

Tactical Edge Reprogramming for Rapid
Autonomy Adaptation

A Major Qualifying Project Report submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science

Author:
Megan Aloise, Robotics Engineering & Computer Science

Faculty Advisors:
Professor George Heineman, Computer Science Professor
Professor Therese Smith, Computer Science Professor
Professor Carlo Pinciroli, Robotics Engineering Professor

Mentor:
Ho Chit Siu, Engineer at MIT Lincoln Laboratory

October 13th, 2021
This report represents the work of one or more WPI undergraduate students

submitted to the faculty as evidence of completion of a degree requirement. WPI
routinely publishes these reports on its web site without editorial or peer review.

Aloise 1

Contents
Abstract ... 3

1. Introduction ... 6

2. Background .. 10

2.1. Tactical Language and Room Search Entry .. 10

2.2. Accounting for Implied Information .. 17

2.3. Sensors and Representation of Noise ... 18

2.3.1. LiDAR Sensor ... 18

2.3.2. Simulating Reasonable Noise ... 20

2.4. Particle Filter Algorithm .. 21

2.4.1. Particle Generation ... 23

2.4.2. Score Assignment ... 25

2.4.3. Elimination of Particles .. 25

2.4.4. Resampling ... 26

2.5. Related Work ... 27

3. Methods ... 29

3.1. Simulating Readings ... 29

3.1.1. Noise Incorporation ... 29

3.1.2. Introduction of Readings to Particle Filter ... 30

3.2. Room Representation & Generation .. 30

3.2.1. Coordinate Method .. 32

3.2.2. Geometric Method ... 36

3.2.3. Door-Centric Representation .. 43

3.3. Scoring Functions .. 46

3.3.1. Determining Attributes ... 46

3.3.2. Combining Attributes .. 50

3.4. Elimination of Particles .. 50

3.4.1. Deterministic Approach.. 50

3.4.2. Probabilistic Draw Approach ... 50

3.4.3. Probabilistic Individual Assessment Approach .. 51

3.5. Test Cases ... 51

3.6. Measures for Success .. 52

Aloise 2

4. Results .. 54

5. Discussion .. 71

5.1. Room Representation & Generation .. 71

5.2. Elimination of Particles .. 72

5.3. Scoring ... 73

5.3.1. Door X Position and Door Y Position ... 73

5.3.2. Global Angle .. 74

5.3.3. Global Angle Corner Distances Approach ... 75

5.3.4. Right Width .. 75

5.3.5. Left Width ... 76

6. Conclusion .. 77

7. Future Work .. 80

7.1. Likelihood of Hostile Agents or Civilians ... 80

7.2. Recognition of Additional Relevant Features ... 80

7.2.1. Materials .. 80

7.2.2. Other Room Obstacles .. 80

7.2.3. Windows or Non-Door Methods of Exit/Entry ... 81

7.3. Generation of Additional Room Types ... 81

7.4. Fusion of Tactical Language Interpreter ... 81

7.5. Conversion of Room-Representing Data Types ... 82

7.6. Adjacent Room Representation ... 82

7.7. Common Lines of Sight Represented in Order of Readings Received ... 82

7.8. Combining Scoring Attributes ... 83

References .. 84

Aloise 3

Abstract

Tactical Edge Reprogramming for Rapid Autonomy Adaptation (TERRAA) focuses on

developing robotic agents that can work as a member of human teams in tactical settings without

the involvement of a robotics engineering expert. A subset of the TERRAA project, Tactical

Formulaic Language Interpretation and Prediction (TFLIP), aims to achieve this by using

Tactical Language, a formulaic language utilized by many human Special Weapons and Tactics

(SWAT) and Army Special Reaction teams. This language is particularly relevant to tactical

room searches, where US Army officers will use this language to describe a room. This language

emphasizes the geometry and features of the room that are relevant to method of entry. The

TERRAA TFLIP project aims to take advantage of this tactical formulaic language already

understood by humans trained in room clearing and introduce that language to a robotic

operative. The robot’s goal is to utilize the provided verbal description of the room and show an

understanding of the description by predicting unseen features of the room. This will be achieved

by combining real-time sensor readings and prior knowledge of the room’s geometry. The robot

entering the room will contain multiple sensors which it can use to observe the room. These

sensor readings represent incomplete observations of the room.

The particle filtering algorithm is a common method in robotics to estimate a true state

based on incomplete observations (Del Moral, 1996). Implementing such a particle filter for our

application is a complex process comprised of many elements. One important aspect is

determining the score of a particle provided the sensor observations. This project assesses how

different methods of scoring and weighting of known information affect the accuracy in particle

filter convergence toward the correct true room at various stages of receiving information. Due

Aloise 4

to the incomplete initial state of the project, other aspects of the particle filtering algorithm, such

as particle representation, particle generation, and particle elimination will also be addressed.

Unfortunately, due to the non-public nature of official tactical language dictionaries and

room search protocols, existing autonomous projects created for tactical room search context are

sparse to non-existent. However, the particle filtering algorithm has been used in various civilian

applications which shall serve as inspirations for this project.

In investigating various room representation and generation techniques, we evaluated a

coordinate approach, a geometric properties approach, and a door-centric geometric properties

approach. The door-centric approach was found to be the most efficient representation and

generation technique due to its simplicity and unique relevancy to tactical language room

descriptors and room entry perspective. In investigating various particle elimination techniques,

we evaluated a deterministic percentile approach, a probabilistic draw approach, and a

probabilistic individual score assessment approach. The probabilistic individual score assessment

approach was determined to be the favorable approach due to concerns of improper convergence

and lack of accommodation for multimodal score distributions with other techniques. The

scoring functions were investigated by creating edge-case representative test cases and collecting

room estimate data from each of four iterations of the particle filter for each test case. These

were collected while running the particle filter on each separate attribute’s optimization score

contribution. By doing this, it was determined that three of the six attempted optimization

techniques were effectively isolated, where two of the three unsuccessful optimization

techniques showed irregular success. The three unsuccessful optimization techniques require

further investigation. Once each attribute is determined to have a successful optimization

technique, the method of combining each of these score contribution values will require

Aloise 5

investigation. In addition to attribute optimization, it was discovered from gathering these results

that particle generation will need to be altered to accommodate for all potential room attribute

values. These findings have identified a promising room representation and generation

technique, identified a promising elimination of particles technique, and evaluated individual

attribute optimization scoring functions to pave way for future developments of the project.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Under Secretary of Defense for Research
and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings,
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Under Secretary of Defense for Research and Engineering.

Aloise 6

1. Introduction

Tactical Edge Reprogramming for Rapid Autonomy Adaptation (TERRAA) focuses on

developing robotic agents that can work as a member of human teams in tactical settings without

the involvement of a robotics engineering expert. A subset of the TERRAA project, Tactical

Formulaic Language Interpretation and Prediction (TFLIP), aims to achieve this by using

Tactical Language, a formulaic language utilized by many human Special Weapons and Tactics

(SWAT) and Army Special Reaction teams. This language is particularly relevant to tactical

room searches, where US Army officers will use this language to describe a room. This language

emphasizes the geometry and features of the room that are relevant to method of entry.

Room searches are often regarded as the most dangerous part of tactical response because

it occurs when a responder “leaves an area that he or she controls into one that he or she does

not” (Blair et al., 2019). The potential for hidden threats is heightened because of the uncertainty

of the room’s contents. For example, a corner that cannot be seen from the point of entry could

contain a hostile agent. Properties of the room geometry and location of various features drive

the measure of safety for any particular room. This determines how a tactical response team

would enter the room, as they prioritize clearing areas that present more danger. The US Army,

along with other organizations dealing with tactical room searches, have come up with their own

formulaic language used to efficiently describe these rooms. The TERRAA TFLIP project aims

to take advantage of this tactical formulaic language already understood by humans trained in

room clearing and introduce that language to a robotic operative. This way, the humans and the

robot will share a method of communication, thereby reducing the need for a robotics

engineering expert in the field to facilitate information exchange. Since the language is

formulaic, it softens a common barrier found in robotics and language interpretation.

Aloise 7

Many robotic systems struggle with understanding natural language. There are many

nuances, implied social contexts, and tones involved in human communication. Tactical

Language is an ideal middle ground. There is a limited scope to the implications being made in

this context, as a robot only needs to be provided with room-relevant context. For example,

rooms take up physical space; room walls are typically parallel to one another; a box-shaped

room has four corners; etc. Though these are still implications, they are limited by the context of

the problem, and therefore manageable by the system.

While TFLIP aims to extend the TERRAA project by utilizing tactical language used by

room entry teams, the robot has its own role to play within the room search. The TFLIP proposal

is to have a robotic agent that can understand structured tactical language and utilize it for a

tangible purpose.

The robot entering the room will contain multiple sensors which it can use to observe the

room. TFLIP is operating under the assumption that sensors on the robot will include Light

Detection and Ranging (LiDAR) sensors, which return a value proportional to distance from an

object in the room, and global positioning sensors, which locate the robot within global space.

These sensor readings are incomplete observations of the room. The robot’s goal is to utilize the

provided verbal description of the room and show an understanding of the description by

predicting unseen features of the room. This will be achieved by combining real-time sensor

readings and prior knowledge of the room’s geometry.

Since multiple readings will be taken during room entry and more knowledge of the room

will become available over time, the estimate of the complete room will also change over time.

Ideally, as more information becomes available, the estimate of the room will become more

accurate to the true state of the room. One common method in robotics to estimate a true state

Aloise 8

based on incomplete observations is by utilizing an instantiation of the particle filter algorithm

(Del Moral, 1996). This algorithm generates guesses for the true state of the world, assigns some

value of confidence to each according to observable information, eliminates guesses driven by

those confidence values, and then backfills eliminated guesses driven by attributes of the

surviving guesses. It continues this process for each new observation (Thrub et al., 2005).

Incomplete observations are noisy global locations of observable room features, such as corners

or doors, and the true state of the room is the exact global position of all corners and doors in the

room. The TFLIP project uses such limited information to estimate the true state of the world.

There are many elements to how a particle filter would be implemented for this

application. One important aspect is determining the score of a particle provided the sensor

observations. Since room-representing particles have many attributes, there is a lot of flexibility

in how a scoring function can be implemented. The different geometric deductions made from

sensor readings will need to be assessed for various stages of receiving information to make best

use of the information available. Weighing and comparing these selected attributes effectively

will make the score valuable. This project assesses how different scoring methods and weighting

of known information affect the accuracy in particle filter convergence to the correct true room

at various stages of receiving information.

Before we can assess these scoring methods, we must address the initial state of this

project. This project is a small part of a larger project that has already been in development for

some time. Incomplete areas of work included developing particle generation and representation,

methods of particle elimination, and the various score assignment functions. As such, the further

development of these areas falls within the scope of the project goals. The completion of these

Aloise 9

portions of the project will be referenced to as Stage 1, where the investigation of the scoring

functions will be referenced to as Stage 2.

By Stage 2, multiple scoring functions will be ready for assessment. The remaining task

is to analyze those functions against each other against various edge-case-representative test case

rooms. To achieve this, there are a few tasks remaining: we must define what success looks like

and define ways to measure success. The results will then be analyzed and addressed in the

discussion section, Section 7.3.

Due to time constraints and technical complications during my project period, I was only

able to partially complete Stage 1 of the project, and Stage 2 was implemented for completed

portions of Stage 1. All incomplete work is ongoing and left for future work.

