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Abstract 

Tactical Edge Reprogramming for Rapid Autonomy Adaptation (TERRAA) focuses on 

developing robotic agents that can work as a member of human teams in tactical settings without 

the involvement of a robotics engineering expert. A subset of the TERRAA project, Tactical 

Formulaic Language Interpretation and Prediction (TFLIP), aims to achieve this by using 

Tactical Language, a formulaic language utilized by many human Special Weapons and Tactics 

(SWAT) and Army Special Reaction teams. This language is particularly relevant to tactical 

room searches, where US Army officers will use this language to describe a room. This language 

emphasizes the geometry and features of the room that are relevant to method of entry. The 

TERRAA TFLIP project aims to take advantage of this tactical formulaic language already 

understood by humans trained in room clearing and introduce that language to a robotic 

operative. The robot’s goal is to utilize the provided verbal description of the room and show an 

understanding of the description by predicting unseen features of the room. This will be achieved 

by combining real-time sensor readings and prior knowledge of the room’s geometry. The robot 

entering the room will contain multiple sensors which it can use to observe the room. These 

sensor readings represent incomplete observations of the room.  

The particle filtering algorithm is a common method in robotics to estimate a true state 

based on incomplete observations (Del Moral, 1996). Implementing such a particle filter for our 

application is a complex process comprised of many elements. One important aspect is 

determining the score of a particle provided the sensor observations. This project assesses how 

different methods of scoring and weighting of known information affect the accuracy in particle 

filter convergence toward the correct true room at various stages of receiving information. Due 
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to the incomplete initial state of the project, other aspects of the particle filtering algorithm, such 

as particle representation, particle generation, and particle elimination will also be addressed.  

Unfortunately, due to the non-public nature of official tactical language dictionaries and 

room search protocols, existing autonomous projects created for tactical room search context are 

sparse to non-existent. However, the particle filtering algorithm has been used in various civilian 

applications which shall serve as inspirations for this project.  

In investigating various room representation and generation techniques, we evaluated a 

coordinate approach, a geometric properties approach, and a door-centric geometric properties 

approach. The door-centric approach was found to be the most efficient representation and 

generation technique due to its simplicity and unique relevancy to tactical language room 

descriptors and room entry perspective. In investigating various particle elimination techniques, 

we evaluated a deterministic percentile approach, a probabilistic draw approach, and a 

probabilistic individual score assessment approach. The probabilistic individual score assessment 

approach was determined to be the favorable approach due to concerns of improper convergence 

and lack of accommodation for multimodal score distributions with other techniques. The 

scoring functions were investigated by creating edge-case representative test cases and collecting 

room estimate data from each of four iterations of the particle filter for each test case. These 

were collected while running the particle filter on each separate attribute’s optimization score 

contribution. By doing this, it was determined that three of the six attempted optimization 

techniques were effectively isolated, where two of the three unsuccessful optimization 

techniques showed irregular success. The three unsuccessful optimization techniques require 

further investigation. Once each attribute is determined to have a successful optimization 

technique, the method of combining each of these score contribution values will require 
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investigation. In addition to attribute optimization, it was discovered from gathering these results 

that particle generation will need to be altered to accommodate for all potential room attribute 

values. These findings have identified a promising room representation and generation 

technique, identified a promising elimination of particles technique, and evaluated individual 

attribute optimization scoring functions to pave way for future developments of the project. 
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1. Introduction 

Tactical Edge Reprogramming for Rapid Autonomy Adaptation (TERRAA) focuses on 

developing robotic agents that can work as a member of human teams in tactical settings without 

the involvement of a robotics engineering expert. A subset of the TERRAA project, Tactical 

Formulaic Language Interpretation and Prediction (TFLIP), aims to achieve this by using 

Tactical Language, a formulaic language utilized by many human Special Weapons and Tactics 

(SWAT) and Army Special Reaction teams. This language is particularly relevant to tactical 

room searches, where US Army officers will use this language to describe a room. This language 

emphasizes the geometry and features of the room that are relevant to method of entry.  

Room searches are often regarded as the most dangerous part of tactical response because 

it occurs when a responder “leaves an area that he or she controls into one that he or she does 

not” (Blair et al., 2019). The potential for hidden threats is heightened because of the uncertainty 

of the room’s contents. For example, a corner that cannot be seen from the point of entry could 

contain a hostile agent. Properties of the room geometry and location of various features drive 

the measure of safety for any particular room. This determines how a tactical response team 

would enter the room, as they prioritize clearing areas that present more danger. The US Army, 

along with other organizations dealing with tactical room searches, have come up with their own 

formulaic language used to efficiently describe these rooms. The TERRAA TFLIP project aims 

to take advantage of this tactical formulaic language already understood by humans trained in 

room clearing and introduce that language to a robotic operative. This way, the humans and the 

robot will share a method of communication, thereby reducing the need for a robotics 

engineering expert in the field to facilitate information exchange. Since the language is 

formulaic, it softens a common barrier found in robotics and language interpretation.  
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Many robotic systems struggle with understanding natural language. There are many 

nuances, implied social contexts, and tones involved in human communication. Tactical 

Language is an ideal middle ground. There is a limited scope to the implications being made in 

this context, as a robot only needs to be provided with room-relevant context. For example, 

rooms take up physical space; room walls are typically parallel to one another; a box-shaped 

room has four corners; etc. Though these are still implications, they are limited by the context of 

the problem, and therefore manageable by the system. 

While TFLIP aims to extend the TERRAA project by utilizing tactical language used by 

room entry teams, the robot has its own role to play within the room search. The TFLIP proposal 

is to have a robotic agent that can understand structured tactical language and utilize it for a 

tangible purpose.  

The robot entering the room will contain multiple sensors which it can use to observe the 

room. TFLIP is operating under the assumption that sensors on the robot will include Light 

Detection and Ranging (LiDAR) sensors, which return a value proportional to distance from an 

object in the room, and global positioning sensors, which locate the robot within global space. 

These sensor readings are incomplete observations of the room. The robot’s goal is to utilize the 

provided verbal description of the room and show an understanding of the description by 

predicting unseen features of the room. This will be achieved by combining real-time sensor 

readings and prior knowledge of the room’s geometry. 

Since multiple readings will be taken during room entry and more knowledge of the room 

will become available over time, the estimate of the complete room will also change over time. 

Ideally, as more information becomes available, the estimate of the room will become more 

accurate to the true state of the room. One common method in robotics to estimate a true state 
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based on incomplete observations is by utilizing an instantiation of the particle filter algorithm 

(Del Moral, 1996). This algorithm generates guesses for the true state of the world, assigns some 

value of confidence to each according to observable information, eliminates guesses driven by 

those confidence values, and then backfills eliminated guesses driven by attributes of the 

surviving guesses. It continues this process for each new observation (Thrub et al., 2005). 

Incomplete observations are noisy global locations of observable room features, such as corners 

or doors, and the true state of the room is the exact global position of all corners and doors in the 

room. The TFLIP project uses such limited information to estimate the true state of the world. 

There are many elements to how a particle filter would be implemented for this 

application. One important aspect is determining the score of a particle provided the sensor 

observations. Since room-representing particles have many attributes, there is a lot of flexibility 

in how a scoring function can be implemented. The different geometric deductions made from 

sensor readings will need to be assessed for various stages of receiving information to make best 

use of the information available. Weighing and comparing these selected attributes effectively 

will make the score valuable. This project assesses how different scoring methods and weighting 

of known information affect the accuracy in particle filter convergence to the correct true room 

at various stages of receiving information.  

Before we can assess these scoring methods, we must address the initial state of this 

project. This project is a small part of a larger project that has already been in development for 

some time. Incomplete areas of work included developing particle generation and representation, 

methods of particle elimination, and the various score assignment functions. As such, the further 

development of these areas falls within the scope of the project goals. The completion of these 
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portions of the project will be referenced to as Stage 1, where the investigation of the scoring 

functions will be referenced to as Stage 2. 

By Stage 2, multiple scoring functions will be ready for assessment. The remaining task 

is to analyze those functions against each other against various edge-case-representative test case 

rooms. To achieve this, there are a few tasks remaining: we must define what success looks like 

and define ways to measure success. The results will then be analyzed and addressed in the 

discussion section, Section 7.3. 

Due to time constraints and technical complications during my project period, I was only 

able to partially complete Stage 1 of the project, and Stage 2 was implemented for completed 

portions of Stage 1. All incomplete work is ongoing and left for future work. 
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2. Background 

2.1. Tactical Language and Room Search Entry 

Tactical language is a formulaic language used by US Army Special Reaction team 

officers to describe the geometric properties of a room relevant to search tactics (B. Koo, 

personal communication, August 29, 2022). A formulaic language is defined as some form of 

language with consistent structure (Piirainen et al, 2020). These geometric properties determine 

how the Special Reactions team will enter to clear that room of potential threats. These 

descriptions are driven largely by clearance priority - areas with the highest likelihood of 

potential threats. The properties of tactical language include shape, feed, and weight. The most 

important property in tactical language used to describe a room is the shape of the room. There 

are many different shapes that can be described using tactical language. Tactical language terms 

used by the US Army for shape are detailed in the table below. 

 

Shape Description Example 

Box-Shaped Room The most common room is 

the box-shaped room. This is 

a room that has four corners 

that are all right angles with a 

rectangular shape.  
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Linear Room Linear rooms have four 

corners with some defined 

ratio between the wall lengths 

that determine its 

classification as a linear room 

over a box-shaped room. 

 

L-Shaped Room L-Shaped Rooms have six 

corners, consisting of five 

traditional 90-degree corners 

and one inverted 90-degree 

corner. This makes the L-

shaped room take on an L-

like shape with two distinct 

areas of the room. 

 

U-Shaped Room U-Shaped rooms have 8 

corners, consisting of 6 

traditional 90-degree corners 

and 2 inverted 90-degree 

corners. This particular 

configuration makes the U-

Shaped room take on a U-like 

shape with three distinct areas 
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of the room. 

T-Shaped Room T-shaped rooms have 8 

corners, consisting of 6 

traditional 90-degree corners 

and 2 inverted 90-degree 

corners. In this particular 

configuration, this makes the 

T-Shaped room take on a T-

like shape with 3 distinct 

areas of the room. 

 

Irregular Room The irregular room is used to 

describe any room that does 

not meet any of the prior 

defined room types. 

 

Table 1: Tactical Language Shapes 

Various room shape types are listed in Table 1. This includes the tactical language shape, 

a verbal descriptor of how that defines the room geometry, and an example of how an 

instance of the respective room could be visually represented. 

The tactical language descriptors for room shapes are described above in Table 1. Each of 

these room shapes carry different tactical implications when it comes to tactical room search. As 

an example, linear rooms and box-shaped rooms are distinguished from one another because 
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linear rooms have the potential to be hallways. Hallways tend to have more doors and exits 

leading off into adjacent rooms. This makes linear rooms the most dangerous room to enter in a 

tactical response, since all adjacent rooms could conceal threats or hidden enemies, meaning that 

there are more areas to clear. This is a risk that US Army officers communicate to their teams. 

