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Abstract 

Vehicles are being manufactured with increasing numbers of programmable and intercon-

nected electronic control units (ECUs), exposing them to hacking by outside agents. The 

Unified Diagnostics Services (UDS) have become an essential tool for manufacturers and 

technicians for servicing and updating vehicles [1]. However, they are also the path by which 

hackers can penetrate the electronics of a vehicle, gain access to its ECUs, corrupt their soft-

ware, and gain ultimate control of the vehicle itself. In this project, a data logger was devel-

oped to keep a running history of communication within the vehicle to help a forensic team 

determine what was happening to the electronics before, during, and after an attack. 

A prototype Data Logger was implemented using off-the-shelf microcontrollers and parts, 

and it successfully demonstrated the concept in a test bench that simulates an actual vehicle. 

However, the microprocessor and software libraries were discovered to be too slow to cap-

ture a perfect record of information after an attack. This report concludes with guidance for 

future projects.  
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Executive Summary 

Vehicular electronics are becoming increasingly susceptible to hackers and the auto-

motive sector is failing to catch up. 

Introduction - The CAN Bus has exclusive control over the communication that occurs among 

the various electronic components within the vehicle. The CAN Bus features a set of diag-

nostic services call the Unified Diagnostic Services (UDS). These services are used to assist vehi-

cle manufacturers, technicians, and owners in accessing critical parts of the vehicle such as 

diagnostic information and ECU specific functionality. If a malicious user were able to gain 

access to the vehicle’s CAN Bus, he could potentially gain control over critical parts of the 

vehicle’s infrastructure using UDS. After a vehicle hack and/or accident has occurred, it is 

vital that a forensics analyst can analyze a log of vehicle CAN data, conveying the state of 

the vehicle before, during, and after the attack has occurred.  

The goal of this project was to develop a Data Logger that records sufficient infor-

mation for a forensics analyst to determine a vehicle’s condition before, during, and after a 

hack attempt and, if possible, discover the source of the hack attempt. We did this by devel-

oping a Data Logger that monitors a recent history of all CAN Bus messages and also cap-

tures and saves that history whenever a possible security threat is detected. The forensics an-

alyst would use a UDS Guide to determine the extent of the attack, what ECU(s) were tar-

geted, and if there was any damage to the vehicle. In an instance where an accident had oc-

curred, the forensics analyst would be able to determine who is liable for the accident. The 

device developed in this project is a prototype of what we hope could become a common 

place tool for automotive experts to better protect their electronic subsystems from hacking. 

Design Requirements - The data recorded must be read from a vehicle’s OBD-II port and 

stored in a readable form, preferably in the format of a text file. This requires a programma-

ble microcontroller for flexibility, portability, power efficiency, and the ability to adapt to dif-

fering attack strategies. The forensics analyst needs timestamps that indicate when packets 

were read from the bus, the packet’s arbitration ID in HEX, and the packet’s payload in 

HEX in order to properly determine the state of the vehicle and its peripherals. Table 1 

shows the design requirements for the Data Logger. 
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Table 1: Design Requirements 

CAN Read Speed 1500 packets/sec 

External Storage Write Speed 30 KB/sec 

Random Access Memory (RAM) > 64 KB 

External Storage Space > 1 GB 

 
Implementation - The hardware and storage analysis determined the selection of the Teensy 3.2 

as the microcontroller and the SD card as the best storage option for the device. The Teensy 

3.2 requires an SD card adapter with supporting C libraries to interface with SD cards. The 

BeagleBone Black was selected as the most desirable microcontroller to use for testing our 

Data Logger device. Figure 1 shows the final Data Logger setup also connected to the Bea-

gleBone Black Test Bench. 

Figure 1: Picture showing the final Data Logger setup.  

On the left is the BeagleBone Black sends the recorded Nissan Altima CAN packets to the 

SN65HVD230 CAN Board (Black box). This creates a CAN network (Green Box) 

which is then sent to the Teensy (Red Box). The information is saved 

to an SD card reader (Orange Box), using time information from 

the DS1307 RTC Timing Module (Light Blue Box). 
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Timing 
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CAN 
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The Data Logger device needs a timing module in order to get the current time. This 

is needed for recording the timestamps of the messages because the messages sent on the 

CAN network do not include timestamps in them. The timestamp is critical for this project 

because the forensics analyst needs to know when possible attacks occurred in the network 

and when any effects from the attack occurred.  

The risk of damaging an actual vehicle was considered too great. So we created a 

Test Bench to simulate test data from an actual vehicle. The Test Bench was based on a Bea-

gleBone Black microcontroller and the data was recorded from a Nissan Altima during nor-

mal driving in the Worcester area which is explained in Chapter 2.6. The Test Bench sends 

these test vectors to the Data Logger device by using the SN65HVD230 chip. The Data 

Logger reads all messages and runs an algorithm to select and log relevant messages when a 

UDS message is detected on the network. The Test Bench can also send modified test vec-

tors that have more or fewer UDS messages.  

Results - After executing multiple tests with the BeagleBone Black Test Bench and Data Log-

ger, we examined the files created for each test. Figure 2 is a screenshot of the Af-

ter_UDS_Attack text file, where the UDS packet AID of 7E8 is the first packet recorded. 

This screenshot displays the Data Logger is working properly and recording the CAN pack-

ets after the UDS packet is injected into the test bench. 

It became apparent during our analysis that about 28% of the packets were missed 

by the Data Logger when faced with a DoS attack. Since the Data Logger prototype is inca-

pable of logging all packets that are monitored on the bus during and after a UDS attack has 

Figure 2: Screenshot of the After_UDS_Attack_2.txt file. 

The UDS arbitration ID is in the red square. 
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occurred, further design and optimization is necessary. This issue can be attributed to the ex-

tended write latency when storing large amounts of CAN traffic to the SD card with a single 

threaded CPU. A possible solution to this problem is to use a microcontroller that is capable 

of running multiple threads on one or more CPU cores. One thread can be used to read the 

traffic on the CAN network while the other thread writes previously recorded traffic to the 

SD card. This design shift would entail further algorithm optimization in which a second cir-

cular buffer would be used to allow both threads to access the corrupt traffic at once. This 

would mitigate the need for the linear buffer currently used to assist in the stream to the SD 

card and make CAN data reading and writing parallel tasks. 

Conclusion - Vehicle technology is continually advancing, in order to assist the driver and pas-

sengers by making their ride more safe and enjoyable with advancements such as assisted 

parallel parking, assisted braking, and automated highway driving. It is easy to see how this 

presents a security risk; if a hacker were to gain access to certain ECUs, he could control an 

automated or assisted vehicle service. Vehicle manufacturers are working to develop proper 

vehicle security, but have not been able to keep up with the technological advancements, in 

large part due to the long vehicle development time. This prototype Data Logger would be 

beneficial to both vehicle operators and manufacturers, as it would help protect the opera-

tors, while giving manufacturers important information about how hackers are using the 

UDS services to compromise vehicles. 

Once final testing was completed, the Data Logger was concluded to perform appro-

priately, but some CAN packets were dropped. This can be attributed to two reasons: (1) the 

CPU on the Teensy is a single core, single threaded CPU and (2) the CAN libraries are not 

fully optimized. If the selected microcontroller had a CPU capable of multi-threading, one 

thread could read CAN data from the vehicle, while the other recorded this CAN data to ex-

ternal storage. A new library could be optimized for this new CPU in order to take advantage 

of onboard caches available to the developer. 
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1.0 Introduction 

Transportation has evolved since the introduction of the automobile in the late 19th 

and early 20th century. Primitive vehicles were essentially metal chassis coupled with gas 

powered engines. During this time period, there were approximately 8,000 vehicles in the US 

and only about 25,000 vehicles in the entire world [2]. As technologies became more ad-

vanced so did the number of automobiles that housed them. In the year 2002, there were 

about 130 million vehicles in the US, and about 530 million vehicles worldwide [2]. Starting 

in 1978, vehicle manufacturers began to place microcontrollers, sensors, and network inter-

faces into automobiles [3]. These microcontrollers are known as Electronic Control Units 

(ECUs). An ECU is one of many microcontrollers placed in vehicles in order to control the 

various operational, safety, and emissions functions of the vehicles. Before long, an automo-

tive networking standard called CAN Bus (i.e., Controller Area Network) emerged as the uni-

versal way for such devices to communicate and work together during the operation of the 

vehicle [4]. Figure 3 displays a few models of cars and their increasing implementation of mi-

crocontrollers in the recent years [5]. 

Some of these microcontrollers are used for processes such as fuel emissions, which 

are controlled by the vehicle’s main ECU (i.e. the Central Processing Unit or CPU), in order 

to ensure safe levels of CO2 are emitted into the atmosphere. Currently, vehicle manufactur-

Figure 3: The number of ECUs in car brands such as a Ford Fusion and Toyota Prius.  

This information shows how in only about a 10 year span, the number of computers 

in cars has grown a significant amount. 
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ers are designing vehicles with additional electronic components to provide advanced capa-

bilities such as built-in wireless networks. A general overview of the location of microcon-

trollers in a vehicle is shown in Figure 4 [6]. 

This is a big step for the future of vehicle manufacturing but comes with significant 

risks and vulnerabilities. Almost every computer has inherent security flaws, but the addition 

of a networking system creates new vulnerabilities. Some vehicle manufacturers have also 

began to implement an increasing number of networks in new automobiles to accommodate 

other technologies such as cellphones, web-based services, and diagnostic tools. The reason 

for multiple CAN Bus networks is to divide the vehicle, as one network usually controls just 

the engine components, while the other controls the rest of the vehicle. An overview of 

some of the potential vulnerabilities in vehicles can be seen in Table 2 [5]. Consequently, this 

has led to an increasing number of attack surfaces1 in vehicles; thus, increasing the number 

of vulnerabilities in a vehicle an attacker could exploit [7]. Even though vehicles today are 

                                                
1 An attack surface is any part of a vehicle that is vulnerable to an attack. 

Figure 4: Example of general computer placement in a vehicle. 
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more advanced than those designed over 100 years ago, they present risks that the public 

never imagined and that the automobile industry cannot afford to neglect [7]. 

Table 2: Portrays the different ‘attack surfaces’ that are available to a potential hacker. 

Finding Ways into a Vehicle's Network 

Gaining Access/Attack 

Surfaces Explanation 

Bluetooth Phones paired with the vehicle 

Radio System Processing data such as the name of the song 

Cellular/WIFI Connection to the Internet 

Taking Control Explanation 

Adaptive Cruise Control Computer controls speed of the car based on road conditions 

Collision Prevention Engages brakes to prevent a crash 

Lane Assist Uses vehicle's sensors to stay in the lane by sending signals to the steering wheel 

 
In order to accommodate all the technologies being added to automobiles today, 

manufacturers have designed a standardized vehicle network called the Controller Area Net-

work (CAN) Bus [4]. The CAN Bus has exclusive control over the communication that oc-

curs between the various electronic components within the vehicle. Devices connected to 

the CAN Bus communicate with each other in real-time. Security within the CAN Bus is a 

serious issue because the vehicles’ computers are connected to it. If a malicious user were 

able to gain access to the vehicle’s CAN Bus, he or she could potentially gain control over 

critical parts of the vehicle’s infrastructure. This malicious user could perform a range of at-

tacks. The following are examples of such attacks performed in laboratory settings: 

 Turned the steering wheel, controlled the light, and turned off the engine [8]; 

 Controlled the vehicle wirelessly (i.e. lights, brakes, and steering wheel) [9] 

[10]; 

 Gained access to a vehicle via the OnStar unit [11]; 

 Deceived an autonomous vehicle’s LiDAR system to make the sensors be-

lieve that there were objects nearby [12] [13]; 

 Left a virus in a Tesla S model that could turn off the power at any time [14]. 

Vehicle manufacturers are beginning to acknowledge the potential dangers of these 

attacks, and are working to find solutions to potential security flaws. For example, the Miller 

and Valasek network attack described above demonstrated that it is possible to hack into an 
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entire series of Chrysler vehicles through the Sprint cellular network featured in the dash-

board infotainment system [15]. This demonstration forced Chrysler to recall over 1 million 

vehicles in order to fix this security flaw [15]. National news for these hacks demonstrate 

that there is a need for a device that can detect when a vehicle is being hacked and that logs 

relevant information about the attack.  

1.1 MQP Goals and Deliverables 

At the beginning of this project, the goal was to research into how vehicles com-

municate over the CAN Bus, and then reverse engineer a CAN Bus packet to force a test ve-

hicle to perform a specified action. To accomplish this goal, we read CAN Bus packets from 

our test vehicle (a 2014 Nissan Altima) and attempted to determine which messages corre-

sponded to which actions in the vehicle, such as door locks and door windows.  

Once testing was completed, we began to send reverse engineered packets back into 

the test vehicle attempting to provoke changes. After many attempts, we were unable to 

force the vehicle to perform tasks such as locking/unlocking the doors or opening the win-

dows. This lead to more research about using UDS messages to hack the car. UDS messages 

are used to enter the diagnostic mode of the vehicle, which allows easier access to control-

ling the vehicle by directly communicating with the ECUs in the car. We discovered from 

our research that one problem with this approach is that UDS messages can seriously dam-

age the ECUs of the vehicle if the wrong commands are used or if the ECUs are overloaded 

with them [1]. With this new knowledge in mind, we decided to change our scope to devel-

oping a Data Logger device, especially after the team discovered that safety articles described 

in Chapter 2.3.    

The goal of this project is to develop a Data Logger that records sufficient infor-

mation for an expert or forensics analyst to determine a vehicle’s condition before, during, 

and after a hack attempt and, if possible, discover the source of the hack attempt. We will do 

this by developing a Data Logger that monitors a recent history of all CAN Bus messages 

and also captures and saves that history whenever a possible security threat is detected.  
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Our device will be a prototype of what we hope will become a common place tool 

for automotive experts to better protect their electronic subsystems from hacking. Given the 

previously mentioned goals, the team developed the following deliverables: 

 A data logging algorithm hosted on a Linux virtual machine that serves as a proof of 

concept, used to simulate the microcontroller and the vehicle; 

 A data logging device that uses an algorithm similar to the one developed on the vir-

tual machine to capture CAN data in the case of a vehicle attack; 

 A demonstration of this device working on a test bench that replicates a vehicle’s 

CAN Bus; 

 Ground work for future efforts and MQP in this area: 

o Documentation of a vehicle attack demonstration; 

o Tutorial explaining how to interact with the CAN Bus; 

o Information on how to interpret CAN Bus messages and what tools to use 

for reading; 

o A project report that details the background, methodology, results, analysis, 

and conclusion. 

1.2 Report Organization 

This report starts by providing a brief background in vehicle hacking in Chapter 2. 

