixel

mm
Expected Measured pixel

25.41"
Scale 0.635 0.635 

400 cpi 400 cpi

55 mm
P 866 pixels

0.635 

d d 55 875 pixels  0.635 0.56 mm

= = = =

= =

− = − ⋅ = −
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The errors are likely to be due to the variation in magnification described in the datasheet for 

the HDNS-2100 lens [10]. This introduces an error of up to +/- 15% or +/- 130 pixels: 

 
= ⋅ =

= ⋅ =
ExpectedMin

ExpectedMax

P 0.85 866 736 pixels

P 1.15 866 996 pixels
 

So the error coming from the mounting of the mouse is much smaller than the error found in 

the specifications for the lens. As it is explained later in this chapter we are using a different 

lens than the HDNS-2100 lens. 

Looking at the blue curve an example can be seen of the inaccuracy of the positioning. After 

one run the X-displacement is 1 pixel, which corresponds to 0.06 mm. The arm that holds the 

mouse is affected by the movement. As the mouse is moved up and down this angle changes 

and influences the result. This results in an accumulated error for each run, which makes the 

blue curve move a little as the movement is repeated. The maximum deviation occurs on the 

5th repetition and is 7 pixels corresponding to a 0.4 mm error. 

Looking at the green curve the problem with the mounting of the mouse can be seen. Every 

time the mouse changes direction its angle is changed a little bit. Since it is now moved in both 

directions a spiralling hysteresis effect can be seen. 

Although the test was not perfect one can say that the deviations are within a reasonable 

margin of what would be needed to determine the position an ultrasound scanner. And since the 

test showed that it was mainly a mounting problem that gave rise to the errors we decided to 

continue our work on using the mouse. 
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3.6 Extracting Images from the CCD-Array 

By using a serial command it is possible to acquire the image that the CCD-array is acquiring. 

Doing this is quite important in order to achieve the best tracking possible. In appendix A a 

hardware design for extracting information over the serial link to the position sensor is shown. 

This makes it possible to qualitatively compare the contrast in the images that are captured by 

the CCD-array and to adjust the setup to get the maximum contrast possible. 

3.7 SQUAL Value 

A good measure of whether the CCD-array is in focus or not is the so called SQUAL value that 

can be read. The SQUAL value is an abbreviation for Surface QUALity and is, according to the 

datasheet, a measure of the number of features visible by the CCD-array. If the image is out of 

focus it is more blurred and the SQUAL value is lower, which makes good sense. If there is no 

surface beneath the sensor the SQUAL value goes toward zero. 

The Surface QUALity (SQUAL) value can be found for combinations of different surfaces and 

different colors of LED light for the optical mouse. According to the datasheet for the ADNS-

2610 [9] optical sensor, the SQUAL value is a measure of the number of features visible to the 

optical sensor. Our interpretation of this is that the more non-uniform the surface is physically 

and optically, the higher is the SQUAL value. And the higher the SQUAL value is, the easier it is 

to track on the surface. The goal must therefore be to find a way to get the optimum SQUAL 

value in order to get the optimum performance. 

One thing that is effecting the SQUAL value is whether the sensor is in focus or not. A measure 

of that can be seen in Fig. 18. 
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Fig. 18 - Typical mean SQUAL vs. height (on white paper) 
 
 

As it can be seen, a variation of just 0.4 mm will decrease the SQUAL value by 25%, so it is 

really critical that the sensor is in focus. Note that this deviation has been measured with the 

HDNS-2100 lens, which has a shorter focal length (approx. 4.8 mm) than the lens I have used in 

front of the optical sensor (6.0 mm) that is mounted on the transducer. The smaller focal length 

gives a smaller depth at focus, and makes it more sensitive to height variations. 

In order to see if there was any change in the SQUAL value when using different colors of LED 

light a measurement of the SQUAL value was done on different surfaces. The surfaces that were 

selected were my table (that has a color very similar to the skin), white paper, black electric 

tape (that is smooth and non reflecting), my skin and the CIRS phantom that has a 

polyurethane surface with a very dark grey color. I choose these surfaces since they seemed to 

be a good representation of the surfaces on which we want the system to be able to scan. The 

white paper was included as a reference, since the SQUAL value is given for white paper in the 

ADNS-2610 datasheet [9]. The results from my measurements can be see in Table 1. 

Surface / Color Red 
639nm 

Orange
620nm 

Yellow
590nm 

Green
502nm 

Blue 
470nm 

Table 72 70 79 59 73 
White paper 68 68 73 72 6C 
Black electric tape 00 00 00 00 00 
Skin 46 40 30 8 29 
CIRS Phantom surface 41 0C 1A 5 8 

 
Table 1 - SQUAL value on different surfaces when illuminating with different colors 
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The initial observation from looking at the table is that the red color is the best. But during the 

test I realized that it is extremely difficult to maintain focus on the skin and on the CIRS 

phantom surface with the factory mounted mouse since the surface is soft. So because of the 

high fluctuations in the measurements it can not be concluded that one type of LED is better 

than the other. One problem is that there are 4 plastic standoffs under the mouse. These 

standoffs provide an adequate distance to the surface, but will only work on a flat hard surface. 

It is therefore only the first three rows that provide accurately enough results, and from these 

rows it can be concluded that no color can be preferred over another. 

For the black electrical tape that is very smooth and where there is a very low amount of light 

reflected it is not possible to observe a SQUAL value at all. A surface with a zero SQUAL value is 

impossible to track on. And since the surface of our custom made phantom is smooth and black, 

it is a big problem for testing out the system. A pattern therefore has to be placed on top of the 

phantom in order to get it to track correctly on the surface (see chapter 5). 

My initial thought was that red would be the preferred color since the ADNS-2610, according to 

the datasheet, was designed to be used with a red LED (639 nm). Also the so called responsivity 

for the ADNS-2610 can be seen in Fig. 19. 

 

 

 

 

Fig. 19 - Wavelength responsivity 
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We can see that the optical sensor has the best response (highest sensitivity) at a wavelength 

of approximately 800 nm, equivalent to the near infrared region of the spectrum. This response 

should however not affect the SQUAL value, as long as there is enough light reflected from the 

surface. So the darker the surface gets the more important is the wavelength and the incident 

light intensity because of the responsivity. 

3.8 USAF 1951 Test Pattern 

For testing the resolution of an optical system a 1951 USAF test pattern can be used [13]. The 

pattern was originally developed to be used with a military standard (MIL-STD-150). The test 

pattern is depicted in Fig. 20. 

 

 

 

 

 

 

Fig. 20 - 1951 USAF Test Pattern [13] 
 

The chart consists of groups and elements. Each group contains six elements labeled in 

ascending order from the top to the bottom. However the first group (with the largest elements) 

has the first element no. 1 placed at the right bottom of the chart. The next smaller group no. 1 

can be seen in the upper right corner and in between group no. 0 and 1 there is a black square 

of the same size as element 2 in group 0. 
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The chart is used by placing it in front of the optical system that has to be measured. The 

resolution limit of the system can then be found by examining the element that is indistinct or 

blurry. And because the chart has both a horizontal and vertical pattern for each element, a 

horizontal and vertical resolution can be found. Often a smaller pattern is repeated inside the 

bigger groups. An example of this is shown in Fig. 21. 

 

 

 

 

 

 

Fig. 21 - USAF 1951 test pattern (40"x40" on photographic paper) with repeated 
patterns 

 

3.9 Optical fiber 

In order to make a more compact and better ergonomic design we investigated if it was possible 

to couple the image of the skin surface via an optical fiber bundle to the CCD-array. By using an 

optical fiber bundle it would be possible to bend it so it would form along the shape of the 

transducer. For this reason we bought a so called fiber optic image conduit from Edmund 

Optics. The specifications for the image conduit are shown in Table 2. 

Table 2 - Specifications for optical image conduit 
 

Image conduit diameter 3.2 mm Fiber diameter 12 µm 
Image conduit length 76.2 mm Numerical aperture 0.55 
Core refractive index 1.58 Cladding refractive index 1.48 
Approx. transmission* 35-45%  Conduit resolution** 42 lp/mm  

 *in the range of 400 to 750 nm     **lp/mm = line pairs per mm 
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An image conduit consists of a lot of small optical fibers that have been glued together to form a 

bundle of small optical fibers. Using the image conduit an image of a surface can be transmitted 

and shown in the end of the fiber. The concept is demonstrated in Fig. 22 where I am holding 

the image conduit on top of a USAF optical test pattern. As it can be seen it is important to get 

the top of the image conduit in focus in order to be able to track on it. 

 

 

 

 

 

 

Fig. 22 - Fiber optic image conduit on 1951 USAF test pattern 

 

However, illuminating the surface is a difficult challenge. One way to do this is by illuminating 

the surface from the same end of the fiber where the image is captured by the CCD-array. This 

works pretty well on a flat smooth and optically highly varying surface, but if the image conduit 

gets just a small distance (about 0.5-1.0mm) from the surface it gets out of focus. Another 

problem is that the surface is not illuminated with light under a small angle relative to the paper 

surface (since it travels through the fiber), making it more difficult to reveal discontinuities in 

height on the surface (see Fig. 23). These discontinuities are otherwise revealed by shadowing 

on the surface, if it is illuminated with light from an angle. 
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Fig. 23 - Two ways of illuminating surface with optical image conduit 

 

For this reason it was decided to try to mount a lens in front of the fiber. The lens gives a little 

more freedom in varying the distance from the surface, since the lens has a certain focus depth. 

The ability to do this is directly proportional to the focal length, meaning that the longer the 

focal length the better the lens will be to keep the image in focus. 

In this way it is also possible to illuminate the surface with an LED mounted at the surface. This 

LED can illuminate the surface from an angle and gives shadows on the surface at 

discontinuities, as shown in Fig. 23 (b). 

It was decided to try to mount the lenses and the fiber together. However, before this could be 

done it was necessary to calculate what type of lens and at what distance it should be mounted 

in order to give a 1:1 magnification and transmission of the surface. Before calculating this, the 

basic theory behind the lens calculations will be presented and then this theory will be used to 

calculate the dimensions of the lens holder. 
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A simple lens can be described as a the intersection of two circles with each other as depicted in 

Fig. 24. This will create a biconvex lens with the thickness D, radii R1 and -R2 and the refractive 

index n. 

 

Fig. 24 - A biconvex spherical lens 

 

Using a concept called raytracing it can be described how an image that is transmitted through 

a lens is formed on the other side of it. In Fig. 25 a ray leaving P1 goes into the lens at an angle 

θ1. In the air-glass interface it is refracted at an angle θ (not shown) and then hits the back side 

of the lens at the glass-air interface. If the lens is thin it can, however, be assumed that the 

incident ray emerges at about the same height at which it enters and with the angle θ2.  

 

Fig. 25 - Raytracing through a lens 

  page 39 of 135 



Using this assumption the incident and refracted rays are related as 

  θ = θ −2 1
y
f

        Eq. 2 

where f, the focal length, is given as 

  
⎛ ⎞

= − −⎜
⎝ ⎠1 2

1 1(n 1)
f R ⎟

1
R

       Eq. 3 

Note that R2 is negative, so the two terms add up giving a positive focal length. As shown in Fig. 

25 the rays are originating in P1(y1,z1) and ends up at P2(y2,z2). From here we have two 

equations, one for the imaging, 

  
1 2

1 1 1
z z f

+ =         Eq. 4 

and one for the magnification, 

  

2
2 1

1

zy y
z

= −
        Eq. 5 

Note that the two z-values are from a different coordinate system, being positive in the left and 

right direction from the origin as shown in Fig. 26. The image will therefore be mirrored, which 

is shown in Eq. 5 with the minus sign and magnified with factor z2/z1. 
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Fig. 26 - Image formation by a thin lens 

 

However, a big problem is how to mount these lenses and the image conduit together. The 

diameter of the image conduit is only 3.2 mm and the diameter of the lenses are just 3.0 mm. 

So we are dealing with very small dimensions. 

The type of lens that was used is a plano-convex lens. Three of these lenses were purchased for 

experimental purposes before much was known about the theory behind lenses. 

It was decided to try to mount the lenses in plexiglas, since this material is very easy to work in. 

The necessary holes were milled and the lenses mounted, a process that best can be described 

as trying to solder SMD (Surface Mounted Devices) to a PCB (Printed Circuit Board) with a very 

big soldering iron. 

A plano-convex lens is flat on one surface and curved on the other. Or, in other words, R2 in Fig. 

27 is going to infinity and R1 is as given in Table 3. Note that if this is the case the focal length 

will be the same on both sides if the thin lens approximations are used. 
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Fig. 27 - Lens radii 
 
 

Table 3 - Lenses (all dimensions in mm) (FL = Focal Length) 
 

Lens no. Dia Eff. FL Back FL Center 
Thickness 

Edge 
Thickness 

Radius R1

1 3.0 4.5 3.50 1.80 1.47 3.62 
2 3.0 6.0 4.81 1.80 1.41 3.10 
3 3.0 9.0 8.01 1.50 1.25 4.65 

 
 

Since lens no. 3 has the longest focal length (FL) it would be the preferred one to use. But 

because of the dimensions of the ultrasound transducer and the fact that I cannot change the 

length of the optical fiber I decided to use lens no. 2 with an effective focal length of 6.0 mm. 

Using lens 2 I can calculate the dimensions of the plexiglass housing that holds the lens in place 

in front of the optical fiber. For the milling in the plexiglas I have to calculate 3 lengths, shown 

as 'A', 'B' and 'C' in Fig. 28. The diameters used were 2.9, 3.0 and 3.2 mm for 'A', 'B' and 'C' 

respectfully. 

  page 42 of 135 



 

Fig. 28 - Dimensions for lens holder 

 

From the specifications for the chosen lens no. 2 I can find the effective focal length (EFL), the 

back focal length (BFL), the edge thickness (ET) and the center thickness (CT). 

 

BFL

EFL

ET

CT

DIA

R1 CT Center Thickness
ET Edge Thickness
BFL Back Focal Length
EFL Effective Focal Length
R1 Radius
DIA Diameter

 

 

 

 

Fig. 29 - Dimension of lens 
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If we want a 1:1 magnification (that is, no magnification) we should place the surface at 2x the 

EFL. For lens 2 'A' will therefore be : 

 
 Eq. 6 

 

'B-C', the distance between the lens and the optical image conduit will be 

A BFL EFL
4.81 6.0 10.81 mm

= +
= + =

 Eq. 7 

 

B C 2 EFL (EFL BFL)
2 6.0 (6.0 4.81) 13.19 mm

− = ⋅ + −
= ⋅ + − =

If the overall distance 'A+B' is picked to be 30.0 mm, 'B' and 'C' can also be found. I need these 

distances to calculate the depths of the holes in the plexiglass which I have to drill. 

 A

 
 Eq. 8 

 

 

 

As it can be seen the drilling has to be very accurate since the components used are very small. 

For that reason the only way possible to do this accurately enough is by using a milling machine 

and do the drilling here, which I ended up doing. It is a very difficult process and it takes a long 

time to make the lens holder, because of the small tolerances and dimensions. 

After making the lens holder and mounting the lens, a simple test verified that the image I 

viewed was in focus on the USAF test chart. Also there was no magnification. Visibly the image 

was identical to if the image conduit was placed directly on top of the chart. The contrast in the 

image was, however, a bit lower. I believe that part of the reason for the lower contrast is 

because light goes directly from the LED through the plexiglass and interferes with the image 

reflected from the surface as shown in Fig. 30. 

B 30.0 mm

B 30.0 A
30.0 10.81 19.2 mm

C B 13.19 mm
19.2 13.19 6.0 mm

+ =

= −
= − =

= −
= − =
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Fig. 30 - Light going from LED both along the intended paths and directly through 
plexiglas and into optical image conduit 

 

I came to this conclusion by holding the lens holder with the LED and optical image conduit out 

in the air (where no light is reflected). Here it was possible to observe a dark red color in the 

image conduit. This color was quite close to the color of the black parts on the USAF chart, 

indicating that the dark red color of the black parts comes from interfering light rather than from 

the surface. To avoid this I tried to paint the inside of the holes in the plexiglass black. I was not 

successful in doing that, since the paint changed the diameter of the hole, making it impossible 

to mount the lens again.  

I therefore decided to make another version of the lens holder in aluminum instead of plexiglas. 

This version gave a bit more contrast, but the black areas were still a little dark red instead of 

black. I think that the problem comes from reflections and scattering as the light goes through 

the lens. Some of these reflections come from the aluminum wall and painting the walls black 

should, at least theoretically, lower the interference from these reflections. But one would then 

have the same problem as with the plexiglass that the diameter is changed. The scattering in 

the lens is however impossible to overcome, since the light going through the lens will always 

be slightly scattered. The scattering illuminates some of the optical fibers that otherwise should 

have been dark, creating an image with a lower contrast. 
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A third problem I found was that light appears to be coupled between the fibers in the image 

conduit. This problem increases with the angle at which the light enters the image conduit. Light 

coming from the scattering will therefore not only interfere as described above, but also create  

interference inside the image conduit, since this light enters with an angle. 

Another thing that could cause problems using the image conduit is that it has a “chicken-wire” 

pattern. The chicken wire occurs because small optical fibers make up the image conduit and at 

the boundary of each optical fiber there will be a shadow. This problem is described in [4]. Here 

it is suggested to apply a low pass filtering to the image to overcome this. But this would not be 

a very good idea since all the details in the image hereby disappear; and it is mainly the details 

that the mouse is using to track it’s position on the surface. Furthermore this is not possible for 

us to do, since all the imaging is done inside the optical sensor chip. 