Aloise 10

2. Background

2.1. Tactical Language and Room Search Entry

Tactical language is a formulaic language used by US Army Special Reaction team

officers to describe the geometric properties of a room relevant to search tactics (B. Koo,

personal communication, August 29, 2022). A formulaic language is defined as some form of

language with consistent structure (Piirainen et al, 2020). These geometric properties determine

how the Special Reactions team will enter to clear that room of potential threats. These

descriptions are driven largely by clearance priority - areas with the highest likelihood of

potential threats. The properties of tactical language include shape, feed, and weight. The most

important property in tactical language used to describe a room is the shape of the room. There

are many different shapes that can be described using tactical language. Tactical language terms

used by the US Army for shape are detailed in the table below.

Shape Description Example

Box-Shaped Room The most common room is

the box-shaped room. This is

a room that has four corners

that are all right angles with a

rectangular shape.

Aloise 11

Linear Room Linear rooms have four

corners with some defined

ratio between the wall lengths

that determine its

classification as a linear room

over a box-shaped room.

L-Shaped Room L-Shaped Rooms have six

corners, consisting of five

traditional 90-degree corners

and one inverted 90-degree

corner. This makes the L-

shaped room take on an L-

like shape with two distinct

areas of the room.

U-Shaped Room U-Shaped rooms have 8

corners, consisting of 6

traditional 90-degree corners

and 2 inverted 90-degree

corners. This particular

configuration makes the U-

Shaped room take on a U-like

shape with three distinct areas

Aloise 12

of the room.

T-Shaped Room T-shaped rooms have 8

corners, consisting of 6

traditional 90-degree corners

and 2 inverted 90-degree

corners. In this particular

configuration, this makes the

T-Shaped room take on a T-

like shape with 3 distinct

areas of the room.

Irregular Room The irregular room is used to

describe any room that does

not meet any of the prior

defined room types.

Table 1: Tactical Language Shapes

Various room shape types are listed in Table 1. This includes the tactical language shape,

a verbal descriptor of how that defines the room geometry, and an example of how an

instance of the respective room could be visually represented.

The tactical language descriptors for room shapes are described above in Table 1. Each of

these room shapes carry different tactical implications when it comes to tactical room search. As

an example, linear rooms and box-shaped rooms are distinguished from one another because

Aloise 13

linear rooms have the potential to be hallways. Hallways tend to have more doors and exits

leading off into adjacent rooms. This makes linear rooms the most dangerous room to enter in a

tactical response, since all adjacent rooms could conceal threats or hidden enemies, meaning that

there are more areas to clear. This is a risk that US Army officers communicate to their teams.

The four other rooms that can be classified by tactical language are L-shaped rooms, U-shaped

rooms, and T-Shaped rooms; all other configurations are referred to as “irregular rooms” and

will be described relative to the unique shape of that room. The shape of a room will drive how

the Special Reactions team will enter the room to clear the area quickly and safely.

In addition to the shape of the room, there are other geometric properties that are

important to note in tactical language. It is not enough to just know the shape of the room; the

feed is also important. The feed defines from what position relative to the room the door is

located.

Feed Description Example

Center-Fed Center-Fed denotes when a

door feeds into a room from

the center of the wall of entry

within some tolerance.

Aloise 14

Corner-Fed Corner-Fed denotes when a

door feeds into a room from

non-center section of the wall

of entry within some

tolerance.

Table 2: Tactical Language Feeds

Various room feed types are listed in Table 2. This includes the tactical language feed, a

verbal descriptor of how that defines the room geometry, and an example of how an

instance of the respective room could be visually represented.

Doors can be denoted as center-fed or corner-fed. Center-fed is when, within some

tolerance, the door enters the room from the center of the wall of entry. Corner-fed is when,

within some tolerance, the door enters the room with some significant difference to either side.

This means that there is a prioritized side to be cleared when entering from a corner fed room.

In order to specify which side the door is entering from relative to the wall of entry,

tactical language uses the property of weight. This is an optional tactical language property that

may not be relevant to all rooms.

Weight Description Example

Left-Heavy There is more room area to

the left of the point of entry.

Commented [HG1]: The image associated with
"Corner Fed" rooms appears to be corrupt or missing.
Please fix.

Aloise 15

Right-Heavy There is more room area to

the right of the point of entry.

N/A The area to the right and the

left of the point of entry are

approximately the same.

Table 3: Tactical Language Weights

Various room weight types are listed in Table 3. This includes the tactical language

weight, a verbal descriptor of how that defines the room geometry, and an example of how

an instance of the respective room could be visually represented.

The weight consists of the two terms left-heavy or right-heavy. Where left-heavy

meaning more space is to be clear to the left relative to entry, and right-heavy meaning there is

more space to be cleared to the right relative to entry. Additionally, there are ways to describe

each corner in a room.

Aloise 16

Figure 1: Tactical Language Lines of Vision

Figure 1 displays a visual representation of an expected line of vision from the entrance of a room. Corners that rest

within this line of vision are denoted as easy corners, whereas corners that rest outside of this line of vision are

denoted as hard corners.

Since corners are areas with high potential for hidden threats, it is important to know as

much information as possible about these areas. To classify different types of corners, they are

classified as either hard corners or easy corners. Easy corners are the corners that are cleared

immediately upon entry from the responder’s primary line of vision, therefore, they are low

priority. Hard corners are the corners that are obscured from the view at the point of entry, such

as those along the wall of entry. For this reason, it is important to clear hard corners as soon as

possible, as they could expose responders to hidden threats.

Tactical language has been developed with the intention of clarifying relevant

information to tactical room searches and the high-risk areas within each room. Being a

formulaic language, tactical language reduces difficulty in transferring learning over to the

robotic agent as compared to traditional, unstructured language.

Aloise 17

Since developing a tactical language interpreter is not within the scope of this particular

project, from now on, we assume that the tactical language input to the system was a box-shaped

room for the purpose of simplicity.

2.2. Accounting for Implied Information

When we consider introducing a robot agent into the field in a tactical room search

situation, we must acknowledge the robot’s ignorance of room properties. Humans have many

expectations for what defines and constrains a room, where robots inherently do not. This

information must be communicated to the robot for it to gain a human-comparable understanding

of the space. If the robots are working as team members with a human team, this understanding

is important to be a valuable team member. This type of understanding is reflected by one of the

primary technical objectives - to accurately predict locations of features of the entire room based

off a few observable measurements. This will help the robot act similarly to how a human agent

would, as human agents can take the prior information and room assumptions and use that to

deduce features about the room during entry. To do this, we must establish to the robot

determined constraints that rooms adhere to via the tactical language descriptions and room-

relevant context.

This introduces a common Machine Learning (ML) problem with implied information

and subjectiveness of language. Robots do not have any prior information about the world, so we

must provide this information to them, in this case, via tactical language. The act of

understanding traditional language is called Natural Language Processing (NLP). Typically, ML

models are trained with a large dataset with the expectation the robot would be exposed to real

data similar to this training data. Humans use a variety of sayings, tones, phrases, and implied

information that can drastically change the meaning of any sentence. This is a common issue

Aloise 18

with NLP that ML implementations attempt to solve (Xiang and Foo, 2021). In this application,

there is limited variation in the language being interpreted by the robot, as it is a formulaic

language with a limited scope of information. With this in mind, it is possible to manually code

each of these specifications for the robot. The benefit of this is a decreased complexity of the

code.

2.3. Sensors and Representation of Noise

As the robot enters the space, it needs more than just a general understanding of qualities

of a room and some verbal description to create a complete image of the world state. The robot

also needs to collect readings as observations about the world. To collect observations, the robot

needs a variety of sensors. The assumed sensors to be utilized on this robot would be LiDAR

sensor and some global positioning sensor. Each of these sensors has some method of observing

the world.

2.3.1. LiDAR Sensor

LiDAR sensors (also known as optical radars) are a form of imaging sensor (Ready,

1997). These sensors are used to collect information about the space by producing pulses of

electromagnetic waves, that typically fall in the infrared range of light (McManamon, 2019).

This information is primarily representative of the distance between the sensor and some surface.

Using this information, it is also possible to estimate velocity of the sensor, velocities of objects

in the sensor’s field of vision, or the texture of material being observed. This sensor consists of

three major components: a light source, a receiver, and an optical positioning system. The light

source is typically a laser beam which is used to pulsate light onto the observed area. The

photodetector receiver will then measure the reflection of this backscattering of light from the

observed area in units of seconds, which can be mapped to a distance measurement. This ability

Aloise 19

is essential in identifying feature locations within a room. Since LiDAR sensors often measure

an array of values in space, angles created by walls can additionally be deduced.

Since the current state of this project does not take input from an existing LiDAR sensor,

we must produce some way of simulating this received data. We assume the received data have

been processed from a LiDAR sensor, rather than being raw LiDAR point clouds. We also

assume that the data has been interpreted to identify wall angles about corners and about the door

entrance. When combined with the global positioning sensor, simulated LiDAR measurements

can be used to deduce the global coordinates of each feature, along with the deduced unit vector

identifying wall directions off each corner and the global angle created by the wall of entry.

In addition to simulating data, we must also simulate predicted noise on this data. This

ensures an accurate representation of receiving data and forces the team to accommodate for

noise prior to introducing physical sensors to the system, promoting robustness. If there were a

decided LiDAR sensor for the physical robot at this stage of the project, we could check the

noise specifications for that particular model. However, since that information is not currently

available, we must estimate this noise using other means.

Figure 2: Traditional LiDAR Operation Graphic

Aloise 20

Figure 2 displays a representation of the inner workings of a traditional LiDAR sensor. Where outgoing light is

represented by the yellow lines and incoming light is represented by the blue lines.

2.3.2. Simulating Reasonable Noise

As robotic systems observe their environment using sensor data, there will always be

noise introduced into the system. Though some noise will exist only in small magnitudes, it is

still important to account for this noise in our observations. This noise has the potential to greatly

affect our observations of the room if not accounted for correctly. An analysis was conducted on

pre-crash prediction system in standard automobiles which illustrates this point.

In a high-risk scenario, such as predicting a head-on collision, the false negative

prediction must be avoided at all costs - where a positive case is a head-on collision (Dirndorfer

et al., 2011). This prediction is put in jeopardy when noise is introduced to the system. Without

properly accounting for inaccuracy in the system, the system could inaccurately fail to detect an

oncoming collision.

Figure 3: Effect of Noise Incorporation Example

Figure 3 displays a graphic from the study on impact of noise incorporation into a pre-crash detection system. The

true paths of the cars are denoted by arrow headings. The system’s belief of the paths of the cars are denoted by

gradient rectangles of the respective colors of the cars.

Aloise 21

This concept is illustrated in Figure 3. When noise was introduced to the pre-crash

detection system, there was some inaccuracy in the observed path of the car and the true path of

the car. Where the true paths of the cars are denoted as the car figures paired with arrow

headings, and the system-observed state of the cars are denoted by the rectangular trajectories.

With no simulated sensor noise introduced to the system, the cars are correctly predicted to

collide. With small, simulated noise power introduced to the system, the cars are still correctly

predicted to collide. This changes with a large noise power where the prediction changes, now

predicting no collision, when, in fact, the cars are on course to collide. This could be a

potentially fatal false prediction.

