Research Using ASSISTments Test Bed

An Interactive Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science

by Hannah Kraus

Date: May 15, 2017

Cristina Heffernan, Advisor

Table of Contents

Abstract 3
Acknowledgment 4
Introduction 5
Log Video Study 7
Common Wrong Answer Feedback 9
Kind Study 15
Data Analysis 20
Conclusion 27
Appendices
Appendix 1.1- View Problems Text Hints 28
Appendix 2.1- Think Aloud 85
Appendix 2.2- View Problems Control PSAKKY 86
Appendix 2.3- View Problems Treatment PSAKKY 149
Appendix 3.1- Think Aloud 303
Appendix 3.2- Comments on Problems 304
Appendix 3.3- Making Problems Kind Presentation 305
Appendix 3.4- View Problems Unkind 318
Appendix 3.5- View Problems Kind 379
Appendix 3.6- Post Test 1 440
Appendix 3.7- Post Test 2 441
Appendix 4.1- Data Output SPSS 442

Abstract

ASSISTments is an online education system dedicated to helping students learn better across the US. Work is being done everyday to improve the experience both for teachers and students. To best understand how to be an effective program, research is done on many areas of ASSISTments. The ASSISTments Test Bed allows researchers to set up studies using ASSISTments. This project focuses on the processes used to design a study using ASSISTments Test Bed.

Acknoledgement

This project would not have been possible without the endless help and guidance of Cristina Heffernan. I would like to thank her for her gracious support, patience, and creative ideas, both which made this project very enjoyable. I'd also like to thank Cristina's husband, ASSISTments founder, Neil Heffernan for teaching me about the program and helping me give my project direction. Finally, I'd like to think Korinn Ostow for teaching me some of the technical skills involved with the analysis of ASSISTments Test Bed data.

Introduction

ASSISTments was created by WPI's Neil Heffernan in collaboration with Carnegie
Mellon University. It seeks to help students as individuals, classes as a whole, and teachers across the board. Currently, students in 48 states across the United States use ASSISTments. This provides an incredible pool of resources for researchers to look at students from a mix of backgrounds, demographics, and abilities across the countries.

Researchers use ASSISTments Test Bed to look at data gathered through ASSISTments.
This provides an organized way for both internal and external researchers to utilize data gathered through Assessments. By applying to do research using ASSISTments, a researcher must meet a few qualifications. ASSISTments has a blanket IRB so anyone allowed in the system has the ability to do studies on any and all groups of students if the below qualifications are met.

The first step for a researcher would be to finalize a research idea. Next, a researcher may need to create a problem set. The ASSISTments Test Bed website can help someone new to ASSISTments learn how to make a skill builder and problem set for the first time. Some time may need to be taken on this step to ensure the problem set created can potentially answer research questions. After this, the study gets delivered to Teachers and Students. It might take some waiting to have enough students for a sample size. To Analyze data, researchers can get data through ALI (Assessments Learning Infrastructure). Anyone subscribed to a certain study will get weekly notifications about how many students have done the problem set. After analysis, the researcher can make conclusions and write them up.

Log Video Study (PSA4E49)

When students have difficulties on the problems in Assistments, they have a couple of ways to get help through the website. Depending on the problem, they may be able to receive some type of feedback message or hint. Other educational systems like Assistments, such as Khan Academy, have a video learning option. Video learning teaches students through both audio and visual techniques. Video instructions are often more similar to the type of instruction a student would receive in a typical classroom. Professor Jacob Whitehill, a WPI Computer Science professor partnering with Assistments, wondered if video learning could accomplish the same goals as hints/feedback messages and potentially help more students reach mastery level.

Video hints are more difficult to standardize than text hints. A text hint can be made from a formula and apply to problems with different numbers. This way, students can still get specific help, allowing them to learn. Videos can't be standardized in the same way though. A separate video would have to be made for each specific problem which could become time consuming.

In this study, it was hypothesized that students who were in the "Video" condition would be as successful as the students in the "no video" condition. The study was performed on "Simplifying Logarithms" (PSA4D9T). This problem set has students simplify logarithmic expressions by identifying patterns between the variables.

To set up the study, a couple of videos were found that go through the steps of a Simplifying Logarithms problem in the same way a hint in ASSISTments would. These videos were inserted as hints for the experiment group. Then the control group was created from the existing problem set. Specific problems were taken out that matched the specific
problems reviewed in the video hints so the problems in the experiments group matched those in the control group. The hints were kept the same. [Appendix 1.1]

Assignment: Problem \#PSABCNUM
Problem ID: PRABCNUM
Simplify
$\log _{1 / 2}(1 / 4)$

Sometimes to simplify it helps to change from the logarithmic form to exponential form
Logarithmic form: $\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}$
Exponential form: $a=b^{c}$
comment on this hint

In this problem you have
logarithmic form $\log _{1 / 2}(1 / 4)=c$
Exponential form: $1 / 4=1 / 2^{c}$
Comment on this hint

Now we want to find what c equals
$1 / 4=1 / 2^{\text {c }}$
$(1 / 2)^{2}=1 / 2^{\mathrm{C}}$
$2=c$
Type 2
Comment on this hint

Type your answer below (mathematical expression):
0% (3)

Submit Answer

For this study, students who wouldn't be able to access a video were put into a "No

Video" category. In this way, the study was not biased towards students who had the ability to access videos while doing homework.

Common Wrong Answer Feedback (PSAKKY)

The Perseverance Study Group is a team composed of researchers across the US who use Assistments Test Bed. One researcher observed students completing the "Finding Slope from a Linear Equation" problem set (PSAKKY). She found that many students had a difficult time understanding what they were doing wrong. In some cases, students had a hard time interpreting the hints. In other cases, students repeated the same mistakes. [Appendix 2.1]

The hint given to students who are completing PSAKKY is general and goes through all of the steps required for finding the slope of a linear equation. These hints often include many steps and may be difficult for students to interpret. Since students often made mistakes on a couple of key steps of the problems, researchers wondered if it might be helpful for students to receive advice specific to the mistakes they made. Further, specific feedback may allow students to self correct easier and make them less likely to repeat the same mistake.

Assignment: Problem \#PSACMUD
Problem ID: PRACMUD
Comment on this problem
Determine the slope from the following equation:
$7 y-1 x=5$

First, you must subtract $i x$ from both sides, giving you:
$7 y=5+1 x$
Then, divide each side by 7 .
$7 x=\quad 5+1 x$
$7=\quad 7$
$y=5 / 7+1 / 7 x$

Somners onthshins

The slope is the coeficient of x, or $1 / 7$. Type $1 / 7$.
Comvert on this hint

Type your answer below (mathernatical expression):

Researchers predicted that if a student makes the error of assuming the coefficient of X is the slope (and ignores the fact that the coefficient of y needs to be taking into account by presumably putting it into slope intercept form) and does giving them an immediate message help it will allow them to do better on the next problem, not make that same error on the next problem, and reduce the time (in seconds) it take to get three correct in a row.

A member of the Perseverance Study Group added specific feedback to the template of the skill builders. She looked at the results of PSAKKY and identified what the most common mistakes were. She found mistakes were often made by students forgetting how to correctly divide by negative numbers, forgetting to isolate y before taking the coefficient of x, or thinking the y intercept was the slope. She wrote a message for each specific mistake. She made a new problem set, ensuring that the number of each problem type was consistent between the original problem set and new one.

For the following problem, the student likely just chose the coefficient of x before dividing it by the coefficient of y.

Assignment: Problem \#PSABC2R7

```
Prablem ID: PRABC2R7
Somment on thisproblem
Determine the slope from the following equation:
4y-8x-10
You just made a very common mistake. You just took the number in front of x as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for \(y\) first
\(4 y-8 x=10\)
add \(8 x\) to both sides to get \(y\) by itself
\(4 y=8 x+10\)
Divide everything by 4. Don't forget the negative in front of the \(x\) !
\(\frac{4 y}{4}=\quad \frac{8 x+10}{4}\)
\(y=8 / 4 x+10 / 4\)
Now you can read the coefficient of x as the slope ( m )
```

Type your answer below (mathernatical expression):

Sorry, try again: "-8" is not correct
Submit Answer

In the same problem, this student forgot that when moving " 8 x " to the other side, there is no
longer a negative in front of the coefficient.

Assignment: Problem \#PSABC2R7
Problem ID: PRABC2R7
Comment on this problem
Determine the slope from the following equation:
$4 y-8 x=10$
don't forget the negative!

Type your answer below (mathematical expression):

-2

Sorry, try again: "-2" is not correct
Submit Answer
Show hint 1 of 3

The control group of PSAKKY was the original problem set. [Appendix 2.2] Problems were changed on an individual level for the test group. [Appendix 2.3] The Perseverance Study group also agreed to add some messages to the feedback messages to notify students they had made a "Common Wrong Answer". The hope in this initiative was that students would feel less behind their peers finding out the mistake they made was a common one and easy to fix.

Researchers agreed on a couple of measures to make conclusions for this study. They would look at correctness, a student's ability to answer correctly after a feedback message.

Additionally researchers would look at presence of the same error after it was corrected and researchers would look at mastery speed. Researchers hypothesized that it would take students fewer problems to master the same skills with feedback messages.

"Kind" Study (PSAV89B)

A researcher in the Perseverance Study Group spent time observing students going through selected problem sets. She noticed some difficulties among students completing a problems dealing with the "Dividing Mixed Numbers" problem set (PSAV89B) . She observed that students seemed to struggle most with arithmetic in these problems. Among other observations, she wrote, "This problem required extensive calculations that were not necessarily directly related to understanding the focal skill of dividing mixed numbers". By this, she is suggesting that although students struggled with computation, this didn't necessarily test their ability to divide mixed numbers. [Appendix 3.1] These observations are further enhanced with student feedback on these problems. [Appendix 3.2] The Perseverance Study Group formed some questions after these observations

Comments on this Problem

General comment: ?
General comment: Too big of numbers for a simple problem use some easier numbers to calculate
General comment: Mr.Grover, i am having some trouble on this so maybe i could stay after and you could help me out a little bit if that is ok?

General comment: I typed in the right answer and it said it's wrong. Then i typed it again and it said it's right

I am having difficulty with this problem: This one is really hard!
General comment: DANGIT! i completely forgot the stupid improper fraction to mixed number. GHAAAH
General comment: sorry.

The research questions asked were "What is the effect on students' mastery progress (i.e., ability to finish skill builder, performance on post test) of having more versus less complicated arithmetic work to complete the division?" And "What is the effect on students' mastery progress (i.e., ability to finish skill builder, performance on posttest) of ordering items
from less to more complicated in their arithmetic to work to the complete the division?" By asking these questions, the Perseverance Study Group hoped to identify the importance of complicated arithmetic in mastering the skill of dividing mixed numbers.

The team hypothesized that "kind" multiplication and division in problems would result in more students completing the problem set than complicated arithmetic. The team also predicted that students completing the "kind" problems would perform just as well on the post test. The team worked together to identify what a "kind" problem was and what differentiated it from the previously used "unkind" problems. Here is what the team came up with to differentiate these two types of problems. [Appendix 3.3]

"Kind" problems	"Unkind" problems
• Numbers students can easily multiply	•Numbers that may involve cross multiplication, long division, or
and divide in their heads	Opportunities to simplify numerators and denominators are obvious becauser use the division is clear
• Unclear division makes it difficult to	
know when to simplify.	

In creating the new problem set for the study, it was important to maintain structure and question style. The questions in the control group (problem set PSAV89B) required students to do some unkind multiplication. [Appendix 3.4]

```
Assignment: Problem #PSAHRGY
```

Problem ID: PRAHRGY
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: $24 / 5$.
$5 \frac{3}{14} \div \frac{7}{4}$

Type your answer below:

Assignment: Problem \#PSAHRHG
Problem ID: PRAHRHG Comment on this problem

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 4 3/7.
$3 \frac{9}{10} \div \frac{1}{3}$

Type your answer below:

Submit Answer

For the treatment, researchers hoped to make "Kind" problems. These problems contained multiplication and division that students could do using simple, mental math. This way, their focus would be on the skill being taught (dividing a mixed number) instead of spending on their energy on multiplying and dividing unnecessarily "unkind" numbers. Researchers worked together to identify the exact boundaries between "unkind" and "kind"
numbers. Eventually, they were able to form problems that only used "kind" multiplication and division. [Appendix 3.5]

In addition to a new problem set for the treatment, researchers had to create a post test to measure the information learned by students completing this study. The first problem in the post test has students dividing a mixed number by another mixed number. They must first change both mixed numbers to improper fraction. Simplifying once they change the division problem into a multiplication problem makes the process easier. [Appendix 3.6] For the second problem, students have to complete an "unkind" problem (complicated arithmetic). [Appendix 3.7]

Assignment: Problem \#PSABDCQJ
Problem ID: PRABDCQJ Comment on this problem
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: $24 / 5$. $1 \frac{1}{5} \div 2 \frac{1}{4}$

Type your answer below (fraction):

```
Problem ID: PRABDCUQ
Comment on this problem
Calculate the quotient of the following and make sure your answer is in SIMPLEST
FORM!
If your answer is an improper fraction, submit your answer as a mixed number with
a space between the whole number and the fraction parts. Example: 51/4.
    4\frac{3}{44}+\frac{8}{11}
    Type your answer below:

One difficulty in measuring the results of this study is the selection bias that was unintentionally created by the difference in difficulty between the control group and test group. Because the arithmetic in the "kind" problems (test group) is overall simpler than the involved arithmetic involved with the "unkind" problems (control group), researches expect more students to drop out in the control group. It will be difficult to fairly compare the results on the post test if there is a significant difference in the number of students taking it in the control and test groups.

\section*{Data Analysis on Hints and Work Examples (PSAUK57)}

I worked with Korinn Ostrow to analyze data on a study using PSAUK57. The problem set, "Converting Fractions, Decimals and Percents", was used in a study to test the effectiveness of different styles of hints. In addition to testing effectiveness of currently used hints, this study was seeking to find other effective methods of helping students through hints. The conditions in the study were "Correctness Only", "Hints Only", "Worked Example- Text" and "Worked Example- Video". Any students who couldn't see and hear the video were placed into the "No Video" condition which virtually removed them from the study. This way, study results are not biased for or against students who didn't have access to videos.

This was the first part of the problem set ("video check"). Students who can see and hear the video were told to type in the number " 1 ". Failure to do so put students in the "No Video" condition and removed them from the study.


If you cannot see or hear the video, type a number " 0 " into the box below, and click "Submit".

Type your answer below:
\(\square\)
Submit Answer

In "Correctness Only", students only had the option to see the right answer if they were struggling with the problem. There was no option for them to receive a hint within ASSISTments.

Assignment: Problem \#PSA4Z6Q

Problem ID: PRA4Z6Q Comment on this problem

Convert 1.15 to a percent.

Type your answer below:

\(100 \%\) (3)

Submit Answer
Show answer

Assignment: Problem \#PSA4Z6Q

Problem ID: PRA4Z6Q
Comment on this problem

Convert 1.15 to a percent.
The answer is \(115 \%\).
Somment on thishing

Type your answer below:
\[
=08^{(8)}
\]

Submit Answer

In the "Hints Only" condition, students received a hint that walked them through the steps to solve that particular problem. This is how most hints are in most ASSISTments problems.

Assignment: (Copy of) Converting Fractions, Decimals and Percents 6.RP.A. 3 EX
Problem ID: PRA4Y2K
Comment on this problem

Convert \(\frac{11}{16}\) into a decimal.

Round to the nearest tenths place.
To convert a fraction to a decimal, divide the numerator (top number) by the denominator (bottom number):
\(\frac{11}{16}=11 \div 16=0.68750000\)

Next, you need to round to the nearest tenths place.
Look at the hundredths place:
- If there is none, leave the answer as is
- If the digit in the hundredths place is less than 5 , the digit in the tenths place stays the same
- If the digit in the hundredths place is 5 or more, the digit in the tenths place goes up by 1
- Drop all of the digits to the right of the tenths place
0.68750000 rounded to the tenths place is 0.7 .

So when rounded to the nearest tenth,
\(\frac{11}{16}\) converted to a decimal is 0.7 .

Type in 0.7.
\(\square\)

The "Worked Example" conditions both went through a similar problem in great detail. For "Worked Example- Text", text is given to explain the problem. Intentional formatting and coloring is designed to help students understand the problem broken down.
```

Assignment: (Copy of) Converting Fractions, Decimals and Percents 6.RP.A.3 EX
Prablem ID: PRA4YCC Samment an thisproblem
Convert }\frac{11}{16}\mathrm{ into a decimal.
Round to the nearest tenths place.
Type your answer below (mathematicof expression):
Submit Answer

```
Frablem ID: PRA4YCC - 1130166
Comment an this problem
Looks like you could use some help. Let's look at a similar Example Problem.
    Example Problem:
    Convert \(\quad \begin{gathered}5 \\ 12\end{gathered}\) into a decimal.
    Round to the nearest tenths place.
        Step 1 of 2
    To convert a fraction to a decimal,
    divide the numerator (top number) by the denorninator
    (bottom number):
        \(\frac{5}{12}=5 \div 12=0.4166666\).

Now it's your turn. Divide the numerator by the denominator in your problem:
        \(\frac{11}{16}\)
Select the choice below that is closest to the answer you found.
Select one:
O0.0625
O. 45454545454545
O..6875
Submit Answer
"Worked Example- Video" simply shows a video with a teacher both explaining and writing out the steps for the problem. With both "Worked Example" conditions, the student would need to be able to apply the method used in this example to the problem in front of him/her.

\footnotetext{
Assignment: (Copy of) Converting Fractions, Decimals and Percents 6.RP.A. 3 EX
}
```

Problem ID: PRA4YWY

Convert $\frac{11}{16}$ into a decimal.
Round to the nearest tenths place.

Type your answer below (mothernatical expression):

Submit Answer

```
Prablem ID: PRA4YWY - 1131310

Step 1: Divide the numerator by the denominator


After watching the video, divide the numerator by the denominator in in your problem:
\[
\frac{11}{16}
\]

Select the choice below that is closest to the answer you found.

\section*{Select one:}

O0. 6875
O0.0625
O1.45454545454545

Submit Anawer

A total of 1,090 students participated in the study. The data was received through the Assessment of Learning Infrastructure (ALI). The Student Level data was then imported into Microsoft Excel. Each row represents a student's actions in Student Level. When first imported, it was not clear which condition each student was in. To change this, I copied all of the ID's from each condition in ASSISTments into a separate spreadsheet. From there, I converted a list of ID's into separate cells using the "Text To Column" and then put each condition's ID's into a designated column. Using the VlookUp function to assign each student a condition based on his/her ID matching with those on the second sheet, I sorted the rows by Condition. From there, I summarized parts of the data to get means and standard deviations for each condition for different variables including "total problem count", "mastery status", and "Assessment Time". Then, a chi squared test was run on observed completeness versus expected completeness. Completeness was measured by the number of students who completed the problem set in each condition. The p value for this chi squared test is not less than alpha (.05) so we fail to come to a conclusion from these results.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1959 & Observed & Complete & Not Complete & Total & \% Drop & rows & 4 \\
\hline 1960 & CO & 219 & 58 & 277 & 20.94 & columns & 2 \\
\hline 961 & Hint Only & 214 & 70 & 284 & 24.65 & df & 3 \\
\hline 962 & Text & 181 & 68 & 249 & 27.31 & p & 0.397 \\
\hline 1963 & Video & 211 & 69 & 280 & 24.64 & chi & 1.86 \\
\hline 1964 & Total & 825 & 265 & 1090 & & & \\
\hline 1965 & & & & & & & \\
\hline 1966 & Expected & Complete & Not Complete & Total & & & \\
\hline 1967 & CO & 209.66 & 67.34 & 277 & & & \\
\hline 1968 & Hint Only & 214.95 & 69.05 & 284 & & & \\
\hline 1969 & Text & 188.46 & 60.54 & 249 & & & \\
\hline 1970 & Video & 211.93 & 68.07 & 280 & & & \\
\hline 1971 & Total & 825 & 265 & 1090 & & & \\
\hline 972 & & & & & & & \\
\hline
\end{tabular}

After organizing data through excel, the Student Level data was exported into Statistical Package for Social Sciences (SPSS). SPSS is widely used in a variety of research areas. It has statistical analysis, data management, and data documentation capabilities allowing any researcher to use to it quantify results. Using SPSS, we ran an ANOVA test. [Appendix 4.1]

\section*{Conclusion}

This project looked at a few specific studies through ASSISTments. All of these involved research using ASSISTments Test Bed to some degree. In this project, I learned about the research steps involved with conducting a study in ASSISTments. I got to work hands on with designing a few of these studies and making sure biases were eliminated. After students participated in studies, I got to look at the data and learn how to read this information.

ASSISTments Test Bed is a fantastic opportunity for researchers. The website itself provides clear direction for someone who may be doing classroom research for the first time. It also describes how ASSISTments can be integrated into a study involving students. Because ASSISTments reaches students in many states and in a variety of schools, it provides a great sample of students. The program ASSISTments is very user friendly so anyone with basic computer skills can learn to make a skill builder specific to a study. Additionally, since so many classrooms use ASSISTments, many teachers have already created skill builders available for public use. Since everything is online, collecting data is very easy and information can be incredibly valuable. ASSISTments Test Bed has the ability to help researchers answer questions about learning, teaching, and comprehension that could change education for generations to come.

\section*{Appendix 1.1 "View Problems" PSA4D9T}

\section*{Problem Set "(Copy of) Simplifying Logarithms F-BF.B.5" id:[PSA5QQE]}

\section*{Select All}1) Problem \#PRABCNUM "PRABCNUM - simplifying fractions"

Simplify
\(\log _{1 / 2}(1 / 4)\)

\section*{Algebraic Expression:}
\(\sqrt{ } 2\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem you have
logarithmic form \(\log _{1 / 2}(1 / 4)=\mathrm{c}\)
Exponential form: \(1 / 4=1 / 2^{\mathrm{C}}\)
- Now we want to find what c equals
\(1 / 4=1 / 2^{\mathrm{C}}\)
\((1 / 2)^{2}=1 / 2^{\mathrm{C}}\)
\(2=c\)
Type 2
2) Problem \#PRABCNUN "PRABCNUN - simplifying fractions"

Simplify
\(\log _{1 / 5}(1 / 25)\)

\section*{Algebraic Expression:}
\(\sqrt{ } 2\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem you have
logarithmic form \(\log _{1 / 5}(1 / 25)=\mathrm{c}\)

Exponential form: \(1 / 25=1 / 5^{\text {c }}\)
- Now we want to find what c equals
\(1 / 25=1 / 5^{\text {C }}\)
\((1 / 5)^{2}=1 / 5^{\text {c }}\)
\(2=c\)
Type 2

\section*{3) Problem \#PRABCNUR "PRABCNUR - simplifying fractions"}

Simplify
\(\log _{1 / 8}(1 / 64)\)

\section*{Algebraic Expression:}
\(\sqrt{ } 2\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem you have
logarithmic form \(\log _{1 / 8}(1 / 64)=\mathrm{c}\)
Exponential form: \(1 / 64=1 / 8^{\mathrm{C}}\)
- Now we want to find what c equals
\(1 / 64=1 / 8^{\text {c }}\)
\((1 / 8)^{2}=1 / 8^{\mathrm{C}}\)
\(2=c\)

Type 2

\section*{4) Problem \#PRABCNUS "PRABCNUS - simplifying fractions"}

Simplify
\(\log _{1 / 4}(1 / 16)\)

\section*{Algebraic Expression:}
\(\sqrt{ } 2\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem you have
logarithmic form \(\log _{1 / 4}(1 / 16)=\mathrm{c}\)

Exponential form: \(1 / 16=1 / 4^{\text {C }}\)
- Now we want to find what c equals
\(1 / 16=1 / 4^{\text {C }}\)
\((1 / 4)^{2}=1 / 4^{\mathrm{C}}\)
\(2=c\)
Type 2

\section*{5) Problem \#PRABCNUT "PRABCNUT - simplifying fractions"}

Simplify
\(\log _{1 / 6}(1 / 36)\)

\section*{Algebraic Expression:}
\(\sqrt{ } 2\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem you have
logarithmic form \(\log _{1 / 6}(1 / 36)=\mathrm{c}\)

Exponential form: \(1 / 36=1 / 6^{\text {c }}\)
- Now we want to find what c equals
\(1 / 36=1 / 6^{\text {c }}\)
\((1 / 6)^{2}=1 / 6^{c}\)
\(2=c\)
Type 2

\section*{6) Problem \#PRABCNUV "PRABCNUV - simplifying fractions"}

Simplify
\(\log _{1 / 9}(1 / 81)\)

\section*{Algebraic Expression:}
\(\sqrt{ } 2\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem you have
logarithmic form \(\log _{1 / 9}(1 / 81)=\mathrm{c}\)

Exponential form: \(1 / 81=1 / 9^{C}\)
- Now we want to find what c equals
\(1 / 81=1 / 9^{c}\)
\((1 / 9)^{2}=1 / 9^{c}\)
\(2=c\)
Type 2

\section*{7) Problem \#PRABCNUX "PRABCNUX - simplifying fractions"}

Simplify
\(\log _{1 / 10}(1 / 100)\)

\section*{Algebraic Expression:}

\section*{\(\sqrt{2}\)}

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem you have
logarithmic form \(\log _{1 / 10}(1 / 100)=c\)

Exponential form: \(1 / 100=1 / 10^{\mathrm{C}}\)
- Now we want to find what c equals
\(1 / 100=1 / 10^{\mathrm{c}}\)
\((1 / 10)^{2}=1 / 10^{c}\)
\(2=c\)

Type 2

\section*{8) Problem \#PRABCNUY "PRABCNUY - simplifying fractions"}

Simplify
\(\log _{1 / 7}(1 / 49)\)

\section*{Algebraic Expression:}


Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem you have
logarithmic form \(\log _{1 / 7}(1 / 49)=c\)

Exponential form: \(1 / 49=1 / 7^{\mathrm{C}}\)
- Now we want to find what c equals
\(1 / 49=1 / 7^{\text {c }}\)
\((1 / 7)^{2}=1 / 7^{\mathrm{C}}\)
\(2=c\)

Type 2
9) Problem \#PRABCNU4 "PRABCNU4 - varying exponents" simplify
\(\log _{12}\left(12^{5 b}\right)\)

Leave your answer as an expression

\section*{Algebraic Expression:}

5b

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{12}\left(12^{5 b}\right)=\mathrm{c}\)

Exponential form: \(12^{5 b}=12^{c}\)
- We want to find what c equals
\(12^{5 b}=12^{c}\)
\(5 b=c\)

Type 5b
simplify
\(\log _{8}\left(8^{7 b}\right)\)

Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 7 \mathrm{~b}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(a=b^{c}\)
- In this problem we have

Logarithmic form: \(\log _{8}\left(8^{7 b}\right)=c\)

Exponential form: \(8^{7 b}=8^{c}\)
- We want to find what c equals
\(8^{7 b}=8^{c}\)
\(7 b=c\)

Type 7b
11) Problem \#PRABCNU6 "PRABCNU6 - varying exponents" simplify
\(\log _{6}\left(6^{6 b}\right)\)

Leave your answer as an expression

\section*{Algebraic Expression:}

6b

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{6}\left(6^{6 b}\right)=c\)
Exponential form: \(6^{6 b}=6^{c}\)
- We want to find what c equals
\(6^{6 \mathrm{~b}}=6^{\mathrm{c}}\)
\(6 b=c\)
Type 6b

\section*{12) Problem \#PRABCNU7 "PRABCNU7 - varying exponents"}
simplify
\(\log _{11}\left(11^{7 n}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 7 \mathrm{n}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{11}\left(11^{7 \mathrm{n}}\right)=\mathrm{c}\)
Exponential form: \(11^{7 \mathrm{n}}=11^{\mathrm{C}}\)
- We want to find what c equals
\(11^{7 n}=11^{c}\)
\(7 n=c\)
Type 7n
13) Problem \#PRABCNU8 "PRABCNU8 - varying exponents"
simplify
\(\log _{3}\left(3^{2 n}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 2 n\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{3}\left(3^{2 \mathrm{n}}\right)=\mathrm{c}\)
Exponential form: \(3^{2 n}=3^{c}\)
- We want to find what c equals
\(3^{2 n}=3^{c}\)
\(2 \mathrm{n}=\mathrm{c}\)
Type 2n

\section*{14) Problem \#PRABCNU9 "PRABCNU9 - varying exponents"} simplify
\(\log _{2}\left(2^{9 m}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}

9 m

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{2}\left(2^{9 \mathrm{~m}}\right)=\mathrm{c}\)
Exponential form: \(2^{9 m}=2^{c}\)
- We want to find what c equals
\(2^{9 \mathrm{~m}}=2^{\mathrm{c}}\)
\(9 \mathrm{~m}=\mathrm{c}\)

\section*{Type 9 m}

\section*{15) Problem \#PRABCNVA "PRABCNVA - varying exponents"} simplify
\(\log _{10}\left(10^{9 \mathrm{~h}}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 9 \mathrm{~h}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{10}\left(10^{9 \mathrm{~h}}\right)=\mathrm{c}\)

Exponential form: \(10^{9 \mathrm{~h}}=10^{\mathrm{C}}\)
- We want to find what c equals
\(10^{9 \mathrm{~h}}=10^{\mathrm{c}}\)
\(9 h=c\)
Type 9h
16) Problem \#PRABCNVB "PRABCNVB - varying exponents" simplify
\(\log _{13}\left(13^{3 \mathrm{~h}}\right)\)

Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } \mathrm{h}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(a=b^{c}\)
- In this problem we have

Logarithmic form: \(\log _{13}\left(13^{3 h}\right)=c\)

Exponential form: \(13^{3 \mathrm{~h}}=13^{\mathrm{c}}\)
- We want to find what c equals
\(13^{3 h}=13^{c}\)
\(3 \mathrm{~h}=\mathrm{c}\)

Type 3h

\section*{17) Problem \#PRABCNVC "PRABCNVC - varying exponents"}
simplify
\(\log _{7}\left(7^{3 b}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}

3b

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{7}\left(7^{3 b}\right)=c\)

Exponential form: \(7^{3 b}=7^{c}\)
- We want to find what c equals
\(7^{3 b}=7^{c}\)
\(3 b=c\)
Type 3b

\section*{18) Problem \#PRABCNVD "PRABCNVD - varying exponents"}
simplify
\(\log _{13}\left(13^{4 m}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}


\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{13}\left(13^{4 m}\right)=\mathrm{c}\)

Exponential form: \(13^{4 \mathrm{~m}}=13^{\mathrm{C}}\)
- We want to find what c equals
\[
13^{4 \mathrm{~m}}=13^{\mathrm{c}}
\]
\(4 \mathrm{~m}=\mathrm{c}\)

Type 4m

\section*{19) Problem \#PRABCNVE "PRABCNVE - varying exponents"}
simplify
\(\log _{9}\left(9^{2 n}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 2 \mathrm{n}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{9}\left(9^{2 \mathrm{n}}\right)=\mathrm{c}\)
Exponential form: \(9^{2 n}=9^{c}\)
- We want to find what c equals
\(9^{2 n}=9^{c}\)
\(2 \mathrm{n}=\mathrm{c}\)
Type 2n
20) Problem \#PRABCNVF "PRABCNVF - varying exponents"
simplify
\(\log _{14}\left(14^{4 \mathrm{~h}}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 4 \mathrm{~h}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential
form
Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{14}\left(14^{4 \mathrm{~h}}\right)=\mathrm{c}\)

Exponential form: \(14^{4 \mathrm{~h}}=14^{\mathrm{C}}\)
- We want to find what c equals
\(14^{4 \mathrm{~h}}=14^{\mathrm{c}}\)
\(4 \mathrm{~h}=\mathrm{c}\)
Type 4h
21) Problem \#PRABCNVG "PRABCNVG - varying exponents" simplify
\(\log _{3}\left(3^{7 n}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}

\footnotetext{
\(\sqrt{ } 7 n\)
}

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{3}\left(3^{7 n}\right)=\mathrm{c}\)
Exponential form: \(3^{7 n}=3^{c}\)
- We want to find what c equals
\[
3^{7 n}=3^{c}
\]
\(7 n=c\)
Type 7n

\section*{22) Problem \#PRABCNVH "PRABCNVH - varying exponents"} simplify
\(\log _{11}\left(11^{6 b}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{6 b}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{11}\left(11^{6 b}\right)=\mathrm{c}\)
Exponential form: \(11^{6 b}=11^{c}\)
- We want to find what c equals
\(11^{6 \mathrm{~b}}=11^{\mathrm{c}}\)
\(6 b=c\)
Type 6b
23) Problem \#PRABCNVJ "PRABCNVJ - varying exponents"
simplify
\(\log _{2}\left(2^{8 m}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}

8 m
Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{2}\left(2^{8 \mathrm{~m}}\right)=\mathrm{c}\)

Exponential form: \(2^{8 \mathrm{~m}}=2^{\mathrm{c}}\)
- We want to find what c equals
\(2^{8 m}=2^{c}\)
\(8 \mathrm{~m}=\mathrm{c}\)
Type 8m

\section*{24) Problem \#PRABCNVK "PRABCNVK - varying exponents"} simplify
\(\log _{13}\left(13^{8 \mathrm{~h}}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}

8h

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{13}\left(13^{8 \mathrm{~h}}\right)=\mathrm{c}\)
Exponential form: \(13^{8 \mathrm{~h}}=13^{\mathrm{c}}\)
- We want to find what c equals
\[
13^{8 \mathrm{~h}}=13^{\mathrm{c}}
\]
\(8 \mathrm{~h}=\mathrm{c}\)
Type 8h

\section*{25) Problem \#PRABCNVM "PRABCNVM - varying exponents"} simplify
\(\log _{8}\left(8^{8 n}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } \mathrm{n}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{8}\left(8^{8 \mathrm{n}}\right)=\mathrm{c}\)

Exponential form: \(8^{8 n}=8^{c}\)
- We want to find what c equals
\(8^{8 n}=8^{c}\)
\(8 \mathrm{n}=\mathrm{c}\)
Type 8n

\section*{26) Problem \#PRABCNVN "PRABCNVN - varying exponents"}
simplify
\(\log _{10}\left(10^{7 \mathrm{k}}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
```