 

 

 

 

 

Fig. 31 - Chicken wire pattern in image captured (before and after low pass filtering) 
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3.10 Testing of the optical fiber with lenses 

After assembling the optical fiber with the associated lenses, I did some testing of the system to 

see how good it was at tracking. It was my first impression that it was not as good as the 

optical mouse where I took the optical sensor from. It was, however, possible to track on the 

USAF test pattern (see later) and it was also possible to track on the table in my office that has 

a highly unregular pattern, as seen in Fig. 32. 

 

 

 

 

Fig. 32 - Table pattern 

 

Tracking on the skin, however, presented greater difficulties. It felt like the sensor could not 

pick up the movements. I therefore made a comparison on the USAF chart between the 

different mounting methods. In Fig. 33, Fig. 34 and Fig. 35 these images are shown. 

 

 

 

 

Fig. 33 - Standard (factory) mounting and red LED 
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Fig. 34 - Mounting with optical fiber, two lenses and red LED 

 

As it can be seen the image taken with the optical image fiber conduit is more blurry than the 

others. It can also be seen that the image is not mirrored, as expected, since two lenses are 

used together with the optical fiber, making the mirroring to happen twice. 

In Fig. 35 it can be seen that the image is clear and sharp in the customized aluminum housing. 

The image looks a bit different from the factory mounting, but this is because there is no lens 

that spreads the light out in front of the LED. This makes the light a bit more uneven on the 

surface. 
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Fig. 35 - Customized housing in aluminum and red LED 

 

3.11 Optical Position Sensor based on Laser Mouse or Optical Mouse 

At the time I began my research for this thesis Logitech and Agilent developed a new type of 

mouse. This new mouse is using the same principle as the optical mouse, but instead of an LED 

a laser diode is used to illuminate the surface. 

 

 

 

 

Fig. 36 - Logitech Laser Mouse MX-1000 

 

The advantage of this is that the contours of the surface appears much better as opposed to a 

regular optical mouse. An example of a smooth surface captured with a regular optical mouse 

and a laser mouse can be seen in Fig. 37. 
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    (a)      (b) 

Fig. 37 - Smooth surface captured by the CCD array in an optical (a) and a laser 
mouse (b) [8] 

 

As it can be seen the contrast in the image captured from the laser mouse is much better. This 

makes it possible for the laser mouse to track more accurately on surfaces and it is also possible 

to track on black surfaces, something that is quite relevant for testing purposes since most 

ultrasound phantoms are black. Tracking on glass and transparent surfaces remains a problem, 

but that is not a limitation for the intended application. Unfortunately, I observed that the laser 

mouse, as opposed to the optical mouse, does not work through a transparent surface mounted 

in front of the sensor.  

 

 

 

 

Fig. 38 - Laser mouse without and with transparent tape mounted in front of sensor 

 

It is necessary to place a transparent surface in front of the sensor since the ultrasound gel 

otherwise will clutter up in the sensor opening. It also looks as if the intensity of the laser is 
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getting lower when the tape is placed in front of the sensor. I have not looked into the details of 

this. 

3.12 Conclusion on Optical Mounting Method 

I think that the optical sensor, as it is mounted on the ultrasound transducer, is suitable for 

testing in a real life application. It is a good proof of the concept that an optical mouse can be 

used to provide limited tracking (2 degrees of freedom) in a portable system. With the optical 

fiber it should be possible to create an ergonomically better design. But it will never be fully as 

good as when only the optical sensor and a single lens is used. My tests convinced me that an 

optical fiber could be used on a surface with a highly uneven pattern, like my table or the USAF 

test pattern. But the skin, although it is quite uneven, is not varying enough and the blurring 

that takes place through the fiber is enough to degrade the image so much that it is not 

possible to track on it. 

 

I suggest that this work can be continued by integrating the optical sensor in a better way. This 

could be done in a way where the optical sensor is lying down and a mirror is used as shown in 

Fig. 39. This implementation is more flat and would fit better on the ultrasound transducer. I 

have seen this method being used in a so called pen-mouse. 
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Fig. 39 - Housing for optical sensor with mirror 
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4 Software and interfacing 

4.1 Introduction 

The previous chapter described how the hardware for the optical sensor was made. This chapter 

describes the relevant aspects of the Terason and Sonocubic software and how it is interfaced 

to the positioning system. First it is described how images are transfered from Terason to 

Sonocubic. Then it is described how the position system was interfaced to the existing software. 

4.2 Transfer of Images between Terason and Sonocubic 

Images are transferred between Terason and Sonocubic through a shared memory space. In the 

programming world's terminology such a space is called a memory segment. This memory 

segment contains a series of ultrasound images, so it can also be described as a 3D matrix that 

acts as a buffer between Terason and Sonocubic. This shared memory segment is created by 

using a small program piece called a DLL (Dynamic Link Library) to be described in detail later. 

The ultrasound images are then written to the shared memory by Terason and read by 

Sonocubic. The concept is depicted in Fig. 40. 
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Fig. 40 - Concept of transfering scan planes between Terason and Sonocubic 
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The images are transferred digitally as opposed to the way Sonocubic works with other 

ultrasound scanners (through an analog video input and a frame grabber). The transferring of 

images is done continuously, meaning that only a subset of the number of 2D slices that will 

make the entire 3D image are in the shared memory at a given time (I have been told by 

Ricardo Gayoso, a software developer at Sonocubic that typically only one or two images are in 

the shared memory). 

Each scan plane is stored in a standard format called a DIB (Device Independent Bitmap). The 

DIB consists of two distinct parts : a BITMAPINFO structure followed by an array of bytes 

defining the pixels in the bitmap. The BITMAPINFO structure can be found in the documentation 

for the Windows GDI (Graphics Device Interface) and is shown in Fig. 41. 

typedef struct tagBITMAPINFO {  
 
   BITMAPINFOHEADER bmiHeader;     //see structure below 
   RGBQUAD          bmiColors[1];  //see structure below 
 
} BITMAPINFO, *PBITMAPINFO; 
 
//Followed by an array of bytes describing the pixel values 
 
 

 

BITMAPINFOHEADER

RGBQUAD

 
 
typedef struct tagBITMAPINFOHEADER{ 
 
  DWORD  biSize;  
  LONG   biWidth;  
  LONG   biHeight;  
  WORD   biPlanes;  
  WORD   biBitCount;  
  DWORD  biCompression;  
  DWORD  biSizeImage;  
  LONG   biXPelsPerMeter;  
  LONG   biYPelsPerMeter;  
  DWORD  biClrUsed;  
  DWORD  biClrImportant;  
 
} BITMAPINFOHEADER, *PBITMAPINFOHEADER; 
 
 
 
 
typedef struct tagRGBQUAD { 
  BYTE    rgbBlue;  
  BYTE    rgbGreen;  
  BYTE    rgbRed;  
  BYTE    rgbReserved;  
} RGBQUAD; 
 
 

 
 

Fig. 41 - BITMAPINFO structure 
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As it can be seen in Fig. 41 the structure contains a bitmap header that describes information 

about the image such as width, height, vertical and horizontal resolution and the number of 

colors used. Here it is worth to notice the resolution that is given in pixels per meter. This 

number, which is defined and placed in the scan plane by Terason, is important for measuring 

the distance and therefore also the area and volume calculations that has to be carried out. 

Depending on the number of colors used, a color table that defines the color associated with 

each pixel value, can follow the header. 

4.3 The Sonocubic Coordinate System 

When Sonocubic has read the images from the shared memory they are stored in a three 

dimensional matrix. This is done scan plane by scan plane; note that Sonocubic has no 

knowledge about the distance between scan planes or the offset from the center (this is where 

our positioning system comes into the picture). 
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Fig. 42 - Scan planes in Sonocubic 

 

As can be seen in Fig. 42 the scan planes are stored in an [nx,ny,nz] matrix. This is done so the 

first plane in time is stored at position 1. Note the orientation of the coordinate system where 
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normally the Z-axis points into the body and the X- and Y-axis describe the coordinates on the 

surface. 

The ultrasound data can be stored in Sonocubic in two different modes : a high resolution and a 

low resolution mode. In the high resolution mode the matrix the ultrasound data is stored in has 

the dimensions nx = ny = 512, and nz denotes the number of scan planes obtained from 

Terason through the shared memory interface. I have understood from Ricardo Gayoso at 

Sonocubic that the maximum value for nz is also 512. In the low resolution mode nx = ny = 

256. 

Since the images are transfered digitally through the shared memory there should be less 

degradation relative to an analog interface with a frame grabber. Unfortunately, an interpolation 

might take place when a scan plane is transfered into Sonocubic, depending on the size of the 

received scan plane. This is because Sonocubic works on a pre-defined 3D grid or matrix in 

which the number of pixels in each scan plane are for example 512 x 512 or 256 x 256 

depending on the resolution mode selected. So if a scan plane received from Terason has a size 

of for example 388 x 388 pixels, then it has to be interpolated onto a 512 x 512 scan plane that 

makes up the 3D matrix that is visualized in Sonocubic. Nonetheless, the 2D window in 

Sonocubic that loops through all the received scan planes, is still displayed in the original image 

size (388 x 388). This creates a small problem when doing volume estimations, since an AVI-file 

(a video file) of the scan planes is saved in Sonocubic in the 388 x 388 resolution. So, in short, 

an interpolation is done twice when scan planes are entering and exiting from Sonocubic. The 

details of this will be described in chapter 5 where volume estimations are done. 

All the measurements in this thesis were carried out using the high resolution mode. 

4.4 Obtaining the position and interfacing with Sonocubic 

After describing how the transfer of scan planes is done between Terason and Sonocubic I will 

now describe how the interfacing of the positioning software to the existing software was 
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performed. This development was done in collaboration with Ricardo Gayoso. It was decided to 

use the following scenario for including the positioning information : 

1 - A frame is placed in the shared memory by the Terason application 

2 - Sonocubic reads it from the shared memory 

3 - Immediately thereafter the position is captured from the position device 

The procedure using the numbers above is depicted in Fig. 43. 

 

Uslink.dll
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Pos3D.dll
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23

 

 

 

 

 

 
Fig. 43 - Algorithm for transferring images and obtaining position 

 

Sonocubic consists of a lot of DLLs (there are 60 in the Sonocubic directory). As shown in Fig. 

43 one of them is 'uslink.dll' that contains the code and functions that makes it possible to 

transfer images from Terason to Sonocubic. 

'Pos3D.dll' is another DLL that was developed by us. The idea with 'Pos3D.dll' is that it interfaces 

to our hardware and gets the position when it queries the optical position sensor. One of the 

  page 56 of 135 



first questions that arose is how big the delay is from a scan plane is acquired in Terason until a 

mouse position is obtained from Sonocubic. How much can the mouse move during this time? 

If we assume that the scanner is moved at a speed of 2 cm/sec and that frames are received 

from Terason every 30 ms we get a distance between each frame of 2 cm/sec * 30 ms = 0.6 

mm. For testing purposes I recorded how often Sonocubic queried 'Pos3D.dll' for the position. I 

could see that this actually happened every 30 ms. I therefore think that it is reasonable to 

assume that the delay is smaller than 30 ms and that the shared memory buffer hardly ever 

contains more than one image. It would have been interesting to see how big the actual delay 

is, but since I do not have access to the software in Terason or Sonocubic I cannot get closer to 

a qualified guess than this. 

4.5 Data Extraction from Optical Sensor 

Data can be extracted from the optical sensor using a serial interface. Usually this is done with a 

microcontroller, but it can also be done with an FPGA. In a standard mouse, the microcontroller 

is extracting the change in position from the optical sensor. It then sends that information 

through the USB-interface and into the kernel of the operating system. Since the only 

information we are interested in is the position, it is therefore not necessary to build any new 

hardware. It is also not necessary to develop or port any microcontroller code for interfacing. All 

the hardware in the mouse can be reused, which makes the development a lot simpler. 

4.6 CPN Mouse Driver 

As mentioned in chapter 3 about there are a number of ways to extract the position from a 

mouse, but in this project I have decided to use the CPN mouse driver, since it provided us with 

all the features necessary. CPN is an abbreviation for Colored Petri Nets and is related to the 

application the CPN mouse was originally designed for. 
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The CPN mouse driver consists of a lower and higher level API (Application Programming 

Interface) as shown in Fig. 44. An API is the interface that is provided to programs 

(applications) in order to be able to communicate with the driver. The API can present the data 

needed in a nicer and more usable way for the application. 

 
High API 
interface

Low API
interface

Driver

Tracking Device

 

 

 

 

 

Fig. 44 - CPN-mouse driver stack 

 

The mouse driver can be used in two different modes : by sending events from the driver to a 

Windows program or by polling it from a program. Based on the setup of our system we are 

interested in polling it, but I will describe both modes to give a full understanding of how the 

driver works and how the software is used. It will also be useful for future reference to know 

the different possibilities that the driver provides. 

Using the high level API three functions are used : 

int __cdecl hInitialise(int count, HWND window, HDC getscreen, unsigned int getevents); 
void __cdecl hGetAbsolutePosition(int number, hPOINT* p); 
void __cdecl hCleanup(void); 
 

As the names indicate, ‘hInitialise’ initializes the driver. In addition to this a handle to a window 

can be passed by using the window argument. A handle is a void pointer that points to the 
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window where data/events has to be sent. The positioning DLL is running in DOS-mode, so we 

are not using this feature, but if a Windows program were used it would be possible to pass 

mouse events directly to the program. The ‘getscreen’ parameter is used for passing the 

features of the screen being used. This can for example be used together with the clip feature 

that will be described later. In the ‘getevents’ argument the events of interest are specified. The 

arguments that can be supplied here are : 

BUTTON | MOVEMENT | CURSOR | CLIP | ACCELERATE | SUSPEND 

‘BUTTON’ indicates that we are interested in receiving events when a mouse button is pressed. 

‘MOVEMENT’ is for receiving events when the mouse is moved. ‘CURSOR’ is for drawing the 

cursor on the screen. ‘CLIP’ is for keeping the coordinates within the screen size specified in the 

‘getscreen’ parameter. ‘ACCELERATE’ is for accelerating the mouse movement in order to obtain 

a higher precision of the mouse cursor and ‘SUSPEND’ is for receiving events from a suspended 

mouse. 

Since the driver is used in a polled mode, events are not sent to our DLL. It is therefore only 

necessary to make sure that we are not supplying the ‘CLIP’ and the ‘ACCELERATE’ parameters 

when we initialize the driver. 

When the initialization is done our mouse driver is polled for the position every time we call the 

‘hGetAbsolutePosition’ function. If the mouse is moved between the polls the change in position 

is accumulated inside the driver stack. So by using these two functions and calling them from an 

outside program (in this case a DLL) we can get the data needed to reposition the scan planes. 

Finally 'hCleanUp' can be called to kill the listening thread inside the driver, free up the used 

resources and deallocate all the mouse devices we have initialized. 
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4.7 Dynamic Link Libraries 

A DLL (Dynamic Link Library) is a way of encapsulating a piece of a program code in Windows. 

A DLL makes it possible to provide functionality to other programs without revealing the internal 

code, and it makes it possible to access (link) on demand, hence the name DLL. Several 

programs can use the same DLL simultaneously. Variables are as default local and not shared, 

but a shared memory segment can be declared in the DLL. This makes it possible to transfer 

data from one program to another. 

In the case of Sonocubic and Terason a file called 'uslink.dll' is loaded at runtime. This DLL is 

loaded completely independent by either program and is in this case loaded twice, once by 

Terason and once by Sonocubic. There is no connection between the programs so far (data is 

by default local). Inside the DLL there is a declaration of the name of the shared memory. The 

operating system (Windows) allocates the memory space for the first program that loads the 

DLL. Since the memory space is shared, another program can also load the DLL and it will get 

access to the same memory space. Windows makes sure that none of the programs write to the 

memory space at the same time, so it is not necessary to provide any metaphores or other 

security features for this. After this setup it is possible to transfer data through the shared 

memory space. For transfering the scan planes the DLL called 'uslink.dll' is used. I have not 

been involved in developing the 'uslink.dll', and the code for it has not been modified by 

implementing the positioning system. 

The code for the DLL that is used to interface to the mouse driver, 'Pos3D.dll', can be found in 

appendix B. 'Pos3D.dll' provides an interface between Sonocubic and the mouse driver. Using 

the DLL, Sonocubic can link it at runtime and access the functions that it provides. Below is an 

overview and a short description of the functions that it contains. 

 
POS3DAPI int __stdcall Init(void) 
 

This function initializes the driver stack using the ‘hInitialise’ function in the hapi (high level API) 

part of the CPN mouse driver described earlier. 
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POS3DAPI int __stdcall UnInit(void) 
 
 

This function calls ‘hCleanUp’ and frees up resources used in the mouse driver. 

 
POS3DAPI int __stdcall GetPosition(PositionDesc *pos) 
 
 

This function calls ‘hGetAbsolutePosition’ and gets the current position for the mice we have 

initialized. I am calling ‘hGetAbsolutePosition’ twice with two different numbers, since I have 

designed the software so that two mouse devices can be attached to the system. One will give 

the XY-position (or XZ-coordinates Sonocubic terms) and another will give the tilt and angle 

information (in the form of a gyromouse). But the tilt and angle information can currently not be 

used in the 3D software and so far the mounting of gyroscopes for obtaining angle information 

is very bulky (more about this in chapter 6 - Conclusions and Future Work). 

 
POS3DAPI int __stdcall LastPos(PositionDesc *pos) 
 

This function was created in order to be able to monitor the positions acquired by ‘GetPosition’ 

(that Sonocubic is calling). It simply makes a lookup in a shared memory of the last position that 

was saved when ‘GetPosition’ was called. 