In the physical world, there will always be some level of noise or inaccuracy of data

present in our system. In the pre-crash detection example, these factors may include noisy

distance measurements, time delays, delays in communication between various control units, or

otherwise inaccurate information (Dirndorfer et al., 2011). Each of these potential sources of

inaccuracy must be taken into consideration within our system and assigned an appropriate noise

handling method. With the TERRAA TFLIP project, we must similarly consider the whole

signal processing chain. This could include LiDAR sensor noise, global positioning noise,

inaccurate tactical language input, and other factors.

There are multiple ways in which systems can account for noise. For this project, the

current technique of simulating noise is assuming Gaussian noise. This is done for simplicity’s

sake for the current state of the project.

2.4. Particle Filter Algorithm

The Particle Filtering Algorithm is an algorithm commonly used in robotics applications.

The filter becomes particularly helpful when attempting Simultaneous Localization and Mapping

Aloise 22

(SLAM), the most important component for an autonomous robot (Song et al., 2018). The

particle filtering algorithm operates under the condition that there exists some observable

variable which is related to unobservable information. Using this observable variable, we aim to

estimate the unobservable information. Regarding TERRAA-TFLIP’s application, the observable

variables are our sensor readings, and our unobservable information is the true state of the room

we are entering, including features of the room we have yet to see. It is important to understand a

traditional application of a particle filter to be able to implement it for the TERRAA-TFLIP

project.

SLAM is a necessity in many robotics applications. When responders enter a room, they

use their senses to create an image of that room, and, assuming decent depth perception,

deduce/recognize where they are located within that space. A robot needs to do just the same.

Unfortunately, the adaptability of human’s neural pathways is not easy to replicate. There needs

to be a procedure for the robot to map the space while accurately updating its position within that

space. The particle filtering algorithm is used to execute SLAM in a structured and procedural

way, constantly updating predictions about the world with incoming sources of information.

Though this project is not following a traditional implementation of SLAM particle filtering, the

generalized particle filtering algorithm can still be applied for the purposes of this project.

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆 𝒇𝒊𝒍𝒕𝒆𝒓(𝑿𝒕ି𝟏 = 𝑵𝒐𝒏𝒆, 𝒛𝒕):

1: 𝑋௧ = []

2: 𝑖𝑓 𝑋௧ିଵ 𝑖𝑠 𝑁𝑜𝑛𝑒:

3: 𝑓𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀 𝑑𝑜:

4: 𝑛 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

5: 𝑎𝑑𝑑 𝑛 𝑡𝑜 𝑋௧ିଵ

6: 𝑠𝑐𝑜𝑟𝑒௠𝛼 𝑃(𝑧௧|𝑥௧ିଵ೘
)

Aloise 23

7: 𝑎𝑑𝑑 < 𝑥௧ିଵ௠
, 𝑠𝑐𝑜𝑟𝑒௠ > 𝑡𝑜 𝑋௕௘௟

8: 𝑓𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀 𝑑𝑜:

9: 𝑥௧೘
= 𝑎𝑐𝑐𝑒𝑝𝑡 𝑜𝑟 𝑟𝑒𝑗𝑒𝑐𝑡(𝑋௕௘௟)

10: 𝑖𝑓 𝑥௧௠
 𝑖𝑠 𝑛𝑜𝑡 𝑁𝑜𝑛𝑒:

11: 𝑎𝑑𝑑 𝑥௧೘
 𝑡𝑜 𝑋௧

12: 𝑓𝑜𝑟 𝑚 = 𝑠𝑖𝑧𝑒(𝑋௧) 𝑡𝑜 𝑀 𝑑𝑜:

13: 𝑛௠ = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 (𝑋௧)

14: 𝑎𝑑𝑑 𝑛௠ 𝑡𝑜 𝑋௧

15: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑋௧

Figure 4: Particle Filter Algorithm Pseudocode

Figure 4 displays a pseudocode example of how a particle filter could be implemented.

2.4.1. Particle Generation

The primary step in any implementation of a particle filtering algorithm is creating an

initial set of particles. This is represented in lines 2-5 of Figure 4, where Xt-1 is used to represent

the initial set of particles when running the algorithm. For the run, Xt-1 will be generated. After

the first reading, Xt-1 will be provided by the previous run of the particle filter. Particles represent

different estimates of what we are trying to predict. In our application, particles represent

possibilities for all the features of the room the robot is entering. The information contained in

these particles will vary based on how we decide to represent rooms within our code. This is

introduced in Section 5.2 and further discussed in Section 7.1. This initial set of particles is

varied in nature and large in size (potentially over 1000) to increase the possibility of having a

truth-representing particle within the initial generation (Thrub et al., 2005).

Initial particle generation can be executed in multiple ways. Particles can be generated

randomly to have an unbiased initial sample. This is a method we have chosen to execute for this

project. However, there are alternative methods to consider. These particles could be

Aloise 24

strategically selected. In certain applications, it may be preferable to use the same distribution of

initial particles with each particle filtering attempt.

Figure 5: Methods of Particle Generation

Figure 5 displays a visual representation of systematic initial particle generation.

This is demonstrated in Figure 5 where the grid space represents all potential possibilities

of state and dots represent some determined, varied set of initial particles. This systematic

generation has particles uniformly spaced throughout the possibilities of states (Wang et al.,

2018).

Some systems may already have some known information that could contribute to the

generation of particles. This is particularly apparent in swarm applications, where there are

multiple robots in the area of interest communicating with one another. In this case, the positions

of the robots relative to one another may already be known (Saeedi et al, 2015). In an application

where some information about the system is apparent, this may impact how particle generation is

seeded. Where, if relative robot positions are known with some amount of confidence, each

particle would reflect those relative distances.

Aloise 25

2.4.2. Score Assignment

Once readings have been obtained, some score assignment function will compare each

particle to the known information to describe the likelihood of that particle being correct. This

will be reflected by the score. The goal is for the score to be a single value that defines the

goodness of fit for any particle given current observations about the world. This is represented by

lines 6 and 7 in Figure 4, where zt is the collection of readings from sensors and Xt-1m is the

particle being evaluated within the set of particles. The score, score_m will be generated in some

way by comparing z_t and Xt-1m. For each implementation of the particle filtering algorithm,

there will be different attributes relevant to that project. This will determine how zt and Xt-1m are

compared to one another. In this case, we are using attributes relevant to defining a room. As

analyzing this portion of the particle filter is a primary focus of this project, these representations

and scoring implementation will be further detailed in Sections 5.2 and 5.3 and discussed in

Sections 7.1 and 7.1.

2.4.3. Elimination of Particles

Based on the score assigned to each particle, there will be an elimination of particles from

the set. This is represented by lines 8-11 in Figure 4, where Xbel (X belief) contains all particles

and their respective scores. This elimination of particles is done in order to remove poor-fit

rooms from consideration.

As the range of score values can change per run and per implementation based on the

calculation of scores, it is important to have a method of elimination that is valid across various

score distributions. This can be done in many ways. As implementing this portion of the particle

filter is a primary focus of this project, three notable approaches are detailed in Section 5.4 and

Aloise 26

discussed in Section 7.2. Particles that are not eliminated from the set are then used to drive the

backfilling of eliminated particles in the following resampling step.

2.4.4. Resampling

Now that poor-scoring particles have been eliminated from the set, it is anticipated that

these higher-scoring remaining particles have attributes that are more accurate to the true room.

Under this assumption, the algorithm will backfill eliminated particles using the attributes of the

remaining particles. This is represented by lines 12-14 in Figure 4, where Xt is the set of

surviving particles and nm is a newly generated particle based on Xt. nm is then added to Xt to

create the final set of particles. In our implementation, we have decided to take the mean and

standard deviation of all attribute values and generate new particles by selecting attributes from a

gaussian distribution using the stated mean and standard deviation. Though this is what was

implemented for this project’s resampling step, there are other methods. For example, the mean

and standard deviation fed into particle generation do not have to be the same as Xt. These can be

varied to suit the needs of the project.

After resampling, the final set, Xt, will be returned by the algorithm and reused in the

next call with new received readings. For this reason, it is important to know when we would like

to resample (call the particle filtering algorithm again). Resampling on the same observed

information is something that is warned against. This is because, by doing this, we risk

converging too sharply on incomplete information and eliminating diversity in our particle set

early on. If this becomes a problem, there are two known ways to solve it. The first approach,

which is the caution we are currently taking, is to resample infrequently. Particularly, we are

only resampling when we receive an additional measurement. In a practical application, this may

not be necessary, though it is a noted precaution. The second approach is to intentionally add

Aloise 27

some completely random particles to the particle set with each iteration. This allows for added

variance in case the particle filter has converged too confidently to the incorrect value.

Introducing these random particles provides an opportunity to escape this poor conclusion

(Thrub et al., 2005). These various methods of resampling and precautions to take regarding

resampling are important to keep in mind through the implementation of the project.

2.5. Related Work

For this project, we utilize tactical language descriptions as prior information and fuse that

with real-time sensor readings to create an updating estimate of the current room via particle

filtering. To our knowledge, tactical language has not yet been utilized in automation for tactical

environments. This is largely because the US Army intentionally doesn’t publicly release their

room entry protocols, including the tactical language descriptions (B. Koo, personal

communication, August 29, 2022). In our unique position, we have verification of some

language used in these room entries, allowing us to use this in our autonomous robot.

Though the use of tactical language is novel to our use, estimating states via particle filtering

has been around for decades, and there are many existing implementations of this. Various

optimizations have been made to the particle filtering algorithm across projects. In the paper, Box

Particle Filtering for SLAM with Bounded Errors, the SLAM particle filtering problem is

addressed with the intention of optimizing the size of the set of particles. Traditional particle

filters run on hundreds or thousands of particles, leading to expensive computation time.

Decreasing the particles needed to run an effective particle filter leads to faster computation time

(Wang, 2018). This could be of future use to our project.

Critical Rays Self-Adaptive Particle Filtering SLAM is a project using a LiDAR sensor on a

moving robot to perform SLAM on a grid of streets. Like our project, they use a LiDAR sensor

Aloise 28

to receive measurements, and will therefore experience similar noise (Song, 2018). Though,

since our project combines this observed information from the LiDAR and our global positioning

reading, our noise will be combined with the global positioning noise. We will not be receiving

similar observed information as from the raw LiDAR distance measurement. This project can be

useful in assessing what a reasonable LiDAR noise contribution could be as well as referencing

for chosen implementation for various portions of the particle filtering algorithm.

Both particle filtering implementations are useful in referencing the various potential

implementation of steps in the particle filtering algorithm. However, due to our unique

representation of particles, inspiration for methods of scoring these particles will not be

represented in their implementations. This original scoring approach is the primary focus of this

project.

Aloise 29

3. Methods

3.1. Simulating Readings

 Test case readings were simulated by determining global positional coordinates for each

of the eighteen test cases. Corner readings are currently represented in the form (string

feature_type, float x_position, float y_position). Door readings are currently represented in the

form (string feature_type, float x_position, float y_position, float global_angle). feature_type

represents the feature type of the reading, either ‘door’ or ‘corner’. Where x_position is the

numerical value for the position of the feature along the global x-axis, and y_position is the

numerical value for the position of the feature along the global y-axis. global_angle is parameter

that only is associated with a door reading.

Figure 6: Door Reading Information

Figure 6 displays a visual representation of the data contained in a door feature type reading. This includes the

door x position in global space, the door y position in global space, and the global angle. As displayed in the figure,

the global angle represents the angle created by the wall of entry relative to a global coordinate system.