7k

```

Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{10}\left(10^{7 \mathrm{k}}\right)=\mathrm{c}\)
Exponential form: \(10^{7 \mathrm{k}}=10^{\mathrm{c}}\)
- We want to find what c equals
\(10^{7 \mathrm{k}}=10^{\mathrm{c}}\)
\(7 \mathrm{k}=\mathrm{c}\)
Type 7k

\section*{27) Problem \#PRABCNVP "PRABCNVP - varying exponents"} simplify
\(\log _{10}\left(10^{4 \mathrm{~h}}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ }\) h

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{10}\left(10^{4 \mathrm{~h}}\right)=\mathrm{c}\)
Exponential form: \(10^{4 \mathrm{~h}}=10^{\mathrm{C}}\)
- We want to find what c equals
\(10^{4 \mathrm{~h}}=10^{\mathrm{c}}\)
\(4 h=c\)
Type 4h

\section*{28) Problem \#PRABCNVQ "PRABCNVQ - varying exponents"}
simplify
\(\log _{13}\left(13^{6 m}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 6 \mathrm{~m}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{13}\left(13^{6 \mathrm{~m}}\right)=\mathrm{c}\)
Exponential form: \(13^{6 \mathrm{~m}}=13^{\mathrm{c}}\)
- We want to find what c equals
\(13^{6 \mathrm{~m}}=13^{\mathrm{c}}\)
\(6 \mathrm{~m}=\mathrm{c}\)
Type 6m

\section*{29) Problem \#PRABCNVR "PRABCNVR - varying exponents"}
simplify
\(\log _{12}\left(12^{5 \mathrm{~h}}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 5 \mathrm{~h}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{12}\left(12^{5 \mathrm{~h}}\right)=\mathrm{c}\)

Exponential form: \(12^{5 \mathrm{~h}}=12^{\mathrm{C}}\)
- We want to find what c equals
\(12^{5 \mathrm{~h}}=12^{\mathrm{c}}\)
5h=c
Type 5h
30) Problem \#PRABCNVS "PRABCNVS - varying exponents" simplify
\(\log _{13}\left(13^{9 h}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}

9h

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{13}\left(13^{9 h}\right)=c\)
Exponential form: \(13^{9 \mathrm{~h}}=13^{\mathrm{c}}\)
- We want to find what c equals
\(13^{9 \mathrm{~h}}=13^{\mathrm{c}}\)
9h=c
Type 9h

\section*{31) Problem \#PRABCNVT "PRABCNVT - varying exponents"}
simplify
\(\log _{3}\left(3^{9 n}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 9 n\)
Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{3}\left(3^{9 n}\right)=c\)
Exponential form: \(3^{9 n}=3^{c}\)
- We want to find what c equals
\(3^{9 n}=3^{c}\)
\(9 n=c\)
Type \(9 n\)
32) Problem \#PRABCNVU "PRABCNVU - varying exponents"
simplify
\(\log _{9}\left(9^{7 b}\right)\)

Leave your answer as an expression

\section*{Algebraic Expression:}

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(a=b^{c}\)
- In this problem we have

Logarithmic form: \(\log _{9}\left(9^{7 b}\right)=\mathrm{c}\)

Exponential form: \(9^{7 b}=9^{c}\)
- We want to find what c equals
\(9^{7 b}=9^{c}\)
\(7 b=c\)

Type 7b

\section*{33) Problem \#PRABCNVV "PRABCNVV - varying exponents"}
simplify
\(\log _{14}\left(14^{5 n}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 5 n\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(a=b^{c}\)
- In this problem we have

Logarithmic form: \(\log _{14}\left(14^{5 n}\right)=c\)

Exponential form: \(14^{5 n}=14^{c}\)
- We want to find what c equals
\(14^{5 n}=14^{c}\)
5n=c
Type 5n

\section*{34) Problem \#PRABCNVW "PRABCNVW - varying exponents"}
simplify
\(\log _{9}\left(9^{9 b}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 9 \mathrm{~b}\)
Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{9}\left(9^{9 b}\right)=\mathrm{c}\)
Exponential form: \(9^{9 b}=9^{c}\)
- We want to find what c equals
\(9^{9 b}=9^{c}\)
\(9 b=c\)
Type 9b

\section*{35) Problem \#PRABCNVX "PRABCNVX - varying exponents"} simplify
\(\log _{14}\left(14^{3 n}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(3 n\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{14}\left(14^{3 \mathrm{n}}\right)=\mathrm{c}\)
Exponential form: \(14^{3 n}=14^{c}\)
- We want to find what c equals
\(14^{3 n}=14^{c}\)
\(3 n=c\)
Type 3n
36) Problem \#PRABCNVY "PRABCNVY - varying exponents"
simplify
\(\log _{9}\left(9^{7 b}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 7 \mathrm{~b}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{9}\left(9^{7 \mathrm{~b}}\right)=\mathrm{c}\)
Exponential form: \(9^{7 b}=9^{c}\)
- We want to find what c equals
\(9^{7 b}=9^{c}\)
\(7 \mathrm{~b}=\mathrm{c}\)

Type 7b
37) Problem \#PRABCNVZ "PRABCNVZ - varying exponents"
simplify
\(\log _{6}\left(6^{2 \mathrm{k}}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 2 \mathrm{k}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{6}\left(6^{2 \mathrm{k}}\right)=\mathrm{c}\)

Exponential form: \(6^{2 \mathrm{k}}=6^{\mathrm{C}}\)
- We want to find what c equals
\(6^{2 \mathrm{k}}=6^{\mathrm{c}}\)
\(2 \mathrm{k}=\mathrm{c}\)
Type 2 k

\section*{38) Problem \#PRABCNV2 "PRABCNV2 - varying exponents"}
simplify
\(\log _{6}\left(6^{7 \mathrm{~h}}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 7 \mathrm{~h}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(a=b^{c}\)
- In this problem we have

Logarithmic form: \(\log _{6}\left(6^{7 \mathrm{~h}}\right)=\mathrm{c}\)
Exponential form: \(6^{7 \mathrm{~h}}=6^{\mathrm{c}}\)
- We want to find what c equals
\(6^{7 h}=6^{c}\)
\(7 \mathrm{~h}=\mathrm{c}\)
Type 7h

\section*{39) Problem \#PRABCNV3 "PRABCNV3 - varying exponents"} simplify
\(\log _{12}\left(12^{6 n}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 6 n\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{12}\left(12^{6 \mathrm{n}}\right)=\mathrm{c}\)

Exponential form: \(12^{6 \mathrm{n}}=12^{\mathrm{C}}\)
- We want to find what c equals
\(12^{6 \mathrm{n}}=12^{\mathrm{c}}\)
\(6 n=c\)
Type 6n

\section*{40) Problem \#PRABCNV4 "PRABCNV4 - varying exponents"} simplify
\(\log _{4}\left(4^{6 m}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}

6 m

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{4}\left(4^{6 \mathrm{~m}}\right)=\mathrm{c}\)

Exponential form: \(4^{6 \mathrm{~m}}=4^{\mathrm{c}}\)
- We want to find what c equals
\(4^{6 m}=4^{c}\)
\(6 \mathrm{~m}=\mathrm{c}\)
Type 6 m
41) Problem \#PRABCNV5 "PRABCNV5 - varying exponents"
simplify
\(\log _{3}\left(3^{6 h}\right)\)

Leave your answer as an expression

\section*{Algebraic Expression:}
v \(6 h\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{3}\left(3^{6 h}\right)=\mathrm{c}\)
Exponential form: \(3^{6 \mathrm{~h}}=3^{\mathrm{c}}\)
- We want to find what c equals
\(3^{6 h}=3^{c}\)
\(6 \mathrm{~h}=\mathrm{c}\)
Type 6h
42) Problem \#PRABCNV6 "PRABCNV6 - varying exponents" simplify
\(\log _{12}\left(12^{7 \mathrm{~m}}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}

7 m

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{12}\left(12^{7 \mathrm{~m}}\right)=\mathrm{c}\)

Exponential form: \(12^{7 \mathrm{~m}}=12^{\mathrm{C}}\)
- We want to find what c equals
\(12^{7 \mathrm{~m}}=12^{\mathrm{c}}\)
\(7 \mathrm{~m}=\mathrm{c}\)
Type 7 m
43) Problem \#PRABCNV7 "PRABCNV7 - varying exponents" simplify
\(\log _{2}\left(2^{9 b}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}

9b

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{2}\left(2^{9 b}\right)=\mathrm{c}\)

Exponential form: \(2^{9 b}=2^{c}\)
- We want to find what c equals
\[
2^{9 b}=2^{c}
\]
\(9 b=c\)
Type 9b

\section*{44) Problem \#PRABCNV8 "PRABCNV8 - varying exponents"}
simplify
\(\log _{8}\left(8^{6 m}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 6 \mathrm{~m}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{8}\left(8^{6 \mathrm{~m}}\right)=\mathrm{c}\)
Exponential form: \(8^{6 \mathrm{~m}}=8^{\mathrm{c}}\)
- We want to find what c equals
\(8^{6 \mathrm{~m}}=8^{\mathrm{c}}\)
\(6 \mathrm{~m}=\mathrm{c}\)
Type 6m

\section*{45) Problem \#PRABCNV9 "PRABCNV9 - varying exponents"} simplify
\(\log _{8}\left(8^{4 n}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 4 \mathrm{n}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{8}\left(8^{4 \mathrm{n}}\right)=\mathrm{c}\)

Exponential form: \(8^{4 n}=8^{c}\)
- We want to find what c equals
\(8^{4 n}=8^{c}\)
\(4 \mathrm{n}=\mathrm{c}\)
Type 4n
46) Problem \#PRABCNWA "PRABCNWA - varying exponents" simplify
\(\log _{2}\left(2^{6 n}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 6 n\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{2}\left(2^{6 \mathrm{n}}\right)=\mathrm{c}\)
Exponential form: \(2^{6 n}=2^{c}\)
- We want to find what c equals
\(2^{6 n}=2^{c}\)
\(6 \mathrm{n}=\mathrm{c}\)
Type 6n
47) Problem \#PRABCNWB "PRABCNWB - varying exponents"
simplify
\(\log _{7}\left(7^{6 n}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{6 n}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{7}\left(7^{6 \mathrm{n}}\right)=\mathrm{c}\)
Exponential form: \(7^{6 \mathrm{n}}=7^{\mathrm{c}}\)
- We want to find what c equals
\(7^{6 n}=7^{c}\)
\(6 n=c\)
Type 6n

\section*{48) Problem \#PRABCNWC "PRABCNWC - varying exponents"}
simplify
\(\log _{14}\left(14^{5 \mathrm{~m}}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{5 \mathrm{~m}}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)
\[
\text { Exponential form: } \mathrm{a}=\mathrm{b}^{\mathrm{c}}
\]
- In this problem we have

Logarithmic form: \(\log _{14}\left(14^{5 \mathrm{~m}}\right)=\mathrm{c}\)
Exponential form: \(14^{5 \mathrm{~m}}=14^{\mathrm{c}}\)
- We want to find what c equals
\[
14^{5 \mathrm{~m}}=14^{\mathrm{c}}
\]
\[
5 \mathrm{~m}=\mathrm{c}
\]

Type 5m

\section*{49) Problem \#PRABCNWD "PRABCNWD - varying exponents"}
simplify
\(\log _{14}\left(14^{4 m}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}

\author{
\(\sqrt{ } 4 \mathrm{~m}\)
}

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{14}\left(14^{4 \mathrm{~m}}\right)=\mathrm{c}\)
Exponential form: \(14^{4 \mathrm{~m}}=14^{\mathrm{C}}\)
- We want to find what c equals
\(14^{4 m}=14^{c}\)
\(4 \mathrm{~m}=\mathrm{c}\)
Type 4m
simplify
\(\log _{13}\left(13^{8 \mathrm{~m}}\right)\)

Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 8 \mathrm{~m}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(a=b^{c}\)
- In this problem we have

Logarithmic form: \(\log _{13}\left(13^{8 m}\right)=c\)

Exponential form: \(13^{8 \mathrm{~m}}=13^{\mathrm{c}}\)
- We want to find what c equals
\(13^{8 m}=13^{c}\)
\(8 \mathrm{~m}=\mathrm{c}\)

Type 8m

\section*{51) Problem \#PRABCNWF "PRABCNWF - varying exponents"}
simplify
\(\log _{2}\left(2^{8 h}\right)\)

Leave your answer as an expression

\section*{Algebraic Expression:}

8h

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{2}\left(2^{8 h}\right)=c\)
Exponential form: \(2^{8 h}=2^{\mathrm{C}}\)
- We want to find what c equals
\[
2^{8 \mathrm{~h}}=2^{\mathrm{c}}
\]
\(8 \mathrm{~h}=\mathrm{c}\)
Type 8h

\section*{52) Problem \#PRABCNWG "PRABCNWG - varying exponents"} simplify
\(\log _{11}\left(11^{9 \mathrm{~h}}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 9 \mathrm{~h}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{11}\left(11^{9 \mathrm{~h}}\right)=\mathrm{c}\)
Exponential form: \(11^{9 \mathrm{~h}}=11^{\mathrm{c}}\)
- We want to find what c equals
\(11^{9 \mathrm{~h}}=11^{\mathrm{c}}\)
\(9 \mathrm{~h}=\mathrm{c}\)
Type 9h
53) Problem \#PRABCNWH "PRABCNWH - varying exponents"
simplify
\(\log _{12}\left(12^{4 \mathrm{~h}}\right)\)

Leave your answer as an expression

\section*{Algebraic Expression:}

4h

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(a=b^{c}\)
- In this problem we have

Logarithmic form: \(\log _{12}\left(12^{4 h}\right)=\mathrm{c}\)

Exponential form: \(12^{4 h}=12^{\mathrm{C}}\)
- We want to find what c equals
\(12^{4 h}=12^{c}\)
\(4 h=c\)

Type 4h

\section*{54) Problem \#PRABCNWJ "PRABCNWJ - varying exponents"} simplify
\(\log _{10}\left(10^{6 \mathrm{n}}\right)\)

Leave your answer as an expression

\section*{Algebraic Expression:}


\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{10}\left(10^{6 \mathrm{n}}\right)=\mathrm{c}\)
Exponential form: \(10^{6 \mathrm{n}}=10^{\mathrm{c}}\)
- We want to find what c equals
\(10^{6 \mathrm{n}}=10^{\mathrm{c}}\)
\(6 n=c\)
Type 6n

\section*{55) Problem \#PRABCNWK "PRABCNWK - varying exponents"} simplify
\(\log _{12}\left(12^{3 \mathrm{n}}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 3 n\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{12}\left(12^{3 n}\right)=\mathrm{c}\)
Exponential form: \(12^{3 \mathrm{n}}=12^{\mathrm{C}}\)
- We want to find what c equals
\(12^{3 n}=12^{c}\)
\(3 n=c\)
Type 3n

\section*{56) Problem \#PRABCNWM "PRABCNWM - varying exponents"}
simplify
\(\log _{10}\left(10^{9 b}\right)\)

Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 9 \mathrm{~b}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(a=b^{c}\)
- In this problem we have

Logarithmic form: \(\log _{10}\left(10^{9 b}\right)=c\)

Exponential form: \(10^{9 b}=10^{c}\)
- We want to find what c equals
\(10^{9 b}=10^{c}\)
\(9 b=c\)

Type 9b

\section*{57) Problem \#PRABCNWN "PRABCNWN - varying exponents"} simplify
\(\log _{13}\left(13^{9 b}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}

9b

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{13}\left(13^{9 b}\right)=\mathrm{c}\)

Exponential form: \(13^{9 b}=13^{c}\)
- We want to find what c equals
\(13^{9 b}=13^{c}\)
\(9 b=c\)
Type 9b

\section*{58) Problem \#PRABCNWP "PRABCNWP - varying exponents"} simplify
\(\log _{6}\left(6^{4 k}\right)\)
Leave your answer as an expression

\section*{Algebraic Expression:}
\(\sqrt{ } 4 \mathrm{k}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem we have

Logarithmic form: \(\log _{6}\left(6^{4 \mathrm{k}}\right)=\mathrm{c}\)
Exponential form: \(6^{4 \mathrm{k}}=6^{\mathrm{C}}\)
- We want to find what c equals
\[
6^{4 \mathrm{k}}=6^{\mathrm{c}}
\]
\(4 \mathrm{k}=\mathrm{c}\)

Type 4 k

\section*{59) Problem \#PRABCNWQ "PRABCNWQ - simplifying negative exponents"} simplify
\(\log _{1 / 3}(9)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-2\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 3}(9)=c\)

Exponential form: \(9=(1 / 3)^{\text {c }}\)
Find what c equals
\(9=(1 / 3)^{c}\)
\((3)^{2}=(3)^{-\mathrm{c}}\)
\(2=-c\)
\(-2=c\)
Type - 2
60) Problem \#PRABCNWR "PRABCNWR - simplifying negative exponents" simplify
\(\log _{1 / 7}(49)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-2\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential
form
Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 7}(49)=c\)

Exponential form: \(49=(1 / 7)^{\text {C }}\)
Find what c equals
\(49=(1 / 7)^{\mathrm{c}}\)
\((7)^{2}=(7)^{-c}\)
\(2=-c\)
\(-2=c\)
Type - 2
61) Problem \#PRABCNWS "PRABCNWS - simplifying negative exponents" simplify
\(\log _{1 / 5}(25)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-2\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 5}(25)=\mathrm{c}\)

Exponential form: \(25=(1 / 5)^{\text {c }}\)

Find what c equals
\(25=(1 / 5)^{\mathrm{C}}\)
\((5)^{2}=(5)^{-\mathrm{c}}\)
\(2=-c\)
\(-2=c\)
Type - 2

\section*{62) Problem \#PRABCNWU "PRABCNWU - simplifying negative exponents"}
simplify
\(\log _{1 / 2}(4)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-2\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 2}(4)=\mathrm{c}\)

Exponential form: \(4=(1 / 2)^{\text {c }}\)
-
Find what c equals
\(4=(1 / 2)^{c}\)
\((2)^{2}=(2)^{-\mathrm{c}}\)
\(2=-\) с
\(-2=c\)
Type - 2
63) Problem \#PRABCNWV "PRABCNWV - simplifying negative exponents" simplify
\(\log _{1 / 4}(16)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-2\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 4}(16)=c\)

Exponential form: \(16=(1 / 4)^{\text {C }}\)
-
Find what c equals
\(16=(1 / 4)^{\mathrm{C}}\)
\((4)^{2}=(4)^{-\mathrm{c}}\)
\(2=-c\)
\(-2=c\)
Type - 2

\section*{64) Problem \#PRABCNWW "PRABCNWW - simplifying negative exponents"}
simplify
\(\log _{1 / 9}(81)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-2\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)
Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 9}(81)=\mathrm{c}\)

Exponential form: \(81=(1 / 9)^{\text {c }}\)
Find what c equals
\(81=(1 / 9)^{\mathrm{C}}\)
\((9)^{2}=(9)^{-\mathrm{c}}\)
\(2=-c\)
\(-2=c\)
Type - 2

\section*{65) Problem \#PRABCNW7 "PRABCNW7 - simplifying fractions"}

Simplify
\(\log _{1 / 4}(1 / 64)\)

\section*{Algebraic Expression:}
\(\sqrt{ } 3\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem you have
logarithmic form \(\log _{1 / 4}(1 / 64)=c\)

Exponential form: \(1 / 64=1 / 4^{\text {C }}\)
- Now we want to find what c equals
\(1 / 64=1 / 4^{\text {c }}\)
\((1 / 4)^{3}=1 / 4^{\mathrm{C}}\)
\(3=c\)
Type 3
66) Problem \#PRABCNW8 "PRABCNW8 - simplifying fractions"

Simplify
\(\log _{1 / 2}(1 / 8)\)

\section*{Algebraic Expression:}
\(\sqrt{ } 3\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem you have
logarithmic form \(\log _{1 / 2}(1 / 8)=c\)

Exponential form: \(1 / 8=1 / 2^{\mathrm{C}}\)
- Now we want to find what c equals
\(1 / 8=1 / 2^{\mathrm{C}}\)
\((1 / 2)^{3}=1 / 2^{\mathrm{C}}\)
\(3=c\)
Type 3

\section*{67) Problem \#PRABCNXB "PRABCNXB - simplifying fractions"}

Simplify
\(\log _{1 / 3}(1 / 27)\)

\section*{Algebraic Expression:}
\(\sqrt{ } 3\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem you have
logarithmic form \(\log _{1 / 3}(1 / 27)=\mathrm{c}\)

Exponential form: \(1 / 27=1 / 3^{\mathrm{C}}\)
- Now we want to find what c equals
\(1 / 27=1 / 3^{c}\)
\((1 / 3)^{3}=1 / 3^{c}\)
\(3=c\)
Type 3

\section*{68) Problem \#PRABCNXC "PRABCNXC - simplifying fractions"}

Simplify
\(\log _{1 / 5}(1 / 125)\)

\section*{Algebraic Expression:}
\(\sqrt{ } 3\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem you have
logarithmic form \(\log _{1 / 5}(1 / 125)=\mathrm{c}\)

Exponential form: \(1 / 125=1 / 5^{\mathrm{C}}\)
- Now we want to find what c equals
\(1 / 125=1 / 5^{\text {c }}\)
\((1 / 5)^{3}=1 / 5^{\mathrm{c}}\)
\(3=c\)
Type 3
simplify
\(\log _{1 / 7}(7)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-1\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 7}(7)=\mathrm{c}\)

Exponential form: \(7=(1 / 7)^{\mathrm{C}}\)
-
Find what c equals
\(7=(1 / 7)^{\mathrm{c}}\)
\((7)^{1}=(7)^{-\mathrm{c}}\)
\(1=-c\)
\(-1=c\)

Type - 1

\section*{70) Problem \#PRABCNXQ "PRABCNXQ - simplifying negative exponents"}
simplify
\(\log _{1 / 9}(9)\)

\section*{Algebraic Expression:}
\(\sqrt{-1}\)
Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 9}(9)=c\)

Exponential form: \(9=(1 / 9)^{\text {c }}\)
-
Find what c equals
\(9=(1 / 9)^{\mathrm{c}}\)
\((9)^{1}=(9)^{-\mathbf{c}}\)
\(1=-\mathrm{c}\)
\(-1=c\)
Type - 1
71) Problem \#PRABCNXS "PRABCNXS - simplifying negative exponents"
simplify
\(\log _{1 / 8}(8)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-1\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 8}(8)=\mathrm{c}\)
Exponential form: \(8=(1 / 8)^{\text {c }}\)
-
Find what c equals
\(8=(1 / 8)^{\text {c }}\)
\((8)^{1}=(8)^{-c}\)
\(1=-\mathrm{c}\)
\(-1=c\)
Type - 1

\section*{72) Problem \#PRABCNXT "PRABCNXT - simplifying negative exponents"} simplify
\(\log _{1 / 14}(14)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-1\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 14}(14)=\mathrm{c}\)

Exponential form: \(14=(1 / 14)^{\text {C }}\)
-
Find what c equals
\(14=(1 / 14)^{c}\)
\((14)^{1}=(14)^{-\mathrm{c}}\)
\(1=-\mathrm{c}\)
\(-1=c\)

Type - 1
73) Problem \#PRABCNXU "PRABCNXU - simplifying negative exponents" simplify
\(\log _{1 / 3}(3)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-1\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)
Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 3}(3)=\mathrm{c}\)
Exponential form: \(3=(1 / 3)^{\mathrm{c}}\)
-
Find what c equals
\(3=(1 / 3)^{\text {c }}\)
\((3)^{1}=(3)^{-\mathrm{c}}\)
\(1=-\mathrm{c}\)
\(-1=c\)
Type - 1

\section*{74) Problem \#PRABCNXW "PRABCNXW - simplifying negative exponents"} simplify
\(\log _{1 / 4}(4)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-1\)
Hints:
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 4}(4)=\mathrm{c}\)

Exponential form: \(4=(1 / 4)^{\mathrm{C}}\)
-
Find what cequals
\(4=(1 / 4)^{c}\)
\((4)^{1}=(4)^{-\mathbf{c}}\)
1=-c
\(-1=c\)

Type - 1

\section*{75) Problem \#PRABCNXX "PRABCNXX - simplifying negative exponents"} simplify
\(\log _{1 / 5}(5)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-1\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{C}}\)
- In this problem

Logarithmic form: \(\log _{1 / 5}(5)=\mathrm{c}\)

Exponential form: \(5=(1 / 5)^{\text {c }}\)
-
Find what cequals
\(5=(1 / 5)^{\mathrm{C}}\)
\((5)^{1}=(5)^{-c}\)
1=-
\(-1=c\)

Type - 1

\section*{76) Problem \#PRABCNXY "PRABCNXY - simplifying negative exponents"}
simplify
\(\log _{1 / 6}(6)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-1\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(a=b^{c}\)
- In this problem

Logarithmic form: \(\log _{1 / 6}(6)=c\)

Exponential form: \(6=(1 / 6)^{\mathrm{c}}\)
-
Find what c equals
\(6=(1 / 6)^{\text {c }}\)
\((6)^{1}=(6)^{-\mathrm{c}}\)
\(1=-\mathrm{c}\)
\(-1=c\)

Type - 1

\section*{77) Problem \#PRABCNXZ "PRABCNXZ - simplifying negative exponents"} simplify
\(\log _{1 / 7}(7)\)

\section*{Algebraic Expression:}
\(\sqrt{-1}\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential
form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 7}(7)=c\)

Exponential form: \(7=(1 / 7)^{\mathrm{C}}\)
Find what c equals
\[
7=(1 / 7)^{\text {c }}
\]
\((7)^{1}=(7)^{-c}\)
\(1=-\mathrm{c}\)
\(-1=c\)
Type - 1
78) Problem \#PRABCNX4 "PRABCNX4 - simplifying negative exponents" simplify
\(\log _{1 / 10}(10)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-1\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 10}(10)=\mathrm{c}\)

Exponential form: \(10=(1 / 10)^{\text {c }}\)

Find what c equals
\(10=(1 / 10)^{\mathrm{C}}\)
\((10)^{1}=(10)^{-\mathrm{c}}\)
\(1=-\mathrm{c}\)
\(-1=c\)
Type - 1

\section*{79) Problem \#PRABCNX5 "PRABCNX5 - simplifying negative exponents"} simplify
\(\log _{1 / 11}(11)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-1\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 11}(11)=\mathrm{c}\)

Exponential form: \(11=(1 / 11)^{\text {C }}\)
-
Find what c equals
\(11=(1 / 11)^{\mathrm{C}}\)
\((11)^{1}=(11)^{-\mathrm{c}}\)
\(1=-\mathrm{c}\)
\(-1=c\)
Type - 1
80) Problem \#PRABCNX6 "PRABCNX6 - simplifying negative exponents" simplify
\(\log _{1 / 3}(27)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-3\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)

Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 3}(27)=c\)

Exponential form: \(27=(1 / 3)^{\text {c }}\)
-
Find what c equals
\(27=(1 / 3)^{c}\)
\((3)^{3}=(3)^{-c}\)
\(3=-c\)
\(-3=c\)
Type - 3

\section*{81) Problem \#PRABCNX8 "PRABCNX8 - simplifying negative exponents"} simplify
\(\log _{1 / 5}(125)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-3\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{b} a=c\)
Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 5}(125)=\mathrm{c}\)

Exponential form: \(125=(1 / 5)^{\mathrm{c}}\)
-
Find what c equals
\(125=(1 / 5)^{\text {c }}\)
\((5)^{3}=(5)^{-c}\)
\(3=-c\)
\(-3=c\)
Type - 3

\section*{82) Problem \#PRABCNYA "PRABCNYA - simplifying negative exponents"} simplify
\(\log _{1 / 4}(64)\)

\section*{Algebraic Expression:}
\(\sqrt{ }-3\)

\section*{Hints:}
- Sometimes to simplify it helps to change from the logarithmic form to exponential form

Logarithmic form: \(\log _{\mathrm{b}} \mathrm{a}=\mathrm{c}\)
Exponential form: \(\mathrm{a}=\mathrm{b}^{\mathrm{c}}\)
- In this problem

Logarithmic form: \(\log _{1 / 4}(64)=c\)

Exponential form: \(64=(1 / 4)^{\text {C }}\)
-
Find what c equals
\(64=(1 / 4)^{c}\)
\((4)^{3}=(4)^{-c}\)
\(3=-\mathrm{c}\)
\(-3=c\)

Type - 3

\section*{Finding Slope from a Linear Equation 8.F.B. 4 [6 students]}
\(\left.\begin{array}{|l|ll|}\hline \begin{array}{l}\text { Gaps in procedural } \\ \text { fluency observed }\end{array} & \begin{array}{l}\text { - } \\ \\ \text { - }\end{array} & \text { In form, ax+cy=d, find a } \\ \text { - } & \text { Finds intercept instead of slope }\end{array}\right]\)

\section*{Appendix 2.2 View Problems Control PSAKKY}

\section*{Problem Set "Finding Slope from a Linear Equation 8.F.B.4" id:[PSAKKY]}

\section*{Select All}
1) Problem \#PRACMWE "PRACMWE - 57935 - Algebra1 Finding Slope From Equation Mastery

Learning 2"
Determine the slope from the following equation:
\(y=-9 / 6 x+5\)

\section*{Algebraic Expression:}
-9/6

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

\(\square\)
- In our problem we have:
\(y=-9 / 6 x+5\)

- The slope is the coefficient of \(x\), or \(-9 / 6\). Type \(-9 / 6\).

PSAKKY 1.3
\(>\)

\section*{2) Problem \#PRACMUF "PRACMUF - 57937 - Algebra1 Finding Slope From Equation Mastery Learning} 4"
Determine the slope from the following equation:
\(4 y=2 x+5\)

\section*{Algebraic Expression:}
v \(2 / 4\)
Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 4 .
\(\underline{4 y}=\)
\(\underline{2 x+5}\)
\(4=\)
4
\(y=2 / 4 x+5 / 4\)

\section*{PSAKKY 2.2}

\section*{\(\nabla\)}
- The slope is the coefficient of \(x\), or \(2 / 4\). Type \(2 / 4\).

PSAKKY 2.3
\(>\)
3) Problem \#PRACMUP "PRACMUP - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:
\(-8 y=2 x+5\)

\section*{Algebraic Expression:}
\(\sqrt{2 /-8}\)
Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by -8 .
\begin{tabular}{ll}
\(-8 y\) & \(=\) \\
\(-8=\) & \(\underline{2 x+5}\) \\
-8
\end{tabular}
\(y=2 /-8 x+5 /-8\)

- The slope is the coefficient of x , or \(2 /-8\). Type \(2 /-8\).

4) Problem \#PRACMVS "PRACMVS - 56520 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning"}

Determine the slope from the following equation:
\(y=10 / 6 x+10\)
Algebraic Expression:
\(10 / 6\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=10 / 6 x+10\)
- The slope is the coeficient of x , or \(10 / 6\). Type \(10 / 6\).
5) Problem \#PRACMWZ "PRACMWZ - Algebra1 Finding Slope From Equation Mastery Learning 7"

Determine the slope from the following equation:
\(3 x+2 y=9\)

\section*{Algebraic Expression:}
\(-3 / 2\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:


First, you must subtract 3 x from both sides, giving you:
\(2 y=9-3 x\)
Then, divide each side by 2 .
\(\underline{2 y}=\)
9-3x
\(2=\)
2
\[
y=9 / 2-3 / 2 x
\]
- The slope is the coeficient of \(x\), or \(-3 / 2\). Type \(-3 / 2\).

\section*{6) Problem \#PRACMU6 "PRACMU6 - 57939 - Algebra1 Finding Slope From Equation Mastery Learning} \(6 "\)
Determine the slope from the following equation:
\(10 y=4\)

\section*{Algebraic Expression:}

0
Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 10 . The equation should now look like this:
\begin{tabular}{ll}
10 y & \(=\) \\
10 & \(=\) \\
& \multicolumn{1}{l}{}
\end{tabular}
\(y=0 x+4 / 10\)
We added in the x so that you can see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or 0 . Type in 0 .

\section*{7) Problem \#PRACMT7 "PRACMT7 - Algebra1 Finding Slope From Equation Mastery Learning 8"}

Determine the slope from the following equation:
\(7 y-5 x=5\)

\section*{Algebraic Expression:}
\(5 / 7\)
Hints:
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slopeintercept form:

- First, you must subtract 5 x from both sides, giving you:
\(7 y=5+5 x\)
Then, divide each side by 7 .
\begin{tabular}{ll}
\(\underline{7 y}=\) & \(\underline{5+5 x}\) \\
\(7=\) & 7 \\
\(y=5 / 7+5 / 7 x\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(5 / 7\). Type \(5 / 7\).
8) Problem \#PRACMUW "PRACMUW - Algebra1 Finding Slope From Equation Mastery Learning 9"

Determine the slope from the following equation:
\(10 y=10 x\)

\section*{Algebraic Expression:}

1
Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:
A Number
that is the
slope
Vat is the
that intercept
- To do this, divide each side by 10 .
\(\underline{10 y}=\)
10x
\[
\mathrm{y}=\mathrm{x}
\]
- The slope is the coeficient of x , or in this case, 1. Type 1 .

\section*{9) Problem \#PRACMWY "PRACMWY - Algebra1 Finding Slope From Equation Mastery Learning 3"}

Determine the slope from the following equation:
\(y=8\)

\section*{Algebraic Expression:}
```

\}

```

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+8\)
We added in the \(x\) to this equation so that you could see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .

\section*{10) Problem \#PRACMV6 "PRACMV6-57935 - Algebra1 Finding Slope From Equation Mastery Learning} 2"
Determine the slope from the following equation:
\(y=-8 / 4 x+4\)

\section*{Algebraic Expression:}
\(\sqrt{ }-8 / 4\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=-8 / 4 x+4\)
- The slope is the coeficient of x , or \(-8 / 4\). Type \(-8 / 4\).

\section*{11) Problem \#PRACMWB "PRACMWB - 57935 - Algebra1 Finding Slope From Equation Mastery}

\section*{Learning 2"}

Determine the slope from the following equation:
\[
y=-3 / 9 x+10
\]

\section*{Algebraic Expression:}
\[
\sqrt{-3 / 9}
\]

Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=-3 / 9 x+10\)
- The slope is the coeficient of x , or \(-3 / 9\). Type \(-3 / 9\).
12) Problem \#PRACMVQ "PRACMVQ - 56520 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning"}

Determine the slope from the following equation:
\(y=2 / 9 x+8\)

\section*{Algebraic Expression:}
```

2/9

```

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=2 / 9 x+8\)
- The slope is the coeficient of \(x\), or \(2 / 9\). Type \(2 / 9\).

\section*{13) Problem \#PRACMUY "PRACMUY - Algebra1 Finding Slope From Equation Mastery Learning 9"}

Determine the slope from the following equation:
\(6 y=6 x\)

\section*{Algebraic Expression:}
\(\sqrt{ } 1\)
Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 6 .
\(\frac{6 y}{6}=\frac{6 x}{6}\)
\(\mathrm{y}=\mathrm{x}\)
- The slope is the coeficient of \(x\), or in this case, 1. Type 1 .

\section*{14) Problem \#PRACMVN "PRACMVN - 56520 - Algebra1 Finding Slope From Equation Mastery}

\section*{Learning"}

Determine the slope from the following equation:
\(y=2 / 7 x+8\)
Algebraic Expression:
\(2 / 7\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have: \(\mathrm{y}=2 / 7 \mathrm{x}+8\)
- The slope is the coeficient of \(x\), or 2/7. Type \(2 / 7\).

\section*{15) Problem \#PRACMV5 "PRACMV5-57935 - Algebra1 Finding Slope From Equation Mastery Learning} 2"
Determine the slope from the following equation:
\(y=-10 / 3 x+10\)

\section*{Algebraic Expression:}

ป \(-10 / 3\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:
A Number
that is the
slope
that is the
y-intercept
- In our problem we have: \(y=-10 / 3 x+10\)
- The slope is the coeficient of x , or -10/3. Type -10/3.16) Problem \#PRACMWH "PRACMWH - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:
\(y=2\)

\section*{Algebraic Expression:}
\(\checkmark 0\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+2\)
We added in the \(x\) to this equation so that you could see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .

\section*{17) Problem \#PRACMUN "PRACMUN - 57937 - Algebra1 Finding Slope From Equation Mastery}

\section*{Learning 4"}

Determine the slope from the following equation:
\(4 y=1 x+8\)

\section*{Algebraic Expression:}
\(1 / 4\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 4 .
\[
\begin{array}{ll}
\underline{4 y}= & \underline{1 x+8} \\
4= & 4 \\
y=1 / 4 x+8 / 4 &
\end{array}
\]
- The slope is the coeficient of x , or \(1 / 4\). Type \(1 / 4\).

\section*{18) Problem \#PRACMWT "PRACMWT - Algebra1 Finding Slope From Equation Mastery Learning 3"}

Determine the slope from the following equation:
\(\mathrm{y}=9\)

\section*{Algebraic Expression:}
\(\sqrt{0}\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(\mathrm{y}=0 \mathrm{x}+9\)
We added in the \(x\) to this equation so that you could see it. \(0 x=0\)
- The slope is the coeficient of x , or 0 .

Type in 0 .

\section*{19) Problem \#PRACMWD "PRACMWD - 57935 - Algebra1 Finding Slope From Equation Mastery} Learning 2"
Determine the slope from the following equation:
\(y=-9 / 5 x+8\)

\section*{Algebraic Expression:}
\(\sqrt{\text {-9/5 }}\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=-9 / 5 x+8\)
- The slope is the coeficient of \(x\), or -9/5. Type -9/5.

\section*{20) Problem \#PRACMT9 "PRACMT9 - Algebra1 Finding Slope From Equation Mastery Learning 8"}

Determine the slope from the following equation:
\(3 y-3 x=5\)

\section*{Algebraic Expression:}
```

$\sqrt{ } 3 / 3$

```

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- First, you must subtract 3 x from both sides, giving you: \(3 y=5+3 x\)

Then, divide each side by 3 .
\(\underline{3 y}=\)
\(\underline{5+3 x}\)
\(3=\)
3
\(y=5 / 3+3 / 3 x\)
- The slope is the coeficient of \(x\), or \(3 / 3\). Type \(3 / 3\).

\section*{21) Problem \#PRACMU3 "PRACMU3 - Algebra1 Finding Slope From Equation Mastery Learning 9"}

Determine the slope from the following equation:
\(2 \mathrm{y}=2 \mathrm{x}\)

\section*{Algebraic Expression:}
\(\sqrt{ } 1\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 2 .
\(\frac{2 \mathrm{y}}{2}=\quad \frac{2 \mathrm{x}}{2}\)
\(y=x\)
- The slope is the coeficient of x , or in this case, 1. Type 1 .

\section*{22) Problem \#PRACMUU "PRACMUU - Algebra1 Finding Slope From Equation Mastery Learning 5"}

Determine the slope from the following equation:
\(-4 y=1 x+6\)

\section*{Algebraic Expression:}

\footnotetext{
\(\sqrt{1 /-4}\)
}

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by -4 .
```

$-4 y=$
$\underline{1 x+6}$
$-4=$
-4
$y=1 /-4 x+6 /-4$

```
- The slope is the coeficient of x , or \(1 /-4\). Type \(1 /-4\).

\section*{23) Problem \#PRACMUQ "PRACMUQ - Algebra1 Finding Slope From Equation Mastery Learning 5"}

Determine the slope from the following equation:
\(-2 y=10 x+3\)

\section*{Algebraic Expression:}
\(\sqrt{10 /-2}\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by -2 .
\begin{tabular}{ll}
-2 y & \(=\) \\
\(-2=\) & \(\frac{10 x+3}{-2}\)
\end{tabular}
\[
y=10 /-2 x+3 /-2
\]
- The slope is the coeficient of \(x\), or 10/-2. Type 10/-2.

\section*{24) Problem \#PRACMWP "PRACMWP - Algebra1 Finding Slope From Equation Mastery Learning 3"}

Determine the slope from the following equation:
\(y=8\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)
Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+8\)
We added in the x to this equation so that you could see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .

\section*{25) Problem \#PRACMVB "PRACMVB - 57939 - Algebra1 Finding Slope From Equation Mastery}

Learning 6"
Determine the slope from the following equation:
\(6 y=1\)
Algebraic Expression:
\(\sqrt{ } 0\)
Hints:
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 6 . The equation should now look like this:
\(\underline{6 y}=\)
1
\(6=\)
6
\(y=0 x+1 / 6\)
We added in the x so that you can see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of x , or 0 .

Type in 0 .26) Problem \#PRACMWA "PRACMWA - 57935-Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
\(y=-3 / 3 x+7\)

\section*{Algebraic Expression:}
```

-3/3

```

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=-3 / 3 x+7\)
- The slope is the coeficient of x , or \(-3 / 3\). Type \(-3 / 3\).

\section*{27) Problem \#PRACMVH "PRACMVH - 56520 - Algebra1 Finding Slope From Equation Mastery}

Learning"
Determine the slope from the following equation:
\(y=9 / 10 x+5\)
Algebraic Expression:
9/10

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=9 / 10 x+5\)
- The slope is the coeficient of \(x\), or 9/10. Type 9/10.

\section*{28) Problem \#PRACMWQ "PRACMWQ - Algebra1 Finding Slope From Equation Mastery Learning 3"}

Determine the slope from the following equation: \(y=6\)

\section*{Algebraic Expression:}

\section*{\(\sqrt{ } 0\)}

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+6\)
We added in the x to this equation so that you could see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .

\section*{29) Problem \#PRACMWF "PRACMWF - 57935 - Algebra1 Finding Slope From Equation Mastery} Learning 2"
Determine the slope from the following equation:
\(y=-4 / 3 x+2\)

\section*{Algebraic Expression:}
\(\sqrt{ }-4 / 3\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=-4 / 3 x+2\)
- The slope is the coeficient of \(x\), or \(-4 / 3\). Type \(-4 / 3\).
30) Problem \#PRACMU9 "PRACMU9-57939 - Algebra1 Finding Slope From Equation Mastery Learning 6"
Determine the slope from the following equation:
\(5 y=1\)

\section*{Algebraic Expression: \\ 0}

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 5. The equation should now look like this:
5y \(=\)
1
\(5=\)
5
\(y=0 x+1 / 5\)
We added in the \(x\) so that you can see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .31) Problem \#PRACMWS "PRACMWS - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation:
\(y=9\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+9\)
We added in the \(x\) to this equation so that you could see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .32) Problem \#PRACMV3 "PRACMV3-57935-Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
\(y=-3 / 10 x+10\)

\section*{Algebraic Expression:}
v \(-3 / 10\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=-3 / 10 x+10\)
- The slope is the coeficient of \(x\), or \(-3 / 10\). Type \(-3 / 10\).33) Problem \#PRACMV9 "PRACMV9-57935-Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
\(y=-3 / 2 x+3\)

\section*{Algebraic Expression:}
\(\sqrt{ }-3 / 2\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=-3 / 2 x+3\)
- The slope is the coeficient of \(x\), or \(-3 / 2\). Type \(-3 / 2\).

\section*{34) Problem \#PRACMW6 "PRACMW6 - Algebra1 Finding Slope From Equation Mastery Learning 7"}

Determine the slope from the following equation:
\(7 x+5 y=9\)

\section*{Algebraic Expression:}
-7/5

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:


First, you must subtract 7x from both sides, giving you:
\(5 y=9-7 x\)
Then, divide each side by 5 .
\[
\begin{array}{cl}
\underline{5 y}= & \frac{9-7 x}{5} \\
5= &
\end{array}
\]
\[
y=9 / 5-7 / 5 x
\]
- The slope is the coeficient of \(x\), or \(-7 / 5\). Type - \(7 / 5\).35) Problem \#PRACMVF "PRACMVF - 56520 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning"}

Determine the slope from the following equation:
\(y=1 / 2 x+6\)
Algebraic Expression:
\(\sqrt{1 / 2}\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=1 / 2 x+6\)
- The slope is the coeficient of \(x\), or \(1 / 2\). Type \(1 / 2\).

\section*{36) Problem \#PRACMV4 "PRACMV4-57935 - Algebra1 Finding Slope From Equation Mastery Learning} 2"
Determine the slope from the following equation:
\(y=-6 / 2 x+1\)

\section*{Algebraic Expression:}

ป \(-6 / 2\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=-6 / 2 x+1\)
- The slope is the coeficient of \(x\), or -6/2. Type \(-6 / 2\).
37) Problem \#PRACMVP "PRACMVP - 56520 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning"}

Determine the slope from the following equation:
\(y=4 / 5 x+4\)
Algebraic Expression:
```

4/5

```

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=4 / 5 x+4\)
- The slope is the coeficient of \(x\), or \(4 / 5\). Type \(4 / 5\).

\section*{38) Problem \#PRACMWC "PRACMWC - 57935 - Algebra1 Finding Slope From Equation Mastery}

\section*{Learning 2"}

Determine the slope from the following equation:
\[
y=-6 / 1 x+8
\]

\section*{Algebraic Expression:}
- \(-6 / 1\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have: \(y=-6 / 1 x+8\)
- The slope is the coeficient of \(x\), or -6/1. Type \(-6 / 1\).

Determine the slope from the following equation:
\(\mathrm{y}=1\)

\section*{Algebraic Expression:}
\(\sqrt{0}\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+1\)
We added in the \(x\) to this equation so that you could see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .
40) Problem \#PRACMUK "PRACMUK - 57937 - Algebra1 Finding Slope From Equation Mastery

Learning 4"
Determine the slope from the following equation:
\(3 y=2 x+5\)

\section*{Algebraic Expression:}
```