The four other rooms that can be classified by tactical language are L-shaped rooms, U-shaped 

rooms, and T-Shaped rooms; all other configurations are referred to as “irregular rooms” and 

will be described relative to the unique shape of that room. The shape of a room will drive how 

the Special Reactions team will enter the room to clear the area quickly and safely.  

In addition to the shape of the room, there are other geometric properties that are 

important to note in tactical language. It is not enough to just know the shape of the room; the 

feed is also important. The feed defines from what position relative to the room the door is 

located.  

 

Feed Description Example 

Center-Fed Center-Fed denotes when a 

door feeds into a room from 

the center of the wall of entry 

within some tolerance. 
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Corner-Fed Corner-Fed denotes when a 

door feeds into a room from 

non-center section of the wall 

of entry within some 

tolerance.  

 

Table 2: Tactical Language Feeds 

Various room feed types are listed in Table 2. This includes the tactical language feed, a 

verbal descriptor of how that defines the room geometry, and an example of how an 

instance of the respective room could be visually represented.  

Doors can be denoted as center-fed or corner-fed. Center-fed is when, within some 

tolerance, the door enters the room from the center of the wall of entry. Corner-fed is when, 

within some tolerance, the door enters the room with some significant difference to either side. 

This means that there is a prioritized side to be cleared when entering from a corner fed room.  

In order to specify which side the door is entering from relative to the wall of entry, 

tactical language uses the property of weight. This is an optional tactical language property that 

may not be relevant to all rooms.  

Weight Description Example 

Left-Heavy There is more room area to 

the left of the point of entry. 

 

Commented [HG1]: The image associated with 
"Corner Fed" rooms appears to be corrupt or missing. 
Please fix. 
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Right-Heavy There is more room area to 

the right of the point of entry. 

 

N/A The area to the right and the 

left of the point of entry are 

approximately the same. 

 

Table 3: Tactical Language Weights 

Various room weight types are listed in Table 3. This includes the tactical language 

weight, a verbal descriptor of how that defines the room geometry, and an example of how 

an instance of the respective room could be visually represented. 

The weight consists of the two terms left-heavy or right-heavy. Where left-heavy 

meaning more space is to be clear to the left relative to entry, and right-heavy meaning there is 

more space to be cleared to the right relative to entry. Additionally, there are ways to describe 

each corner in a room.  
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Figure 1: Tactical Language Lines of Vision 

Figure 1 displays a visual representation of an expected line of vision from the entrance of a room. Corners that rest 

within this line of vision are denoted as easy corners, whereas corners that rest outside of this line of vision are 

denoted as hard corners. 

Since corners are areas with high potential for hidden threats, it is important to know as 

much information as possible about these areas. To classify different types of corners, they are 

classified as either hard corners or easy corners. Easy corners are the corners that are cleared 

immediately upon entry from the responder’s primary line of vision, therefore, they are low 

priority. Hard corners are the corners that are obscured from the view at the point of entry, such 

as those along the wall of entry. For this reason, it is important to clear hard corners as soon as 

possible, as they could expose responders to hidden threats. 

Tactical language has been developed with the intention of clarifying relevant 

information to tactical room searches and the high-risk areas within each room. Being a 

formulaic language, tactical language reduces difficulty in transferring learning over to the 

robotic agent as compared to traditional, unstructured language. 
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Since developing a tactical language interpreter is not within the scope of this particular 

project, from now on, we assume that the tactical language input to the system was a box-shaped 

room for the purpose of simplicity. 

2.2. Accounting for Implied Information 

When we consider introducing a robot agent into the field in a tactical room search 

situation, we must acknowledge the robot’s ignorance of room properties. Humans have many 

expectations for what defines and constrains a room, where robots inherently do not. This 

information must be communicated to the robot for it to gain a human-comparable understanding 

of the space. If the robots are working as team members with a human team, this understanding 

is important to be a valuable team member. This type of understanding is reflected by one of the 

primary technical objectives - to accurately predict locations of features of the entire room based 

off a few observable measurements. This will help the robot act similarly to how a human agent 

would, as human agents can take the prior information and room assumptions and use that to 

deduce features about the room during entry. To do this, we must establish to the robot 

determined constraints that rooms adhere to via the tactical language descriptions and room-

relevant context. 

This introduces a common Machine Learning (ML) problem with implied information 

and subjectiveness of language. Robots do not have any prior information about the world, so we 

must provide this information to them, in this case, via tactical language. The act of 

understanding traditional language is called Natural Language Processing (NLP). Typically, ML 

models are trained with a large dataset with the expectation the robot would be exposed to real 

data similar to this training data. Humans use a variety of sayings, tones, phrases, and implied 

information that can drastically change the meaning of any sentence. This is a common issue 
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with NLP that ML implementations attempt to solve (Xiang and Foo, 2021). In this application, 

there is limited variation in the language being interpreted by the robot, as it is a formulaic 

language with a limited scope of information. With this in mind, it is possible to manually code 

each of these specifications for the robot. The benefit of this is a decreased complexity of the 

code.  

2.3. Sensors and Representation of Noise 

As the robot enters the space, it needs more than just a general understanding of qualities 

of a room and some verbal description to create a complete image of the world state. The robot 

also needs to collect readings as observations about the world. To collect observations, the robot 

needs a variety of sensors. The assumed sensors to be utilized on this robot would be LiDAR 

sensor and some global positioning sensor. Each of these sensors has some method of observing 

the world. 

2.3.1.  LiDAR Sensor 

LiDAR sensors (also known as optical radars) are a form of imaging sensor (Ready, 

1997). These sensors are used to collect information about the space by producing pulses of 

electromagnetic waves, that typically fall in the infrared range of light (McManamon, 2019). 

This information is primarily representative of the distance between the sensor and some surface. 

Using this information, it is also possible to estimate velocity of the sensor, velocities of objects 

in the sensor’s field of vision, or the texture of material being observed. This sensor consists of 

three major components: a light source, a receiver, and an optical positioning system. The light 

source is typically a laser beam which is used to pulsate light onto the observed area. The 

photodetector receiver will then measure the reflection of this backscattering of light from the 

observed area in units of seconds, which can be mapped to a distance measurement. This ability 
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is essential in identifying feature locations within a room. Since LiDAR sensors often measure 

an array of values in space, angles created by walls can additionally be deduced. 

Since the current state of this project does not take input from an existing LiDAR sensor, 

we must produce some way of simulating this received data. We assume the received data have 

been processed from a LiDAR sensor, rather than being raw LiDAR point clouds. We also 

assume that the data has been interpreted to identify wall angles about corners and about the door 

entrance. When combined with the global positioning sensor, simulated LiDAR measurements 

can be used to deduce the global coordinates of each feature, along with the deduced unit vector 

identifying wall directions off each corner and the global angle created by the wall of entry.  

In addition to simulating data, we must also simulate predicted noise on this data. This 

ensures an accurate representation of receiving data and forces the team to accommodate for 

noise prior to introducing physical sensors to the system, promoting robustness. If there were a 

decided LiDAR sensor for the physical robot at this stage of the project, we could check the 

noise specifications for that particular model. However, since that information is not currently 

available, we must estimate this noise using other means.  

 

 

Figure 2: Traditional LiDAR Operation Graphic 
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Figure 2 displays a representation of the inner workings of a traditional LiDAR sensor. Where outgoing light is 

represented by the yellow lines and incoming light is represented by the blue lines. 

2.3.2.  Simulating Reasonable Noise 

As robotic systems observe their environment using sensor data, there will always be 

noise introduced into the system. Though some noise will exist only in small magnitudes, it is 

still important to account for this noise in our observations. This noise has the potential to greatly 

affect our observations of the room if not accounted for correctly. An analysis was conducted on 

pre-crash prediction system in standard automobiles which illustrates this point.  

In a high-risk scenario, such as predicting a head-on collision, the false negative 

prediction must be avoided at all costs - where a positive case is a head-on collision (Dirndorfer 

et al., 2011). This prediction is put in jeopardy when noise is introduced to the system. Without 

properly accounting for inaccuracy in the system, the system could inaccurately fail to detect an 

oncoming collision. 

  

Figure 3: Effect of Noise Incorporation Example 

Figure 3 displays a graphic from the study on impact of noise incorporation into a pre-crash detection system. The 

true paths of the cars are denoted by arrow headings. The system’s belief of the paths of the cars are denoted by 

gradient rectangles of the respective colors of the cars. 
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This concept is illustrated in Figure 3. When noise was introduced to the pre-crash 

detection system, there was some inaccuracy in the observed path of the car and the true path of 

the car. Where the true paths of the cars are denoted as the car figures paired with arrow 

headings, and the system-observed state of the cars are denoted by the rectangular trajectories. 

With no simulated sensor noise introduced to the system, the cars are correctly predicted to 

collide. With small, simulated noise power introduced to the system, the cars are still correctly 

predicted to collide. This changes with a large noise power where the prediction changes, now 

predicting no collision, when, in fact, the cars are on course to collide. This could be a 

potentially fatal false prediction.  

In the physical world, there will always be some level of noise or inaccuracy of data 

present in our system. In the pre-crash detection example, these factors may include noisy 

distance measurements, time delays, delays in communication between various control units, or 

otherwise inaccurate information (Dirndorfer et al., 2011). Each of these potential sources of 

inaccuracy must be taken into consideration within our system and assigned an appropriate noise 

handling method. With the TERRAA TFLIP project, we must similarly consider the whole 

signal processing chain. This could include LiDAR sensor noise, global positioning noise, 

inaccurate tactical language input, and other factors. 

There are multiple ways in which systems can account for noise. For this project, the 

current technique of simulating noise is assuming Gaussian noise. This is done for simplicity’s 

sake for the current state of the project. 

2.4. Particle Filter Algorithm 

The Particle Filtering Algorithm is an algorithm commonly used in robotics applications. 

The filter becomes particularly helpful when attempting Simultaneous Localization and Mapping 
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(SLAM), the most important component for an autonomous robot (Song et al., 2018). The 

particle filtering algorithm operates under the condition that there exists some observable 

variable which is related to unobservable information. Using this observable variable, we aim to 

estimate the unobservable information. Regarding TERRAA-TFLIP’s application, the observable 

variables are our sensor readings, and our unobservable information is the true state of the room 

we are entering, including features of the room we have yet to see. It is important to understand a 

traditional application of a particle filter to be able to implement it for the TERRAA-TFLIP 

project. 

SLAM is a necessity in many robotics applications. When responders enter a room, they 

use their senses to create an image of that room, and, assuming decent depth perception, 

deduce/recognize where they are located within that space. A robot needs to do just the same. 

Unfortunately, the adaptability of human’s neural pathways is not easy to replicate. There needs 

to be a procedure for the robot to map the space while accurately updating its position within that 

space. The particle filtering algorithm is used to execute SLAM in a structured and procedural 

way, constantly updating predictions about the world with incoming sources of information. 