This includes: 

 Case studies highlighting recent hacks that have been conducted by students and 

professionals in order to give the reader background about current vehicle security 

vulnerabilities; 

 Information about the internal communication system used in most vehicles; 

 Diagnostic protocols used in the vehicles, as well as its potential dangers; 

 Published articles displaying the need for improved vehicle security.  

Chapter 3 analyzes the hardware options available, presents the hardware alternatives 

selected for the project, presents relevant information about the target vehicle, and explains 

the proposed attack model and research model. Chapter 4 explains design implementation 
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and testing, which includes the chosen hardware and software that fulfills the Data Logger’s 

requirements. Chapter 5 discusses the final results from the Data Logger’s testing. Chapter 6 

and Chapter 7 concludes the report and provides suggestions for future projects. 
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2.0 Fundamentals of Vehicle Hacking  

This section describes network interfaces, hack attempt case studies, vehicle safety 

articles, and potential hardware options. Information about network interfaces provides an 

understanding of networks currently used in vehicles. There are many potential hardware op-

tions to consider when developing a vehicle hack. A few of these options are discussed in 

this section. The case studies are presented to convey methods of vehicle hacking and out-

comes of successful hacks. 

2.1 Understanding Controller Area Network (CAN) Bus  

The CAN Bus is a transfer medium by which Electronic Control Units (ECUs) in a 

vehicle can communicate, signal errors, and recover from faults. An ECU is one of many mi-

crocontrollers in a vehicle that operates specific actuators and components such as the win-

dows, steering wheel, engine, transmission, etc. The CAN Bus features a versatile multicast, 

multi-master protocol, meaning that every ECU (node) on the CAN Bus can send data to 

and receive any data packet from any other node on the bus. The system supports multiple 

transfer rates (most manufacturers use a data rate of 500 Mbps) and no theoretical limit as to 

the number of nodes on the bus, making this a flexible solution for vehicle manufacturers. 

The CAN network implementation details in this section were obtained from the Bosch 

CAN specification documents [4] [16]. 

The CAN Bus protocol is partitioned into four layers; the Application Layer, Logical 

Link Layer (LLC), Medium Access Control (MAC) Layer, and Physical Layer. The detailed 

layer architecture of the CAN Bus is shown in Figure 5 [4]. 
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The Application Layer contains all the peripheral devices and utilities in the system. 

Some examples of peripherals include the odometer, infotainment system, windows, mirrors, 

etc.  The Logical Link Layer, more widely known as the Object Layer, provides an interface for 

the Application Layer hardware. The Object Layer is responsible for determining what mes-

sages are to be transmitted. It is also the responsibility of this layer to decide which messages 

received at the transfer level will actually be used by a node. The layer below the Object 

Layer, the Medium Access Control (MAC) Layer (usually referred to as the Transfer Layer), is re-

sponsible for interacting with the hardware in order to handle timing, error checking/signal-

ing, fault handling, and bus arbitration. The Transfer Layer is standardized and cannot be 

modified by the developers of the system. The Physical Layer is the physical medium in which 

the bits are transferred. This layer must be the same for all the nodes on a single network, 

but the developers of the system have the freedom to choose what wiring to use. 

Several key features of the CAN Bus make it reliable in a real-time environment. The 

most prominent of these features is the CAN’s arbitration technique. Arbitration is a method 

by which the CAN network gives access to a node attempting to transmit a message based 

on its arbitration ID (similar to a priority number). On the CAN Bus, any node can transmit a 

message as long as the bus is idle, but when more than one node wants to transfer data at 

Figure 5: CAN Bus Layer Architecture 
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the same time, arbitration must be used to decide which node will send data first. When 

there is a dispute on the bus, the node with the highest priority (lowest arbitration ID) wins 

arbitration and the rest of the nodes listen, waiting for the bus to become idle again. Each 

node must check that the bus is either idle or transmitting at a lower priority than itself, as 

there is no arbitrator on the bus. For example, if both the transmission and the infotainment 

system would each like to send messages on the bus, the transmission gains access first be-

cause it holds a higher priority than the infotainment system. This makes the CAN more reli-

able than traditional forms of data transfer that work based on a FIFO queue, especially for 

mission critical applications within a vehicle. 

Another important feature that the CAN Bus offers is the ability for one node to re-

quest information directly from another node. The node requesting data sends a Remote 

Frame. This frame contains the arbitration ID of the target node. When a node receives a re-

mote frame with its arbitration ID, it returns a Data Frame with the data block that was re-

quested. This makes it simple for a node to access data from other nodes within the CAN 

network. Data Frames and Remote Frames contain the same fields, with the exception of 

the Data Length Code and Data Field, which are only necessary in a Data Frame. The Data 

Field simply contains the data to be transferred. This field can contain 0 to 8 bytes, each 

containing 8 bits that are transferred most significant bit first. The number of bytes in the 

Data Field is indicated by the Data Length Code. The Data Length Code can be extended to 

fit larger data sizes in the flexible data-rate implementation of CAN, but for our purposes, 

this field will limit the Data Field to a maximum 8 bytes. 

The CAN Bus relies on its network of nodes to detect and signal any data transmis-

sion errors. The types of errors experienced on the CAN network are defined in the Glos-

sary. A node can detect an error while transmitting or receiving a data packet. For this rea-

son, each node keeps record of errors using transmit and receive error counters. When a 

node receives a packet, it uses a CRC check to ensure the packet’s integrity and will simply 

not reply with an acknowledgement packet if a mismatch is detected. In this case, the node 

that transmitted this packet will not receive an acknowledgement within a specified timeout 

and will resend the packet when the bus becomes idle. Nodes detect errors while transmit-

ting packets by monitoring the bus as they send each bit. If the transmitting node detects 

that the data on the bus is not what was sent, it will retransmit the entire packet as soon as 
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the bus becomes idle again. This is an added check that makes the response time of the 

CAN faster than most data transfer protocols. 

When an error is signaled, either an Active or Passive Error Flag is transmitted on 

the bus. An Active Error Flag consists of six bits of value zero, and a Passive Error Flag consists 

of six bits of value one. The type of error flag is decided by the state of the node sending the 

flag. A node self-polices and may set to an Error Active, Error Passive, or Bus Off state. A 

node in the Error Active state can take part in bus communication and sends an Active Error 

Flag when an error is detected. When a node in the Error Active state causes 128 or more 

errors, the node is set to the Error Passive state. In this state, a node can take part in bus com-

munication but must suspend data transmission after every successful packet transfer. A 

node in the Error Passive state may only send Error Passive Flags, which have less authority 

than Error Active Flags. If a node in the Error Passive state proves itself to be trustworthy, 

meaning it does not produce any more errors, it can be set to the Error Active state again. If 

a node in the Error Passive state continues to produce errors up to a count of 256, the node 

enters the Bus Off state. This means that the node may no longer influence any communica-

tion on the bus. An outside source such as a vehicle restart must be used to reset this pen-

alty. 

2.2 Unified Diagnostic Services (UDS) 

The UDS details in this section were obtained from an online article describing UDS 

[1]. Since the introduction of networks in automobiles, manufacturers have tried to push the 

bounds of what vehicle technologies can achieve. With these advancements came the Uni-

fied Diagnostic Services (UDS) described in the 14229-1:2013 International Organization for 

Standardization (ISO) specification [17]. The UDS standard is implemented to be transferred 

over the CAN Bus and is primarily accessed via the OBD-II port. The OBD-II port is a re-

quired standardized means of communication with the vehicle, usually located under the 

steering wheel. It is a node on the CAN network and, therefore, monitors all data packets. 

UDS serves as a means by which manufacturers can load firmware and run initial tests on 

vehicles. UDS capabilities also expand to the service market where technicians and vehicle 

owners can clear vehicle-warning codes and download diagnostic information from the vehi-

cle’s OBD-II port with external hardware. This is usually done to troubleshoot problems 
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with vehicles. These applications make UDS a very important tool for manufacturers, service 

technicians, and vehicle owners. 

Vehicle technicians and owners can utilize UDS through a UDS Diagnostic Reader, 

which is a transceiver that connects to the OBD-II port of the vehicle. It sends UDS mes-

sages targeting certain ECUs and their status registers in order to query the diagnostic data. 

It then records the responses from the vehicle’s ECUs and presents the data to the user in a 

readable format. These devices are typically sold in hardware stores and are fairly useful for 

determining which component(s) of a vehicle is not working correctly. 

UDS messages are sent via the CAN Bus with a specific arbitration ID and are moni-

tored on all ECUs as well as the OBD-II port. ECUs can choose whether or not to filter 

these messages based on their UDS Service IDs. The UDS Service ID is the first data byte of 

a UDS message and is used to communicate which ECU on the network the message is tar-

geting. Since a UDS message is always directed at a particular ECU, the targeted ECU must 

respond to the request with a Reply Service ID. The Reply Service ID is typically the value of 

the UDS Service ID with a single bit flipped to create a small offset in value. All other ECUs 

on the network ignore the UDS message as it was not directed to them. The targeted ECU 

reads the data within the UDS message, which will indicate a command and/or data that 

must be acted upon. An example of this is the case where the manufacturer loads firmware 

onto ECUs in the factory. A UDS message is sent to command the targeted ECU to start its 

bootloader. After the target ECU has started its bootloader, UDS messages will continue to 

be transferred, providing parts of the new firmware until the entire image is loaded. This is 

just one of the many useful commands UDS provides manufacturers. 

Although UDS has been proven to be an essential tool for manufactures, service 
technicians, and vehicle owners, it is also an avenue by 

which hackers gain control of the CAN Bus. 

 

Hackers have been able to use the diagnostic capabilities of UDS to access ECU 

boot loaders for the purpose of injecting malicious software into the ECUs, which can have 

detrimental effects on the vehicle and its passengers, especially if the vehicle is in motion 

when the hackers exploit the system. Situations where hackers exploit the CAN Bus via UDS 
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are commonly known as UDS Attacks. What makes UDS attacks more dangerous than nor-

mal vehicle hacks is the array of functionality the hacker obtains once on the bus.  

Normally, UDS messages used by UDS Diagnostic Readers only execute read opera-

tions on ECUs, making them safe for the vehicle. Hackers can gain access to the UDS write 

functionality either with the standard UDS guide for a particular line of vehicle or by testing 

commands on a test vehicle. By testing commands, the hacker can determine what UDS Ser-

vice IDs correspond to ECUs and what message payload data can cause harm. Once a 

hacker compromises the CAN Bus of a vehicle, he is free to run whichever UDS commands 

he chooses. This means the hacker can compromise critical components on the vehicle’s 

CAN network while the vehicle is in motion. Depending on the vehicle and manufacturer, 

this could mean that the brakes, transmission, and engine are capable of being compromised, 

making the vehicle dangerous for the all passengers.  

2.3 Attack Countermeasures  

In the past, there was little need to worry about wireless hacking into vehicles be-

cause not enough of the technology was in place. However, researchers and hackers have 

demonstrated that this is no longer the case. All modern vehicles manufactured after the 

2008 standardization of CAN Bus are vulnerable to hacking. This section describes some of 

the methods by which hacking can be analyzed and potential ways by which vehicles can be 

secured. Much of this information is taken from articles written by Dennis Nilsson and Ulf 

Larson [18] [19]. 

2.3.1 Cyber Attacks on Automobile In-Vehicle Networks  

In theory, a hacker could use the new wireless technology to gain remote access to 

the in-vehicle network. This type of attack becomes more dangerous as the in-vehicle wire-

less technology could be used to create a remote connection between two vehicles that can 

lead to a multi-vehicle attack. Since this development of new vehicle technology, the need 

for a new forensics investigation approach must be established. Nilsson and Larson make 

their point with the following example [18]:  

“As an illustration, consider the case of a speeding vehicle that hits the face of a 

rock. This incident is either caused by the driver itself, or by vehicle malfunction or physical 
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tampering. If the brake wire is found to be cut, the cause of the accident is most certainly an 

act of physical tampering, and a criminal investigation needs to be initiated to bring the re-

sponsible party to a court of law. Consider instead the possibility that the brakes were disa-

bled by a piece of malicious code. If there is no digital evidence available, the criminal would 

walk free, and the cause of the accident would wrongly be determined as malfunction.” 

In the past, vehicle forensics were mainly focused on physical accident reconstruc-

tion; determining the physical condition of the car and checking the status of brakes, wipers, 

lights and other vehicle systems. This information, while useful, does not help during the in-

vestigation of a vehicle hacking attack. A solution for this was created in the early 80’s called 

the event data recorder (EDR). This device records critical event data such as speed, braking, 

rpm, seat belt status. These devices are now being implemented into modern vehicles for in-

surance companies to determine the driver at fault in an accident. An EDR helps for a vehi-

cle crash, but will not provide sufficient information if a cyber-attack were to occur. The 

EDR only records when a crash occurs, and still only records for at most 5 seconds before 

the crash. A hacker could either wait to perform the hack or hack the EDR itself to give the 

insurance companies false information [20].  

Nilsson and Larson suggested requirements and conditions to support a digital fo-

rensic investigation: 

• A method to detect events in the vehicle must be present. To perform a digital fo-

rensics investigation, an alert about a security violating event must have been trig-

gered to provide reason to initiate the forensics investigation. 

• Data to answer the questions who, what, where, when, and why must be produced in 

the vehicle. During the forensics investigation, this data must be available in the 

ECUs for an investigator to extract the necessary information when needed. 

• Information about the current state (e.g., firmware versions) in a vehicle must be 

available and stored in a secure location. To detect whether the vehicle has been tam-

pered with, the extracted data must be compared to the original data. 

An appropriate tool would be a Data Logger device to capture the states of all of the 

devices on the CAN bus. This tool would have to produce answers to the questions who, 
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what, where, when and why of the attack and also information about the current state of the 

vehicle. 

2.3.2 Securing Vehicles against Cyber Attacks 

In a different article, Nilsson and Larson [19] discuss the advancement in vehicles 

and how newer vehicles are being manufactured with wireless technology. This technology 

presents an increased potential for a cyber-attack. The major concern is that manufacturers 

are equipping new vehicles with these wireless capabilities, yet not putting in place significant 

security features in order to protect operators from an attack. The article goes into detail 

about the five specific layers of defense that should be put in place. The five layers are: 

 Prevention – Defense such as a firewall that prevents and attack from happening. 

 Detection – Defense that detects when an attack is happening and also logs the 

proper data in order for analysts to detect what exactly the hacker was trying to do  

 Deflection – Defense that will lead the hacker to some insignificant part of the vehi-

cle and deter him away from crucial parts of the vehicle. 

 Countermeasures – Defense that if a hacker gains access to the vehicle, works in or-

der to attack the hacker and prevent harm coming to the vehicle. It must also be 

built to not interfere with normal vehicle functions. 

 Recovery – Defense that allows the vehicle to recover from a potential hacker attack. 