\ 2/3

```

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 3 .
\[
\begin{array}{ll}
\frac{3 y}{y}= & \frac{2 x+5}{3} \\
y=2 / 3 x+5 / 3 &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(2 / 3\). Type \(2 / 3\).

\section*{41) Problem \#PRACMWX "PRACMWX - Algebra1 Finding Slope From Equation Mastery Learning 3"}

Determine the slope from the following equation:
\(y=10\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)
Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+10\)
We added in the x to this equation so that you could see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .

\section*{42) Problem \#PRACMWJ "PRACMWJ - Algebra1 Finding Slope From Equation Mastery Learning 3"}

Determine the slope from the following equation:
\(y=7\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)
Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+7\)
We added in the \(x\) to this equation so that you could see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .

\section*{43) Problem \#PRACMW2 "PRACMW2 - Algebra1 Finding Slope From Equation Mastery Learning 7"}

Determine the slope from the following equation:
\(10 x+6 y=6\)

\section*{Algebraic Expression:}
\(\sqrt{-10 / 6}\)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slopeintercept form:


First, you must subtract \(10 x\) from both sides, giving you:
\(6 y=6-10 x\)
Then, divide each side by 6 .
\begin{tabular}{rl}
\(\underline{6 y}\) & \(=\) \\
6 & \(=\) \\
\end{tabular}
\[
y=6 / 6-10 / 6 x
\]
- The slope is the coeficient of x , or -10/6. Type -10/6.

\section*{44) Problem \#PRACMW8 "PRACMW8 - Algebra1 Finding Slope From Equation Mastery Learning 7"}

Determine the slope from the following equation:
\(5 x+2 y=5\)

\section*{Algebraic Expression:}
\(-5 / 2\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:


First, you must subtract 5 x from both sides, giving you:
\(2 y=5-5 x\)
Then, divide each side by 2 .
\[
\begin{array}{ll}
\underline{2 y}= & \frac{5-5 x}{2} \\
2= &
\end{array}
\]
\[
y=5 / 2-5 / 2 x
\]
- The slope is the coeficient of \(x\), or \(-5 / 2\). Type \(-5 / 2\).45) Problem \#PRACMVY "PRACMVY - 57935 - Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
\(y=-7 / 8 x+3\)

\section*{Algebraic Expression:}

\footnotetext{
ป \(-7 / 8\)
}

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=-7 / 8 x+3\)
- The slope is the coeficient of x , or \(-7 / 8\). Type \(-7 / 8\).
46) Problem \#PRACMUJ "PRACMUJ - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(6 y=5 x+2\)

\section*{Algebraic Expression:}
\(\sqrt{5 / 6}\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 6 .
\[
\begin{array}{ll}
\frac{6 y}{6 y} & = \\
6
\end{array}
\]
\[
y=5 / 6 x+2 / 6
\]
- The slope is the coeficient of x , or \(5 / 6\). Type \(5 / 6\).47) Problem \#PRACMWN "PRACMWN - Algebra1 Finding Slope From Equation Mastery Learning 3" Determine the slope from the following equation:
\(y=9\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+9\)
We added in the \(x\) to this equation so that you could see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .

\section*{48) Problem \#PRACMUH "PRACMUH - 57937 - Algebra1 Finding Slope From Equation Mastery}

\section*{Learning 4"}

Determine the slope from the following equation:
\(9 y=9 x+5\)

\section*{Algebraic Expression:}

9/9

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 9 .
\begin{tabular}{rl}
\(\underline{9 y}\) & \(=\) \\
9 & \(=\) \\
\(9 x+5\) \\
9
\end{tabular}
\(y=9 / 9 x+5 / 9\)
- The slope is the coeficient of \(x\), or 9/9. Type 9/9.

\section*{49) Problem \#PRACMVA "PRACMVA - 57939 - Algebra1 Finding Slope From Equation Mastery}

\section*{Learning 6"}

Determine the slope from the following equation:
\(4 y=9\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)
Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 4 . The equation should now look like this:
\begin{tabular}{ll}
\(\underline{y y}\) & \(=\) \\
4 & \(\underline{9}\)
\end{tabular}
\(y=0 x+9 / 4\)
We added in the x so that you can see \(i t .0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .
50) Problem \#PRACMVG "PRACMVG - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"
Determine the slope from the following equation:
\(y=6 / 8 x+9\)
Algebraic Expression:
6/8

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=6 / 8 x+9\)
- The slope is the coeficient of \(x\), or \(6 / 8\). Type \(6 / 8\).

\section*{51) Problem \#PRACMVD "PRACMVD - 56520 - Algebra1 Finding Slope From Equation Mastery}

Learning"
Determine the slope from the following equation:
\(y=6 / 6 x+2\)
Algebraic Expression:
\(\sqrt{6 / 6}\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=6 / 6 x+2\)
- The slope is the coeficient of \(x\), or \(6 / 6\). Type \(6 / 6\).

\section*{52) Problem \#PRACMU2 "PRACMU2 - Algebra1 Finding Slope From Equation Mastery Learning 9"}

Determine the slope from the following equation:
\(6 y=6 x\)

\section*{Algebraic Expression:}
\(\sqrt{ } 1\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 6 .
\(\frac{6 y}{6}=\frac{6 x}{6}\)
\[
y=x
\]
- The slope is the coeficient of x , or in this case, 1. Type 1 .53) Problem \#PRACMUM "PRACMUM - 57937 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning 4"}

Determine the slope from the following equation:
\(6 y=3 x+8\)

\section*{Algebraic Expression:}
\(3 / 6\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 6 .
\begin{tabular}{cl}
\(\underline{6 y}=\) & \(\frac{3 x+8}{6}\) \\
6
\end{tabular}
\[
y=3 / 6 x+8 / 6
\]
- The slope is the coeficient of \(x\), or \(3 / 6\). Type \(3 / 6\).

\section*{54) Problem \#PRACMWU "PRACMWU - Algebra1 Finding Slope From Equation Mastery Learning 3"}

Determine the slope from the following equation: \(y=9\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+9\)
We added in the \(x\) to this equation so that you could see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .55) Problem \#PRACMVT "PRACMVT - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"
Determine the slope from the following equation:
\(y=7 / 6 x+1\)
Algebraic Expression:
\(7 / 6\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=7 / 6 x+1\)
- The slope is the coeficient of \(x\), or \(7 / 6\). Type \(7 / 6\).

\section*{56) Problem \#PRACMU8 "PRACMU8-57939 - Algebra1 Finding Slope From Equation Mastery Learning} 6"
Determine the slope from the following equation:
\(7 \mathrm{y}=1\)

\section*{Algebraic Expression:}

\section*{\(\sqrt{ } 0\)}

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 7. The equation should now look like this:
\begin{tabular}{ll}
7 y & \(=\) \\
7 & \(\frac{1}{7}\)
\end{tabular}
\[
y=0 x+1 / 7
\]

We added in the x so that you can see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of x , or 0 .

Type in 0 .57) Problem \#PRACMVR "PRACMVR - 56520 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning"}

Determine the slope from the following equation:
\(y=7 / 5 x+2\)
Algebraic Expression:
\(\sqrt{7 / 5}\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=7 / 5 x+2\)
- The slope is the coeficient of \(x\), or \(7 / 5\). Type \(7 / 5\).

\section*{58) Problem \#PRACMT8 "PRACMT8 - Algebra1 Finding Slope From Equation Mastery Learning 8"}

Determine the slope from the following equation:
\(6 y-4 x=3\)

\section*{Algebraic Expression:}
\(\sqrt{ } / 6\)
Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- First, you must subtract 4 x from both sides, giving you: \(6 y=3+4 x\)

Then, divide each side by 6 .
\[
\begin{array}{ll}
\underline{6 y}= & \underline{3+4 x} \\
6= & 6 \\
y=3 / 6+4 / 6 x &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(4 / 6\). Type \(4 / 6\).

\section*{59) Problem \#PRACMW3 "PRACMW3 - Algebra1 Finding Slope From Equation Mastery Learning 7"}

Determine the slope from the following equation:
\(9 x+3 y=4\)

\section*{Algebraic Expression:}
\(-9 / 3\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:


First, you must subtract 9 x from both sides, giving you:
\(3 y=4-9 x\)
Then, divide each side by 3 .
\(3 \mathrm{y}=\)
4-9x
\(3=\)
3
\(y=4 / 3-9 / 3 x\)
- The slope is the coeficient of x , or \(-9 / 3\). Type \(-9 / 3\).60) Problem \#PRACMUC "PRACMUC - Algebra1 Finding Slope From Equation Mastery Learning 8"

Determine the slope from the following equation:
\(7 \mathrm{y}-2 \mathrm{x}=1\)

\section*{Algebraic Expression:}
```

\/7

```

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- First, you must subtract 2 x from both sides, giving you:
\(7 \mathrm{y}=1+2 \mathrm{x}\)
Then, divide each side by 7 .
\begin{tabular}{ll}
\(\underline{y}=\) & \(\underline{1+2 x}\) \\
\(7=\) & 7 \\
\(y=1 / 7+2 / 7 x\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(2 / 7\). Type \(2 / 7\).
61) Problem \#PRACMUR "PRACMUR - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:
\(-3 y=1 x+4\)

\section*{Algebraic Expression:}
\(\sqrt{1 /-3}\)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by -3 .
```

$\underline{-3 y}=\quad \underline{1 x+4}$
$-3=\quad-3$
$y=1 /-3 x+4 /-3$

```
- The slope is the coeficient of x , or \(1 /-3\). Type \(1 /-3\).62) Problem \#PRACMUX "PRACMUX - Algebra1 Finding Slope From Equation Mastery Learning 9"

Determine the slope from the following equation:
\(10 y=10 x\)

\section*{Algebraic Expression:}
\(\sqrt{1}\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 10 .
\(10 \mathrm{y}=\) 10x
10 10

\section*{\(y=x\)}
- The slope is the coeficient of \(x\), or in this case, 1. Type 1 .

\section*{63) Problem \#PRACMVC "PRACMVC - 57939 - Algebra1 Finding Slope From Equation Mastery}

Learning 6"
Determine the slope from the following equation:
\(1 y=6\)

\section*{Algebraic Expression:}

\section*{\(\sqrt{ } 0\)}

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 1 . The equation should now look like this:
\begin{tabular}{cc}
\(\underline{1 y}=\) & \(\underline{6}\) \\
\(1=\) & 1
\end{tabular}
\[
y=0 x+6 / 1
\]

We added in the x so that you can see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or 0 . Type in 0 .

\section*{64) Problem \#PRACMUZ "PRACMUZ - Algebra1 Finding Slope From Equation Mastery Learning 9"}

Determine the slope from the following equation:
\(8 y=8 x\)

\section*{Algebraic Expression: \\ \(\sqrt{ } 1\)}

Hints:
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 8 .
\(\underline{8 y}=\) 8x

8
8
\(y=x\)
- The slope is the coeficient of x , or in this case, 1. Type 1 .

\section*{65) Problem \#PRACMWW "PRACMWW - Algebra1 Finding Slope From Equation Mastery Learning 3"}

Determine the slope from the following equation:
\(\mathrm{y}=9\)

\section*{Algebraic Expression:}
\(\sqrt{0}\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+9\)
We added in the \(x\) to this equation so that you could see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .

\section*{66) Problem \#PRACMVE "PRACMVE - 56520 - Algebra1 Finding Slope From Equation Mastery}

\section*{Learning"}

Determine the slope from the following equation:
\(y=7 / 1 x+10\)
Algebraic Expression:
\(7 / 1\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=7 / 1 x+10\)
- The slope is the coeficient of \(x\), or \(7 / 1\). Type \(7 / 1\).

\section*{67) Problem \#PRACMUA "PRACMUA - Algebra1 Finding Slope From Equation Mastery Learning 8"}

Determine the slope from the following equation:
\(4 y-10 x=4\)

\section*{Algebraic Expression:}
\(10 / 4\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- First, you must subtract 10x from both sides, giving you:
\(4 y=4+10 x\)

Then, divide each side by 4 .
\[
\begin{array}{ll}
\underline{4 y}= & 4+10 x \\
4= & 4 \\
y=4 / 4+10 / 4 x &
\end{array}
\]
- The slope is the coeficient of x , or 10/4. Type 10/4.

\section*{68) Problem \#PRACMUT "PRACMUT - Algebra1 Finding Slope From Equation Mastery Learning 5"}

Determine the slope from the following equation:
\(-3 y=7 x+3\)

\section*{Algebraic Expression:}
```

7/-3

```

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by -3 .
\(-3 \mathrm{y}=\)
\(7 x+3\)
\(-3=\)
-3
\(y=7 /-3 x+3 /-3\)
- The slope is the coeficient of \(x\), or \(7 /-3\). Type \(7 /-3\).

\section*{69) Problem \#PRACMWM "PRACMWM - Algebra1 Finding Slope From Equation Mastery Learning 3"}

Determine the slope from the following equation:
\(y=6\)
```

Algebraic Expression:
$\sqrt{0}$

```

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+6\)
We added in the \(x\) to this equation so that you could see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or 0 . Type in 0 .

\section*{70) Problem \#PRACMWR "PRACMWR - Algebra1 Finding Slope From Equation Mastery Learning 3"}

Determine the slope from the following equation:
\(y=8\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+8\)
We added in the \(x\) to this equation so that you could see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .

Determine the slope from the following equation:
\(6 y=3 x+5\)

\section*{Algebraic Expression:}
```

v 3/6

```

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 6 .
\[
\begin{array}{ll}
\frac{6 y}{6}= & \frac{3 x+5}{6} \\
y=3 / 6 x+5 / 6 &
\end{array}
\]
- The slope is the coeficient of \(x\), or 3/6. Type \(3 / 6\).

\section*{72) Problem \#PRACMUE "PRACMUE - Algebra1 Finding Slope From Equation Mastery Learning 8"}

Determine the slope from the following equation:
\(2 y-4 x=1\)

\section*{Algebraic Expression:}
v \(4 / 2\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- First, you must subtract 4 x from both sides, giving you:
\(2 y=1+4 x\)
Then, divide each side by 2 .
\begin{tabular}{ll}
\(\underline{2 y}=\) & \(\underline{1+4 x}\) \\
\(2=\) & 2 \\
\(y=1 / 2+4 / 2 x\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(4 / 2\). Type \(4 / 2\).

\section*{73) Problem \#PRACMVW "PRACMVW - 56520 - Algebra1 Finding Slope From Equation Mastery}

\section*{Learning"}

Determine the slope from the following equation:
\(y=10 / 4 x+1\)

\section*{Algebraic Expression:}

10/4
Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=10 / 4 x+1\)
- The slope is the coeficient of \(x\), or 10/4. Type 10/4.74) Problem \#PRACMV8 "PRACMV8 - 57935-Algebra1 Finding Slope From Equation Mastery Learning 2"
Determine the slope from the following equation:
\(y=-1 / 10 x+7\)

\section*{Algebraic Expression:}
\(\sqrt{-1 / 10}\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:
A Number
that is the
slope
that is the
y-intercept
- In our problem we have:
\(y=-1 / 10 x+7\)
- The slope is the coeficient of x , or \(-1 / 10\). Type \(-1 / 10\).

\section*{75) Problem \#PRACMWV "PRACMWV - Algebra1 Finding Slope From Equation Mastery Learning 3"}

Determine the slope from the following equation:
\(y=3\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)
Hints:
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+3\)
We added in the x to this equation so that you could see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of x , or 0 .

Type in 0 .76) Problem \#PRACMVX "PRACMVX - 57935 - Algebra1 Finding Slope From Equation Mastery

Learning 2"
Determine the slope from the following equation:
\[
y=-3 / 2 x+3
\]

\section*{Algebraic Expression:}

ป \(-3 / 2\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=-3 / 2 x+3\)
- The slope is the coeficient of x , or \(-3 / 2\). Type \(-3 / 2\).
77) Problem \#PRACMVK "PRACMVK - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"
Determine the slope from the following equation:
\(y=10 / 7 x+3\)
Algebraic Expression:
10/7

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(\mathrm{y}=10 / 7 \mathrm{x}+3\)
- The slope is the coeficient of x , or \(10 / 7\). Type 10/7.

\section*{78) Problem \#PRACMVV "PRACMVV - 56520 - Algebra1 Finding Slope From Equation Mastery}

Learning"
Determine the slope from the following equation:
\(y=10 / 6 x+1\)
Algebraic Expression:
\(\sqrt{10 / 6}\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=10 / 6 x+1\)
- The slope is the coeficient of x , or \(10 / 6\). Type \(10 / 6\).
79) Problem \#PRACMUV "PRACMUV - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:
\(-8 y=5 x+10\)

\section*{Algebraic Expression:}
\(\sqrt{5 /-8}\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by -8 .
\[
\begin{array}{ll}
-8 y= & \underline{x x+10} \\
-8= & -8
\end{array}
\]
\[
y=5 /-8 x+10 /-8
\]
- The slope is the coeficient of \(x\), or \(5 /-8\). Type 5/-8.

\section*{80) Problem \#PRACMVJ "PRACMVJ - 56520 - Algebra1 Finding Slope From Equation Mastery}

\section*{Learning"}

Determine the slope from the following equation:
\(y=1 / 1 x+9\)

\section*{Algebraic Expression:}
v \(1 / 1\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\[
y=1 / 1 x+9
\]
- The slope is the coeficient of x , or \(1 / 1\). Type \(1 / 1\).

\section*{81) Problem \#PRACMV7 "PRACMV7-57935 - Algebra1 Finding Slope From Equation Mastery Learning} 2"
Determine the slope from the following equation:
\(y=-8 / 7 x+5\)

\section*{Algebraic Expression:}
\(\sqrt{ }-8 / 7\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=-8 / 7 x+5\)
- The slope is the coeficient of \(x\), or \(-8 / 7\). Type \(-8 / 7\).

\section*{82) Problem \#PRACMUD "PRACMUD - Algebra1 Finding Slope From Equation Mastery Learning 8"}

Determine the slope from the following equation:
\(7 y-1 x=5\)

\section*{Algebraic Expression:}

1/7

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:
A Number
that is the
slope
Variable
- First, you must subtract 1 x from both sides, giving you:
\(7 \mathrm{y}=5+1 \mathrm{x}\)
Then, divide each side by 7 .
\[
\begin{array}{ll}
\underline{y}= & \underline{5+1 x} \\
7= & 7 \\
y=5 / 7+1 / 7 x &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(1 / 7\). Type \(1 / 7\).

\section*{83) Problem \#PRACMVZ "PRACMVZ - 57935 - Algebra1 Finding Slope From Equation Mastery} Learning 2"
Determine the slope from the following equation:
\(y=-5 / 3 x+2\)

\section*{Algebraic Expression:}
\(\sqrt{ }-5 / 3\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=-5 / 3 x+2\)
- The slope is the coeficient of x , or \(-5 / 3\). Type \(-5 / 3\).84) Problem \#PRACMVM "PRACMVM - 56520 - Algebra1 Finding Slope From Equation Mastery Learning"
Determine the slope from the following equation:
\(y=10 / 8 x+2\)
Algebraic Expression:
10/8

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=10 / 8 x+2\)
- The slope is the coeficient of \(x\), or \(10 / 8\). Type \(10 / 8\).

\section*{85) Problem \#PRACMUB "PRACMUB - Algebra1 Finding Slope From Equation Mastery Learning 8"}

Determine the slope from the following equation:
\(8 y-5 x=4\)

\section*{Algebraic Expression:}
\(\sqrt{5 / 8}\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- First, you must subtract 5 x from both sides, giving you: \(8 y=4+5 x\)

Then, divide each side by 8 .
\(\underline{8 y}=\)
\(\underline{4+5 x}\)
\(8=\)
8
\(y=4 / 8+5 / 8 x\)
- The slope is the coeficient of \(x\), or 5/8. Type 5/8.

\section*{86) Problem \#PRACMUS "PRACMUS - Algebra1 Finding Slope From Equation Mastery Learning 5"}

Determine the slope from the following equation:
\(-2 y=3 x+7\)

\section*{Algebraic Expression:}

3/-2

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:
A Number
that is the
slope
Variable
- To do this, divide each side by -2 .
```

$\underline{-2 y}=\quad \underline{3 x+7}$
$-2=-2$
$y=3 /-2 x+7 /-2$

```
- The slope is the coeficient of \(x\), or 3/-2. Type 3/-2.

\section*{87) Problem \#PRACMV2 "PRACMV2-57935-Algebra1 Finding Slope From Equation Mastery Learning} 2"
Determine the slope from the following equation:
\(y=-2 / 1 x+6\)

\section*{Algebraic Expression:}
\(-2 / 1\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=-2 / 1 x+6\)
- The slope is the coeficient of x , or \(-2 / 1\). Type \(-2 / 1\).
88) Problem \#PRACMWG "PRACMWG - Algebra1 Finding Slope From Equation Mastery Learning 3"

Determine the slope from the following equation: \(y=6\)

\section*{Algebraic Expression:}

\section*{\(\sqrt{0}\)}

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+6\)
We added in the \(x\) to this equation so that you could see it. \(0 x=0\)
- The slope is the coeficient of x , or 0 .

Type in 0 .

Determine the slope from the following equation:
\(4 y=4 x\)

\section*{Algebraic Expression:}
\(\sqrt{1}\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 4 .
\(\frac{4 y}{4}=\frac{4 \mathrm{x}}{4}\)
\(y=x\)
- The slope is the coeficient of x , or in this case, 1. Type 1 .

\section*{90) Problem \#PRACMU4 "PRACMU4 - Algebra1 Finding Slope From Equation Mastery Learning 9"}

Determine the slope from the following equation:
\(3 y=3 x\)

\section*{Algebraic Expression:}

\section*{\(\sqrt{1}\)}

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 3 .
\(\frac{3 y}{3}=\quad \frac{3 x}{3}\)
\(\mathrm{y}=\mathrm{x}\)
- The slope is the coeficient of x , or in this case, 1. Type 1 .

\section*{91) Problem \#PRACMW4 "PRACMW4 - Algebra1 Finding Slope From Equation Mastery Learning 7"}

Determine the slope from the following equation:
\(6 x+10 y=6\)

\section*{Algebraic Expression:}
\(\sqrt{-6 / 10}\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:


First, you must subtract \(6 x\) from both sides, giving you:
\(10 y=6-6 x\)
Then, divide each side by 10 .
\begin{tabular}{ll}
\(\underline{10 y}\) & \(=\) \\
10 & \(=\frac{6-6 x}{10}\)
\end{tabular}
\[
y=6 / 10-6 / 10 x
\]
- The slope is the coeficient of \(x\), or \(-6 / 10\). Type \(-6 / 10\).
92) Problem \#PRACMW5 "PRACMW5 - Algebra1 Finding Slope From Equation Mastery Learning 7"

Determine the slope from the following equation:
\(4 x+3 y=7\)

\section*{Algebraic Expression:}
-4/3

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:


First, you must subtract 4 x from both sides, giving you:
\(3 y=7-4 x\)

Then, divide each side by 3 .
\(\underline{3 y}=\)
7-4x
\(3=\)
3
\[
y=7 / 3-4 / 3 x
\]
- The slope is the coeficient of \(x\), or \(-4 / 3\). Type \(-4 / 3\).

\section*{93) Problem \#PRACMW7 "PRACMW7 - Algebra1 Finding Slope From Equation Mastery Learning 7"}

Determine the slope from the following equation:
\(9 x+5 y=6\)

\section*{Algebraic Expression:}
```

-9/5

```

Hints:
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slopeintercept form:


First, you must subtract 9 x from both sides, giving you:
\(5 y=6-9 x\)
Then, divide each side by 5 .
5y \(=\)
\(\underline{6-9 x}\)
\(5=\)5
\[
y=6 / 5-9 / 5 x
\]
- The slope is the coeficient of x , or \(-9 / 5\). Type \(-9 / 5\).94) Problem \#PRACMVU "PRACMVU - 56520 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning"}

Determine the slope from the following equation:
\(y=4 / 4 x+10\)
Algebraic Expression:
\(\sqrt{4 / 4}\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=4 / 4 x+10\)
- The slope is the coeficient of \(x\), or \(4 / 4\). Type \(4 / 4\).

\section*{95) Problem \#PRACMU7 "PRACMU7-57939 - Algebra1 Finding Slope From Equation Mastery Learning} 6"
Determine the slope from the following equation:
\(3 \mathrm{y}=9\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slopeintercept form:

- To do this, divide each side by 3. The equation should now look like this:
\begin{tabular}{cc}
\(\frac{3 y}{}=\) & \(\frac{9}{3}\) \\
3 &
\end{tabular}
\(y=0 x+9 / 3\)
We added in the x so that you can see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or 0 .

Type in 0 .

- To do this, divide each side by 3. The equation should now look like
this:
\(\frac{3 y}{}=\)
\(3=\)
\(y=0 x+9 / 3\)
We added in the x so that you can see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or
0.

Type in 0 .

End of MasterySection "Control" [5083749]
MasterySection "Experiment " [5083754]
97) Problem \#PRABC2QP "PRABC2QP - 57937 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning 4"}

Determine the slope from the following equation:
\[
2 y=8 x+9
\]

\section*{Algebraic Expression:}

」 \(8 / 2\)
\(\times 8\)
-
You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\[
2 y=8 x+9
\]

Divide everything by 2
\(\underline{2 y}=\)
\(\underline{8 x+9}\)
2
2
\(y=8 / 2 x+9 / 2\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 2 .
\(2 \mathrm{y}=\)
\(\underline{8 x+9}\)
\(2=\)
2
\(y=8 / 2 x+9 / 2\)
- The slope is the coeficient of \(x\), or \(8 / 2\). Type 8/2.

\section*{98) Problem \#PRABC2QQ "PRABC2QQ - 57937 - Algebra1 Finding Slope From Equation Mastery}

\section*{Learning 4"}

Determine the slope from the following equation:
\(8 y=3 x+5\)
```

Algebraic Expression:
$3 / 8$
$\times 3$

```

You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\[
8 y=3 x+5
\]

Divide everything by 8
\[
\frac{8 y}{8}=\quad \frac{3 x+5}{8}
\]
\(y=3 / 8 x+5 / 8\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 8 .
\begin{tabular}{ll}
\(\frac{8 y}{}=\) & \(\frac{3 x+5}{8}\) \\
\(8=\) & \\
\(y=3 / 8 x+5 / 8\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(3 / 8\). Type 3/8.
99) Problem \#PRABC2QR "PRABC2QR - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(3 y=3 x+10\)

\section*{Algebraic Expression:}

ป \(3 / 3\)
\(\times 3\)
-
You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(3 y=3 x+10\)

Divide everything by 3
\[
\frac{3 y}{3}=\quad \frac{3 x+10}{3}
\]
\(y=3 / 3 x+10 / 3\)

Now you can read the coefficient of \(x\) as the slope ( m )

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 3 .
\[
\begin{array}{cl}
\frac{3 y}{}= & \frac{3 x+10}{3} \\
3 & =
\end{array}
\]
\[
y=3 / 3 x+10 / 3
\]
- The slope is the coeficient of \(x\), or \(3 / 3\). Type 3/3.

\section*{100) Problem \#PRABC2QS "PRABC2QS - 57937 - Algebra1 Finding Slope From Equation Mastery}

Learning 4"
Determine the slope from the following equation:
\(10 y=8 x+2\)

\section*{Algebraic Expression:}

8/10
\(\times 8\)
-

You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(10 y=8 x+2\)

Divide everything by 10
\(\frac{10 \mathrm{y}}{10}=\quad \frac{8 \mathrm{x}+2}{10}\)
\(y=8 / 10 x+2 / 10\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 10 .
\(\underline{10 \mathrm{y}}=\)
\(\underline{8 x+2}\)
\(10=\)
10
\(y=8 / 10 x+2 / 10\)
- The slope is the coeficient of x , or \(8 / 10\). Type 8/10.
101) Problem \#PRABC2QT "PRABC2QT - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(9 y=2 x+4\)
```

Algebraic Expression:
」 $2 / 9$
$\times 2$

```

You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\[
9 y=2 x+4
\]

Divide everything by 9
\[
\frac{9 y}{9}=\quad \frac{2 x+4}{9}
\]
\[
y=2 / 9 x+4 / 9
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 9 .
\begin{tabular}{ll}
\(\frac{9 y}{9}=\) & \(\frac{2 x+4}{9}\) \\
\(9=\) & \\
\(y=2 / 9 x+4 / 9\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(2 / 9\). Type 2/9.
102) Problem \#PRABC2QU "PRABC2QU - 57937-Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(5 y=9 x+2\)

\section*{Algebraic Expression:}

9/5
\(\times 9\)
-
You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(5 y=9 x+2\)

Divide everything by 5
\(\frac{5 y}{5}=\quad \frac{9 x+2}{5}\)
\(y=9 / 5 x+2 / 5\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:
A Number
that is the
slope
Variable
that is the
y-intercept
- To do this, divide each side by 5 .
\[
\begin{aligned}
& \frac{5 y}{5}= \\
& 5 \underline{9 x+2} \\
& 5
\end{aligned}
\]
\(y=9 / 5 x+2 / 5\)
- The slope is the coeficient of \(x\), or \(9 / 5\). Type 9/5.

\section*{103) Problem \#PRABC2QV "PRABC2QV - 57937 - Algebra1 Finding Slope From Equation Mastery}

Learning 4"
Determine the slope from the following equation:
\(10 y=2 x+8\)

\section*{Algebraic Expression:}
\(\sqrt{2 / 10}\)
\(\times 2\)
-
You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(10 y=2 x+8\)

Divide everything by 10
\(\frac{10 y}{10}=\quad \frac{2 x+8}{10}\)
\(y=2 / 10 x+8 / 10\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 10 .
\(\underline{10 \mathrm{y}}=\)
\(\underline{2 x+8}\)
\(10=\)
10
\(y=2 / 10 x+8 / 10\)
- The slope is the coeficient of \(x\), or \(2 / 10\). Type 2/10.

\section*{104) Problem \#PRABC2QW "PRABC2QW - 57939 - Algebra1 Finding Slope From Equation Mastery} Learning 6"
Determine the slope from the following equation:
\(1 \mathrm{y}=2\)
```

Algebraic Expression:
$\sqrt{ } 0$
$\times 1$

```

You just made a very common mistake. You just took the number in front of \(y\) as the slope. But remember, we can't just take the number in front of y as the slope.

Recall, in order to read the slope from an equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\[
1 y=2
\]

Divide everything by 1
\[
\begin{array}{cc}
\underline{1 y}= & \underline{2} \\
1= & 1
\end{array}
\]
\[
y=0 x+2 / 1
\]

Since there's no x , it's as if we have a 0 in front of the x after this division
\(\times 2\)
-
You just made a very common mistake. You just took the number on the other side of the \(y\) as the slope. But remember, we can't just take the number on the other side of the equation from \(y\).

Recall, in order to read the slope from an equation, it must be in the form
```

y=mx+b

```
you must solve for y first
\[
1 y=2
\]

Divide everything by 1
\[
\begin{array}{cl}
\underline{1 y}= & \underline{2} \\
1= & 1
\end{array}
\]
\[
y=0 x+2 / 1
\]

Since there's no x , it's as if we have a 0 in front of the x after this division

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 1 . The equation should now look like
this:
\(1 \mathrm{y}=\)
\(\underline{2}\)
\(1=\)
\(y=0 x+2 / 1\)
We added in the x so that you can see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or
0.

Type in 0 .
105) Problem \#PRABC2QX "PRABC2QX - 57939 - Algebra1 Finding Slope From Equation Mastery

Learning 6"
Determine the slope from the following equation:
\(10 y=4\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)
\(\times 10\)

You just made a very common mistake. You just took the number in front of \(y\) as the slope. But remember, we can't just take the number in front of y as the slope.

Recall, in order to read the slope from an equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\[
10 y=4
\]

Divide everything by 10
\[
\begin{array}{rl}
\frac{10 y}{10}= & \underline{4} \\
10 & 10
\end{array}
\]
\[
y=0 x+4 / 10
\]

Since there's no x , it's as if we have a 0 in front of the x after this division
\(\times 4\)

You just made a very common mistake. You just took the number on the other side of the \(y\) as the slope. But remember, we can't just take the number on the other side of the equation from \(y\).

Recall, in order to read the slope from an equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\[
10 y=4
\]

Divide everything by 10
\[
\begin{aligned}
\underline{10 y}= & \underline{4} \\
10= & 10
\end{aligned}
\]
\[
y=0 x+4 / 10
\]

Since there's no \(x\), it's as if we have a 0 in front of the x after this division

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 10 . The equation should now look like
this:
\begin{tabular}{ll}
\(\frac{10 y}{10 y}=\) & 4 \\
\(10=\) & 10 \\
\(y=0 x+4 / 10\) \\
We added in the \(x\) so that you can see it. \(0 x=0\)
\end{tabular}
- The slope is the coeficient of \(x\), or
0.

Type in 0 .
106) Problem \#PRABC2QY "PRABC2QY - 57939 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning 6"}

Determine the slope from the following equation:
\(3 y=3\)
Algebraic Expression:
\(\checkmark 0\)
\(\times 3\)
-

You just made a very common mistake. You just took the number in front of \(y\) as the slope. But remember, we can't just take the number in front of y as the slope.

Recall, in order to read the slope from an equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(3 y=3\)

Divide everything by 3
\[
\begin{array}{cc}
\underline{3 y}= & \underline{3} \\
3= & 3
\end{array}
\]
\(y=0 x+3 / 3\)

Since there's no \(x\), it's as if we have a 0 in front of the x after this division
\(\times 3\)
-

You just made a very common mistake. You just took the number on the other side of the \(y\) as the slope. But remember, we can't just take the number on the other side of the equation from \(y\).

Recall, in order to read the slope from an equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(3 y=3\)

Divide everything by 3
\(\underline{3 y}=\quad \underline{3}\)
\(3=\)
3
\[
y=0 x+3 / 3
\]

Since there's no \(x\), it's as if we have a 0 in front of the x after this division

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 3. The equation should now look like this:
\(\begin{array}{cl}\underline{3 y}= & \underline{3} \\ 3= & 3\end{array}\)
\(y=0 x+3 / 3\)
We added in the x so that you can see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or
0.

Type in 0 .

\section*{107) Problem \#PRABC2QZ "PRABC2QZ - 57939 - Algebra1 Finding Slope From Equation Mastery}

\section*{Learning 6"}

Determine the slope from the following equation: \(9 \mathrm{y}=5\)

\section*{Algebraic Expression:}
\(\checkmark 0\)
\(\times 9\)

You just made a very common mistake. You just took the number in front of y as the slope. But remember, we can't just take the number in front of \(y\) as the slope.

Recall, in order to read the slope from an equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\[
9 y=5
\]

Divide everything by 9
\[
\begin{array}{cc}
\underline{9 y}= & \underline{5} \\
9= & 9
\end{array}
\]
\[
y=0 x+5 / 9
\]

Since there's no x , it's as if we have a 0 in front of the x after this division
\(\times 5\)
-
You just made a very common mistake. You just took the number on the other side of the \(y\) as the slope. But remember, we can't just take the number on the other side of the equation from \(y\).

Recall, in order to read the slope from an equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(9 y=5\)

Divide everything by 9
\[
\begin{array}{cl}
\underline{9 y}= & \underline{5} \\
9= & 9
\end{array}
\]
\[
y=0 x+5 / 9
\]

Since there's no x , it's as if we have a 0 in front of the x after this division

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 9 . The equation should now look like this:
\[
\begin{gathered}
9 y= \\
9=
\end{gathered}
\]
\[
y=0 x+5 / 9
\]

We added in the x so that you can see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or
0.

Type in 0 .
Appendix 2.3 "View Problems" Test Group-Common Wrong Answer

\section*{108) Problem \#PRABC2Q2 "PRABC2Q2-57939 - Algebra1 Finding Slope From Equation Mastery} Learning 6"
Determine the slope from the following equation:
\(6 y=3\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)
\(\times 6\)
-
You just made a very common mistake. You just took the number in front of y as the slope. But remember, we can't just take the number in front of \(y\) as the slope.

Recall, in order to read the slope from an equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\(6 y=3\)

Divide everything by 6
\[
\begin{array}{cl}
\underline{6 y} & = \\
6 & = \\
\hline
\end{array}
\]
\[
y=0 x+3 / 6
\]

Since there's no \(x\), it's as if we have a 0 in front of the x after this division
\(\times 3\)
-
You just made a very common mistake. You just took the number on the other side of the \(y\) as the slope. But remember, we can't just take the number on the other side of the equation from \(y\).

Recall, in order to read the slope from an equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\(6 y=3\)

Divide everything by 6
\[
\begin{array}{cl}
\underline{6 y} & = \\
6 & = \\
6
\end{array}
\]
\[
y=0 x+3 / 6
\]

Since there's no x , it's as if we have a 0 in front of the x after this division

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 6. The equation should now look like
this:
\(\begin{array}{ll}6 y & = \\ 6 & = \\ \end{array}\)
\(y=0 x+3 / 6\)
We added in the \(x\) so that you can see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or
0.

Type in 0 .
109) Problem \#PRABC2Q3 "PRABC2Q3-57939 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning 6"}

Determine the slope from the following equation:
\(7 y=4\)
Algebraic Expression:
\(\sqrt{ } 0\)
\(\times 7\)
-

You just made a very common mistake. You just took the number in front of \(y\) as the slope. But remember, we can't just take the number in front of \(y\) as the slope.

Recall, in order to read the slope from an equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(7 y=4\)

Divide everything by 7
\[
\begin{array}{cc}
7 y= & \underline{4} \\
7= & 7
\end{array}
\]
\[
y=0 x+4 / 7
\]

Since there's no \(x\), it's as if we have a 0 in front of the x after this division
\(\times 4\)
-
You just made a very common mistake. You just took the number on the other side of the \(y\) as the slope. But remember, we can't just take the number on the other side of the equation from \(y\).

Recall, in order to read the slope from an equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\(7 \mathrm{y}=4\)

Divide everything by 7
\begin{tabular}{cc}
\(7 y\) & \(=\) \\
\(7=\) & 4
\end{tabular}
\[
y=0 x+4 / 7
\]

Since there's no \(x\), it's as if we have a 0 in front of the x after this division

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 7. The equation should now look like this:
\begin{tabular}{cl}
7 y & \(=\) \\
7 & \(=\)
\end{tabular}
\(y=0 x+4 / 7\)
We added in the \(x\) so that you can see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or
0.

Type in 0 .

\section*{110) Problem \#PRABC2Q4 "PRABC2Q4 - Algebra1 Finding Slope From Equation Mastery Learning 5"}

Determine the slope from the following equation:
\(5 y+9 x=1\)

\section*{Algebraic Expression:}
\(\sqrt{ }-9 / 5\)
\(\times \quad-9\)
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must
be in the form
\(y=m x+b\)
you must solve for y first
\(5 y+9 x=1\)
subtract 9 x from both sides to get y by itself
\[
5 y=-9 x+1
\]

Divide everything by 5
\(\underline{5 y}=\quad \underline{-9 x+1}\)
\(5=\)
5
\(y=-9 / 5 x+1 / 5\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 1.8\)
-
Don't forget the negative!
\(\times 9\)
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(5 y+9 x=1\)
subtract 9 x from both sides to get y by itself
\(5 y=-9 x+1\)

Divide everything by 5 . Don't forget the negative in front of the x !
\[
\begin{array}{ll}
5 y= & \underline{-9 x+1} \\
5= & 5
\end{array}
\]
\[
y=-9 / 5 x+1 / 5
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 5 .
\begin{tabular}{cl}
\(\underline{5 y}=\) & \(\frac{-9 x+1}{5}\) \\
5 & 5
\end{tabular}
\(y=-9 / 5 x+1 / 5\)
- The slope is the coeficient of \(x\), or \(-9 / 5\). Type
-9/5.
111) Problem \#PRABC2Q5 "PRABC2Q5 - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:
\(8 y+8 x=5\)

\section*{Algebraic Expression:}
\(\sqrt{ }-8 / 8\)
X -8
-

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(8 y+8 x=5\)
subtract 8 x from both sides to get y by itself
\[
8 y=-8 x+5
\]

Divide everything by 8
\[
\begin{aligned}
& \underline{8 y}= \\
& 8= \underline{-8 x+5} \\
& 8
\end{aligned}
\]
\[
y=-8 / 8 x+5 / 8
\]

Now you can read the coefficient of \(x\) as the slope ( \(m\) )
\(\times 1\)

Don't forget the negative!
\(\times 8\)
-

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(8 y+8 x=5\)
subtract 8 x from both sides to get y by itself
\(8 y=-8 x+5\)

Divide everything by 8 . Don't forget the negative in front of the x !
\(\underline{8 y}=\quad \underline{-8 x+5}\)
\(8=\quad 8\)
\(y=-8 / 8 x+5 / 8\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into
slope-intercept form:

- To do this, divide each side by 8 .
\[
\begin{array}{cl}
\underline{8 y}= & \underline{-8 x+5} \\
8= & 8
\end{array}
\]
\[
y=-8 / 8 x+5 / 8
\]
- The slope is the coeficient of \(x\), or \(-8 / 8\). Type
-8/8.
112) Problem \#PRABC2Q6 "PRABC2Q6 - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:
\(4 y+7 x=4\)

\section*{Algebraic Expression:}
\(-7 / 4\)
\(\times-7\)
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(4 y+7 x=4\)
subtract 7 x from both sides to get y by itself
\[
4 y=-7 x+4
\]

Divide everything by 4
\[
\begin{aligned}
& 4 y= \\
& 4=-7 x+4 \\
& 4
\end{aligned}
\]
\(y=-7 / 4 x+4 / 4\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 1.75\)

Don't forget the negative!
\(\times 7\)
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\(4 y+7 x=4\)
subtract 7 x from both sides to get y by itself
\(4 y=-7 x+4\)

Divide everything by 4 . Don't forget the negative in front of the x !
\[
\begin{array}{cl}
4 y= & \underline{-7 x+4} \\
4= & 4
\end{array}
\]
\(y=-7 / 4 x+4 / 4\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 4 .
\(\underline{y}=\quad \underline{-7 x+4}\)
\(4=\quad 4\)
\(y=-7 / 4 x+4 / 4\)
- The slope is the coeficient of \(x\), or \(-7 / 4\). Type
-7/4.
113) Problem \#PRABC2Q7 "PRABC2Q7 - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:
\(1 y+4 x=9\)
```