Though this project is not following a traditional implementation of SLAM particle filtering, the 

generalized particle filtering algorithm can still be applied for the purposes of this project. 

𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎 𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆 𝒇𝒊𝒍𝒕𝒆𝒓(𝑿𝒕ି𝟏 = 𝑵𝒐𝒏𝒆, 𝒛𝒕): 

1:         𝑋௧  =  [ ] 

2:         𝑖𝑓 𝑋௧ିଵ 𝑖𝑠 𝑁𝑜𝑛𝑒: 

3:              𝑓𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀 𝑑𝑜: 

4:                    𝑛 =  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 

5:                    𝑎𝑑𝑑 𝑛  𝑡𝑜 𝑋௧ିଵ 

6:         𝑠𝑐𝑜𝑟𝑒௠𝛼 𝑃(𝑧௧|𝑥௧ିଵ೘
) 
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7:         𝑎𝑑𝑑 < 𝑥௧ିଵ௠
, 𝑠𝑐𝑜𝑟𝑒௠ >  𝑡𝑜 𝑋௕௘௟ 

8:         𝑓𝑜𝑟 𝑚 = 1 𝑡𝑜 𝑀 𝑑𝑜: 

9:              𝑥௧೘
=  𝑎𝑐𝑐𝑒𝑝𝑡 𝑜𝑟 𝑟𝑒𝑗𝑒𝑐𝑡(𝑋௕௘௟) 

10:            𝑖𝑓 𝑥௧௠
 𝑖𝑠 𝑛𝑜𝑡 𝑁𝑜𝑛𝑒: 

11:                     𝑎𝑑𝑑 𝑥௧೘
 𝑡𝑜 𝑋௧ 

12:       𝑓𝑜𝑟 𝑚 =  𝑠𝑖𝑧𝑒(𝑋௧) 𝑡𝑜 𝑀 𝑑𝑜: 

13:             𝑛௠ =  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 (𝑋௧) 

14:             𝑎𝑑𝑑 𝑛௠ 𝑡𝑜 𝑋௧ 

15:      𝑟𝑒𝑡𝑢𝑟𝑛 𝑋௧                

Figure 4: Particle Filter Algorithm Pseudocode 

Figure 4 displays a pseudocode example of how a particle filter could be implemented.  

2.4.1.  Particle Generation 

The primary step in any implementation of a particle filtering algorithm is creating an 

initial set of particles. This is represented in lines 2-5 of Figure 4, where Xt-1 is used to represent 

the initial set of particles when running the algorithm. For the run, Xt-1 will be generated. After 

the first reading, Xt-1 will be provided by the previous run of the particle filter. Particles represent 

different estimates of what we are trying to predict. In our application, particles represent 

possibilities for all the features of the room the robot is entering. The information contained in 

these particles will vary based on how we decide to represent rooms within our code. This is 

introduced in Section 5.2 and further discussed in Section 7.1. This initial set of particles is 

varied in nature and large in size (potentially over 1000) to increase the possibility of having a 

truth-representing particle within the initial generation (Thrub et al., 2005).  

Initial particle generation can be executed in multiple ways. Particles can be generated 

randomly to have an unbiased initial sample. This is a method we have chosen to execute for this 

project. However, there are alternative methods to consider. These particles could be 
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strategically selected. In certain applications, it may be preferable to use the same distribution of 

initial particles with each particle filtering attempt.  

 

 

Figure 5: Methods of Particle Generation 

Figure 5 displays a visual representation of systematic initial particle generation. 

This is demonstrated in Figure 5 where the grid space represents all potential possibilities 

of state and dots represent some determined, varied set of initial particles. This systematic 

generation has particles uniformly spaced throughout the possibilities of states (Wang et al., 

2018). 

Some systems may already have some known information that could contribute to the 

generation of particles. This is particularly apparent in swarm applications, where there are 

multiple robots in the area of interest communicating with one another. In this case, the positions 

of the robots relative to one another may already be known (Saeedi et al, 2015). In an application 

where some information about the system is apparent, this may impact how particle generation is 

seeded. Where, if relative robot positions are known with some amount of confidence, each 

particle would reflect those relative distances. 
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2.4.2.  Score Assignment 

Once readings have been obtained, some score assignment function will compare each 

particle to the known information to describe the likelihood of that particle being correct. This 

will be reflected by the score. The goal is for the score to be a single value that defines the 

goodness of fit for any particle given current observations about the world. This is represented by 

lines 6 and 7 in Figure 4, where zt is the collection of readings from sensors and Xt-1m is the 

particle being evaluated within the set of particles. The score, score_m will be generated in some 

way by comparing z_t and Xt-1m. For each implementation of the particle filtering algorithm, 

there will be different attributes relevant to that project. This will determine how zt and Xt-1m are 

compared to one another. In this case, we are using attributes relevant to defining a room. As 

analyzing this portion of the particle filter is a primary focus of this project, these representations 

and scoring implementation will be further detailed in Sections 5.2 and 5.3 and discussed in 

Sections 7.1 and 7.1. 

2.4.3.  Elimination of Particles 

Based on the score assigned to each particle, there will be an elimination of particles from 

the set. This is represented by lines 8-11 in Figure 4, where Xbel (X belief) contains all particles 

and their respective scores. This elimination of particles is done in order to remove poor-fit 

rooms from consideration.  

As the range of score values can change per run and per implementation based on the 

calculation of scores, it is important to have a method of elimination that is valid across various 

score distributions. This can be done in many ways. As implementing this portion of the particle 

filter is a primary focus of this project, three notable approaches are detailed in Section 5.4 and 
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discussed in Section 7.2. Particles that are not eliminated from the set are then used to drive the 

backfilling of eliminated particles in the following resampling step. 

2.4.4.  Resampling 

Now that poor-scoring particles have been eliminated from the set, it is anticipated that 

these higher-scoring remaining particles have attributes that are more accurate to the true room. 

Under this assumption, the algorithm will backfill eliminated particles using the attributes of the 

remaining particles. This is represented by lines 12-14 in Figure 4, where Xt is the set of 

surviving particles and nm is a newly generated particle based on Xt. nm is then added to Xt to 

create the final set of particles. In our implementation, we have decided to take the mean and 

standard deviation of all attribute values and generate new particles by selecting attributes from a 

gaussian distribution using the stated mean and standard deviation. Though this is what was 

implemented for this project’s resampling step, there are other methods. For example, the mean 

and standard deviation fed into particle generation do not have to be the same as Xt. These can be 

varied to suit the needs of the project. 

After resampling, the final set, Xt, will be returned by the algorithm and reused in the 

next call with new received readings. For this reason, it is important to know when we would like 

to resample (call the particle filtering algorithm again). Resampling on the same observed 

information is something that is warned against. This is because, by doing this, we risk 

converging too sharply on incomplete information and eliminating diversity in our particle set 

early on. If this becomes a problem, there are two known ways to solve it. The first approach, 

which is the caution we are currently taking, is to resample infrequently. Particularly, we are 

only resampling when we receive an additional measurement. In a practical application, this may 

not be necessary, though it is a noted precaution. The second approach is to intentionally add 



Aloise 27 
 

some completely random particles to the particle set with each iteration. This allows for added 

variance in case the particle filter has converged too confidently to the incorrect value. 

Introducing these random particles provides an opportunity to escape this poor conclusion 

(Thrub et al., 2005). These various methods of resampling and precautions to take regarding 

resampling are important to keep in mind through the implementation of the project. 

2.5. Related Work 

For this project, we utilize tactical language descriptions as prior information and fuse that 

with real-time sensor readings to create an updating estimate of the current room via particle 

filtering. To our knowledge, tactical language has not yet been utilized in automation for tactical 

environments. This is largely because the US Army intentionally doesn’t publicly release their 

room entry protocols, including the tactical language descriptions (B. Koo, personal 

communication, August 29, 2022). In our unique position, we have verification of some 

language used in these room entries, allowing us to use this in our autonomous robot. 

Though the use of tactical language is novel to our use, estimating states via particle filtering 

has been around for decades, and there are many existing implementations of this. Various 

optimizations have been made to the particle filtering algorithm across projects. In the paper, Box 

Particle Filtering for SLAM with Bounded Errors, the SLAM particle filtering problem is 

addressed with the intention of optimizing the size of the set of particles. Traditional particle 

filters run on hundreds or thousands of particles, leading to expensive computation time. 

Decreasing the particles needed to run an effective particle filter leads to faster computation time 

(Wang, 2018). This could be of future use to our project. 

Critical Rays Self-Adaptive Particle Filtering SLAM is a project using a LiDAR sensor on a 

moving robot to perform SLAM on a grid of streets. Like our project, they use a LiDAR sensor 
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to receive measurements, and will therefore experience similar noise (Song, 2018). Though, 

since our project combines this observed information from the LiDAR and our global positioning 

reading, our noise will be combined with the global positioning noise. We will not be receiving 

similar observed information as from the raw LiDAR distance measurement. This project can be 

useful in assessing what a reasonable LiDAR noise contribution could be as well as referencing 

for chosen implementation for various portions of the particle filtering algorithm. 

Both particle filtering implementations are useful in referencing the various potential 

implementation of steps in the particle filtering algorithm. However, due to our unique 

representation of particles, inspiration for methods of scoring these particles will not be 

represented in their implementations. This original scoring approach is the primary focus of this 

project. 
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3. Methods 

3.1. Simulating Readings 

 Test case readings were simulated by determining global positional coordinates for each 

of the eighteen test cases. Corner readings are currently represented in the form (string 

feature_type, float x_position, float y_position). Door readings are currently represented in the 

form (string feature_type, float x_position, float y_position, float global_angle). feature_type 

represents the feature type of the reading, either ‘door’ or ‘corner’. Where x_position is the 

numerical value for the position of the feature along the global x-axis, and y_position is the 

numerical value for the position of the feature along the global y-axis. global_angle is parameter 

that only is associated with a door reading. 

 

  

Figure 6: Door Reading Information 

Figure 6 displays a visual representation of the data contained in a door feature type reading. This includes the 

door x position in global space, the door y position in global space, and the global angle. As displayed in the figure, 

the global angle represents the angle created by the wall of entry relative to a global coordinate system. 

3.1.1.  Noise Incorporation 
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 A function was developed to incorporate Gaussian noise to the simulated position 

coordinates. This function takes in some reading and a standard deviation for the noise. It then 

selects out all features other than the feature_type and selects the noisy value from a Gaussian 

distribution using the values provided to the function. The function returns a reading in the same 

format received, but now the values are considered noisy. 

3.1.2.  Introduction of Readings to Particle Filter 

 In practical applications, there are common lines of sight when entering a room. The first 

observation will consistently be the door, as you will always enter a room through the door. After 

this, the next most likely observations within common lines of sight from the door are the easy 

corners. We can apply this knowledge in ordering sensor readings for accuracy purposes. A 

function to achieve this was not completed by the end of the project period and remains a task for 

future work. Due to this, to gather results, the door measurement was introduced first for all test 

cases, with purely random introduction of corner readings in succession. 