This involves logging data of the attack and being able to determine what has been 

touched and hacked into. This data must also help bring the vehicle back to its nor-

mal steady working state. 

Our MQP would work to help with the Detection and Recovery layers. Our device 

would be placed or installed in a car, connected to the CAN bus, and would detect UDS at-

tacks. Once this is detected, data will be logged so that after the vehicle has been secured, ex-

perts can read the data to determine what the hacker was able to gain access too. This also 

will help with the Recovery layer because it will enable the experts to determine the next 

steps in order to fix any part of the vehicle that may have been harmed. This is a very im-

portant first step in designing and implementing vehicle safety features that prevent potential 

cyber-attacks. It is important to note that our algorithms will not be able to diagnose the 
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problems directly, but instead will provide the needed information to a forensics expert to 

do so. 

2.4 History of Vehicle Hacking 

Everyday objects such as TVs and refrigerators are being installed with programma-

ble microprocessors and Internet capabilities [21]. This technological expansion has also 

reached the automotive industry. Automobiles are essentially computers on wheels; they are 

not as mechanically controlled as they were, even in the recent past. Vehicle manufacturers 

are implementing new technologies such as built-in cellular network capabilities. Although 

these new technologies grant the driver more functionality, they create a significant safety 

risk due to hacking and malicious software. Since the design and production cycles of mod-

ern vehicles are normally between 2-5 years, vehicle manufacturers have not been able to 

keep up with the software security challenges [22]. Most of the work has been published by 

independent researchers working with recent model cars. This section describes some of that 

work. 

2.4.1 Ford Escape Hack 

Some of the early attempts to hack a vehicle were performed by researchers Miller 

and Valasek [8], who began their studies using a 2010 Ford Escape. Their first hack involved 

connecting a cable from the vehicle’s On-Board Diagnostics (OBD-II) port to a laptop. The 

physical setup for this hack, with the laptop directly connected to the OBD-II port of the 

Ford Escape can be seen in Figure 6. 

Through this connection, they were able to gain direct access to the CAN Bus. The 

researchers found that the security system in this vehicle was not able to determine the origin 
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Figure 6: Concept Diagram for Miller and Valasek 2011 Ford Escape Hack. 
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of the information packets. Exploiting this flaw, they were able to inject packets to the CAN 

bus and impersonate a certain ECU, such as the vehicle’s engine. This enabled them to send 

commands to turn the steering wheel, turn on the lights, and even shut off the engine [8]. 

The hacking of the Ford Escape was the first step for these researchers in developing in-

creasingly more sophisticated hacks.  

However, this attack required the hacker to be in the vehicle with a laptop, which 

makes it highly likely the user of the vehicle would notice his or her presence. This hack still 

proved to be useful to Miller and Valasek as they continued to research and were able to de-

velop a more impressive and serious hack. 

2.4.2 Jeep Cherokee 

Miller and Valasek’s next hack involved a Jeep Cherokee and its UConnect system [9]. 

This vehicle has a direct connection between the radio and the vehicle’s CAN Bus. The 

Jeep’s CAN Bus has two sections; one connected to the engine components and the other 

connected to the rest of the vehicle. Both of the CAN Buses integrated into the Jeep Chero-

kee are wirelessly connected to the radio. This connection can be seen in Figure 7 [9].  

Figure 7: A Jeep Cherokee’s connections between the two CAN Buses and head unit.  

This connection is what inspired Miller and Valasek to attempt the Jeep Cherokee hack. 

They connected using the Sprint IP address from the Jeep to connect to the vehicle from 

their laptop. 

 

Sprint IP Address 

Miller’s and Valasek’s Laptop 

which connected to the Jeep by 

hacking the Wi-Fi 
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They first began by attempting to gain access to the vehicle using the Wi-Fi connec-

tion that customers can purchase.  They discovered that the password for the Wi-Fi corre-

sponds to the date and time of the hack, which can be seen here in Figure 8 [9]. 

Once connected to the Wi-Fi, they were able to manipulate the Linux software in the 

multimedia system, and then they had complete access to the Jeep. The only problem with 

this attack method is that not every Jeep Cherokee owner has purchased the Wi-Fi capabili-

ties.  

Miller and Valasek then began to look at another way to exploit the Jeep’s CAN Bus. 

They discovered that even if the customer does not pay for the cellular network service, it is 

still standard in the Jeep Cherokee as a locked option [9]. This meant that every Jeep Chero-

kee is connected to the Sprint cellular network. They were able to scan for IPs on the Sprint 

network. They accomplished this by scanning the Sprint network for the IP addresses from 

21.0.0.0/8 and 25.0.0.0/8, as these are the addresses used for the Jeep’s Uconnect system 

[10]. In order to attack the specific Jeep they wanted, they used the GPS tracking to deter-

mine the location of the target vehicle, which can be seen in Figure 9 [9].  

Figure 8: Black Hat security conference describing how the Jeep’s Wi-Fi password was hacked. 
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The next step was going from the Jeep’s multimedia system to the CAN Bus. Since 

there is no direct connection between the CAN Bus and the multimedia system, vehicles 

were generally believed to be secure. Miller and Valasek were able to refute this belief by 

changing the software in the V850 controller [23], which controls the interior high speed 

CAN and the primary CAN-C shown in Figure 7. The V850 is standard in automotive CAN 

set ups [10]. The V850 controller can only listen to CAN bus commands, but since it is a mi-

crocontroller, there is always a possibility for it to be hacked and have the firmware change 

[9]. Once they updated the software on the V850 controller, Miller and Valasek were now 

connected to the CAN bus and had control of the automobile.  

All of Miller’s and Valasek's testing has displayed that automobile manufacturers’ 

stance on vehicle security is incorrect. Vehicles can be hacked, which puts users in poten-

tially great danger. Even though this research took years to be completed, it encouraged oth-

ers to study new ways to hack into vehicles in order to push vehicle manufacturers to be 

more diligent in their development process. 

2.4.3 Telematics Unit Hack (UW and UCSD) 

Students at both University of Washington and University of California San Diego 

were able to hack into a vehicle remotely and control all of its components [11]. The first 

step to hacking the vehicle was to dial the vehicle’s emergency communication system. These 

Figure 9: How GPS tracking was used to determine which Jeep Cherokee was their target vehicle. 
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systems are known as the telematics units, or more commonly known as OnStar systems [24]. 

OnStar systems connect the vehicle’s user to a worker on stand-by who can provide support 

and assistance if needed. General Motors created the OnStar system in order to provide the 

drivers of their vehicles 24/7 support for incidents such as crashes, lost keys, and stolen ve-

hicle [24].  This team of research students discovered that by transmitting malicious signals 

to the telematics unit’s phone number, they were able to confuse the vehicle. Figure 10 

shows the research students dialing the vehicles telematics unit, then sending the malicious 

code in order to confuse the vehicle [11]. 

While the vehicle’s computer was attempting to figure out what was causing this 

flood of signals, the hackers were able to send their code into the vehicle. This code updated 

the firmware of the CAN Bus protocol, which gave them control of the vehicle. Using a lap-

top, they were able to control the dashboard, windshield wipers, horn, and even the vehicle’s 

brakes while someone was operating the vehicle [11]. This shows yet another attack method 

where a hacker gained complete control of a certain target vehicle. All of these hacks are 

demonstrating to the public and vehicle manufacturers the unsafe security systems in vehi-

cles.  

Dialing in to vehicle’s telematics unit 

Malicious code to confuse target vehicle 

Vehicle’s telematics unit (OnStar) 

Figure 10: The hack performed by the University of Washington and San Diego students.  

They dialed into the vehicle's telematics unit and sent malicious code in order to confuse 

the system and grant them complete access. 
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Another dangerous aspect of this is that new technologies are being developed to al-

low vehicles to drive themselves. The potential danger is greatly increased in these vehicles 

because a user of a self-driving vehicle will have even less control if a hacker is able to com-

promise the security system. 

2.4.4 LiDAR System and Autonomous Vehicle Hack 

The evolution of vehicles is leading to increasingly autonomous vehicles in the near 

future. Semi-autonomous vehicles are on the road now, incorporating adaptive cruise control 

and automatic braking for obstacles. These types of vehicles present an even greater risk of 

being hacked because they include more computers and inject more automated control be-

tween the human and the wheel. Furthermore, automated vehicles are being designed to 

communicate with each other, so if one vehicle is compromised, all others in the area could 

be subjected to the same attack.  

One researcher who wanted to address these safety concerns was Jonathan Petit, 

Principal Scientist at Security Innovation [12]. Most of the autonomous vehicles in develop-

ment use the LiDAR systems in order to locate objects around the vehicle, such as Google’s 

self-driving vehicle [13]. Petit used an inexpensive and easily obtainable equipment setup to 

confuse the LiDAR system into thinking there were objects such as other vehicles or walls 

all around the target vehicle. Petit said, ‘I can take echoes of a fake car and put them at any 

location I want…And I can do the same with a pedestrian or a wall” [13]. This concept of 

placing objects around the autonomous vehicle can be seen in Figure 11 [12]. 

Figure 11: Jonathan Petit imposed virtual objects with his $60 device. 

He was able to confuse the vehicle into believing there were objects 

such as walls, other cars, and humans located around it. 

  

These virtual objects are imposed on 

the vehicle’s LiDAR systems 
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In order to accomplish this attack, Petit recorded typical laser pulses reflected by a 

commercial LiDAR system, then proceed to mimic these pulses and directed the laser at the 

vehicles navigation system [13]. During his testing, he was able to affect the LiDAR system 

in a car from about 300 feet away. Although considering he is using laser technology, accu-

racy is not overly important so he believes this attack could work anywhere from 50 to 1000 

feet away from the target vehicle [13]. The whole setup consists of a low-power laser and a 

pulse generator, all together costing $60. The most interesting part about this hack was that 

the vehicle itself cannot detect this happening; therefore, the vehicle cannot warn the driver 

about the threat [12].  

This research is vital in the future development of autonomous vehicles. According 

to this report, in order for these types of vehicles to ever make it to market, there must be a 

100 percent success rate to ensure the safety of the vehicles occupants [13]. Considering the 

technological advancements in automobiles, an increased number of researchers are develop-

ing ways to hack into vehicles in order to inform the manufacturers of their security flaws.  

2.4.5 Tesla Model S Hack 

One of the most technologically advanced vehicles on the market today is the Tesla. 

Since this vehicle is so advanced, it could potentially be one of the most vulnerable. Two re-

searchers took on this challenge and were able to find a way to gain access to the Tesla 

Model S. Both Kevin Mahaffey, co-founder and CTO of mobile security firm Lookout, and 

Marc Rogers, principal security researcher for CloudFlare, were able to plug a network cable 

behind the driver’s side dashboard, as shown in Figure 12 [14]. This allowed them to issue a 

software command to start the vehicle. They were also able to inject a virus that would allow 

the hacker to cut the Tesla’s power remotely. After two years of research, they were able to 

discover that repeatedly building vulnerabilities upon one another increased their access to 

the target vehicle.  
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Tesla is actively working to solve these problems. Instead of the vehicle owners hav-

ing to bring their vehicles in for service, Tesla can send software patches via cellular net-

works [14]. Tesla also has installed physical solutions, such as if the power of the vehicle is 

shut off, the vehicle will automatically stop or will allow the user to control the steering 

wheel while also having the airbags working [14].  

This hack is closely related to our project as the potential hackers would have to gain 

physical access to the vehicle and plant a device that allows them remote access later. Tesla 

proved that they are actively working to solve the problem of vehicle security. This also gives 

a purpose to our project because if we are able to properly hack into a vehicle, this research 

could be used to help that specific vehicle company develop a security solution.  

The capabilities of hacking a vehicle have advanced from the first attempted vehicle 

hacks. Now, researchers are able to gain control of a vehicle and run commands remotely. 

These hacks require years of experience and research into the CAN Bus and ECUs. Our 

plan is to use information from all of these hacks in order to build our own defense plat-

form. 

2.5 Test Vehicle: 2014 Nissan Altima 

A test vehicle with an OBD-II port was required for this project to collect CAN data 

used for analysis and testing. A 2014 Nissan Altima was chosen because it was available to 

Figure 12: Connecting an Ethernet cord to the dashboard and gain access to the vehicle. 
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the team on a weekly basis and has a modern CAN network with up to 100 ECUs [25]. The 

CAN network in the vehicle runs at a data rate of 500 kbps, which was determined through 

testing multiple data rates. Although the project would support other vehicles running at a 

data rate of 500 kbps, it is assured to support the 335,644 2014 Nissan Altimas sold in the 

United States [26].  

2.6 Initial CAN Bus Testing and Analysis  

Initial recording of the Nissan Altima CAN Bus was conducted in order to gather in-

formation about the vehicle’s CAN Bus and obtain packet streams from different vehicle 

scenarios. CAN packet streams were recorded during five different scenarios in order to bet-

ter understand how UDS messages affect the CAN network. The test cases and their respec-

tive pass conditions are described below. 

No UDS attack 

Test Files: 
1) NO_UDS_IDLE.txt – Vehicle was started and idled 

a. Test starts with the vehicle startup 
b. Vehicle idles for a few minutes 
c. Test ends with the vehicle still idling 
d. No UDS messages sent on the CAN network in this test 

 
2) NO_UDS_CITY_DRIVING.txt  

a. Test starts with the vehicle startup 
b. Vehicle is driven for a few minutes  
c. Test end with the vehicle stopping 
d. No UDS messages sent on the CAN network in this test 

 
UDS Attack 

Test Files: 
1) UDS_IDLE.txt 

a. Test starts with the vehicle already running 
b. Vehicle idles for a few minutes 
c. UDS device is plugged in and queries faults with the “Show Faults” UDS 

command 
d. Test ends with the vehicle still idling 

 
2) UDS_DURING_START_IDLE.txt 

a. UDS device is plugged in prior to vehicle startup 
b. Test starts with vehicle startup  
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c. Vehicle idles for a few minutes with UDS messages being transferred over 
the CAN network 

d. Test ends with the vehicle still idling 

 
3) UDS_CITY_DRIVING.txt 

a. Test starts with the vehicle already running 
b. Vehicle is driven for a few minutes and UDS device is plugged in while the 

vehicle is in motion 
c. Vehicle is driven for a few more minutes with UDS messages being trans-

ferred over the CAN network 
d. Test ends with vehicle still in motion 

 

To obtain these recoding scenarios, an OBD-II splitter was used to connect both a 

UDS Diagnostic tool and a recording device. The UDS Diagnostic tool simulated a hacker 

transmitting UDS messages to the vehicle. When UDS messages are sent to the vehicle, the 

ECUs targeted by the UDS message send a response. The diagnostic tool was controlled by 

a phone via Bluetooth. Using an app on the phone, UDS requests such as “Show all Faults” 

were sent to the vehicle. These UDS messages are considered to be “safe” as they do not 

write to the ECUs, instead only read status messages from the vehicle. The second OBD-II 

port on the splitter was connected to a high speed CAN data recording device. This record-

ing device was built by Hristos Giannopoulos, a WPI graduate student. Details about the re-

cording device setup can be found in [27].The recording setup can be seen in Figure 13. 