Algebraic Expression:
$-4 / 1$
$\times-4$

```

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\[
1 y+4 x=9
\]
subtract 4 x from both sides to get y by itself
\[
1 y=-4 x+9
\]

Divide everything by 1
\[
\begin{aligned}
\underline{1 y}= & \underline{-4 x+9} \\
1= & 1
\end{aligned}
\]
\[
y=-4 / 1 x+9 / 1
\]

Now you can read the coefficient of \(x\) as the slope ( \(m\) )
\(\times 4\)
-
Don't forget the negative!
\(\times 4\)
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\[
1 y+4 x=9
\]
subtract 4 x from both sides to get y by itself
\[
1 y=-4 x+9
\]

Divide everything by 1 . Don't forget the negative in front of the x !
\[
\begin{aligned}
\underline{1 y}= & \underline{-4 x+9} \\
1= & 1
\end{aligned}
\]
\(y=-4 / 1 x+9 / 1\)

Now you can read the coefficient of x as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 1 .
\(\underline{y}=\quad \underline{-4 x+9}\)
\(1=\)
1
\(y=-4 / 1 x+9 / 1\)
- The slope is the coeficient of x , or \(-4 / 1\). Type
-4/1.
114) Problem \#PRABC2Q8 "PRABC2Q8 - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:
\(2 y+10 x=3\)

\section*{Algebraic Expression:}
- \(-10 / 2\)

X -10

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(2 y+10 x=3\)
subtract 10x from both sides to get \(y\) by itself
\(2 y=-10 x+3\)

Divide everything by 2
\(\underline{2 y}=\quad \underline{-10 x+3}\)
\(2=\quad 2\)
\[
y=-10 / 2 x+3 / 2
\]

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 5\)
-
Don't forget the negative!
\(\times 10\)
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\[
2 y+10 x=3
\]
subtract 10x from both sides to get \(y\) by itself
\[
2 y=-10 x+3
\]

Divide everything by 2 . Don't forget the negative in front of the x !
\[
\begin{aligned}
\underline{2 y} & = \\
2 & =\frac{-10 x+3}{2}
\end{aligned}
\]
\[
y=-10 / 2 x+3 / 2
\]

Now you can read the coefficient of \(x\) as the slope (m)

Hints:
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 2 .
\begin{tabular}{ll}
\(2 y=\) & \(\frac{-10 x+3}{2}\) \\
\(2=\) & \\
\(y=-10 / 2 x+3 / 2\)
\end{tabular}
- The slope is the coeficient of x , or -10/2. Type -10/2.
115) Problem \#PRABC2Q9 "PRABC2Q9 - Algebra1 Finding Slope From Equation Mastery Learning 5"

Determine the slope from the following equation:
\(8 y+10 x=4\)

\section*{Algebraic Expression:}
, \(-10 / 8\)
X -10
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\[
8 y+10 x=4
\]
subtract 10x from both sides to get y by itself
\[
8 y=-10 x+4
\]

Divide everything by 8
\[
\begin{aligned}
\underline{8 y} & = \\
8= & -\frac{-10 x+4}{8}
\end{aligned}
\]
\[
y=-10 / 8 x+4 / 8
\]

Now you can read the coefficient of \(x\) as the slope ( \(m\) )
\(\times 1.25\)
-
Don't forget the negative!
\(\times 10\)
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\(8 y+10 x=4\)
subtract 10x from both sides to get \(y\) by itself
\[
8 y=-10 x+4
\]

Divide everything by 8 . Don't forget the negative in front of the x !
\[
\begin{array}{cl}
\underline{8 y}= & \underline{-10 x+4} \\
8= & 8
\end{array}
\]
\[
y=-10 / 8 x+4 / 8
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 8 .
\begin{tabular}{cl}
\(\underline{8 y}=\) & \(\underline{-10 x+4}\) \\
\(8=\) & 8
\end{tabular}
\(y=-10 / 8 x+4 / 8\)
- The slope is the coeficient of \(x\), or \(-10 / 8\). Type
-10/8.

\section*{116) Problem \#PRABC2RA "PRABC2RA - Algebra1 Finding Slope From Equation Mastery Learning} 5"
Determine the slope from the following equation:
\(5 y+5 x=1\)

\section*{Algebraic Expression:}
\(\sqrt{ }-5 / 5\)
\(\times-5\)

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\[
5 y+5 x=1
\]
subtract 5 x from both sides to get y by itself
\[
5 y=-5 x+1
\]

Divide everything by 5
\[
\begin{array}{ll}
5 y= & \underline{-5 x+1} \\
5= & 5
\end{array}
\]
\[
y=-5 / 5 x+1 / 5
\]

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 1\)
-
Don't forget the negative!
\(\times 5\)

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(5 y+5 x=1\)
subtract 5 x from both sides to get y by itself
\(5 y=-5 x+1\)

Divide everything by 5 . Don't forget the negative in front of the x !
\[
\begin{array}{cl}
\underline{5 y}= & \underline{-5 x+1} \\
5= & 5
\end{array}
\]
\[
y=-5 / 5 x+1 / 5
\]

Now you can read the coefficient of \(x\) as the slope ( \(m\) )

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 5 .
\begin{tabular}{cl}
\(5 y=\) & \(\frac{-5 x+1}{5}\) \\
\(5=\) & 5
\end{tabular}
\(y=-5 / 5 x+1 / 5\)
- The slope is the coeficient of \(x\), or \(-5 / 5\). Type -5/5.
117) Problem \#PRABC2RB "PRABC2RB - Algebra1 Finding Slope From Equation Mastery Learning 5"
Determine the slope from the following equation:
\(2 y+7 x=5\)

\section*{Algebraic Expression:}
\(-7 / 2\)
- -7
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(2 y+7 x=5\)
subtract 7 x from both sides to get y by itself
\[
2 y=-7 x+5
\]

Divide everything by 2
\(\underline{2 y}=\quad \underline{-7 x+5}\)
\(2=\quad 2\)
\(y=-7 / 2 x+5 / 2\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 3.5\)
-

Don't forget the negative!
\(\times 7\)
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\[
2 y+7 x=5
\]
subtract 7 x from both sides to get y by itself
\[
2 y=-7 x+5
\]

Divide everything by 2 . Don't forget the negative in front of the x !
\[
\begin{aligned}
\frac{2 y}{y}= & \frac{-7 x+5}{2} \\
2= & 2
\end{aligned}
\]
\[
y=-7 / 2 x+5 / 2
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 2 .
\(\underline{2 y}=\quad \underline{-7 x+5}\)
\(2=\quad 2\)
\(y=-7 / 2 x+5 / 2\)
- The slope is the coeficient of \(x\), or \(-7 / 2\). Type
-7/2.
118) Problem \#PRABC2RC "PRABC2RC - Algebra1 Finding Slope From Equation Mastery Learning 3"
Determine the slope from the following equation:
\(y=8\)

\section*{Algebraic Expression: \\ \(\sqrt{ } 0\)}

You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\(y=m x+b\)

This problem is tricky because there isn't an \(x\) in the equation. We already have \(y\) by itself. We have
\(y=8\)

Also written as
\(y=0 x+8\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+8\)
We added in the x to this equation so that you could see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or
0.

Type in 0 .

Determine the slope from the following equation:
\(y=2\)

\section*{Algebraic Expression:}
\(\checkmark 0\)
\(\times 2\)
-
You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\(y=m x+b\)

This problem is tricky because there isn't an \(x\) in the equation. We already have \(y\) by itself. We have
\[
y=2
\]

Also written as
\[
y=0 x+2
\]

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+2\)
We added in the x to this equation so that you could see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or
0.

Type in 0 .

\section*{120) Problem \#PRABC2RE "PRABC2RE - Algebra1 Finding Slope From Equation Mastery Learning} 3"
Determine the slope from the following equation:
\(y=10\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)
\(\times 10\)
-

You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\(y=m x+b\)

This problem is tricky because there isn't an \(x\) in the equation. We already have \(y\) by itself. We have
\(y=10\)

Also written as
\(y=0 x+10\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+10\)
We added in the x to this equation so that you could see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of x , or
0.

Type in 0 .

\section*{121) Problem \#PRABC2RF "PRABC2RF - Algebra1 Finding Slope From Equation Mastery Learning} 3"
Determine the slope from the following equation:
\(y=3\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)
\(\times 3\)
-
You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\(y=m x+b\)

This problem is tricky because there isn't an \(x\) in the equation. We already have \(y\) by itself. We have
\(y=3\)

Also written as
\(y=0 x+3\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+3\)
We added in the x to this equation so that you could see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of x , or
0.

Type in 0 .
122) Problem \#PRABC2RG "PRABC2RG - Algebra1 Finding Slope From Equation Mastery Learning 3"
Determine the slope from the following equation:
\(y=4\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)
\(\times 4\)
-

You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\(y=m x+b\)

This problem is tricky because there isn't an \(x\) in the equation. We already have \(y\) by itself. We have
\(\mathrm{y}=4\)

Also written as
\(y=0 x+4\)

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+4\)
We added in the \(x\) to this equation so that you could see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or
0.

Type in 0 .

\section*{123) Problem \#PRABC2RH "PRABC2RH - Algebra1 Finding Slope From Equation Mastery Learning} 3"
Determine the slope from the following equation:
\(y=7\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)
\(\times 7\)

You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\(y=m x+b\)

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have
\(y=7\)

Also written as
\[
y=0 x+7
\]

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+7\)
We added in the \(x\) to this equation so that you could see it. \(0 x=0\)
- The slope is the coeficient of \(x\), or
0.

Type in 0 .

\section*{124) Problem \#PRABC2RJ "PRABC2RJ - Algebra1 Finding Slope From Equation Mastery Learning 3"}

Determine the slope from the following equation:
\(y=2\)

\section*{Algebraic Expression:}
- 0
\(\times 2\)
-
You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\(y=m x+b\)

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have
\(y=2\)

Also written as
\[
y=0 x+2
\]

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+2\)
We added in the x to this equation so that you could see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or
0.

Type in 0 .

\section*{125) Problem \#PRABC2RK "PRABC2RK - Algebra1 Finding Slope From Equation Mastery Learning} 3"
Determine the slope from the following equation:
\(y=8\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)
\(\times 8\)
-
You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\(y=m x+b\)

This problem is tricky because there isn't an \(x\) in the equation. We already have \(y\) by itself. We have
\(\mathrm{y}=8\)

Also written as
\[
y=0 x+8
\]

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+8\)
We added in the x to this equation so that you could see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or
0.

Type in 0 .
126) Problem \#PRABC2RM "PRABC2RM - Algebra1 Finding Slope From Equation Mastery Learning 3"
Determine the slope from the following equation:
\(y=1\)

\section*{Algebraic Expression:}
\(\sqrt{ } 0\)
\(\times 1\)
-

You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\(y=m x+b\)

This problem is tricky because there isn't an \(x\) in the equation. We already have \(y\) by itself. We have
\[
y=1
\]

Also written as
\[
y=0 x+1
\]

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+1\)
We added in the x to this equation so that you could see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or
0.

Type in 0 .

\section*{127) Problem \#PRABC2RN "PRABC2RN - Algebra1 Finding Slope From Equation Mastery Learning} \(3 "\)
Determine the slope from the following equation:
\(y=6\)

\section*{Algebraic Expression:}
\(\checkmark 0\)
\(\times 6\)
-

You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\(y=m x+b\)

This problem is tricky because there isn't an \(x\) in the equation. We already have \(y\) by itself. We have
\[
y=6
\]

Also written as
\[
y=0 x+6
\]

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+6\)
We added in the x to this equation so that you could see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of x , or
0.

Type in 0 .

\section*{128) Problem \#PRABC2RP "PRABC2RP - Algebra1 Finding Slope From Equation Mastery Learning} 3"
Determine the slope from the following equation:
\(y=6\)

\section*{Algebraic Expression:}
\(\checkmark 0\)
\(\times 6\)
-
You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
```

y=mx+b

```

This problem is tricky because there isn't an \(x\) in the equation. We already have \(y\) by itself. We have
\(y=6\)

Also written as
\[
y=0 x+6
\]

\section*{Hints:}
- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
\(y=0 x+6\)
We added in the x to this equation so that you could see it. \(0 \mathrm{x}=0\)
- The slope is the coeficient of \(x\), or
0.

Type in 0 .

\section*{129) Problem \#PRABC2RQ "PRABC2RQ - Algebra1 Finding Slope From Equation Mastery Learning} 3"
Determine the slope from the following equation:
\[
y=6
\]
```

Algebraic Expression:
\}
\times6

You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form

$$
y=m x+b
$$

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have
$y=6$

Also written as
$y=0 x+6$

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
$y=0 x+6$
We added in the x to this equation so that you could see it. $0 \mathrm{x}=0$
- The slope is the coeficient of x , or

0.

Type in 0 .
130) Problem \#PRABC2RR "PRABC2RR - Algebra1 Finding Slope From Equation Mastery Learning 3"
Determine the slope from the following equation:
$y=5$

Algebraic Expression:

$\checkmark 0$
$\times 5$
-
You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form
$y=m x+b$

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have
$y=5$

Also written as

$$
y=0 x+5
$$

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
$y=0 x+5$
We added in the x to this equation so that you could see it. $0 \mathrm{x}=0$
- The slope is the coeficient of x, or

0.

Type in 0 .
$y=4$

Algebraic Expression:

$\sqrt{ } 0$
$\times 4$
-
You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form
$y=m x+b$

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have
$y=4$

Also written as

$$
y=0 x+4
$$

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
$y=0 x+4$
We added in the x to this equation so that you could see it. $0 \mathrm{x}=0$
- The slope is the coeficient of x, or

0.

Type in 0 .

Determine the slope from the following equation:
$y=9$

Algebraic Expression:

$\checkmark 0$
$\times 9$
-
You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form
$y=m x+b$

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have
$y=9$

Also written as
$y=0 x+9$

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
$y=0 x+9$
We added in the x to this equation so that you could see it. $0 \mathrm{x}=0$
- The slope is the coeficient of x, or

0.

Type in 0 .

133) Problem \#PRABC2RU "PRABC2RU - Algebra1 Finding Slope From Equation Mastery Learning

 3"Determine the slope from the following equation:
$y=6$

Algebraic Expression:

$\checkmark 0$
$\times 6$
-
You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form
$y=m x+b$

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have
$y=6$

Also written as
$y=0 x+6$

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
$y=0 x+6$
We added in the x to this equation so that you could see it. $0 \mathrm{x}=0$
- The slope is the coeficient of x , or

0.

Type in 0 .

134) Problem \#PRABC2RV "PRABC2RV - Algebra1 Finding Slope From Equation Mastery Learning

 3"Determine the slope from the following equation:
$y=3$

Algebraic Expression:

$\sqrt{ } 0$
$\times 3$
-

You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form
$y=m x+b$

This problem is tricky because there isn't an x in the equation. We already have y by itself. We have
$y=3$

Also written as

$$
y=0 x+3
$$

Hints:

- For a Linear Equation, you can read the slope and y-intercept when it is in slope intercept form:

- In our problem we have:
$y=0 x+3$
We added in the x to this equation so that you could see it. $0 x=0$
- The slope is the coeficient of x, or

0.

Type in 0 .
135) Problem \#PRABC2RW "PRABC2RW - Algebra1 Finding Slope From Equation Mastery Learning 9"
Determine the slope from the following equation:
$8 y=8 x$

Algebraic Expression:

$\sqrt{ } 1$
$\times 8$
-
You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form
$y=m x+b$

Also written as
$y=m x+0$

We have
$8 y=8 x$

Divide both sides by 8 to get y by itself

$$
y=(8 / 8) x
$$

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 8 .
$\frac{8 y}{8}=\quad \frac{8 x}{8}$
8
8
$y=x$
- The slope is the coeficient of x, or in this case, 1. Type

1.
136) Problem \#PRABC2RX "PRABC2RX - Algebra1 Finding Slope From Equation Mastery Learning 9"
Determine the slope from the following equation:
$4 y=4 x$

Algebraic Expression:

$\sqrt{ } 1$
$\times 4$
-
You just made a very common mistake. Remember the slope is the coefficient of x when it's in the form
$y=m x+b$

Also written as

$$
y=m x+0
$$

We have

$$
4 y=4 x
$$

Divide both sides by 4 to get y by itself

$$
y=(4 / 4) x
$$

Hints:

- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 4 .

$$
\underline{4 y}=\quad \underline{x}
$$

4
$y=x$

- The slope is the coeficient of x, or in this case, 1. Type

1.

137) Problem \#PRABC2RY "PRABC2RY - Algebra1 Finding Slope From Equation Mastery Learning

 9"Determine the slope from the following equation:
$2 \mathrm{y}=2 \mathrm{x}$

```
Algebraic Expression:
\(\sqrt{ } 1\)
\(\times 2\)

You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\[
y=m x+b
\]

\section*{Also written as}
\[
y=m x+0
\]

We have
\[
2 y=2 x
\]

Divide both sides by 2 to get y by itself
\[
y=(2 / 2) x
\]

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 2 .
\(\underline{2 y}=\quad \underline{2 x}\)

2
\(y=x\)
- The slope is the coeficient of \(x\), or in this case, 1. Type
1.

Determine the slope from the following equation:
\(7 y=7 x\)

\section*{Algebraic Expression:}
\(\sqrt{ } 1\)
\(\times 7\)
-
You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\[
y=m x+b
\]

Also written as
\[
y=m x+0
\]

We have
\[
7 y=7 x
\]

Divide both sides by 7 to get y by itself
\[
y=(7 / 7) x
\]

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 7.
\(\frac{7 y}{7}=\frac{7 x}{7}\)
\(y=x\)
- The slope is the coeficient of \(x\), or in this case, 1. Type
1.

\section*{139) Problem \#PRABC2R2 "PRABC2R2 - Algebra1 Finding Slope From Equation Mastery Learning 9"}

Determine the slope from the following equation:
\(4 y=4 x\)

\section*{Algebraic Expression:}
\(\sqrt{ } 1\)
\(\times 4\)
-
You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\[
y=m x+b
\]

\section*{Also written as}
\(y=m x+0\)

We have
\(4 y=4 x\)

Divide both sides by 4 to get y by itself
\(y=(4 / 4) x\)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 4 .
\(\underline{4 y}=\quad \underline{x}\)

4
4
\(y=x\)
- The slope is the coeficient of \(x\), or in this case, 1. Type
1.

\section*{140) Problem \#PRABC2R3 "PRABC2R3 - Algebra1 Finding Slope From Equation Mastery Learning 9"}

Determine the slope from the following equation:
\(1 \mathrm{y}=1 \mathrm{x}\)

\section*{Algebraic Expression:}
\(\sqrt{ } 1\)
\(\times 1\)
-
You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\(y=m x+b\)

Also written as
\(y=m x+0\)

We have
\(1 y=1 x\)

Divide both sides by 1 to get y by itself
\[
y=(1 / 1) x
\]

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 1 .
\(\underline{y}=\quad \underline{x}\)
\(1 \quad 1\)
\(y=x\)
- The slope is the coeficient of \(x\), or in this case, 1. Type
1.

\section*{141) Problem \#PRABC2R4 "PRABC2R4 - Algebra1 Finding Slope From Equation Mastery Learning 9"}

Determine the slope from the following equation:
\(8 y=8 x\)

\section*{Algebraic Expression: \\ \(\sqrt{ } 1\) \\ \(\times 8\) \\ -}

You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
```

y=mx+b

```

Also written as
\(y=m x+0\)

We have
\(8 y=8 x\)

Divide both sides by 8 to get y by itself
\(y=(8 / 8) x\)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 8 .
\(\frac{8 y}{8}=\quad \frac{8 x}{8}\)
\(y=x\)
- The slope is the coeficient of \(x\), or in this case, 1. Type
1.

\section*{142) Problem \#PRABC2R5 "PRABC2R5 - Algebra1 Finding Slope From Equation Mastery Learning 9"}

Determine the slope from the following equation:
\(4 y=4 x\)

\section*{Algebraic Expression:}
\(\sqrt{1}\)
\(\times 4\)
-
You just made a very common mistake. Remember the slope is the coefficient of \(x\) when it's in the form
\[
y=m x+b
\]

Also written as
\[
y=m x+0
\]

We have
\[
4 y=4 x
\]

Divide both sides by 4 to get y by itself
\[
y=(4 / 4) x
\]

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 4 .
\(\underline{4 y}=\) 4x
4
\(y=x\)
- The slope is the coeficient of \(x\), or in this case, 1. Type
1.
143) Problem \#PRABC2R6 "PRABC2R6 - Algebra1 Finding Slope From Equation Mastery Learning 8" Determine the slope from the following equation:
\(10 y-3 x=8\)

\section*{Algebraic Expression:}
\(3 / 10\)
\(\times \quad-3\)

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\(10 y-3 x=8\)
add 3 x to both sides to get y by itself
\[
10 y=3 x+8
\]

Divide everything by 10 . Don't forget the negative in front of the \(x\) !
\[
\begin{array}{ll}
\underline{10 y}= & \underline{3 x+8} \\
10= & 10
\end{array}
\]
\[
y=3 / 10 x+8 / 10
\]

Now you can read the coefficient of \(x\) as the slope ( \(m\) )
X -0.3
-
don't forget the negative!
\(\times 3\)

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\(10 y+3 x=8\)
add 3 x to both sides to get y by itself
\[
10 y=3 x+8
\]

Divide everything by 10
\[
\begin{array}{ll}
\underline{10 y}= & \underline{3 x+8} \\
10= & 10
\end{array}
\]
\[
y=3 / 10 x+8 / 10
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- First, you must subtract \(3 x\) from both sides, giving you:
\(10 y=8+3 x\)
Then, divide each side by 10 .
\begin{tabular}{ll}
\(\underline{10 y}=\) & \(\underline{8+3 x}\) \\
\(10=\) & 10 \\
\(y=8 / 10+3 / 10 x\) &
\end{tabular}
- The slope is the coeficient of x , or \(3 / 10\). Type

3/10.

\section*{144) Problem \#PRABC2R7 "PRABC2R7 - Algebra1 Finding Slope From Equation Mastery Learning 8"}

Determine the slope from the following equation:
\(4 y-8 x=10\)

\section*{Algebraic Expression:}

」 \(8 / 4\)
X -8
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\(4 y-8 x=10\)
add 8 x to both sides to get y by itself
\[
4 y=8 x+10
\]

Divide everything by 4. Don't forget the negative in front of the \(x\) !
\begin{tabular}{rl}
\(\underline{4 y}=\) & \(\underline{8 x+10}\) \\
\(4=\) & 4
\end{tabular}
\(y=8 / 4 x+10 / 4\)

Now you can read the coefficient of \(x\) as the slope ( \(m\) )
x-2
-
don't forget the negative!
\(\times 8\)

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(4 y+8 x=10\)
add 8 x to both sides to get y by itself
\(4 y=8 x+10\)

Divide everything by 4
\[
\begin{aligned}
& \begin{array}{l}
4 y= \\
4= \\
y
\end{array}=8 / 4 x+10 / 4
\end{aligned}
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- First, you must subtract 8 x from both sides, giving you:
\(4 y=10+8 x\)
Then, divide each side by 4 .
\(4 \mathrm{y}=\)
\(10+8 \mathrm{x}\)
\(4=\)
4
\(y=10 / 4+8 / 4 x\)
- The slope is the coeficient of x , or \(8 / 4\). Type 8/4.
145) Problem \#PRABC2R8 "PRABC2R8 - Algebra1 Finding Slope From Equation Mastery Learning 8"

Determine the slope from the following equation:
\(6 y-6 x=9\)

\section*{Algebraic Expression:}

」 \(6 / 6\)
× -6
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(6 y-6 x=9\)
add 6 x to both sides to get y by itself
\[
6 y=6 x+9
\]

Divide everything by 6 . Don't forget the negative in front of the \(x\) !
\begin{tabular}{rl}
\(\underline{6 y}\) & \(=\) \\
6 & \(=\) \\
\end{tabular}
\(y=6 / 6 x+9 / 6\)

Now you can read the coefficient of \(x\) as the slope (m)
X -1
-
don't forget the negative!
\(\times 6\)
-

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\[
6 y+6 x=9
\]
add 6 x to both sides to get y by itself
\[
6 y=6 x+9
\]

Divide everything by 6
\[
\begin{array}{ll}
\underline{6 y}= & \underline{6 x+9} \\
6= & 6
\end{array}
\]
\(y=6 / 6 x+9 / 6\)

Now you can read the coefficient of \(x\) as the slope ( \(m\) )

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- First, you must subtract 6 x from both sides, giving you:
\(6 y=9+6 x\)
Then, divide each side by 6 .
\begin{tabular}{ll}
\(\underline{6 y}=\) & \(\underline{9+6 x}\) \\
6 & \(=\) \\
\(y=9 / 6+6 / 6 x\) & \\
&
\end{tabular}
- The slope is the coeficient of \(x\), or \(6 / 6\). Type 6/6.
146) Problem \#PRABC2R9 "PRABC2R9 - Algebra1 Finding Slope From Equation Mastery Learning 8"

Determine the slope from the following equation:
\(8 y-1 x=4\)

\section*{Algebraic Expression:}
- \(1 / 8\)

X -1
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\[
8 y-1 x=4
\]
add 1 x to both sides to get y by itself
\(8 y=1 x+4\)

Divide everything by 8 . Don't forget the negative in front of the \(x\) !
\begin{tabular}{cl}
\(\underline{8 y}=\) & \(\underline{1 x+4}\) \\
\(8=\) & 8
\end{tabular}
\(y=1 / 8 x+4 / 8\)

Now you can read the coefficient of \(x\) as the slope (m)
X -0.125
-
don't forget the negative!
\(\times 1\)
-

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(8 y+1 x=4\)
add 1 x to both sides to get y by itself
\(8 y=1 x+4\)

Divide everything by 8
```

8y=}\quad\underline{x+4
8=
8

```
\(y=1 / 8 x+4 / 8\)

Now you can read the coefficient of x as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- First, you must subtract 1 x from both sides, giving you:
\(8 y=4+1 x\)
Then, divide each side by 8 .
\(\underline{8 y}=\)
\(4+1 \mathrm{x}\)
\(8=\)
8
\(y=4 / 8+1 / 8 x\)
- The slope is the coeficient of x , or \(1 / 8\). Type 1/8.

\section*{Algebraic Expression:}

」 \(10 / 10\)
X -10
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(10 y-10 x=5\)
add 10 x to both sides to get y by itself
\(10 y=10 x+5\)

Divide everything by 10 . Don't forget the negative in front of the \(x\) !
\[
\begin{aligned}
\underline{10 y}= & \underline{10 x+5} \\
10 & =
\end{aligned}
\]
\(y=10 / 10 x+5 / 10\)

Now you can read the coefficient of \(x\) as the slope (m)
x-1
-
don't forget the negative!
\(\times 10\)
-

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(10 y+10 x=5\)
add 10x to both sides to get y by itself
\[
10 y=10 x+5
\]

Divide everything by 10
\[
\begin{array}{ll}
\frac{10 y}{10}= & \underline{10 x+5} \\
10= & 10
\end{array}
\]
\[
y=10 / 10 x+5 / 10
\]

Now you can read the coefficient of \(x\) as the slope ( \(m\) )

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- First, you must subtract 10x from both sides, giving you:
\(10 y=5+10 x\)
Then, divide each side by 10 .
\[
\begin{array}{ll}
\underline{10 y}= & \underline{5+10 x} \\
10= & 10 \\
y=5 / 10+10 / 10 x &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(10 / 10\). Type

10/10.

\section*{148) Problem \#PRABC2SB "PRABC2SB - Algebra1 Finding Slope From Equation Mastery Learning 8"}

Determine the slope from the following equation:
\(4 y-2 x=3\)

\section*{Algebraic Expression:}
\[
\sqrt{2 / 4}
\]
\[
\times-2
\]

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\(4 y-2 x=3\)
add 2 x to both sides to get y by itself
\[
4 y=2 x+3
\]

Divide everything by 4. Don't forget the negative in front of the \(x\) !
\begin{tabular}{cl}
\(\underline{4 y}=\) & \(\underline{2 x+3}\) \\
\(4=\) & 4
\end{tabular}
\(y=2 / 4 x+3 / 4\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times \quad-0.5\)
-
don't forget the negative!
\(\times 2\)

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(4 y+2 x=3\)
add 2 x to both sides to get y by itself
\(4 y=2 x+3\)

Divide everything by 4
\[
\begin{array}{ll}
\underline{4 y}= & \underline{2 x+3} \\
4= & 4
\end{array}
\]
\[
y=2 / 4 x+3 / 4
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- First, you must subtract 2 x from both sides, giving you:
\(4 y=3+2 x\)
Then, divide each side by 4 .
\(\underline{y}=\) \(3+2 x\)
\(4=\)
\[
4
\]
\(y=3 / 4+2 / 4 x\)
- The slope is the coeficient of \(x\), or \(2 / 4\). Type 2/4.

\section*{Algebraic Expression:}
, 6/6
× -6
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(6 y-6 x=4\)
add 6 x to both sides to get y by itself
\(6 y=6 x+4\)

Divide everything by 6 . Don't forget the negative in front of the \(x\) !
\begin{tabular}{rl}
\(\underline{6 y}\) & \(=\) \\
6 & \(=\) \\
\end{tabular}
\(y=6 / 6 x+4 / 6\)

Now you can read the coefficient of \(x\) as the slope (m)
X -1
-
don't forget the negative!
\(\times 6\)
-

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\(6 y+6 x=4\)
add 6 x to both sides to get y by itself
\[
6 y=6 x+4
\]

Divide everything by 6
\[
\begin{array}{ll}
\underline{6 y}= & \underline{6 x+4} \\
6= & 6
\end{array}
\]
\(y=6 / 6 x+4 / 6\)

Now you can read the coefficient of \(x\) as the slope ( \(m\) )

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- First, you must subtract \(6 x\) from both sides, giving you:
\(6 y=4+6 x\)
Then, divide each side by 6 .
\begin{tabular}{ll}
\(\underline{6 y}=\) & \(\underline{4+6 x}\) \\
6 & \(=\) \\
\(y=4 / 6+6 / 6 x\) & \\
&
\end{tabular}
- The slope is the coeficient of \(x\), or \(6 / 6\). Type 6/6.

\section*{150) Problem \#PRABC2SD "PRABC2SD - Algebra1 Finding Slope From Equation Mastery Learning 8"}

Determine the slope from the following equation:
\(2 y-10 x=2\)

\section*{Algebraic Expression:}
\(\sqrt{10 / 2}\)
X -10
-
You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\(2 y-10 x=2\)
add 10 x to both sides to get y by itself
\[
2 y=10 x+2
\]

Divide everything by 2 . Don't forget the negative in front of the \(x\) !
\[
\begin{aligned}
2 y & = \\
2 & \frac{10 x+2}{2}
\end{aligned}
\]
\(y=10 / 2 x+2 / 2\)

Now you can read the coefficient of \(x\) as the slope ( \(m\) )
X -5
-
don't forget the negative!
\(\times 10\)

You just made a very common mistake. You just took the number in front of \(x\) as the slope. But remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\[
2 y+10 x=2
\]
add 10 x to both sides to get y by itself
\(2 \mathrm{y}=10 \mathrm{x}+2\)

Divide everything by 2
\[
\begin{aligned}
2 y & = \\
2= & \frac{10 x+2}{2}
\end{aligned}
\]
\[
y=10 / 2 x+2 / 2
\]

Now you can read the coefficient of x as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- First, you must subtract \(10 x\) from both sides, giving you:
\(2 y=2+10 x\)
Then, divide each side by 2 .
```

$\underline{2} y=$
$\underline{2+10 x}$
$2=$
2
$y=2 / 2+10 / 2 x$

```
- The slope is the coeficient of x , or \(10 / 2\). Type

10/2.
151) Problem \#PRABC2SE "PRABC2SE - 57937 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning 4"}

Determine the slope from the following equation:
\(-7 y=8 x+5\)

\section*{Algebraic Expression:}

8/-7
\(\times 8\)
-
You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\[
-7 y=8 x+5
\]

Divide everything by -7
\(\frac{-7 y}{-7}=\quad \frac{8 x+5}{-7}\)
\(y=8 /-7 x+5 /-7\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 1.14285714285714\)
-
Don't forget the negative!

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by -7.
\[
\begin{array}{ll}
\frac{-7 y}{-7}= & \frac{8 x+5}{-7} \\
y=8 /-7 x+5 /-7 &
\end{array}
\]
- The slope is the coeficient of x , or \(8 /-7\). Type 8/-7.
152) Problem \#PRABC2SF "PRABC2SF - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(-6 y=5 x+6\)

\section*{Algebraic Expression:}
\(\sqrt{5 /-6}\)
\(\times 5\)
-

You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(-6 y=5 x+6\)

Divide everything by -6
\(\frac{-6 y}{-6}=\quad \frac{5 x+6}{-6}\)
\[
y=5 /-6 x+6 /-6
\]

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 0.833333333333333\)

Don't forget the negative!

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by -6.
\begin{tabular}{ll}
\(-6 y=\) & \(\underline{5 x+6}\) \\
\(-6=\) & -6 \\
\(y=5 /-6 x+6 /-6\) &
\end{tabular}
- The slope is the coeficient of \(x\), or 5/-6. Type 5/-6.
153) Problem \#PRABC2SG "PRABC2SG - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(-3 y=4 x+1\)

\section*{Algebraic Expression: \\ 4/-3}
\(\times 4\)
-
You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\[
-3 y=4 x+1
\]

Divide everything by -3
\(\frac{-3 y}{-3}=\quad \frac{4 x+1}{-3}\)
\(y=4 /-3 x+1 /-3\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 1.33333333333333\)

Don't forget the negative!

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by -3.
\begin{tabular}{ll}
\(\frac{-3 y}{-3}=\) & \(\frac{4 x+1}{-3}\) \\
\(y=4 /-3 x+1 /-3\) &
\end{tabular}
- The slope is the coeficient of \(x\), or 4/-3. Type 4/-3.
154) Problem \#PRABC2SH "PRABC2SH - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(-3 y=6 x+7\)

\section*{Algebraic Expression:}
, 6/-3
\(\times 6\)
-

You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(-3 y=6 x+7\)

Divide everything by -3
\(\frac{-3 y}{-3}=\quad \frac{6 x+7}{-3}\)
\[
y=6 /-3 x+7 /-3
\]

Now you can read the coefficient of \(x\) as the slope ( \(m\) )
\(\times 2\)

Don't forget the negative!

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by -3 .
\begin{tabular}{ll}
\(\underline{-3 y}=\) & \(\frac{6 x+7}{-3}=\) \\
\(y=6 /-3 x+7 /-3\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(6 /-3\). Type 6/-3.
155) Problem \#PRABC2SJ "PRABC2SJ - 57937-Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(-6 y=3 x+5\)

\section*{Algebraic Expression:}
\(\sqrt{3 /-6}\)
\(\times 3\)
-
You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]
you must solve for y first
\[
-6 y=3 x+5
\]

Divide everything by -6
\[
\frac{-6 y}{-6}=\quad \frac{3 x+5}{-6}
\]
\[
y=3 /-6 x+5 /-6
\]

Now you can read the coefficient of x as the slope (m)
\(\times 0.5\)
-
Don't forget the negative!

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by -6.
\[
\begin{array}{ll}
-6 y= & \frac{3 x+5}{-6}= \\
y=3 /-6 x+5 /-6 &
\end{array}
\]
- The slope is the coeficient of \(x\), or 3/-6. Type

3/-6.
156) Problem \#PRABC2SK "PRABC2SK - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(-6 y=3 x+3\)

\section*{Algebraic Expression:}
ง \(3 /-6\)
\(\times 3\)
-
You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)
you must solve for y first
\(-6 y=3 x+3\)

Divide everything by -6
\(\frac{-6 y}{-6}=\quad \frac{3 x+3}{-6}\)
\[
y=3 /-6 x+3 /-6
\]

Now you can read the coefficient of \(x\) as the slope ( \(m\) )
\(\times 0.5\)

Don't forget the negative!

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by -6.
\begin{tabular}{ll}
\(\underline{-6 y}=\) & \(\frac{3 x+3}{-6}=\) \\
\(y=3 /-6 x+3 /-6\) &
\end{tabular}
- The slope is the coeficient of \(x\), or 3/-6. Type 3/-6.

Determine the slope from the following equation:
\(-9 y=2 x+10\)

\section*{Algebraic Expression:}
\(\times 2\)

You just made a very common mistake. You took the number in front of \(x\) as the slope. Remember in order the read the slope from the equation, it must be in the form
```