 The particle filter runs through each test case in the provided order. Seeing the first 

reading, then the first through second, first through third, and, finally, the first through fourth. 

For the sake of analyzing the effectiveness of scoring functions, the estimated state of the world 

is calculated for each stage of receiving measurements. 

3.2. Room Representation & Generation 

To implement the particle filter algorithm, we must establish some intuitive way to 

represent our particles. This is a multidimensional problem with many possible solutions. 

We receive our sensor data in global 2-D positional coordinates, referred to as the x-axis and the 

y-axis. When door measurements are provided, we also have a measurement for the global angle 

of the wall of entry, about the door. 
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Figure 7: Box Shaped Room with Geometry 

Figure 7 displays a visual representation of common geometric properties to describe rectangular shapes: length 

and width. 

We need to determine some convenient seed for particle generation and particle scoring. 

This project assumes a tactical input of box-shaped rooms. Due to this, there are some box-

shaped specific parameters we can work with. Box-shaped rooms are rectangular shapes with 

doors located throughout. All rectangular shapes have the common properties of length and 

width, as shown in Figure 7. These geometric properties can be used to our advantage to describe 

the proportions and size of the room with only two parameters. This is the type of optimization 

that will be important in generating particles. 
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Figure 8: Feature Prediction Using Geometric Assumptions 

Figure 8 displays how geometric assumptions can be used in feature prediction. Where bolded sections are received 

readings and faded sections are predicted features based on geometric assumptions. 

Using geometric properties of these shapes will also provide great benefits regarding 

feature prediction. By using these assumptions of the standard geometric properties of rooms 

(90-degree corners, parallel walls, etc.), we are intuitively predicting unseen features of the 

room. Three different implementations of room representation and generation are described 

below. 

In the graph package currently being used by the project, a copy of particles is being 

stored in coordinate representation. The generation techniques below will cover the conversion 

of the respective representations to coordinate representations. It is important to keep this 

information across each particle for later scoring implementations and helpful graph package 

visualization tools. 

3.2.1.  Coordinate Method 
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Figure 9: Coordinate Method Representation 

Figure 9 displays a visual representation of the coordinate method of room representation. The lines represent 

walls, the blue circles represent corners, and the blue X represents the door. 

 The coordinate method represents a room solely based on its features’ global coordinate 

positions. In a four-corner room with single-point entry, the door would be represented in global 

coordinates, (door x position, door y position). Each corner would be respectively represented in 

their global coordinates: (corner1 x position, corner1 y position), (corner2 x position, corner2 y 

position), (corner3 x position, corner3 y position), and (corner4 x position, corner4 y position). 

This represents all the feature information in the room using 10 parameters. We can shorthand 

refer to corner 1 as c1, corner 2 as c2, etc. 

 

Step # Description Visual Representation 
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1 Random values chosen for c1 

x1 and y1 positions. 

2 Random values chosen for c2 

x2 and y2 positions. 

 

3 From this, global angle 

calculated between c1 and c2. 

 

4 90 degrees incremented onto 

the global angle to create the 

angle23. The line created 

from angle23 and c2 drives 

the location for c3. 

 

 

5 Some random position 

selected along the line 

becoming c3.  
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6 90 degrees incremented onto 

the angle23, creating angle34. 

Line equation calculated 

created by angle34 and c3.  
 

7 Distance between c1 and c2 

calculated.  

 

8 c4 placed along the line using 

distance calculated in step 7. 

 

9 Two random adjacent corners 

selected to include the door. 

Line equation calculated 

between these two corners, 

and door location selected 

randomly from somewhere 

along this line between the 

two corners. 

 

Table 4: Coordinate Method Generation Process 
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Table 4 displays a step-by-step process for generating rooms with the coordinate method of room representation. 

This details the step number, a description of the actions taken, and a figure representation of that step. 

This representation was generated randomly by selecting random values for (c1 x 

position, c1 y position). The rest of the room was constructed about these points. The rest of the 

corners are assigned by iteratively adding 90 degrees to the angle created from the two preceding 

corners, calculating the line equation at that angle and previous corner location, and then 

selecting a point along the line to assign the corner location. For the final corner, this will be 

driven by the distance between c1 and c2. 

 Once the corners have been placed within global space, two random adjacent corners 

were selected to be the wall with the door. The line equation was calculated between these two 

selected corners, and the door location was selected randomly from somewhere along this line in 

between the two corners. This was now reflected in the door x position and the door y position. 

 This full generation is for the assumption of random room generation. Generating a 

particle set based on given attribute values, we would just assign these values to the input seeds 

and graph directly for the coordinate representation method, as no conversion is necessary for the 

graph. 

3.2.2.  Geometric Method 
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Figure 10: Geometric Representation 

Figure 10 displays a visual representation of the geometric method of room representation. The lines represent 

walls, the blue circle represents the center point of the room, the blue X represents the door, the V at the center 

point represents the global angle, and the length and width are labelled. 

 The geometric method represents a room based on traditional geometric properties. These 

include length, width, center point x, center point y, rotation about center, and some positional 

door representation. This represents all the feature information in the room using 6 (or 7) 

parameters. Different door representations are listed below. 

 

Figure 11: Door Coordinate Representation 
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Figure 11 displays the door coordinate representation for the geometric room representation approach. In this 

figure, the blue X represents the door location in global space. 

 The (door x, door y) method of door representation consists of representing the door 

using its global positional coordinates. This representation does not actively communicate the 

door’s position relative to the room geometry. This representation also brings the representation 

to 7 parameters, unlike the 6 in methods detailed below. 

 

 

Figure 12: Door Angle Representation 

Figure 12 displays the door angle representation for the geometric room representation approach. In this figure, the 

blue X represents the door location in global space, the blue circle represents the center point of the room, and the 

V at the center point of the room represents the angle between c1 position, the center point, and the door position. 

This door angle is the value used to represent the door within the room. 

 The door angle method represents the door by using the angle created from the first 

corner to the door location about the center point of the room. This method uses 6 parameters to 

describe the room, and it actively communicates the door’s position relative to the room 

geometry. 
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Figure 13: Door Distance Representation 

Figure 13 displays the door distance representation for the geometric room representation approach. In this figure, 

the blue X represents the door, the blue circle represents the first corner, and the bolded line represents what 

segments are included in the door distance value. The length value of the bolded sections is used to represent the 

door within the room. 

 The door distance method represents the door by using the distance around the perimeter 

of the room from the first corner to the door location. This method uses 6 parameters to describe 

the room, and it does not actively communicate the door’s position relative to the room 

geometry. 

 This representation was generated similarly to Section 5.2.1.  

Step # Description Visual Representation 

1 Random values selected for 

c1’s x1 and y1 positions 
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2 Width and global angle used 

to calculate the desired c2. 

 

3 90 degrees incremented onto 

the global angle to create the 

angle23. The line created 

from angle23 and c2 drives 

the location for c3. 

 

4 Length used to place c3 along 

generated line. 

 

5 90 degrees incremented onto 

the angle23, creating angle34. 

The line equation is 

calculated created by angle34 

and c3.  

 

6 Width used to place c4 along 

the calculated line. 
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7 Door location parameter used 

to drive placement of door. 

 

8 The difference between 

current center point and 

desired center point 

calculated. Each node 

adjusted to this center point. 
 

Table 5: Geometric Method Generation Process 

Table 5 displays a step-by-step process for generating rooms with the geometric method of room representation. 

This details the step number, a description of the actions taken, and a figure representation of that step. 

This representation was generated randomly by selecting random values for each 

parameter: length, width, center point x, center point y, rotation about center (global angle), and 

some positional door representation. First, a random value was generated for (c1 x position, c1 y 

position). The rest of the room was constructed about this point. The rest of the corners are 

assigned by iteratively adding 90 degrees to the angle created from the two preceding corners, 

calculating the line equation at that angle and previous corner location, and then selecting a point 

along the line provided length or width seeds to assign the corner location, respectively.  

 Once all the corner positions and the door positions were calculated, the center point of 

the current room representation was calculated. The difference between this center point and the 

desired center point for both x and y coordinates was calculated. This difference was then added 

to each feature coordinate to readjust the desired center point. 
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 When a door is represented in (door x location, door y location) global coordinate system, 

no conversion is necessary. Though this representation does not explicitly ensure the door lies 

along a wall. To generate this door location from a seed or randomly generated (door x location, 

door y location), the values would be directly passed to the graph. 

 When the door is represented in some angle created between the first corner coordinate, 

the center point, and the door location, there is some additional computation needing to be done 

to acquire the door x position and door y position to be passed to the graph.  

 To acquire these global position coordinates while ensuring the door rests directly 

between two corners, we first had to figure out which two corners the door was between. Since 

we know the global coordinates of each corner location, we were able to deduce the distances 

from each corner to the center point, as well as each corner from one another. This was all the 

information needed to calculate the internal angles between each successive pair of nodes and the 

center point using Side/Side/Side Law of Cosines. Once these center angles were acquired, we 

could deduce at which angle the door location would switch walls in any given room. This, 

coupled with the information of the door angle, revealed which wall the door was located on. For 

the respective wall, the angular percent along that wall was determined by taking the door angle 

minus start angle of that wall over the range of degrees on that quadrant. The line equation 

created by the wall was then calculated, and length of the line was determined. The door was 

then placed that percentage of length down the wall. This (door x position, door y position) was 

deduced and set in the graph. 

 When the door location is represented in some distance around the perimeter from the 

first corner, there is some additional computation that needs to be done to acquire the (door x 

position, door y position) to be passed into the graph. 
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 Though this specific door representation did not have an opportunity to be implemented, 

it likely would have been executed as follows. The distance from the first corner would be 

provided to represent the door location. The distance between each successive corner would be 

calculated from the global coordinate system. The distance from the first corner to the door 

would be calculated from these values. Wherever the door location surpasses these cutoffs, we 

would have determined which wall the door lies along. We would take this cutoff corner and 

calculate the equation for a line between this corner and its successive corner. Then we would 

take the difference between the door location value and the cutoff corner and calculate the (x 

position, y position) that distance down the line. The (door x position, door y position) would be 

then deduced and included in the graph. 

3.2.3. Door-Centric Representation 

 

Figure 14: Door-Centric Room Representation 

Figure 14 displays a visual representation of the door-centric method of room representation. The lines represent 

walls, the blue arrow loop represents the global angle, and the gap in the wall represents the door. The length, right 

width, and left width are labelled. 
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 This door-centric method consists of utilizing traditional geometric properties about the 

door location. This includes: (door x location, door y location), angle about the door, width to the 

left of the door, width to the right of the door, and length. This represents all the feature 

information about the room within 6 parameters. 

Step # Description Visual Representation 

1 Door x and door y positions 

placed. 

 

2 Right width and global angle 

used to calculate the desired 

c1. 

 

3 90 degrees incremented onto 

the global angle to create the 

angle12. The line created 

from angle12 and c1 drives 

the location for c2. 

 



Aloise 45 
 

4 Length used along generated 

line to place c2. 

 

5 90 degrees incremented onto 

the angle12, creating angle23. 