3.1.1. Noise Incorporation

Aloise 30

 A function was developed to incorporate Gaussian noise to the simulated position

coordinates. This function takes in some reading and a standard deviation for the noise. It then

selects out all features other than the feature_type and selects the noisy value from a Gaussian

distribution using the values provided to the function. The function returns a reading in the same

format received, but now the values are considered noisy.

3.1.2. Introduction of Readings to Particle Filter

 In practical applications, there are common lines of sight when entering a room. The first

observation will consistently be the door, as you will always enter a room through the door. After

this, the next most likely observations within common lines of sight from the door are the easy

corners. We can apply this knowledge in ordering sensor readings for accuracy purposes. A

function to achieve this was not completed by the end of the project period and remains a task for

future work. Due to this, to gather results, the door measurement was introduced first for all test

cases, with purely random introduction of corner readings in succession.

 The particle filter runs through each test case in the provided order. Seeing the first

reading, then the first through second, first through third, and, finally, the first through fourth.

For the sake of analyzing the effectiveness of scoring functions, the estimated state of the world

is calculated for each stage of receiving measurements.

3.2. Room Representation & Generation

To implement the particle filter algorithm, we must establish some intuitive way to

represent our particles. This is a multidimensional problem with many possible solutions.

We receive our sensor data in global 2-D positional coordinates, referred to as the x-axis and the

y-axis. When door measurements are provided, we also have a measurement for the global angle

of the wall of entry, about the door.

Aloise 31

Figure 7: Box Shaped Room with Geometry

Figure 7 displays a visual representation of common geometric properties to describe rectangular shapes: length

and width.

We need to determine some convenient seed for particle generation and particle scoring.

This project assumes a tactical input of box-shaped rooms. Due to this, there are some box-

shaped specific parameters we can work with. Box-shaped rooms are rectangular shapes with

doors located throughout. All rectangular shapes have the common properties of length and

width, as shown in Figure 7. These geometric properties can be used to our advantage to describe

the proportions and size of the room with only two parameters. This is the type of optimization

that will be important in generating particles.

Aloise 32

Figure 8: Feature Prediction Using Geometric Assumptions

Figure 8 displays how geometric assumptions can be used in feature prediction. Where bolded sections are received

readings and faded sections are predicted features based on geometric assumptions.

Using geometric properties of these shapes will also provide great benefits regarding

feature prediction. By using these assumptions of the standard geometric properties of rooms

(90-degree corners, parallel walls, etc.), we are intuitively predicting unseen features of the

room. Three different implementations of room representation and generation are described

below.

In the graph package currently being used by the project, a copy of particles is being

stored in coordinate representation. The generation techniques below will cover the conversion

of the respective representations to coordinate representations. It is important to keep this

information across each particle for later scoring implementations and helpful graph package

visualization tools.

3.2.1. Coordinate Method

Aloise 33

Figure 9: Coordinate Method Representation

Figure 9 displays a visual representation of the coordinate method of room representation. The lines represent

walls, the blue circles represent corners, and the blue X represents the door.

 The coordinate method represents a room solely based on its features’ global coordinate

positions. In a four-corner room with single-point entry, the door would be represented in global

coordinates, (door x position, door y position). Each corner would be respectively represented in

their global coordinates: (corner1 x position, corner1 y position), (corner2 x position, corner2 y

position), (corner3 x position, corner3 y position), and (corner4 x position, corner4 y position).

This represents all the feature information in the room using 10 parameters. We can shorthand

refer to corner 1 as c1, corner 2 as c2, etc.

Step # Description Visual Representation

Aloise 34

1 Random values chosen for c1

x1 and y1 positions.

2 Random values chosen for c2

x2 and y2 positions.

3 From this, global angle

calculated between c1 and c2.

4 90 degrees incremented onto

the global angle to create the

angle23. The line created

from angle23 and c2 drives

the location for c3.

5 Some random position

selected along the line

becoming c3.

Aloise 35

6 90 degrees incremented onto

the angle23, creating angle34.

Line equation calculated

created by angle34 and c3.

7 Distance between c1 and c2

calculated.

8 c4 placed along the line using

distance calculated in step 7.

9 Two random adjacent corners

selected to include the door.

Line equation calculated

between these two corners,

and door location selected

randomly from somewhere

along this line between the

two corners.

Table 4: Coordinate Method Generation Process

Aloise 36

Table 4 displays a step-by-step process for generating rooms with the coordinate method of room representation.

This details the step number, a description of the actions taken, and a figure representation of that step.

This representation was generated randomly by selecting random values for (c1 x

position, c1 y position). The rest of the room was constructed about these points. The rest of the

corners are assigned by iteratively adding 90 degrees to the angle created from the two preceding

corners, calculating the line equation at that angle and previous corner location, and then

selecting a point along the line to assign the corner location. For the final corner, this will be

driven by the distance between c1 and c2.

 Once the corners have been placed within global space, two random adjacent corners

were selected to be the wall with the door. The line equation was calculated between these two

selected corners, and the door location was selected randomly from somewhere along this line in

between the two corners. This was now reflected in the door x position and the door y position.

 This full generation is for the assumption of random room generation. Generating a

particle set based on given attribute values, we would just assign these values to the input seeds

and graph directly for the coordinate representation method, as no conversion is necessary for the

graph.

3.2.2. Geometric Method

Aloise 37

Figure 10: Geometric Representation

Figure 10 displays a visual representation of the geometric method of room representation. The lines represent

walls, the blue circle represents the center point of the room, the blue X represents the door, the V at the center

point represents the global angle, and the length and width are labelled.

 The geometric method represents a room based on traditional geometric properties. These

include length, width, center point x, center point y, rotation about center, and some positional

door representation. This represents all the feature information in the room using 6 (or 7)

parameters. Different door representations are listed below.

Figure 11: Door Coordinate Representation

Aloise 38

Figure 11 displays the door coordinate representation for the geometric room representation approach. In this

figure, the blue X represents the door location in global space.

 The (door x, door y) method of door representation consists of representing the door

using its global positional coordinates. This representation does not actively communicate the

door’s position relative to the room geometry. This representation also brings the representation

to 7 parameters, unlike the 6 in methods detailed below.

Figure 12: Door Angle Representation

Figure 12 displays the door angle representation for the geometric room representation approach. In this figure, the

blue X represents the door location in global space, the blue circle represents the center point of the room, and the

V at the center point of the room represents the angle between c1 position, the center point, and the door position.

This door angle is the value used to represent the door within the room.

 The door angle method represents the door by using the angle created from the first

corner to the door location about the center point of the room. This method uses 6 parameters to

describe the room, and it actively communicates the door’s position relative to the room

geometry.

Aloise 39

Figure 13: Door Distance Representation

Figure 13 displays the door distance representation for the geometric room representation approach. In this figure,

the blue X represents the door, the blue circle represents the first corner, and the bolded line represents what

segments are included in the door distance value. The length value of the bolded sections is used to represent the

door within the room.

 The door distance method represents the door by using the distance around the perimeter

of the room from the first corner to the door location. This method uses 6 parameters to describe

the room, and it does not actively communicate the door’s position relative to the room

geometry.

 This representation was generated similarly to Section 5.2.1.

Step # Description Visual Representation

1 Random values selected for

c1’s x1 and y1 positions

Aloise 40

2 Width and global angle used

to calculate the desired c2.

3 90 degrees incremented onto

the global angle to create the

angle23. The line created

from angle23 and c2 drives

the location for c3.

4 Length used to place c3 along

generated line.

5 90 degrees incremented onto

the angle23, creating angle34.

The line equation is

calculated created by angle34

and c3.

6 Width used to place c4 along

the calculated line.

Aloise 41

7 Door location parameter used

to drive placement of door.

8 The difference between

current center point and

desired center point

calculated. Each node

adjusted to this center point.

Table 5: Geometric Method Generation Process

Table 5 displays a step-by-step process for generating rooms with the geometric method of room representation.

This details the step number, a description of the actions taken, and a figure representation of that step.

This representation was generated randomly by selecting random values for each

parameter: length, width, center point x, center point y, rotation about center (global angle), and

some positional door representation. First, a random value was generated for (c1 x position, c1 y

position). The rest of the room was constructed about this point. The rest of the corners are

assigned by iteratively adding 90 degrees to the angle created from the two preceding corners,

calculating the line equation at that angle and previous corner location, and then selecting a point

along the line provided length or width seeds to assign the corner location, respectively.

 Once all the corner positions and the door positions were calculated, the center point of

the current room representation was calculated. The difference between this center point and the

desired center point for both x and y coordinates was calculated. This difference was then added

to each feature coordinate to readjust the desired center point.

Aloise 42

 When a door is represented in (door x location, door y location) global coordinate system,

no conversion is necessary. Though this representation does not explicitly ensure the door lies

along a wall. To generate this door location from a seed or randomly generated (door x location,

door y location), the values would be directly passed to the graph.

 When the door is represented in some angle created between the first corner coordinate,

the center point, and the door location, there is some additional computation needing to be done

to acquire the door x position and door y position to be passed to the graph.

 To acquire these global position coordinates while ensuring the door rests directly

between two corners, we first had to figure out which two corners the door was between. Since

we know the global coordinates of each corner location, we were able to deduce the distances

from each corner to the center point, as well as each corner from one another. This was all the

information needed to calculate the internal angles between each successive pair of nodes and the

center point using Side/Side/Side Law of Cosines. Once these center angles were acquired, we

could deduce at which angle the door location would switch walls in any given room. This,

coupled with the information of the door angle, revealed which wall the door was located on. For

the respective wall, the angular percent along that wall was determined by taking the door angle

minus start angle of that wall over the range of degrees on that quadrant. The line equation

created by the wall was then calculated, and length of the line was determined. The door was

then placed that percentage of length down the wall. This (door x position, door y position) was

deduced and set in the graph.

 When the door location is represented in some distance around the perimeter from the

first corner, there is some additional computation that needs to be done to acquire the (door x

position, door y position) to be passed into the graph.

Aloise 43

 Though this specific door representation did not have an opportunity to be implemented,

it likely would have been executed as follows. The distance from the first corner would be

provided to represent the door location. The distance between each successive corner would be

calculated from the global coordinate system. The distance from the first corner to the door

would be calculated from these values. Wherever the door location surpasses these cutoffs, we

would have determined which wall the door lies along. We would take this cutoff corner and

calculate the equation for a line between this corner and its successive corner. Then we would

take the difference between the door location value and the cutoff corner and calculate the (x

position, y position) that distance down the line. The (door x position, door y position) would be

then deduced and included in the graph.

3.2.3. Door-Centric Representation

Figure 14: Door-Centric Room Representation

Figure 14 displays a visual representation of the door-centric method of room representation. The lines represent

walls, the blue arrow loop represents the global angle, and the gap in the wall represents the door. The length, right

width, and left width are labelled.

Aloise 44

 This door-centric method consists of utilizing traditional geometric properties about the

door location. This includes: (door x location, door y location), angle about the door, width to the

left of the door, width to the right of the door, and length. This represents all the feature

information about the room within 6 parameters.

Step # Description Visual Representation

1 Door x and door y positions

placed.

2 Right width and global angle

used to calculate the desired

c1.

3 90 degrees incremented onto

the global angle to create the

angle12. The line created

from angle12 and c1 drives

the location for c2.