y=mx+b

```
you must solve for y first
\[
-9 y=2 x+10
\]

Divide everything by -9
\(\frac{-9 \mathrm{y}}{-9}=\quad \frac{2 \mathrm{x}+10}{-9}\)
\[
y=2 /-9 x+10 /-9
\]

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 0.222222222222222\)
-
Don't forget the negative!

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by -9 .
\[
\begin{array}{ll}
\frac{-9 y}{-9}= & \frac{2 x+10}{-9} \\
y=2 /-9 x+10 /-9 &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(2 /-9\). Type 2/-9.
158) Problem \#PRABC2SN "PRABC2SN - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(y=6 / 2 x+2\)

\section*{Algebraic Expression:}
, \(6 / 2\)
\(\times 2\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=6 / 2 x+2\)

Now you can read the coefficient of x as the slope (m)
\(\times 2\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=6 / 2 x+2
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 2 .
\[
\begin{array}{ll}
\frac{2 y}{2}= & \frac{6 x+2}{2} \\
y=6 / 2 x+2 / 2 &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(6 / 2\). Type 6/2.

\section*{159) Problem \#PRABC2SP "PRABC2SP - 57937 - Algebra1 Finding Slope From Equation Mastery}

\section*{Learning 4"}

Determine the slope from the following equation:
\[
y=6 / 5 x+6
\]

\section*{Algebraic Expression:}

ป \(6 / 5\)
\(\times 5\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=6 / 5 x+6\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 6\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=6 / 5 x+6\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 5 .
\begin{tabular}{ll}
\(\frac{5 y}{5}=\) & \(\frac{6 x+6}{5}\) \\
5 & \\
\(y=6 / 5 x+6 / 5\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(6 / 5\). Type 6/5.
160) Problem \#PRABC2SQ "PRABC2SQ-57937 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning 4"}

Determine the slope from the following equation:
\(y=5 / 8 x+6\)

\section*{Algebraic Expression:}
- \(5 / 8\)
\(\times 8\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=5 / 8 x+6\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 6\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=5 / 8 x+6
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 8 .
\begin{tabular}{ll}
\(\frac{8 y}{8}=\) & \(\frac{5 x+6}{8}\) \\
\(y=5 / 8 x+6 / 8\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(5 / 8\). Type 5/8.
161) Problem \#PRABC2SR "PRABC2SR - 57937 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning 4"}

Determine the slope from the following equation:
\(y=9 / 9 x+3\)

\section*{Algebraic Expression:}
•9/9
\(\times 9\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=9 / 9 x+3
\]

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 3\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=9 / 9 x+3
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 9 .
\[
\begin{aligned}
& \frac{9 y}{9}= \\
& y=9 / 9 x+3 / 9
\end{aligned}
\]
- The slope is the coeficient of \(x\), or 9/9. Type 9/9.
162) Problem \#PRABC2SS "PRABC2SS - 57937-Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(y=5 / 10 x+6\)

\section*{Algebraic Expression:}
\(5 / 10\)
\(\times 10\)
-

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=5 / 10 x+6\)

Now you can read the coefficient of x as the slope (m)
\(\times 6\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=5 / 10 x+6
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 10 .
\begin{tabular}{ll}
\(10 y=\) & \(\frac{5 x+6}{10}\) \\
\(y=5 / 10 x+6 / 10\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(5 / 10\). Type 5/10.
163) Problem \#PRABC2ST "PRABC2ST - 57937 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning 4"}

Determine the slope from the following equation:
\(y=8 / 2 x+2\)

\section*{Algebraic Expression:}

」 \(8 / 2\)
\(\times 2\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=8 / 2 x+2\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 2\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=8 / 2 x+2\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 2 .
\begin{tabular}{ll}
\(\frac{2 y}{2}=\) & \(\frac{8 x+2}{2}\) \\
\(2=\) & \\
\(y=8 / 2 x+2 / 2\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(8 / 2\). Type 8/2.
164) Problem \#PRABC2SU "PRABC2SU - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(y=2 / 9 x+8\)

\section*{Algebraic Expression:}
- \(2 / 9\)
\(\times 9\)
-

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=2 / 9 x+8\)

Now you can read the coefficient of x as the slope (m)
\(\times 8\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=2 / 9 x+8
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 9 .
\begin{tabular}{ll}
\(\frac{9 y}{9}=\) & \(\frac{2 x+8}{9}\) \\
9 & \\
\(y=2 / 9 x+8 / 9\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(2 / 9\). Type 2/9.
165) Problem \#PRABC2SV "PRABC2SV - 57937 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning 4"}

Determine the slope from the following equation:
\[
y=4 / 2 x+3
\]

\section*{Algebraic Expression:}
\(4 / 2\)
\(\times 2\)
-

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=4 / 2 x+3\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 3\)
-

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=4 / 2 x+3\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 2 .
\[
\begin{array}{ll}
\frac{2 y}{2}= & \frac{4 x+3}{2} \\
y=4 / 2 x+3 / 2 &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(4 / 2\). Type 4/2.
166) Problem \#PRABC2SW "PRABC2SW - 57937-Algebra1 Finding Slope From Equation Mastery

\section*{Learning 4"}

Determine the slope from the following equation:
\(y=9 / 10 x+6\)

\section*{Algebraic Expression:}
- \(9 / 10\)
\(\times 10\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=9 / 10 x+6\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 6\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=9 / 10 x+6
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 10 .
\begin{tabular}{ll}
\(\frac{10 y}{10}=\) & \(\frac{9 x+6}{10}\) \\
\(y=9 / 10 x+6 / 10\) &
\end{tabular}
- The slope is the coeficient of x , or \(9 / 10\). Type

9/10.
167) Problem \#PRABC2SX "PRABC2SX - 57937 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning 4"}

Determine the slope from the following equation:
\(y=9 / 4 x+4\)

\section*{Algebraic Expression:}
•9/4
\(\times 4\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=9 / 4 x+4\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 4\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=9 / 4 x+4\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 4 .
\[
\begin{array}{ll}
\frac{4 y}{4}= & \frac{9 x+4}{4} \\
4 & \\
y=9 / 4 x+4 / 4 &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(9 / 4\). Type 9/4.
168) Problem \#PRABC2SY "PRABC2SY - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(y=8 / 4 x+9\)

\section*{Algebraic Expression:}

ง \(8 / 4\)
\(\times 4\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=8 / 4 x+9\)

Now you can read the coefficient of x as the slope (m)
\(\times 9\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=8 / 4 x+9
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 4 .
\begin{tabular}{ll}
\(\underline{4 y}=\) & \(\underline{8 x+9}\) \\
4 & \(=\) \\
\(y=8 / 4 x+9 / 4\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(8 / 4\). Type 8/4.
169) Problem \#PRABC2SZ "PRABC2SZ - 57937 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning 4"}

Determine the slope from the following equation:
\(y=5 / 4 x+2\)

\section*{Algebraic Expression:}
, 5/4
\(\times 4\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=5 / 4 x+2\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 2\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=5 / 4 x+2\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 4 .
\[
\begin{array}{ll}
\frac{4 y}{}= & \frac{5 x+2}{4} \\
4= & \\
y=5 / 4 x+2 / 4 &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(5 / 4\). Type 5/4.
170) Problem \#PRABC2S2 "PRABC2S2-57937-Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(y=5 / 2 x+1\)

\section*{Algebraic Expression:}
, \(5 / 2\)
\(\times 2\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=5 / 2 x+1\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 1\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=5 / 2 x+1
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 2 .
\begin{tabular}{ll}
\(\frac{2 y}{2}=\) & \(\frac{5 x+1}{2}\) \\
\(2=\) & \\
\(y=5 / 2 x+1 / 2\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(5 / 2\). Type 5/2.
171) Problem \#PRABC2S3 "PRABC2S3-57937-Algebra1 Finding Slope From Equation Mastery

\section*{Learning 4"}

Determine the slope from the following equation:
\(y=3 / 10 x+10\)

\section*{Algebraic Expression:}
\(3 / 10\)
\(\times 10\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=3 / 10 x+10\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 10\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=3 / 10 x+10\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 10 .
\begin{tabular}{ll}
\(\frac{10 y}{10}=\) & \(\frac{3 x+10}{10}\) \\
\(y=3 / 10 x+10 / 10\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(3 / 10\). Type 3/10.

\section*{172) Problem \#PRABC2S4 "PRABC2S4-57937-Algebra1 Finding Slope From Equation Mastery}

\section*{Learning 4"}

Determine the slope from the following equation:
\(y=4 / 5 x+8\)

\section*{Algebraic Expression:}
, \(4 / 5\)
\(\times 5\)
-

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of \(x\) as the slope.
\(y=4 / 5 x+8\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 8\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\[
y=m x+b
\]

We must read the number in front of x as the slope.
\[
y=4 / 5 x+8
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 5 .
\begin{tabular}{ll}
\(\frac{5 y}{5}=\) & \(\frac{4 x+8}{5}\) \\
\(y=\) & \\
\(y=4 / 5 x+8 / 5\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(4 / 5\). Type 4/5.
173) Problem \#PRABC2S5 "PRABC2S5-57937 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning 4"}

Determine the slope from the following equation:
\(y=4 / 2 x+5\)

\section*{Algebraic Expression:}
\(4 / 2\)
\(\times 2\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=4 / 2 x+5\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 5\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=4 / 2 x+5\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 2 .
\[
\begin{array}{ll}
\frac{2 y}{2}= & \frac{4 x+5}{2} \\
y=4 / 2 x+5 / 2 &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(4 / 2\). Type 4/2.
174) Problem \#PRABC2S6 "PRABC2S6-57937-Algebra1 Finding Slope From Equation Mastery

\section*{Learning 4"}

Determine the slope from the following equation:
\(y=4 / 5 x+1\)

\section*{Algebraic Expression:}
\(\sqrt{ } 4 / 5\)
\(\times 5\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=4 / 5 x+1\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 1\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=4 / 5 x+1
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 5 .
\begin{tabular}{ll}
\(\frac{5 y}{5}=\) & \(\frac{4 x+1}{5}\) \\
5 & \\
\(y=4 / 5 x+1 / 5\) &
\end{tabular}
- The slope is the coeficient of x , or \(4 / 5\). Type 4/5.

\section*{175) Problem \#PRABC2S7 "PRABC2S7-57937 - Algebra1 Finding Slope From Equation Mastery}

\section*{Learning 4"}

Determine the slope from the following equation:
\(y=-7 / 5 x+4\)

\section*{Algebraic Expression:}
\(\sqrt{\sqrt{2} / 5}\)
\(\times 5\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=-7 / 5 x+4\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 1.4\)

Don't forget the negative!
\(\times 4\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=-7 / 5 x+4\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 5 .
\[
\begin{array}{ll}
\frac{5 y}{y}= & \frac{-7 x+4}{5} \\
5= & \\
y=-7 / 5 x+4 / 5 &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(-7 / 5\). Type
-7/5.
176) Problem \#PRABC2S8 "PRABC2S8-57937-Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\[
y=-4 / 5 x+4
\]

\section*{Algebraic Expression:}
\[
\sqrt{ }-4 / 5
\]
\(\times 5\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]

We must read the number in front of x as the slope.
\[
y=-4 / 5 x+4
\]

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 0.8\)

Don't forget the negative!
\(\times 4\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of \(x\) as the slope.
\(y=-4 / 5 x+4\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 5 .
\begin{tabular}{ll}
\(\frac{5 y}{y}=\) & \(\frac{-4 x+4}{5}\) \\
\(5=\) & \\
\(y=-4 / 5 x+4 / 5\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(-4 / 5\). Type
-4/5.

\section*{Learning 4"}

Determine the slope from the following equation:
\(y=-7 / 3 x+6\)

\section*{Algebraic Expression:}
\(-7 / 3\)
\(\times 3\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\[
y=m x+b
\]

We must read the number in front of \(x\) as the slope.
\[
y=-7 / 3 x+6
\]

Now you can read the coefficient of \(x\) as the slope (m)
X 2.33333333333333
-
Don't forget the negative!
× 6
-

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of \(x\) as the slope.
\(y=-7 / 3 x+6\)

Now you can read the coefficient of \(x\) as the slope ( \(m\) )
Hints:
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:
A Number
that is the
slope
- To do this, divide each side by 3 .
```

3y = -7x+6
3 =
3

```
\(y=-7 / 3 x+6 / 3\)
- The slope is the coeficient of \(x\), or \(-7 / 3\). Type
\(-7 / 3\).
178) Problem \#PRABC2TA "PRABC2TA - 57937 - Algebra1 Finding Slope From Equation Mastery

Learning 4"
Determine the slope from the following equation:
\(y=-8 / 2 x+3\)

\section*{Algebraic Expression:}
\(\sqrt{ }-8 / 2\)
\(\times 2\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=-8 / 2 x+3
\]

Now you can read the coefficient of x as the slope (m)
\(\times 4\)
-
Don't forget the negative!
\(\times 3\)
-

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=-8 / 2 x+3\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 2 .
```

2y =
-8x+3
2 =
2

```
\(y=-8 / 2 x+3 / 2\)
- The slope is the coeficient of \(x\), or \(-8 / 2\). Type
-8/2.
179) Problem \#PRABC2TB "PRABC2TB - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(y=-3 / 7 x+10\)

\section*{Algebraic Expression:}
\(\sqrt{ }-3 / 7\)
\(\times 7\)
-

You just made a very common mistake. You took the denominator of the fraction as the slope of x . Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=-3 / 7 x+10\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 0.428571428571429\)
-

Don't forget the negative!
\(\times 10\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of \(x\) as the slope.
\[
y=-3 / 7 x+10
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 7.
\[
\begin{array}{ll}
\frac{7 y}{7}= & \frac{-3 x+10}{7} \\
y=-3 / 7 x+10 / 7 &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(-3 / 7\). Type
\(-3 / 7\).
180) Problem \#PRABC2TC "PRABC2TC - 57937 - Algebra1 Finding Slope From Equation Mastery

Learning 4"
Determine the slope from the following equation:
\[
y=-7 / 4 x+7
\]

\section*{Algebraic Expression:}
\(\sqrt{ }-7 / 4\)
\(\times 4\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=-7 / 4 x+7\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 1.75\)

Don't forget the negative!
\(\times 7\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\[
y=m x+b
\]

We must read the number in front of x as the slope.
\[
y=-7 / 4 x+7
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 4 .
\[
\begin{array}{ll}
\frac{4 y}{4}= & \frac{-7 x+7}{4} \\
y=-7 / 4 x+7 / 4 &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(-7 / 4\). Type -7/4.
181) Problem \#PRABC2TD "PRABC2TD - 57937 - Algebra1 Finding Slope From Equation Mastery

\section*{Learning 4"}

Determine the slope from the following equation:
\(y=-3 / 4 x+9\)

\section*{Algebraic Expression:}
\(\sqrt{ }-3 / 4\)
\(\times 4\)
-

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=-3 / 4 x+9\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 0.75\)

Don't forget the negative!
\(\times 9\)

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\[
y=m x+b
\]

We must read the number in front of x as the slope.
\[
y=-3 / 4 x+9
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 4 .
```

4y = -3x+9
4 =
4

```
\(y=-3 / 4 x+9 / 4\)
- The slope is the coeficient of \(x\), or \(-3 / 4\). Type
-3/4.

Learning 4"
Determine the slope from the following equation:
\(y=-4 / 8 x+8\)

\section*{Algebraic Expression:}

ป \(-4 / 8\)
\(\times 8\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of \(x\) as the slope.
\[
y=-4 / 8 x+8
\]

Now you can read the coefficient of x as the slope (m)
\(\times 0.5\)
-
Don't forget the negative!
X 8

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of \(x\) as the slope.
\(y=-4 / 8 x+8\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 8 .
```

8y =
-4x+8
8=
8
y=-4/8x+8/8

```
- The slope is the coeficient of \(x\), or \(-4 / 8\). Type -4/8.

\section*{183) Problem \#PRABC2TF "PRABC2TF - 57937 - Algebra1 Finding Slope From Equation Mastery} Learning 4"
Determine the slope from the following equation: \(y=-4 / 9 x+1\)

\section*{Algebraic Expression:}
\(\sqrt{ }-4 / 9\)
\(\times 9\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=-4 / 9 x+1
\]

Now you can read the coefficient of \(x\) as the slope ( \(m\) )
× 0.444444444444444
-
Don't forget the negative!
\(\times 1\)
-

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\[
y=m x+b
\]

We must read the number in front of x as the slope.
\[
y=-4 / 9 x+1
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 9 .
\begin{tabular}{ll}
\(\frac{9 y}{}=\) & \(\frac{-4 x+1}{9}\) \\
\(9=\) & \\
\(y=-4 / 9 x+1 / 9\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(-4 / 9\). Type
-4/9.
184) Problem \#PRABC2TG "PRABC2TG - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(y=-7 / 8 x+10\)

\section*{Algebraic Expression:}
\(\sqrt{ }-7 / 8\)
\(\times 8\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=-7 / 8 x+10\)

Now you can read the coefficient of x as the slope (m)
\(\times 0.875\)
-
Don't forget the negative!
\(\times 10\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=-7 / 8 x+10
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 8 .
\[
\begin{array}{ll}
\frac{8 y}{8}= & \frac{-7 x+10}{8} \\
y=-7 / 8 x+10 / 8
\end{array}
\]
- The slope is the coeficient of \(x\), or \(-7 / 8\). Type
-7/8.

\section*{185) Problem \#PRABC2TH "PRABC2TH - 57937 - Algebra1 Finding Slope From Equation Mastery} Learning 4"
Determine the slope from the following equation:
\(y=-4 / 2 x+1\)
Algebraic Expression:
\(\sqrt{ }-4 / 2\)
\(\times 2\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=-4 / 2 x+1
\]

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 2\)
-
Don't forget the negative!
\(\times 1\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=-4 / 2 x+1
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 2 .
```

$\underline{2 y}=\quad \underline{-4 x+1}$
$2=$
2
$y=-4 / 2 x+1 / 2$

```
- The slope is the coeficient of \(x\), or \(-4 / 2\). Type
\(-4 / 2\).
186) Problem \#PRABC2TJ "PRABC2TJ - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(y=-7 / 5 x+4\)

\section*{Algebraic Expression:}
```

$-7 / 5$

```
\(\times 5\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=-7 / 5 x+4\)

Now you can read the coefficient of \(x\) as the slope ( \(m\) )
\(\times 1.4\)

Don't forget the negative!
\(\times 4\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=-7 / 5 x+4
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 5 .
\begin{tabular}{ll}
\(\underline{5 y}=\) & \(\frac{-7 x+4}{5}\) \\
\(5=\) & \\
\(y=-7 / 5 x+4 / 5\) &
\end{tabular}
- The slope is the coeficient of x , or \(-7 / 5\). Type -7/5.
187) Problem \#PRABC2TK "PRABC2TK - 57937 - Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation: \(y=-9 / 8 x+3\)

\section*{Algebraic Expression:}
-9/8
\(\times 8\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=-9 / 8 x+3\)

Now you can read the coefficient of \(x\) as the slope ( \(m\) )
\(\times 1.125\)
-
Don't forget the negative!
\(\times 3\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=-9 / 8 x+3
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 8 .
\[
\begin{array}{ll}
\frac{8 y}{8}= & \frac{-9 x+3}{8} \\
y=-9 / 8 x+3 / 8 &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(-9 / 8\). Type -9/8.
188) Problem \#PRABC2TM "PRABC2TM - 57937-Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(y=-8 / 8 x+6\)

\section*{Algebraic Expression:}
\(\sqrt{ }-8 / 8\)
\(\times 8\)
-

You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=-8 / 8 x+6\)

Now you can read the coefficient of \(x\) as the slope (m)

Don't forget the negative!
\(\times 6\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=-8 / 8 x+6
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 8 .
\begin{tabular}{ll}
\(\underline{8 y}=\) & \(\frac{-8 x+6}{8}\) \\
\(8=\) & \\
\(y=-8 / 8 x+6 / 8\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(-8 / 8\). Type
-8/8.

Learning 4"
Determine the slope from the following equation:
\(y=-3 / 10 x+1\)

\section*{Algebraic Expression:}
v-3/10
\(\times 10\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of x . Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of \(x\) as the slope.
\(y=-3 / 10 x+1\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 0.3\)
-

Don't forget the negative!
X 1
-

You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of \(x\) as the slope.
\(y=-3 / 10 x+1\)

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 10 .
```

10y = -3x+1
10= 10
y=-3/10x+1/10

```
- The slope is the coeficient of \(x\), or \(-3 / 10\). Type \(-3 / 10\).

Determine the slope from the following equation: \(y=-8 / 5 x+10\)

\section*{Algebraic Expression:}
\(\sqrt{ }-8 / 5\)
\(\times 5\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=-8 / 5 x+10\)

Now you can read the coefficient of \(x\) as the slope ( \(m\) )
\(\times 1.6\)
.
Don't forget the negative!
\(\times 10\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\[
y=m x+b
\]

We must read the number in front of x as the slope.
\[
y=-8 / 5 x+10
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for y so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 5 .
\[
\begin{array}{ll}
\frac{5 y}{y}= & \frac{-8 x+10}{5} \\
5= & \\
y=-8 / 5 x+10 / 5 &
\end{array}
\]
- The slope is the coeficient of \(x\), or \(-8 / 5\). Type
-8/5.
191) Problem \#PRABC2TQ "PRABC2TQ - 57937-Algebra1 Finding Slope From Equation Mastery Learning 4"
Determine the slope from the following equation:
\(y=-10 / 5 x+4\)

\section*{Algebraic Expression:}
\(\sqrt{ }-10 / 5\)
\(\times 5\)
-
You just made a very common mistake. You took the denominator of the fraction as the slope of \(x\). Remember in order the read the slope from the equation, it must be in the form
\(y=m x+b\)

We must read the number in front of x as the slope.
\(y=-10 / 5 x+4\)

Now you can read the coefficient of \(x\) as the slope (m)
\(\times 2\)
-
Don't forget the negative!
\(\times 4\)
-
You just made a very common mistake. You took constant "b" as the slope when you should have been looking at the number in front of \(x\).
\(y=m x+b\)

We must read the number in front of x as the slope.
\[
y=-10 / 5 x+4
\]

Now you can read the coefficient of \(x\) as the slope (m)

\section*{Hints:}
- In this case, you must first solve for \(y\) so that you can read the slope. You should try to get it into slope-intercept form:

- To do this, divide each side by 5 .
\begin{tabular}{ll}
\(\frac{5 y}{y}=\) & \(\frac{-10 x+4}{5}\) \\
\(5=\) & \\
\(y=-10 / 5 x+4 / 5\) &
\end{tabular}
- The slope is the coeficient of \(x\), or \(-10 / 5\). Type -10/5.

End of MasterySection "Experiment " [5083754]
End of ChooseConditionSection "Study" [5083738]
192) Problem \#PRA8S2F "PRA8S2F - Message"

Congratulations, you have completed the skill builder.
Do your best to solve these last two problems.
Good luck!
Multiple Choice:
\(\sqrt{ } \mathrm{OK}\).

End of LinearSection "Finding Slope from a Linear Equation 8.F.B. 4 EX" [5083737]

\section*{Dividing Mixed Numbers 6.NS.A. 1 EX [1 student]}
\begin{tabular}{|c|c|}
\hline Gaps in procedural fluency observed & - Calculation errors (e.g., in long division in last procedural step) \\
\hline Learning strategies observed & \begin{tabular}{l}
- Notices decimal looks too long, careful and targeted search through own calculations \\
- Compares instructions in hint with her own calculations \\
- Reverse division with multiplication to see if answer is correct
\end{tabular} \\
\hline Assessment evidence of learning focal skill & - None observed for this skill; student seemed to already know this skill, she just made calculation errors \\
\hline Ineffective / inefficient learning processes & - Reviews calculations and keeps missing mistake \\
\hline SkillBuilder features that could matter & \begin{tabular}{l}
- This problem required extensive calculations that were not necessarily directly related to understanding the focal skill of dividing mixed numbers \\
- Ordering of these problems can be critical. Ordering from more simple to more complex could help with both diagnosing the source of misunderstanding, and provide pedagogical scaffolding to help students build skills by practicing easier to harder problems. [Connect to research on MKT and CGI about selection of appropriate problems] \\
- Random ordering of problems does not support productive persistence -- does not help students identify the source of their errors systematically. \\
- Hints do not show actual calculations. Can be difficult to use them to locate errors.
\end{tabular} \\
\hline Ideas for supporting productive persistence & \begin{tabular}{l}
- Order problems systematically from more simple to more complex, varying which parts of the procedure need to be addressed \\
- Could vary hints to highlight key aspects of procedure in a given problem
\end{tabular} \\
\hline
\end{tabular}

\section*{Appendix 3.2 Comments On Problems}

\section*{Comments on this Problem}

General comment: ?
General comment: Too big of numbers for a simple problem use some easier numbers to calculate
General comment: Mr.Grover, i am having some trouble on this so maybe i could stay after and you could help me out a little bit if that is ok?

General comment: I typed in the right answer and it said it's wrong. Then ityped it again and it said it's right

I am having difficulty with this problem: This one is really hard!
General comment: DANGIT! i completely forgot the stupid improper fraction to mixed number. GHAAAH
General comment: sorry.

\section*{Comments on Hints}

General comment: i already had that as my equation
General comment: I know that
General comment: I knew this too!
General comment: this is awful and it sucks
General comment: Stupid
General comment: I knew this too. The numbers are hard though
General comment: !!!!!!!!!!
General comment: this hint doesn't help me a lot
General comment: I did this and the simplifying was the hardest part of the problem

\section*{"Kind" problems}

\section*{Simplifying division of mixed numbers problems}

\section*{Current Issues with PSAV89B}

Large numbers make division of mixed numbers overwhelming

Comments on problems suggest that students struggle with the problems as a result of the large numbers used in them

\section*{Goals with new "kind" problems}

Keep our fractions "kind" by making sure numbers can be multiplied and divided without the use of a calculator

Hand check problems to make sure process for simplification is obvious

Problem ID: PRAHRJY
Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(63 / 4\).
\(2 \frac{4}{5} \div \frac{11}{41}\)

Type your answer below:

Submit Answer

\section*{Assignment: Problem \#PSAHRJY}

Problem ID: PRAHRJY
Comment on this problem
Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
\(2 \frac{4}{5} \div \frac{11}{41}\)

Type your answer below:
Both prime and large. Will be
\(100 \%\) difficult to multiply

\section*{Assignment: Problem \#PSAHRJY}

Problem ID: PRAHRJY
Comment on this problem
Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
\(2 \frac{4}{5} \div \frac{1}{2}\)

Type your answer below:

Submit Answer

Problem ID: PRAHRJY
Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
\(2 \frac{4}{5} \div \frac{1}{2}\)

Type your answer below:

Submit Answer
```

$$
2 \times 5=10
$$

$$
10+4=14
$$

$$
\text { Reciprocal of } 1 / 2=2 / 1
$$

$$
14 \times 2=28
$$

$$
5 \times 1=5
$$

$$
\text { Answer: } 5 \text { 3/5= (28/5) }
$$

```

Assignment: Problem \#PSAHRGY

Problem ID: PRAHRGY
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(24 / 5\).
\(5 \frac{3}{14} \div \frac{7}{4}\)

Type your answer below:

Submit Answer Show hint 1 of 5

Problem ID: PRAHRGY
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(24 / 5\).


Difficult multiplication


Submit Answer

Assignment: Problem \#PSAHRGY

Problem ID: PRAHRGY
Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(24 / 5\).
\(1 \frac{3}{8} \div \frac{7}{4}\)

Type your answer below:


Submit Answer

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(24 / 5\).
\(1 \frac{3}{8} \div \frac{7}{4}\)

Type your answer below:

Submit Answer
\(1 \times 8=8\)
\(8+3=11\)
Reciprocal of \(7 / 4=4 / 7\)


Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(24 / 5\).
\(1 \frac{3}{8} \div \frac{7}{4}\)
\(1 \times 8=8\)
\(8+3=11\)
Reciprocal of \(7 / 4=4 / 7\)
Type your answer below:

Submit Answer

\section*{In conclusion}

We predict that by ensuring the numbers involved in these problems are easier to multiply and divide by another, students will be more successful in solving these

\section*{Appendix 3.4 "View Problems" Kind}

\section*{Problem Set "Division of Mixed Numbers (Kind)" id:[PSA47DY]}

\section*{Select All}
1) Problem \#PRABC6CW "PRABC6CW - Final: Dividing Fractions M/M"

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

19 1/4
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
3 \frac{1}{2} \div \frac{2}{11}=3 \frac{1}{2} * \frac{11}{2}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
3 \frac{1}{2} * \frac{11}{2}=\frac{7}{2} * \frac{11}{2}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
19
4
Type the answer 19 1/4.

\section*{2) Problem \#PRABC6CX "PRABC6CX - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the
whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(\sqrt{ } 52 / 15\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \frac{1}{3} \div \frac{5}{11}=2 \underset{3}{2} * \frac{11}{5}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
2 \frac{1}{3} * \frac{11}{5}=\frac{7}{3} * \frac{11}{5}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
2
5
Type the answer \(52 / 15\).

\section*{3) Problem \#PRABC6CY "PRABC6CY - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
v \(252 / 3\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \frac{1}{3} \div \frac{1}{11}=2 \underset{3}{3} * \frac{11}{1}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(2 \frac{1}{3} * \frac{11}{1}=\frac{7}{3} * \frac{11}{1}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
```

 2
 25
3

```

Type the answer \(252 / 3\).

\section*{4) Problem \#PRABC6CZ "PRABC6CZ - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
\(3 \frac{1}{2} \div \frac{1}{2}\)

\section*{Exact Match (case sensitive):}
\(\sqrt{70 / 2}\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{cccc}
1 & 1 & 1 & 2 \\
2 & \(\div\) & 2 & 2
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\section*{2121}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
0
7
2
Type the answer \(70 / 2\).

\section*{5) Problem \#PRABC6C2 "PRABC6C2 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
\(33 / 5\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{cccc}
1 & 1 & 1 & 3 \\
\(1-\div\) & \(\div\) & 1 & - \\
5 & 3 & 5 & 1
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{ccc}
1 & 3 & 6 \\
\(1-\) & 3 \\
5 & 1 & 5
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
3
3
5
Type the answer \(33 / 5\).

\section*{6) Problem \#PRABC6C3 "PRABC6C3 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\[
\sqrt{ } 42 / 3
\]

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{|c|c|c|}
\hline 1 & 1 & 2 \\
\hline 2 - & & - \\
\hline 3 & 2 & 3 \\
\hline
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 2 & 7 & 2 \\
2- & *- & =- & * \\
3 & 1 & 3 & 1
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\[
2
\]

4
3
Type the answer \(42 / 3\).

\section*{7) Problem \#PRABC6C4 "PRABC6C4 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
v \(32 / 25\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 5 & 1 & 7 \\
2 \underset{5}{-} \div-=2 & -* & 7 \\
5 & 5
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(2 \underset{5}{\frac{1}{-}} * \underset{5}{7}=\frac{11}{5} * \frac{7}{5}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
2
3
25
Type the answer 3 2/25.

\section*{8) Problem \#PRABC6C5 "PRABC6C5 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
\(252 / 3\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \frac{1}{3} \div \frac{1}{3}=2 \frac{1}{3}=\frac{11}{1}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(2 \frac{1}{3} * \frac{11}{1}=\frac{7}{3} * \frac{11}{1}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:

Type the answer \(252 / 3\).

\section*{9) Problem \#PRABC6C6 "PRABC6C6 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(63 / 4\).


\section*{Exact Match (case sensitive):}
\(\sqrt{ } 42 / 5\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 1 & 1 & 2 \\
2 \underset{5}{-} \div- & 2 & 2 & - \\
\hline
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(21 * 2=11 * 2\)
```

- - - -

5}1105

```
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
2
4
5
Type the answer \(42 / 5\).

\section*{10) Problem \#PRABC6C7 "PRABC6C7 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(63 / 5\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 1 & 1 & 3 \\
2 & \div & \div & =2 \\
5 & 3 & 5 & 1
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{|c|c|c|}
\hline 1 & 3 & 11 \\
\hline \multicolumn{3}{|l|}{2 -*-=} \\
\hline 5 & 1 & 5 \\
\hline
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
3
6
5
Type the answer \(63 / 5\).

\section*{11) Problem \#PRABC6C8 "PRABC6C8 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(101 / 2\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{cccc}
1 & 1 & 1 & 3 \\
\hline\(-\div\) & - & 3 & \(-*\) \\
2 & 2 & 1
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 3 & 7 & 3 \\
3-* & * & =- & * \\
2 & 1 & 2 & 1
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\(\square\)
10
2
Type the answer 10 1/2.

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

ป \(55 / 7\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
```

1 1 1 1 5
1-\div-= 1-*-
7 5 7 1

```
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
5
5
7
Type the answer 5 5/7.

\section*{13) Problem \#PRABC6DA "PRABC6DA - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
ป \(52 / 15\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 3 & 1 & 7 \\
2 \underset{5}{-} \div \frac{7}{7} & =2 & * & * \\
5 & 3
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(2 \frac{1}{-2} * \underset{3}{7}=\frac{11}{5} * \frac{7}{3}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
2
5
15
Type the answer 5 2/15.

\section*{14) Problem \#PRABC6DB "PRABC6DB - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(71 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{|c|c|c|}
\hline 1 & 1 & 15 \\
\hline - & - & - * - \\
\hline 2 & 5 & \\
\hline
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(11 * 5=3 * 5\)
```

- - - -

2 1 2 1

```
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
7 -
2
Type the answer \(71 / 2\).

\section*{15) Problem \#PRABC6DC "PRABC6DC - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

5 5/7

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{ccccc}
1 & 1 & 1 & 5 \\
\(1-\) & - & 1 & - & \(*\) \\
7 & 5 & 7 & 1
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{cccc}
1 & 5 & 8 & 5 \\
7 & 1 & 7 & 1
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
5
5
7
Type the answer 5 5/7.

\section*{16) Problem \#PRABC6DD "PRABC6DD - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{cccc}
1 & 2 & 1 & 3 \\
\(1-\div\) & \(\div\) & 1 & \(-*\) \\
2 & 2 & 2
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 3 & 3 & 3 \\
1-*- & =-* & - \\
2 & 2 & 2 & 2
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
2
4
Type the answer \(21 / 4\).

\section*{17) Problem \#PRABC6DE "PRABC6DE - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(\sqrt{45 / 18}\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \frac{1}{3} \div \frac{6}{11}=2 \frac{1}{3} * \frac{11}{6}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(2 \frac{1}{3} * \frac{11}{6}=\frac{7}{3} * \frac{11}{6}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
5
4
18
Type the answer 4 5/18.

\section*{18) Problem \#PRABC6DF "PRABC6DF - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
13 1/5

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 1 & 1 & 6 \\
2 & - \\
5 & 6 & 5 & 6 \\
\hline
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{|c|c|c|}
\hline 1 & 6 & 11 \\
\hline 2 - & & - \\
\hline 5 & 1 & 5 \\
\hline
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
```

 1
    ```
13
5

Type the answer 13 1/5.

\section*{19) Problem \#PRABC6DG "PRABC6DG - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(52 / 15\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \frac{1}{3} \div \frac{5}{11}=2 \frac{1}{3} * \frac{11}{5}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(21 * 11=7 * 11\)
\begin{tabular}{cccc}
- & - & - & - \\
3 & 5 & 3 & 5
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
2
5
Type the answer \(52 / 15\).

\section*{20) Problem \#PRABC6DH "PRABC6DH - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(381 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
3 \frac{1}{2} \div \frac{1}{11}=3 \frac{1}{2} * \frac{11}{1}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(3 \frac{1}{2} * \frac{11}{1}=\frac{7}{2} * \frac{11}{1}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\(38 \frac{1}{2}\)
Type the answer \(381 / 2\).

\section*{21) Problem \#PRABC6DJ "PRABC6DJ - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
•17/8
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{cccc}
1 & 4 & 1 & 5 \\
\(1-\div\) & \(\div\) & 1 & \(-*\) \\
2 & 5 & 2 & 4
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 5 & 3 & 5 \\
1-*-= & -* *- \\
2 & 4 & 2 & 4
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
7
1
8
Type the answer \(17 / 8\).

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
v \(161 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
```

1 1 1 % 1 11
2 11 2 1

```
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{11}{1}=\frac{3}{2} * \frac{11}{1}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
16

2
Type the answer 16 1/2.

\section*{23) Problem \#PRABC6DM "PRABC6DM - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

10 1/2

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

```

 2 3 2 1
    ```
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{cccc}
1 & 3 & 7 & 3 \\
- & \(*\) & \(=\) & - \\
2 & 1 & 2 & 1
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
10
2
Type the answer 10 1/2.

\section*{24) Problem \#PRABC6DN "PRABC6DN - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

V \(33 / 4\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{|c|c|c|}
\hline 1 & 2 & 5 \\
\hline 1 - & & - \\
\hline 2 & 5 & 2 \\
\hline
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(11 * 5=3 * 5\)
```

_ - - -
2 2 2 2

```
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
3
3
Type the answer 3 3/4.

\section*{25) Problem \#PRABC6DP "PRABC6DP - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
\(2 \frac{1}{3} \div \frac{10}{11}\)

\section*{Exact Match (case sensitive):}
v \(217 / 30\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \underset{3}{\frac{1}{3}} \div \frac{10}{11}=\underset{2}{2} \underset{3}{1} * \frac{11}{10}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(2 \frac{1}{3} * \frac{11}{10}=\frac{7}{3} * \frac{11}{10}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.

\begin{tabular}{lllll}
3 & 10 & 3 & 10 & 30
\end{tabular}

The Mixed Number Representation is seen here:
17
2 -
30
Type the answer 2 17/30.

\section*{26) Problem \#PRABC6DQ "PRABC6DQ - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
\(\sqrt{2} 2 / 5\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 2 & 6 & 2 \\
1-*-= & -*- \\
5 & 1 & 5 & 1
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\[
2
\]

2
5
Type the answer \(22 / 5\).

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

V \(173 / 5\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
```

1 1 1 1 8
2-\div-=2-*-
5 8 5 1

```
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{|c|c|c|}
\hline 1 & 8 & 11 \\
\hline 2 - & - & \\
\hline 5 & 1 & 5 \\
\hline
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
```

 3
    ```
17

5
Type the answer \(173 / 5\).

\section*{28) Problem \#PRABC6DS "PRABC6DS - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
ป \(381 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
3 \frac{1}{2} \div \frac{1}{2}=3 \frac{1}{2} * \frac{11}{1}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(3 \frac{1}{2} * \frac{11}{1}=\frac{7}{2} * \frac{11}{1}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
38
2
Type the answer 38 1/2.

\section*{29) Problem \#PRABC6DT "PRABC6DT - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(63 / 4\).


\section*{Exact Match (case sensitive):}
/ \(44 / 5\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\[
1 \quad 1
\]} \\
\hline \\
\hline \\
\hline
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(11 * 4=6 * 4\)
```

- - - -

5

```
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
4
4
5
Type the answer \(44 / 5\).

\section*{30) Problem \#PRABC6DU "PRABC6DU - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}


Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\frac{1}{1} \frac{2}{2} \div \frac{1}{11}=1 \frac{11}{2} * \frac{1}{2}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{11}{2}=\frac{3}{2} * \frac{11}{2}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
4
Type the answer \(81 / 4\).

\section*{31) Problem \#PRABC6DV "PRABC6DV - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
```

70/2

```

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{cccc}
1 & 1 & 1 & 2 \\
2 & \(\div\) & - & 2
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 2 & 7 & 2 \\
3-* & =- & *- \\
2 & 1 & 2 & 1
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\[
0
\]

2
Type the answer \(70 / 2\).

\section*{32) Problem \#PRABC6DW "PRABC6DW - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
v \(33 / 10\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
```

1 5 5 1 11
1-\div-=1-*-
2 11 2 5

```
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{11}{5}=\frac{3}{2} * \frac{11}{5}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
3
3
10
Type the answer 3 3/10.

\section*{33) Problem \#PRABC6DX "PRABC6DX - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
8 5/9

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \frac{1}{3} \div \frac{3}{11}=2 \underset{3}{2} \div \frac{11}{3}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(2 \frac{1}{3} * \frac{11}{3}=\frac{7}{3} * \frac{11}{3}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
5
8
9
Type the answer \(85 / 9\).

\section*{34) Problem \#PRABC6DY "PRABC6DY - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(101 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{aligned}
& \begin{array}{llll}
1 & 1 & 1 & 7
\end{array} \\
& 1-\div-=1-*- \\
& \begin{array}{llll}
2 & 7 & 2
\end{array}
\end{aligned}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(11 * 7=3 * 7\)
```

- - - -

2 1 2 1

```
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
10
Type the answer 10 1/2.

\section*{35) Problem \#PRABC6DZ "PRABC6DZ - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(161 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\frac{1}{1} \frac{1}{2} \div \frac{1}{11}=\frac{1}{1} \frac{11}{2} * \frac{1}{1}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{11}{1}=\frac{3}{2} * \frac{11}{1}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\(16 \frac{1}{2}\)
Type the answer 16 1/2.