Line equation calculated 

created by angle23 and c2.  

 

6 c3 placed along the calculated 

line using width. Where width 

= right width + left width. 

 

7 90 degrees incremented onto 

the angle23, creating angle34. 

Line equation calculated 

created by angle34 and c3.  
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8 Length used along generated 

line to place c4. 

 

Table 6: Door-Centric Method Generation Process 

Table 6 displays a step-by-step process for generating rooms with the door-centric method of room representation. 

This details the step number, a description of the actions taken, and a figure representation of that step. 

This representation generated random values or used seed values for each attribute: door 

x location, door y location, angle about the door (global angle), width to the left of the door, 

width to the right of the door, and length. First, (door x position, door y position) was set. The 

rest of the room was constructed about this point. The corners are assigned by iteratively adding 

90 degrees to the angle created from the two preceding corners, calculating the line equation at 

that angle and previous corner location, and then selecting a point along the line provided length, 

right width, or left width seeds to assign the corner location, respectively. This representation 

was chosen to represent the rooms within this project. 

3.3. Scoring Functions 

 In determining the scores for the particles, there are two parts to this problem. Primarily, 

we must determine the various contributions to our score. In this case, the contributions could be 

comparing the lengths of the measurements vs the corner locations, global angles, etc. of the 

particles. We must determine which of these room attributes could be related to a closer match 

room. After these have been isolated, we must determine the best way to take these values and 

combine them into a final score. This will be the final scoring function. 

3.3.1.  Determining Attributes 
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 To determine the contributions to a score, we must consider what we are trying to 

optimize. We are trying to optimize the attributes of whichever room representation technique 

we use. We must then determine some method to isolate the success of each of these attributed 

based off readings received. In this collection of results, the door-centric method of room 

representation was used. The methods used for scoring will reflect this from now on. 

 Since the first reading received is the door feature reading. We have noisy values of door 

x location, door y location, and global angle. The door-centric room representation represents a 

room by using door x location, door y location, global angle, left width, right width, and length. 

This means that just from the first reading, we have information about three of our six room 

representing attributes. We can now score particles based off these three attributes. To create 

some value that where a higher value is associated with a better fit room, we can take the 

difference between the reading value and the particle value and invert it. This way, the closer the 

particle value is to the true value, the higher score we receive for that attribute. These would then 

somehow be combined to create an overall score for that particle. 

 An additional assessment can be made with one door reading that can score particles. 

Since we know a point location along the wall of entry and the angle that wall makes, we can 

calculate the line equation for the wall of entry. This helps deduce potential locations for the hard 

corners of the room, which we can score based on distance from this line. We will further refer to 

this as the corner distance scoring method. A corner distance function was implemented. This 

function calculated the line equation of the wall of entry using the door location and global 

angle. It then found the orthogonal line equations to this line for each particle corner location. It 

calculated the intersection between each orthogonal line and the line of the wall of entry. It then 

determined the distance between each particle corner location and the wall of entry by 
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calculating the distance between the particle corner and the point of intersection. The closest two 

particle corners to the wall of entry were isolated. These two particle corners were used to drive 

additional scoring by inverting the distance from the wall of entry. This is intended to further 

optimize the global angle and improve accuracy of particle hard corner locations. 

 When two readings have been received, we will have a door reading and a corner 

reading. Depending on the location of the corner about the room, it can give us a variety of 

information. If it is the leftmost hard corner, we can now calculate the estimated left width. If it 

is the leftmost easy corner, we can now calculate both the estimated left width and estimated 

height. If it is the rightmost hard corner, we can now calculate the estimated right width. And if it 

is the rightmost easy corner, we can now calculate both the estimated right width and estimated 

height. 

 To apply this scoring correctly, we will have to determine if the reading is to the left or 

right of the door. To do this, a right or left function was written. This function took the 

orthogonal line to the wall of entry using the door location and used that as the cutoff of left or 

right of door. It then takes the orthogonal line angle. If the angle is between (270, 0] or [0, 90), 

then if the point is above that line, it is to the right of the door. If it is below that line, it is to the 

left of the door. If the angle is between (90, 270), then if the point is above that line, it is to the 

left of the door. If it is below that line, it is to the right of the door. If the angle is 90 degrees, 

then if the x value of the point is greater than that line, it is to the right. If it is smaller, then it is 

to the left. If the angle is 270 degrees, then if the x value of the point is greater than that line, it is 

to the left. If it is smaller, then it is to the right. 

 Using the information from the right or left function, we determine which side of the door 

the corner reading is located. If it is to right, it will affect the right width. If it is to the left, it will 
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affect the left width. We ignore length for now, as we do not yet have comparative information 

to distinguish a hard corner from an easy corner. To find the estimated value for either right 

width or left width, we take the wall of entry line equation again and find the orthogonal line 

from the corner reading location. We then calculate the intersection between the orthogonal line 

and the wall of entry line. We then take the distance between the point of intersection and the 

door location. If this corner reading was to the left of the door, this distance is our estimated left 

width. If this corner reading was to the right of the door, this distance is our estimated right 

width. We can then take the inverse of the absolute value of the difference between the estimated 

value and the particle value to drive scoring that attribute. 

 When three readings have been received, we will now have some scoring for the door x 

position, door y position, global angle, and either left width or right width. If the second corner 

reading was on the opposite side of the door as the previous corner, we applied the same 

implementation again but contributing to the opposing width score. If the second corner reading 

is located on the same side of the door as the previous reading, we can compare these two to 

distinguish hard corners from easy corners and, from that, determine an estimate for the length of 

the room. Unfortunately, the length approximation was not completed due to time constraints. 

But if it were to have been implemented, it would likely have been as detailed here. 

 If the corner location is on the same side of the door as the prior, we can check how far 

from the wall of entry each of the corner positions are. Whichever corner is the farthest from the 

wall of entry is the hard corner. The distance between this corner and the wall of entry is the 

estimated length. We would then take the inverse of absolute value of the difference between the 

estimated length and the particle length attribute and use that to drive scoring that attribute. 
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 Each of these would account for each of the attributes used to represent a room within 

this system.  

3.3.2.  Combining Attributes 

 Once ways to score each of these attributes have been isolated, we must combine them in 

some useful way to benefit the simultaneous optimization of each of these attributes using a 

singular score value. Unfortunately, due to time constraints, various methods of combining these 

values were not fully implemented or evaluated. This will be left for future work. 

3.4. Elimination of Particles 

 Once a scoring function has been applied to each particle in the generated set, there must 

exist some method of eliminating particles based on their scores. Three different approaches 

implemented and evaluated in this project are described below. 

3.4.1.  Deterministic Approach 

 The deterministic approach for particle elimination eliminates particles based on the 

percentile their score aligns with among the distribution of particle scores. This approach assures 

the survival of the best-scoring particles of that iteration. This was done by taking in some value 

representative of the cutoff percentile. This percentile was mapped to the distribution of scores. 

All particles with a score underneath this percentile were then eliminated from the set. The mean 

and standard deviation of the surviving particles’ attributes were used to drive the backfilling for 

the next set of particles. These seed parameters were imputed into the particle generator for 

resampling. 

3.4.2.  Probabilistic Draw Approach 

 The probabilistic draw approach for particle resampling drew some determined number 

of particles with replacement with a probability relative to their score across the distribution of 
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scores. To do this, it was programmed to iterate through the distribution of scored particles for 

some determined number of times. Each iteration, it would calculate the sum of all scores, and 

uniformly randomly select some number within the range of 0 and that sum of scores. It would 

then iterate through summing the scores, once that sum exceeded the selected number, that 

particle was decided to survive the process. These surviving particles would then drive the 

resampling of an entirely new distribution based on the mean and standard deviation of the 

surviving attributes. 

3.4.3.  Probabilistic Individual Assessment Approach 

 The probabilistic individual assessment approach assessed each particle separately and 

determined whether to accept or reject each particle based on their respective scores. This was 

accomplished by iterating through the particles. Each individual particle was determined to be 

accepted or rejected based on the cumulative distribution function of its score across the 

distribution of scores. The surviving particles then drove the backfilling of particles by using 

their mean and standard deviation as a seed for generating new particles for the next set. 

3.5. Test Cases 

Test cases were generated manually with the following edge-case features in mind: room 

scale, global angle, room proportions, and door location. Twelve test cases were developed 

across these properties. These test cases are represented using the door-centric method of room 

representation. 

# Representation door x door y global angle left width right width length 

1 Square 0 1 270 4 1 5 

2 l < w 0 1 270 9 1 4 

Commented [HG2]: Define this term 



Aloise 52 
 

3 l > w 0 1 270 1 3 6 

4 l << w 0 1 270 1 9 0.2 

5 l >> w 0 0.1 270 0.1 0.1 10 

6 Small 0 0.05 270 0.195 0.005 10 

7 Large 0 50 270 1450 50 650 

8 Corner 5 0 0 0 5 15 

9 Ang = 90 5 4 90 4 11 5 

10 Ang = 180 3 15 180 12 3 5 

11 Ang = 0 3 0 0 3 2 15 

12 Ang ≠ 0, 90, 

180, 270 

1 7.5 262 7.566 7.566 5.3852 

Table 7: Test Cases Represented 

Table 7 displays each test case used to collect results during the project. Scale options included: small, 

medium, and large. Small contained positional locations on the order of magnitude 10^-2. Medium contained 

positional locations on the order of 10^1, and large contained positional locations on the order of 10^3. Global 

angle options included: 0 degrees, 90 degrees, 180 degrees, 270 degrees, and ≠ 0, 90, 180, 270 degrees. Room 

dimension options were categorized as the ratio between length and width. This included length to width ratios of 

1:1 (square room), 5:2 (length > width), 50:1 (length >> width), 2:5 (length < width), 1:50 (length << width). 

Door location options included on a corner or on a wall. 

3.6. Measures for Success 
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 To measure the accuracy of the room state estimate, we needed to find some way to 

compare the estimated rooms to the true state of the room. We wish to do this in some 

normalized way so that the room accuracy is measured representatively across various scoring 

methods used and test case rooms. 

 To represent accuracy, we decided to use the absolute difference between the values of 

each attribute of the estimated room vs the true state of the room. This included the absolute 

differences between the door x values, door y values, global angles, left widths, right widths, and 

lengths. This would represent the accuracy of the rooms over a number of measurements 

received, where a smaller value indicates better accuracy.   



Aloise 54 
 

4. Results 

 The following results were obtained by running the particle filter through each of the test 

cases. For each test case, the particle filter was run for multiple phases of receiving information. 

First, it was run on the first reading received. The output set of particles from that run was used 

to run the particle filter on the first and second reading. The output set of particles from that run 

would then be used to run the particle filter on the first, second, and third reading. Finally, that 

output set of particles was used to run the particle filter on the first, second, third, and fourth 

reading. This may be implemented differently in future work to better represent reality, though 

this simplified method was used to test these scoring functions. 

 These results were obtained by applying a noise standard deviation of 0.3 units. If units 

are interpreted as meters, then this noise would be equivalent to an average of 30cm inaccuracy 

for all readings. Noise is reapplied to reading values for each run of the particle filter. 