Aloise 45

4 Length used along generated

line to place c2.

5 90 degrees incremented onto

the angle12, creating angle23.

Line equation calculated

created by angle23 and c2.

6 c3 placed along the calculated

line using width. Where width

= right width + left width.

7 90 degrees incremented onto

the angle23, creating angle34.

Line equation calculated

created by angle34 and c3.

Aloise 46

8 Length used along generated

line to place c4.

Table 6: Door-Centric Method Generation Process

Table 6 displays a step-by-step process for generating rooms with the door-centric method of room representation.

This details the step number, a description of the actions taken, and a figure representation of that step.

This representation generated random values or used seed values for each attribute: door

x location, door y location, angle about the door (global angle), width to the left of the door,

width to the right of the door, and length. First, (door x position, door y position) was set. The

rest of the room was constructed about this point. The corners are assigned by iteratively adding

90 degrees to the angle created from the two preceding corners, calculating the line equation at

that angle and previous corner location, and then selecting a point along the line provided length,

right width, or left width seeds to assign the corner location, respectively. This representation

was chosen to represent the rooms within this project.

3.3. Scoring Functions

 In determining the scores for the particles, there are two parts to this problem. Primarily,

we must determine the various contributions to our score. In this case, the contributions could be

comparing the lengths of the measurements vs the corner locations, global angles, etc. of the

particles. We must determine which of these room attributes could be related to a closer match

room. After these have been isolated, we must determine the best way to take these values and

combine them into a final score. This will be the final scoring function.

3.3.1. Determining Attributes

Aloise 47

 To determine the contributions to a score, we must consider what we are trying to

optimize. We are trying to optimize the attributes of whichever room representation technique

we use. We must then determine some method to isolate the success of each of these attributed

based off readings received. In this collection of results, the door-centric method of room

representation was used. The methods used for scoring will reflect this from now on.

 Since the first reading received is the door feature reading. We have noisy values of door

x location, door y location, and global angle. The door-centric room representation represents a

room by using door x location, door y location, global angle, left width, right width, and length.

This means that just from the first reading, we have information about three of our six room

representing attributes. We can now score particles based off these three attributes. To create

some value that where a higher value is associated with a better fit room, we can take the

difference between the reading value and the particle value and invert it. This way, the closer the

particle value is to the true value, the higher score we receive for that attribute. These would then

somehow be combined to create an overall score for that particle.

 An additional assessment can be made with one door reading that can score particles.

Since we know a point location along the wall of entry and the angle that wall makes, we can

calculate the line equation for the wall of entry. This helps deduce potential locations for the hard

corners of the room, which we can score based on distance from this line. We will further refer to

this as the corner distance scoring method. A corner distance function was implemented. This

function calculated the line equation of the wall of entry using the door location and global

angle. It then found the orthogonal line equations to this line for each particle corner location. It

calculated the intersection between each orthogonal line and the line of the wall of entry. It then

determined the distance between each particle corner location and the wall of entry by

Aloise 48

calculating the distance between the particle corner and the point of intersection. The closest two

particle corners to the wall of entry were isolated. These two particle corners were used to drive

additional scoring by inverting the distance from the wall of entry. This is intended to further

optimize the global angle and improve accuracy of particle hard corner locations.

 When two readings have been received, we will have a door reading and a corner

reading. Depending on the location of the corner about the room, it can give us a variety of

information. If it is the leftmost hard corner, we can now calculate the estimated left width. If it

is the leftmost easy corner, we can now calculate both the estimated left width and estimated

height. If it is the rightmost hard corner, we can now calculate the estimated right width. And if it

is the rightmost easy corner, we can now calculate both the estimated right width and estimated

height.

 To apply this scoring correctly, we will have to determine if the reading is to the left or

right of the door. To do this, a right or left function was written. This function took the

orthogonal line to the wall of entry using the door location and used that as the cutoff of left or

right of door. It then takes the orthogonal line angle. If the angle is between (270, 0] or [0, 90),

then if the point is above that line, it is to the right of the door. If it is below that line, it is to the

left of the door. If the angle is between (90, 270), then if the point is above that line, it is to the

left of the door. If it is below that line, it is to the right of the door. If the angle is 90 degrees,

then if the x value of the point is greater than that line, it is to the right. If it is smaller, then it is

to the left. If the angle is 270 degrees, then if the x value of the point is greater than that line, it is

to the left. If it is smaller, then it is to the right.

 Using the information from the right or left function, we determine which side of the door

the corner reading is located. If it is to right, it will affect the right width. If it is to the left, it will

Aloise 49

affect the left width. We ignore length for now, as we do not yet have comparative information

to distinguish a hard corner from an easy corner. To find the estimated value for either right

width or left width, we take the wall of entry line equation again and find the orthogonal line

from the corner reading location. We then calculate the intersection between the orthogonal line

and the wall of entry line. We then take the distance between the point of intersection and the

door location. If this corner reading was to the left of the door, this distance is our estimated left

width. If this corner reading was to the right of the door, this distance is our estimated right

width. We can then take the inverse of the absolute value of the difference between the estimated

value and the particle value to drive scoring that attribute.

 When three readings have been received, we will now have some scoring for the door x

position, door y position, global angle, and either left width or right width. If the second corner

reading was on the opposite side of the door as the previous corner, we applied the same

implementation again but contributing to the opposing width score. If the second corner reading

is located on the same side of the door as the previous reading, we can compare these two to

distinguish hard corners from easy corners and, from that, determine an estimate for the length of

the room. Unfortunately, the length approximation was not completed due to time constraints.

But if it were to have been implemented, it would likely have been as detailed here.

 If the corner location is on the same side of the door as the prior, we can check how far

from the wall of entry each of the corner positions are. Whichever corner is the farthest from the

wall of entry is the hard corner. The distance between this corner and the wall of entry is the

estimated length. We would then take the inverse of absolute value of the difference between the

estimated length and the particle length attribute and use that to drive scoring that attribute.

Aloise 50

 Each of these would account for each of the attributes used to represent a room within

this system.

3.3.2. Combining Attributes

 Once ways to score each of these attributes have been isolated, we must combine them in

some useful way to benefit the simultaneous optimization of each of these attributes using a

singular score value. Unfortunately, due to time constraints, various methods of combining these

values were not fully implemented or evaluated. This will be left for future work.

3.4. Elimination of Particles

 Once a scoring function has been applied to each particle in the generated set, there must

exist some method of eliminating particles based on their scores. Three different approaches

implemented and evaluated in this project are described below.

3.4.1. Deterministic Approach

 The deterministic approach for particle elimination eliminates particles based on the

percentile their score aligns with among the distribution of particle scores. This approach assures

the survival of the best-scoring particles of that iteration. This was done by taking in some value

representative of the cutoff percentile. This percentile was mapped to the distribution of scores.

All particles with a score underneath this percentile were then eliminated from the set. The mean

and standard deviation of the surviving particles’ attributes were used to drive the backfilling for

the next set of particles. These seed parameters were imputed into the particle generator for

resampling.

3.4.2. Probabilistic Draw Approach

 The probabilistic draw approach for particle resampling drew some determined number

of particles with replacement with a probability relative to their score across the distribution of

Aloise 51

scores. To do this, it was programmed to iterate through the distribution of scored particles for

some determined number of times. Each iteration, it would calculate the sum of all scores, and

uniformly randomly select some number within the range of 0 and that sum of scores. It would

then iterate through summing the scores, once that sum exceeded the selected number, that

particle was decided to survive the process. These surviving particles would then drive the

resampling of an entirely new distribution based on the mean and standard deviation of the

surviving attributes.

3.4.3. Probabilistic Individual Assessment Approach

 The probabilistic individual assessment approach assessed each particle separately and

determined whether to accept or reject each particle based on their respective scores. This was

accomplished by iterating through the particles. Each individual particle was determined to be

accepted or rejected based on the cumulative distribution function of its score across the

distribution of scores. The surviving particles then drove the backfilling of particles by using

their mean and standard deviation as a seed for generating new particles for the next set.

3.5. Test Cases

Test cases were generated manually with the following edge-case features in mind: room

scale, global angle, room proportions, and door location. Twelve test cases were developed

across these properties. These test cases are represented using the door-centric method of room

representation.

Representation door x door y global angle left width right width length

1 Square 0 1 270 4 1 5

2 l < w 0 1 270 9 1 4

Commented [HG2]: Define this term

Aloise 52

3 l > w 0 1 270 1 3 6

4 l << w 0 1 270 1 9 0.2

5 l >> w 0 0.1 270 0.1 0.1 10

6 Small 0 0.05 270 0.195 0.005 10

7 Large 0 50 270 1450 50 650

8 Corner 5 0 0 0 5 15

9 Ang = 90 5 4 90 4 11 5

10 Ang = 180 3 15 180 12 3 5

11 Ang = 0 3 0 0 3 2 15

12 Ang ≠ 0, 90,

180, 270

1 7.5 262 7.566 7.566 5.3852

Table 7: Test Cases Represented

Table 7 displays each test case used to collect results during the project. Scale options included: small,

medium, and large. Small contained positional locations on the order of magnitude 10^-2. Medium contained

positional locations on the order of 10^1, and large contained positional locations on the order of 10^3. Global

angle options included: 0 degrees, 90 degrees, 180 degrees, 270 degrees, and ≠ 0, 90, 180, 270 degrees. Room

dimension options were categorized as the ratio between length and width. This included length to width ratios of

1:1 (square room), 5:2 (length > width), 50:1 (length >> width), 2:5 (length < width), 1:50 (length << width).

Door location options included on a corner or on a wall.

3.6. Measures for Success

Aloise 53

 To measure the accuracy of the room state estimate, we needed to find some way to

compare the estimated rooms to the true state of the room. We wish to do this in some

normalized way so that the room accuracy is measured representatively across various scoring

methods used and test case rooms.

 To represent accuracy, we decided to use the absolute difference between the values of

each attribute of the estimated room vs the true state of the room. This included the absolute

differences between the door x values, door y values, global angles, left widths, right widths, and

lengths. This would represent the accuracy of the rooms over a number of measurements

received, where a smaller value indicates better accuracy.

Aloise 54

4. Results

 The following results were obtained by running the particle filter through each of the test

cases. For each test case, the particle filter was run for multiple phases of receiving information.

First, it was run on the first reading received. The output set of particles from that run was used

to run the particle filter on the first and second reading. The output set of particles from that run

would then be used to run the particle filter on the first, second, and third reading. Finally, that

output set of particles was used to run the particle filter on the first, second, third, and fourth

reading. This may be implemented differently in future work to better represent reality, though

this simplified method was used to test these scoring functions.

 These results were obtained by applying a noise standard deviation of 0.3 units. If units

are interpreted as meters, then this noise would be equivalent to an average of 30cm inaccuracy

for all readings. Noise is reapplied to reading values for each run of the particle filter.

 These results were obtained running the deterministic elimination of particles approach

due to time-limitation related technical issues with the probabilistic independent assessment

approach and concerns with the probabilistic draw approach. The top 20% of scores were kept

using this approach for each iteration.

 These results were obtained using the door-centric representation of rooms. Reasons for

this are detailed in Section 7.1.

 In all cases below, returned values represent the absolute value of the difference between

the average of the returned set from the particle filter and the anticipated return values for the

true state of the test case room. These differences are represented independently for each room

attribute.