POS3DAPI int __stdcall SetResolution(MouseResolution *res) 
 

This function stores a number that converts the pixel count from the mouse, so it fits the scale 

that is needed in Sonocubic. In my own opinion I think this conversion factor should be located 

inside Sonocubic. But it is a little difficult to argue for, since the big picture of how the 

Sonocubic software is structured is unknown to me. 

POS3DAPI int __stdcall GetResolution(MouseResolution *res) 
 

‘GetResolution’ gets the number that I stored with ‘SetResolution’ 

POS3DAPI int __stdcall GetDLLVersion(int *DLLversion) 
 

This function is intended to provide a number that indicates what version of the DLL that is 

being used. 
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4.8 Conversion Factors for Image Resolution 

As mentioned in the description of the 'Pos3D.dll', Sonocubic is storing a conversion factor using 

the ‘SetResolution’ function. The conversion factor makes sure that the scan planes are 

positioned correctly inside the 3D voxel array in Sonocubic. 

The value of the conversion factor is derived from the resolution of the ultrasound image that 

Terason transferred to Sonocubic. The resolution is found in the BMP-header and describes how 

many pixels that are used per meter. 

Inside Sonocubic the data is collected scan plane by scan plane. Each scan plane is an image 

that contains pixels that describes the ultrasound image. If there is no positioning system 

attached to Sonocubic (no 'Pos3D.dll' in the Sonocubic directory) these scan planes are placed 

directly in a data matrix that we call a maingrid. In the maingrid the image data is describing a 

volume rather than an area, so they are referred to as voxels instead of pixels. The distance 

between the voxels in the maingrid are the same in all three dimensions.  

If there is a positioning system attached to Sonocubic the scan planes are first placed in a finer 

subgrid and then projected onto the coarser maingrid. The subgrid is a matrix consisting of 

65536 points in each dimension between the maingrid points in adjacent maingrid scan planes. 

In order to get a correctly dimensioned image it is therefore necessary to place the acquired 

scan planes correctly, and that is what the conversion factor is used for. 
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Fig. 45 - Repositioning of scan planes in the X-direction 

 

In Fig. 45 the concept of placing the scan planes in the subgrid is shown. To the left four scan 

planes scanned with four different offsets and distance between them are shown. After reading 

the position and multiplying with the conversion factor they can be placed correctly in the 

subgrid, which is shown to the right. 

When the scan planes are in place in the subgrid a nearest neighbor interpolation algorithm is 

used to find the value of the voxels in the maingrid. The concept is depicted in Fig. 46. 4 points 

are selected in each of the two subgrid scan planes closest to the maingrid scan plane, giving a 

total of 8 points being used for the interpolation.  

The interpolation takes place directly after a complete scan has been acquired (that is all scan 

planes). This typically takes between 5-10 secs in the high resolution mode on an AMD Athlon 

64 3500+ machine, but the interpolation time also depends on how many scan planes that were 

acquired during the scan or, said in another way, the duration of the scan. After doing the 

interpolation the image is represented by the data in the maingrid. 
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Fig. 46 - Interpolating voxels on maingrid from voxels on subgrid 

 

Below is how the conversion factor is found for the maingrid: 

  
 
 Eq. 9 
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We are, however, interested in finding the conversion factor for the subgrid, and we therefore 

have to multiply the maingrid conversion factor with 65536. This conversion factor is the value 

that is stored in the 'Pos3D.dll' with ‘SetMouseResolution’ and extracted with 

‘GetMouseResolution’. If, for example, the image resolution is 1000 pixels per meter, the 

conversion factor will be 

 Eq. 10 = ⋅
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=
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0.0635 1000 65536

4161536.
 

  page 64 of 135 



4.9 Testing Conversion Factors 

 

As part of developing the interface between Sonocubic and Terason, Sonocubic created a test 

program called ‘Teratest’. This program is a scan plane generator that generates a scan plane 

and places an incrementing counter in it as shown in Fig. 47. This is good for testing purposes 

and makes it possible to identify each scan plane that is received in Sonocubic. 

 

 

 

 

Fig. 47 - Images from scan plane generator, Teratest 

 

In the customized version of Sonocubic that uses the positioning sensor, one cannot, however, 

because of the interpolation algorithm, assume that each scan plane is placed in the maingrid. 

The scan plane generator is therefore not useful for testing our algorithm and it is necessary to 

create another test pattern. 

The source code for Teratest was made available to us by Sonocubic, so it was possible to 

customize it. In this way a computer phantom could be generated or simulated images from an 

ultrasound image simulator like Field II could be used. The latter approach was investigated, but 

not used because the generation of even a single scan plane in Field II takes several hours. The 

scan planes generated in Field II are also of a very high quality resembling how an actual 

ultrasound image would look, which is not necessary for testing. A program made in C-code, 

where ultrasound images were made on the fly, was therefore used to create a three 
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dimensional computer phantom (see appendix D for the source code). This computer phantom 

was used to test if the conversion factors and the system was working as desired before 

carrying out a "real world" physical test. 

Two different computer phantoms were made : a cuboid phantom, for testing the offset 

compensation  (see Fig. 48(a)) and a pyramid phantom for testing both the offset and the 

compensation of the distance between the ultrasound scan planes (see Fig. 48(b)). If the 

algorithm is working the result in Sonocubic should be shapes that perfectly resembles a cuboid 

and a pyramid. These results will be presented later in this chapter. 

 

 

 

 

    (a)      (b) 

Fig. 48 - Computer generated 3D phantoms 

 

The generated cuboid is in each scan plane a square with the size 60 pixels x 60 pixels. The 

pyramid starts out as a square with an area that equals 0 and ends having an area that equals 

176 x 176 pixels. This gives room for the square in each scan plane to move 40 mm from the 

center without exceeding the boundaries of the scan plane.  

An overview of the test setup can be seen in Fig. 49. The modified version of 'Teratest' is linking 

with two DLLs : 'Pos3D.dll' and 'uslink.dll'. Based on the longitudinal and lateral position that 

‘Teratest’ finds by calling ‘CurPos’ in 'Pos3D.dll' a scan plane is generated. This scan plane has a 

certain size and offset based on the position. The scan plane is sent to Sonocubic by calling the 
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function ‘SendDIBToSonocubic’ located inside 'uslink.dll' (DIB = Device Independent Bitmap). 

Sonocubic is then calling another function inside 'uslink.dll' that makes it possible to read the 

scan plane from the shared memory (the details about this is not known to us). Based on the 

header information in the first scan plane transferred, the conversion factor is calculated and 

placed in 'Pos3D.dll' by calling the ‘SetResolution’ function. The conversion factor is used by 

'Pos3D.dll' to calculate the correct position of a scan plane in Sonocubic coordinates. Sonocubic 

thereafter calls ‘GetPos’ for each scan plane to find the correct position of it. 

 

Teratest

SonocubicPos3D.dll

Setresolution

GetPos

CurPos

SendDIBTo
Sonocubic

uslink.dll
 

 

 

 

 

Fig. 49 - Test setup for testing conversion factors (DIB = Device Independent 
Bitmap)  

 

The 'Pos3D.dll' used for testing is a modified version, since there is no connection to the CPN 

mouse driver (see appendix E). Instead the positions are generated based on two mathematical 

formulas, one for the offset and one for the distance. 
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The lateral offset is termed sx(t) and is defined in Eq. 11 : 

 Eq. 11 
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The longitudinal velocity is termed vz(t) and is defined in Eq. 12 : 

 
   

 Eq. 12 
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The longitudinal distance is sz(t) where sz is found from vz by integration : 

 
 Eq. 13 2 t

z 1000
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2 2
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Since the time is used in the formulas it is necessary to pass the current time in msecs every 

time the position is requested from ‘Teratest’. Based on the time and the formulas above, 

'Pos3D.dll' generates a position that is returned back to ‘Teratest’. The generated position is 

stored in shared memory and is read by Sonocubic when it calls the 'GetPos' function in the DLL 

(note that this is a different shared memory than the one the scan planes are transferred in). In 

this way Teratest and Sonocubic gets the same position, and we can check if the compensation 

algorithm is working. 

The reason for giving the time and not just to have an incremental counter is that Windows is 

not a real time operating system. It is therefore not guaranteed that a frame is generated every 

30 ms in Teratest, just as it, in the existing software, is not guaranteed that Terason has 

finished acquiring an ultrasound image every 30 ms. Supplying the time solves this problem and 

gives a position that corresponds with the time. 
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(a)

 

(b)

Fig. 50 - (a) constant speed and offset (b) constant speed and variable offset 

 

In Fig. 50 the computer generated movements of the scanner can be seen. These graphs are 

the actual movements that were generated in 'Pos3D.dll' when the 'CurPos' function was called 

by 'Teratest'. The data for the position was saved for plotting in Matlab by writing to a file from 

'Pos3D.dll'. In the top part of Fig. 50, a perfect movement is shown, that is, a movement 

without offset or change in scan-speed. This is the movement a user is trying to achieve when a 

freehand scanning is made. In the bottom part a movement with a constant speed but an offset 

varying as a sine wave is shown. A sine wave is probably not a very challenging movement for 

the algorithm, but it has to be remembered that the algorithm is made for assisting a user 

making a free hand scan. So a random scan would not be very interesting. 
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(a)

 

(b)

Fig. 51 - (a) Variable speed and no offset (b) Variable speed and variable offset 

 

In Fig. 51 a movement with varying speed but no offset is shown in the top. And the worst case 

with varying speed and variable offset is shown in the bottom. 

  page 70 of 135 



 

 

 

 

 

 

   (a)        (b) 

Fig. 52 - Uncompensated (a) and compensated offset (b) 

 

In Fig. 52 the results can be seen where a scan without offset compensation and another with 

compensation is shown. It is clear that the correction process is working since it matches the 

intended volume - a cuboid. The long side of the cuboid is, however, not completely straight. 

The reason for this is that Sonocubic at this point can position the scan planes with a much 

higher accuracy than that with which the scan planes can be created. In the scan plane 

generator it is only possible to place the square on a 256 x 256 pixel grid, and this creates very 

small rounding errors. 

In Fig. 53 the result of scanning the pyramid phantom without compensation can be seen. This 

corresponds to the movement shown in the bottom of Fig. 51. If a compensation is done only 

for the offset the result can be seen in Fig. 54 (a), and if both an offset and speed 

compensation is made the result can be seen in Fig. 54 (b). It is clear that the compensated 

volume matches the expected volume (a pyramid). 
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Fig. 53 - Distorted pyramid, no compensation 

 

 

 

 

 

 

   (a)       (b) 

Fig. 54 - Pyramid compensated for offset (a) and for offset and speed (b) 

 

As it can be seen the algorithm is working on computer generated ultrasound images. If we 

therefore can get an exact position of the transducer it can also work in the real life. This will be 

tested in chapter 5. 

  page 72 of 135 



5 Volume Estimations 

5.1 Phantom Development 

In the previous chapter we tested and proved that the algorithm is working on computer 

generated data. In this chapter an overall test of the system is done on 3D phantoms. A 

quantitative test was done by testing the ability of the 3D imaging system to calculate the 

volumes of inclusions contained in customized 3D phantoms. These 3D phantoms were designed 

in the Ultrasound Lab by Matt Rowan. The phantoms were made from an organic material called 

agar. The details that lies behind the development of the phantoms will not be covered in this 

thesis, but the ingredients used and the recipe that has to be followed in order to create a 

custom “homemade” phantom will be described. 

For making agar, the following ingredients are needed : 

 1 - 600 mL distilled water 

 2 - 18 g agar 

 3 - 0.75g methyl paraben 

 4 - 54g graphite-powder  

 5 - 50 mL 1-propanol 

For the parts of the phantom that has to resemble a cyst (a hypoechoic volume) the graphite 

powder is not included. It is the graphite powder that backscatters the sound waves and creates 

an ultrasound image that looks like an image of human soft tissue. 

Using the ingredients mentioned above the following recipe has to be followed : 

 1 - Heat the distilled water to a minimum of 85°C 

 2 - Add the agar and mix well with water at the above temperature 

 3 - Add the methyl paraben and mix well 
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 4 - Cool the mixture to 80°C 

 5 -  At 80°C add the graphite powder and mix well 

 6 -  Allow the mixture to cool to 70°C 

 7 -  Add the 1-propanol. 

 8 -  Degas the mixture under vacuum (to remove internal air bubbles) for 15 

  minutes while still maintained at 70°C. 

 9 - Pour solution gently into the mold 

 

 

 

 

 

 

 

 

Fig. 55 - Matt Rowan pouring agar and graphite solution into the mold 

 

 10 - Cover the mold tightly to prevent ingassing 

 11 - Let sit for approximately 12 hours 

 12 - Store the phantom in a degassed environment.  
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A phantom made like this can be used for 2-3 weeks without losing its properties if it is placed 

in a cool place and covered to prevent the water from evaporating. 

For optical tracking on the surface it is, however, a problem that the surfaces of the phantoms 

are black and smooth. A black smooth surface is one of the most difficult surfaces to track on, 

since there are no reflections of the light and no pattern to track on. 

After creating several different phantoms we found out that by adding additional methylparaben 

close to the top surface, it was possible to create a black and white pattern. With this pattern 

the optical tracking on the phantom surface works properly, and the degradation in the 

ultrasound image is neglible. 

 

 

 

 

 

 

 

 
 
 

Fig. 56 - Picture of phantom with the surface pattern 
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5.2 Scanning a Small Inclusion Phantom 

A phantom containing a small rod-shaped inclusion of pure agar (i.e., no graphite powder 

added) was made. The dimensions of the phantom can be seen in Fig. 57 
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Fig. 57 - Dimensions of custom phantom 

 

Surrounding this rod is an agar/graphite powder solution that ultrasonically resembles the 

human tissue. Near the top of the phantom is a pattern containing methylparaben that makes it 

possible to track on the surface. Using the dimensions in Fig. 57 the volume of the rod can be 

determined to be : 

 

 Eq. 14 
2 3

PureAgarVol d h (1.35 cm) 2.12 cm 3.03 cm
4 4
π π

= ⋅ ⋅ = ⋅ ⋅ =

 

This volume can therefore be compared to the volume that the system can determine in order 

to see how accurate it is for volume estimations. For this 5 scans were made, each consisting of 
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between 350 to 414 scan planes or frames. The scans were done in Sonocubic, and after the 

interpolation algorithm had found the voxel data in the maingrid, a series of 2D scan planes 

(from the maingrid) were saved in an AVI-file. While working with Ricardo Gayoso on 

developing the system it was my understanding that all the voxel dimensions in the x, y and z 

directions were the same. I therefore assumed that if the resolution in the scan plane was 

known, then the distance between each scan plane was also known. This is in fact the case as 

long as the data is within Sonocubic, since the data in the main grid is stored in a 512x512x”no 

of scan planes” array. But a problem occurs when the data is stored in an AVI-file. 

 

 

 

 

 

Fig. 58 - 2D scan plane from custom phantom 

 

The way Sonocubic saves the scan planes to an AVI-file is very simple. The conversion is done 

by capturing the 2D scan plane window as it is displayed on the computer screen (moving the 

cursor on top of the 2D scan plane window will therefore capture the cursor in the AVI-file). The 

size of the 2D scan plane window is by default defined by the size of the ultrasound image that 

is transferred from Terason, and in our case this is 388x388 pixels. The size of the ultrasound 

image is decided by the Terason application. The AVI-file will therefore also end up having this 

dimension although the data being displayed actually comes from a dataset with 512x512 pixels. 

But as this happens the distance between the scan planes is not changed accordingly and we 

therefore end up with a dataset that has one resolution in two in-plane dimensions and another 
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resolution in the third dimension, that is, the dimension out of the scan plane. Or said in another 

way the voxels are not cubic anymore but instead as a square cuboid (square box). 

The resolution inside Sonocubic can be found by opening the Info->Distance menu item. Here a 

value called mmxpix can be read to be 0.093964 mm/pixel with the settings that I used. This 

value depends on the resolution that is transfered in the BMP-header from Terason. So, as 

mentioned before, Terason defines what the resolution of the 3D image in Sonocubic ends up 

being. The number of voxels used to describe 1 m3 can be found to be : 

 

             Eq. 15 

z mm
pixel

x y

2 2
z x 3

1 pixelsres 10642.37
0.093964 m

388

11

xelses res 10642.37 8064.924
512 m

voxelsres res res 10642.37 8064.924 6.92 10
m

= =

⋅

= ⋅ = ⋅ = ⋅

pir = = =

 

 

This is equivalent to a voxel size of 0.00144 mm3. Knowing this number makes it possible to 

relate it to a given voxel count in a volume and thereby to make a translation from voxels to 

cubic metres. One might ask why the resolution to describe the resolution is in voxels per m3 

and not in m3 per voxels, since it seems more straight forward to multiply than divide. The 

reason lies in the definition of the resolution in the BMP-header, where the vertical and 

horizontal resolution is given in pixels per meter. And to keep things consistent this format for 

the resolution is kept. 

5.3 Matlab Algorithm for Estimating Volume 

In Fig. 59 a graphical overview of the steps that has to be done in order to count the number of 

voxels in a volume is shown. After the repositioning and interpolation of the scan planes is done, 

an image loop of the 2D scan planes is stored into an AVI-file (video file). The area of interest in 

the AVI-file is cut out and saved in a file. In Matlab this file is opened and each frame (scan 
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Fig. 59 - Graphical overview of image enhancement algorithm 

 

plane) is processed one by one. First a nearest neighbor algorithm with a thresholding is applied 

to the scan plane, then a Wiener filtering is done and finally the image is inverted, since this 

makes it easier to visualize the result. The number of white pixels in the processed scan plane 

can now be counted. The number of pixels will equal the number of voxels and by counting the 

pixels in all scan planes the total number of voxels in the volume can be found. 