Figure 13: Sketch of BeagleBone Black CAN recording setup. 
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This set of recorded messages was used to determine the number of packets that 

should be recorded before and after the UDS attack. The library contains combinations of 

normal CAN traffic and UDS messages. In order to compare how the CAN Bus reacts when 

UDS packets are present, two scenarios were compared. The first involved CAN packets 

when the UDS Diagnostic tool was not connected to the OBD-II port, and the other was 

when the tool was connected. The resulting data log consists of the packet’s timestamp, the 

packet’s arbitration (process) ID, and the packet’s payload.  

2.6.3 CAN Bus Recording Analysis   

For this test, we were not focused on the actual payload of the packets, but instead 

the time interval at which they were being transmitted. When designing the Data Logger de-

vice, processing the payload of the packets is not necessary. This device will record all of the 

necessary information so that a forensics expert can decipher the CAN Bus packets and de-

termine the vehicle’s condition during, before and after a potential attack.  The maximum 

time interval is 105 ms when there is no UDS packets injected into the vehicle. 

Table 3 shown provides a snap shot of results from the recording scenario with no 

UDS packets on the CAN Bus (Full table in Appendix C). The maximum time interval is 

105 ms when there is no UDS packets injected into the vehicle. 

Table 3: Normal Packet Transfer (no UDS) Timing Data by Arbitration ID (AID). 

Bold values represent the longest packet transfer interval. AID means the Arbitration ID of the packet. The 

Max Interval is the maximum time between two packets of the same AID, while the Min Interval is the mini-

mum time between two packets of the same AID. The Average Interval is the average time between two pack-

ets of the same AID and the Data Count is the number of the packets with the same AID. 

 

AID 

Max In-

terval  

(ms) 

Min In-

terval 

 (ms) 

Average 

Interval 

 (ms) 

Data 

Count 

560 102 98 100 165 

580 104 101 102 161 

6E2 105 100 102 161 

625 103 97 100 164 

5E4 102 98 100 164 
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 The next scenario was recorded when UDS packets were present on the vehicle’s 

CAN Bus. Table 4 shown provides a snap shot of results from the recording scenario with 

UDS packets on the CAN Bus (full table in Appendix D). The maximum interval is 614 ms 

when there are UDS packets injected into the vehicle. 

Table 4: Packet Transfer (with UDS) Timing Data by Arbitration ID (AID).  

Bold values represent the longest packet transfer interval, while red represents the UDS message. AID means 

the Arbitration ID of the packet. 

 

AID 

Max In-

terval 

(ms) 

Min In-

terval 

(ms) 

Avg In-

terval 

(ms) 

Data 

Count 

551 614 100 103 3027 

580 614 100 103 3026 

6E2 614 100 103 3026 

7E8 1911 49 75 4100 

7E9 2330 58 127 2428 

 
The time interval information was used in order to determine the size of a log “tick”. 

A tick is the amount of logging time that will ensure that at least one packet of each arbitra-

tion ID will be logged. In order to determine the length of time for the tick, we developed 

an Excel macro to extract timing information from the log file captured from the test vehi-

cle. The timing data is shown in Table 3 and Table 4, with an AID (Arbitration ID), maxi-

mum time, minimum time and average time interval between each packet transfer, and the 

data count for each packet ID. Table 5 shows the tick periods and their arbitration IDs 

which resulted from analyzing the data. 

Table 5: Analysis of the Tick Representation. 

 Tick Period Arbitration ID(s) 

Without UDS traffic 105 milliseconds 6E2 

With UDS traffic 614 milliseconds 551, 580 and 6E2 

 

We expect all packets with other Arbitration IDs to be transmitted in this interval 

because they all have a shorter packet transfer period. From Table 5, it is seen that there are 

two types of ticks, one for normal traffic and one for corrupt traffic. For normal traffic, the 

tick time will be at least 105 milliseconds, and for corrupt traffic, the tick time will be at least 
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614 milliseconds. This will ensure that each tick will contain at least one packet with each 

Arbitration ID. For our implementation, we decided to increase these numbers to 120 and 

750 milliseconds for non UDS and UDS traffic respectively in order to ensure at least every 

packet AID is in each tick. 

The data collected was compared with a set of normal CAN traffic data previously 

recorded without the use of a UDS diagnostic tool. With this comparison, we were able to 

determine that the Arbitration IDs 7E8 and 7E9 (marked in red) referred to the diagnostic 

tool transmitting and receiving information respectively. According to the limited infor-

mation available to us about the meaning of different UDS messages, the 7E Arbitration IDs 

refer to when there is a tester present in the vehicle. All of this information confirms that the 

vehicle was able to detect the diagnostic tool we connected to the OBD-II port. 

2.6.4 Linux Controller Area Networks Tools 

For purposes of researching, developing, and analyzing CAN Bus devices, 

Volkswagen Research created an open-source utility for simulating a CAN Bus on conven-

tional Linux platforms such as Ubuntu.  This utility [28] is known as the SocketCAN tools. 

These tools are used to simulate both physical and virtual CAN Bus networks. They are par-

ticularly useful for conducting potentially harmful testing as they can simulate a real CAN 

Bus, without the risks of damaging a vehicle. For example, Linux devices with these tools in-

stalled can record actual CAN Bus packets from a vehicle, and also playback these packets in 

order to simulate the vehicle’s CAN Bus. The packets sent on the Linux CAN networks can 

be processed by Python programs using the SocketCAN Python libraries. Processing mes-

sages can be useful because it can allow users to store, modify or filter the data traveling on 

the bus or run algorithms to analyze the data. For details about the commands used to im-

plement the virtual and physical CAN networks, refer to Appendix E. 

2.7 Chapter Summary 

Understanding the implementation and architecture of Controller Area Networks 

(CAN) in vehicles is essential to this project. The CAN network is the basis for the UDS 

protocol that is so widely used today in automobiles. Although UDS provides a wide array of 
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functionality for manufacturers, service technicians, and vehicle owners, it has been the 

foundation for dangerous vehicle hacks. 

The national news about vehicle hacking has led professionals and researchers to 

publish articles describing the vulnerabilities in vehicles. These articles describe the safety 

steps that vehicle manufacturers should take in order to properly secure their vehicles. The 

EDR device currently records vehicle data during an accident, but does not provide suffi-

cient information if a hack attempt were to occur. One step these professionals agree upon is 

a safety procedure that records a vehicle’s CAN traffic if an attack has occurred. 

Lately, there have been multiple hacks performed on modern vehicles as shown in 

recent publications. These hacks have shown there are multiple vulnerabilities in vehicle sys-

tems such as the OBD-II port, wireless networks, telematics unit, and LiDAR system. While 

the details of these hacks are not directly related to this project, they demonstrate the ur-

gency of building a safety device that can detect a vehicle hacks taking place.  

After an attack and/or accident has occurred, it is vital that a forensics analyst would 

be able to analyze a log of vehicle CAN data, conveying the state of the vehicle before, dur-

ing, and after the attack has occurred. This would allow for the forensics analyst to diagnose 

the issue with the vehicle and determine who is liable for the accident, if any occurred. If an 

accident occurred and the vehicle acted erratically, a court would be responsible for deter-

mining whether the vehicle manufacturer, driver, or a hacker were liable for the accident. 

The objective of this project is to devise a CAN Bus Data Logger that would allow a 

forensics analyst to analyze a recorded CAN Bus packet stream and determine if and how an 

attack occurred. The forensics analyst would use a UDS Guide to determine the extent of 

the attack, what ECU(s) was targeted, and if there was any damage to the vehicle. In an in-

stance where an accident had occurred, the forensics analyst would be able to determine who 

is liable for the accident. Further research could be done by the vehicle’s manufacturer to de-

termine how the bug that allowed the attack through could be patched and what other ac-

tions need to be taken to assure the attack will not happen again. 
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3.0 Design Requirements 

This section presents the design specifications involved in the development of a ve-

hicle Data Logger, including an explanation of the data that should be recorded, potential 

hardware options, and a plan for integrating the hardware.  

The objective of this project is to design and build a prototype data logging device 

that can log enough CAN Bus data for forensics analyst experts to be able to understand 

what the state of the vehicle was before, during, and after a UDS attack. The data logged 

must be useful to a forensics analyst, but not so extensive that it is impossible to locate par-

ticular occurrences that may give insight into the nature of the incident that occurred. 

The data recorded must be read from a vehicle’s OBD-II port and stored in a reada-

ble form, preferably in the format of a text file. This requires a programmable microcontrol-

ler for flexibility, portability, power efficiency, and the ability to adapt to differing attack 

strategies. The forensics analyst needs the timestamp that indicates when the packet was read 

from the bus, the packet’s arbitration ID in HEX, and the packet’s payload in hex in order 

to properly determine the state of the vehicle and its peripherals. Each packet is of size 20 

bytes, including padding. The breakdown of the packet size and stored packet format is 

shown in Table 6. 
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Table 6: Packet format table which describes the fields of a CAN Bus packet. 

Data Data Type Size (Bytes) Description 

Timestamp 32 Bit Unsigned 
Long 

4 Milliseconds since the program started. This is imple-
mented as a 32 bit unsigned long to handle long 
stretches of usage. For instance, a 16 bit unsigned inte-
ger would only be able to count to 65,536 milliseconds 
(slightly over a minute) whereas a 32 bit unsigned long 
would be able to count to 2,147,483,647 milliseconds 
(24.8 days - over 3 weeks). 

Arbitration 
ID 

32 Bit Unsigned 
Long 

4 Arbitration ID of the logged packet. 

Packet 
Length 

8 Bit Unsigned In-
teger 

1 Length of data in packet payload. 

Packet 
Payload 

8 Bit Unsigned In-
teger Array 

0 to 8 Data contained in the logged packet. This can range 
from 0 to 8 Bytes of data. 

Padding N/A 3 Padding aligns struct members in memory. 

Stored 
Packet 

Struct 20 Packet Format: 
<[Timestamp] [Arbitration ID] [Packet Payload]> 
 
Example: 
Timestamp – 8876 
Arbitration ID – 2ED 
Packet Payload – AFE843D1683 
 
8876 2ED AFE843D1683 
 

 

 
The forensics analyst will need to make use of a “safe” or “steady” state of the vehi-

cle using the normal CAN traffic previous to the vehicle attack. This will give the forensics 

analyst background information such as the speed of the vehicle, the peripherals that were in 

use, and the normal behavior of the vehicle as a whole. This data must be a complete record 

of the CAN traffic within a short period of time immediately before the incident.  In order 

to record the state of the vehicle before an attack occurs, the Data Logger must store a fixed 

number of packets previous to the attack. Using a circular buffer to store these messages pro-

vides the functionality of a normal buffer, but after it writes to its last entry, it simply wraps 

around to the start of the buffer. This makes it a convenient data structure for capturing the 

recent history of CAN traffic immediately prior to the UDS attack. 
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Ten normal ticks of the bus is a sufficient logging time for a forensics analyst to in-

terpret the state of the vehicle before an attack occurs. This provides at least 10 messages 

from each device on the network. Normal CAN traffic on the 2014 Nissan Altima has a tick 

time of 0.12 seconds. Therefore, the device is required to store the past 1.2 seconds of the 

packet stream. The circular buffer needs to be approximately 36 KB in size, having capacity 

to log 1800 packets previous to an attack. Table 7 shows a summary of this data, calcula-

tions, and the resulting circular buffer size. 

Table 7: Circular Buffer (Normal Traffic). 

Parameter Value Calculation 

Normal ticks Stored 10 Given 

Time per Tick (Seconds) 0.12 Given 

Log Time (Seconds) 1.2 (Ticks Stored x Time per Tick) 

Packet Size - including padding (Bytes) 20 Given 

Packets Stored per Second 1500 Given 

Packets Stored 1800 (Packets Stored per Second x Log Time) 

Size of Buffer (KB) 36 (Packets Stored x Packet Size) x (1000 Bytes/1 KB) 

 

The circular buffer will be stored in the Data Logger’s RAM, and therefore it is re-

quired that the device have at least 36KB of RAM available for the circular buffer, with more 

space for program data and additional data structures used in the implementation. The Data 

Logger is also required to have a form of external storage in order to store the circular buffer 

after an attack occurs. Some of the available memory options are Flash and EEPROM. It is 

important to also consider the speed of the libraries that interface with these memory op-

tions. Additionally, this will ensure the logged data remains in storage across power cycles 

and can be read by the forensics analyst at a later time. 

After an attack has occurred, CAN traffic data must be recorded to help the foren-

sics analyst determine exactly what components were affected by the attack and how the sys-

tem’s behavior changed as a result. A forensics analyst’s goal is to determine what ECUs 

were targeted based on the UDS messages recorded and how their behavior caused any inci-

dents to occur.  The state of the vehicle after a UDS attack may take a longer period of time 

to manifest into erratic behavior. Therefore, the method used to record the vehicle’s cor-

rupted traffic (CAN traffic after a UDS attack) must provide enough information to make 

the aforementioned goal achievable. A UDS attack does not occur in a specific amount of 
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time, but varies in length depending on the number of UDS messages in the attack. Through 

our CAN Bus analysis, it was determined that 10 normal ticks before the first UDS message 

is detected and 80 corrupt ticks after the UDS message is detected would be sufficient for 

this task. 

The method used to record corrupt traffic must accommodate more data than the 

circular buffer being used to store the normal CAN traffic. The size of the corrupted traffic 

to be recorded would exceed the size of any microcontroller’s RAM. For this reason, the 

stream of packets after the UDS attack occurs should be stored to an external storage device. 

This data stream will prevent excessive RAM usage and will ensure that the data is periodi-

cally saved to the external storage device before power loss occurs. This is particularly im-

portant in the case that a UDS attack causes an accident or any other event that would cause 

loss of power on the OBD-II port. 

The log file containing corrupt traffic should store 80 corrupt ticks of CAN data af-

ter the last UDS message monitored. If only one UDS message is detected in the attack, the 

file will only contain 80 corrupt ticks of packets. However, if multiple attacks occur within 

the 80 tick period of time, the file will be extended to contain 80 corrupt ticks after the last 

UDS message in the attack. The file size of this data will be roughly a minimum of 1.8 MB, 

but would potentially have a maximum of the full external storage capacity. Table 8 shows a 

summary of this data, calculations, and the resulting file size on the external storage device. 

Table 8: Linear Buffer after UDS packet detected (Corrupt Traffic). 