 These results were obtained running the deterministic elimination of particles approach 

due to time-limitation related technical issues with the probabilistic independent assessment 

approach and concerns with the probabilistic draw approach. The top 20% of scores were kept 

using this approach for each iteration. 

 These results were obtained using the door-centric representation of rooms. Reasons for 

this are detailed in Section 7.1.  

 In all cases below, returned values represent the absolute value of the difference between 

the average of the returned set from the particle filter and the anticipated return values for the 

true state of the test case room. These differences are represented independently for each room 

attribute. 
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 To assess whether attributes were being isolated correctly, the particle filter was run on 

all the test cases for each attribute only using the portion of the score meant to drive that 

attribute. For example, the particle filter was run using only the portion of the score meant to 

optimize the door x location, then run again only using the portion of the score meant to optimize 

door y location, etc. for each attribute of the door-centric room representation. This was done to 

ensure each attribute was being correctly isolated. Once each of these attributes are correctly 

isolated, the remaining scoring tasks will be to map these values to a score that represents each 

attribute effectively, driving the estimated state of the world to success. 

 For all figures and tables below: At 1, the first reading is available, a random particle 

generation occurs, and the particle filter runs. At 2, the particle filter is running its second 

iteration on two readings received. At 3, the particle filter is running its third iteration on three 

readings received. At 4, the particle filter is running its fourth iteration on four readings received. 

#  TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12 

1 2.015

996 

0.915

861 

0.473

144 

2.203

446 

1.303

911 

3.340

67 

2.150

52 

2.864

146 

0.137

627 

0.146

768 

3.843

306 

0.839

612 

2 0.355

92 

0.452

078 

0.215

984 

0.196

601 

0.090

854 

0.210

256 

1.581

78 

0.059

641 

0.142

111 

0.395

66 

1.455

644 

0.168

679 

3 0.149

028 

0.273

529 

0.229

07 

0.225

364 

0.065

869 

0.509

488 

1.012

489 

0.227

918 

0.182

838 

0.019

298 

0.021

988 

0.053

737 

4 0.099

311 

0.260

984 

0.170

523 

0.189

574 

0.140

909 

1.004

583 

0.218

164 

0.076

664 

0.086

788 

0.221

342 

0.036

912 

0.047

535 
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Table 8: Door X Difference Measurement for Each Test Case Over Readings Received 

Table 8 displays the difference between the expected true value of door x position and the average door x position 

value received from the set of particles returned from the particle filter for each successive run on the particle filter. 

This run was scored on solely optimization of door x location and door y location. Each test case is represented by 

TC1 for the first test case, TC2 for the second test case, etc. The lower the value in the table, the closer the returned 

set attribute average is to the expected return value of that attribute.   

 

# TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12 

1 2.083

701 

2.550

944 

1.502

129 

1.669

182 

2.952

002 

1.765

715 

30.44

636 

1.806

36 

1.903

219 

0.148

828 

0.423

62 

0.894

927 

2 0.051

146 

0.535

46 

0.576

092 

0.809

995 

0.280

593 

1.073

744 

27.02

711 

0.587

505 

0.043

092 

0.231

845 

0.043

882 

0.522

697 

3 0.427

289 

0.078

201 

0.221

682 

0.028

109 

0.063

788 

0.151

479 

24.05

212 

0.282

209 

0.279

999 

0.000

918 

0.050

868 

0.154

835 

4 0.729

258 

0.142

355 

0.046

723 

0.259

012 

0.234

76 

0.008

404 

22.55

341 

0.008

713 

0.017

614 

0.169

307 

0.090

349 

0.053

988 

 

Table 9: Door Y Difference Measurement for Each Test Case Over Readings Received 

Table 9 displays the difference between the expected true value of door y position and the average door y position 

value received from the set of particles returned from the particle filter for each successive run on the particle filter. 

This run was scored on solely optimization of door x location and door y location. Each test case is represented by 

TC1 for the first test case, TC2 for the second test case, etc. The lower the value in the table, the closer the returned 

set attribute average is to the expected return value of that attribute.   
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Figure 15: Test Case 1 Example of Attributes Over Readings Received Optimizing (Door X, 

Door Y) 

Figure 15 displays the difference between the expected true value of each attribute and the average attribute value 

received from the set of particles returned from the particle filter for each successive run on the particle filter for 

Test Case 1. This run was scored on solely optimization of door x location and door y location. The lower the value 

in the plot, the closer the returned set attribute average is to the expected return value of that attribute.  

 

 

Figure 16: Test Case 2 Example of Attributes Over Readings Received Optimizing (Door X, 

Door Y) 

Figure 16 displays the difference between the expected true value of each attribute and the average attribute value 

received from the set of particles returned from the particle filter for each successive run on the particle filter for 
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Test Case 2. This run was scored on solely optimization of door x location and door y location. The lower the value 

in the plot, the closer the returned set attribute average is to the expected return value of that attribute.  

 

Figure 17: All Test Cases Door X Difference Over Readings Received 

Figure 17 is a plotted representation of the data in Table 8. It displays the difference between the expected true 

value of door x position and the average door x position value received from the set of particles returned from the 

particle filter for each successive run on the particle filter. This run was scored on solely optimization of door x 

location and door y location. Each test case is represented by TC1 for the first test case, TC2 for the second test 

case, etc. The lower the value in the table, the closer the returned set attribute average is to the expected return 

value of that attribute.   

 

 

Figure 18: All Test Cases Door Y Difference Over Readings Received 



Aloise 59 
 

Figure 18 is a plotted representation of the data in Table 9. It displays the difference between the expected true 

value of door y position and the average door y position value received from the set of particles returned from the 

particle filter for each successive run on the particle filter. This run was scored on solely optimization of door x 

location and door y location. Each test case is represented by TC1 for the first test case, TC2 for the second test 

case, etc. The lower the value in the table, the closer the returned set attribute average is to the expected return 

value of that attribute.   

 

Figure 19: All Test Cases Except TC7 Door Y Difference Over Readings Received 

Figure 19 displays the same data as described in Figure 18 without plotting TC7. This is displayed for readability’s 

sake.  

# TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12 

1 4.630

983 

3.432

666 

6.641

48 

5.526

137 

1.885

769 

4.496

863 

2.591

595 

36.33

748 

0.567

727 

4.642

722 

41.54

407 

2.792

172 

2 0.589

635 

1.460

194 

0.353

99 

0.056

07 

0.997

649 

0.259

954 

0.952

559 

12.37

286 

0.870

232 

0.537

699 

7.567

705 

0.634

21 

3 0.441 0.256 0.335 0.221 0.222 0.188 0.167 3.625 0.016 0.277 0.650 0.524
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739 339 224 49 676 644 424 74 203 542 131 086 

4 0.334

827 

0.142

357 

0.073

837 

0.099

319 

0.082

741 

0.104

155 

0.271

118 

0.171

858 

0.026

998 

0.343

683 

287.9

052 

0.016

161 

 

Table 10: Global Angle Differences for Each Test Case Over Readings Received 

Table 10 displays the difference between the expected true value of global angle and the average global angle value 

received from the set of particles returned from the particle filter for each successive run on the particle filter. This 

run was scored on solely optimization of the global angle. Each test case is represented by TC1 for the first test 

case, TC2 for the second test case, etc. The lower the value in the table, the closer the returned set attribute average 

is to the expected return value of that attribute.   

 

Figure 20: Test Case 1 Example of Attributes Over Readings Received Optimizing Global Angle 

Figure 20 displays the difference between the expected true value of each attribute and the average attribute value 

received from the set of particles returned from the particle filter for each successive run on the particle filter for 

Test Case 1. This run was scored on solely optimization of the global angle. The lower the value in the plot, the 

closer the returned set attribute average is to the expected return value of that attribute.  
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Figure 21: Test Case 2 Example of Attributes Over Readings Received Optimizing Global Angle 

Figure 21 displays the difference between the expected true value of each attribute and the average attribute value 

received from the set of particles returned from the particle filter for each successive run on the particle filter for 

Test Case 2. This run was scored on solely optimization of the global angle. The lower the value in the plot, the 

closer the returned set attribute average is to the expected return value of that attribute.  

 

Figure 22: All Test Cases Global Angle Difference Over Readings Received 

Figure 22 is a plotted representation of the data in Table 10. It displays the difference between the expected true 

value of the global angle and the average global angle received from the set of particles returned from the particle 

filter for each successive run on the particle filter. This run was scored on solely optimization of the global angle. 

Each test case is represented by TC1 for the first test case, TC2 for the second test case, etc. The lower the value in 

the table, the closer the returned set attribute average is to the expected return value of that attribute.   
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Figure 23: All Test Cases Except TC11 Global Angle Difference Over Readings Received 

Figure 23 displays the same data as described in Figure 22 without plotting TC7. This is displayed for readability’s 

sake.  

# TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12 

1 111.7

508 

134.0

195 

132.8

671 

121.0

911 

107.8

37 

72.99

263 

101.6

572 

183.3

256 

77.49

792 

11.58

641 

188.4

441 

72.49

167 

2 59.86

491 

126.1

881 

126.6

359 

138.3

06 

95.67

358 

69.57

913 

83.50

013 

176.6

059 

71.96

895 

7.774

883 

191.6

793 

63.04

51 

3 64.72

486 

121.6

668 

110.9

554 

156.5

255 

111.1

369 

61.05

881 

63.20

962 

200.7

385 

65.63

679 

13.79

889 

200.1

803 

51.98

099 

4 66.35

401 

91.05

703 

78.68

125 

169.2

598 

105.7

996 

66.06

629 

59.31

763 

213.0

205 

77.84

613 

12.79

87 

231.4

782 

75.17

156 

 

Table 11: Global Angle Differences for Corner Distances Approach for Each Test Case Over 

Readings Received 
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Table 11 displays the difference between the expected true value of the global angle and the average global angle 

value received from the set of particles returned from the particle filter for each successive run on the particle filter. 

This was run focused on optimizing the global angle via the corner distances approach. Each test case is 

represented by TC1 for the first test case, TC2 for the second test case, etc. The lower the value in the table, the 

closer the returned set attribute average is to the expected return value of that attribute.   

 

Figure 24: Test Case 1 Example of Attributes Over Readings Received Optimizing Global Angle 

Through Corner Distances Approach 

Figure 24 displays the difference between the expected true value of each attribute and the average attribute value 

received from the set of particles returned from the particle filter for each successive run on the particle filter for 

Test Case 1. This run was scored on solely optimization of the global angle via the corner distances approach. The 

lower the value in the plot, the closer the returned set attribute average is to the expected return value of that 

attribute.  
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Figure 25: Test Case 1 Example of Attributes Except Global Angle Over Readings Received 

Optimizing Global Angle Through Corner Distances Approach 

Figure 25 displays the same data as described in Figure 24 without plotting the global angle. This is displayed for 

readability’s sake.  