\section*{36) Problem \#PRABC6D2 "PRABC6D2 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
```

70/2

```

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{|c|c|c|}
\hline 1 & 1 & 1 \\
\hline 3 - & & - \\
\hline 2 & 2 & 2 \\
\hline
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 2 & 7 & 2 \\
3-* & =- & *- \\
2 & 1 & 2 & 1
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\[
0
\]

7
2
Type the answer \(70 / 2\).

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
v \(41 / 8\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
```

1 4 4 % 1 11
2 11 2 4

```
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{11}{4}=\frac{3}{2} * \frac{11}{4}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
4
8
Type the answer \(41 / 8\).

\section*{38) Problem \#PRABC6D4 "PRABC6D4 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
\(125 / 6\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
3 \frac{1}{2} \div \frac{3}{11}=3 \frac{1}{2} * \frac{11}{3}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(3 \frac{1}{2} * \frac{11}{3}=\frac{7}{2} * \frac{11}{3}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
12

6
Type the answer \(125 / 6\).

\section*{39) Problem \#PRABC6D5 "PRABC6D5 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(63 / 4\).


\section*{Exact Match (case sensitive):}
\(\sqrt{ }\) 2/15

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{aligned}
& \begin{array}{llll}
1 & 3 & 1 & 7
\end{array} \\
& 2-\div-=2-*- \\
& \begin{array}{llll}
5 & 7 & 5 & 3
\end{array}
\end{aligned}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(21 * 7=11 * 7\)
```

- - - -

5 3 5 3

```
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
2
5
15
Type the answer \(52 / 15\).

\section*{40) Problem \#PRABC6D6 "PRABC6D6 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
v \(21 / 10\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

```

 2 7 2 5
    ```
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{ccc}
1 & 7 & 3 \\
\(1-\) & 7 \\
2 & 5 & 2
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\[
1
\]

2
Type the answer 2 1/10.

\section*{41) Problem \#PRABC6D7 "PRABC6D7 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

85/9
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(2 \frac{1}{3} \div \frac{3}{11}=2 \underset{3}{3} * \frac{11}{3}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
2 \frac{1}{3} * \frac{11}{3}=\frac{7}{3} * \frac{11}{3}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
5
8
9
Type the answer \(85 / 9\).

\section*{42) Problem \#PRABC6D8 "PRABC6D8 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
V \(101 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 1 & 1 & 3 \\
3-\div & \div & 3 & * \\
2 & 3 & 2 & 1
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{cccc}
1 & 3 & 7 & 3 \\
2 & 1 & 2 & 1
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
10

2
Type the answer 10 1/2.

\section*{43) Problem \#PRABC6D9 "PRABC6D9 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(17 / 8\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 4 & 1 & 5 \\
1-\div & \div & =1- \\
2 & 5 & 2 & 4
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
1
\(1 \frac{5}{2} *\)
2 \(\frac{5}{4}\)\begin{tabular}{c}
3
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
7
1
8
Type the answer \(17 / 8\).

\section*{44) Problem \#PRABC6EA "PRABC6EA - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
-9/20
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(3 \quad 3 \quad 9\)
- * - = -
\(2 \quad 10 \quad 20\)

\section*{45) Problem \#PRABC6EB "PRABC6EB - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.
\(2 \frac{1}{3} \div \frac{11}{2}\)

\section*{Exact Match (case sensitive):}
\(\sqrt{ } 14 / 33\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\begin{array}{lll}7 & 2\end{array}\)
- * - = -
\(311 \quad 33\)

\section*{46) Problem \#PRABC6EC "PRABC6EC - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(24 / 5\).


\section*{Exact Match (case sensitive):}
\[
14 / 33
\]

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{7}{3} * \frac{2}{11}=\frac{14}{33}\)

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\[
8 / 15
\]

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{3} * \frac{2}{5}=\frac{4}{3} * \frac{2}{5}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.


\section*{48) Problem \#PRABC6EE "PRABC6EE - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}

14/15

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{7}{3} * \frac{2}{5}=\frac{14}{15}\)

\section*{49) Problem \#PRABC6EF "PRABC6EF - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\(9 / 16\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{3}{2} * \frac{3}{8}=\frac{9}{16}\)

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\(\sqrt{9 / 22}\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
```

3 * 3 = 9

```
\begin{tabular}{lll}
2 & \(\overline{11}\) & \(\overline{22}\)
\end{tabular}

\section*{51) Problem \#PRABC6EH "PRABC6EH - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
```

9/14

```

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
339
-* \(-=-\)
\(2 \quad 7 \quad 14\)
52) Problem \#PRABC6EJ "PRABC6EJ - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\(9 / 22\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{3}{2} * \frac{3}{11}=\frac{9}{22}\)

\section*{53) Problem \#PRABC6EK "PRABC6EK - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\(14 / 9\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{7}{3} * \frac{2}{3}=\frac{14}{9}\)

\section*{54) Problem \#PRABC6EM "PRABC6EM - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}

21/10
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\begin{array}{lll}7 & 31\end{array}\)
- * - = -

2510

\section*{55) Problem \#PRABC6EN "PRABC6EN - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\(\sqrt{ } 21 / 10\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{7}{2} * \frac{3}{5}=\frac{21}{10}\)

\section*{56) Problem \#PRABC6EP "PRABC6EP - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\[
14 / 33
\]

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(2 \frac{1}{3} \div \frac{11}{2}=2 \quad \frac{1}{3} * \frac{2}{11}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{7}{3} * \frac{2}{11}=\frac{14}{33}\)
57) Problem \#PRABC6EQ "PRABC6EQ - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(3 \quad 3 \quad 9\)
- * - = -
\(\begin{array}{lll}2 & 8 & 16\end{array}\)
58) Problem \#PRABC6ER "PRABC6ER - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\(9 / 22\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(3 \quad 3 \quad 9\)
- * - = -
\(2 \quad 11 \quad 22\)

\section*{59) Problem \#PRABC6ES "PRABC6ES - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}

V \(15 / 16\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{3}{2} * \frac{5}{8}=\frac{15}{16}\)

\section*{60) Problem \#PRABC6ET "PRABC6ET - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
/ \(15 / 16\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\begin{array}{lll}3 & 5 & 15\end{array}\)
-* \(-=-\)
\(\begin{array}{lll}2 & 8 & 16\end{array}\)

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
- \(9 / 22\)

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{3}{11}=\frac{3}{2} * \frac{3}{11}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{3}{2} * \frac{3}{11}=\frac{9}{22}\)

\section*{62) Problem \#PRABC6EV "PRABC6EV - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

1- }\div
2

```

\section*{Exact Match (case sensitive):}

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \frac{1}{2} \div 5=1-2\)\begin{tabular}{r}
1 \\
2
\end{tabular}\(\quad\)\begin{tabular}{r}
1 \\
2
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{63) Problem \#PRABC6EW "PRABC6EW - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

 1
 2-\div5
3

```

\section*{Exact Match (case sensitive):}
```

 7/15
    ```

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(2-\frac{1}{-} \div 5=2-1\)
\(3 \div 5=2-5\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(21 * 1=7 * 1\)
\(3 \quad 5 \quad 3 \quad 5\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{64) Problem \#PRABC6EX "PRABC6EX - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

 1
 1- \div8
2

```

\section*{Exact Match (case sensitive):}

V \(3 / 16\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{|c|c|}
\hline 1 & 1 \\
\hline \multicolumn{2}{|l|}{\(1-\div 8=1-*-\)} \\
\hline 2 & 2 \\
\hline
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{cccc}
1 & 1 & 3 & 1 \\
\(1-\) & \(*\) & - & - \\
2 & 8 & 2 & 8
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{65) Problem \#PRABC6EY "PRABC6EY - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(63 / 4\).
```

1\frac{1}{2}}\div1

```
Exact Match (case sensitive):
3/22

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \frac{1}{2} \div 11=1 \frac{1}{-} * \frac{1}{-}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
1 \frac{1}{2} * \frac{1}{11}=\frac{3}{2} * \frac{1}{11}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{66) Problem \#PRABC6EZ "PRABC6EZ - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

11
\(\div 6\)

\section*{Exact Match (case sensitive):}
v \(5 / 24\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \frac{1}{-} \div 6=1\)\begin{tabular}{c}
1 \\
4
\end{tabular}\(\frac{1}{4}\)\begin{tabular}{c}
- \\
6
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 1 & 5 & 1 \\
1-* & =\frac{-}{-} * \frac{-}{2} \\
4 & 6 & 4 & 6
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{67) Problem \#PRABC6E2 "PRABC6E2 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

 1
 1- \div 8
2

```

\section*{Exact Match (case sensitive):}

ป \(3 / 16\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \frac{1}{2} \div 8=\)\begin{tabular}{r}
1 \\
\(1-\) \\
2
\end{tabular}\(\frac{1}{-}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{68) Problem \#PRABC6E3 "PRABC6E3 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

 1
 1-\div11
2

```

\section*{Exact Match (case sensitive):}
\(\sqrt{ } 3 / 22\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
1 \frac{1}{2} \div 11=1 \frac{1}{2} * \frac{1}{11}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{1}{11}=\frac{3}{2} * \frac{1}{11}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{69) Problem \#PRABC6E4 "PRABC6E4 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
\(1 \frac{1}{2} \div 11\)

\section*{Exact Match (case sensitive):}
\(3 / 22\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\frac{1}{1} \frac{1}{2} \div 11=1 \frac{1}{2} * \frac{1}{11}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
1 \frac{1}{2} * \frac{1}{2}=\frac{3}{11}=\frac{1}{2} * \frac{1}{11}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

 1
 1- \div11
2

```

\section*{Exact Match (case sensitive):}
\(3 / 22\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
1 \frac{1}{2} \div 11=\frac{1}{-} \frac{1}{2} \frac{1}{11}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{1}{11}=\frac{3}{-} * \frac{1}{-}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{71) Problem \#PRABC6E6 "PRABC6E6 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

1\frac{1}{2}}\div

```

\section*{Exact Match (case sensitive):}
\(3 / 14\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{c}
1 \\
2
\end{tabular}\(\div 7=\)\begin{tabular}{c}
1 \\
2
\end{tabular}\(\frac{1}{7}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{72) Problem \#PRABC6E7 "PRABC6E7 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

1
2-}\div

```

\section*{Exact Match (case sensitive):}
\(\sqrt{7 / 15}\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \frac{1}{3} \div 5=2-\begin{gathered}
1 \\
3
\end{gathered} \frac{1}{5}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.

73) Problem \#PRABC6E8 "PRABC6E8 - Final: Dividing Fractions M/M"

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}


\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \frac{1}{4} \div 4=\)\begin{tabular}{c}
1 \\
\hline
\end{tabular}\(\underset{4}{-} \quad\)\begin{tabular}{c}
1 \\
4
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{cccc}
1 & 1 & 5 & 1 \\
\(1-\) & \(=\) & - & \(*\) \\
4 & 4 & 4
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{74) Problem \#PRABC6E9 "PRABC6E9 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

1\frac{1}{3}}\div1

```

\section*{Exact Match (case sensitive):}
```

4/33

```

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \frac{1}{3} \div 11=1 \frac{1}{-} * \frac{1}{-}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
1 \frac{1}{3} * \frac{1}{11}=\frac{4}{3} * \frac{1}{11}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{75) Problem \#PRABC6FA "PRABC6FA - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

11
\(\div \quad 11\)

\section*{Exact Match (case sensitive):}
v \(3 / 22\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \frac{1}{2} \div 11=1 \frac{1}{-} * \frac{1}{-}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
1 \frac{1}{2} * \frac{1}{11}=\frac{3}{-} * \frac{1}{2} \frac{1}{11}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{76) Problem \#PRABC6FB "PRABC6FB - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

 1
 1- \div7
2

```

\section*{Exact Match (case sensitive):}
\(3 / 14\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{c}
1 \\
2
\end{tabular}\(\div 7=\)\begin{tabular}{c}
1 \\
2
\end{tabular}\(\frac{1}{-}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.


2727
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{Appendix 3.5 "View Problems" Kind}

\section*{Problem Set "Division of Mixed Numbers (Kind)" id:[PSA47DY]}

\section*{\(\square\) Select All}
1) Problem \#PRABC6CW "PRABC6CW - Final: Dividing Fractions M/M"

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(191 / 4\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
3 \frac{1}{2} \div \frac{2}{11}=3 \frac{1}{2} * \frac{11}{2}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
3 \frac{1}{2} * \frac{11}{2}=\frac{7}{2} * \frac{11}{2}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
19
4
Type the answer 19 1/4.

\section*{2) Problem \#PRABC6CX "PRABC6CX - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the
whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(\sqrt{ } 52 / 15\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \frac{1}{3} \div \frac{5}{11}=2 \underset{3}{2} * \frac{11}{5}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
2 \frac{1}{3} * \frac{11}{5}=\frac{7}{3} * \frac{11}{5}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
2
5
Type the answer \(52 / 15\).

\section*{3) Problem \#PRABC6CY "PRABC6CY - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
\(252 / 3\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \frac{1}{3} \div \frac{1}{11}=2 \underset{3}{3} * \frac{11}{1}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(2 \frac{1}{3} * \frac{11}{1}=\frac{7}{3} * \frac{11}{1}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
```

 2
 25
3

```

Type the answer \(252 / 3\).

\section*{4) Problem \#PRABC6CZ "PRABC6CZ - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
\(3 \frac{1}{2} \div \frac{1}{2}\)

\section*{Exact Match (case sensitive):}
\(70 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

\section*{2121}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
0
7
2
Type the answer \(70 / 2\).

\section*{5) Problem \#PRABC6C2 "PRABC6C2 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
\(33 / 5\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{cccc}
1 & 1 & 1 & 3 \\
\(1-\div\) & \(\div\) & 1 & - \\
5 & 3 & 5 & 1
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{ccc}
1 & 3 & 6 \\
\(1-\) & 3 \\
5 & 1 & 5
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
3
3
5
Type the answer \(33 / 5\).

\section*{6) Problem \#PRABC6C3 "PRABC6C3 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\[
\sqrt{ } 42 / 3
\]

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 2 & 7 & 2 \\
2- & *- & =- & * \\
3 & 1 & 3 & 1
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\[
2
\]

4
3
Type the answer \(42 / 3\).

\section*{7) Problem \#PRABC6C4 "PRABC6C4 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

V \(32 / 25\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 5 & 1 & 7 \\
2 \underset{5}{-} \div-=2 & -* & 7 & 5
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(2 \underset{5}{\frac{1}{-}} * \underset{5}{7}=\frac{11}{5} * \frac{7}{5}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
2
3
25
Type the answer 3 2/25.

\section*{8) Problem \#PRABC6C5 "PRABC6C5 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
\(252 / 3\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \frac{1}{3} \div \frac{1}{3}=2 \frac{1}{3}=\frac{11}{1}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(2 \frac{1}{3} * \frac{11}{1}=\frac{7}{3} * \frac{11}{1}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:

Type the answer \(252 / 3\).

\section*{9) Problem \#PRABC6C6 "PRABC6C6 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(63 / 4\).


\section*{Exact Match (case sensitive):}
\(\sqrt{ } 42 / 5\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 1 & 1 & 2 \\
2 \underset{5}{-} \div- & 2 & 2 & - \\
\hline
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(21 * 2=11 * 2\)
```

- - - -

5}1105

```
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
2
4
5
Type the answer \(42 / 5\).

\section*{10) Problem \#PRABC6C7 "PRABC6C7 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(63 / 5\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 1 & 1 & 3 \\
2 \underset{5}{-} \div-= & 2 & - & * \\
5 & 1
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{|c|c|c|}
\hline 1 & 3 & 11 \\
\hline \multicolumn{3}{|l|}{2 -*-=} \\
\hline 5 & 1 & 5 \\
\hline
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
3
6
5
Type the answer \(63 / 5\).

\section*{11) Problem \#PRABC6C8 "PRABC6C8 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(101 / 2\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{cccc}
1 & 1 & 1 & 3 \\
\hline\(-\div\) & - & 3 & \(-*\) \\
2 & 2 & 1
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 3 & 7 & 3 \\
3-* & * & =- & * \\
2 & 1 & 2 & 1
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\(\square\)
10
2
Type the answer 10 1/2.

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

ป \(55 / 7\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
```

1 1 1 1 5
1-\div-= 1-*-
7 5 7 1

```
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
5
5
7
Type the answer 5 5/7.

\section*{13) Problem \#PRABC6DA "PRABC6DA - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
ป \(52 / 15\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 3 & 1 & 7 \\
2 \underset{5}{-} \div \frac{7}{7} & =2 & * & * \\
5 & 3
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(2 \frac{1}{-2} * \underset{3}{7}=\frac{11}{5} * \frac{7}{3}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
2
5
15
Type the answer 5 2/15.

\section*{14) Problem \#PRABC6DB "PRABC6DB - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(71 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{|c|c|c|}
\hline 1 & 1 & 15 \\
\hline - & - & - * - \\
\hline 2 & 5 & \\
\hline
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(11 * 5=3 * 5\)
```

- - - -

2 1 2 1

```
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
7 -
2
Type the answer \(71 / 2\).

\section*{15) Problem \#PRABC6DC "PRABC6DC - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

5 5/7

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{ccccc}
1 & 1 & 1 & 5 \\
\(1-\) & - & 1 & - & \(*\) \\
7 & 5 & 7 & 1
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{cccc}
1 & 5 & 8 & 5 \\
7 & 1 & 7 & 1
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
5
5
7
Type the answer 5 5/7.

\section*{16) Problem \#PRABC6DD "PRABC6DD - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{cccc}
1 & 2 & 1 & 3 \\
\(1-\div\) & \(\div\) & 1 & \(-*\) \\
2 & 2 & 2
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 3 & 3 & 3 \\
1-*- & =-* & - \\
2 & 2 & 2 & 2
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
2
4
Type the answer \(21 / 4\).

\section*{17) Problem \#PRABC6DE "PRABC6DE - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
\(2 \frac{1}{3} \div \frac{6}{11}\)

Exact Match (case sensitive):
v \(45 / 18\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \frac{1}{3} \div \frac{6}{11}=2 \frac{1}{3} * \frac{11}{6}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(2 \frac{1}{3} * \frac{11}{6}=\frac{7}{3} * \frac{11}{6}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
5
4
18
Type the answer \(45 / 18\).

\section*{18) Problem \#PRABC6DF "PRABC6DF - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
13 1/5

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 1 & 1 & 6 \\
2 & - \\
5 & 6 & 5 & 6 \\
\hline
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{|c|c|c|}
\hline 1 & 6 & 11 \\
\hline 2 - & & - \\
\hline 5 & 1 & 5 \\
\hline
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
```

 1
    ```
13
5

Type the answer 13 1/5.

\section*{19) Problem \#PRABC6DG "PRABC6DG - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(52 / 15\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \frac{1}{3} \div \frac{5}{11}=2 \frac{1}{3} * \frac{11}{5}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(21 * 11=7 * 11\)
\begin{tabular}{llll}
- & - & - & - \\
3 & 5 & 3 & 5
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
2
5
Type the answer \(52 / 15\).

\section*{20) Problem \#PRABC6DH "PRABC6DH - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(381 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
3 \frac{1}{2} \div \frac{1}{11}=3 \frac{1}{2} * \frac{11}{1}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(3 \frac{1}{2} * \frac{11}{1}=\frac{7}{2} * \frac{11}{1}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\(38 \frac{1}{2}\)
Type the answer 38 1/2.

\section*{21) Problem \#PRABC6DJ "PRABC6DJ - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
•17/8
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{cccc}
1 & 4 & 1 & 5 \\
\(1-\div\) & \(\div\) & 1 & \(-*\) \\
2 & 5 & 2 & 4
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 5 & 3 & 5 \\
1-*- & =- & *- \\
2 & 4 & 2 & 4
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
7
1
8
Type the answer \(17 / 8\).

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

V \(161 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
```

1-1
2 11 2 1

```
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{11}{1}=\frac{3}{2} * \frac{11}{1}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
16

2
Type the answer 16 1/2.

\section*{23) Problem \#PRABC6DM "PRABC6DM - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

10 1/2

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 1 & 1 & 3 \\
3 & \div-=3 & -* & 3 \\
2 & 3 & 1
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
10
2
Type the answer 10 1/2.

\section*{24) Problem \#PRABC6DN "PRABC6DN - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(63 / 4\).


\section*{Exact Match (case sensitive):}

V \(33 / 4\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{cccc}
1 & 2 & 1 & 5 \\
2 & \(\div\) & 5 & 2
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(11 * 5=3 * 5\)
```

_ - - -
2 2 2 2

```
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
3
3
Type the answer 3 3/4.

\section*{25) Problem \#PRABC6DP "PRABC6DP - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
\(2 \frac{1}{3} \div \frac{10}{11}\)

\section*{Exact Match (case sensitive):}
v \(217 / 30\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \underset{3}{\frac{1}{3}} \div \frac{10}{11}=\underset{2}{2} \underset{3}{1} * \frac{11}{10}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(2 \frac{1}{3} * \frac{11}{10}=\frac{7}{3} * \frac{11}{10}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.

\begin{tabular}{lllll}
3 & 10 & 3 & 10 & 30
\end{tabular}

The Mixed Number Representation is seen here:
17
2 -
30
Type the answer 2 17/30.

\section*{26) Problem \#PRABC6DQ "PRABC6DQ - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
\(\sqrt{2} 2 / 5\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 2 & 6 & 2 \\
1-*-= & -*- \\
5 & 1 & 5 & 1
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\[
2
\]

2
5
Type the answer \(22 / 5\).

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

V \(173 / 5\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
```

1 1 1 1 8
2-\div-=2-*-
5 8 5 1

```
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{|c|c|c|}
\hline 1 & 8 & 11 \\
\hline 2 - & - & \\
\hline 5 & 1 & 5 \\
\hline
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
```

 3
    ```
17

5
Type the answer \(173 / 5\).

\section*{28) Problem \#PRABC6DS "PRABC6DS - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
ป \(381 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
3 \frac{1}{2} \div \frac{1}{2}=3 \frac{1}{2} * \frac{11}{1}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(3 \frac{1}{2} * \frac{11}{1}=\frac{7}{2} * \frac{11}{1}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
38
2
Type the answer 38 1/2.

\section*{29) Problem \#PRABC6DT "PRABC6DT - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(63 / 4\).


\section*{Exact Match (case sensitive):}
/ \(44 / 5\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\[
1 \quad 1
\]} \\
\hline \\
\hline \\
\hline
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(11 * 4=6 * 4\)
```

- - - -

5

```
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
4
4
5
Type the answer \(44 / 5\).

\section*{30) Problem \#PRABC6DU "PRABC6DU - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}


Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\frac{1}{1} \frac{2}{2} \div \frac{1}{11}=1 \frac{11}{2} * \frac{1}{2}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{11}{2}=\frac{3}{2} * \frac{11}{2}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
4
Type the answer \(81 / 4\).

\section*{31) Problem \#PRABC6DV "PRABC6DV - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
```

70/2

```

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{cccc}
1 & 1 & 1 & 2 \\
2 & \(\div\) & - & 2
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 2 & 7 & 2 \\
3-* & =- & *- \\
2 & 1 & 2 & 1
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\[
0
\]

2
Type the answer \(70 / 2\).

\section*{32) Problem \#PRABC6DW "PRABC6DW - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

V \(33 / 10\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
```

1 5 1 11
1-\div-=1-*-
2 11 2 5

```
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{11}{5}=\frac{3}{2} * \frac{11}{5}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
3
3
10
Type the answer 3 3/10.

\section*{33) Problem \#PRABC6DX "PRABC6DX - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
8 5/9

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \frac{1}{3} \div \frac{3}{11}=2 \frac{1}{3} * \frac{11}{3}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(2 \frac{1}{3} * \frac{11}{3}=\frac{7}{3} * \frac{11}{3}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
5
8 -
9
Type the answer \(85 / 9\).

\section*{34) Problem \#PRABC6DY "PRABC6DY - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(63 / 4\).


\section*{Exact Match (case sensitive):}
\(\sqrt{ } 101 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{aligned}
& \begin{array}{llll}
1 & 1 & 1 & 7
\end{array} \\
& 1-\div-=1-*- \\
& \begin{array}{llll}
2 & 7 & 2
\end{array}
\end{aligned}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(11 * 7=3 * 7\)
```

- - - -

2 1 2 1

```
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
10
    2

Type the answer 10 1/2.

\section*{35) Problem \#PRABC6DZ "PRABC6DZ - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
\(161 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \frac{1}{2} \div \frac{1}{11}=\stackrel{1}{1} \frac{11}{2} * \frac{11}{1}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{11}{1}=\frac{3}{2} * \frac{11}{1}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\(16 \frac{1}{2}\)
Type the answer 16 1/2.

\section*{36) Problem \#PRABC6D2 "PRABC6D2 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
```

70/2

```

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{|c|c|c|}
\hline 1 & 1 & 1 \\
\hline 3 - & & - \\
\hline 2 & 2 & 2 \\
\hline
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 2 & 7 & 2 \\
3-* & =- & *- \\
2 & 1 & 2 & 1
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\[
0
\]

7
2
Type the answer \(70 / 2\).

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
\(1 \frac{1}{2} \div \frac{4}{11}\)

Exact Match (case sensitive):
\(41 / 8\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
```

1 4 4 % 1 11
2 11 2 4

```
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{11}{4}=\frac{3}{2} * \frac{11}{4}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
1
4
8
Type the answer \(41 / 8\).

\section*{38) Problem \#PRABC6D4 "PRABC6D4 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
\(125 / 6\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
3 \frac{1}{2} \div \frac{3}{11}=3 \frac{1}{2} * \frac{11}{3}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(3 \frac{1}{2} * \frac{11}{3}=\frac{7}{2} * \frac{11}{3}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
12

6
Type the answer \(125 / 6\).

\section*{39) Problem \#PRABC6D5 "PRABC6D5 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(63 / 4\).


\section*{Exact Match (case sensitive):}
\(\sqrt{ }\) 2/15

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{aligned}
& \begin{array}{llll}
1 & 3 & 1 & 7
\end{array} \\
& 2-\div-=2-*- \\
& \begin{array}{llll}
5 & 7 & 5 & 3
\end{array}
\end{aligned}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(21 * 7=11 * 7\)
```

- - - -

5 3 5 3

```
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
2
5
15
Type the answer \(52 / 15\).

\section*{40) Problem \#PRABC6D6 "PRABC6D6 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}
v \(21 / 10\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

```

 2 7 2 5
    ```
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
\[
1
\]

2
Type the answer 2 1/10.

\section*{41) Problem \#PRABC6D7 "PRABC6D7 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}

8 5/9
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(2 \frac{1}{3} \div \frac{3}{11}=2 \underset{3}{3} * \frac{11}{3}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
2 \frac{1}{3} * \frac{11}{3}=\frac{7}{3} * \frac{11}{3}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
5
8
9
Type the answer \(85 / 9\).

\section*{42) Problem \#PRABC6D8 "PRABC6D8 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
V \(101 / 2\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 1 & 1 & 3 \\
3-\div & \div & 3 & * \\
2 & 3 & 2 & 1
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{cccc}
1 & 3 & 7 & 3 \\
2 & 1 & 2 & 1
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
10

2
Type the answer 10 1/2.

\section*{43) Problem \#PRABC6D9 "PRABC6D9 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


Exact Match (case sensitive):
\(17 / 8\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\begin{array}{cccc}
1 & 4 & 1 & 5 \\
1-\div & \div & =1- \\
2 & 5 & 2 & 4
\end{array}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
1
\(1 \frac{5}{2} *\)
2 \(\frac{5}{4}\)\begin{tabular}{c}
3
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


The Mixed Number Representation is seen here:
7
1
8
Type the answer \(17 / 8\).

\section*{44) Problem \#PRABC6EA "PRABC6EA - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
-9/20
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(3 \quad 3 \quad 9\)
- * - = -
\(2 \quad 10 \quad 20\)

\section*{45) Problem \#PRABC6EB "PRABC6EB - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.
\(2 \frac{1}{3} \div \frac{11}{2}\)

\section*{Exact Match (case sensitive):}
\(\sqrt{ } 14 / 33\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{7}{3} * \frac{2}{11}=\frac{14}{33}\)

\section*{46) Problem \#PRABC6EC "PRABC6EC - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(24 / 5\).


\section*{Exact Match (case sensitive):}
\[
14 / 33
\]

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{7}{3} * \frac{2}{11}=\frac{14}{33}\)

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\[
8 / 15
\]

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{3} * \frac{2}{5}=\frac{4}{3} * \frac{2}{5}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.


\section*{48) Problem \#PRABC6EE "PRABC6EE - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}

14/15

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{7}{3} * \frac{2}{5}=\frac{14}{15}\)

\section*{49) Problem \#PRABC6EF "PRABC6EF - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\(9 / 16\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{3}{2} * \frac{3}{8}=\frac{9}{16}\)

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\(\sqrt{9 / 22}\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
```

3 * 3 = 9

```
\begin{tabular}{lll}
2 & \(\overline{11}\) & \(\overline{22}\)
\end{tabular}

\section*{51) Problem \#PRABC6EH "PRABC6EH - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
```

9/14

```

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
339
-* \(-=-\)
\(2 \quad 7 \quad 14\)
52) Problem \#PRABC6EJ "PRABC6EJ - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\(9 / 22\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{3}{2} * \frac{3}{11}=\frac{9}{22}\)

\section*{53) Problem \#PRABC6EK "PRABC6EK - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
v \(14 / 9\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{7}{3} * \frac{2}{3}=\frac{14}{9}\)

\section*{54) Problem \#PRABC6EM "PRABC6EM - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}

21/10
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\begin{array}{lll}7 & 31\end{array}\)
- * - = -

2510

\section*{55) Problem \#PRABC6EN "PRABC6EN - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\(\sqrt{ } 21 / 10\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{7}{2} * \frac{3}{5}=\frac{21}{10}\)

\section*{56) Problem \#PRABC6EP "PRABC6EP - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\[
14 / 33
\]

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{7}{3} * \frac{2}{11}=\frac{14}{33}\)
57) Problem \#PRABC6EQ "PRABC6EQ - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(3 \quad 3 \quad 9\)
- * - = -
\(\begin{array}{lll}2 & 8 & 16\end{array}\)
58) Problem \#PRABC6ER "PRABC6ER - 222198 - Dividing Fractions(MP)"

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
\(9 / 22\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(3 \quad 3 \quad 9\)
- * - = -
\(2 \quad 11 \quad 22\)

\section*{59) Problem \#PRABC6ES "PRABC6ES - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}

V \(15 / 16\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{3}{2} * \frac{5}{8}=\frac{15}{16}\)

\section*{60) Problem \#PRABC6ET "PRABC6ET - 222198 - Dividing Fractions(MP)"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(24 / 5\).


\section*{Exact Match (case sensitive):}

15/16

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\begin{array}{lll}3 & 5 & 15\end{array}\)
- * - = -
\(\begin{array}{lll}2 & 8 & 16\end{array}\)

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 2 4/5.


\section*{Exact Match (case sensitive):}
- \(9 / 22\)

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:

- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{3}{11}=\frac{3}{2} * \frac{3}{11}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form since the fraction is not improper.
\(\frac{3}{2} * \frac{3}{11}=\frac{9}{22}\)

\section*{62) Problem \#PRABC6EV "PRABC6EV - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

1- }\div
2

```

\section*{Exact Match (case sensitive):}

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{|c|c|}
\hline 1 & 1 \\
\hline - & - *- \\
\hline 2 & \\
\hline
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{ccc}
1 & 1 & 3 \\
\(1-\) & 1 \\
2 & 5 & 2
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{63) Problem \#PRABC6EW "PRABC6EW - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

 1
 2-5
3

```

\section*{Exact Match (case sensitive):}

7/15

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \quad 1 \quad 1\)
\(2-\div 5=2-*-\)
\(3 \quad 35\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(21 * 1=7 * 1\)
\(3 \quad 5 \quad 3 \quad 5\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{64) Problem \#PRABC6EX "PRABC6EX - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

 1
 1- \div8
2

```

\section*{Exact Match (case sensitive):}

V \(3 / 16\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{|c|c|}
\hline 1 & 1 \\
\hline \multicolumn{2}{|l|}{\(1-\div 8=1-*-\)} \\
\hline 2 & 2 \\
\hline
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{cccc}
1 & 1 & 3 & 1 \\
\(1-\) & \(*\) & - & - \\
2 & 8 & 2 & 8
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{65) Problem \#PRABC6EY "PRABC6EY - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(63 / 4\).
```

1\frac{1}{2}}\div1

```
Exact Match (case sensitive):
3/22

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \frac{1}{2} \div 11=1 \frac{1}{-} * \frac{1}{-}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
1 \frac{1}{2} * \frac{1}{11}=\frac{3}{2} * \frac{1}{11}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{66) Problem \#PRABC6EZ "PRABC6EZ - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

11
\(\div 6\)

\section*{Exact Match (case sensitive):}
v \(5 / 24\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \frac{1}{-} \div 6=1\)\begin{tabular}{c}
1 \\
4
\end{tabular}\(\frac{1}{4}\)\begin{tabular}{c}
- \\
6
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
\begin{array}{cccc}
1 & 1 & 5 & 1 \\
1-* & =\frac{-}{-} * \frac{-}{2} \\
4 & 6 & 4 & 6
\end{array}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{67) Problem \#PRABC6E2 "PRABC6E2 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

 1
 1- \div 8
2

```

\section*{Exact Match (case sensitive):}

ป \(3 / 16\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \frac{1}{2} \div 8=\)\begin{tabular}{r}
1 \\
\(1-\) \\
2
\end{tabular}\(\frac{1}{-}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{68) Problem \#PRABC6E3 "PRABC6E3 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

 1
 1-\div11
2

```

\section*{Exact Match (case sensitive):}
\(\sqrt{ } 3 / 22\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
1 \frac{1}{2} \div 11=1 \frac{1}{2} * \frac{1}{11}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{1}{11}=\frac{3}{2} * \frac{1}{11}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{69) Problem \#PRABC6E4 "PRABC6E4 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
\(1 \frac{1}{2} \div 11\)

\section*{Exact Match (case sensitive):}
\(3 / 22\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
\frac{1}{1} \frac{1}{2} \div 11=1 \frac{1}{2} * \frac{1}{11}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
1 \frac{1}{2} * \frac{1}{11}=\frac{3}{2} * \frac{1}{11}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

 1
 1- \div11
2

```

\section*{Exact Match (case sensitive):}
\(3 / 22\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
1 \frac{1}{2} \div 11=\frac{1}{-} \frac{1}{2} \frac{1}{11}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\(1 \frac{1}{2} * \frac{1}{11}=\frac{3}{-} * \frac{1}{-}\)
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{71) Problem \#PRABC6E6 "PRABC6E6 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!

If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

1\frac{1}{2}}\div

```

\section*{Exact Match (case sensitive):}
\(3 / 14\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{c}
1 \\
2
\end{tabular}\(\div 7=\)\begin{tabular}{c}
1 \\
2
\end{tabular}\(\frac{1}{7}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{72) Problem \#PRABC6E7 "PRABC6E7 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

1
2-}\div

```

\section*{Exact Match (case sensitive):}
\(\sqrt{7 / 15}\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\[
2 \frac{1}{3} \div 5=2-\begin{gathered}
1 \\
3
\end{gathered} \frac{1}{5}
\]
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.

- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.

73) Problem \#PRABC6E8 "PRABC6E8 - Final: Dividing Fractions M/M"

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.


\section*{Exact Match (case sensitive):}


\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \frac{1}{4} \div 4=\)\begin{tabular}{c}
1 \\
\hline
\end{tabular}\(\underset{4}{-} \quad\)\begin{tabular}{c}
1 \\
4
\end{tabular}
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\begin{tabular}{cccc}
1 & 1 & 5 & 1 \\
\(1-\) & \(=\) & - & \(*\) \\
4 & 4 & 4
\end{tabular}
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{74) Problem \#PRABC6E9 "PRABC6E9 - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

1\frac{1}{3}}\div1

```

\section*{Exact Match (case sensitive):}
```

4/33

```

Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \frac{1}{3} \div 11=1 \frac{1}{-} * \frac{1}{-}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
1 \frac{1}{3} * \frac{1}{11}=\frac{4}{3} * \frac{1}{11}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{75) Problem \#PRABC6FA "PRABC6FA - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.

11
\(\div \quad 11\)

\section*{Exact Match (case sensitive):}
v \(3 / 22\)
Hints:
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\(1 \frac{1}{2} \div 11=1 \frac{1}{-} * \frac{1}{-}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
1 \frac{1}{2} * \frac{1}{11}=\frac{3}{-} * \frac{1}{2} \frac{1}{11}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{76) Problem \#PRABC6FB "PRABC6FB - Final: Dividing Fractions M/M"}

Calculate the quotient of the followiing and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: 6 3/4.
```

 1
 1- \div7
2

```

\section*{Exact Match (case sensitive):}
\(3 / 14\)

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
\begin{tabular}{c}
1 \\
2
\end{tabular}\(\div 7=\)\begin{tabular}{c}
1 \\
2
\end{tabular}\(\frac{1}{-}\)
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.


2727
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Since there are no common factors, multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.
- Answer should be written in mixed number form.


\section*{Appendix 3.6 Post Test 1}

\section*{Select All}

\section*{Problem \#1015227 "PRABDCQJ - mixed number by mixed number"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(24 / 5\).
\(1 \frac{1}{5} \div 2 \frac{1}{4}\)

\section*{Exact Fraction:}
\(\sqrt{8 / 15}\)

\section*{Hints:}
- The first step is to change the mixed numbers to improper fractions
\[
1 \frac{1}{5} \div 2 \frac{1}{4}=\frac{6}{5} \times \frac{9}{4}
\]
- When dividing fractions, you need to flip second fraction and create a multiplication problem, as shown below:
\[
\frac{6}{5} \times \frac{4}{9}
\]

Notice the numerator of the first fraction and denominator of the second fraction have a common divisor. This can be used to simplify both
\[
\frac{26}{5} \times \frac{4}{39}=\frac{2}{5} \times \frac{4}{3}
\]
- Multiply the numerator by numerator and denominator by denominator
\[
\frac{2}{5} \times \frac{4}{3}=\frac{8}{15}
\]

\section*{Appendix 3.7 Post Test 2}

\section*{Select All}

\section*{Problem \#1015356 "PRABDCUQ - Unkind"}

Calculate the quotient of the following and make sure your answer is in SIMPLEST FORM!
If your answer is an improper fraction, submit your answer as a mixed number with a space between the whole number and the fraction parts. Example: \(51 / 4\).


\section*{Exact Match (case sensitive):}

5 19/32

\section*{Hints:}
- When dividing fractions, you need to first flip the second fraction and create a multiplication problem, as shown below:
```

4

```
- Remember when multiplying fractions with mixed numbers you need to convert the mixed numbers to improper fractions.
\[
4 \frac{3}{44} * \frac{11}{8}=\frac{179}{44} * \frac{11}{8}
\]
- Determine if either numerator has a common factor with either denominator, if so, cancel the common factor.
- Reduction of Fractions:
\(\frac{179}{44} * \frac{11}{8}=\frac{179}{\mathbf{4 4 - 4}} * \frac{\mathbf{4 1} \mathbf{1}}{8}=\) ?
- Multiply the two fractions by multiplying across. Multiply the numerators and then multiply the denominators.

Answer should be written in fraction form.


The Mixed Number Representation is seen here:
19
5
32
Type the answer 5 19/32.
```

UNIANOVA ProblemCount BY Condition
/METHOD=SSTYPE (3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/ EMMEANS=TABLES (OVERALL)
/EMMEANS=TABLES (Condition) COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.