Parameter Value Calculation 

Corrupt ticks Stored 80 Given 

Time per Tick (Seconds) 0.75 Given 

Log Time (Seconds) 60 (Ticks Stored x Time per Tick) 

Packet Size - including padding (Bytes) 20 Given 

Packets Stored per Second 1500 Given 

Packets Stored 90000 (Packets Stored per Second x Log Time) 

Size of File on External Storage (KB) 1800 (Packets Stored x Packet Size) x (1000 Bytes/KB) 

  

This Data Logger implementation requires that the external storage device can store 

both the circular buffer’s data dump (roughly 36 KB) and the corrupt traffic data stream (at 

least 1.8 MB). The amount of data required by the external storage could quickly surpass 
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these values as more attacks occur and more UDS messages are sent over the bus. In conclu-

sion, the device chosen for this implementation must have at least 64 KB of RAM and sup-

port for an external storage device that can hold over one GB of data. These values are cho-

sen as resource constraints to ensure that the device chosen can support situations with mul-

tiple UDS attacks and have enough RAM to support the circular buffer, linear buffer, and 

program data. 

Other constraints that are relevant are the speed of the CPU (for both the Test 

Bench and the Data Logger), the speed of the SD card library, the power consumption of 

the device, the cost of the parts, and the programmability of the devices. The CPU speed is 

relevant for the Data Logger because most microcontrollers only have a single CPU core. 

The Data Logger must use this single core to read and write each message monitored on the 

bus. This also applies to the Test Bench; it must be fast enough to send messages at the 

same speed that the vehicle recorded them, and to do any additional tasks such as processing 

acknowledgement messages for each sent packet. The SD card library must be fast enough 

to write messages and avoid missing any packets on the network. The power consumption is 

relevant for the Data Logger device because it will be connected to the OBD-II port, and it 

will use the vehicle’s energy to get power. The cost of the prototype is important because 

any future project groups may need to reproduce this set up with limited budgets, and in 

case it would get to the market. Finally, size matters because it must be able to fit in the vehi-

cle without being obstructive and for privacy concerns. 

This design is meant to serve as a proof of concept, and therefore, should not be 

connected to a vehicle. Testing UDS attacks on an actual vehicle could cause unwanted dam-

age to the vehicle and require service from the manufacturer before it could be driven again. 

A test bench would completely mitigate this issue and act as a safe alternative. The test 

bench is required to have packet stream play back functionality, meaning the Data Logger 

could connect to the test bench and read CAN data as if it was connected to the OBD-II 

port of a vehicle. The test bench is also required to play back this CAN data at the same rate 

as the test vehicle, the 2014 Nissan Altima. 
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3.1 Embedded Hardware Options 

This section presents the different hardware devices that were studied as possible op-

tions for the proposed Data Logger device and for the Test Bench. This section also in-

cludes some accessory hardware such as CAN Shields for the microcontrollers, a high-speed 

CAN transceiver, and a timing module. 

3.1.1 Peripheral Buses 

The microcontrollers discussed in this section use two fairly common data transfer 

protocols to communicate with peripheral devices, I2C and SPI. These two protocols are de-

scribed in detail below. 

Inter Integrated Circuit Communications (I2C) - I2C is a data transfer protocol found in every TV, 

monitor, and computer motherboard today. It uses two wires to transfer data between two 

nodes, a master and a slave. The two lines are called SDA (data line) and SCL (synchroniza-

tion clock). When data is sent on the SDA line, pulses are sent on the SCL line to keep the 

two nodes in sync. I2C has a maximum data rate of 50 KB/sec and is supported on most 

microcontrollers today [29]. 

Serial-Peripheral-interface (SPI) - SPI is a general purpose data transfer protocol with many ap-

plications in devices. It often uses three wires to communicate between a master and slave 

device. The three wires are MISO (Master in, Slave out), MOSI (Master out, Slave in), and 

M-CLK (synchronization clock). After eight clock pulses on the M-CLK line, a full byte of 

data has been transmitted to each node. SPI offers a higher transfer rate than I2C and is also 

supported on most microcontrollers [29]. 

3.1.2 Arduino 

Arduino is a simple microcontroller board that can interface with an array of expan-

sion devices [30]. It has 14 GPIO pins; these pins are used to communicate with expansion 

boards that can either be soldered to a breadboard or attached directly to the Arduino. The 

board also has a USB connection, power jack and a reset button. The Arduino board con-

nects to a computer via USB and interfaces with the Arduino integrated development envi-

ronment (IDE). Code can be transferred from the computer onto the Arduino board. The 
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Arduino environment has a programming language with syntax similar to C or C++. An im-

age of the Arduino UNO R3 is shown in Figure 14 [31]. 

The Arduino can be programmed through the Arduino IDE, which makes it easier 

to interface with available libraries and provides some tutorials on how to access Arduino 

basic functions. The libraries allow the Arduino to use the SD card reader and to communi-

cate through SPI with other devices.  

3.1.3 Raspberry Pi B+ 

Raspberry Pi is a microcontroller that runs the Linux operating system and can be 

used for an array of applications [32]. It has the ability to interface with many peripherals, 

such as keyboards, monitors, and a mouse in order to allow the user to code the board using 

different languages. The main programming language for the Raspberry Pi is Python. The 

Raspberry Pi has the ability to connect to other devices through Bluetooth, Ethernet, Wi-Fi, 

and other network interfaces. An image of a Raspberry Pi is shown in Figure 15 [33]. 

Figure 14: Arduino Uno microcontroller. 
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3.1.4 Teensy 3.2 

The Teensy 3.2 is a Cortex-M4 based microcontroller, which offers multiple commu-

nication buses and expansion to an array of hardware expansions [34]. These hardware ex-

pansions comprise memory, Bluetooth, Wi-Fi, cellular adapters, timing modules, etc. The 

Teensy is smaller and simpler than most microcontrollers in its class, which makes it a more 

power efficient option for an embedded project. Since the device is so simple, it does not 

have certain built-in modules such as a timer and SD card slot. Although there are libraries 

to support such expansions, the hardware must be either soldered to the device or a bread-

board setup in order to interface with the Teensy. A picture of the Teensy 3.2 can be found 

in Figure 16 [35].  

Figure 15: Raspberry Pi Schematics. 
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The Teensy uses an IDE similar to that of the Arduino, with software extensions 

that allow for communications with the Teensy, hence the IDE name, Teensyduino. Teen-

syduino allows the user to develop code for the Teensy as well as perform other actions such 

as overclocking. It also supports a C library that allow interfacing with the CAN bus via the 

OBD-II port. This library was optimized by Hristos Giannopoulos to be able to use FIFO 

queues to record packets more efficiently [36]. C/C++ programs can utilize these FIFO 

queues, which allows for reading packets in the order they were recorded by the CAN hard-

ware. 

3.1.5 BeagleBone Black Microcontroller 

 The BeagleBone Black is a microcontroller based on the Am335x 1GHz ARM Cor-

tex-A8 processor [37]. It has 4GB eMMC (similar to SD) on-board flash storage and a micro 

SD card adapter for external storage. It can be flashed with almost any version of Linux, but 

the stock operating system is Ångström Linux. The fact that this microcontroller runs a 

Linux operating system makes it versatile in the sense that it can run open source tools and 

has the capabilities of a full computer. With these capabilities comes an increase in power 

consumption, which makes this board difficult to power for extended periods of time with a 

battery. The BeagleBone Black’s schematic can be seen in Figure 17 [38]. 

Figure 16: Teensy 3.2 Schematic. 
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3.1.6 Microcontroller Summary 

A summary of all the microcontroller options is shown in Table 9 [39] [40] [41] [34] 

[42]. 

Table 9: Microcontroller Specifications Summary. 

 Arduino Uno Raspberry Pi B+ Teensy 3.2 BeagleBone 
Black 

CPU ATmega328P Low Power 
ARM1176JZFS 

ARM 

MK20DX256VLH7 
Cortex-M4 

ARM 

AM335x 1GHz ARM 
Cortex-A8 

Frequency 20 MHz 700 MHz 
 

72MHz (up to 96MHz 
overclocked)  

1GHz 

Number of Cores 1 1 1 1 

Operating Voltage 5V 5V 5V 5V 

Flash Memory 32 KB N/A 256 KB 4GB eMMC 

RAM N/A 512MB 64 KB 512MB DDR3 

EEPROM 1 KB N/A 2 KB N/A 

GPIO Pins 14 40 21 2 x 46 

Software Arduino IDE, 
Java 

Python, Raspbian, 
Noobs 

Arduino IDE, Teen-
syduino 

Debian, Android, Ubuntu, 
Clode9 IDE on Node.js 

Price $24.95 $29.95 $19.80 $54.95 

 

There are many different types of microcontrollers available but we focused on these 

4 because they are the most widely used. We needed a microcontroller for the Data Logger 

device and for the test bench setup. Just looking into the microcontrollers briefly, we were 

able to narrow it down to the ones we mainly wanted to focus on. Since the Arduino and the 

Figure 17: BeagleBone Black Schematic. 
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Teensy 3.2 were both inexpensive and simple to use, we wanted either of those to be the mi-

crocontroller for the Data Logger. Since the Raspberry Pi and the BeagleBone Black were 

both more expensive and primarily used as Linux machines, these two were the primary op-

tions for the test bench microcontroller. 

3.1.7 Arduino CAN Bus Shield 

The Arduino CAN Bus Shield is a module that provides a direct link from an Ar-

duino board to the CAN Bus. The module connects to the Arduino pin outs, allowing for 

high speed transfer to the CAN Bus via OBD-II port.  It is compatible with both standard 

and extended frames for CAN v2.0B and transfers at speeds up to 1 mbps (highest speed 

supported by the CAN Bus). An image of the CAN Bus Shield is shown in Figure 18 [43]. 

The Arduino uses CAN libraries that allow for the microcontroller to communicate with 

other devices connected to a CAN network by using the CAN Bus Shield.  This shield must 

be purchased separately and costs approximately $25 at the Sparkfun website [43]. 

3.1.8 Raspberry Pi PICAN Module 

The PICAN module functions similar to the Arduino CAN Bus Shield, but is made 

for the Raspberry Pi interface. It provides a direct connection to the CAN Bus via OBD-II 

port and supports both standard and extended frames. An image of the PICAN module is 

shown in Figure 19 [44]. 

Figure 18: Arduino CAN Bus Shield. 
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3.1.9 MCP2561 

The MCP2561 chip is a high-speed CAN transceiver developed by Microchip Tech-

nology Inc. [45]. Many of the microcontrollers previously mentioned require external hard-

ware to interface with CAN networks. This chip can be used with these microcontrollers, al-

lowing them to interface with the physical two-wire CAN bus available in modern vehicle. It 

has a data transfer rate of 1 Mbps. This chip supports CAN data monitoring of up to 112 

nodes connected to the network. The pin outs for this chip can be seen in Figure 20 [45].  

The CANH and CANL pins are to be directly connected to the OBD-II port of the 

vehicle. The chip then connects with microcontrollers through the TXD and RXD pins. The 

VSS and VDD pins are used to power the chip. It is able to interface with CAN Controllers 

and Microcontroller devices with voltages that range from 1.8V to 5.5V I/O. Since the CAN 

bus has a characteristic line impedance of 120 Ohms, in order to avoid reflection, a resistor 

Figure 20: Pin outs for MCP2561 Chip. 

Figure 19: Raspberry Pi PICAN module. 
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of 120 Ohms is needed to be added to the end of each bus to match with the characteristic 

impedance of the transmission line [46]. 

The chip has two modes of operation: the normal mode and the standby mode. The 

specification of how to use these modes is shown in the Table 10 [45]:  

Table 10: Mode specifications for the MCP2651. 

Mode STBY 

Pin 

RXD Pin 

Low High 
Normal Low Bus is dominant Bus is recessive 

Standby High Wake-up request is detected No wake-up request detected 

 

3.1.10 SN65HVD230 CAN board 

The SN65HVD230 CAN board is a high-speed CAN transceiver manufactured by 

Waveshare. The SN65HVD230 CAN board is made up of three parts. The main part is the 

SN65HVD230 CAN chip. The other two parts are a 120 Ohm resistor and a 10K Ohm re-

sistor. The 120 Ohm resistor is soldered between the CANH and CANL pins to avoid re-

flection. The 10K Ohm resistor is soldered between the Rs pin and ground. The Rs pin on 

the SN65HVD230 CAN chip has 3 different modes: high speed mode, slope control mode 

and low power mode. The high speed mode is selected by connecting Rs to ground and it 

has no limitation on the rise and fall slopes. During low power mode the driver is switched 

off until a high logic level is applied to the Rs pin [47]. Slope Control mode is selected when 

a resistor is added in series between the Rs pin and ground. Since the 10K Ohm resistor is 

soldered between the Rs pin and ground, the SN65HVD230 CAN board is in slope control 

mode. Slope control helps avoid reflection as well; signal reflections can develop in a stub 

since stub lines are unterminated. To minimize reflection, the stub-line length should not ex-

ceed one third of the line’s critical length [48]. A schematic of the SN65HVD230 CAN 

board including pin outs and resistors can be found in Figure 21. 

Figure 21: Schematic of the SN65HVD230 CAN Board. 
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3.1.11 Adafruit DS1307 RTC Timing Module 

Low level microcontrollers may not include operating systems or hardware that pro-

vides them with a Real Time Clock (RTC). Therefore, specialized hardware that will provide 

the microcontroller with the time and will keep track of time even when the power is off is 

required. The Adafruit DS1307 RTC timing module requires 5V to power and also a connec-

tion to ground. In order to keep track of time when the power is off, it requires a 12mm 3V 

lithium coin cell [49].  

 The picture below shows the schematic of the Adafruit DS1307 RTC timing mod-

ule. Note that it is not necessary to use a coin battery, any battery with voltage range from 

2.0V to 2.5V is sufficient, but the hardware module has dedicated space that fits the coin 

module in a convenient fashion. It is also important to note than any supply voltage higher 

than 5.5V will burn the chip [50]. A schematic of the DS1307 can be found in Figure 22 [50]. 

A picture of the Adafruit DS1307 with all of its components is shown in Figure 23 

[49].  After the board is assembled the pins must be soldered as referenced in the Adafruit 

tutorial [49].  

 

Figure 22: Schematic of the DS1307. 
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3.2 Hardware Analysis 

In this section the microcontrollers considered for both the Data Logger and test 

bench are discussed and compared to one another. The microcontrollers are compared in 

two separate value analyses to narrow down which would be best suited to each application. 

3.2.1 Data Logger Analysis 

A value analysis table was used to decide which microcontroller is best suited for this 

Data Logger implementation. A numerical value is assigned to the value analysis specifica-

tions for each microcontroller considered in order to indicate how well they fit the design 

constraints. The relative value, or weight, given to each value analysis are the following: 

 Processor Speed (3) 

 Power (2.5) 

 Cost (2) 

 Programmability (1.5) 

 Size (1) 

 
These values show that processor speed is the most important variable (this is shown 

by having the largest weight) and size is the least important (this is shown by having the 

smallest weight). Since these variables are very important for the overall design, it was neces-

sary to assess each variable quantitatively. The values for the cutoffs between rankings (ex. 

between 50MHz and 800MHz) were assigned based on the average of all the microcontrol-

lers’ specs. 