Aloise 55

 To assess whether attributes were being isolated correctly, the particle filter was run on

all the test cases for each attribute only using the portion of the score meant to drive that

attribute. For example, the particle filter was run using only the portion of the score meant to

optimize the door x location, then run again only using the portion of the score meant to optimize

door y location, etc. for each attribute of the door-centric room representation. This was done to

ensure each attribute was being correctly isolated. Once each of these attributes are correctly

isolated, the remaining scoring tasks will be to map these values to a score that represents each

attribute effectively, driving the estimated state of the world to success.

 For all figures and tables below: At 1, the first reading is available, a random particle

generation occurs, and the particle filter runs. At 2, the particle filter is running its second

iteration on two readings received. At 3, the particle filter is running its third iteration on three

readings received. At 4, the particle filter is running its fourth iteration on four readings received.

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12

1 2.015

996

0.915

861

0.473

144

2.203

446

1.303

911

3.340

67

2.150

52

2.864

146

0.137

627

0.146

768

3.843

306

0.839

612

2 0.355

92

0.452

078

0.215

984

0.196

601

0.090

854

0.210

256

1.581

78

0.059

641

0.142

111

0.395

66

1.455

644

0.168

679

3 0.149

028

0.273

529

0.229

07

0.225

364

0.065

869

0.509

488

1.012

489

0.227

918

0.182

838

0.019

298

0.021

988

0.053

737

4 0.099

311

0.260

984

0.170

523

0.189

574

0.140

909

1.004

583

0.218

164

0.076

664

0.086

788

0.221

342

0.036

912

0.047

535

Aloise 56

Table 8: Door X Difference Measurement for Each Test Case Over Readings Received

Table 8 displays the difference between the expected true value of door x position and the average door x position

value received from the set of particles returned from the particle filter for each successive run on the particle filter.

This run was scored on solely optimization of door x location and door y location. Each test case is represented by

TC1 for the first test case, TC2 for the second test case, etc. The lower the value in the table, the closer the returned

set attribute average is to the expected return value of that attribute.

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12

1 2.083

701

2.550

944

1.502

129

1.669

182

2.952

002

1.765

715

30.44

636

1.806

36

1.903

219

0.148

828

0.423

62

0.894

927

2 0.051

146

0.535

46

0.576

092

0.809

995

0.280

593

1.073

744

27.02

711

0.587

505

0.043

092

0.231

845

0.043

882

0.522

697

3 0.427

289

0.078

201

0.221

682

0.028

109

0.063

788

0.151

479

24.05

212

0.282

209

0.279

999

0.000

918

0.050

868

0.154

835

4 0.729

258

0.142

355

0.046

723

0.259

012

0.234

76

0.008

404

22.55

341

0.008

713

0.017

614

0.169

307

0.090

349

0.053

988

Table 9: Door Y Difference Measurement for Each Test Case Over Readings Received

Table 9 displays the difference between the expected true value of door y position and the average door y position

value received from the set of particles returned from the particle filter for each successive run on the particle filter.

This run was scored on solely optimization of door x location and door y location. Each test case is represented by

TC1 for the first test case, TC2 for the second test case, etc. The lower the value in the table, the closer the returned

set attribute average is to the expected return value of that attribute.

Aloise 57

Figure 15: Test Case 1 Example of Attributes Over Readings Received Optimizing (Door X,

Door Y)

Figure 15 displays the difference between the expected true value of each attribute and the average attribute value

received from the set of particles returned from the particle filter for each successive run on the particle filter for

Test Case 1. This run was scored on solely optimization of door x location and door y location. The lower the value

in the plot, the closer the returned set attribute average is to the expected return value of that attribute.

Figure 16: Test Case 2 Example of Attributes Over Readings Received Optimizing (Door X,

Door Y)

Figure 16 displays the difference between the expected true value of each attribute and the average attribute value

received from the set of particles returned from the particle filter for each successive run on the particle filter for

Aloise 58

Test Case 2. This run was scored on solely optimization of door x location and door y location. The lower the value

in the plot, the closer the returned set attribute average is to the expected return value of that attribute.

Figure 17: All Test Cases Door X Difference Over Readings Received

Figure 17 is a plotted representation of the data in Table 8. It displays the difference between the expected true

value of door x position and the average door x position value received from the set of particles returned from the

particle filter for each successive run on the particle filter. This run was scored on solely optimization of door x

location and door y location. Each test case is represented by TC1 for the first test case, TC2 for the second test

case, etc. The lower the value in the table, the closer the returned set attribute average is to the expected return

value of that attribute.

Figure 18: All Test Cases Door Y Difference Over Readings Received

Aloise 59

Figure 18 is a plotted representation of the data in Table 9. It displays the difference between the expected true

value of door y position and the average door y position value received from the set of particles returned from the

particle filter for each successive run on the particle filter. This run was scored on solely optimization of door x

location and door y location. Each test case is represented by TC1 for the first test case, TC2 for the second test

case, etc. The lower the value in the table, the closer the returned set attribute average is to the expected return

value of that attribute.

Figure 19: All Test Cases Except TC7 Door Y Difference Over Readings Received

Figure 19 displays the same data as described in Figure 18 without plotting TC7. This is displayed for readability’s

sake.

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12

1 4.630

983

3.432

666

6.641

48

5.526

137

1.885

769

4.496

863

2.591

595

36.33

748

0.567

727

4.642

722

41.54

407

2.792

172

2 0.589

635

1.460

194

0.353

99

0.056

07

0.997

649

0.259

954

0.952

559

12.37

286

0.870

232

0.537

699

7.567

705

0.634

21

3 0.441 0.256 0.335 0.221 0.222 0.188 0.167 3.625 0.016 0.277 0.650 0.524

Aloise 60

739 339 224 49 676 644 424 74 203 542 131 086

4 0.334

827

0.142

357

0.073

837

0.099

319

0.082

741

0.104

155

0.271

118

0.171

858

0.026

998

0.343

683

287.9

052

0.016

161

Table 10: Global Angle Differences for Each Test Case Over Readings Received

Table 10 displays the difference between the expected true value of global angle and the average global angle value

received from the set of particles returned from the particle filter for each successive run on the particle filter. This

run was scored on solely optimization of the global angle. Each test case is represented by TC1 for the first test

case, TC2 for the second test case, etc. The lower the value in the table, the closer the returned set attribute average

is to the expected return value of that attribute.

Figure 20: Test Case 1 Example of Attributes Over Readings Received Optimizing Global Angle

Figure 20 displays the difference between the expected true value of each attribute and the average attribute value

received from the set of particles returned from the particle filter for each successive run on the particle filter for

Test Case 1. This run was scored on solely optimization of the global angle. The lower the value in the plot, the

closer the returned set attribute average is to the expected return value of that attribute.

Aloise 61

Figure 21: Test Case 2 Example of Attributes Over Readings Received Optimizing Global Angle

Figure 21 displays the difference between the expected true value of each attribute and the average attribute value

received from the set of particles returned from the particle filter for each successive run on the particle filter for

Test Case 2. This run was scored on solely optimization of the global angle. The lower the value in the plot, the

closer the returned set attribute average is to the expected return value of that attribute.

Figure 22: All Test Cases Global Angle Difference Over Readings Received

Figure 22 is a plotted representation of the data in Table 10. It displays the difference between the expected true

value of the global angle and the average global angle received from the set of particles returned from the particle

filter for each successive run on the particle filter. This run was scored on solely optimization of the global angle.

Each test case is represented by TC1 for the first test case, TC2 for the second test case, etc. The lower the value in

the table, the closer the returned set attribute average is to the expected return value of that attribute.

Aloise 62

Figure 23: All Test Cases Except TC11 Global Angle Difference Over Readings Received

Figure 23 displays the same data as described in Figure 22 without plotting TC7. This is displayed for readability’s

sake.

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12

1 111.7

508

134.0

195

132.8

671

121.0

911

107.8

37

72.99

263

101.6

572

183.3

256

77.49

792

11.58

641

188.4

441

72.49

167

2 59.86

491

126.1

881

126.6

359

138.3

06

95.67

358

69.57

913

83.50

013

176.6

059

71.96

895

7.774

883

191.6

793

63.04

51

3 64.72

486

121.6

668

110.9

554

156.5

255

111.1

369

61.05

881

63.20

962

200.7

385

65.63

679

13.79

889

200.1

803

51.98

099

4 66.35

401

91.05

703

78.68

125

169.2

598

105.7

996

66.06

629

59.31

763

213.0

205

77.84

613

12.79

87

231.4

782

75.17

156

Table 11: Global Angle Differences for Corner Distances Approach for Each Test Case Over

Readings Received

Aloise 63

Table 11 displays the difference between the expected true value of the global angle and the average global angle

value received from the set of particles returned from the particle filter for each successive run on the particle filter.

This was run focused on optimizing the global angle via the corner distances approach. Each test case is

represented by TC1 for the first test case, TC2 for the second test case, etc. The lower the value in the table, the

closer the returned set attribute average is to the expected return value of that attribute.

Figure 24: Test Case 1 Example of Attributes Over Readings Received Optimizing Global Angle

Through Corner Distances Approach

Figure 24 displays the difference between the expected true value of each attribute and the average attribute value

received from the set of particles returned from the particle filter for each successive run on the particle filter for

Test Case 1. This run was scored on solely optimization of the global angle via the corner distances approach. The

lower the value in the plot, the closer the returned set attribute average is to the expected return value of that

attribute.

Aloise 64

Figure 25: Test Case 1 Example of Attributes Except Global Angle Over Readings Received

Optimizing Global Angle Through Corner Distances Approach

Figure 25 displays the same data as described in Figure 24 without plotting the global angle. This is displayed for

readability’s sake.

Figure 26: All Test Cases Global Angle Difference Over Readings Received Via Corner

Distance Approach

Figure 26 is a plotted representation of the data in Table 11. It displays the difference between the expected true

value of the global angle and the average global angle received from the set of particles returned from the particle

filter for each successive run on the particle filter. This run was scored on solely optimization of the global angle via

the corner distances approach. Each test case is represented by TC1 for the first test case, TC2 for the second test

Aloise 65

case, etc. The lower the value in the table, the closer the returned set attribute average is to the expected return

value of that attribute.

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12

1 6.890

353

5.851

874

1.649

742

1.852

036

5.563

687

4.473

679

43.71

646

1.969

719

3.862

531

2.657

74

4.887

342

0.910

059

2 1.062

284

6.440

68

1.486

313

7.730

59

0.612

503

3.958

859

43.86

336

2.633

875

6.842

879

1.218

674

2.303

175

0.507

485

3 0.125

392

8.183

036

1.721

222

7.854

504

0.347

145

0.495

719

40.94

059

0.177

934

7.779

531

0.707

496

1.869

274

0.070

283

4 0.380

685

8.454

564

1.846

151

8.121

74

0.239

911

0.230

537

40.99

535

0.046

687

7.462

921

1.914

026

1.713

987

0.361

717

Table 12: Right Width Differences for Each Test Case Over Readings Received

Table 12 displays the difference between the expected true value of the right width and the average right width value

received from the set of particles returned from the particle filter for each successive run on the particle filter. This

run was scored on solely optimization of the right width. Each test case is represented by TC1 for the first test case,

TC2 for the second test case, etc. The lower the value in the table, the closer the returned set attribute average is to

the expected return value of that attribute.