The Matlab code for the algorithm described in short above can be found in appendix C. The 

nearest neighbor algorithm found here is partly based on Vikramjit Mitras work, a former 

graduate student in the Ultrasound Lab. In the Matlab code a Wiener filtering with a 5 x 5 

neighborhood is used to remove noise. The Wiener filtering is an adaptive filtering, and by using 

the statistics from the 5 x 5 pixel neighborhood an appropriate low-pass filtering can be done. 

This filtering removes noise and makes the segmentation much more accurate. The analytical 

reasons for the choice of neighborhood was not considered but taken directly from an example 

in Matlab. Since this code provided good results it was decided to keep it as it was. The Matlab 

code for reading in a frame from the AVI-file, doing a Wiener filtering and a nearest neighbor 

filtering is shown on the next page. 

  page 79 of 135 



    [RGB,Map] = frame2im(mov(i)); 
    A = rgb2gray(RGB); 
    B = wiener2(A,[5 5]); 
    C = ~nearestn(B,1,35); 

 

The Wiener filtering that is done first estimates the local mean and variance around each pixel, 

as shown in Eq. 16 : 

             Eq. 16 
2

1 2

1 2

1 2
n ,n

2 2
1 2

n ,n

1
NM 1

1
NM 1

A(n ,n )

A (n ,n )

∈η

∈η

µ =
−

σ =
−

−µ

∑

∑
 

'A' is the matrix containing the image and η is the N by M neighborhood around the center pixel. 

In this case both N and M is 5. A pixelwise Wiener filtering then takes place as shown in Eq. 17 :  

   
2 2

1 2 1 22

vB(n ,n ) (A(n ,n ) )σ −
= µ + − µ

σ
     Eq. 17 

v2 is a parameter for the noise variance that can be used as an option when the wiener2 

filtering function is called. If this parameter is not given, as in this case, the average of the local 

estimated variances is used. A simpler low-pass filtering and segmentation is subsequently done 

by calling the function called nearestn. In this function a nearest neighbor algorithm (closest 

nearest neighbor - 9 pixels) is done. As shown in Fig. 60 the algorithm sums up the surrounding 

8 pixels (no. 1-8) and the pixel itself (in the center - no. 9). 
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Fig. 60 - Closest nearest neighbor algorithm 
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If the total value is above a certain threshold the pixel is set to the max value and if it is below it 

is set to zero. After this a binary conversion is done, giving either a one or a zero for a pixel 

value. The big advantage of using a binary number is speed. 

Following the segmentation all the pixel data is inverted. This is done by inverting all the 

returned data from nearestn. This makes the pure agar to appear white, as it in reality is 

visually, but acoustically it is black. It also prevents the surrounding agar/graphite from 

obstructing the view to the pure agar piece. All the pixels can then be summed up, using the 

sum command, in order to find the area and ultimately the volume of the pure agar piece. 

    map = [[0,0,0];[1,1,1]]; 
    movproc(i) = im2frame(C, map); 
    count(scanno) = count(scanno) + sum(sum((movproc(i).cdata))'); 
 

Count is an array where the index is the scan number being processed. The processed data is 

stored in a new AVI-file, so the results can be seen by just playing an AVI-movie. 

 outputfilename = sprintf('proc_tube_phantom_w_methylpar_%i_cut.avi',scanno); 
 movie2avi(movproc,outputfilename, 'colormap', map); 
 

Finally the volume is calculated and displayed. As can be seen, the (388/512)2 conversion factor 

is taken into account when calculating the resolution factor. 

 mperpix = 0.093964e-3;    %Value that can be read in Sonocubic 
 pixperm = mperpix^-1; 
 resolution = (388/512*pixperm)^2*pixperm; 
 volume = count/resolution*100^3;           %in cm3 
 

The results for the voxel count are shown in Table 4 below. 

Table 4 - Estimation of complete volume based on five separate scans 
 

 
Scan no. 
 

 
1 

 
2 

 
3 

 
4 

 
5 

 
Voxels 
 

 
2143671 

 
2016803 

 
2227925 

 
2156085 

 
2086507 

 
Volume [cm3] 
 

 
3.10 

 
2.91 

 
3.22 

 
3.11 

 
3.01 

 
Normalized 
volume 
 

 
1.02 

 
0.96 
 

 
1.06 

 
1.03 

 
0.99 
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Another similar test was done, but here only used 100 scan planes was used. Doing this 

eliminates problems that might occur at the end of the phantom, where there is a short 

transition when the scanner is moved over the pure agar volume. 100 scan planes has a volume 

of : 

 
 Eq. 18 

mm
100ScanPlanes pixel

2 3
100ScanPlanes

h 100 0.093964 0.94 cm

Vol d h (1.35 cm) 0.94 cm 1.35 cm .
4 4

= ⋅ =

π π
= ⋅ ⋅ = ⋅ ⋅ = 

I got the following results from my measurements : 

Table 5 - Estimation of volume in 100 scan planes based on five separate scans 
 

 
Scan no. 
 

 
1 

 
2 

 
3 

 
4 

 
5 

 
Voxels 
 

 
934220 

 
927794 

 
932341 

 
939921 

 
949513 

 
Volume [cm3] 
 

 
1.35 

 
1.34 

 
1.35 

 
1.36 

 
1.37 

 
Normalized 
volume 
 

 
1.00 

 
1.00 

 
1.00 

 
1.01 

 
1.02 

 

As it can be seen the estimated volumes are very close to the actual volume. Measuring the 

dimensions of the pure agar volume is a potential error source since it is soft. Also we do not 

know for sure if the pure agar body changes shape slightly when the agar with the graphite 

powder is poured on top of it. But the results lie within a very small error margin, and it can be 

seen that the measurements are consistent and can be repeated from scan to scan. 
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5.4 Phantom Visualization 

In addition to the ability to quantify the size of a volume, another important aspect of 3D 

ultrasound is to display the processed data in a way that makes visualization easier. In Fig. 61 

(a) is shown a reconstruction in Sonocubic of the data that was captured using our positioning 

system and processed to remove noise in Matlab. In Fig. 61 (b) is a photograph of the pure agar 

rod after it was taken out of the phantom (the black parts are from the agar and graphite 

solution). As it can be seen, there is a good agreement between the 3D ultrasound image and 

the actual photograph. 

 

 

 

 

    (a)         (b) 

Fig. 61 - Reconstructed 3D ultrasound image (a) and actual photograph (b) 
of the pure agar rod 

 
 
 

5.5 Human Body Visualization 

 

To test the system's ability to scan the human body it was decided to scan the common carotid 

artery. The carotid arteries carry blod to the brain and resides on each side of your neck. 

Because of their accessibility and proximity to the skin surface they are ideal for scanning with 

an ultrasound scanner. A medical illustration of the right carotid artery is shown in Fig. 62. 
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Fig. 62 - Medical illustration of common carotid artery 

 

Scanning with the 3D positioning system described in this thesis makes it possible to visualize 

the common carotid artery. Since the volume of this artery is unknown the quantitative abilities 

of the system can not be tested. A scan was made of my right common carotid artery and the 

compensated scan planes were stored in an AVI-file. As it can be seen in Fig. 63 the ultrasound 

image is far from as homogeneous as the one of the phantom. 

 

 

 

 

Fig. 63 - Cut out from ultrasound scan plane of common carotid artery 

 

Because of the poor image quality it was decided not to use the Matlab algorithm, but instead a 

segmentation and boundary detection was done by manually cutting out areas of interest in 

each scanplane (a total of 226 images). This is a really time consuming process but provides 

very nice results. In Fig. 64 the reconstructed 3D image can be seen from 4 different views. 
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Fig. 64 - 3D reconstructed ultrasound images of carotid artery 

 

As it can be seen the system presented in this thesis makes it possible to get 3D ultrasound 

images not only from an ultrasound phantom but also from an artery in the human body. The 

process of reconstruction is because of the manual boundary detection far from automatic, but 

with better boundary enhancement algorithms integrated into the 3D software it should be 

possible to make scans as described here in the near future. 
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6 Conclusions and Future Work 

6.1 Conclusions 

This thesis has shown the successful development of a new simple and portable optical tracking 

system that can be used with ultrasound transducers, to create quantitative 3D images. 

The mounting of an optical fiber in front of the optical sensor showed us that the image is 

somewhat blurred and degraded compared to an implementation where just the optical sensor 

and a lens is used. This made it problematic to track on surfaces with a small variation in the 

optical pattern like the human skin. The mounting method it was decided to use, which consists 

of just a lens and the optical sensor mounted in a custom housing, works much better on all 

surfaces and it is possible to make a compact implementation without using the optical fiber. 

The interfacing of the optical sensor to the software was a success. Reusing the existing 

hardware and the use of a mouse filter driver eliminated a lot of development work. The use of 

a USB interface also makes it easy to use the position system in a portable system. 

Encapsulating the functions for obtaining the position into a DLL provides a good interface. This 

makes it easy to interface a program that needs the position information. The interface could 

have been made so it instead used an existing interface, like for example "Flock of Birds". In this 

way it would be easier for existing 3D programs to interface to our system. The changes can, 

however, easily be made. 

The testing of the system with a computer phantom was a very useful idea. This test made it 

possible to make sure that all the conversions factors used were in place before a real world test 

on a 3D phantom was made. 
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The phantom development proved to be essential for testing the performance of the positioning 

system. To have this expertise in house was really nice, since it made it possible to customize 

the phantoms. The ultrasound images are really nice and clear. 

A simple Matlab algorithm consisting of a series of low-pass filters was used for boundary 

enhancement and volume estimation. The algorithm was able to determine the volume of the 

phantom within 6% by counting the number of voxels. If only the center part of the rod is used 

(100 scan planes) the accuracy gets as low as 2%. This shows that the system cannot only be 

used for visualization purposes, but also as a quantative tool. The good results were possible 

because of the high accuracy of the position sensor, the clear ultrasound images it was possible 

to obtain from the phantoms and the Matlab filtering algorithm. One problem with the Matlab 

algorithm is that it is difficult to implement in for example C-code, since it uses predefined 

Matlab functions. An implementation in C-code could be necessary if an "on the fly" algorithm is 

needed, for example when transfering the images from Terason to Sonocubic. 

Using Sonocubic the processed data can be visualized. The processed data resembles the actual 

phantom quite accurately as shown in Fig. 65 (Note that (a) is inverted). 

 

 

 

 

    (a)         (b) 

Fig. 65 - Reconstructed 3D ultrasound image (a) and actual photograph (b) 
of the pure agar rod 
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The system has some limitations since it is limited to two degrees of freedom. As we have 

demonstrated in this thesis it works fine on a flat surface. But scanning for example over the 

curved skin surface of a pregnant woman remains a problem. 

6.2 Future work 

As future work we suggest that the system is enhanced with capabilities to take angle 

information into account. This can be done using micro gyros [14]. The microgyros will make it 

possible to add angle information to each ultrasound scan plane giving up to 5 degrees of 

freedom, only missing the depth. 

 

 

 

 

Fig. 66 - Cut through of a micro gyro from Gyration [14] 

 

A preliminary study using a Gyro mouse (a GP210-001) from Gyration showed that the angle 

information can be obtained and displayed from the gyro mouse using the CPN mouse driver. 

Sonocubic is, however, not able to take the angle information into account. 

A software package that can use the angle information will therefore be needed. It might be 

possible for Sonocubic to be customized so the angle information can be taken into account. 

Sonocubic is, however, an old program and for future purposes newer technologies should be 

used. This could for example be in the form of a program that could use 3D graphics hardware. 

This would make it possible to get high 3D performance by using commercial hardware that is 

available at a low cost. 
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Another thing that could be incorporated into a new program would be image enhancement 

algorithms. A thing similar to this has already been done in Volview, that is a 3D program by 

Kitware [15]. Volview has a series of standard medical filters and customized filters can be 

interfaced to the program through an API interface. This provides a good platform for 

development purposes. 
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Appendices 

Appendix A - CCD - array image viewer 

The CCD-array image viewer was made as a part of my VHDL class EE574 taught by Prof. R.J. 

Duckworth. The documentation presented here is a part of the report submitted for the final 

project in this class. 

 

A.1.1 - Block Diagram of Hardware 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 67 - Block diagram of hardware used 

 
 

In Fig. 67 a block diagram of the hardware can be seen. I use an optical mouse from Targus 

that contains the Agilent ADNS-2610 CCD-array chip (referred to as optical sensor). Through a 

synchronous serial bus the Spartan-3 developers board can communicate with it. This is done 

through a master/slave relationship where the Spartan-3 as the master sends out commands to 

the CCD-array that as a slave responds to the master's orders. Through the VGA display port the 

Spartan-3 can then display the image it acquires from the CCD-array. Other useful information 

like for example the value of the maximum pixel or the deviation in pixel values in an image can 

be displayed on the seven segment displays or on the LEDs. 
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A.1.2 - Design Methodology 
 

I started this design by taking an old design and stripped of all the things I did not need in it. I 

thereby ended up with a module containing my state machine, clock conversions and the ability 

to display numbers in different states. 

 

 

Optisens

Mealy State Machine
Clock Dividers

Display Decoder

 

 

 

 

Fig. 68 - Simplified block diagram of modules I started with 
 

 

This was a good starting point. I like this approach since it is easier to strip down a project than 

it is to start a new from scratch. 

 

  

 

 

 

Optisens

Mealy State Machine
Clock Dividers

Display DecoderADNS-2610 Model

 

Fig. 69 - Simplified block diagram of model attached to the design 
 

 

I then decided to make a model for my optical sensor. Even though it might seem a little 

cumbersome to make a model from scratch I think that I have saved a lot of time in the end, 

because it made me able to write a test bench and do a simulation of the commands that I sent 

to the optical sensor. The model is very simple and only answers back with a certain sequence 

of numbers if I send a specific command, but it is enough to prove that my communication is 

working. And since I am acquiring image information the data is constantly varying. The model 

is therefore a good representation of the actual optical sensor. 
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Fig. 70 - Simplified block diagram of design + send and recv command modules 
 

After doing the basics in the optisens module I started working on the send command and 

receive command modules. 

 

Send command is a module that takes care of sending a command to the optical sensor. After it 

has done so it sets a flag to indicate to the other module, recv command that it can begin to 

read a command from the serial synchronous line. Since this is an in/out line from the Optisens 

module and to the optical sensor it is split up into being an out line from the send command 

module and to be an in line going to the recv command module. 

 

After doing the basics in the send_command module I then made a test bench for the optisens 

module. By simulating some commands on the sliders on the Spartan-3 board and simulating 

button presses to execute them I was able to see in my simulation what the waveform on the 

synchronous serial port looked like. This was very useful. By sending a specific command from 

the send_module I could then get a response back and try to interprete it in my recv_command 

module. Since I knew the response from my model I could then make sure that I got the same 

response in my recv_command module. I did this by looking at the output to the LEDs. 
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Fig. 71 - Simplified block diagram of ADNS-2610 connected (not the model) 

 

It was now the time to look at my hardware. I connected the wires to the mouse through the 

expansion connector A2. In Fig. 72 and Fig. 73 the color codes for the actual wires are shown. 

In Fig. 74 an actual picture of the connections is shown. 

 

 

GND
VU

SDIO
SCK

Spartan-3 Board Connector A2

 

 

 

 
Fig. 72 - Color codes for wires connected to A2 expansion connector 
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Fig. 73 - Color codes for wires connected to the ADNS-2610 optical sensor 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 74 - Picture of hardware setup 
 

I was now able to get actual data from the mouse and it was working as the simulation said it 

would. I made it possible to display digits on the display in certain states using my display 

module.  
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Fig. 75 - Simplified block diagram of final design 

 

Finally I concentrated on the VGA module. The VGA module is quite simple as it basically 

consists of some clock converters and counters. The key thing to begin with is to get the 

horizontal and vertical sync signals to work. 

 

Displaying the actual image is done in certain periods of the cycle and I started out by being 

able to display a constant color like red or green. I had followed the documentation for the 

Spartan-3 board, but to my surprise something was wrong. The problem is that the front and 

back porch are wrongly depicted in [19]. The two figures I am mentioning can be seen in Fig. 

76 and Fig. 77. 
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Fig. 76 - Wrong VGA timing diagram 
 

 

 

 

 

 

 

Fig. 77 - Correct VGA timing diagram 
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The result from switching the back and front porch can be seen as a black vertical stripe on the 

monitor as shown in Fig. 78 (left) where the result of a correct back and front porch is also 

shown (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wrong back and front 
porch

Correct back and front 
porch

Fig. 78 - Wrong back and front porch (left) and correct back and front porch (right) 
 

After resolving this problem I continued to work on the VGA module, so it would be able to 

constantly read the results from the recv_command module (given as an output on the LEDs). 

This data is stored in an array of 18 x 18 = 324 corresponding to the amount of pixels in the 

CCD-array. Each element in the array contains 6 bits corresponding to the 64 grayscales it is 

possible to obtain from the optical sensor. This uses a total of 324 x 6 = 1944 flip-flops. 