Figure 23: Picture of the timing module on a breadboard. 
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The processor speed is the most important variable as it directly relates to how fast 

the Data Logger can read and write the packets to the SD card adapter. The slower the CPU, 

the more packets the Data Logger will fail to capture when monitoring the bus. The mini-

mum requirement for a CPU is that it can read 1500 packets per second, as this is the trans-

fer rate of the 2014 Nissan Altima CAN traffic. Although there is no way to determine 

whether a CPU can handle writing at this speed, the frequency of the CPU can be used to 

make a conjecture. We assigned a value of 1 (lowest respective value) to a CPU that has a 

frequency of less than 50MHz, a value of 2 to a CPU with frequency between 50MHz and 

800MHz, and a value of 3 (highest respective value) to a CPU with frequency above 

800MHz. 

The next variable is power; this is how much power the microcontroller consumes 

on average under normal conditions. We assigned a value of 1 (lowest respective value) to a 

microcontroller that uses more than 1W, a value of 2 to microcontroller that uses between 

0.2W and 1W, and a value of 3 (highest respective value) to a microcontroller that uses less 

than 0.2W.  

The next variable is cost; this is how much the microcontroller costs. We assigned a 

value of 1 (lowest respective value) to a microcontroller that costs more than $50, a value of 

2 to microcontroller that costs between $20 and $50, and a value of 3 (highest respective 

value) to a microcontroller that costs less than $20.  

The next variable is programmability; this is how easy the board is to program and 

how many libraries are available for CAN Bus communication. We assigned a value of 1 

(lowest respective value) to a microcontroller that is difficult to program and has almost no 

libraries available, a value of 2 to microcontroller that is fairly easy to program and has be-

tween 1 and 3 libraries, and a value of 3 (highest respective value) to a microcontroller that is 

easy to program and has more than 3 libraries.  

The last variable is size; this is the physical size of the microcontroller. We assigned a 

value of 1 (lowest respective value) to a microcontroller that is larger than 70mm x 50mm, a 

value of 2 to microcontroller that is between 40mm x 20mm and 70mm x 50mm, and a 

value of 3 (highest respective value) to a microcontroller that is smaller than 40mm x 20mm. 

A value analysis of the four microcontrollers is shown in Table 11.  
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Table 11: Microcontroller Value Analysis. 

Micro-
controllers Relative 

Value 

Arduino Uno 
Raspberry Pi 

B+ 
Teensy 3.2 

BeagleBone 
Black 

Value 
Analysis 

Value 
Point 

Total 
Value 
Point 

Total 
Value 
Point 

Total 
Value 
Point 

To-
tal 

Speed 3 1 3 2 6 2 6 3 9 

Power 2.5 2 5 1 2.5 3 7.5 2 5 

Cost 2 2 4 2 4 3 6 1 2 

Program-
mability 

1.5 3 4.5 1 1.5 2 3 2 3 

Size 1 2 2 1 1 3 3 1 1 

Total   18.5  15  25.5  20 

 
Based on this value analysis, the best microcontroller for the Data Logger design was 

the Teensy 3.2. The Teensy 3.2 is second in terms of speed, but its speed is sufficient for the 

data logging application as it runs at 72MHz and is documented to be capable of safely 

achieving 96MHz with overclocking. The Teensy 3.2 is one of the most power efficient op-

tions, and it is the cheapest option. The Teensy 3.2 will be the microcontroller selected for 

the Data Logger prototype for the aforementioned reasons. 

3.2.2 Test Bench Analysis 

A value analysis table was created to determine which microcontroller was best 

suited to be used as the test bench device. The test bench must be able to simulate a CAN 

network and send CAN messages to the Data Logger device at the same rate as the Nissan 

Altima. A numerical value is assigned to the value analysis specifications for each microcon-

troller considered in order to indicate how well they fit the test bench constraints. The rela-

tive value given to each value analysis are as follows: 

 OS Tools (3) 

 CAN Interface (2.5) 

 Speed (2) 

 Cost (1.5) 

 
These values show that OS Tools is the most important variable (this is shown by 

having the largest weight) and cost is the least important (this is shown by having the small-

est weight). Since these variables are very important for the overall design of the test bench, 

it was necessary to assess each variable quantitatively. The values for the cutoffs between 

rankings (ex. between 50MHz and 800MHz) were assigned based on the average of all the 

microcontrollers’ specs. 



UDS Based Attack Data Logger 

46 

The OS Tools variable is assessed first since it is most important. We assigned a 

value of 1 (lowest respective value) to a microcontroller that has no CAN tools, a value of 2 

to a microcontroller that only has reading tools, and a value of 3 (highest respective value) to 

a microcontroller that has both reading and writing tools.   

The next variable is CAN interface; this is the available hardware that the microcon-

troller has to interact with a CAN network. We assigned a value of 1 (lowest respective 

value) to a microcontroller that has no hardware available to interact with a CAN network, a 

value of 2 to a microcontroller that has external hardware that interfaces with the CAN net-

work, and a value of 3 (highest respective value) to a microcontroller that has a built-in CAN 

network interface.  

The next variable is processor speed; this is the frequency at which the CPU oper-

ates. We assigned a value of 1 (lowest respective value) to a CPU that has a frequency of less 

than 50MHz, a value of 2 to a CPU with frequency between 50MHz and 800MHz, and a 

value of 3 (highest respective value) to a CPU with frequency above 800MHz.  

The last variable is cost; this is how much the microcontroller costs. We assigned a 

value of 1 (lowest respective value) to a microcontroller that costs more than $50, a value of 

2 to microcontroller that costs between $20 and $50, and a value of 3 (highest respective 

value) to a microcontroller that costs less than $20. A value analysis of the three microcon-

trollers is shown in Table 12.  

Table 12: Test Bench Value Analysis. 

Micro-
controllers Relative 

Value 

Arduino Uno 
Raspberry Pi 

B+ 
Teensy 3.2 

BeagleBone 
Black 

Value 
Analysis 

Value 
Point 

Total 
Value 
Point 

Total 
Value 
Point 

Total 
Value 
Point 

To-
tal 

OS Tools 3 1 3 3 9 1 3 3 9 

CAN In-
terface 

2.5 2 5 2 5 3 7.5 3 7.5 

Speed 2 1 2 2 4 2 4 3 6 

Cost 1.5 2 3 1 1.5 3 4.5 1 1.5 

          

Total   13  19.5  19  24 

 

Based on this value analysis, the best microcontroller to be used as a test bench is the 

BeagleBone Black. Neither the Arduino nor Teensy 3.2 possess the software or hardware re-

quired to run CAN tools that can produce the volume of messages at the rate required to 
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test the Data Logger, so they were not chosen to be used in the test bench. The Raspberry Pi 

and BeagleBone Black are both Linux machines that are capable in terms of hardware and 

software, fitting the constraints of the test bench. The BeagleBone Black does however, have 

the capability to mimic CAN hardware, mitigating the need to buy CAN hardware, which is 

the case with the Raspberry Pi. For these reasons, the BeagleBone Black was chosen to be 

used as the test bench for the Data Logger. 

3.3 Storage Analysis 

This section covers the storage option analysis for the selected microcontroller, the 

Teensy 3.2. The goal of this section is to provide insight into what storage options were 

available for storing CAN data, explain why certain storage devices were selected, and to in-

dicate tradeoffs between these options. 

3.3.1 Peripheral Buses 

The Teensy has two serial communications buses, SPI and I2C. For this Data Logger 

implementation, SPI is favorable over I2C for the following reasons [51]: 

 SPI has a higher transfer rate than I2C. 

 SPI draws less power than I2C. 

 I2C is favorable for applications with a higher data transfer distance, but this comes 

with slower transfer rates. Since the travel distance of the CAN data is within a 

breadboard, the main advantage of the I2C bus would not be utilized. 

Memory peripherals that use SPI instead of I2C were selected for the aforemen-

tioned reasons. Table 13 outlines the pins on the Teensy used to communicate over the SPI 

Bus. 

Table 13: SPI Bus Signals and Respective Purpose. 

Name Pin 
Number 

Purpose 

Slave Select/Chip Select (SS/CS) 10 Selects one or more chips to communicate with 

Clock Signal (SCK) 13 Clock Signal 

Master In Slave Out (MOSI/DOUT) 11 Sends data from the SPI master to slave(s) 

Master In Slave Out (MISO/DIN) 12 Sends data from the slave(s) to the SPI master 
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3.3.2 Internal Memory (EEPROM) 

The Teensy EEPROM specifications in this section are from the K20 Sub-Family 

Reference Manual [52]. The Teensy has Electrically Erasable Programmable Read-Only 

Memory (EEPROM). This memory is non-volatile and is used to store relatively small 

amounts of data that must remain saved across power cycles. On the Teensy, EEPROM is 

overwritten every time a new program is loaded onto the board. EEPROM is most effective 

when saving settings and other program specific data as the storage space is fairly small com-

pared to other forms of storage. The Teensy 3.2 includes a model MK20DX256VLH7 

memory chip from Freescale Semiconductor, containing 2 KB of FlexRAM memory. This 

type of memory can be configured to store data like typical RAM or EEPROM. Typical 

RAM does not retain stored data when power to the microcontroller is cycled, but 

EEPROM does. When FlexRAM is configured as EEPROM, it supports 1, 2, and 4 byte 

read and writes. This is makes EEPROM a simple way to restore program settings and pa-

rameters across power cycles. 

As stated above, EEPROM has the ability to read and write from a single memory 

address rather than pages, which is typical for other storage devices such as flash memory. 

When loading program data, such as a single character or integer, it is advantageous and 

highly efficient to just read that one integer instead of a full page of data. EEPROM is also 

more reliable than flash as it can retain data for more read/write cycles (rated for over 

100,000 read/write cycles) than typical flash memory.  

A drawback of EEPROM on the Teensy is that it has a significantly smaller storage 

space compared to other memory types. This greatly limits its usability for certain applica-

tions. For instance, it would not be feasible to store all data logged during program execution 

to EEPROM. Although it may seem convenient to do so in terms of read and write speeds, 

the small amount of space to work with limits the program and any expansions that may be 

added in the future. The specifications for the Teensy EEPROM can be seen in Table 14 

[52]. 
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Table 14: Teensy FlexRAM as EEPROM Specifications. 

Storage Space 2 KB (2048 Bytes) 

Byte Write Latency (8 Bit) Typical: 175μs, Max: 260μs 

Word Write Latency (16 Bit) Typical: 175μs, Max: 260μs 

Long Work Write Latency (32 Bit) Typical: 360μs, Max: 540μs 

Data Retention 100,000 Read/Write cycles (minimum) 

 
For this implementation, using FlexRAM allocated as EEPROM is out of scope as 

this project is focused on logging CAN data in real-time, not device recovery after power cy-

cle. With that said, FlexRAM is a notable storage option for future expansions. As stated 

above, EEPROM is a useful storage type for program data and other data that needs to be 

restored across power cycles. 

3.3.3 Flash Memory 

The information in this section about flash memory can be found in the 1 Mbit SPI 

Serial SRAM with SDI and SQI Interface [53]. Flash memory is a type of nonvolatile 

memory, which is typically used for long-term storage. Flash erases data in blocks or pages, 

which are sections of memory. Before data can be stored on a flash memory block, the data 

on that block must be erased. 

The 512 KB and 1024 KB flash memory modules made by Microchip are compatible 

with the Teensy SPI Bus. SPI Flash offers high bandwidth and a fairly low storage capacity, 

therefore the concern with this type of memory is that it does not offer a large enough stor-

age space to contain all the packets recorded by the Data Logger. 1024 KB of memory is not 

enough space to store all CAN data required to diagnose one or more vehicle attacks. This is 

discussed further later in this section. Table 15 shows the specifications for Microchip’s SPI 

Flash memory module [53]. 
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Table 15: Microchip SPI Flash Module Specifications. 

Storage Space 512 KB or 1024 KB 

Byte Write Speed Typical:  2000 Bytes/s , Min: 1428.57 Bytes/s 

Byte Write Latency Typical: 50μs, Max: 70μs 

Data Retention 100,000 Read/Write cycles (minimum), 100 years 

3.3.4 Secure Digital (SD) Card 

The last storage option for this Data Logger implementation is SD Card technology. 

SD is the only storage option that can easily be removed from the Data Logger. It contains 

the largest storage space, but the slowest read and write speeds via SPI Bus. Teensy-compati-

ble SD cards are available is sizes ranging from 2 – 8 GB. The speed at which data can be 

read and written to the SD Card is determined by the speed of the Teensy, the SD library 

implementation, and the SD Card itself. Figure 24 shows an image of the SD card reader for 

the Teensy microcontroller [54].  

There are many SD Card libraries that support the Teensy, but the one that seems to 

be most commonly used is the SdFat libraries developed by Bill Greiman. According to his 

test benchmark, he was able to get the following speeds by using a Teensy 3.0 running at 

96MHz, an SPI clock speed of 24 MHz, and the SdFat Beta library, which can be seen in Ta-

ble 16 [55]. 

Figure 24: Image of the SD Card device for Teensy. 

SD Card Device 

Teensy 



UDS Based Attack Data Logger 

51 

Table 16: SD Card Library Benchmarks. 

Command File Size Buffer Size Speed (KB/sec) Max Latency Average Latency 

write 5MB 4096 Bytes 1776.44 65790 μs 2300 μs 

read 5MB 4096 Bytes 2037.15 2356 μs 2008 μs 

write 10MB 8192 Bytes 2002.05 6777 μs 4098 μs 

read 10MB 8192 Bytes 2121.47 4231 μs 3860 μs 

 

Bill Greiman, the creator of the SdFat library, indicated that the data size should be a 

multiple of 512 Bytes (SD Card page size) to avoid the need of copying data to the cache. 

Using a data size that is a power of two increases the performance slightly for this reason.   

3.3.5 Selected Storage Device 

The Data Logger requires a large storage space for the multiple logs that will be 

stored in the case of one or more UDS attacks. The SPI Flash modules do not fit the needs 

of the Data Logger as they cannot store enough data in the case that one or more attacks oc-

cur. The CAN data files necessary to diagnose the attack would not fit on a single flash mod-

ule. Furthermore, removing an SPI Flash module from the device and copying its contents 

to a computer would be a complicated task for the user. Using an SD Card, the Data Logger 

can store all the CAN data a forensics analyst would deem fit to diagnose a vehicle attack 

and make transferring the data simple for the user. 