Aloise 66

Figure 27: Test Case 1 Example of Attributes Over Readings Received Optimizing Right Width

Figure 27 displays the difference between the expected true value of each attribute and the average attribute value

received from the set of particles returned from the particle filter for each successive run on the particle filter for

Test Case 1. This run was scored on solely optimization of the right width. The lower the value in the plot, the closer

the returned set attribute average is to the expected return value of that attribute.

Figure 28: Test Case 2 Example of Attributes Over Readings Received Optimizing Right Width

Figure 27 displays the difference between the expected true value of each attribute and the average attribute value

received from the set of particles returned from the particle filter for each successive run on the particle filter for

Aloise 67

Test Case 2. This run was scored on solely optimization of the right width. The lower the value in the plot, the closer

the returned set attribute average is to the expected return value of that attribute.

Figure 29: All Test Cases Right Width Difference Over Readings Received without TC7

Figure 29 is a plotted representation of the data in Table 12. It displays the difference between the expected true

value of the right width and the average right width received from the set of particles returned from the particle

filter for each successive run on the particle filter. This run was scored on solely optimization of the right width.

Each test case is represented by TC1 for the first test case, TC2 for the second test case, etc. The lower the value in

the table, the closer the returned set attribute average is to the expected return value of that attribute.

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12

1 4.084

582

2.339

732

7.429

135

4.243

045

5.912

401

6.797

942

1443.

638

6.176

986

1.956

11

6.817

146

2.455

656

1.636

053

2 2.121

942

0.936

957

7.546

445

3.569

828

5.256

354

7.162

841

1445.

09

4.970

234

2.126

044

8.671

791

2.942

452

0.339

338

3 2.677

744

0.454

717

2.097

449

4.929

63

0.531

577

0.986

213

1445.

109

4.961

304

6.671

631

8.741

652

2.068

103

0.245

666

Aloise 68

4 2.607

217

0.523

057

1.430

823

4.162

245

0.538

077

0.650

592

1444.

917

4.163

706

6.931

738

8.824

859

0.244

162

0.155

648

Table 13: Left Width Differences for Each Test Cases Over Readings Received

Table 13 displays the difference between the expected true value of the left width and the average left width value

received from the set of particles returned from the particle filter for each successive run on the particle filter. This

run was scored on solely optimization of the left width. Each test case is represented by TC1 for the first test case,

TC2 for the second test case, etc. The lower the value in the table, the closer the returned set attribute average is to

the expected return value of that attribute.

Figure 30: Test Case 3 Example of Attributes Over Readings Received Optimizing Left Width

Figure 30 displays the difference between the expected true value of each attribute and the average attribute value

received from the set of particles returned from the particle filter for each successive run on the particle filter for

Test Case 3. This run was scored on solely optimization of the left width. The lower the value in the plot, the closer

the returned set attribute average is to the expected return value of that attribute.

Aloise 69

Figure 31: Test Case 3 Example of Attributes Excluding Global Angle Over Readings Received

Optimizing Left Width

Figure 31 displays the same data as described in Figure 30 without plotting the global angle. This is displayed for

readability’s sake.

Figure 32: All Test Cases Left Width Difference Over Readings Received

Figure 32 is a plotted representation of the data in Table 13. It displays the difference between the expected true

value of the left width and the average left width received from the set of particles returned from the particle filter

for each successive run on the particle filter. This run was scored on solely optimization of the left width. Each test

case is represented by TC1 for the first test case, TC2 for the second test case, etc. The lower the value in the table,

the closer the returned set attribute average is to the expected return value of that attribute.

Aloise 70

Figure 33: All Test Cases Except TC7 Left Width Difference Over Readings Received

Figure 33 displays the same data as described in Figure 32 without plotting TC7. This is displayed for readability’s

sake.

Aloise 71

5. Discussion

5.1. Room Representation & Generation

 Across the three primary methods for room representation and generation, each had their

own advantages and disadvantages. The global coordinate system representation required no

conversion from sensor readings, allowing these attributes to be compared directly to the sensor

readings. However, geometric room properties required additional derivation to derive to apply

various geometric scoring methods. Additionally, this representation makes a concerning seed

for particle generation. If resampling these attributes with some mean and standard deviation of

global coordinate values, it does not actively enforce traditional geometric properties of the

room. This is concerning that the values produced over time could converge to a non-physically

possible or non-box-shaped room. Additionally, this method of room representation requires 10

parameters to represent all the room data, whereas the other methods of room representation only

require 6 or 7 parameters.

 The geometric method utilizes traditional methods of geometrically describing rectangles.

Due to this, there are limited concerns in representing attributes within the resampling step.

Unfortunately, this method has one major downfall - its non-intuitive representations of the door

parameter. Expressing the door in forms of door x location and door y location coordinates

disassociates the door parameter from the geometric properties of the room, not actively

describing the door relative to the room geometry. The angle-based door representation does

represent the door relative to the room geometry, though it involves a complicated

implementation and a non-intuitive representation of the door. This made testing for room

convergence very inconvenient, as it was difficult to reasonably tell when the door was being

estimated in its intended location. Additionally, there were concerns of decreasing accuracy for

Aloise 72

larger sizes of rooms when representing via angle. Though the distance door representation was

not ever implemented, it was predicted to solve the issue of loss of accuracy over time. Besides

that, it was still predicted to have every other complication as the angle method. These concerns

spawned the idea for the door-centric room representation method.

 Since the door is the location our robot enters through, not only are we consistently

receiving that reading first and most confidently, but the robot also constructs its understanding

of the room relative to the door. Using the door as our anchoring point in space allows us to have

more confidence in our anchor point as well as constructing the room in a method relevant to

tactical room entry. By designating the width to the right of the door and the width to the right of

the door, it creates a convenient implementation of geometric properties relevant to tactical

language, particularly in describing both the feed and weight of the room.

5.2. Elimination of Particles

 The three approaches considered for the elimination of particles were the deterministic

approach, the probabilistic draw approach, and the probabilistic individual assessment approach.

Though the deterministic approach was selected to collect results on the test cases, we

had concerns with this implementation. By eliminating scores based on percentile, we are

guaranteeing the elimination of the lowest scoring particles. When primarily determining scores

based on only half of the total attributes of the room when using the first reading, we had

concerns that guaranteeing the elimination of all lowest scoring particles could cause improper

convergence while potentially eliminating solutions accurate to the unobservable attributes from

the set of potential states.

The probabilistic draw approach is the only approach that does not do traditional

elimination and backfilling of particles. Instead, it draws some number of particles with

Aloise 73

replacement from the distribution according to score and creates an entirely new distribution

based on the attributes of the selected particles. In this sense, there are no particles that we keep

from the previous iteration. This is a concern if there happens to be more than one promising

representation of a room, a multi-modal distribution of particles drawn. Creating an entirely new

set of particles based on the mean of the attribute values could remove the variability in the set

completely. This was the primary concern with the probabilistic draw approach and why it was

not chosen to be pursued.

 The probabilistic assessment approach was the approach remaining with no immediate

concerns. Unfortunately, due to time-constraints and technical complications, this approach was

unable to be implemented in gathering results.

5.3. Scoring

In Section 6, the displayed results were collected with the intention of verifying the ability to

converge each attribute to the intended true room value across various test cases. We can assess

the success of the scoring of each attribute from this returned data.

5.3.1. Door X Position and Door Y Position

The score value for the door x position and the door y position were calculated together. As

shown in Table 8, which displays door x optimization across test cases, eleven of the twelve test

cases returned a value for the fourth reading that was lower than the first reading. In Table 9,

which displays door y optimization across test cases, eleven of the twelve test cases returned a

value for the fourth reading that was lower than the first reading. These results are visualized in

Figures 17, 18, and 19. Overall, eleven of the twelve test cases returning a lower value is a

positive result. This indicates that door x position and door y position are being accessed

Aloise 74

effectively. Where twenty-one of the twenty-four results across door x position and door y

position returned a difference value of <0.27 by the fourth reading received.

To shed light on potential issues, in both cases, it was Test Case 10 which returned fourth

reading results higher than the first reading results. However, it is important to note that the first

reading results for Test Case 10 were also the most accurate first reading results across all test

cases. Knowing this information, it may be of interest to continue investigating this test case to

see if this is a trend across many runs. If we were to acknowledge differences in this test case

compared to the others, Test Case 10 is the global angle is 180 degrees edge-case test case. The

true values for (door x position, door y position) were (3, 15). These coordinate values are not

unusual values across successful test cases.

In the door y position results, though Test Case 7 door y values decreased over readings

received, it remained an outlier compared to the other test cases. The Test Case 7 edge case is the

large-scale room. The true values for the (door x position, door y position) were (0, 50). After

viewing these results of decreasing difference across measurements received while maintaining

large inaccuracy to the true value for door position y, it was discovered that the particle

generation method does not generate particles with door y position values greater than 25 in the

initial set of particles. This ensures that there will be no particles representative of this door y

position in the initial set. The particle generation function needs to be kept under surveillance to

ensure all potentially needed particles are accounted for.

5.3.2. Global Angle

Table 10 displays the global angle optimization across test cases. In eleven of the twelve test

cases, the value returned from the fourth readings was lower than the first reading. These results

are visualized in Figure 22 and Figure 23. Overall, eleven of the twelve test cases returning a

Aloise 75

lower value is a positive result. This indicates that the global angle is being accessed effectively.

Where eleven of the twelve test cases returned a difference value of <0.35 by the fourth reading

received.

To shed light on potential issues, it was Test Case 11 which returned fourth reading results

higher than the first reading results. It may be of interest to continue investigating this test case to

see if this is a trend across many runs. If we were to acknowledge differences in this test case

compared to the others, Test Case 11 is the global angle is 0 degrees test case. Test Case 8 is the

only other test case at global angle 0 degrees. When viewing the successful Test Case 8 in Figure

23, there is a large amount of inaccuracy in the global angle at the first three readings compared

to the other test cases. These results indicate that test cases where the true global angle value is

close to zero are worthy of further evaluation.

5.3.3. Global Angle Corner Distances Approach

Table 11 displays the global angle optimization using the corner distances approach. In six of

the twelve test cases, the value returned from the fourth readings was lower than the first reading.

These results are visualized in Figure 26. Overall, six of the twelve test cases returning a lower

value is a negative result. All but one test case return difference values of >59 after the fourth

reading. This indicates that the implementation of this method of scoring was done incorrectly

and is ineffective toward optimizing the global angle.

5.3.4. Right Width

Table 12 displays the right width optimization. In seven of the twelve test cases, the value

returned from the fourth readings was lower than the first reading. These results are visualized in

Figure 29. Overall, seven of the twelve test cases returning a lower value is a negative result.

This indicates that the implementation of this method of scoring was done incorrectly and is

Aloise 76

ineffective toward optimizing the right width. However, the test cases that did converge,

converged very accurately with a difference value of <0.4.

To shed light on potential issues, observe that Test Cases 2, 4, and 9 returned unusually high

fourth reading results. These test case edge cases were l<w, l<<w, and angle = 90. The ideal right

width values were 1, 9, and 11. These were not unusual values across all the test cases. It may be

of interest to continue investigating this test case to see if this is a trend across many runs.

Additionally, Test Case 7 was highly inaccurate throughout its full run. This can be attributed

to similar reasons as noted in Section 7.3.1, as the initial particle generation did not allow for the

generation of particles with a right width of 50.