```

\section*{Univariate Analysis of Variance}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Notes} \\
\hline Output Created & & 04-MAY-2017 22:42:14 \\
\hline \multicolumn{3}{|l|}{Comments} \\
\hline \multirow[t]{6}{*}{Input} & Active Dataset & DataSet4 \\
\hline & Filter & <none> \\
\hline & Weight & <none> \\
\hline & Split File & <none> \\
\hline & \(N\) of Rows in Working Data & 1093 \\
\hline & File & \\
\hline Missing Value Handling & Definition of Missing & User-defined missing values are treated as missing. \\
\hline & Cases Used & Statistics are based on all cases with valid data for all variables in the model. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{13}{*}{Syntax} & & \multirow[t]{4}{*}{\begin{tabular}{l}
UNIANOVA ProblemCount BY Condition \\
/METHOD=SSTYPE(3) \\
/INTERCEPT=INCLUDE
\end{tabular}} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & /POSTHOC=Condition(BONFERRONI) \\
\hline & & /EMMEANS=TABLES(OVERALL) \\
\hline & & /EMMEANS=TABLES(Condition) \\
\hline & & COMPARE ADJ(BONFERRONI) \\
\hline & & /PRINT=OPOWER ETASQ \\
\hline & & HOMOGENEITY DESCRIPTIVE \\
\hline & & PARAMETER \\
\hline & & /CRITERIA=ALPHA(.05) \\
\hline & & /DESIGN=Condition. \\
\hline \multirow[t]{2}{*}{Resources} & Processor Time & 00:00:00.11 \\
\hline & Elapsed Time & 00:00:00.14 \\
\hline
\end{tabular}
\begin{tabular}{|ll|l|}
\hline \multicolumn{2}{|c|}{ Between-Subjects Factors } \\
\hline & & \multicolumn{1}{|c|}{N} \\
\hline Condition & CO & 277 \\
& HO & 284 \\
& WE-T & 249 \\
& WE-V & 280 \\
\hline
\end{tabular}

Descriptive Statistics
Dependent Variable: Problem Count
\begin{tabular}{|l|r|r|r|}
\hline Condition & \multicolumn{1}{c|}{ Mean } & \multicolumn{1}{c|}{ Std. Deviation } & \multicolumn{1}{c|}{ N } \\
\hline CO & 9.751 & 7.4512 & 277 \\
HO & 9.655 & 7.9855 & 284 \\
WE-T & 15.289 & 11.6226 & 249 \\
WE-V & 16.579 & 12.8197 & 280 \\
Total & 12.745 & 10.6555 & 1090 \\
\hline
\end{tabular}

Dependent Variable: Problem Count
\begin{tabular}{|c|r|r|r|}
\hline F & df1 & df2 & Sig. \\
\hline 29.372 & & 3 & 1086 \\
\hline
\end{tabular}

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. \({ }^{\text {a }}\)
a. Design: Intercept + Condition

Tests of Between-Subjects Effects
Dependent Variable: Problem Count
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline & \begin{tabular}{c} 
Type III Sum of \\
Squares
\end{tabular} & \multicolumn{1}{|c|}{ df } & & \\
Source & Mean Square & \multicolumn{1}{c|}{F} & \multicolumn{1}{c|}{ Sig. } & \multicolumn{1}{c|}{\begin{tabular}{c} 
Partial Eta \\
Squared
\end{tabular}} \\
\hline Corrected Model & \(10921.650^{\mathrm{a}}\) & 3 & 3640.550 & 35.074 & .000 & .088 \\
Intercept & 178614.483 & 1 & 178614.483 & 1720.807 & .000 & .613 \\
Condition & 10921.650 & 3 & 3640.550 & 35.074 & .000 & .088 \\
Error & 112723.448 & 1086 & 103.797 & & & \\
Total & 300698.000 & 1090 & & & & \\
Corrected Total & 123645.097 & 1089 & & & & \\
\hline
\end{tabular}

Tests of Between-Subjects Effects
Dependent Variable: Problem Count
\begin{tabular}{|l|r|r|}
\hline Source & Noncent. Parameter & \multicolumn{1}{|c|}{ Observed Power \(^{\text {b }}\)} \\
\hline Corrected Model & 105.221 & 1.000 \\
Intercept & 1720.807 & 1.000 \\
Condition & 105.221 & 1.000 \\
Error & & \\
Total & & \\
Corrected Total & & \\
\hline
\end{tabular}
a. R Squared \(=.088\) (Adjusted R Squared \(=.086\) )
b. Computed using alpha \(=.05\)

\section*{Parameter Estimates}

Dependent Variable: Problem Count
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multirow{3}{*}{} & & & & \multicolumn{2}{|c|}{\(95 \%\) Confidence Interval } \\
\cline { 6 - 7 } & Sarameter & Std. Error & t & Sig. & Lower Bound & Upper Bound \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline Intercept & 16.579 & .609 & 27.229 & .000 & 15.384 & 17.773 \\
[Condition=CO] & -6.828 & .863 & -7.908 & .000 & -8.522 & -5.134 \\
[Condition=HO] & -6.924 & .858 & -8.069 & .000 & -8.607 & -5.240 \\
[Condition=WE-T] & -1.289 & .887 & -1.453 & .147 & -3.031 & .452 \\
[Condition=WE-V] & \(0^{\mathrm{a}}\) &. & &. &. &. \\
\hline
\end{tabular}

\section*{Parameter Estimates}

Dependent Variable: Problem Count
\begin{tabular}{|l|r|r|r|}
\hline & & & \\
Parameter & Partial Eta Squared & Noncent. Parameter & Observed Power \({ }^{\text {b }}\) \\
\hline Intercept & .406 & 27.229 & 1.000 \\
{\([\) Condition=CO] } & .054 & 7.908 & 1.000 \\
{\([\) Condition=HO] } & .057 & 8.069 & 1.000 \\
{\([\) Condition=WE-T] } & .002 & 1.453 & .306 \\
[Condition=WE-V] &. &. &. \\
\hline
\end{tabular}
a. This parameter is set to zero because it is redundant.
b. Computed using alpha \(=.05\)

\section*{Estimated Marginal Means}

\section*{1. Grand Mean}

Dependent Variable: Problem Count
\begin{tabular}{|c|r|r|r|}
\hline \multirow{3}{*}{ Mean } & & \multicolumn{2}{|c|}{\(95 \%\) Confidence Interval } \\
\cline { 3 - 4 } & Std. Error & Lower Bound & Upper Bound \\
\hline 12.818 & .309 & 12.212 & 13.425 \\
\hline
\end{tabular}

\section*{2. Condition}

\section*{Estimates}

Dependent Variable: Problem Count
\begin{tabular}{|l|r|r|r|r|}
\hline & & & \multicolumn{2}{|c|}{\(95 \%\) Confidence Interval } \\
\cline { 4 - 5 } Condition & \multicolumn{1}{|c|}{ Mean } & Std. Error & Lower Bound & Upper Bound \\
\hline CO & 9.751 & .612 & 8.550 & 10.952 \\
HO & 9.655 & .605 & 8.469 & 10.841 \\
WE-T & 15.289 & .646 & 14.022 & 16.556 \\
WE-V & 16.579 & .609 & 15.384 & 17.773 \\
\hline
\end{tabular}

\section*{Pairwise Comparisons}

Dependent Variable: Problem Count
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{(I) Condition} & \multirow[b]{2}{*}{(J) Condition} & \multirow[b]{2}{*}{Mean Difference
(I-J)} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{Sig. \({ }^{\text {b }}\)} & \multicolumn{2}{|l|}{95\% Confidence Interval for Difference \({ }^{\text {b }}\)} \\
\hline & & & & & Lower Bound & Upper Bound \\
\hline \multirow[t]{3}{*}{CO} & HO & . 096 & . 860 & 1.000 & -2.178 & 2.370 \\
\hline & WE-T & -5.538* & . 890 & . 000 & -7.890 & -3.187 \\
\hline & WE-V & -6.828* & . 863 & . 000 & -9.110 & -4.546 \\
\hline \multirow[t]{3}{*}{HO} & CO & -. 096 & . 860 & 1.000 & -2.370 & 2.178 \\
\hline & WE-T & \(-5.634^{*}\) & . 884 & . 000 & -7.972 & -3.296 \\
\hline & WE-V & -6.924 \({ }^{*}\) & . 858 & . 000 & -9.191 & -4.656 \\
\hline \multirow[t]{3}{*}{WE-T} & CO & \(5.538^{*}\) & . 890 & . 000 & 3.187 & 7.890 \\
\hline & HO & \(5.634^{*}\) & . 884 & . 000 & 3.296 & 7.972 \\
\hline & WE-V & -1.289 & . 887 & . 879 & -3.635 & 1.056 \\
\hline \multirow[t]{3}{*}{WE-V} & CO & \(6.828^{*}\) & . 863 & . 000 & 4.546 & 9.110 \\
\hline & HO & \(6.924^{*}\) & . 858 & . 000 & 4.656 & 9.191 \\
\hline & WE-T & 1.289 & . 887 & . 879 & -1.056 & 3.635 \\
\hline
\end{tabular}

Based on estimated marginal means
*. The mean difference is significant at the .05 level.
b. Adjustment for multiple comparisons: Bonferroni.

\section*{Univariate Tests}

Dependent Variable: Problem Count
\begin{tabular}{|l|r|r|r|c|c|c|}
\hline & & & & & & \multicolumn{1}{c|}{\begin{tabular}{c} 
Partial Eta \\
Squared
\end{tabular}} \\
\hline Sum of Squares & df & Mean Square & \multicolumn{1}{c|}{ F } & Sig. & .088 \\
\hline
\end{tabular}


Univariate Tests
Dependent Variable: Problem Count
\begin{tabular}{|l|r|r|}
\hline & Noncent. Parameter & \multicolumn{1}{|c|}{ Observed Power \(^{\text {a }}\)} \\
\hline Contrast & 105.221 & \\
Error & & 1.000 \\
\hline
\end{tabular}

The \(F\) tests the effect of Condition. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.
a. Computed using alpha \(=.05\)

\section*{Post Hoc Tests}

\section*{Condition}

\section*{Multiple Comparisons}

Dependent Variable: Problem Count
Bonferroni
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{(I) Condition} & \multirow[b]{2}{*}{(J) Condition} & \multirow[t]{2}{*}{Mean Difference
(I-J)} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{Sig.} & \multicolumn{2}{|l|}{95\% Confidence Interval} \\
\hline & & & & & Lower Bound & Upper Bound \\
\hline \multirow[t]{3}{*}{CO} & HO & . 096 & . 8603 & 1.000 & -2.178 & 2.370 \\
\hline & WE-T & -5.538* & . 8897 & . 000 & -7.890 & -3.187 \\
\hline & WE-V & -6.828* & . 8634 & . 000 & -9.110 & -4.546 \\
\hline \multirow[t]{3}{*}{HO} & CO & -. 096 & . 8603 & 1.000 & -2.370 & 2.178 \\
\hline & WE-T & -5.634* & . 8845 & . 000 & -7.972 & -3.296 \\
\hline & WE-V & -6.924* & . 8580 & . 000 & -9.191 & -4.656 \\
\hline \multirow[t]{3}{*}{WE-T} & CO & \(5.538^{*}\) & . 8897 & . 000 & 3.187 & 7.890 \\
\hline & HO & \(5.634^{*}\) & . 8845 & . 000 & 3.296 & 7.972 \\
\hline & WE-V & -1.289 & . 8874 & . 879 & -3.635 & 1.056 \\
\hline
\end{tabular}
\begin{tabular}{|ll|r|r|r|r|r|} 
\\
WE-V & \(6.828^{*}\) & .8634 & .000 & 4.546 & 9.110 \\
& \(6.924^{*}\) & .8580 & .000 & 4.656 & 9.191 \\
\hline HO & 1.289 & .8874 & .879 & -1.056 & 3.635 \\
\hline
\end{tabular}

Based on observed means.
The error term is Mean Square \((\) Error \()=103.797\).
*. The mean difference is significant at the .05 level.
```

UNIANOVA AveCO BY Condition
/METHOD=SSTYPE (3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/ EMMEANS=TABLES (OVERALL)
/EMMEANS=TABLES (Condition) COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE PARAMETER
/CRITERIA=ALPHA (.05)
/DESIGN=Condition.

```

\section*{Univariate Analysis of Variance}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Notes} \\
\hline Output Created & & 04-MAY-2017 22:42:14 \\
\hline \multicolumn{3}{|l|}{Comments} \\
\hline \multirow[t]{5}{*}{Input} & Active Dataset & DataSet4 \\
\hline & Filter & <none> \\
\hline & Weight & <none> \\
\hline & Split File & <none> \\
\hline & N of Rows in Working Data File & 1093 \\
\hline \multirow[t]{2}{*}{Missing Value Handling} & Definition of Missing & User-defined missing values are treated as missing. \\
\hline & Cases Used & Statistics are based on all cases with valid data for all variables in the model. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Syntax & & \begin{tabular}{l}
UNIANOVA AveCO BY Condition \\
/METHOD=SSTYPE(3) \\
/INTERCEPT=INCLUDE \\
/POSTHOC=Condition(BONFERRONI) \\
/EMMEANS=TABLES(OVERALL) \\
/EMMEANS=TABLES(Condition) \\
COMPARE ADJ(BONFERRONI) \\
/PRINT=OPOWER ETASQ \\
HOMOGENEITY DESCRIPTIVE \\
PARAMETER \\
/CRITERIA=ALPHA(.05) \\
/DESIGN=Condition.
\end{tabular} \\
\hline Resources & Processor Time Elapsed Time & \[
\begin{aligned}
& 00: 00: 00.08 \\
& 00: 00: 00.17
\end{aligned}
\] \\
\hline
\end{tabular}

Between-Subjects Factors
\begin{tabular}{|ll|r|}
\hline & & \multicolumn{1}{|c|}{N} \\
\hline Condition & CO & 265 \\
& HO & 273 \\
& WE-T & 238 \\
& WE-V & 266 \\
\hline
\end{tabular}

Descriptive Statistics
Dependent Variable: AveCO
\begin{tabular}{|l|r|r|r|}
\hline Condition & \multicolumn{1}{c|}{ Mean } & \multicolumn{1}{c|}{ Std. Deviation } & \multicolumn{1}{c|}{ N } \\
\hline CO & .6825 & .24378 & 265 \\
HO & .6735 & .24858 & 273 \\
WE-T & .6325 & .24573 & 238 \\
WE-V & .6630 & .22871 & 266 \\
\hline Total & .6637 & .24211 & 1042 \\
\hline
\end{tabular}

\section*{Levene's Test of Equality of Error Variances \({ }^{\text {a }}\)}

Dependent Variable: AveCO
\begin{tabular}{|c|c|c|c|}
\hline F & df1 & df2 & Sig. \\
\hline 1.017 & & 3 & 1038 \\
\hline
\end{tabular}

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. \({ }^{\text {a }}\)
a. Design: Intercept + Condition

Tests of Between-Subjects Effects
Dependent Variable: AveCO
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline Source & \begin{tabular}{c} 
Type III Sum of \\
Squares
\end{tabular} & df & Mean Square & F & Sig. & \multicolumn{1}{c|}{\begin{tabular}{c} 
Partial Eta \\
Squared
\end{tabular}} \\
\hline Corrected Model & \(.351^{\mathrm{a}}\) & 3 & .117 & 2.003 & .112 & .006 \\
Intercept & 456.584 & 1 & 456.584 & 7811.617 & .000 & .883 \\
Condition & .351 & 3 & .117 & 2.003 & .112 & .006 \\
Error & 60.670 & 1038 & .058 & & & \\
\hline Total & 520.073 & 1042 & & & & \\
\hline Corrected Total & 61.022 & 1041 & & & & \\
\hline
\end{tabular}

Tests of Between-Subjects Effects
Dependent Variable: AveCO
\begin{tabular}{|l|r|r|}
\hline Source & \multicolumn{1}{|c|}{ Noncent. Parameter } & \multicolumn{1}{|c|}{ Observed Power \(^{\text {b }}\)} \\
\hline Corrected Model & 6.010 & .517 \\
Intercept & 7811.617 & 1.000 \\
Condition & 6.010 & .517 \\
Error & & \\
\hline Total & & \\
\hline Corrected Total & & \\
\hline
\end{tabular}
a. \(R\) Squared \(=.006\) (Adjusted \(R\) Squared \(=.003\) )
b. Computed using alpha \(=.05\)

Parameter Estimates
Dependent Variable: AveCO
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{B} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{t} & \multirow[b]{2}{*}{Sig.} & \multicolumn{2}{|l|}{95\% Confidence Interval} \\
\hline & & & & & Lower Bound & Upper Bound \\
\hline Intercept & .663 & . 015 & 44.728 & . 000 & . 634 & . 692 \\
\hline
\end{tabular}
\begin{tabular}{|l|r|r|r|r|r|r|}
{\([\) Condition=CO] } & .019 & .021 & .926 & .355 & -.022 & .061 \\
{\([\) Condition=HO] } & .010 & .021 & .502 & .616 & -.030 & .051 \\
\hline\([\) Condition=WE-T] & -.031 & .022 & -1.415 & .157 & -.073 & .012 \\
\hline\([\) Condition=WE-V] & \(0^{\text {a }}\) &. & & &. &. \\
\hline
\end{tabular}

\section*{Parameter Estimates}
Dependent Variable: AveCO
\begin{tabular}{|l|r|r|r|}
\hline & & & \\
Parameter & Partial Eta Squared & Noncent. Parameter & Observed Power \({ }^{\text {b }}\) \\
\hline Intercept & .658 & 44.728 & 1.000 \\
[Condition=CO] & .001 & .926 & .152 \\
[Condition=HO] & .000 & .502 & .079 \\
\hline [Condition=WE-T] & .002 & 1.415 & .293 \\
\hline [Condition=WE-V] & &. &. \\
\hline
\end{tabular}
a. This parameter is set to zero because it is redundant.
b. Computed using alpha \(=.05\)

\section*{Estimated Marginal Means}

\section*{1. Grand Mean}

Dependent Variable: AveCO
\begin{tabular}{|c|r|r|r|}
\hline \multirow{3}{*}{ Mean } & & \multicolumn{2}{|c|}{\(95 \%\) Confidence Interval } \\
\cline { 3 - 4 } & Std. Error & Lower Bound & Upper Bound \\
\hline .663 & .007 & .648 & .678 \\
\hline
\end{tabular}

\section*{2. Condition}

\section*{Estimates}

Dependent Variable: AveCO
\begin{tabular}{|l|r|r|r|r|}
\hline & & & \multicolumn{2}{|c|}{\(95 \%\) Confidence Interval } \\
\cline { 4 - 5 } Condition & \multicolumn{2}{|c|}{ Mean } & Std. Error & Lower Bound \\
Upper Bound \\
\hline CO & .682 & .015 & .653 & .712 \\
HO & .673 & .015 & .645 & .702 \\
WE-T & .632 & .016 & .602 & .663 \\
\hline WE-V & .663 & .015 & .634 & .692 \\
\hline
\end{tabular}

\section*{Pairwise Comparisons}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Dependent Variable: AveCO} \\
\hline \multirow[b]{2}{*}{(I) Condition} & \multirow[b]{2}{*}{(J) Condition} & \multirow[b]{2}{*}{Mean Difference (I-J)} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{Sig. \({ }^{\text {a }}\)} & \multicolumn{2}{|l|}{95\% Confidence Interval for Difference \({ }^{\text {a }}\)} \\
\hline & & & & & Lower Bound & Upper Bound \\
\hline \multirow[t]{3}{*}{CO} & HO & . 009 & . 021 & 1.000 & -. 046 & . 064 \\
\hline & WE-T & . 050 & . 022 & . 125 & -. 007 & . 107 \\
\hline & WE-V & . 019 & . 021 & 1.000 & -. 036 & . 075 \\
\hline \multirow[t]{3}{*}{HO} & CO & -. 009 & . 021 & 1.000 & -. 064 & . 046 \\
\hline & WE-T & . 041 & . 021 & . 337 & -. 016 & . 098 \\
\hline & WE-V & . 010 & . 021 & 1.000 & -. 045 & . 066 \\
\hline \multirow[t]{3}{*}{WE-T} & CO & -. 050 & . 022 & . 125 & -. 107 & . 007 \\
\hline & HO & -. 041 & . 021 & . 337 & -. 098 & . 016 \\
\hline & WE-V & -. 031 & . 022 & . 944 & -. 088 & . 026 \\
\hline \multirow[t]{3}{*}{WE-V} & CO & -. 019 & . 021 & 1.000 & -. 075 & . 036 \\
\hline & HO & -. 010 & . 021 & 1.000 & -. 066 & . 045 \\
\hline & WE-T & . 031 & . 022 & . 944 & -. 026 & . 088 \\
\hline
\end{tabular}

Based on estimated marginal means
a. Adjustment for multiple comparisons: Bonferroni.

Univariate Tests
Dependent Variable: AveCO
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Sum of Squares & df & Mean Square & F & Sig. & \begin{tabular}{l}
Partial Eta \\
Squared
\end{tabular} \\
\hline Contrast & . 351 & 3 & . 117 & 2.003 & . 112 & . 006 \\
\hline Error & 60.670 & 1038 & . 058 & & & \\
\hline
\end{tabular}

\section*{Univariate Tests}

Dependent Variable: AveCO
\begin{tabular}{|l|r|r|}
\hline & Noncent. Parameter & \multicolumn{1}{|c|}{ Observed Power \(^{\text {a }}\)} \\
\hline Contrast & 6.010 & .517 \\
Error & & \\
\hline
\end{tabular}

The \(F\) tests the effect of Condition. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.
a. Computed using alpha \(=.05\)

\section*{Post Hoc Tests}

\section*{Condition}

\section*{Multiple Comparisons}

Dependent Variable: AveCO
Bonferroni
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{(I) Condition} & \multirow[b]{2}{*}{(J) Condition} & \multirow[t]{2}{*}{\begin{tabular}{l}
Mean Difference \\
(I-J)
\end{tabular}} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{Sig.} & \multicolumn{2}{|l|}{95\% Confidence Interval} \\
\hline & & & & & Lower Bound & Upper Bound \\
\hline \multirow[t]{3}{*}{CO} & HO & . 0090 & . 02085 & 1.000 & -. 0461 & . 0641 \\
\hline & WE-T & . 0500 & . 02159 & . 125 & -. 0071 & . 1070 \\
\hline & WE-V & . 0194 & . 02098 & 1.000 & -. 0360 & . 0749 \\
\hline \multirow[t]{3}{*}{HO} & CO & -. 0090 & . 02085 & 1.000 & -. 0641 & . 0461 \\
\hline & WE-T & . 0410 & . 02144 & . 337 & -. 0157 & . 0977 \\
\hline & WE-V & . 0105 & . 02083 & 1.000 & -. 0446 & . 0655 \\
\hline \multirow[t]{3}{*}{WE-T} & CO & -. 0500 & . 02159 & . 125 & -. 1070 & . 0071 \\
\hline & HO & -. 0410 & . 02144 & . 337 & -. 0977 & . 0157 \\
\hline & WE-V & -. 0305 & . 02157 & . 944 & -. 0876 & . 0265 \\
\hline \multirow[t]{2}{*}{WE-V} & CO & -. 0194 & . 02098 & 1.000 & -. 0749 & . 0360 \\
\hline & HO & -. 0105 & . 02083 & 1.000 & -. 0655 & . 0446 \\
\hline
\end{tabular}

\section*{WE-T
ed means.}

Based on observed means.
The error term is Mean Square(Error) \(=.058\).
```

UNIANOVA AveFA BY Condition
/METHOD=SSTYPE (3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES (OVERALL)
/EMMEANS=TABLES (Condition) COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.

```

\section*{Univariate Analysis of Variance}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Notes} \\
\hline Output Created & & 04-MAY-2017 22:42:14 \\
\hline \multicolumn{3}{|l|}{Comments} \\
\hline \multirow[t]{5}{*}{Input} & Active Dataset & DataSet4 \\
\hline & Filter & <none> \\
\hline & Weight & <none> \\
\hline & Split File & <none> \\
\hline & N of Rows in Working Data File & 1093 \\
\hline \multirow[t]{2}{*}{Missing Value Handling} & Definition of Missing & User-defined missing values are treated as missing. \\
\hline & Cases Used & Statistics are based on all cases with valid data for all variables in the model. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Syntax & & \begin{tabular}{l}
UNIANOVA AveFA BY Condition \\
/METHOD=SSTYPE(3) \\
/INTERCEPT=INCLUDE \\
/POSTHOC=Condition(BONFERRONI) \\
/EMMEANS=TABLES(OVERALL) \\
/EMMEANS=TABLES(Condition) \\
COMPARE ADJ(BONFERRONI) \\
/PRINT=OPOWER ETASQ \\
HOMOGENEITY DESCRIPTIVE \\
PARAMETER \\
/CRITERIA=ALPHA(.05) \\
/DESIGN=Condition.
\end{tabular} \\
\hline Resources & Processor Time Elapsed Time & \[
\begin{aligned}
& 00: 00: 00.11 \\
& 00: 00: 00.10
\end{aligned}
\] \\
\hline
\end{tabular}

Between-Subjects Factors
\begin{tabular}{|ll|r|}
\hline & & \multicolumn{1}{|c|}{N} \\
\hline Condition & CO & 265 \\
& HO & 273 \\
& WE-T & 238 \\
& WE-V & 266 \\
\hline
\end{tabular}

Descriptive Statistics
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Dependent Variable: Av} & \multirow[b]{2}{*}{Std. Deviation} & \\
\hline Condition & Mean & & N \\
\hline \multirow[t]{2}{*}{CO} & . 011980933003 & . 0558725143949 & \multirow[b]{2}{*}{265} \\
\hline & 256 & 00 & \\
\hline \multirow[t]{2}{*}{HO} & . 034603491746 & . 1363762810764 & \multirow[t]{2}{*}{273} \\
\hline & 349 & 29 & \\
\hline \multirow[t]{2}{*}{WE-T} & . 072198955881 & . 1642492006083 & \multirow[t]{2}{*}{238} \\
\hline & & 16 & \\
\hline \multirow[t]{2}{*}{WE-V} & . 063624901731 & . 1568133177442 & \multirow[t]{2}{*}{266} \\
\hline & 791 & 85 & \\
\hline \multirow[t]{2}{*}{Total} & . 044845754177 & . 1364426212766 & \multirow{2}{*}{1042} \\
\hline & 647 & 64 & \\
\hline
\end{tabular}

\section*{Levene's Test of Equality of Error Variances \({ }^{\text {a }}\)}

Dependent Variable: AveFA
\begin{tabular}{|c|r|r|r|}
\hline\(F\) & df1 & df2 & Sig. \\
\hline 28.491 & & 3 & 1038 \\
\hline
\end{tabular}

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. \({ }^{\text {a }}\)
a. Design: Intercept + Condition

Tests of Between-Subjects Effects
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{endent Variable: AveFA} \\
\hline Source & Type III Sum of Squares & df & Mean Square & F & Sig. & \begin{tabular}{l}
Partial Eta \\
Squared
\end{tabular} \\
\hline Corrected Model & \(.587^{\text {a }}\) & 3 & . 196 & 10.802 & . 000 & . 030 \\
\hline Intercept & 2.161 & 1 & 2.161 & 119.353 & . 000 & . 103 \\
\hline Condition & . 587 & 3 & . 196 & 10.802 & . 000 & . 030 \\
\hline Error & 18.793 & 1038 & . 018 & & & \\
\hline Total & 21.475 & 1042 & & & & \\
\hline Corrected Total & 19.380 & 1041 & & & & \\
\hline
\end{tabular}

Tests of Between-Subjects Effects
Dependent Variable: AveFA
\begin{tabular}{|l|r|r|}
\hline Source & Noncent. Parameter & \multicolumn{1}{|c|}{ Observed Power \(^{\text {b }}\)} \\
\hline Corrected Model & 32.407 & .999 \\
Intercept & 119.353 & 1.000 \\
Condition & 32.407 & .999 \\
Error & & \\
\hline Total & & \\
\hline Corrected Total & & \\
\hline
\end{tabular}
a. \(R\) Squared \(=.030(\) Adjusted \(R\) Squared \(=.027)\)
b. Computed using alpha \(=.05\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Dependent Variable: AveFA} \\
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{B} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{t} & \multirow[b]{2}{*}{Sig.} & \multicolumn{2}{|l|}{95\% Confidence Interval} \\
\hline & & & & & Lower Bound & Upper Bound \\
\hline Intercept & . 064 & . 008 & 7.712 & . 000 & . 047 & . 080 \\
\hline [Condition=CO] & -. 052 & . 012 & -4.422 & . 000 & -. 075 & -. 029 \\
\hline [Condition=HO] & -. 029 & . 012 & -2.503 & . 012 & -. 052 & -. 006 \\
\hline [Condition=WE-T] & . 009 & . 012 & . 714 & . 475 & -. 015 & . 032 \\
\hline [Condition=WE-V] & \(0^{\text {a }}\) & & & & & \\
\hline
\end{tabular}

Parameter Estimates
Dependent Variable: AveFA
\begin{tabular}{|l|r|r|r|}
\hline & & & \\
Parameter & Partial Eta Squared & Noncent. Parameter & Observed Power \({ }^{\text {b }}\) \\
\hline Intercept & .054 & 7.712 & 1.000 \\
[Condition=CO] & .018 & 4.422 & .993 \\
[Condition=HO] & .006 & 2.503 & .706 \\
\hline [Condition=WE-T] & .000 & .714 & .110 \\
\hline [Condition=WE-V] & &. &. \\
\hline
\end{tabular}
a. This parameter is set to zero because it is redundant.
b. Computed using alpha \(=.05\)

\section*{Estimated Marginal Means}

\section*{1. Grand Mean}

Dependent Variable: AveFA
\begin{tabular}{|c|r|r|r|}
\hline \multirow{3}{*}{ Mean } & & \multicolumn{2}{|c|}{\(95 \%\) Confidence Interval } \\
\cline { 3 - 4 } & Std. Error & Lower Bound & Upper Bound \\
\hline .046 & .004 & .037 & .054 \\
\hline
\end{tabular}

\section*{2. Condition}

\section*{Estimates}
Dependent Variable: AveFA
\begin{tabular}{|l|r|r|r|r|}
\hline & & & \multicolumn{2}{|c|}{\(95 \%\) Confidence Interval } \\
\cline { 4 - 5 } Condition & Mean & \multirow{2}{|c|}{ Std. Error } & Lower Bound & Upper Bound \\
\hline CO & .012 & .008 & -.004 & .028 \\
HO & .035 & .008 & .019 & .051 \\
WE-T & .072 & .009 & .055 & .089 \\
\hline WE-V & .064 & .008 & .047 & .080 \\
\hline
\end{tabular}

Pairwise Comparisons
Dependent Variable: AveFA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{(I) Condition} & \multirow[b]{2}{*}{(J) Condition} & \multirow[b]{2}{*}{\begin{tabular}{l}
Mean Difference \\
(I-J)
\end{tabular}} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{Sig. \({ }^{\text {b }}\)} & \multicolumn{2}{|l|}{95\% Confidence Interval for Difference \({ }^{\text {b }}\)} \\
\hline & & & & & Lower Bound & Upper Bound \\
\hline \multirow[t]{3}{*}{CO} & HO & -. 023 & . 012 & . 309 & -. 053 & . 008 \\
\hline & WE-T & -. \(060{ }^{*}\) & . 012 & . 000 & -. 092 & -. 028 \\
\hline & WE-V & -. \(052{ }^{*}\) & . 012 & . 000 & -. 083 & -. 021 \\
\hline \multirow[t]{3}{*}{HO} & CO & . 023 & . 012 & . 309 & -. 008 & . 053 \\
\hline & WE-T & -. \(038{ }^{*}\) & . 012 & . 010 & -. 069 & -. 006 \\
\hline & WE-V & -. 029 & . 012 & . 075 & -. 060 & . 002 \\
\hline \multirow[t]{3}{*}{WE-T} & CO & . \(060{ }^{*}\) & . 012 & . 000 & . 028 & . 092 \\
\hline & HO & . \(038{ }^{*}\) & . 012 & . 010 & . 006 & . 069 \\
\hline & WE-V & . 009 & . 012 & 1.000 & -. 023 & . 040 \\
\hline \multirow[t]{3}{*}{WE-V} & CO & . \(052^{*}\) & . 012 & . 000 & . 021 & . 083 \\
\hline & HO & . 029 & . 012 & . 075 & -. 002 & . 060 \\
\hline & WE-T & -. 009 & . 012 & 1.000 & -. 040 & . 023 \\
\hline
\end{tabular}

Based on estimated marginal means
*. The mean difference is significant at the .05 level.
b. Adjustment for multiple comparisons: Bonferroni.

\section*{Univariate Tests}
\begin{tabular}{|l|r|r|r|c|r|r|}
\hline & & & & & & \multicolumn{1}{c|}{\begin{tabular}{c} 
Partial Eta \\
Squared
\end{tabular}} \\
\hline Sum of Squares & df & Mean Square & F & Sig. & \multicolumn{1}{c|}{030} \\
Contrast & .587 & 3 & .196 & 10.802 & .000 & .030 \\
Error & 18.793 & 1038 & .018 & & & \\
\hline
\end{tabular}

\section*{Univariate Tests}
Dependent Variable: AveFA
\begin{tabular}{|l|r|r|}
\hline & Noncent. Parameter & \\
\hline Contrast & 32.407 & Observed Power \(^{\text {a }}\) \\
Error & & \\
\hline
\end{tabular}

The F tests the effect of Condition. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.
a. Computed using alpha \(=.05\)

\section*{Post Hoc Tests}

\section*{Condition}

\section*{Multiple Comparisons}

Dependent Variable: AveFA
Bonferroni
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Mean Difference & & & 95\% Confidence Interval \\
\hline (I) Condition & (J) Condition & (I-J) & Std. Error & Sig. & Lower Bound \\
\hline \multirow[t]{6}{*}{CO} & \multirow[t]{2}{*}{HO} & -. 022622558743 & . 011603465777 & \multirow[b]{2}{*}{. 309} & -. 053294284839 \\
\hline & & 093 & 146 & & 669 \\
\hline & \multirow[t]{2}{*}{WE-T} & -. 060218022878 & . 012016373680 & \multirow[b]{2}{*}{. 000} & -. 091981198577 \\
\hline & & 404* & 389 & & 592 \\
\hline & \multirow[t]{2}{*}{WE-V} & -. 051643968728 & . 011678427086 & 000 & -. 082513841896 \\
\hline & & 535* & 990 & & 645 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline HO & CO
WE-T & \[
\begin{array}{r}
.022622558743 \\
093 \\
-.037595464135 \\
311^{\star}
\end{array}
\] & \[
\begin{array}{r}
.011603465777 \\
146 \\
.011932776224 \\
590
\end{array}
\] & .309
.010 & -.008049167353
484
-.069137664626
239 \\
\hline & WE-V & \[
\begin{array}{r}
-.029021409985 \\
442 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.011592392817 \\
082
\end{array}
\] & . 075 & -.059663866654
704 \\
\hline \multirow[t]{3}{*}{WE-T} & CO & \[
\begin{array}{r}
.060218022878 \\
404^{*}
\end{array}
\] & \[
\begin{array}{r}
.012016373680 \\
389
\end{array}
\] & . 000 & \[
\begin{array}{r}
.028454847179 \\
216
\end{array}
\] \\
\hline & HO & \[
\begin{array}{r}
.037595464135 \\
311^{*}
\end{array}
\] & \[
\begin{array}{r}
.011932776224 \\
590
\end{array}
\] & . 010 & \[
\begin{array}{r}
.006053263644 \\
384
\end{array}
\] \\
\hline & WE-V & .008574054149 869 & \[
\begin{array}{r}
.012005681555 \\
450 \\
\hline
\end{array}
\] & 1.000 & \[
\begin{array}{r}
-.023160858792 \\
845
\end{array}
\] \\
\hline \multirow[t]{5}{*}{WE-V} & CO & \[
\begin{array}{r}
.051643968728 \\
535^{*}
\end{array}
\] & \[
\begin{array}{r}
.011678427086 \\
990
\end{array}
\] & . 000 & \[
\begin{array}{r}
.020774095560 \\
425
\end{array}
\] \\
\hline & HO & . 029021409985 & . 011592392817 & . 075 & -. 001621046683 \\
\hline & & 442 & 082 & & 819 \\
\hline & WE-T & -. 008574054149 & . 012005681555 & 1.000 & -. 040308967092 \\
\hline & & 869 & 450 & & 583 \\
\hline
\end{tabular}

Multiple Comparisons
Dependent Variable: AveFA
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Bonferroni} \\
\hline \multirow[b]{2}{*}{(I) Condition} & \multirow[b]{2}{*}{(J) Condition} & 95\% Confidence Interval \\
\hline & & Upper Bound \\
\hline \multirow[t]{3}{*}{CO} & HO & . 008049167353484 \\
\hline & WE-T & -. 028454847179216 \\
\hline & WE-V & -. 020774095560425 \\
\hline \multirow[t]{3}{*}{HO} & CO & . 053294284839669 \\
\hline & WE-T & -. 006053263644384 \\
\hline & WE-V & . 001621046683819 \\
\hline \multirow[t]{3}{*}{WE-T} & CO & . 091981198577592 \\
\hline & HO & . 069137664626239 \\
\hline & WE-V & . 040308967092583 \\
\hline \multirow[t]{3}{*}{WE-V} & CO & . 082513841896645 \\
\hline & HO & . 059663866654704 \\
\hline & WE-T & . 023160858792845 \\
\hline
\end{tabular}

Based on observed means.
The error term is Mean Square(Error) \(=.018\).
*. The mean difference is significant at the .05 level.
```

UNIANOVA AveHint BY Condition
/METHOD=SSTYPE (3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES (OVERALL)
/EMMEANS=TABLES(Condition) COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.