 

I am then constantly indexing into this array to display the actual image on the screen. 
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Below in Fig. 79 I have shown a detailed block diagram with all the connections between the 

modules I am using. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 79 - Block Diagram of the System 
 

 

On the next page is a functional description of my state machine that I am using in the optisens 

module. 
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A.2 - State Diagram 

INIT
R0 = 00; R1 = 
01; R2 = 02 ; 

R3 = 03

DELTA Y

EXEC_INST

WAIT x 19

btn2 = ‘0'

btn2 = ‘1'

btn3 = ‘1’ 
(reset)

DELTA X

RESET_IT
xpos = 0
ypos = 0

IMAGECONFIG

btn3 = ‘1'

btn3 = ‘0'

DELTA X1

DELTA X2

DELTA Y1

DELTA Y2

btn1 = ‘1'

sw = read & 
delta_x sw = read & 

delta_y

This is a wait state 
consisting of 19 states that 
loops and goes back to the 

originally desired state 
determined in EXEC_INST

SQUAL MAX_PIXELPIXEL_DATA MIN_PIXEL

to INIT state

sw = read & 
squal

sw = read & 
pixel_data

sw = read & 
min_pixel

sw = read & 
max_pixel

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 80 - State diagram of optisens machine 

 

  page 101 of 135 



I have designed this project with state machines. I like state machines very much, since I think 

that they give a much better overview of what is going on. 

 

The state machine works in the following way. After reset a RESET_IT state is entered. The idea 

with this state is to reset the counters for the X and Y position. Then INIT is entered, which is 

the default state to be in. If button 2 or 3 is pressed either the config or image state is entered. 

In these two states data is written to either the config or image register in the optical sensor. 

The config register has to be written to in order to reset the sensor and to turn on the LED 

attached to the sensor to illuminate the surface with full brightness constantly. It is necessary to 

write to the image register in order to capture an image with the sensor at a given moment. 

Otherwise for other commands (that is read commands) the EXEC_INST is entered. The 

command is read from the dip switches and send to the optical sensor. We then enter a wait 

state that consists of a number of wait states that we cycle through before returning to the 

command that we want to read the response to. This is done in the states like SQUAL, 

PIXEL_DATA, MIN_PIXEL etc.. Finally we end up in INIT again. The states for DELTA_X and 

DELTA_Y are a little special since they are read consecutively when DELTA_X is executed. This 

is done in order to be able to show both the X and Y position simultaneously on the seven-

segment display. 

  

A.3 - Special Features 
 

I have added most of the commands for the CCD-array since I felt that it was nice to have more 

commands implemented. Furthermore it was not a lot of effort to make this addition since the 

procedure for sending commands and receiving the response is very similar. The commands 

supported are : 

 

  - Configuration 

  - X-position 

  - Y-position 

  - SQUAL, a measure of the features visible by the sensor 

  - Maximum pixel value 

  - Minimum pixel value 

  - Pixel data (outputs the values on the VGA display) 

 

The values for the commands follows the commands found in the ADNS-2610 datasheet (optical 

sensor datasheet). These are shown in Fig. 81 
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Fig. 81 - Full command set for the optical sensor 
 
 
A.4 - Testing in simulator (Modelsim) 
 
A.4.1 - Testbench for VGA module 
 

In appendix page 43 the testbench for the VGA module can be seen. On page 61 and 62 a wave 

form for the simulation can be seen. I have divided the waveforms up into two different pages 

since the vertical sync has a much lower frequency than the horizontal sync, so having a whole 

period of the vertical sync would therefore make it impossible to see all the details on the 

waveform. On page 61 a waveform of the beginning of the vertical sync can be seen. Note that 

the data for RGB is undefined to begin with. This is because the array that contains all the pixel 

values has to filled up before it can be output correctly. This is done using cmd_recv that clocks 

the data displayed on the LEDs in, in this case 8Fh and 4Fh. The first pixel has to have an '1' as 

MSB since this indicates that the pixel data from the optical sensor is a start of the frame, 

therefore the change from 8Fh to 4Fh. I have also demonstrated what the timing diagrams can 

be used to by calculating the periods for the hs and vs to see if it corresponded with expected 

values, which it did. Another and better approach would have been to output the timings to the 

simulator which I have not done here. 
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A.4.2 - Agilent ADNS-2610 model 
 

Before I started to work with the serial commands I decided to make a simple model of the 

ADNS-2610 chip. The reason for this is that the timing when communicating with the CCD-array 

is very critical and by using my model it was possible for me to see if the bit patterns that I was 

sending and receiving looked right. The model is shown in appendix page 40. 

 

A.4.3 - Testbench for the whole project 
 

In this appendix on page 122 a waveform for the whole optisens project can be seen. Here I 

have simulated the acquisition of the change in x position and y position. I have designed my 

system so that each time an xpos is acquired the ypos will be acquired later and output on the 

seven segment display (xpos at pos.3-2 and ypos at pos. 0-1). 

 

In the waveform it can be seen how a command is set by the switches. In this case the 

command is delta_x, corresponding to 03h. After that is done button 1 is pressed = '1' and the 

state machine therefore goes into the exec_inst state. Send is set to high, to signal that we 

want the send module to send the command to the optical sensor. This makes the send module 

start sending the command and at the same time the clock is changed from being constantly '1' 

to oscillate. After this the output on SDIO goes into high-Z and the state machine then goes into 

a wait state. According to the datasheet for the ADNS-2610 see Fig. 82, we have to wait at least 

100 us before reading the result of our command. 

 

 

 

 

 

 

 

 

Fig. 82 - Timing between write and read to the ADNS-2610 and subsequent 
commands 

 

On the waveform in the appendix it can be seen that this is the case since we are waiting more 

than 500 us. In order to speed up the acquisition this could be changed (but it is fast enough as 

it is). I have then defined my model so it responds to the delta_x command with AAh. This 

response is received when the recv flag is set to high in the DELTA_X state, the clock starts 
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oscillating and the read module reads in the response from my model. As it can be seen this is 

output correctly to the LEDs as AAh. 

 

A.5 - Testing in real life 
 

In order to test if the system was working I decided to view a piece of white PVC tape with 

some black lines as shown in Fig. 83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 83 - PVC tape with black lines used for testing 
 

To begin with I choose to use an 3-bit color scale giving a total combination of 8 colors. This 

color scale comes from the three bits, Red, Green and Blue that you can either turn on or off on 

the Spartan board. 
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Using these 3-bits I would get the color scale shown in Fig. 84 

 

       

<= Darker ... Brighter =>

 

Fig. 84 - 3-bit Color scale 
 

On the VGA-screen this would look as shown in Fig. 85. What you can see here is the border 

between a black line and a white area. The line in the left side of the screen is just a repetition 

of the right border because the 18 x 18 pixels do not have the same dimension as the VGA 

screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 85 - VGA image using an 3-bit color scale giving a total of  8 different colors 
 
 

I find this color scale useful, but it is not very easy to get an understanding of what parts of the 

image that are darker than the others unless you look at the color scale shown in Fig. 84. 

 

Now that I knew that it was possible to extract the image from the CCD-array and display it on 

the VGA screen I therefore decided to try and see if I could get grayscales from the Spartan 

board. One way to get grayscales is by using 6 bits with a resistor ladder. Turning on or off 
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certain bits makes it possible to vary an analog voltage and thereby change the greyscale. This 

turned out to be successful and the result can be seen in Fig. 86. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 86 - Greyscale image from CCD-array viewer 
 
What can be seen in Fig. 86 is a part of the number 2 in the USAF 1951 chart [13] . 
 
 
A.8 - Conclusion for the CCD-array image viewer 
 

I think that this project is a good example of what a microprocessor is good for and what an 

FPGA is useful for. The communication with the optical sensor is very critical in terms of timing 

and involves sequential operations. This is implemented in my FPGA using my state machine 

and signaling with some flags when to do certain things. I think this makes my code a little 

clumsy compared to how I could have done the same thing in a microcontroller. 

On the other hand I find that the VGA module is a good example of something the FPGA is 

much better at that than what could be done in a microcontroller. I like the fact that I could just 

build this module and I did not have to care about anything like processor usage, interrupts and 

so on, since everything would happen in parallel with the rest of my code. So as a conclusion I 

think that the best way to solve this task is by using an FPGA and then implement a 

microcontroller into it. In this way one would get the best of both worlds. This would give you 

the best cost/price and development time. 

 

Besides that I think that it was a very interesting project to work with. I think I learned a lot 

from this too. My goal was to get a tool that made it possible to see whether the optical sensor 

was in focus or not and I have that now.  
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As further improvements I would like to improve the optisens project by dividing the VGA screen 

into smaller tiles, so consecutive images could be shown in for example a 13 x 13 pixel grid 

giving a total of 169 images. This would be a very nice feature to have too since a comparison 

between different images would be easy. A serial interface would also be nice so data could be 

stored and used in for example Matlab. 

 

But there are many things that can be made as improvements and only your imagination sets 

the limit. I am stopping here since my primary goals have been achieved. 

 

A.10 - VGA timing information 
 
"VGA industry standard" 640x480 pixel mode 
 
General characteristics 
 
Clock frequency 25.175 MHz 
Line  frequency 31469 Hz 
Field frequency 59.94 Hz 
 
One line 
 
  8 pixels front porch 
 96 pixels horizontal sync 
 40 pixels back porch 
  8 pixels left border 
640 pixels video 
  8 pixels right border 
--- 
800 pixels total per line 
 
One field 
 
  2 lines front porch 
  2 lines vertical sync 
 25 lines back porch 
  8 lines top border 
480 lines video 
  8 lines bottom border 
--- 
525 lines total per field               
 
Other details 
 
Sync polarity: H negative, V negative 
Scan type: non interlaced. 
Information source 
Article "Re: VGA specifications ,where ?" posted 19 Nov 1997 to sci.electronics.design 
newsgroup by Jeroen Stessen
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A.11 - Code 
 
A.11.1 - optisens.vhd 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use work.optisens_package.ALL; 
 
 
entity optisens is 
 
  Port ( 
      -- Clock 
      clk_50M       : in    std_logic;                              -- clock from board 
 
      -- User inputs 
      sw            : in    std_logic_vector(7 downto 0);           -- switches 
      btn           : in    std_logic_vector(2 downto 0);           -- buttons 
      reset         : in    std_logic;                              -- reset 
 
      -- For the seven segment display and LEDs 
      seven_seg     : out   std_logic_vector(7 downto 0) := x"00";  -- pattern for seven 
            segment 
      an            : out   std_logic_vector(3 downto 0) := x"1";   -- anodes for LEDs 
      led           : out   std_logic_vector(7 downto 0);           -- LEDs 
 
      -- For the optical mouse 
      sdio          : inout std_logic :='Z';                        -- serial line 
      sck           : out   std_logic := '0';                       -- serial clock 
 
      -- For the VGA connection 
      hs            : out   std_logic;                            -- horizontal sync 
      vs            : out   std_logic;                            -- vertical sync 
      red           : out   std_logic;                            -- RGB value for red 
      green         : out   std_logic;                            -- RGB value for green 
      blue          : out   std_logic);                           -- RGB value for blue 
 
end optisens; 
 
architecture Behavioral of optisens is 
 
  component display is 
    Port ( count0      : in std_logic_vector(7 downto 0); 
           count1      : in std_logic_vector(7 downto 0); 
           clock       : in std_logic; 
           seven_seg   : out std_logic_vector(7 downto 0); 
           an          : out std_logic_vector(3 downto 0)); 
  end component; 
 
  component send_command is 
    Port ( sck         : in    std_logic;       -- clock 
           send        : in    std_logic;       -- flag to start transmission 
           cmd_in      : in    std_logic_vector(7 downto 0);  -- command that we want to 
           send 
           data        : in    std_logic_vector(7 downto 0);  -- data that we want to  
           send 
           sdio        : out   std_logic;                     -- data line to the optical
           sensor 
           send_en_clk : out   std_logic); 
 
  end component; 
 
  component recv_command is 
    Port ( sck   : in    std_logic;             -- clock 
           sdio  : in    std_logic;             -- data line that goes to optical sensor 
           recv  : in    std_logic;             -- flag to indicate that receiver should 
         start to receive 
           led   : out   std_logic_vector(7 downto 0);-- LEDs to show result of a cmd 
           digits: out   std_logic_vector(7 downto 0);-- digits to show result 
           of a cmd 
           cmd_recv    : out   std_logic; 
           recv_en_clk : out   std_logic); 
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  end component; 
 
  component vga is 
    Port ( clock       : in    std_logic;                     -- clock 
           led         : in    std_logic_vector(7 downto 0);  -- reads command input from 
           LEDs 
--         data_rgb    : out   std_logic_vector(5 downto 0);  -- data for future 6-bit  
           grey-scale 
           cmd_recv    : in    std_logic;                     -- indicator when a command 
           is received 
           hsync       : out   std_logic;                     -- horizontal sync 
           vsync       : out   std_logic;                     -- vertical sync 
           rgb         : out   std_logic_vector(2 downto 0)); -- RGB values 
  end component; 
 
  --Define all the states we have in our design so the state_type type can be defined 
  type state_type is (RESET_IT, INIT, CONFIG, IMAGE, EXEC_INST, SQUAL, MAX_PIXEL, 
MIN_PIXEL, DELTA_X, DELTA_X1, DELTA_X2, DELTA_Y, DELTA_Y1, DELTA_Y2, DELTA_Y3, WAIT_0, 
WAIT_1, WAIT_2, WAIT_3, WAIT_4, WAIT_5, WAIT_6, WAIT_7, WAIT_8, WAIT_9, WAIT_10, WAIT_11, 
WAIT_12, WAIT_13, WAIT_14, WAIT_15, WAIT_16, WAIT_17, PIXEL_DATA, PIXEL_DATA_1, 
PIXEL_DATA_2, PIXEL_DATA_3); 
  type reg_type is array(0 to 3) of std_logic_vector(7 downto 0); 
 
  --Define registers 
  signal digits        : std_logic_vector(7 downto 0); 
  signal digits_0      : std_logic_vector(7 downto 0); 
  signal digits_1      : std_logic_vector(7 downto 0); 
 
  signal data          : std_logic_vector(7 downto 0); 
 
  signal cmd_in        : std_logic_vector(7 downto 0) := x"00"; 
  signal led_sig       : std_logic_vector(7 downto 0) := x"00"; 
  signal rgb_sig       : std_logic_vector(2 downto 0) := "000"; 
 
  --Define state signals 
  signal state         : state_type; 
  signal next_state    : state_type; 
  signal next_state_2  : state_type; 
 
  --Define clock signals 
  signal clk_state     : std_logic := '0'; 
  signal clk_disp      : std_logic := '0'; 
  signal clk_optchip   : std_logic := '0'; 
  signal clk_vga       : std_logic := '0'; 
  signal send          : std_logic := '0'; 
  signal recv          : std_logic := '0'; 
  signal cmd_recv      : std_logic := '0'; 
  signal send_en_clk   : std_logic := '0'; 
  signal recv_en_clk   : std_logic := '0'; 
--  signal data_rgb      : std_logic_vector(5 downto 0) := "000000"; 
 
  begin 
 
    --Make a copy of all components used in the design 
    display_copy      : display port map (count0 => digits_0, count1 => digits_1, clock 
=> clk_disp, seven_seg => seven_seg, an => an); 
    send_command_copy : send_command port map (cmd_in => cmd_in, sck => clk_optchip, send 
=> send, data => data, sdio => sdio, send_en_clk => send_en_clk); 
    recv_command_copy : recv_command port map (sck => clk_optchip, sdio => sdio, recv => 
recv, led => led_sig, digits => digits, cmd_recv => cmd_recv, recv_en_clk => 
recv_en_clk); 
    vga_copy          : vga port map (clock => clk_vga, cmd_recv => cmd_recv, hsync => 
hs, led => led_sig, vsync => vs, rgb => rgb_sig); 
--    vga_copy          : vga port map (clock => clk_vga, cmd_recv => cmd_recv, hsync => 
hs, led => led_sig, data_rgb => data_rgb, vsync => vs, rgb => rgb_sig); 
 
    sck <= clk_optchip OR (NOT (send_en_clk OR recv_en_clk)); 
    led <= led_sig; 
--    sw_sig <= sw; 
 
    red   <= rgb_sig(2); 
    green <= rgb_sig(1); 
    blue  <= rgb_sig(0); 
 
    --generate other clocks from the 50 MHz oscillator 
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    clock_process: process (clk_50M, reset) 
 
      variable counter_50M     : integer range 0 to 12_500_000; 
      variable counter_disp    : integer range 0 to 1_000; 
      variable counter_optchip : integer range 0 to 250 := 0; 
      variable counter_vga     : integer range 0 to 2 := 0; 
      variable temp            : std_logic_vector(5 downto 0) := "000000"; 
 
      begin 
 
        if reset = '1' then 
          counter_50M     := 0; 
          counter_disp    := 0; 
          counter_optchip := 0; 
          counter_vga     := 0; 
        elsif clk_50M'event and clk_50M = '1' then 
          counter_50M     := counter_50M + 1; 
          counter_disp    := counter_disp + 1; 
          counter_optchip := counter_optchip + 1; 
          counter_vga     := counter_vga + 1; 
 
          --clock used for the state machine 
          if counter_50M >= 400 then           --for the simulation 
            clk_state <= NOT clk_state; 
            counter_50M := 0; 
          end if; 
 
          if counter_optchip >= 25 then           --for the simulation 
            clk_optchip <= NOT clk_optchip; 
            counter_optchip := 0; 
          end if; 
 
          --clock used for the display module 
          if counter_disp = 1_000 then 
            clk_disp <= NOT clk_disp; 
            counter_disp := 0; 
          end if; 
 
          --clock used for the vga module 
          if counter_vga = 1 then 
            clk_vga <= NOT clk_vga; 
            counter_vga := 0; 
          end if; 
 
        end if; 
 
      end process; 
 