 

Figure 26: All Test Cases Global Angle Difference Over Readings Received Via Corner 

Distance Approach 

Figure 26 is a plotted representation of the data in Table 11. It displays the difference between the expected true 

value of the global angle and the average global angle received from the set of particles returned from the particle 

filter for each successive run on the particle filter. This run was scored on solely optimization of the global angle via 

the corner distances approach. Each test case is represented by TC1 for the first test case, TC2 for the second test 
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case, etc. The lower the value in the table, the closer the returned set attribute average is to the expected return 

value of that attribute.   

# TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12 

1 6.890

353 

5.851

874 

1.649

742 

1.852

036 

5.563

687 

4.473

679 

43.71

646 

1.969

719 

3.862

531 

2.657

74 

4.887

342 

0.910

059 

2 1.062

284 

6.440

68 

1.486

313 

7.730

59 

0.612

503 

3.958

859 

43.86

336 

2.633

875 

6.842

879 

1.218

674 

2.303

175 

0.507

485 

3 0.125

392 

8.183

036 

1.721

222 

7.854

504 

0.347

145 

0.495

719 

40.94

059 

0.177

934 

7.779

531 

0.707

496 

1.869

274 

0.070

283 

4 0.380

685 

8.454

564 

1.846

151 

8.121

74 

0.239

911 

0.230

537 

40.99

535 

0.046

687 

7.462

921 

1.914

026 

1.713

987 

0.361

717 

 

Table 12: Right Width Differences for Each Test Case Over Readings Received 

Table 12 displays the difference between the expected true value of the right width and the average right width value 

received from the set of particles returned from the particle filter for each successive run on the particle filter. This 

run was scored on solely optimization of the right width. Each test case is represented by TC1 for the first test case, 

TC2 for the second test case, etc. The lower the value in the table, the closer the returned set attribute average is to 

the expected return value of that attribute.   
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Figure 27: Test Case 1 Example of Attributes Over Readings Received Optimizing Right Width 

Figure 27 displays the difference between the expected true value of each attribute and the average attribute value 

received from the set of particles returned from the particle filter for each successive run on the particle filter for 

Test Case 1. This run was scored on solely optimization of the right width. The lower the value in the plot, the closer 

the returned set attribute average is to the expected return value of that attribute.  

 

Figure 28: Test Case 2 Example of Attributes Over Readings Received Optimizing Right Width 

Figure 27 displays the difference between the expected true value of each attribute and the average attribute value 

received from the set of particles returned from the particle filter for each successive run on the particle filter for 
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Test Case 2. This run was scored on solely optimization of the right width. The lower the value in the plot, the closer 

the returned set attribute average is to the expected return value of that attribute.  

 

Figure 29: All Test Cases Right Width Difference Over Readings Received without TC7 

Figure 29 is a plotted representation of the data in Table 12. It displays the difference between the expected true 

value of the right width and the average right width received from the set of particles returned from the particle 

filter for each successive run on the particle filter. This run was scored on solely optimization of the right width. 

Each test case is represented by TC1 for the first test case, TC2 for the second test case, etc. The lower the value in 

the table, the closer the returned set attribute average is to the expected return value of that attribute.   

# TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12 

1 4.084

582 

2.339

732 

7.429

135 

4.243

045 

5.912

401 

6.797

942 

1443.

638 

6.176

986 

1.956

11 

6.817

146 

2.455

656 

1.636

053 

2 2.121

942 

0.936

957 

7.546

445 

3.569

828 

5.256

354 

7.162

841 

1445.

09 

4.970

234 

2.126

044 

8.671

791 

2.942

452 

0.339

338 

3 2.677

744 

0.454

717 

2.097

449 

4.929

63 

0.531

577 

0.986

213 

1445.

109 

4.961

304 

6.671

631 

8.741

652 

2.068

103 

0.245

666 
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4 2.607

217 

0.523

057 

1.430

823 

4.162

245 

0.538

077 

0.650

592 

1444.

917 

4.163

706 

6.931

738 

8.824

859 

0.244

162 

0.155

648 

 

Table 13: Left Width Differences for Each Test Cases Over Readings Received 

Table 13 displays the difference between the expected true value of the left width and the average left width value 

received from the set of particles returned from the particle filter for each successive run on the particle filter. This 

run was scored on solely optimization of the left width. Each test case is represented by TC1 for the first test case, 

TC2 for the second test case, etc. The lower the value in the table, the closer the returned set attribute average is to 

the expected return value of that attribute.   

 

Figure 30: Test Case 3 Example of Attributes Over Readings Received Optimizing Left Width 

Figure 30 displays the difference between the expected true value of each attribute and the average attribute value 

received from the set of particles returned from the particle filter for each successive run on the particle filter for 

Test Case 3. This run was scored on solely optimization of the left width. The lower the value in the plot, the closer 

the returned set attribute average is to the expected return value of that attribute.  
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Figure 31: Test Case 3 Example of Attributes Excluding Global Angle Over Readings Received 

Optimizing Left Width  

Figure 31 displays the same data as described in Figure 30 without plotting the global angle. This is displayed for 

readability’s sake.  

 

Figure 32: All Test Cases Left Width Difference Over Readings Received 

Figure 32 is a plotted representation of the data in Table 13. It displays the difference between the expected true 

value of the left width and the average left width received from the set of particles returned from the particle filter 

for each successive run on the particle filter. This run was scored on solely optimization of the left width. Each test 

case is represented by TC1 for the first test case, TC2 for the second test case, etc. The lower the value in the table, 

the closer the returned set attribute average is to the expected return value of that attribute.   
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Figure 33: All Test Cases Except TC7 Left Width Difference Over Readings Received 

Figure 33 displays the same data as described in Figure 32 without plotting TC7. This is displayed for readability’s 

sake.  
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5. Discussion 

5.1. Room Representation & Generation 

 Across the three primary methods for room representation and generation, each had their 

own advantages and disadvantages. The global coordinate system representation required no 

conversion from sensor readings, allowing these attributes to be compared directly to the sensor 

readings. However, geometric room properties required additional derivation to derive to apply 

various geometric scoring methods. Additionally, this representation makes a concerning seed 

for particle generation. If resampling these attributes with some mean and standard deviation of 

global coordinate values, it does not actively enforce traditional geometric properties of the 

room. This is concerning that the values produced over time could converge to a non-physically 

possible or non-box-shaped room. Additionally, this method of room representation requires 10 

parameters to represent all the room data, whereas the other methods of room representation only 

require 6 or 7 parameters. 

 The geometric method utilizes traditional methods of geometrically describing rectangles. 

Due to this, there are limited concerns in representing attributes within the resampling step. 

Unfortunately, this method has one major downfall - its non-intuitive representations of the door 

parameter. Expressing the door in forms of door x location and door y location coordinates 

disassociates the door parameter from the geometric properties of the room, not actively 

describing the door relative to the room geometry. The angle-based door representation does 

represent the door relative to the room geometry, though it involves a complicated 

implementation and a non-intuitive representation of the door. This made testing for room 

convergence very inconvenient, as it was difficult to reasonably tell when the door was being 

estimated in its intended location. Additionally, there were concerns of decreasing accuracy for 
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larger sizes of rooms when representing via angle. Though the distance door representation was 

not ever implemented, it was predicted to solve the issue of loss of accuracy over time. Besides 

that, it was still predicted to have every other complication as the angle method. These concerns 

spawned the idea for the door-centric room representation method. 

 Since the door is the location our robot enters through, not only are we consistently 

receiving that reading first and most confidently, but the robot also constructs its understanding 

of the room relative to the door. Using the door as our anchoring point in space allows us to have 

more confidence in our anchor point as well as constructing the room in a method relevant to 

tactical room entry. By designating the width to the right of the door and the width to the right of 

the door, it creates a convenient implementation of geometric properties relevant to tactical 

language, particularly in describing both the feed and weight of the room.  

5.2. Elimination of Particles 

 The three approaches considered for the elimination of particles were the deterministic 

approach, the probabilistic draw approach, and the probabilistic individual assessment approach.  

Though the deterministic approach was selected to collect results on the test cases, we 

had concerns with this implementation. By eliminating scores based on percentile, we are 

guaranteeing the elimination of the lowest scoring particles. When primarily determining scores 

based on only half of the total attributes of the room when using the first reading, we had 

concerns that guaranteeing the elimination of all lowest scoring particles could cause improper 

convergence while potentially eliminating solutions accurate to the unobservable attributes from 

the set of potential states. 

The probabilistic draw approach is the only approach that does not do traditional 

elimination and backfilling of particles. Instead, it draws some number of particles with 



Aloise 73 
 

replacement from the distribution according to score and creates an entirely new distribution 

based on the attributes of the selected particles. In this sense, there are no particles that we keep 

from the previous iteration. This is a concern if there happens to be more than one promising 

representation of a room, a multi-modal distribution of particles drawn. Creating an entirely new 

set of particles based on the mean of the attribute values could remove the variability in the set 

completely. This was the primary concern with the probabilistic draw approach and why it was 

not chosen to be pursued. 

 The probabilistic assessment approach was the approach remaining with no immediate 

concerns. Unfortunately, due to time-constraints and technical complications, this approach was 

unable to be implemented in gathering results. 

5.3. Scoring 

In Section 6, the displayed results were collected with the intention of verifying the ability to 

converge each attribute to the intended true room value across various test cases. We can assess 

the success of the scoring of each attribute from this returned data. 

5.3.1.  Door X Position and Door Y Position 

The score value for the door x position and the door y position were calculated together. As 

shown in Table 8, which displays door x optimization across test cases, eleven of the twelve test 

cases returned a value for the fourth reading that was lower than the first reading. In Table 9, 

which displays door y optimization across test cases, eleven of the twelve test cases returned a 

value for the fourth reading that was lower than the first reading. These results are visualized in 

Figures 17, 18, and 19. Overall, eleven of the twelve test cases returning a lower value is a 

positive result. This indicates that door x position and door y position are being accessed 
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effectively. Where twenty-one of the twenty-four results across door x position and door y 

position returned a difference value of <0.27 by the fourth reading received. 

To shed light on potential issues, in both cases, it was Test Case 10 which returned fourth 

reading results higher than the first reading results. However, it is important to note that the first 

reading results for Test Case 10 were also the most accurate first reading results across all test 

cases. Knowing this information, it may be of interest to continue investigating this test case to 

see if this is a trend across many runs. If we were to acknowledge differences in this test case 

compared to the others, Test Case 10 is the global angle is 180 degrees edge-case test case. The 

true values for (door x position, door y position) were (3, 15). These coordinate values are not 

unusual values across successful test cases. 

In the door y position results, though Test Case 7 door y values decreased over readings 

received, it remained an outlier compared to the other test cases. The Test Case 7 edge case is the 

large-scale room. The true values for the (door x position, door y position) were (0, 50). After 

viewing these results of decreasing difference across measurements received while maintaining 

large inaccuracy to the true value for door position y, it was discovered that the particle 

generation method does not generate particles with door y position values greater than 25 in the 

initial set of particles. This ensures that there will be no particles representative of this door y 

position in the initial set. The particle generation function needs to be kept under surveillance to 

ensure all potentially needed particles are accounted for. 