The SD Card option was chosen as a storage device for this application because it 

has the highest storage capacity and can be easily transferred to a laptop, phone, or other de-

vice. The SD Card is capable of storing large log files at a rate fast enough to store most, if 

not all CAN packets monitored on the bus, which is of most importance for this implemen-

tation. Note that while the speed of the SD card is fast enough to process the incoming rate 

of the messages from the Nissan Altima, processing the messages could take more time. 

Therefore, running benchmarks is needed in order to know the exact throughput for our 

Data Logging algorithm.
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3.4 Project Logistics 

 

Table 17: Gantt Chart 
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4.0 Implementation 

This section discusses the Data Logger implementation details including the system 

design, algorithm used to record UDS attacks including safeguards necessary to ensure data 

integrity, and attack scenarios supported. 

4.1 System Design 

The objective of this project was to design and build a prototype Data Logger device 

that can log enough CAN bus messages for a forensics analyst to be able to understand what 

the state of the vehicle was before, during and after a UDS attack. The proposed design has 

two main components, the logger device and a CAN simulator test bench. The Data Logger 

device is meant to be connected to the CAN Bus of a vehicle or included in the vehicle as a 

node by manufacturers so it can monitor the messages sent on the CAN Bus. The test de-

vice is needed for simulating a CAN Bus because it allows for testing the Data Logger device 

without risking damaging an actual vehicle.  

The hardware and storage analysis determined the selection of the Teensy 3.2 as the 

microcontroller and the SD card as the optimal storage option for the device. The Teensy 

3.2 requires an SD card adapter with supporting C libraries to interface with SD cards. The 

BeagleBone Black was selected as the most desirable microcontroller to use for testing our 

Data Logger device. 

For testing and simulation purposes, the Data Logger device must communicate with 

the Test Bench device. Both the Data Logger device and the Test Bench require external 

CAN hardware to communicate with each other. There are many different CAN microchips 

that interface with microcontrollers, but we only focused on testing three in particular. The 

CAN hardware acquired consisted of models MCP2561 -E/P, MCP2551 -I/P, and the 

SN65HVD230. Each was tested with an oscilloscope when connected to the Teensy and 

Test Bench to check whether or not the input signal from one microcontroller was transmit-

ted across the chip to the other microcontroller. Both the MCP microchips were unsuccess-

ful when tested in this fashion, but the SN65HVD230 was capable of transmitting and re-

ceiving a signal.  
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The Data Logger device needs a timing module in order to get the current time. The 

current time is needed for recording the timestamps of the messages because the messages 

sent on the CAN network do not include the timestamp in them. The timestamp is critical 

for this project because the forensics analyst needs to know when possible attacks occurred 

in the network and when any effects from the attack occurred.  

The BeagleBone Black microcontroller in the Test Bench used the data vectors rec-

orded from the Nissan Altima. These data vectors were recorded while driving the Nissan 

Altima around Worcester and include the different scenarios explained in Chapter 2.6. The 

Test Bench sends these test vectors to the Data Logger device by using the SN65HVD230 

chip. The Data Logger reads all messages and runs an algorithm to select and log relevant 

messages when a UDS message is detected on the network. The Test Bench can also send 

modified test vectors that have more or fewer UDS messages. Figure 25 shows a diagram for 

the Data Logger device.  

The main component is the Teensy 3.2 microcontroller; this microcontroller con-

nects to the Micro SD card reader and to the SN65HVD230 microchip. The SN65HVD230 

Figure 25: Final Data Logger Setup. 
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microchip is the CAN transceiver. It connects to the CAN transmitter (Tx) and receiver (Rx) 

pins of the Teensy 3.2 microcontroller as well 3.3V and ground. The other side of the CAN 

chip is CAN High and Low which connect to the OBD-II port on the vehicle. The CANH 

is pin 6, and the CANL is pin 14, as shown in the diagram. The Micro SD card adapter is 

connected on the other side of the Teensy 3.2 microcontroller. It has 3.3V, ground and dif-

ferent SPI port pin outs such as SCK, CS, DOUNT and DIN. The last component of this 

device is the RTC clock module, which connects to the teensy using the SDA and SCL pin 

outs; it also requires 5V and ground. A chart all pin outs and voltages is shown in Table 18. 

Table 18: Hardware Specifications. 
 

Input Voltage Pins Used Function 

Teensy 3.2 5V Tx, Rx (SN65HVD230 
CAN Board) 

CS, DOUT, DIN, SCK 
(SD Card Adapter) 
SCL0, SDA0 (RTC 

Module) 

Controls all components of the Data Log-
ger device. 

Connects over CAN, SPI and I2C ports. 

RTC Module 5V SDA, SCL Used to synchronize Teensy 3.2 time on 
startup. 

Connects over I2C ports.  

SD Card 

Adapter 

3.3V MISO, MOSI, SCLK, 
SS 

Stores data from Teensy 3.2 onto micro 
SD card. 

Connects through SPI ports 

SN65HVD230 3.3V TxD, RxD, CANH, 
CANL 

These chips act as the interface between 
the CAN_BUS and the microcontroller. 

Connects over CAN ports 

 
Figure 26 shows a diagram for the test bench setup. The main component of the test 

bench setup is the BeagleBone Black microcontroller. CAN messages are simulated by play-

ing back previously recorded messages by connecting to the SN65HVD230 chip through Tx 

and Rx; the purpose of this is to simulate a vehicle. In order to create the virtual CAN net-

work, the two SN65HVD230 chips are connected together through CANH and CANL. 

Once the packets are sent from the BeagleBone Black, our Data Logger reads these packets 

and identifies the harmful UDS messages occurring if there are any. The test bench setup is 

used as a tool to simulate packets over a CAN network in order for us to see if our Data 

Logger is working correctly.  
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Figure 27 shows the final Data Logger setup with the BeagleBone Black connected 

to it. The BeagleBone Black acts as a playback device and sends the recorded Nissan Altima 

CAN packets to the Tx and Rx ports of one of the SN65HVD230 CAN Board. This chip 

connects to another SN65HVD230 CAN Board through the CAN High and CAN Low 

ports to create a CAN network. The second SN65HVD230 CAN Board sends the CAN 

packet through its Tx and Rx ports to the Tx and Rx of the Teensy microcontroller. The 

Teensy then analyzes the CAN packets to determine the proper course of action.   

Figure 26: Final Test Bench Setup. 
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4.2 Data Logging Algorithm 

The algorithm used to detect and record UDS was first developed and tested on an 

Ubuntu Linux virtual machine in Python as a proof of concept. This Python code was then 

ported to C++ to execute on the Teensy based Data Logger prototype. The data logging al-

gorithm processes each packet monitored on the bus. It first checks the packet’s arbitration 

ID to determine whether or not it is a UDS message. This is done by simply checking if the 

arbitration ID is equal to 0x7E8, which is the identifier of UDS messages. The Data Logger 

Figure 27: Picture showing the final Data Logger setup.  

On the left is the BeagleBone Black sends the recorded Nissan Altima CAN packets to the 

SN65HVD230 CAN Board (Black box). This creates a CAN network (Green Box) 

which is then sent to the Teensy (Red Box). The information is saved 

to an SD card reader (Orange Box), using time information from 

the DS1307 RTC Timing Module (Light Blue Box). 

Teensy 

CAN Bus 

Timing 
Module 

CAN 
Board 

SD Card 
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saves every message read to a circular buffer holding a maximum of 1800 packets (approxi-

mately 1.2 seconds of data) until a UDS message is processed – as referenced in Chapter 3.0. 

There are two possible states for the bus. Normal state is when there has not been a 

UDS attack detected. During the normal state, the Data Logger device reads messages and 

puts them in a circular buffer. Once a UDS message is monitored on the bus, the Data Log-

ger switches to the corrupted state and creates a new directory where all data is stored until 

the next power cycle occurs. Then, the Data Logger must write all contents of the circular 

buffer to a new file on the SD card. This file is called Before_UDS_Attack_X.txt indicating 

that this data was recorded previous to the first UDS attack monitored on the network. Af-

ter the circular buffer is saved, the system changes state and it considers the incoming CAN 

traffic as corrupt. The corrupted state only becomes normal again when there is a power cy-

cle.  

The corrupt traffic is saved to a new file on the SD card marked as After_UDS_At-

tack_1.txt indicating that this is the first UDS attack to occur. A relatively short linear buffer 

(256 packets in length) is used to expedite writing to the SD card in a data stream. This is 

done by filling the buffer with packets, opening the data file, writing all the contents of the 

buffer to the file, and closing the file. The file is opened and closed to ensure that a power 

cycle will not result in data loss. If the buffer were very large and the device lost power, all of 

the contents of the buffer would be lost. The Teensy continues to save corrupt messages us-

ing this method until 80 corrupt ticks have elapsed after the last UDS message was found on 

the CAN Bus – as mentioned in Chapter 3.0. Finally, the Data Logger writes a string to the 

bottom of the file recording how many UDS messages were found in the attack. 

After the Data Logger has recorded the messages for 80 corrupt ticks after the last 

UDS messages was detected, it returns to storing data to the circular buffer. This data is still 

considered to be corrupt traffic as the bus had been previously experiencing UDS messages. 

If another attack is monitored, the Data Logger repeats the actions previously discussed 

(saving the circular buffer and then 80 corrupt ticks of corrupt data after the last UDS at-

tack). The files in subsequent attacks are named in the same format, except the attack num-

ber would be incremented. For example, the UDS attack data recorded during attack three 
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would be saved as After_UDS_Attack_3.txt. This algorithm is represented graphically in Fig-

ure 28. 

4.3 Attack Scenarios 

The Data Logger was designed to handle multiple situations in which an attack could 

occur. It is not possible to anticipate the exact route a hacker will take to compromise a sys-

tem, so the Data Logger was designed to take any UDS attack and break it down into its es-

sential components. The Data Logger bases the importance of CAN traffic on the frequency 

of UDS messages and the spacing between attacks. The following attack scenarios show how 

the Data Logger responds to attacks and why it is important to do so. 

Figure 28: Algorithm flow chart describing both normal messages and UDS messages. 
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Case 1: No Attack: This scenario occurs when the vehicle is either in motion or stationary 

and the CAN network has not been compromised. The vehicle is acting as it would under 

normal circumstances and no UDS messages are being transferred on the bus. Figure 29 

shows the behavior of the system when the vehicle has not experienced a UDS attack. 

The Data Logger stores the past 1.2 seconds of normal CAN traffic to the circular 

buffer continuously, monitoring the bus for UDS messages. 

Case 2 - Single UDS Attack: A Single UDS Attack occurs when all the UDS messages sent 

during the attack are time stamped within 80 corrupt ticks of the previous UDS message. An 

example of this scenario is when the attacker would like to load new firmware onto a target 

ECU. The bootloader for that ECU would consistently read UDS messages containing the 

malicious firmware. All the UDS messages in this attack would be sent in tight timing in or-

der to quickly load the new firmware onto the targeted ECU. Since the attack should be read 

in order within a single file, the Data Logger will respond to such an attack in the manner 

shown in Figure 30. 

  

Figure 29: Sketch of Case 1: No Attack. 

Time Axis 
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 The steps of the algorithm shown in Figure 30 are described in more detail: 

1. Data Logger stores past 1.2 seconds of normal CAN traffic to the circular buffer 

continuously, monitoring the bus for UDS messages. 

2. The first UDS message is monitored on the bus. Freeze the circular buffer, make a 

new directory for the attack, and dump all data to the SD card. 

3. Record 80 corrupt ticks after the first UDS message was found through a data 

stream to the SD card. 

4. In case another UDS message is monitored on the bus within the 80 corrupt tick pe-

riod, record all data up to 80 corrupt ticks after the last UDS message is transferred 

on the bus through a data stream to the SD card. 

5. Begin recording CAN traffic to circular buffer once again and wait for more UDS 

messages to come. 

 
Case 3: Multiple UDS Attacks: Multiple UDS attacks occur when there is a time gap of more 

than 60 seconds between transfers of UDS messages. The two attacks are considered to be 

separate solely because of this time gap. An example of this occurrence is when the hacker 

would like to cover up his tracks after attempting a UDS attack. UDS messages could be 

used after the attack to make the vehicle seem as if it was functioning normally when an acci-

Figure 30: Sketch of the Case 2: Single UDS Attack. 
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dent, if any, occurred. Without recording this data, a forensics analyst would assume the ve-

hicle was not attacked and the hacker’s effort to cover up the attack would pay off. The Data 

Logger responds to this attack situation in the manner shown in Figure 31. 

The steps of the algorithm shown in Figure 31 are described in more detail: 

1. Data Logger stores past 1.2 seconds of normal CAN traffic to the circular buffer 

continuously, monitoring the bus for UDS messages. 

2. The first UDS attack is monitored on the bus. Freeze the circular buffer, make a new 

directory for the attack, and record all data to the SD card. 

3. Record first UDS attack through a stream to the SD card until the attack has com-

pleted. 

4. Begin recording CAN traffic to circular buffer once again. Wait for a new UDS at-

tack to be monitored in the bus. 

5. When another attack is monitored, repeat step 2 through 5. 

 

Case 4 - Denial-Of-Service (DoS) Like Attack: In this scenario, the attacker would bom-

bard the CAN network with UDS messages in order to gain control over the network. 

This would cause a “jamming” effect on the network, in the sense that no packets from 

ECUs on the network would be able to send messages. If this attack is used, there is not 

much the logger can do other than record what packets are monitored on the bus. Typi-

cally a node executing a DoS attack on the CAN network will be booted from the net-

work and not trusted. Even though this seems like a self-healing event, in the case that 

the DoS attack removed a vital ECU from the network, the logger would have this rec-

orded. Figure 31 shows a sketch of this type of attack. 

Figure 31: Sketch of Case 3: Multiple UDS Attacks. 
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1. Data Logger stores past 1.2 seconds of normal CAN traffic to the circular buffer 

continuously, monitoring the bus for UDS messages. 

2. Attack occurs, freeze recording to the normal state circular buffer 

3. Record Y seconds after the UDS attack of corrupted messages into a new linear 

buffer 

4. When another UDS message is sent within the Y seconds, extend the recording time 

to include Y seconds after the last UDS message 

5. Save circular buffer to a file indicating the number of the first UDS attack detected 

6. Save UDS attack messages and corrupted traffic to a another file with the same UDS 

attack number 

7. Begin recording CAN traffic to circular buffer once again - this traffic is still consid-

ered corrupted 

         a)    Then record all UDS attacks of length Z into one DOS ATTACK file 

4.4 Project Cost 

This section covers the overall cost of this MQP project and the final deliverable. As 

previously stated, there was a shift in project scope for this project, so some components 

were not used in the final implementation of the Data Logger. The costs presented in this 

section are divided into three tables, the total cost of the MQP, the cost of the test bench, 

and the cost of the Data Logger. Table 19 outlines the total cost of this MQP project, total-

ing to $309.08, which includes every component purchased throughout the project. 
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Table 19: Total MQP Cost Breakdown. 