    --process that syncronizes the state machine with the clock 
    sync_process: process (clk_state, reset) 
      begin 
        if (clk_state'event and clk_state = '1') then 
          if reset = '1' then 
            state <= RESET_IT; 
          else 
            state <= next_state; 
          end if; 
        end if; 
    end process; 
  
 
    --MEALY State Machine - Outputs based on state and inputs 
    --state_process : process (state, digits_count) 
    state_process : process (clk_state) 
 
    variable xpos : std_logic_vector(7 downto 0) := x"00"; 
    variable ypos : std_logic_vector(7 downto 0) := x"00"; 
 
    begin 
      --When there is a clk event the state machine changes since 
      --we have memory ~ flip-flops       
      if clk_state'event and clk_state = '1' then 
 
        case (state) is 
          --Initial state that we enter. Initialize registers used. 
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          when RESET_IT => 
            xpos := x"00";          -- reset X position 
            ypos := x"00";          -- reset Y position 
 
          when INIT => 
            recv <= '0'; 
            send <= '0'; 
 
          when CONFIG => 
            cmd_in <= x"80";  --(write & config); 
            data <= sw; 
            recv <= '0'; 
            send <= '1'; 
 
          when IMAGE => 
            cmd_in   <= x"88";--(write & pixel_data); 
            data     <= sw; 
            recv     <= '0'; 
            send     <= '1'; 
 
          when EXEC_INST => 
            cmd_in <= sw; 
            recv <= '0'; 
            send <= '1'; 
 
          when PIXEL_DATA =>  -- to read the data from the CCD-array 
            recv <= '1'; 
            send <= '0'; 
 
          when DELTA_X =>     -- read the change in delta x position and add it to xpos 
            recv <= '1'; 
            send <= '0'; 
 
          when DELTA_X1 => 
            recv <= '0'; 
            send <= '0'; 
 
          when DELTA_X2 => 
            xpos := xpos + digits; 
            digits_1 <= xpos; 
 
            cmd_in <= x"02"; 
            recv <= '0'; 
            send <= '1'; 
 
          when DELTA_Y =>     -- read the change in delta y position and add it to ypos 
            recv <= '1'; 
            send <= '0'; 
 
          when DELTA_Y1 => 
            recv <= '0'; 
            send <= '0'; 
 
          when DELTA_Y2 => 
            ypos := ypos + digits; 
            digits_0 <= ypos; 
 
            recv <= '0'; 
            send <= '0'; 
 
          when SQUAL =>       -- read the number of features visible by the sensor 
            digits_0 <= digits; 
            digits_1 <= x"00"; 
            recv <= '1'; 
            send <= '0'; 
 
          when MAX_PIXEL =>   -- read the value of the maximum pixel in the image 
            digits_1 <= digits; 
            recv <= '1'; 
            send <= '0'; 
 
          when MIN_PIXEL =>   -- read the value of the minimum pixel in the image 
            digits_0 <= digits; 
            recv <= '1'; 
            send <= '0'; 
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          when others => 
 
        end case; 
      end if; 
    end process; 
 
 
    next_state_process : process (state, btn, clk_state) 
    --clock needed since memory is in next_state_2 
    begin 
 
      if clk_state'EVENT and clk_state = '1' then 
 
      next_state <= state;  --default is to stay in current state 
      next_state_2 <= next_state_2; 
 
        case (state) is 
 
          -- Initial state 
          when RESET_IT    => next_state <= INIT; 
 
          when INIT        =>  
          -- Depending on what button is pressed move into next state 
            if btn = "001" then 
              next_state <= EXEC_INST; 
            elsif btn = "010" then 
              next_state <= CONFIG; 
            elsif btn = "100" then 
              next_state <= IMAGE; 
            else 
              next_state <= INIT; 
            end if; 
 
          when CONFIG      =>  
            next_state <= INIT; 
 
          when EXEC_INST =>  -- go into a wait state after a read command 
       is sent and come back into next_state_2 
            next_state <= WAIT_0; 
 
            case sw is 
              when x"02"  => next_state_2 <= DELTA_Y; 
              when x"03"  => next_state_2 <= DELTA_X; 
              when x"04"  => next_state_2 <= SQUAL; 
              when x"05"  => next_state_2 <= MAX_PIXEL; 
              when x"06"  => next_state_2 <= MIN_PIXEL; 
              when x"08"  => next_state_2 <= PIXEL_DATA; 
              when others => next_state_2 <= INIT; 
            end case; 
 
          when PIXEL_DATA => next_state    <= WAIT_0; 
                             next_state_2  <= INIT; 
 
          when DELTA_X  => next_state   <= DELTA_X1; 
          when DELTA_X1 => next_state   <= DELTA_X2; 
          when DELTA_X2 => next_state   <= WAIT_0; 
                           next_state_2 <= DELTA_Y; 
 
          when DELTA_Y  => next_state   <= DELTA_Y1; 
          when DELTA_Y1 => next_state   <= DELTA_Y2; 
          when DELTA_Y2 => next_state   <= INIT; 
 
          when IMAGE   => next_state    <= WAIT_14; 
                          next_state_2  <= INIT; 
 
          -- wait statements to give the required delay between command and response 
          when WAIT_0   => next_state   <= WAIT_1; 
          when WAIT_1   => next_state   <= WAIT_2; 
          when WAIT_2   => next_state   <= WAIT_3; 
          when WAIT_3   => next_state   <= WAIT_4; 
          when WAIT_4   => next_state   <= WAIT_5; 
          when WAIT_5   => next_state   <= WAIT_6; 
          when WAIT_6   => next_state   <= WAIT_7; 
          when WAIT_7   => next_state   <= WAIT_8; 
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          when WAIT_8   => next_state   <= WAIT_9; 
          when WAIT_9   => next_state   <= WAIT_10; 
          when WAIT_10  => next_state   <= WAIT_11; 
          when WAIT_11  => next_state   <= WAIT_12; 
          when WAIT_12  => next_state   <= WAIT_13; 
          when WAIT_13  => next_state   <= WAIT_14; 
          when WAIT_14  => next_state   <= WAIT_15; 
          when WAIT_15  => next_state   <= next_state_2; 
 
          when others => next_state <= INIT; 
        end case; 
      end if; 
 
    end process; 
 
 
end Behavioral; 
 
 

A.11.2 - VGA.vhd 
 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use work.optisens_package.ALL; 
 
--  Uncomment the following lines to use the declarations that are 
--  provided for instantiating Xilinx primitive components. 
--library UNISIM; 
--use UNISIM.VComponents.all; 
 
entity vga is 
 
    Port ( clock       : in    std_logic; 
           led         : in    std_logic_vector(7 downto 0); 
           cmd_recv    : in    std_logic; 
--           data_rgb    : out   std_logic_vector(5 downto 0); 
           hsync       : out   std_logic; 
           vsync       : out   std_logic; 
           rgb         : out   std_logic_vector(2 downto 0)); 
 
end vga; 
 
architecture Behavioral of vga is 
 
begin 
 
process(clock) 
 
variable hs_val : std_logic := '0'; 
variable vs_val : std_logic := '0'; 
variable index  : std_logic := '0'; 
variable i      : integer range 0 to 800 := 0; 
variable j      : integer range 0 to 415_200 := 0; 
 
variable k      : integer range 0 to 323 := 0; 
variable m      : integer range 0 to 323 := 0; 
--variable r      : integer range 0 to 948 := 0; 
 
variable x      : integer range 0 to 639 := 0; 
variable y      : integer range 0 to 479 := 0; 
variable x_s    : integer range 0 to 20 := 0; 
variable y_s    : integer range 0 to 20 := 0; 
 
--type data_type is array (323 downto 0) of std_logic_vector(5 downto 0); 
type data_type is array (323 downto 0) of std_logic_vector(2 downto 0); 
 
variable data         : data_type; 
variable old_cmd_recv : std_logic := '0'; 
variable value        : integer range 0 to 63 := 0; 
 
begin 
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  if clock'EVENT and clock = '1' then 
 
    --For storing the data in memory 
    --if a new response to a command has been received 
    if cmd_recv = '1' and old_cmd_recv = '0' then 
      old_cmd_recv := '1'; 
 
      --reset if start of a frame from pixel data 
      if led(7) = '1' then 
        k := 0; 
      end if; 
 
      --load data into buffer 
      if led(6) = '1' then   -- if data is valid 
        data(k) := led(5 downto 3); 
        --data(k) := led(5 downto 0); 
      end if; 
 
      --taking care of the indexing variable 
      if k = 323 then 
        k := 0; 
      else 
        k := k + 1; 
      end if; 
    else 
      old_cmd_recv := cmd_recv; 
    end if; 
 
    i := i + 1; 
 
    --For the horizontal sync 
    if hs_val = '1' then 
      if i = 48 then          -- end of back porch, start of Tdisp 
        index := '1'; 
        m := 0; 
        x := 0; 
      elsif i = 688 then      -- end of Tdisp, start of front porch 
        index := '0'; 
      elsif i = 704 then      -- end of Ts, sync pulse time 
        hs_val := '0';        -- hs changes value from 1 to 0 
        i := 0;               -- and counter i is reset 
      end if; 
    else 
      if i = 96 then          -- end of Tpw, pulse width time 
        hs_val := '1';        -- hs changes value from 0 to 1 
        i := 0;               -- and counter i is reset 
      end if; 
    end if; 
 
    --For the vertical sync 
    j := j + 1; 
 
    if vs_val = '1' then 
      if j = 23_200 then      -- end of back porch, start of Tdisp 
        y := 0; 
        index := '1'; 
 
        if value = 63 then 
          value := 0; 
        else 
          value := value + 1; 
        end if; 
 
      elsif j = 407_200 then  -- end of Tdisp, start of front porch 
        index := '0'; 
      elsif j = 415_200 then  -- end of Ts, sync pulse time 
        vs_val := '0';        -- hs changes value from 1 to 0 
        j := 0;               -- and counter j is reset 
      end if; 
    else 
      if j = 1600 then        -- end of Tpw, pulse width time 
        vs_val := '1';        -- hs changes value from 0 to 1 
        j := 0;               -- and counter j is reset 
      end if; 
    end if; 
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    --For the stuff being displayed 
    if index = '1' then 
 
      --location in XY coordinates of position on the screen 
      if x = 639 then 
        x := 0; 
        if y = 479 then 
          y := 0; 
        else 
          y := y + 1; 
        end if; 
      else 
        x := x + 1; 
      end if; 
 
      x_s := x/32; 
      y_s := y/32; 
 
      m := x_s + y_s*18; 
 
      rgb <= data(m); 
      --data_rgb <= data(m); 
    else 
      rgb <= "000"; 
    end if; 
 
 
  end if; --clock'EVENT 
 
hsync <= hs_val; 
vsync <= vs_val; 
 
end process; 
 
end Behavioral; 
 
 

A.11.3 - Send_command.vhd 
 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity send_command is 
 
  Port ( cmd_in      : in    std_logic_vector(7 downto 0); -- Command that we want to 
send 
         data        : in    std_logic_vector(7 downto 0); -- Data that we want to send 
         send        : in    std_logic;                    -- Flag to indicate that we 
want to send 
 
         sck         : in    std_logic;                    -- Serial clock that is used 
with the optical sensor 
         sdio        : out   std_logic := 'Z';             -- The serial port to the 
optical sensor 
         send_en_clk : out   std_logic := '0'); 
   
end send_command; 
 
architecture Behavioral of send_command is 
 
 
begin 
 
process(sck) 
 
variable i : integer range 0 to 16 := 0; 
variable send2 : std_logic := '0'; 
variable oldsend : std_logic := '0'; 
 
begin 
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if sck'EVENT and sck = '0' then --write on falling edge 
 
  -- Check if the state of send has changed since last time 
  if oldsend = '0' and send = '1' then 
    if send2 = '0' then 
      i := 0; 
      send2  := '1'; 
      oldsend := '1'; 
    end if; 
  else oldsend := send; 
  end if; 
 
--  recv <= '0'; 
 
  if send2 = '1' then 
 
    -- if this is a read command 
    if cmd_in(7) = '0' then 
      if i < 8 then 
        sdio <= cmd_in(7-i); 
        i := i + 1; 
        send_en_clk <= '1'; 
      else 
        sdio <= 'Z'; 
--        recv <= '1'; 
        send_en_clk <= '0'; 
        send2 := '0'; 
      end if; 
 
    -- else if this is a write command 
    elsif cmd_in(7) = '1' then 
 
      -- write the address 
      if i < 8 then 
        sdio <= cmd_in(7-i); 
        i := i + 1; 
        send_en_clk <= '1'; 
      -- and write the data 
      elsif i < 16 then 
        sdio <= data(15-i); 
        i := i + 1; 
--        send_en_clk <= '1'; 
      else 
      -- when done set the IO to high-Z, indicate that we are ready to receive a command 
      -- reset send2 and disable the clock to the optical sensor 
        sdio <= 'Z'; 
        send_en_clk <= '0'; 
--        recv <= '1'; 
        send2 := '0'; 
      end if; 
    end if; 
  end if; 
 
end if; 
 
end process; 
 
end Behavioral; 
 
 

A.11.4 - Recv_command.vhd 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity recv_command is 
 
  Port ( sck         : in    std_logic; 
         sdio        : in    std_logic; 
         recv        : in    std_logic; 
         led         : out   std_logic_vector(7 downto 0); 
         digits      : out   std_logic_vector(7 downto 0); 
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         cmd_recv    : out   std_logic; 
         recv_en_clk : out   std_logic := '0'); 
 
end recv_command; 
 
architecture Behavioral of recv_command is 
 
begin 
 
process(sck) 
 
variable i : integer range 0 to 8 := 0; 
variable response : std_logic_vector(7 downto 0) := x"00"; 
variable recv2 : std_logic := '0'; 
variable oldrecv : std_logic := '0'; 
 
begin 
 
if sck'EVENT and sck = '1' then --read on rising edge 
 
  if oldrecv = '0' and recv = '1' then 
    if recv2 = '0' then 
      i           := 0; 
      recv2       := '1'; 
      oldrecv     := '1'; 
      recv_en_clk <= '1'; 
    end if; 
  else oldrecv := recv; 
  end if; 
 
  response(8-i) := sdio; 
 
  if recv2 = '1' then 
    if i >= 8 then 
      i := 0; 
      recv_en_clk <= '0'; 
      led <= response(7 downto 0); 
      digits <= response(7 downto 0); 
      cmd_recv <= '1'; 
      recv2 := '0'; 
    else 
      i := i + 1; 
      cmd_recv <= '0'; 
    end if; 
  end if; 
 
end if; 
 
end process; 
 
 
end Behavioral; 
 

A.11.5 - Display.vhd 
 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
 
--Display decoder used to display digits on the four seven-segment 
--displays. 
entity display is 
 
  Port ( count0    : in std_logic_vector(7 downto 0); 
         count1    : in std_logic_vector(7 downto 0); 
         clock     : in std_logic; 
         seven_seg : out std_logic_vector(7 downto 0); 
         an        : out std_logic_vector(3 downto 0)); 
 
end display; 
 
architecture Behavioral of display is 
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  --Decode a number into the value displayed on the port to the seven segment display 
 component decoder is 
   Port ( count     : in std_logic_vector(3 downto 0); 
           segment   : in integer range 0 to 3; 
           seven_seg : out std_logic_vector(7 downto 0); 
           an        : out std_logic_vector(3 downto 0)); 
  end component; 
 
 signal count   : std_logic_vector(3 downto 0); 
 signal segment : integer range 0 to 3; 
 
  begin 
 
    --Decode a number into the value displayed on the port to the seven segment display 
    decoder1: decoder port map (count => count, segment => segment, seven_seg => 
seven_seg, an => an); 
 
    count_process: process(count0, count1, clock) 
 
    variable count_0 : std_logic_vector(3 downto 0); 
    variable count_1 : std_logic_vector(3 downto 0); 
    variable count_2 : std_logic_vector(3 downto 0); 
    variable count_3 : std_logic_vector(3 downto 0); 
    variable seg     : integer range 0 to 3 := 0; 
 
    begin 
 
      --As default, zero on all digits 
      count_0 := count0(3 downto 0); 
      count_1 := count0(7 downto 4); 
      count_2 := count1(3 downto 0); 
      count_3 := count1(7 downto 4); 
 
 
      --Multiplex the display 
      if clock'EVENT and clock = '1' then 
        if seg = 3 then seg := 0; 
        else seg := seg + 1; 
        end if; 
      end if; 
 
      case seg is 
        when 0 => count <= count_0; 
        when 1 => count <= count_1; 
        when 2 => count <= count_2; 
        when 3 => count <= count_3; 
      end case; 
 
      segment <= seg; 
 
   end process; 
 
 
end Behavioral; 
 

A.11.6 - Decoder.vhd 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use work.optisens_package.ALL; 
 
--Decoder than decodes a number into the value needed on the port to the 
--seven segment display 
entity decoder is 
  Port ( count     : in std_logic_vector(3 downto 0); 
         segment   : in integer range 0 to 3; 
         seven_seg : out std_logic_vector(7 downto 0); 
       an        : out std_logic_vector(3 downto 0)); 
end decoder; 
 
architecture Behavioral of decoder is 
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begin 
 -- display the count value on the seven segments 
  seven_segment_decoder_process: process(count, segment) 
 
  begin 
  case count is 
   when "0000" => seven_seg <= zero; 
   when "0001" => seven_seg <= one; 
   when "0010" => seven_seg <= two; 
   when "0011" => seven_seg <= three; 
   when "0100" => seven_seg <= four; 
   when "0101" => seven_seg <= five; 
   when "0110" => seven_seg <= six; 
   when "0111" => seven_seg <= seven; 
   when "1000" => seven_seg <= eight; 
   when "1001" => seven_seg <= nine; 
   when "1010" => seven_seg <= ten; 
   when "1011" => seven_seg <= eleven; 
   when "1100" => seven_seg <= twelve; 
   when "1101" => seven_seg <= thirteen; 
   when "1110" => seven_seg <= fourteen; 
   when "1111" => seven_seg <= fifteen; 
      when others => seven_seg <= zero; 
  end case; 
 
    case segment is 
      when 0 => an <= digit0; 
      when 1 => an <= digit1; 
      when 2 => an <= digit2; 
      when 3 => an <= digit3; 
    end case; 
          
  end process seven_segment_decoder_process; 
 
end Behavioral; 
 