5.3.5. Left Width

Table 13 displays the left width optimization. In nine of the twelve test cases, the value

returned from the fourth readings was lower than the first reading. These results are visualized in

Figure 32 and Figure 33.

To shed light on potential issues, observe that Test Cases 9 and 10 returned unusually high

fourth reading results. These test case edge cases were angle = 90 and angle = 180. The ideal left

width values were 4 and 12. These were not unusual values across all the test cases. It may be of

interest to continue investigating this test case to see if this is a trend across many runs.

Additionally, Test Case 7 was highly inaccurate throughout its full run. This can be attributed

to similar reasons as noted in Section 7.3.1, as the initial particle generation did not allow for the

generation of particles with a right width of 1450.

Aloise 77

6. Conclusion

For each point of discussion – room representation and generation, elimination of particles,

and scoring methods - various conclusions can be made.

The room representation and generation approach showing the most promise is the door-

centric room representation. This is most relevant to tactical language descriptions and

representative of room entry perspective. Additionally, it represents a room using the lowest

number of parameters across all representation methods explored and has an intuitive generation

process. This is compared to other methods like the geometric approach, which has non-intuitive

door representation, and the coordinate approach, which has an inconvenient seed for room

generation and needs a larger number of parameters to represent a room.

The particle elimination approach showing the most promise is the probabilistic individual

assessment approach. However, the deterministic approach shows promise as well. The

probabilistic individual assessment approach is selected to pursue further due to concerns with

the alternate approaches. For the probabilistic draw approach, we fear complications with

multimodal distribution of particles. For the deterministic approach, we fear ensuring the

elimination of lowest scoring particles could lead to converging to local score maxima. A local

score maximum would be a particle (or set of particles) that score high relative to particles with

similar attributes, without being the highest scoring particle across the full set of potential states

(i.e., this is not the correct solution).

Across methods of scoring for (door x location, door y location), global angle, left width, and

right width, we can draw the following conclusions. The (door x location, door y location) and

global angle parameters are being isolated correctly. However, the global angle optimization via

alternative corner distances approach is ineffective. Since there is already an effective way of

Aloise 78

optimizing the global angle, this method is not necessary. The left width and right width

parameters are being isolated incorrectly. This requires additional investigation to determine and

rectify the source of the problem, as failing test cases do not have any immediately observable

similarities.

Though some scoring methods for attributes were effective, there were specific test cases that

require additional observance. Test Case 7 was the test case assessing a large-scale room.

Unfortunately, our current method of generating an initial set of particles does not accommodate

for this. This should be addressed in future work. For optimizing global angle, the current

method shows outliers at global angle = 0 test cases differently than other true global angle value

test cases. This needs to be investigated further to determine the cause of the outliers.

By the end of the project period, there exists a determined room representation technique, a

room generation function for both initialization and resampling functionalities, some particle

elimination implementations, isolated scoring functions for individual attributes, as well as a

function to export run data to a csv file.

There were many improvements that could have been made to the execution of work within

the project period. Primarily, it would have been beneficial to approach the representation of

rooms from the relevant tactical language descriptors from the beginning of the project. This

would have saved a lot of time dedicated to less-relevant traditional room representation

approaches. Overall, however, the project would have greatly benefitted from introducing myself

to the existing project code earlier on. In this project, there was a lot of research conducted in the

first three to four weeks. Since many aspects of the project are relatively novel, a lot of this

research ended up unnecessary in final implementations. Though collecting redundant

information frequently becomes unavoidable in the research project process, as we do not always

Aloise 79

know what to avoid from the start, the time spent on researching redundant information could

have been greatly decreased by earlier introduction to the existing codebase. This would have

given a more solid understanding of the state of the project earlier and avoided a lot of fruitless

efforts.

In this project, we were able to make substantial functioning additions to the codebase for

feature prediction via particle filtering as well as make observations that will drive future work

of the project.

Aloise 80

7. Future Work

7.1. Likelihood of Hostile Agents or Civilians

 As any agent, robotic or human, executes a tactical room search, there are many

considerations that could be relevant to the search. Particularly, we may have interest in who

may be located within the space and where. Depending on the context of the room search, there

could be hostile agents or civilians within the space. It may be of further interest to the project to

include some probability of hostile agents or civilians in specified rooms or areas. This could add

a layer of usefulness to the robot as a member of a human team. This prediction could be made

based off some provided context of the search. Or we could include additional understanding of

room features and of geometric blind spots from the primary line of vision. These areas could

have higher potential for hidden threats and can be noted as such from the system.

7.2. Recognition of Additional Relevant Features

 Currently, the only features the system assumes to identify are corners and doors. The

observations of these features are purely positional. If additional features could be recognized

and additional observations of features could be made, there would be added usefulness to the

system. Some potential additions are listed below.

7.2.1. Materials

 Materials of doors or additional features of the room could be of large importance to a

room entry team. Particularly, some materials can be penetrated while others are not. In a tactical

room search situation, there will be potential for gunfire. If our robot could identify a likelihood

of a material being bulletproof or flammable, this could impact how the team executes the

search. This is something that could be considered in further developments of the project.

7.2.2. Other Room Obstacles

Aloise 81

 When entering a typical room, it is uncommon that the room is completely empty. It is

possible that there may be obstacles in that room. This could impact the team’s method of entry.

If an obstacle is blocking their intended path, that search path must be adjusted. If the robot

could observe and identify these obstacles within a room, it could be a more valuable member to

human teams.

 In addition to identifying these objects and their location within space, if bulletproof

materials could also be identified, the robot could further assess areas of cover for its team.

Incorporating identification of other room obstacles and materials can make the robot more

useful for its team and can be considered as an addition to the project in future work.

7.2.3. Windows or Non-Door Methods of Exit/Entry

 Currently, the only feature of the room that the robot identifies as a method of exit or

entry is a door. There may be other methods of entering or exiting a space. These could be

windows or small entryways. When in a tactical room search setting, it would be useful for the

robot to identify such points of entry and their size.

7.3. Generation of Additional Room Types

 In the current state of the project, we assume that the room is a box-shaped room. Though

this is a common shape of room, there are many other shapes rooms can take. As represented in

tactical language, there are also L-shaped rooms, U-shaped rooms, T-shaped rooms, and more.

Future additions to the project will include room generator functions that can accommodate each

additional room type, including options for irregular rooms as described by tactical language.

7.4. Fusion of Tactical Language Interpreter

Returning to the primary goal of the TFLIP project, the goal was to develop a robotic

agent that can understand structured tactical language and utilize it for a tangible purpose. At the

Aloise 82

current stage of the project, there is no portion that understands structured tactical language.

Instead, we have been assuming tactical language input. Separately, a TERRAA team member

created a language parser. This parser takes in some free-text input and outputs a parsed and

categorized representation of the text as it pertains to tactical language. The fusion of this tactical

language parser with existing code as well as addition of associated room type generation

functions would complete the tactical language interpretation portion of the project. This is

necessary to meet the primary TFLIP objective and therefore an important part of future work.

7.5. Conversion of Room-Representing Data Types

 The code currently utilizes the Network X Python graph package. This is used to

represent a copy of the particles in the particle filter. Primarily, this graph package was used for

its visualization tools. However, we could also represent this data through a dictionary. The

transfer of particle information to dictionary key value pairs is an opportunity for future work.

7.6. Adjacent Room Representation

 In a practical application, it is unlikely that we enter a building that consists solely of one

room with single point entry. For this reason, it is important for us to be able to accommodate for

connecting rooms and multiple doors. This could be using a graph to connect rooms and doors.

The implementation of this will be left to future work.

7.7. Common Lines of Sight Represented in Order of Readings Received

 As described in Section 5.1.2, common lines of sight to impact what readings we are

most likely to see when entering a room. Taking this information into account could improve the

accuracy of scoring by the robot as well as simulate a more accurate environment. A method to

present reading information to the robot in a realistic way is left for future work. In addition,

having this information assist in scoring particles is also left for future work.

Aloise 83

7.8. Combining Scoring Attributes

 As described in Section 5.3.2, The combining of scoring attributes into a single value

representative score was unable to be completed during this project. Since there are various ways

to combine these values, multiple methods must be implemented and evaluated in future work.

This is essential for the particle filter to run successfully and to converge to an accurate estimate

of the room.

Aloise 84

References

1. Blair, J. P., Martaindale, M. H., & Sandel, W. L. (2019). Peek or Push: An Examination

of Two Types of Room Clearing Tactics for Active Shooter Event Response. SAGE

Open, 9(3). https://doi.org/10.1177/2158244019871052

2. Del Moral, P. (1996). “Non Linear Filtering: Interacting Particle Solution” Markov

Processes and Related Fields. 2 (4): 555-580

https://people.bordeaux.inria.fr/pierre.delmoral/delmoral96nonlinear.pdf

3. Dirndorfer, T., Botsch, M., Knoll, A. (2011). Model-based analysis of sensor-noise in

predictive passive safety algorithms. Proceedings of the 22nd International Technical

Conference on the Enhanced Safety of Vehicles (ESV).

https://mediatum.ub.tum.de/doc/1287148/1287148.pdf

4. Xiang, X. and Foo, S. (2021). Recent advances in deep reinforcement learning

applications for solving partially observable markov decision processes (POMDP)

problems: Part 1—Fundamentals and applications in games, robotics and natural

language processing. (2021). Machine Learning and Knowledge Extraction, 3(3), 554.

https://doi.org/10.3390/make3030029

5. Piirainen, Elisabeth, Filatkina, Natalia, Stumpf, Sören and Pfeiffer, Christian. Formulaic

Language and New Data: Theoretical and Methodological Implications, Berlin, Boston:

De Gruyter, 2020. https://doi.org/10.1515/9783110669824

6. McManamon, Paul. (2019). LiDAR Technologies and Systems - 4.1.6.4 Data Processing

and Dissemination. SPIE. Retrieved from

https://app.knovel.com/hotlink/pdf/id:kt012EELE2/lidar-technologies-systems/data-

processing-dissemination

Aloise 85

7. Ready, J. (1997) Laser Applications in Spectroscopy (Ch. 20). Industrial Applications of

Lasers (2ed), Academic Press, 1997. https://doi.org/10.1016/B978-012583961-7/50022-

3.

8. Saeedi, S., Trentini, M., Seto, M., and Li, H. (2015), A hybrid approach for multiple-

robot SLAM with particle filtering, IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp. 3421-3426, doi: 10.1109/IROS.2015.7353854.

https://ieeexplore-ieee-org.ezpv7-web-p-u01.wpi.edu/document/7353854

9. Song, W., Yang, Y., Fu, M., Kornhauser, A., & Wang, M. (2018). Critical rays self-

adaptive particle filtering SLAM. Journal of Intelligent & Robotic Systems, 92(1), 107-

124. https://doi-org.ezpv7-web-p-u01.wpi.edu/10.1007/s10846-017-0742-z

10. Thrub, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics, Intelligent Robotics

and Autonomous Agents series

11. Wang, P., Xu, P., Bonnifait, P., Jiang, J. (2018). Box Particle Filtering for SLAM with

Bounded Errors. 15th International Conference on Control, Automation, Robotics and

Vision (ICARCV 2018), Nov 2018, Singapore, Singapore. pp.1032-1038,

ff10.1109/ICARCV.2018.8581234ff. ffhal-02060133f

https://hal.archives-ouvertes.fr/hal-02060133/document