5.3.2.  Global Angle 

Table 10 displays the global angle optimization across test cases. In eleven of the twelve test 

cases, the value returned from the fourth readings was lower than the first reading. These results 

are visualized in Figure 22 and Figure 23. Overall, eleven of the twelve test cases returning a 
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lower value is a positive result. This indicates that the global angle is being accessed effectively. 

Where eleven of the twelve test cases returned a difference value of <0.35 by the fourth reading 

received. 

To shed light on potential issues, it was Test Case 11 which returned fourth reading results 

higher than the first reading results. It may be of interest to continue investigating this test case to 

see if this is a trend across many runs. If we were to acknowledge differences in this test case 

compared to the others, Test Case 11 is the global angle is 0 degrees test case. Test Case 8 is the 

only other test case at global angle 0 degrees. When viewing the successful Test Case 8 in Figure 

23, there is a large amount of inaccuracy in the global angle at the first three readings compared 

to the other test cases. These results indicate that test cases where the true global angle value is 

close to zero are worthy of further evaluation. 

5.3.3.  Global Angle Corner Distances Approach 

Table 11 displays the global angle optimization using the corner distances approach. In six of 

the twelve test cases, the value returned from the fourth readings was lower than the first reading. 

These results are visualized in Figure 26. Overall, six of the twelve test cases returning a lower 

value is a negative result. All but one test case return difference values of >59 after the fourth 

reading. This indicates that the implementation of this method of scoring was done incorrectly 

and is ineffective toward optimizing the global angle. 

5.3.4.  Right Width 

Table 12 displays the right width optimization. In seven of the twelve test cases, the value 

returned from the fourth readings was lower than the first reading. These results are visualized in 

Figure 29. Overall, seven of the twelve test cases returning a lower value is a negative result. 

This indicates that the implementation of this method of scoring was done incorrectly and is 
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ineffective toward optimizing the right width. However, the test cases that did converge, 

converged very accurately with a difference value of <0.4. 

To shed light on potential issues, observe that Test Cases 2, 4, and 9 returned unusually high 

fourth reading results. These test case edge cases were l<w, l<<w, and angle = 90. The ideal right 

width values were 1, 9, and 11. These were not unusual values across all the test cases. It may be 

of interest to continue investigating this test case to see if this is a trend across many runs.  

Additionally, Test Case 7 was highly inaccurate throughout its full run. This can be attributed 

to similar reasons as noted in Section 7.3.1, as the initial particle generation did not allow for the 

generation of particles with a right width of 50. 

5.3.5.  Left Width 

Table 13 displays the left width optimization. In nine of the twelve test cases, the value 

returned from the fourth readings was lower than the first reading. These results are visualized in 

Figure 32 and Figure 33.  

To shed light on potential issues, observe that Test Cases 9 and 10 returned unusually high 

fourth reading results. These test case edge cases were angle = 90 and angle = 180. The ideal left 

width values were 4 and 12. These were not unusual values across all the test cases. It may be of 

interest to continue investigating this test case to see if this is a trend across many runs. 

Additionally, Test Case 7 was highly inaccurate throughout its full run. This can be attributed 

to similar reasons as noted in Section 7.3.1, as the initial particle generation did not allow for the 

generation of particles with a right width of 1450. 
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6. Conclusion 

For each point of discussion – room representation and generation, elimination of particles, 

and scoring methods - various conclusions can be made.  

The room representation and generation approach showing the most promise is the door-

centric room representation. This is most relevant to tactical language descriptions and 

representative of room entry perspective. Additionally, it represents a room using the lowest 

number of parameters across all representation methods explored and has an intuitive generation 

process. This is compared to other methods like the geometric approach, which has non-intuitive 

door representation, and the coordinate approach, which has an inconvenient seed for room 

generation and needs a larger number of parameters to represent a room. 

The particle elimination approach showing the most promise is the probabilistic individual 

assessment approach. However, the deterministic approach shows promise as well. The 

probabilistic individual assessment approach is selected to pursue further due to concerns with 

the alternate approaches. For the probabilistic draw approach, we fear complications with 

multimodal distribution of particles. For the deterministic approach, we fear ensuring the 

elimination of lowest scoring particles could lead to converging to local score maxima. A local 

score maximum would be a particle (or set of particles) that score high relative to particles with 

similar attributes, without being the highest scoring particle across the full set of potential states 

(i.e., this is not the correct solution). 

Across methods of scoring for (door x location, door y location), global angle, left width, and 

right width, we can draw the following conclusions. The (door x location, door y location) and 

global angle parameters are being isolated correctly. However, the global angle optimization via 

alternative corner distances approach is ineffective. Since there is already an effective way of 
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optimizing the global angle, this method is not necessary. The left width and right width 

parameters are being isolated incorrectly. This requires additional investigation to determine and 

rectify the source of the problem, as failing test cases do not have any immediately observable 

similarities. 

Though some scoring methods for attributes were effective, there were specific test cases that 

require additional observance. Test Case 7 was the test case assessing a large-scale room. 

Unfortunately, our current method of generating an initial set of particles does not accommodate 

for this. This should be addressed in future work. For optimizing global angle, the current 

method shows outliers at global angle = 0 test cases differently than other true global angle value 

test cases. This needs to be investigated further to determine the cause of the outliers. 

By the end of the project period, there exists a determined room representation technique, a 

room generation function for both initialization and resampling functionalities, some particle 

elimination implementations, isolated scoring functions for individual attributes, as well as a 

function to export run data to a csv file. 

There were many improvements that could have been made to the execution of work within 

the project period. Primarily, it would have been beneficial to approach the representation of 

rooms from the relevant tactical language descriptors from the beginning of the project. This 

would have saved a lot of time dedicated to less-relevant traditional room representation 

approaches. Overall, however, the project would have greatly benefitted from introducing myself 

to the existing project code earlier on. In this project, there was a lot of research conducted in the 

first three to four weeks. Since many aspects of the project are relatively novel, a lot of this 

research ended up unnecessary in final implementations. Though collecting redundant 

information frequently becomes unavoidable in the research project process, as we do not always 
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know what to avoid from the start, the time spent on researching redundant information could 

have been greatly decreased by earlier introduction to the existing codebase. This would have 

given a more solid understanding of the state of the project earlier and avoided a lot of fruitless 

efforts. 

In this project, we were able to make substantial functioning additions to the codebase for 

feature prediction via particle filtering as well as make observations that will drive future work 

of the project.  
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7. Future Work 

7.1. Likelihood of Hostile Agents or Civilians 

 As any agent, robotic or human, executes a tactical room search, there are many 

considerations that could be relevant to the search. Particularly, we may have interest in who 

may be located within the space and where. Depending on the context of the room search, there 

could be hostile agents or civilians within the space. It may be of further interest to the project to 

include some probability of hostile agents or civilians in specified rooms or areas. This could add 

a layer of usefulness to the robot as a member of a human team. This prediction could be made 

based off some provided context of the search. Or we could include additional understanding of 

room features and of geometric blind spots from the primary line of vision. These areas could 

have higher potential for hidden threats and can be noted as such from the system. 

7.2. Recognition of Additional Relevant Features 

 Currently, the only features the system assumes to identify are corners and doors. The 

observations of these features are purely positional. If additional features could be recognized 

and additional observations of features could be made, there would be added usefulness to the 

system. Some potential additions are listed below. 

7.2.1. Materials 

 Materials of doors or additional features of the room could be of large importance to a 

room entry team. Particularly, some materials can be penetrated while others are not. In a tactical 

room search situation, there will be potential for gunfire. If our robot could identify a likelihood 

of a material being bulletproof or flammable, this could impact how the team executes the 

search. This is something that could be considered in further developments of the project. 

7.2.2. Other Room Obstacles 
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 When entering a typical room, it is uncommon that the room is completely empty. It is 

possible that there may be obstacles in that room. This could impact the team’s method of entry. 

If an obstacle is blocking their intended path, that search path must be adjusted. If the robot 

could observe and identify these obstacles within a room, it could be a more valuable member to 

human teams.  

 In addition to identifying these objects and their location within space, if bulletproof 

materials could also be identified, the robot could further assess areas of cover for its team. 

Incorporating identification of other room obstacles and materials can make the robot more 

useful for its team and can be considered as an addition to the project in future work. 

7.2.3. Windows or Non-Door Methods of Exit/Entry 

 Currently, the only feature of the room that the robot identifies as a method of exit or 

entry is a door. There may be other methods of entering or exiting a space. These could be 

windows or small entryways. When in a tactical room search setting, it would be useful for the 

robot to identify such points of entry and their size. 

7.3. Generation of Additional Room Types 

 In the current state of the project, we assume that the room is a box-shaped room. Though 

this is a common shape of room, there are many other shapes rooms can take. As represented in 

tactical language, there are also L-shaped rooms, U-shaped rooms, T-shaped rooms, and more. 

Future additions to the project will include room generator functions that can accommodate each 

additional room type, including options for irregular rooms as described by tactical language. 

7.4. Fusion of Tactical Language Interpreter 

Returning to the primary goal of the TFLIP project, the goal was to develop a robotic 

agent that can understand structured tactical language and utilize it for a tangible purpose. At the 
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current stage of the project, there is no portion that understands structured tactical language. 

Instead, we have been assuming tactical language input. Separately, a TERRAA team member 

created a language parser. This parser takes in some free-text input and outputs a parsed and 

categorized representation of the text as it pertains to tactical language. The fusion of this tactical 

language parser with existing code as well as addition of associated room type generation 

functions would complete the tactical language interpretation portion of the project. This is 

necessary to meet the primary TFLIP objective and therefore an important part of future work. 

7.5. Conversion of Room-Representing Data Types 

 The code currently utilizes the Network X Python graph package. This is used to 

represent a copy of the particles in the particle filter. Primarily, this graph package was used for 

its visualization tools. However, we could also represent this data through a dictionary. The 

transfer of particle information to dictionary key value pairs is an opportunity for future work. 

7.6. Adjacent Room Representation 

 In a practical application, it is unlikely that we enter a building that consists solely of one 

room with single point entry. For this reason, it is important for us to be able to accommodate for 

connecting rooms and multiple doors. This could be using a graph to connect rooms and doors. 

The implementation of this will be left to future work. 

7.7. Common Lines of Sight Represented in Order of Readings Received 

 As described in Section 5.1.2, common lines of sight to impact what readings we are 

most likely to see when entering a room. Taking this information into account could improve the 

accuracy of scoring by the robot as well as simulate a more accurate environment. A method to 

present reading information to the robot in a realistic way is left for future work. In addition, 

having this information assist in scoring particles is also left for future work.  
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7.8. Combining Scoring Attributes 

 As described in Section 5.3.2, The combining of scoring attributes into a single value 

representative score was unable to be completed during this project. Since there are various ways 

to combine these values, multiple methods must be implemented and evaluated in future work. 

This is essential for the particle filter to run successfully and to converge to an accurate estimate 

of the room. 
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