A.11.7 - ADNS_2610_model.vhd 
 
 
entity agilent_ADNS_2610_model is 
 PORT( 
  sdio : INOUT std_logic := 'Z'; 
  sck  : IN    std_logic); 
end agilent_ADNS_2610_model; 
 
architecture Behavioral of agilent_ADNS_2610_model is 
 
signal command : std_logic_vector(7 downto 0); 
 
begin 
 
 
process(sck) 
 
variable i : integer range 0 to 9 := 0; 
variable j : integer range 0 to 8; 
variable cmd_rcv : std_logic := '0'; 
variable command2 : std_logic_vector(7 downto 0); 
 
variable reg_delta_x : std_logic_vector(7 downto 0) := x"AA"; 
variable reg_delta_y : std_logic_vector(7 downto 0) := x"AA"; 
 
variable send : std_logic := '0'; 
 
begin 
 
  if sck'EVENT and sck = '1' then      --read on rising edge 
 
    if send = '0' then 
      command2 := command2(6 downto 0) & command2(7);    -- shift the command in 
      command2(0) := sdio; 
    end if; 
 
  elsif sck'EVENT and sck = '0' then   --write on falling edge 
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    if command2 = read & delta_x then  -- check to see which command it was 
      command <= command2; 
      command2 := x"00"; 
      j := 0; 
      send := '1'; 
    end if; 
 
    if command = read & delta_x then 
 
      sdio <= reg_delta_y(7-j); 
      j := j + 1; 
 
      if j = 8 then 
        command <= x"00"; 
        send := '0'; 
      end if; 
 
    else 
      sdio <= 'Z'; 
    end if; 
 
  end if; 
 
end process; 
 
end Behavioral; 
 

A.11.8 - optisens_tb.vhd 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.numeric_std.ALL; 
use work.optisens_package.ALL; 
 
ENTITY optisens_optisens_tb_vhd_tb IS 
END optisens_optisens_tb_vhd_tb; 
 
ARCHITECTURE behavior OF optisens_optisens_tb_vhd_tb IS  
 
 COMPONENT optisens 
 PORT( 
  clk_50M : IN std_logic; 
  sw : IN std_logic_vector(7 downto 0); 
  btn : IN std_logic_vector(2 downto 0); 
  reset : IN std_logic;     
  sdio : INOUT std_logic;       
  seven_seg : OUT std_logic_vector(7 downto 0); 
  an : OUT std_logic_vector(3 downto 0); 
  sck : OUT std_logic; 
  led : OUT std_logic_vector(7 downto 0) 
  ); 
 END COMPONENT; 
 
 COMPONENT agilent_adns_2610_model 
 PORT( 
  sdio : INOUT std_logic; 
  sck  : IN    std_logic); 
 END COMPONENT; 
 
 
 SIGNAL clk_50M :  std_logic := '0'; 
 SIGNAL sw :  std_logic_vector(7 downto 0); 
 SIGNAL btn :  std_logic_vector(2 downto 0); 
 SIGNAL reset :  std_logic; 
 SIGNAL seven_seg :  std_logic_vector(7 downto 0); 
 SIGNAL an :  std_logic_vector(3 downto 0); 
 SIGNAL sdio :  std_logic := 'Z'; 
 SIGNAL sck :  std_logic; 
 SIGNAL led :  std_logic_vector(7 downto 0); 
 
BEGIN 
 
 uut: optisens PORT MAP( 
  clk_50M => clk_50M, 
  sw => sw, 
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  btn => btn, 
  reset => reset, 
  seven_seg => seven_seg, 
  an => an, 
  sdio => sdio, 
  sck => sck, 
  led => led 
 ); 
 
  model1: agilent_adns_2610_model port map (sdio=>sdio,sck=>sck); 
 
-- *** Test Bench - User Defined Section *** 
   sw       <= read & delta_x, 
               write & pixel_data after 155 us, 
               x"08" after 242 us; 
 
 
   reset    <= '1', '0' after 1 us; 
 
   clk_50M  <= not clk_50M after 10 ns; -- 50 MHz clock 
 
   btn      <= "001" after 2 us, 
               "000" after 68 us, 
               "001" after 269 us, 
               "000" after 282 us, 
               "010" after 342 us, 
               "000" after 348 us; 
    
    
   tb : PROCESS 
   BEGIN 
      wait; -- will wait forever 
   END PROCESS; 
-- *** End Test Bench - User Defined Section *** 
 
END; 
 
 

A.11.9 - vga_tb.vhd 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.numeric_std.ALL; 
 
ENTITY vga_vga_tb_vhd_tb IS 
END vga_vga_tb_vhd_tb; 
 
ARCHITECTURE behavior OF vga_vga_tb_vhd_tb IS  
 
 COMPONENT vga 
    Port ( clock       : in    std_logic; 
           led         : in    std_logic_vector(7 downto 0); 
           cmd_recv    : in    std_logic; 
           data_rgb    : out   std_logic_vector(5 downto 0); 
           hsync       : out   std_logic; 
           vsync       : out   std_logic; 
           rgb         : out   std_logic_vector(2 downto 0)); 
 END COMPONENT; 
 
   SIGNAL clock     : std_logic := '0'; 
   SIGNAL led       : std_logic_vector(7 downto 0); 
   SIGNAL cmd_recv  : std_logic := '0'; 
   SIGNAL data_rgb  : std_logic_vector(5 downto 0); 
   SIGNAL hsync     : std_logic; 
   SIGNAL vsync     : std_logic; 
   SIGNAL rgb       : std_logic_vector(2 downto 0); 
 
BEGIN 
 
  uut: vga PORT MAP( 
    clock    => clock, 
    led      => led, 
    cmd_recv => cmd_recv, 
    data_rgb => data_rgb, 
    hsync    => hsync, 
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    vsync    => vsync, 
    rgb      => rgb 
 ); 
 
   clock    <= not clock after 20 ns; -- 25 MHz clock ~ 50/2 MHz 
   led      <= x"8F", x"4F" after 20 us; 
   cmd_recv <= not cmd_recv after 40 ns; 
 
 
   tb : PROCESS 
   BEGIN 
      wait; -- will wait forever 
   END PROCESS; 
 
END; 
 

A.11.10 - optisens.ucf 
 
NET "an<0>"  LOC = "d14"  ; 
NET "an<1>"  LOC = "g14"  ; 
NET "an<2>"  LOC = "f14"  ; 
NET "an<3>"  LOC = "e13"  ; 
NET "clk_50M"  LOC = "t9"  ; 
 
NET "sck"    LOC = "d5"  ; 
NET "sdio"   LOC = "c5"  ; 
 
NET "seven_seg<0>"  LOC = "p16"  ; 
NET "seven_seg<1>"  LOC = "e14"  ; 
NET "seven_seg<2>"  LOC = "g13"  ; 
NET "seven_seg<3>"  LOC = "n15"  ; 
NET "seven_seg<4>"  LOC = "p15"  ; 
NET "seven_seg<5>"  LOC = "r16"  ; 
NET "seven_seg<6>"  LOC = "f13"  ; 
NET "seven_seg<7>"  LOC = "n16"  ; 
 
NET "led<0>"  LOC = "k12"  ; 
NET "led<1>"  LOC = "p14"  ; 
NET "led<2>"  LOC = "l12"  ; 
NET "led<3>"  LOC = "n14"  ; 
NET "led<4>"  LOC = "p13"  ; 
NET "led<5>"  LOC = "n12"  ; 
NET "led<6>"  LOC = "p12"  ; 
NET "led<7>"  LOC = "p11"  ; 
 
NET "red"     LOC = "r12"; 
NET "green"   LOC = "t12"; 
NET "blue"    LOC = "r11"; 
NET "hs"      LOC = "r9"; 
NET "vs"      LOC = "t10"; 
 
NET "btn<0>"  LOC = "m13"  ; 
NET "btn<1>"  LOC = "m14"  ; 
NET "btn<2>"  LOC = "l13"  ; 
NET "reset"  LOC = "l14"  ; 
 
NET "sw<0>"  LOC = "f12"  ; 
NET "sw<1>"  LOC = "g12"  ; 
NET "sw<2>"  LOC = "h14"  ; 
NET "sw<3>"  LOC = "h13"  ; 
NET "sw<4>"  LOC = "j14"  ; 
NET "sw<5>"  LOC = "j13"  ; 
NET "sw<6>"  LOC = "k14"  ; 
NET "sw<7>"  LOC = "k13"  ; 
 

A.11.11 - optisens_package.vhd 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
package optisens_package is 
  --Define constants for the various numbers that can be outputted 
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  constant zero     : std_logic_vector(7 downto 0) := "10000001"; 
  constant one      : std_logic_vector(7 downto 0) := "11110011"; 
  constant two      : std_logic_vector(7 downto 0) := "01001001"; 
  constant three    : std_logic_vector(7 downto 0) := "01100001"; 
  constant four     : std_logic_vector(7 downto 0) := "00110011"; 
  constant five     : std_logic_vector(7 downto 0) := "00100101"; 
  constant six      : std_logic_vector(7 downto 0) := "00000101"; 
  constant seven    : std_logic_vector(7 downto 0) := "11110001"; 
  constant eight    : std_logic_vector(7 downto 0) := "00000001"; 
  constant nine     : std_logic_vector(7 downto 0) := "00100001"; 
  constant ten      : std_logic_vector(7 downto 0) := "00010001"; 
  constant eleven   : std_logic_vector(7 downto 0) := "00000111"; 
  constant twelve   : std_logic_vector(7 downto 0) := "10001101"; 
  constant thirteen : std_logic_vector(7 downto 0) := "01000011"; 
  constant fourteen : std_logic_vector(7 downto 0) := "00001101"; 
  constant fifteen  : std_logic_vector(7 downto 0) := "00011101"; 
  constant black    : std_logic_vector(2 downto 0) := "000"; 
  constant blue     : std_logic_vector(2 downto 0) := "001"; 
  constant green    : std_logic_vector(2 downto 0) := "010"; 
  constant cyan     : std_logic_vector(2 downto 0) := "011"; 
  constant red      : std_logic_vector(2 downto 0) := "100"; 
  constant magenta  : std_logic_vector(2 downto 0) := "101"; 
  constant yellow   : std_logic_vector(2 downto 0) := "110"; 
  constant white    : std_logic_vector(2 downto 0) := "111"; 
 
  --Define addresses in the ADNS-2610 
  constant read           : std_logic :=   '0'; --To add in front of address when reading 
  constant write          : std_logic :=   '1'; --To add in front of address when writing 
 
  constant config         : std_logic_vector(6 downto 0) := "0000000"; --x00 Reset, power 
down, forced awake, etc. 
  constant status         : std_logic_vector(6 downto 0) := "0000001"; --x01 Product ID, 
mouse state of asleep or awake 
  constant delta_y        : std_logic_vector(6 downto 0) := "0000010"; --x02 Y movement 
  constant delta_x        : std_logic_vector(6 downto 0) := "0000011"; --x03 X movement 
  constant squal          : std_logic_vector(6 downto 0) := "0000100"; --x04 Measure no. 
of features visible by sensor 
  constant max_pixel      : std_logic_vector(6 downto 0) := "0000101"; --x05 
  constant min_pixel      : std_logic_vector(6 downto 0) := "0000110"; --x06 
  constant pixel_sum      : std_logic_vector(6 downto 0) := "0000111"; --x07 
  constant pixel_data     : std_logic_vector(6 downto 0) := "0001000"; --x08 Actual 
picture of surface 
  constant shutter_upper  : std_logic_vector(6 downto 0) := "0001001"; --x09 
  constant shutter_lower  : std_logic_vector(6 downto 0) := "0001010"; --x0A 
  constant inv_product_id : std_logic_vector(6 downto 0) := "0010001"; --x11 Inverse 
product ID 
 
  --Define the selection of digits 
 constant digit0   : std_logic_vector(3 downto 0) := "1110"; 
 constant digit1   : std_logic_vector(3 downto 0) := "1101"; 
 constant digit2   : std_logic_vector(3 downto 0) := "1011"; 
 constant digit3   : std_logic_vector(3 downto 0) := "0111"; 
end optisens_package; 
 
package body optisens_package is 
 
end optisens_package; 
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Appendix B - Pos3D.dll code 

B.1 - Header file : Pos3D.h 
 
#ifdef    __cplusplus      /* If C++, disable "mangling" */ 
extern "C" { 
#endif /* __cplusplus */ 
 
/* ----------------------------------------------------------------------------------- */ 
 
#if defined(_POS3DLIB_) 
#define POS3DAPI     __declspec(dllexport) 
#else 
#define POS3DAPI     __declspec(dllimport) 
#endif 
 
/* ----------------------------------------------------------------------------------- */ 
 
typedef struct PositionDesc { 
              int    x;       // horizontal position perpendicular to the path 
              int    y;       // vertical position perpendicular to the path 
              int    z;       // distance (dz = distance between scan planes) 
              int    tilt;    // tilt angle (atan(Y/X)) 
              int    elev;    // elevation angle (atan(Z/X)) 
} PositionDesc; 
 
typedef struct MouseResolution { 
              int    Res1;    // Resolution of the first mouse 
              int    Res2;    // Resolution of the second mouse 
} MouseResolution; 
 
/* ----------------------------------------------------------------------------------- */ 
 
//__declspec(dllexport) int __stdcall Init(); 
POS3DAPI int __stdcall Init(void); 
POS3DAPI int __stdcall UnInit(void); 
POS3DAPI int __stdcall GetPosition(PositionDesc *pos); 
POS3DAPI int __stdcall SetResolution(MouseResolution *res); 
POS3DAPI int __stdcall GetResolution(MouseResolution *res); 
POS3DAPI int __stdcall GetDLLVersion(int *DLLversion); 
 
/* ----------------------------------------------------------------------------------- */ 
 
#ifdef __cplusplus 
} 
#endif /* __cplusplus */ 
 

B.2 - C-file : Pos3D.c 
 
#include "stdafx.h" 
#include <stdio.h> 
#include "hapi.h" 
#include "pos3D.h" 
 
//Current DLL version 
const char version=3; 
 
//Shared memory segment for interprocess communication 
//#pragma comment(linker, "/SECTION:.shared,RWS") 
#pragma data_seg(".shared") 
//Relation between pixels and real world distance (mm) 
MouseResolution scale = {0}; 
 
//Last position read from the mouse 
PositionDesc savedpos = {0}; 
#pragma data_seg() 
 
//Function that initializes the mouse driver stack 
POS3DAPI int __stdcall Init(void) 
{ 
 
int count=0; 
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//count = hInitialise(0, NULL, GetDC(NULL), BUTTON | MOVEMENT | CURSOR | CLIP | 
ACCELERATE); 
 
count = hInitialise(0, NULL, GetDC(NULL), BUTTON | MOVEMENT | CURSOR); 
printf("Initializing - I found %i mice using CPNMouse driver\n", count); 
 
if(count) return 1; 
else return 0; 
 
} 
 
//Function that uninitializes the mouse driver stack 
POS3DAPI int __stdcall UnInit(void) 
{ 
hCleanup(); 
 
return 1; 
} 
 
 
/* 
typedef struct PositionDesc { 
              int    x;       // horizontal position perpendicular to the path 
              int    y;       // vertical position perpendicular to the path 
              int    z;       // distance (dz = distance between scan planes) 
              int    tilt;    // tilt angle (atan(Y/X)) 
              int    elev;    // elevation angle (atan(Z/X)) 
} PositionDesc; 
*/ 
 
POS3DAPI int __stdcall GetPosition(PositionDesc *pos) 
{ 
static int x=0,y=0,z=0; 
     
hPOINT p1, p2; 
 
hGetAbsolutePosition(1, &p1); 
hGetAbsolutePosition(2, &p2); 
 
//Print out the current position for debugging purposes 
if( x != p1.x || z != p1.y) 
{ 
    printf("Position   : %i,%i\n",p1.x,p1.y); 
} 
 
//Depends on the mounting of the optical sensor 
 
x = -p1.y; 
z = p1.x; 
 
//Store the positions in the PositionDesc pointed to by pos 
pos->x = (__int64) x*scale.Res1/400; 
pos->y = 0; 
pos->z = (__int64) z*scale.Res1/400; 
pos->tilt = 0; 
pos->elev = 0; 
 
//Store the current position read in shared memory so another process can read it as well 
savedpos.x = x; 
savedpos.z = z; 
 
return 1; 
} 
 
POS3DAPI int __stdcall LastPos(PositionDesc *pos) 
{ 
     
pos->x = savedpos.x; 
pos->y = 0; 
pos->z = savedpos.z; 
pos->tilt = 0; 
pos->elev = 0; 
 
return 1; 
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} 
 
POS3DAPI int __stdcall SetResolution(MouseResolution *res) 
{ 
printf("Setresolution : %i\n",*res); 
scale = *res; 
 
return 1; 
} 
 
POS3DAPI int __stdcall GetResolution(MouseResolution *res) 
{ 
*res = scale; 
printf("Getresolution : %i\n",*res); 
 
return 1;  
} 
 
POS3DAPI int __stdcall GetDLLVersion(int *DLLversion) 
{ 
 
*DLLversion = version; 
 
return 1;  
} 
 

 