```

\section*{Univariate Analysis of Variance}
\begin{tabular}{|ll|l|}
\hline \multicolumn{2}{l|}{ Notes } \\
\begin{tabular}{ll} 
Output Created \\
Comments \\
Input
\end{tabular} & \begin{tabular}{l} 
Active Dataset \\
Filter \\
Weight \\
Split File
\end{tabular} & \begin{tabular}{l} 
DataSet4 \\
<none> \\
<none> \\
<none>
\end{tabular} \\
\hline & \begin{tabular}{l} 
N of Rows in Working Data \\
Missing Value Handling
\end{tabular} & \begin{tabular}{l} 
Definition of Missing
\end{tabular} \\
\cline { 2 - 4 } & Cases Used & \begin{tabular}{l} 
User-defined missing values are \\
treated as missing. \\
Statistics are based on all cases with \\
valid data for all variables in the model.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Syntax & & \begin{tabular}{l}
UNIANOVA AveHint BY Condition \\
/METHOD=SSTYPE(3) \\
/INTERCEPT=INCLUDE \\
/POSTHOC=Condition(BONFERRONI) \\
/EMMEANS=TABLES(OVERALL) \\
/EMMEANS=TABLES(Condition) \\
COMPARE ADJ(BONFERRONI) \\
/PRINT=OPOWER ETASQ \\
HOMOGENEITY DESCRIPTIVE \\
PARAMETER \\
/CRITERIA=ALPHA(.05) \\
/DESIGN=Condition.
\end{tabular} \\
\hline Resources & Processor Time Elapsed Time & \[
\begin{aligned}
& 00: 00: 00.09 \\
& 00: 00: 00.10
\end{aligned}
\] \\
\hline
\end{tabular}

Between-Subjects Factors
\begin{tabular}{|ll|l|}
\hline & & \multicolumn{1}{|c|}{N} \\
\hline Condition & CO & 277 \\
& HO & 284 \\
& WE-T & 249 \\
& WE-V & 280 \\
\hline
\end{tabular}

Descriptive Statistics
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Dependent Variable: AveHint} \\
\hline Condition & Mean & Std. Deviation & N \\
\hline CO & . 169997631820 & . 2041605895183 & \multirow[t]{2}{*}{277} \\
\hline & 969 & 20 & \\
\hline HO & . 384238951548 & . 4948404797490 & \multirow[t]{2}{*}{284} \\
\hline & 398 & 36 & \\
\hline WE-T & . 072959486852 & . 1124603823502 & \multirow[t]{2}{*}{249} \\
\hline & 554 & 61 & \\
\hline WE-V & . 056757954727 & . 0950881972224 & \multirow[t]{2}{*}{280} \\
\hline & 416 & 87 & \\
\hline Total & . 174561785141 & . 3111172177931 & \multirow{2}{*}{1090} \\
\hline & 390 & 66 & \\
\hline
\end{tabular}

\section*{Levene's Test of Equality of Error Variances \({ }^{\text {a }}\)}

Dependent Variable: AveHint
\begin{tabular}{|c|r|r|r|}
\hline F & df1 & df2 & Sig. \\
\hline 254.387 & & 3 & 1086 \\
\hline
\end{tabular}

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. \({ }^{\text {a }}\)
a. Design: Intercept + Condition

Tests of Between-Subjects Effects
\begin{tabular}{l} 
Dependent Variable: \begin{tabular}{l} 
AveHint \\
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline
\end{tabular} \\
\hline Source \\
\hline Type III Sum of \\
Squares
\end{tabular} \\
\hline Corrected Model \\
Intercept
\end{tabular}

Tests of Between-Subjects Effects
Dependent Variable: AveHint
\begin{tabular}{|l|r|r|}
\hline Source & Noncent. Parameter & Observed Power \\
\hline b \\
\hline Corrected Model & 237.997 & 1.000 \\
Intercept & 399.204 & 1.000 \\
Condition & 237.997 & 1.000 \\
Error & & \\
\hline Total & & \\
\hline Corrected Total & & \\
\hline
\end{tabular}
a. \(R\) Squared \(=.180(\) Adjusted \(R\) Squared \(=.177)\)
b. Computed using alpha \(=.05\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Dependent Variable: AveHint} \\
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{B} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{t} & \multirow[b]{2}{*}{Sig.} & \multicolumn{2}{|l|}{95\% Confidence Interval} \\
\hline & & & & & Lower Bound & Upper Bound \\
\hline Intercept & . 057 & . 017 & 3.366 & . 001 & . 024 & . 090 \\
\hline [Condition=CO] & . 113 & . 024 & 4.736 & . 000 & . 066 & . 160 \\
\hline [Condition=HO] & . 327 & . 024 & 13.781 & . 000 & . 281 & . 374 \\
\hline [Condition=WE-T] & . 016 & . 025 & .659 & . 510 & -. 032 & . 064 \\
\hline [Condition=WE-V] & \(0^{\text {a }}\) & & & & & \\
\hline
\end{tabular}

\section*{Parameter Estimates}
\begin{tabular}{l} 
Dependent Variable: AveHint \\
\(\left.\begin{array}{|l|r|r|r|}\hline & & & \\
\text { Parameter } & \text { Partial Eta Squared } & \text { Noncent. Parameter } & \text { Observed Power }{ }^{\text {b }} \\
\hline \text { Intercept } & .010 & 3.366 & .920 \\
\text { [Condition=CO] } & .020 & 4.736 & .997 \\
\text { [Condition=HO] } & .149 & 13.781 & 1.000 \\
\hline \text { [Condition=WE-T] } & .000 & .659 & .101 \\
\hline \text { [Condition=WE-V] } & & . & .\end{array}\right]\). \\
\hline
\end{tabular}
a. This parameter is set to zero because it is redundant.
b. Computed using alpha \(=.05\)

\section*{Estimated Marginal Means}

\section*{1. Grand Mean}
Dependent Variable: AveHint
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{ Mean } & & \multicolumn{2}{|c|}{\(95 \%\) Confidence Interval } \\
\cline { 3 - 4 } & Std. Error & Lower Bound & Upper Bound \\
\hline .171 & .009 & .154 & .188 \\
\hline
\end{tabular}

\section*{2. Condition}

\section*{Estimates}
Dependent Variable: AveHint
\begin{tabular}{|l|r|r|r|r|}
\hline & & & \multicolumn{2}{|c|}{\(95 \%\) Confidence Interval } \\
\cline { 4 - 5 } & & & \multirow{2}{|c|}{} \\
\cline { 4 - 6 } & Condition & Mean & Std. Error & Lower Bound \\
Upper Bound \\
\hline CO & .170 & .017 & .137 & .203 \\
HO & .384 & .017 & .351 & .417 \\
WE-T & .073 & .018 & .038 & .108 \\
\hline WE-V & .057 & .017 & .024 & .090 \\
\hline
\end{tabular}

Pairwise Comparisons
Dependent Variable: AveHint
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{(I) Condition} & \multirow[b]{2}{*}{(J) Condition} & \multirow[b]{2}{*}{Mean Difference (I-J)} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{Sig. \({ }^{\text {b }}\)} & \multicolumn{2}{|l|}{95\% Confidence Interval for Difference \({ }^{\text {b }}\)} \\
\hline & & & & & Lower Bound & Upper Bound \\
\hline \multirow[t]{3}{*}{CO} & HO & -. \(214{ }^{*}\) & . 024 & . 000 & -. 277 & -. 151 \\
\hline & WE-T & .097* & . 025 & . 001 & . 032 & . 162 \\
\hline & WE-V & . \(113{ }^{*}\) & . 024 & . 000 & . 050 & . 176 \\
\hline \multirow[t]{3}{*}{HO} & CO & . \(214{ }^{*}\) & . 024 & . 000 & . 151 & . 277 \\
\hline & WE-T & . \(311^{*}\) & . 024 & . 000 & . 247 & . 376 \\
\hline & WE-V & . \(327{ }^{*}\) & . 024 & . 000 & . 265 & . 390 \\
\hline \multirow[t]{3}{*}{WE-T} & CO & -.097* & . 025 & . 001 & -. 162 & -. 032 \\
\hline & HO & \(-.311^{*}\) & . 024 & . 000 & -. 376 & -. 247 \\
\hline & WE-V & . 016 & . 025 & 1.000 & -. 049 & . 081 \\
\hline \multirow[t]{3}{*}{WE-V} & CO & \(-.113^{*}\) & . 024 & . 000 & -. 176 & -. 050 \\
\hline & HO & -. \(327{ }^{*}\) & . 024 & . 000 & -. 390 & -. 265 \\
\hline & WE-T & -. 016 & . 025 & 1.000 & -. 081 & . 049 \\
\hline
\end{tabular}

Based on estimated marginal means
*. The mean difference is significant at the .05 level.
b. Adjustment for multiple comparisons: Bonferroni.

\section*{Univariate Tests}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Sum of Squares & df & Mean Square & F & Sig. & \begin{tabular}{l}
Partial Eta \\
Squared
\end{tabular} \\
\hline Contrast & 18.948 & 3 & 6.316 & 79.332 & . 000 & . 180 \\
\hline Error & 86.461 & 1086 & . 080 & & & \\
\hline
\end{tabular}

\section*{Univariate Tests}

Dependent Variable: AveHint
\begin{tabular}{|l|r|r|}
\hline & Noncent. Parameter & \multicolumn{1}{|c|}{ Observed Power \(^{a}\)} \\
\hline Contrast & 237.997 & 1.000 \\
Error & & \\
\hline
\end{tabular}

The F tests the effect of Condition. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.
a. Computed using alpha \(=.05\)

\section*{Post Hoc Tests}

\section*{Condition}

\section*{Multiple Comparisons}

Dependent Variable: AveHint
Bonferroni
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{(I) Condition} & \multirow[b]{2}{*}{(J) Condition} & \multirow[b]{2}{*}{Mean Difference (I-J)} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{Sig.} & 95\% Confidence Interval \\
\hline & & & & & Lower Bound \\
\hline \multirow[t]{6}{*}{CO} & \multirow[t]{2}{*}{HO} & -. 214241319727 & . 023827408366 & \multirow[b]{2}{*}{. 000} & -. 277219547741 \\
\hline & & \(430 *\) & 025 & & 157 \\
\hline & WE-T & . 097038144968 & . 024640399562 & 001 & . 031911099753 \\
\hline & & \(415{ }^{*}\) & 751 & . 001 & 335 \\
\hline & WE-V & . 113239677093 & . 023911296754 & . 000 & . 050039723664 \\
\hline & & \(553{ }^{*}\) & 009 & . 000 & 078 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline HO & CO
WE-T & \[
\begin{array}{r}
.214241319727 \\
430^{*} \\
.311279464695 \\
845^{*} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.023827408366 \\
025 \\
.024496226720 \\
504
\end{array}
\] & .000
.000 & \[
\begin{array}{r}
.151263091713 \\
702 \\
.246533482750 \\
128
\end{array}
\] \\
\hline & WE-V & \[
\begin{array}{r}
.327480996820 \\
983^{*}
\end{array}
\] & \[
\begin{array}{r}
.023762700717 \\
482 \\
\hline
\end{array}
\] & . 000 & \[
\begin{array}{r}
.264673797606 \\
595 \\
\hline
\end{array}
\] \\
\hline WE-T & CO
HO & \[
\begin{array}{r}
-.097038144968 \\
415^{*} \\
-.311279464695 \\
845^{*}
\end{array}
\] & \[
\begin{array}{r}
.024640399562 \\
751 \\
.024496226720 \\
504 \\
\hline
\end{array}
\] & .001
.000 & \[
\begin{array}{r}
-.162165190183 \\
495 \\
-.376025446641 \\
561
\end{array}
\] \\
\hline & WE-V & \[
\begin{array}{r}
.016201532125 \\
138 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.024577832421 \\
906 \\
\hline
\end{array}
\] & 1.000 & \[
\begin{array}{r}
-.048760141866 \\
946 \\
\hline
\end{array}
\] \\
\hline WE-V & CO
HO & -.113239677093
\(553^{*}\)
-.327480996820
\(983^{*}\) & .023911296754
009
.023762700717
482 & .000
.000 & -.176439630523
027
-.390288196035
370 \\
\hline & WE-T & -. 016201532125
\[
138
\] & \[
\begin{array}{r}
.024577832421 \\
906
\end{array}
\] & 1.000 & \[
\begin{array}{r}
-.081163206117 \\
222 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

Multiple Comparisons
Dependent Variable: AveHint
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Bonferroni} \\
\hline \multirow[b]{2}{*}{(I) Condition} & \multirow[b]{2}{*}{(J) Condition} & 95\% Confidence Interval \\
\hline & & Upper Bound \\
\hline \multirow[t]{3}{*}{CO} & HO & -. 151263091713702 \\
\hline & WE-T & . 162165190183495 \\
\hline & WE-V & . 176439630523027 \\
\hline \multirow[t]{3}{*}{HO} & CO & . 277219547741157 \\
\hline & WE-T & . 376025446641561 \\
\hline & WE-V & . 390288196035370 \\
\hline \multirow[t]{3}{*}{WE-T} & CO & -. 031911099753335 \\
\hline & HO & -. 246533482750128 \\
\hline & WE-V & . 081163206117222 \\
\hline \multirow[t]{3}{*}{WE-V} & CO & -. 050039723664078 \\
\hline & HO & \[
-.264673797606595
\] \\
\hline & WE-T & . 048760141866946 \\
\hline
\end{tabular}

Based on observed means.
The error term is Mean Square(Error) \(=.080\).
*. The mean difference is significant at the .05 level.
```

UNIANOVA AveBoHint BY Condition
/METHOD=SSTYPE (3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES (OVERALL)
/EMMEANS=TABLES(Condition) COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.

```

\section*{Univariate Analysis of Variance}
\begin{tabular}{|ll|l|}
\hline \multicolumn{2}{l|}{ Notes } \\
\begin{tabular}{ll} 
Output Created \\
Comments \\
Input
\end{tabular} & \begin{tabular}{l} 
Active Dataset \\
Filter \\
Weight \\
Split File
\end{tabular} & \begin{tabular}{l} 
DataSet4 \\
<none> \\
<none> \\
<none>
\end{tabular} \\
\hline & \begin{tabular}{l} 
N of Rows in Working Data \\
Missing Value Handling
\end{tabular} & \begin{tabular}{l} 
Definition of Missing
\end{tabular} \\
\cline { 2 - 4 } & Cases Used & \begin{tabular}{l} 
User-defined missing values are \\
treated as missing. \\
Statistics are based on all cases with \\
valid data for all variables in the model.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Syntax & & \begin{tabular}{l}
UNIANOVA AveBoHint BY Condition /METHOD=SSTYPE(3) /INTERCEPT=INCLUDE \\
/POSTHOC=Condition(BONFERRONI) \\
/EMMEANS=TABLES(OVERALL) \\
/EMMEANS=TABLES(Condition) \\
COMPARE ADJ(BONFERRONI) \\
/PRINT=OPOWER ETASQ \\
HOMOGENEITY DESCRIPTIVE \\
PARAMETER \\
/CRITERIA=ALPHA(.05) \\
/DESIGN=Condition.
\end{tabular} \\
\hline Resources & Processor Time Elapsed Time & \[
\begin{aligned}
& 00: 00: 00.09 \\
& 00: 00: 00.12
\end{aligned}
\] \\
\hline
\end{tabular}

Between-Subjects Factors
\begin{tabular}{|ll|r|}
\hline & & \multicolumn{1}{|c|}{N} \\
\hline Condition & CO & 277 \\
& HO & 284 \\
& WE-T & 249 \\
& WE-V & 280 \\
\hline
\end{tabular}

Descriptive Statistics
Dependent Variable: AveBoHint
\begin{tabular}{|l|r|c|c|}
\hline Condition & Mean & Std. Deviation & N \\
\hline CO & .169997631820 & .2041605895183 & \\
& 969 & 20 & 277 \\
HO & .111698167567 & .1768990646310 & \\
& 001 & 54 & 284 \\
WE-T & .072959486852 & .1124603823502 & \\
& 554 & 61 & 249 \\
WE-V & .056757954727 & .0950881972224 & \\
& 416 & 87 & 280 \\
\hline Total & .103551158856 & .1606553813420 & \\
& 329 & & 27 \\
\hline
\end{tabular}

\section*{Levene's Test of Equality of Error Variances \({ }^{\text {a }}\)}

Dependent Variable: AveBoHint
\begin{tabular}{|c|r|r|r|}
\hline F & df1 & df2 & Sig. \\
\hline 56.191 & & 3 & 1086 \\
\hline
\end{tabular}

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. \({ }^{\text {a }}\)
a. Design: Intercept + Condition

Tests of Between-Subjects Effects
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{AveBoHint} \\
\hline Source & Type III Sum of Squares & df & Mean Square & F & Sig. & \begin{tabular}{l}
Partial Eta \\
Squared
\end{tabular} \\
\hline Corrected Model & \(2.088^{\text {a }}\) & 3 & . 696 & 29.049 & . 000 & . 074 \\
\hline Intercept & 11.500 & 1 & 11.500 & 479.977 & . 000 & . 307 \\
\hline Condition & 2.088 & 3 & . 696 & 29.049 & . 000 & . 074 \\
\hline Error & 26.019 & 1086 & . 024 & & & \\
\hline Total & 39.795 & 1090 & & & & \\
\hline Corrected Total & 28.107 & 1089 & & & & \\
\hline
\end{tabular}

Tests of Between-Subjects Effects
Dependent Variable: AveBoHint
\begin{tabular}{|l|r|r|}
\hline Source & Noncent. Parameter & \multicolumn{1}{|r|}{ Observed Power \(^{\text {b }}\)} \\
\hline Corrected Model & 87.148 & 1.000 \\
Intercept & 479.977 & 1.000 \\
Condition & 87.148 & 1.000 \\
Error & & \\
\hline Total & & \\
\hline Corrected Total & & \\
\hline
\end{tabular}
a. \(R\) Squared \(=.074(\) Adjusted \(R\) Squared \(=.072)\)
b. Computed using alpha \(=.05\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Dependent Variable: AveBoHint} \\
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{B} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{t} & \multirow[b]{2}{*}{Sig.} & \multicolumn{2}{|l|}{95\% Confidence Interval} \\
\hline & & & & & Lower Bound & Upper Bound \\
\hline Intercept & . 057 & . 009 & 6.136 & . 000 & . 039 & . 075 \\
\hline [Condition=CO] & . 113 & . 013 & 8.633 & . 000 & . 088 & . 139 \\
\hline [Condition=HO] & . 055 & . 013 & 4.215 & . 000 & . 029 & . 081 \\
\hline [Condition=WE-T] & . 016 & . 013 & 1.202 & . 230 & -. 010 & . 043 \\
\hline [Condition=WE-V] & \(0^{\text {a }}\) & & & & & \\
\hline
\end{tabular}

\section*{Parameter Estimates}

Dependent Variable: AveBoHint
\begin{tabular}{|l|r|r|r|}
\hline & & & \\
Parameter & Partial Eta Squared & Noncent. Parameter & Observed Power \({ }^{\text {b }}\) \\
\hline Intercept & .034 & 6.136 & 1.000 \\
[Condition=CO] & .064 & 8.633 & 1.000 \\
[Condition=HO] & .016 & 4.215 & .988 \\
\hline [Condition=WE-T] & .001 & 1.202 & .225 \\
\hline [Condition=WE-V] & &. &. \\
\hline
\end{tabular}
a. This parameter is set to zero because it is redundant.
b. Computed using alpha \(=.05\)

\section*{Estimated Marginal Means}
1. Grand Mean

Dependent Variable: AveBoHint
\begin{tabular}{|c|r|r|r|}
\hline \multirow{3}{*}{ Mean } & & \multicolumn{2}{|c|}{\(95 \%\) Confidence Interval } \\
\cline { 3 - 4 } & Std. Error & Lower Bound & Upper Bound \\
\hline .103 & .005 & .094 & .112 \\
\hline
\end{tabular}

\section*{2. Condition}

\section*{Estimates}
Dependent Variable: AveBoHint
\begin{tabular}{|l|r|r|r|r|}
\hline & & & \multicolumn{2}{|c|}{\(95 \%\) Confidence Interval } \\
\cline { 4 - 5 } Condition & Mean & \multirow{2}{|c|}{ Std. Error } & Lower Bound & Upper Bound \\
\hline CO & .170 & .009 & .152 & .188 \\
HO & .112 & .009 & .094 & .130 \\
WE-T & .073 & .010 & .054 & .092 \\
\hline WE-V & .057 & .009 & .039 & .075 \\
\hline
\end{tabular}

Pairwise Comparisons
Dependent Variable: AveBoHint
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{(I) Condition} & \multirow[b]{2}{*}{(J) Condition} & \multirow[b]{2}{*}{Mean Difference
\[
(\mathrm{I}-\mathrm{J})
\]} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{Sig. \({ }^{\text {b }}\)} & \multicolumn{2}{|l|}{95\% Confidence Interval for Difference \({ }^{\text {b }}\)} \\
\hline & & & & & Lower Bound & Upper Bound \\
\hline \multirow[t]{3}{*}{CO} & HO & . \(058{ }^{*}\) & . 013 & . 000 & . 024 & . 093 \\
\hline & WE-T & . \(097 *\) & . 014 & . 000 & . 061 & . 133 \\
\hline & WE-V & .113* & . 013 & . 000 & . 079 & . 148 \\
\hline \multirow[t]{3}{*}{HO} & CO & -.058* & . 013 & . 000 & -. 093 & -. 024 \\
\hline & WE-T & . \(039{ }^{*}\) & . 013 & . 024 & . 003 & . 074 \\
\hline & WE-V & . \(055{ }^{*}\) & . 013 & . 000 & . 020 & . 089 \\
\hline \multirow[t]{3}{*}{WE-T} & CO & -.097* & . 014 & . 000 & -. 133 & -. 061 \\
\hline & HO & -. 039 * & . 013 & . 024 & -. 074 & -. 003 \\
\hline & WE-V & . 016 & . 013 & 1.000 & -. 019 & . 052 \\
\hline \multirow[t]{3}{*}{WE-V} & CO & -. \(113^{*}\) & . 013 & . 000 & -. 148 & -. 079 \\
\hline & HO & -.055* & . 013 & . 000 & -. 089 & -. 020 \\
\hline & WE-T & -. 016 & . 013 & 1.000 & -. 052 & . 019 \\
\hline
\end{tabular}

Based on estimated marginal means
*. The mean difference is significant at the .05 level.
b. Adjustment for multiple comparisons: Bonferroni.

\section*{Univariate Tests}
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline & & & & & & \multicolumn{1}{c|}{\begin{tabular}{c} 
Partial Eta \\
Squared
\end{tabular}} \\
\hline Sum of Squares & df & Mean Square & F & Sig. & \multicolumn{1}{c|}{074} \\
\hline Contrast & 2.088 & 3 & .696 & 29.049 & .000 & .074 \\
\hline & 26.019 & 1086 & .024 & & & \\
\hline
\end{tabular}

\section*{Univariate Tests}

Dependent Variable: AveBoHint
\begin{tabular}{|l|r|r|}
\hline & Noncent. Parameter & \multicolumn{1}{|c|}{ Observed Power \(^{\text {a }}\)} \\
\hline Contrast & 87.148 & \\
Error & & 1.000 \\
\hline
\end{tabular}

The F tests the effect of Condition. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.
a. Computed using alpha \(=.05\)

\section*{Post Hoc Tests}

\section*{Condition}

\section*{Multiple Comparisons}

Dependent Variable: AveBoHint
Bonferroni
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Mean Difference & & & 95\% Confidence Interval \\
\hline (I) Condition & (J) Condition & (I-J) & Std. Error & Sig. & Lower Bound \\
\hline \multirow[t]{6}{*}{CO} & \multirow[t]{2}{*}{HO} & . 058299464253 & . 013071193462 & \multirow[b]{2}{*}{. 000} & . 023750990090 \\
\hline & & \(967{ }^{*}\) & 733 & & 856 \\
\hline & \multirow[t]{2}{*}{WE-T} & . 097038144968 & . 013517182596 & 000 & . 061310876833 \\
\hline & & \(415^{*}\) & 451 & . 000 & 107 \\
\hline & \multirow[t]{2}{*}{WE-V} & . 113239677093 & . 013117212791 & 000 & . 078569569231 \\
\hline & & \(553 *\) & 892 & . 000 & 958 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline HO & CO
WE-T & \[
\begin{array}{r}
-.058299464253 \\
967^{*} \\
.038738680714 \\
447^{\star}
\end{array}
\] & \[
\begin{array}{r}
.013071193462 \\
733 \\
.013438092538 \\
307
\end{array}
\] & .000
.024 & \[
\begin{array}{r}
-.092847938417 \\
079 \\
.003220455528 \\
288
\end{array}
\] \\
\hline & WE-V & \[
\begin{array}{r}
.054940212839 \\
586^{*}
\end{array}
\] & .013035696266
410 & . 000 & \[
\begin{array}{r}
.020485561323 \\
466 \\
\hline
\end{array}
\] \\
\hline \multirow[t]{3}{*}{WE-T} & CO & \[
\begin{array}{r}
-.097038144968 \\
415^{*}
\end{array}
\] & \[
\begin{array}{r}
.013517182596 \\
451
\end{array}
\] & . 000 & \[
\begin{array}{r}
-.132765413103 \\
722
\end{array}
\] \\
\hline & HO & \[
\begin{array}{r}
-.038738680714 \\
447 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.013438092538 \\
307 \\
\hline
\end{array}
\] & . 024 & \[
\begin{array}{r}
-.074256905900 \\
607 \\
\hline
\end{array}
\] \\
\hline & WE-V & \[
\begin{array}{r}
.016201532125 \\
138
\end{array}
\] & \[
\begin{array}{r}
.013482859635 \\
689
\end{array}
\] & 1.000 & \[
\begin{array}{r}
-.019435016985 \\
434
\end{array}
\] \\
\hline \multirow[t]{3}{*}{WE-V} & CO & \[
\begin{array}{r}
-.113239677093 \\
553
\end{array}
\] & \[
\begin{array}{r}
.013117212791 \\
892
\end{array}
\] & . 000 & \[
\begin{array}{r}
-.147909784955 \\
148
\end{array}
\] \\
\hline & HO & -.054940212839
\(586{ }^{*}\) & .013035696266
410 & . 000 & -.089394864355
705 \\
\hline & WE-T & \[
\begin{array}{r}
-.016201532125 \\
138
\end{array}
\] & \[
\begin{array}{r}
.013482859635 \\
689
\end{array}
\] & 1.000 & \[
\begin{array}{r}
-.051838081235 \\
710 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

Multiple Comparisons
Dependent Variable: AveBoHint
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Bonferroni} \\
\hline \multirow[b]{2}{*}{(I) Condition} & \multirow[b]{2}{*}{(J) Condition} & 95\% Confidence Interval \\
\hline & & Upper Bound \\
\hline \multirow[t]{3}{*}{CO} & HO & . 092847938417079 \\
\hline & WE-T & . 132765413103722 \\
\hline & WE-V & . 147909784955148 \\
\hline \multirow[t]{3}{*}{HO} & CO & -. 023750990090856 \\
\hline & WE-T & . 074256905900607 \\
\hline & WE-V & . 089394864355705 \\
\hline \multirow[t]{3}{*}{WE-T} & CO & -. 061310876833107 \\
\hline & HO & -. 003220455528288 \\
\hline & WE-V & . 051838081235710 \\
\hline \multirow[t]{3}{*}{WE-V} & CO & -. 078569569231958 \\
\hline & HO & -. 020485561323466 \\
\hline & WE-T & . 019435016985434 \\
\hline
\end{tabular}

Based on observed means.
The error term is Mean Square(Error) \(=.024\).
*. The mean difference is significant at the .05 level.
```

UNIANOVA AveAttempt BY Condition
/METHOD=SSTYPE (3)
/INTERCEPT=INCLUDE
/POSTHOC=Condition(BONFERRONI)
/EMMEANS=TABLES (OVERALL)
/EMMEANS=TABLES(Condition) COMPARE ADJ(BONFERRONI)
/PRINT=OPOWER ETASQ HOMOGENEITY DESCRIPTIVE PARAMETER
/CRITERIA=ALPHA(.05)
/DESIGN=Condition.

```

\section*{Univariate Analysis of Variance}
\begin{tabular}{|ll|l|}
\hline \multicolumn{2}{l|}{ Notes } \\
\begin{tabular}{ll} 
Output Created \\
Comments \\
Input
\end{tabular} & \begin{tabular}{l} 
Active Dataset \\
Filter \\
Weight \\
Split File
\end{tabular} & \begin{tabular}{l} 
DataSet4 \\
<none> \\
<none> \\
<none>
\end{tabular} \\
\hline & \begin{tabular}{l} 
N of Rows in Working Data \\
Missing Value Handling
\end{tabular} & \begin{tabular}{l} 
Definition of Missing
\end{tabular} \\
\cline { 2 - 4 } & Cases Used & \begin{tabular}{l} 
User-defined missing values are \\
treated as missing. \\
Statistics are based on all cases with \\
valid data for all variables in the model.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Syntax & & \begin{tabular}{l}
UNIANOVA AveAttempt BY Condition \\
/METHOD=SSTYPE(3) \\
/INTERCEPT=INCLUDE \\
/POSTHOC=Condition(BONFERRONI) \\
/EMMEANS=TABLES(OVERALL) \\
/EMMEANS=TABLES(Condition) \\
COMPARE ADJ(BONFERRONI) \\
/PRINT=OPOWER ETASQ \\
HOMOGENEITY DESCRIPTIVE \\
PARAMETER \\
/CRITERIA=ALPHA(.05) \\
/DESIGN=Condition.
\end{tabular} \\
\hline Resources & \begin{tabular}{l}
Processor Time \\
Elapsed Time
\end{tabular} & \[
\begin{aligned}
& 00: 00: 00.08 \\
& 00: 00: 00.10
\end{aligned}
\] \\
\hline
\end{tabular}

Between-Subjects Factors
\begin{tabular}{|ll|r|}
\hline & & \multicolumn{1}{|c|}{N} \\
\hline Condition & CO & 277 \\
& HO & 284 \\
& WE-T & 249 \\
& WE-V & 280 \\
\hline
\end{tabular}

Descriptive Statistics
Dependent Variable: AveAttempt
\begin{tabular}{|l|r|c|c|}
\hline Condition & Mean & Std. Deviation & N \\
\hline CO & 1.75022844192 & .8501767423729 & \\
& 2997 & 69 & 277 \\
HO & 2.08916009195 & 1.887675158612 & \\
& 4793 & 797 & 284 \\
WE-T & 1.27425532391 & .5343923178828 & \\
& 7292 & 61 & 249 \\
WE-V & 1.18035639539 & .4217341610437 & \\
& 8137 & & 61
\end{tabular}

\section*{Levene's Test of Equality of Error Variances \({ }^{\text {a }}\)}

Dependent Variable: AveAttempt
\begin{tabular}{|c|r|r|r|}
\hline\(F\) & df1 & df2 & Sig. \\
\hline 30.478 & & 3 & 1086 \\
\hline
\end{tabular}

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. \({ }^{\text {a }}\)
a. Design: Intercept + Condition

Tests of Between-Subjects Effects
Dependent Variable: AveAttempt
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline & \begin{tabular}{c} 
Type III Sum of \\
Squares
\end{tabular} & \multicolumn{1}{l|}{ df } & & \\
Source & Mean Square & F & Sig. & \multicolumn{1}{c|}{\begin{tabular}{c} 
Partial Eta \\
Squared
\end{tabular}} \\
\hline Corrected Model & \(149.636^{\text {a }}\) & 3 & 49.879 & 40.778 & .000 & .101 \\
Intercept & 2691.431 & 1 & 2691.431 & 2200.382 & .000 & .670 \\
Condition & 149.636 & 3 & 49.879 & 40.778 & .000 & .101 \\
Error & 1328.357 & 1086 & 1.223 & & & \\
\hline Total & 4210.850 & 1090 & & & & \\
\hline Corrected Total & 1477.993 & 1089 & & & & \\
\hline
\end{tabular}

Tests of Between-Subjects Effects
Dependent Variable: AveAttempt
\begin{tabular}{|l|r|r|}
\hline Source & \multicolumn{1}{|c|}{ Noncent. Parameter } & \multicolumn{1}{|c|}{ Observed Power \(^{\text {b }}\)} \\
\hline Corrected Model & 122.335 & 1.000 \\
Intercept & 2200.382 & 1.000 \\
Condition & 122.335 & 1.000 \\
Error & & \\
\hline Total & & \\
\hline Corrected Total & & \\
\hline
\end{tabular}
a. \(R\) Squared \(=.101(\) Adjusted \(R\) Squared \(=.099)\)
b. Computed using alpha \(=.05\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{AveAttempt} \\
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{B} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{t} & \multirow[b]{2}{*}{Sig.} & \multicolumn{2}{|l|}{95\% Confidence Interval} \\
\hline & & & & & Lower Bound & Upper Bound \\
\hline Intercept & 1.180 & . 066 & 17.859 & . 000 & 1.051 & 1.310 \\
\hline [Condition=CO] & . 570 & . 094 & 6.080 & . 000 & . 386 & . 754 \\
\hline [Condition=HO] & . 909 & . 093 & 9.757 & . 000 & . 726 & 1.092 \\
\hline [Condition=WE-T] & . 094 & . 096 & . 975 & . 330 & -. 095 & . 283 \\
\hline [Condition=WE-V] & \(0^{\text {a }}\) & & & & & \\
\hline
\end{tabular}

\section*{Parameter Estimates}

Dependent Variable: AveAttempt
\begin{tabular}{|l|r|r|r|}
\hline & & & \\
Parameter & Partial Eta Squared & Noncent. Parameter & Observed Power \(^{\text {b }}\) \\
\hline Intercept & .227 & 17.859 & 1.000 \\
[Condition=CO] & .033 & 6.080 & 1.000 \\
[Condition=HO] & .081 & 9.757 & 1.000 \\
\hline [Condition=WE-T] & .001 & .975 & .164 \\
\hline [Condition=WE-V] &. &. &. \\
\hline
\end{tabular}
a. This parameter is set to zero because it is redundant.
b. Computed using alpha \(=.05\)

\section*{Estimated Marginal Means}
1. Grand Mean
Dependent Variable: AveAttempt
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{ Mean } & & \multicolumn{2}{|c|}{\(95 \%\) Confidence Interval } \\
\cline { 3 - 4 } & Std. Error & Lower Bound & Upper Bound \\
\hline 1.574 & .034 & 1.508 & 1.639 \\
\hline
\end{tabular}

\section*{2. Condition}

\section*{Estimates}
Dependent Variable: AveAttempt
\begin{tabular}{|l|r|r|r|r|}
\hline & & & \multicolumn{2}{|c|}{\(95 \%\) Confidence Interval } \\
\cline { 4 - 5 } & & & \multicolumn{2}{|c|}{} \\
\cline { 4 - 6 } & Condition & Mean & Std. Error & Lower Bound \\
\multicolumn{1}{c|}{ Upper Bound } \\
\hline CO & 1.750 & .066 & 1.620 & 1.881 \\
HO & 2.089 & .066 & 1.960 & 2.218 \\
WE-T & 1.274 & .070 & 1.137 & 1.412 \\
\hline WE-V & 1.180 & .066 & 1.051 & 1.310 \\
\hline
\end{tabular}

Pairwise Comparisons
Dependent Variable: AveAttempt
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{(I) Condition} & \multirow[b]{2}{*}{(J) Condition} & \multirow[b]{2}{*}{Mean Difference
\[
(\mathrm{I}-\mathrm{J})
\]} & \multirow[b]{2}{*}{Std. Error} & \multirow[b]{2}{*}{Sig. \({ }^{\text {b }}\)} & \multicolumn{2}{|l|}{95\% Confidence Interval for Difference \({ }^{\text {b }}\)} \\
\hline & & & & & Lower Bound & Upper Bound \\
\hline \multirow[t]{3}{*}{CO} & HO & -.339* & . 093 & . 002 & -. 586 & -. 092 \\
\hline & WE-T & . \(476{ }^{*}\) & . 097 & . 000 & . 221 & . 731 \\
\hline & WE-V & . \(570{ }^{*}\) & . 094 & . 000 & . 322 & . 818 \\
\hline \multirow[t]{3}{*}{HO} & CO & . \(339{ }^{*}\) & . 093 & . 002 & . 092 & . 586 \\
\hline & WE-T & .815* & . 096 & . 000 & . 561 & 1.069 \\
\hline & WE-V & . \(909{ }^{*}\) & . 093 & . 000 & . 663 & 1.155 \\
\hline \multirow[t]{3}{*}{WE-T} & CO & -. \(476{ }^{*}\) & . 097 & . 000 & -. 731 & -. 221 \\
\hline & HO & -.815* & . 096 & . 000 & -1.069 & -. 561 \\
\hline & WE-V & . 094 & . 096 & 1.000 & -. 161 & . 349 \\
\hline \multirow[t]{3}{*}{WE-V} & CO & \(-.570^{*}\) & . 094 & . 000 & -. 818 & -. 322 \\
\hline & HO & \(-.909^{*}\) & . 093 & . 000 & -1.155 & -. 663 \\
\hline & WE-T & -. 094 & . 096 & 1.000 & -. 349 & . 161 \\
\hline
\end{tabular}

Based on estimated marginal means
*. The mean difference is significant at the .05 level.
b. Adjustment for multiple comparisons: Bonferroni.

\section*{Univariate Tests}
\begin{tabular}{|l|r|r|r|c|c|c|}
\hline & & & & & & \multicolumn{1}{c|}{\begin{tabular}{c} 
Partial Eta \\
Squared
\end{tabular}} \\
\hline Sum of Squares & df & Mean Square & F & Sig. & \multicolumn{1}{c|}{101} \\
\hline Contrast & 149.636 & 3 & 49.879 & 40.778 & .000 & .1 .223
\end{tabular}

\section*{Univariate Tests}

Dependent Variable: AveAttempt
\begin{tabular}{|l|r|r|}
\hline & Noncent. Parameter & \multicolumn{1}{|c|}{ Observed Power \(^{a}\)} \\
\hline Contrast & 122.335 & 1.000 \\
Error & & \\
\hline
\end{tabular}

The F tests the effect of Condition. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.
a. Computed using alpha \(=.05\)

\section*{Post Hoc Tests}

\section*{Condition}

\section*{Multiple Comparisons}

Dependent Variable: AveAttempt
Bonferroni
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Mean Difference & & & 95\% Confidence Interval \\
\hline (I) Condition & (J) Condition & (I-J) & Std. Error & Sig. & Lower Bound \\
\hline \multirow[t]{6}{*}{CO} & \multirow[t]{2}{*}{HO} & -. 338931650031 & . 093395276935 & \multirow[b]{2}{*}{. 002} & -. 585784725948 \\
\hline & & \(797^{*}\) & 909 & & 424 \\
\hline & \multirow[t]{2}{*}{WE-T} & . 475973118005 & . 096581923876 & 000 & . 220697414897 \\
\hline & & \(705^{*}\) & 201 & . 000 & 650 \\
\hline & \multirow[t]{2}{*}{WE-V} & . 569872046524 & . 093724090674 & 000 & . 322149882947 \\
\hline & & \(860^{*}\) & 570 & . 000 & 111 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline HO & CO
WE-T & \[
\begin{array}{r}
.338931650031 \\
797^{\star} \\
.814904768037 \\
501^{*}
\end{array}
\] & \[
\begin{array}{r}
.093395276935 \\
909 \\
.096016815731 \\
772
\end{array}
\] & .002
.000 & .092078574115
169
.561122702383
657 \\
\hline & WE-V & .908803696556
\(656{ }^{*}\) & \[
\begin{array}{r}
.093141645124 \\
057 \\
\hline
\end{array}
\] & . 000 & \[
\begin{array}{r}
.662620994934 \\
749
\end{array}
\] \\
\hline \multirow[t]{3}{*}{WE-T} & CO & \[
\begin{array}{r}
-.475973118005 \\
705^{*}
\end{array}
\] & \[
\begin{array}{r}
.096581923876 \\
201
\end{array}
\] & . 000 & \[
\begin{array}{r}
-.731248821113 \\
760
\end{array}
\] \\
\hline & HO & \[
\begin{array}{r}
-.814904768037 \\
501^{*}
\end{array}
\] & \[
\begin{array}{r}
.096016815731 \\
772
\end{array}
\] & . 000 & \[
\begin{array}{r}
-1.06868683369 \\
1345 \\
\hline
\end{array}
\] \\
\hline & WE-V & .093898928519 155 & \[
\begin{array}{r}
.096336682121 \\
136
\end{array}
\] & 1.000 & \[
\begin{array}{r}
-.160728576055 \\
023
\end{array}
\] \\
\hline \multirow[t]{3}{*}{WE-V} & CO & \[
\begin{array}{r}
-.569872046524 \\
860 *
\end{array}
\] & .093724090674 570 & . 000 & \[
\begin{array}{r}
-817594210102 \\
609
\end{array}
\] \\
\hline & HO & -.908803696556
656 & \[
\begin{array}{r}
.093141645124 \\
057 \\
\hline
\end{array}
\] & . 000 & \[
\begin{array}{r}
-1.15498639817 \\
8564
\end{array}
\] \\
\hline & WE-T & \(-.093898928519\) 155 & \[
\begin{array}{r}
.096336682121 \\
136
\end{array}
\] & 1.000 & \[
\begin{array}{r}
-.348526433093 \\
332
\end{array}
\] \\
\hline
\end{tabular}

Multiple Comparisons
Dependent Variable: AveAttempt
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Bonferroni} \\
\hline \multirow[b]{2}{*}{(I) Condition} & \multirow[b]{2}{*}{(J) Condition} & 95\% Confidence Interval \\
\hline & & Upper Bound \\
\hline \multirow[t]{3}{*}{CO} & HO & -. 092078574115169 \\
\hline & WE-T & . 731248821113760 \\
\hline & WE-V & . 817594210102609 \\
\hline \multirow[t]{3}{*}{HO} & CO & . 585784725948424 \\
\hline & WE-T & 1.068686833691345 \\
\hline & WE-V & 1.154986398178564 \\
\hline \multirow[t]{3}{*}{WE-T} & CO & -. 220697414897650 \\
\hline & HO & -. 561122702383657 \\
\hline & WE-V & . 348526433093332 \\
\hline \multirow[t]{3}{*}{WE-V} & CO & -. 322149882947111 \\
\hline & HO & -. 662620994934749 \\
\hline & WE-T & . 160728576055023 \\
\hline
\end{tabular}

Based on observed means.
The error term is Mean Square(Error) \(=1.223\).
*. The mean difference is significant at the .05 level.```