Appendix C - Matlab filtering code 

testcp.m 
 
no_scans = 9; 
 
count = zeros(1,no_scans); 
 
for scanno = 5:no_scans, 
     
  scanno 
 
  clear RGB J K y map mov movproc; 
     
  filename = sprintf('tube_phantom_w_methylpar_%ia_cut.avi',scanno); 
 
  fileinfo = aviinfo(filename); 
  mov = aviread(filename); 
 
  for i=1:fileinfo.NumFrames, 
 
    [RGB,Map] = frame2im(mov(i)); 
    A = rgb2gray(RGB); 
    B = wiener2(A,[5 5]); 
    C = ~nearestn(B,1,35); 
    C = uint8(C); 
    map = [[0,0,0];[1,1,1]]; 
 
    %  map = colormap(gray); 
    %  D = edge(C,'sobel', 0.001); 
    %  D = uint8(D); 
 
    movproc(i) = im2frame(C, map); 
    count(scanno) = count(scanno) + sum(sum((movproc(i).cdata))'); 
  end 
 
  outputfilename = sprintf('proc_tube_phantom_w_methylpar_%ia_cut.avi',scanno); 
  movie2avi(movproc,outputfilename, 'colormap', map); 
 
end 
 
mperpix = 0.093964e-3; %Value from Sonocubic 
pixperm = mperpix^-1; 
resolution = (388/512*pixperm)^2*pixperm; 
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volume = count/resolution*100^3; %in cm3 
rel = (pi/4*1.35^2*2.12)./volume; %in cm3 
%rel = (pi/4*1.35^2*0.94)./volume; %in cm3 
 
 
nearestn.m 
 
function y = nearestn(image, N, thresh) 
 
n = N; 
th = thresh; 
count = (2*n+1)^2; 
a = double(image); 
[row,col] = size(image); 
for i = (1+n):(row-n) 
    for j = (1+n):(col-n) 
        x = 0; 
        rowdn = i - n; 
        rowup = i + n; 
        coldn = j - n; 
        colup = j + n; 
        % Min row check 
        if rowdn < 1 
            rowup = n; 
            rowdn = 1; 
        end 
        % Max row check 
        if rowup > row 
            rowup = row; 
            rowdn = rowdn - n; 
        end 
        % Min column check 
        if coldn < 1 
            colup = n; 
            coldn = 1; 
        end 
        % Max column check 
        if colup > col 
            colup = col; 
            coldn = coldn - n; 
         end 
         for m = rowdn:rowup 
            for k = coldn:colup 
               x = x + a(m,k); 
            end 
         end 
        sat = x/count; 
        if sat > th 
           res(i,j) = 100*sat; 
        else 
           res(i,j) = 0; 
        end 
     end 
end 
for j = 1:col 
    for i = 1:(1+n) 
       res(i,j) = 100*sat; 
    end 
 
    for i = (row-n):row 
       res(i,j) = 100*sat; 
    end 
end 
for i = 1:row 
    for j = 1:(1+n) 
       res(i,j) = 100*sat; 
    end 
 
    for j = (col-n):col 
       res(i,j) = 100*sat; 
    end 
end 
 
  y = res; 
return; 
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Appendix D - Customized Teratest code for testing 

#include <stdio.h> 
#include <conio.h> 
#include <string.h> 
#include <windows.h> 
#include "..\..\Pos3D\Pos3D\Pos3D.h" 
#include "uslink.h" 
#include <math.h> 
/* ------------------------------------------------------------------------------- */ 
 
int offset( BITMAPINFO *dib, char *bits, int new_offset ) 
{ 
     
int i, j; 
int width=0, height=0, offset=0; 
static int old_offset; 
 
offset = new_offset - old_offset; 
old_offset = new_offset; 
 
height = dib->bmiHeader.biHeight; 
width  = dib->bmiHeader.biWidth; 
//res    = dib->bmiHeader.biXPelsPerMeter; 
 
if(offset > 0) 
for(i=0;i<height;i++) { 
    for(j=0;j<(width-offset);j++) { 
 
    *(bits+i*width+j) = *(bits+i*width+j+offset); 
 
    } 
 
    for(j=(width-offset);j<width;j++) { 
 
    *(bits+i*width+j) = 0; 
 
    } 
  } 
 
else if(offset < 0) 
for(i=0;i<height;i++) { 
    for(j=width;j>-offset;j--) { 
 
    *(bits+i*width+j) = *(bits+i*width+j+offset); 
 
    } 
 
    for(j=0;j<-offset;j++) { 
 
    *(bits+i*width+j) = 0; 
 
    } 
  } 
 
   
  return 1; 
} 
 
/* -------------------------------------------------------------------------------- */ 
static void put( char *bits, PositionDesc pos, int buf_width, int buf_height ) 
{ 
        int  a,i,j; 
        char *p; 
         
        a = buf_width/2 + buf_width*buf_height/2 - pos.x; 
        p = bits + a; 
 
        for ( i = 0; i < buf_width; i++ ) { 
                *(bits+i) = 0x00; 
            for ( j = 0; j < buf_height; j++ ) { 
                *(bits+j+i*buf_width) = 0x00; 
                } 
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        } 
 
        a = pos.z; 
         
        if(a < 20) a = 0; 
        else a = a-20; 
        if(a > 88) a = 0;//88; 
        //a = 40; 
 
        //Make sure that we stay inside the frame 
   if((a+pos.x) >= buf_width/2) a = buf_width/2-pos.x; 
   else if((-a+pos.x) <= -buf_width/2) a = buf_width/2+pos.x; 
 
        //Place box 
         
        //Horizontal placement 
        for (i=-a; i<=a; i++ ) { 
   //if(i <= buf_height && i >= -buf_height) 
        //Line number 
          for (j=-a; j<a; j++ ) { 
   //if(j <= buf_width/2 && j >= -buf_width/2) 
                *(p + i + j*buf_width) = 0xFF; 
              } 
        } 
} 
/* ----------------------------------------------------------------------------------- */ 
static BITMAPINFO *create_dib( int buf_width, int buf_height, char **pbits ) 
/* 
        Alloc DIB and fill it with a test pattern. Free it with free(lpbi). 
*/       
{ 
        BITMAPINFO      *lpbi; 
        RGBQUAD         *tbl; 
        char            *bits, *pos, *p; 
        int             n, i, j; 
  
        // Alloc bitmap 
        if ( (lpbi = (LPBITMAPINFO)calloc( sizeof(BITMAPINFO) + 256 * sizeof(RGBQUAD) + 
buf_width * buf_height, 1 )) == NULL )  { 
                return( NULL ); 
        } 
        // Fill header 
        lpbi->bmiHeader.biSize = sizeof(BITMAPINFOHEADER); 
        lpbi->bmiHeader.biWidth = buf_width; 
        lpbi->bmiHeader.biHeight = -buf_height; 
        lpbi->bmiHeader.biCompression = BI_RGB; 
        lpbi->bmiHeader.biBitCount = 8; 
        lpbi->bmiHeader.biXPelsPerMeter = 1000; 
        lpbi->bmiHeader.biYPelsPerMeter = 1000; 
 
        tbl = (RGBQUAD*)((char*)lpbi + sizeof(BITMAPINFOHEADER)); 
 
        bits = (char*)lpbi + sizeof(BITMAPINFO) + 256 * sizeof(RGBQUAD); 
 
        // Fill color table 
        for ( i = 0; i < 255; i++ ) { 
                tbl[i].rgbBlue = tbl[i].rgbGreen = tbl[i].rgbRed = (BYTE)i; 
        } 
        tbl[255].rgbRed   = 0; 
        tbl[255].rgbGreen = 0xFF; 
        tbl[255].rgbBlue  = 0xFF; 
 
        *pbits = bits; 
 
        return( lpbi ); 
} 
 
 
/* ---------------------------------------------------------------------------------- */ 
int     main( int argc, char *argv[] ) 
/* 
        teratest <delay> <width> <height> 
        <delay>: Time in ms to wait between calls to SendDIBToSonocubic, default 30.  
                 This depends on OS time granularity. A real ultrasound application 
                 should continue its work instead of calling Sleep(), most important, 
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                 it must continue processing Windows messages. 
        <width>: DIB width, default 256                  
        <height>: DIB height, default 256 
*/ 
{ 
        BITMAPINFO          *lpbi; 
        char                *bits; 
        int                 n, num = 0; 
        HMODULE             h; 
        pSendDIBToSonocubic psnd; 
        int                 buf_width = 256, buf_height = 256, delay = 30; 
 
       char                bfHeader[14]; 
       char                bmiHeader[40]; 
       const char          no_images=9; 
      
       BITMAPFILEHEADER    *lpbfHeader; 
        BITMAPINFOHEADER    *lpbmiHeader; 
        BITMAPINFO          *lpbiHeader; 
         
        RGBQUAD             *lpbmiColors, *tbl; 
  
        FARPROC             Init,CurPos,SetRes; 
       LONG                *xres,*yres;  
        int                 g,i, j=0, k, r, s, numread, numwritten, width, height, sum, 
a,b,c, maxi=0; 
        PositionDesc        p, oldpos = {0}, pos = {0}; 
        HINSTANCE           hLib; 
 
        MouseResolution res; 
         
        FILE *stream; 
   char list[30], buffer[100]; 
     
   double oldtime=0, time=0; 
   int  difftime=0; 
 
 
        if ( argc >= 2 ) { 
                delay = atoi( argv[1] ); 
        } 
        if ( argc >= 4 ) { 
                buf_width = atoi( argv[2] ); 
                buf_height = atoi( argv[3] ); 
        } 
        // Create DIB and fill it with a test pattern 
        if ( (lpbi = create_dib(buf_width, buf_height, &bits)) == NULL ) { 
                printf( "DIB couldn't be created\n" ); 
                return(1); 
        } 
        // Frame counter position in DIB 
        //pos =  bits;// + buf_width / 2 - CH_WIDTH * 2 + buf_width * buf_height / 2 - 
CH_HEIGHT / 2; 
         
         
        //Load the positioning library (Dynamic Link Library) 
        hLib = LoadLibrary("c:\\adq\\Pos3D.dll"); 
 
        if(hLib==NULL) 
        { 
         printf("Unable to load Pos3D.dll library!\n"); 
         getch(); 
         return 0; 
        } 
 
        Init    = GetProcAddress((HMODULE)hLib, "_Init@0"); 
        CurPos  = GetProcAddress((HMODULE)hLib, "_CurPos@8"); 
        SetRes  = GetProcAddress((HMODULE)hLib, "_SetResolution@4"); 
 
        if(Init == NULL || CurPos == NULL || SetRes == NULL ) 
        { 
         printf("Unable to load function(s).%i,%i,%i\n",Init,CurPos,SetRes); 
         FreeLibrary((HMODULE)hLib); 
         return 0; 
        } 
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        // Load interface DLL 
        if (  ((h = LoadLibraryEx("c:\\adq\\uslink.dll", NULL, 
LOAD_WITH_ALTERED_SEARCH_PATH)) == NULL)  
           || ((psnd = (pSendDIBToSonocubic)GetProcAddress( h, "_SendDIBToSonocubic@8" )) 
== NULL)  
           ) { 
                printf( "c:\\adq\\uslink.dll couldn't be loaded\n" ); 
                if ( h != NULL ) { 
                 printf( "freeing library\n" ); 
                        FreeLibrary( h ); 
                } 
                free( lpbi ); 
                return(1); 
        } 
        i=0; 
 
        res.Res1 = 1600000; 
        res.Res2 = 1600000; 
 
 /* Open for write */ 
 if( (stream = fopen( "c:\\Matlab\\work\\data.txt", "w+t" )) != NULL ) 
  { 
 printf( "The file 'data.txt' was not opened\n" ); 
  /* Write 25 characters to stream */ 
  //numwritten = fwrite( list, sizeof( char ), 25, stream ); 
  //printf( "Wrote %d items\n", numwritten ); 
  } 
  else 
  printf( "The file 'data.txt' was opened\n" ); 
 
  //SetThreadPriority(GetCurrentThread,THREAD_PRIORITY_HIGHEST); 
  //Set the old time where we begin our sweep 
        oldtime = GetTickCount(); 
        // Begin sending frames. Press a key to stop 
        while( !kbhit() ) { 
        //Get the current time in form of ticks 
                time = GetTickCount(); 
                //Find the difference in time since we began our sweep 
                difftime = time - oldtime; 
                //Scale with a factor 10 
                difftime = difftime / 10; 
                //Get the current position that depends on the time 
                CurPos(&p,difftime); 
                //Write our position to the file together with the current time 
                sprintf( buffer, "%d,%d,%i\n", p.z, p.x, difftime ); 
                fwrite( buffer, sizeof( char ), strlen(buffer), stream ); 
         
                if(oldpos.x != p.x || oldpos.z != p.z) { 
                    //printf("Position : %i,%i\n", p.x, p.z); 
                    oldpos = p; 
                } 
                //generate scanplane offset 
                put( bits, p, buf_width, buf_height );  // Draw frame counter 
 
                //Send scanplane to Sonocubic 
                n = psnd( lpbi, bits );            // Send DIB to Sonocubic 
 
                Sleep( 300 );                    // Delay 
 
        } 
    if(stream) fclose( stream ); 
        printf( "Waiting for link to be closed...\n" ); 
 
        while( psnd( lpbi, NULL ) != 0 )  { 
                Sleep( 30 ); 
        } 
         
        FreeLibrary( h );       // Free interface DLL 
        free( lpbi ); 
        return(0); 
} 
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Appendix E - Customized Pos3D.dll code for testing 

 
 
// Pos3D.cpp : Defines the entry point for the DLL application. 
 
#define _USE_MATH_DEFINES 
 
#include "stdafx.h" 
#include <stdio.h> 
#include "hapi.h" 
#include "pos3D.h" 
#include <math.h> 
 
const char version=3; 
//Relation between pixels and real world distance (mm) 
//#pragma comment(linker, "/SECTION:.shared,RWS") 
#pragma data_seg(".shared") 
MouseResolution scale = {0}; 
PositionDesc savedpos = {0}; 
#pragma data_seg() 
 
/* Function that initializes the mouse driver stack */ 
POS3DAPI int __stdcall Init(void) 
{ 
int count=0; 
 
//count = hInitialise(0, NULL, GetDC(NULL), BUTTON | MOVEMENT | CURSOR | CLIP | 
ACCELERATE); 
//count = hInitialise(0, NULL, GetDC(NULL), BUTTON | MOVEMENT | CURSOR); 
count = 1; 
printf("Initializing - I found %i mice using CPNMouse driver\n", count); 
 
//Initialize the mouse resolution defaulting to 400 cpi 
//scale.Res1 = 400; 
//scale.Res2 = 500; 
 
printf("scale.Res1 = %i\n", scale.Res1); 
 
if(count) return 1; 
else return 0; 
 
} 
 
/* Function that initializes the mouse driver stack */ 
POS3DAPI int __stdcall UnInit(void) 
{ 
hCleanup(); 
 
return 1; 
} 
 
 
/* 
typedef struct PositionDesc { 
              int    x;       // horizontal position perpendicular to the path 
              int    y;       // vertical position perpendicular to the path 
              int    z;       // distance (dz = distance between scanplanes) 
              int    tilt;    // tilt angle (atan(Y/X)) 
              int    elev;    // elevation angle (atan(Z/X)) 
} PositionDesc; 
*/ 
 
 
POS3DAPI int __stdcall CurPos(PositionDesc *pos, int time) 
{ 
double x=0,y=0,z=0, a=0, b=0; 
 
//40 mm corresponds to 40/25.4 inches. 
//40/25.4 inches corresponds to 1575 counts 
//40 mm offset varying over a period of 1 sec 
x = 1575*sin((time*2*M_PI)/1000); 
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//x = 0; 
 
//For a constant speed of 40 mm/sec 
//z = (1575*time)/1000; 
 
//For a variable speed of 40 mm/sec +/- 20 mm/sec 
z = (1575*time)/1000 - (887*cos((2*M_PI*time)/1000))/(2*M_PI) + 887/(2*M_PI); 
 
//Picture resolution is 1000 pixels per meter 
pos->x = x*254/10000; //The same as x*25.4/1000 
pos->y = 0; 
pos->z = z*254/10000; 
pos->tilt = 0; 
pos->elev = 0; 
 
//For variable speed 
savedpos.x = x; 
savedpos.z = z; 
 
//For constant speed or offset 
//savedpos.x = 0; 
//savedpos.z = (1575*time)/1000; 
 
return 1; 
} 
 
POS3DAPI int __stdcall GetPosition(PositionDesc *pos) 
{ 
static int x=0,y=0,z=0; 
 
x = savedpos.x; 
z = savedpos.z; 
 
pos->x = (__int64) x*scale.Res1/1000;; 
pos->y = 0; 
pos->z = (__int64) z*scale.Res1/1000; 
pos->tilt = 0; 
pos->elev = 0; 
 
return 1; 
} 
 
POS3DAPI int __stdcall SetResolution(MouseResolution *res) 
{ 
printf("Setresolution : %i\n",*res); 
scale = *res; 
 
return 1; 
} 
 
POS3DAPI int __stdcall GetResolution(MouseResolution *res) 
{ 
*res = scale; 
printf("Getresolution : %i\n",*res); 
 
return 1;  
} 
 
POS3DAPI int __stdcall GetDLLVersion(int *DLLversion) 
{ 
 
*DLLversion = version; 
 
return 1;  
} 
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