Seller Part Number Part Name Cost Quantity Total 

Adafruit 264 
DS1307 Real Time Clock 

breakout board kit 
7.95 1 7.95 

Amazon 
SN65HVD230 CAN 

Board 
SN65HVD230 CAN Board 9.99 2 19.98 

DigiKey MCP2561 -E/P MCP2561 microchip 1.29 2 2.58 

DigiKey MCP2551 -I/P MCP2551 microchip 1.29 2 2.58 

Groupon Bluetooth OBD-II  OBD-II Diagnostic Tool 12.99 1 12.99 

PJRC SD_ADAPTER Micro SD adapter 8 2 16 

Seeed 113030021 Arduino SEEED Shield 23.5 2 47 

SparkFun DEV-11021 Arduino Uno-R3 24.95 2 49.9 

SparkFun DEV-10039 Arduino Can-Bus shield 39.95 1 39.95 

SparkFun CAB-10087 OBD-II to DB9 Cable 9.95 1 9.95 

SparkFun DEV-09911 OBD-II connector 3.95 1 3.95 

SparkFun PRT-12794 Jumper Wires (pack) 1.95 1 1.95 

SparkFun PRT-00116 Break away headers 1.5 1 1.5 

SparkFun COM-11609 Micro SD Kit 13.95 1 13.95 

SparkFun DEV-13736 Teensy 3.2 board 19.95 1 19.95 

SparkFun PRT-12043 Bread board 3.95 1 3.95 

SparkFun DEV-12857 ROHS Beaglebone Black 54.95 1 54.95 

    Total 309.08 

 
A breakdown of the cost of the BeagleBone Black test bench is shown in Table 20. 

The test bench total was $70.84.  

Table 20: Cost Breakdown for BeagleBone Black Test Bench. 

Seller Part Number Part Name Cost Quantity Total 

SparkFun PRT-12794 Jumper Wires (pack) 1.95 1 1.95 

SparkFun DEV-12857 ROHS Beaglebone Black 54.95 1 54.95 

SparkFun PRT-12043 Bread board 3.95 1 3.95 

Amazon 
SN65HVD230 CAN 

Board 
SN65HVD230 CAN Board 9.99 1 9.99 

    Total 70.84 

 
A breakdown of the cost involved in building a Data Logger is shown in Table 21.  

The cost per Data Logger is a total of $71.19. 
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Table 21: Cost Breakdown for Data Logger Device. 

Seller Part Number Part Name Cost Quantity Total 

Adafruit 264 
DS1307 Real Time Clock 

breakout board kit 
7.95 1 7.95 

Amazon 
SN65HVD230 CAN 

Board 
SN65HVD230 CAN Board 9.99 1 9.99 

PJRC SD_ADAPTER Micro SD adapter 8 1 8 

SparkFun DEV-09911 OBD-II connector 3.95 1 3.95 

SparkFun PRT-12794 Jumper Wires (pack) 1.95 1 1.95 

SparkFun PRT-00116 Break away headers 1.5 1 1.5 

SparkFun COM-11609 Micro SD Kit 13.95 1 13.95 

SparkFun DEV-13736 Teensy 3.2 board 19.95 1 19.95 

SparkFun PRT-12043 Bread board 3.95 1 3.95 

    Total 71.19 

4.5 Chapter Summary 

The final Data Logger hardware consisted of the Teensy 3.2 microcontroller, the SD 

card as the optimal storage option for the device and the Adafruit DS130 RTC Timing Mod-

ule. In order to properly test this prototype, the BeagleBone Black was selected as the most 

desirable microcontroller. The total price to build the Data Logger is about $72. It also cost 

about $71 in order to setup the BeagleBone Black Test Bench with the SN65HVD230 CAN 

boards. 

The data logging algorithm processes each packet monitored on the bus and first 

checks the packet’s arbitration ID to determine whether or not it is a UDS message (0x7E8). 

The Data Logger saves every message to a circular buffer which holds a maximum of 1800 

packets (approximately 1.2 seconds of data) until a UDS message is processed – as refer-

enced in Chapter 3.0. If a UDS message is detected, the Teensy saves the corrupt messages 

until 80 corrupt ticks have elapsed after the last UDS message was found on the CAN Bus. 

Once this is completed and the file saved, the circular buffer starts over. The device was 

tested using four attack scenarios: (1) No Attack, (2) Single UDS Attack, (3) Multiple UDS 

Attacks, and (4) Denial of Service Attack.   
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5.0 Experimental Results 

This section covers the tests that were performed on both the Python virtual proof 

of concept and our prototype implementation of the Data Logger. As previously mentioned, 

the Data Logger is expected to record enough data that a forensics analyst could determine 

exactly what a UDS attack was attempting to accomplish and what actually occurred as a re-

sult. There are approximately 1500 packets transferred on the 2014 Nissan Altima CAN net-

work per second. The Data Logger is not required to save all of this data, just the messages 

that happen before and after a UDS attack. As mentioned in Chapter 4.1 it was determined 

that recording 10 normal ticks before and 80 corrupt ticks after the UDS attack would be 

enough to pinpoint any changes in the system caused by a UDS attack. 

Packet streams recorded from the OBD-II of a 2014 Nissan Altima in multiple sce-

narios were used to test the functionality of the Data Logger. In order to establish a con-

trolled testing environment, we used the NO_UDS_CITY_DRIVING with no UDS mes-

sages present in the vehicle’s CAN Bus. This allowed us to send in UDS packets at specific 

times in order to simulate the scenarios in Chapter 2.3. The four attack scenarios tested on 

the prototype were: 

1. No UDS Attack 
2. Single UDS Attack 
3. Multiple UDS Attacks 
4. Denial of Service (Dos) Attack 

5.1 Python Implementation Results 

The algorithm for the Data Logger device was first developed in Python. The Py-

thon programmed used the SocketCAN APIs (referenced in Appendix E) in order to read 

packets being sent on the Virtual CAN Bus networks and process them. The program pro-

cesses them by checking whether the message is an UDS message (for which the ID = 

0x7e), creating a message object, and storing the message either in the circular buffer or lin-

ear buffer depending upon its ID. A test vector and the packet stream previously recorded 

from the 2014 Nissan Altima were used in order to test the Python version of the algorithm. 
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The Python algorithm used a circular buffer big enough to capture 1800 packets as 

mentioned in Chapter 3.0. The linear buffer can contain up to 1024 packets and after it is 

full, the buffer is then written into the created file. The algorithm will only store 90000 mes-

sages after the last UDS packet, which is equivalent to 80 corrupt ticks. The Python algo-

rithm also prints the messages on the terminal in order to facilitate debugging. It also prints 

statistics both to the terminal and the after_UDS file. 

A test vector was created because we needed simpler message streams in order to 

run initial tests. These test vectors were made in the simple form of a Linux bash script files. 

Running these two scripts would send a series of messages using the cansend commands from 

the Linux CAN utilities. These simpler tests used arbitrary IDs and payloads. The Python al-

gorithm had smaller page sizes and buffer sizes to simplify the number of messages in the 

folder and to easily identify any potential lost messages or possible errors in the data. This 

phase of testing was focused to test the logic of the program and the overall behavior of the 

algorithm. Only a single UDS attack was tested as the Python testing was just for proof of 

concept. From this test, a directory is created every time the program is run (and files are 

overwritten if they existed before as well).  

The canplayer tool was then used to send test vectors recorded from the vehicle.  The 

canplayer tool sends data at the rate recorded which makes it a slower process than the bash 

scripts. In order to play the data back in a Virtual CAN network, it is necessary to modify 

the file and change the network device from can0 to vcan0 (virtual can 0) so the tools can 

send it over the virtual CAN, and not a physical CAN network as it happened in the car. The 

screenshot shows the terminal displaying the messages received from another terminal using 

the canplayer tool to send messages from the UDS_CITY_DRIVING log file. When the mes-

sage with ID 0x07e8 is received, the system records that a UDS message is detected. A 

screenshot of the packets on the virtual CAN network is shown in Figure 33. 
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The files are created in the DataLoggerFiles Folder. In the beforeUDS_1.txt there are 

1279 messages (1 per line).  A screenshot of the before UDS file in Figure 32. In this case 

there were 1,977 UDS messages in the afterUDS_1.txt file as shown in Figure 34.  

 

Figure 33: Screenshot of packets being received on the virtual CAN network.  

The format of the packets is printed as follows: 

<timestamp><ArbitrationID> <ErrorFrame> 

<Size of the Payload> <Payload>. 

Figure 32: Screenshot of the two text files, afterUDS_1.txt & beforeUDS_1.txt. 

The first screenshot is the beforeUDS file which consists of the packets before 

the UDS attack. 
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The results from the Python testing show that the algorithm’s logic is correct. A sin-

gle UDS packet was sent to the virtual CAN network, and the algorithm detected this 

packet, and then began to record two files. One file stores the data before the UDS attack 

and the other after the UDS attack. These results confirmed the proof of concept for the al-

gorithm that was used to build the code for the Data Logger. 

5.2 Data Logger Implementation Results 

A series of tests were conducted in order to confirm the Data Logger prototypes 

functionality. Initial tests consisted of generated packets on the Teensy Board and storing 

them in the buffers simulating that they were received from the CAN Bus Network. Subse-

quently, the Test Bench was set up and tested to ensure that messages were being sent and 

received. Finally, a data stream of packets from the Nissan Altima 2014 was used to test the 

algorithm. 

Figure 34: Screenshot is the after UDS file which consists of the packets after the 

UDS attack. 

UDS message with 

AID of 7E8. 
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Data Logger Development Testing 

During development, tests were run internal to the Data Logger’s code without con-

nection to the test bench. This was done to increase the number of tests that could executed 

during development and allowed for running pseudo-random UDS attacks without having to 

record each one from an actual vehicle. These tests were created by generating randomized 

normal and corrupt traffic test vectors during program execution. The Data Logger pro-

cessed packets during attack simulations as it normally would, but no CAN hardware was 

used. The goal of simulating attacks was to help debug the code with simpler test vectors 

and in incremental stages, similar to in an Agile development environment. 

Design Testing 

The BeagleBone Black Test Bench was set up to simulate a physical CAN network 

by using the SocketCAN utilities. The SocketCAN physical network functions allow for 

playing back the packet streams at the exact timing in which they were recorded, making 

these tests capable of simulating an actual vehicle perfectly. Using a simulated CAN network 

not only assisted in saving test time, but also mitigated risking to damage the test vehicle, 

made potentially dangerous tests safe, and allowed us to modify packet streams or create 

new ones for testing the algorithm when needed. The next step was to use to communicate 

with the Data Logger device. This was done by interfacing both devices by using the 

SN65HVD230 high-speed CAN boards. Initially, some troubleshooting and testing was 

done to ensure that the SN65HVD230 CAN boards were sending and receiving CAN sig-

nals correctly. 

Figure 35 shows an oscilloscope reading which was used to test the BeagleBone 

Black and the SN65HVD230 CAN board. The yellow input line is the CAN signal being 

transmitted from the BeagleBone Black to the CAN board. The green input line is the CAN 

signal being received by the Teensy microcontroller from the two CAN boards. The two sig-

nals are identical which proves that the CAN boards are working and creating a CAN net-

work that receives and CAN packet and then transmits it to the microcontroller for analysis. 

This testing was necessary to complete before analyzing the final testing to ensure that the 

CAN boards were working properly. 
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 After the oscilloscope testing proved that a CAN packet transmitted successfully 

from the BeagleBone Black to the Teensy microcontroller, the NO_UDS_CITY_DRIVING 

text file was transmitted across the virtual CAN network. Figure 36 is a screenshot of the 

CAN packets being received by the Teensy. 

5.2.1 SD Card Writing Optimization Tests 

A preliminary test was conducted to obtain the most effective linear buffer size used 

to write pages of CAN data to the SD card. In order to determine the size of the linear 

Figure 36: Screenshot of packets being received on the virtual CAN network. 

The format of the packets is printed as follows: <FromNetwork> <ToNetwork> 

<ArbitrationID> <Size of the Payload> <Payload>. 

Figure 35: Oscilloscope reading from the Data Logger with the BeagleBone Black.  

The yellow signal is the CAN packet from the BeagleBone Black and the green signal is the CAN 

packet at the Rx pin of the Teensy. 
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buffer, multiple buffer sizes were tested with the same attack packet stream and two differ-

ent CAN libraries, one written in C++ that uses polling and another written in C that uses 

interrupts. The packet stream chosen to run these tests was considered the most challenging 

for the Data Logger to record completely. This was done to obtain a better spread of the 

data, making the buffer size choice more obvious based on the results. The metric used to 

choose which linear buffer size to use was the percentage of the total number of attack pack-

ets recorded to the SD card. The results of these tests conclude that the ideal buffer size is 

1024 packets for the C++ library and 512 packets for the C library as shown below in Table 

22 and Table 23. 

Table 22: Linear buffer size C++ library results. 

 

 

 

 

 

 
Table 23: Linear buffer size C library results. 

 

 

 

 

5.2.2 No UDS Attack Test 

A packet stream with no UDS messages present on the vehicle’s CAN Bus was used 

for this test. We did not send any UDS packets to the simulated CAN network because this 

test should not have any UDS packets present. The Data Logger should respond to this 

packet stream by not recording any packets as no attack occurred in this scenario.  

Linear Buffer Size (Packets) Attack Packets Recorded 

32 58.1% 

64 66.3% 

128 70.0% 

256 71.0% 

512 6.75% 

1024 71.7% 

Linear Buffer Size (Packets) Attack Packets Recorded 

32 63.5% 

64 68.0% 

128 70.3% 

256 63.0% 

512 71.6% 

1024 67.1% 
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Pass Conditions: 

1. The Data Logger does not create any log files as no UDS attacks have occurred 

in this test case. 

2. The Data Logger continuously records traffic into the circular buffer, checking 

that an attack has occurred after the entire packet stream has been sent to the de-

vice. 

3. No errors are flagged by the Data Logger during the entirety of the test.  

 

Figure 37 is a screenshot that shows the resulting root directory of the SD card after 

this test has been executed. This test has been passed as no files were recorded and no errors 

were signaled by the device during test execution. 

5.2.3 Single UDS Attack 

A packet stream with no UDS messages present on the vehicle’s CAN Bus was also 

used for this test. In order to simulate a single UDS attack, we sent a UDS packet on the bus 

once during the execution of this test. This simulated a malicious UDS device that can com-

municate over the network via either wired or wireless connection. The resulting packet 

streams contain both normal and corrupt CAN traffic, which will test the Data Logger’s abil-

ity to determine when the attack occurs and how to store the data properly. The Data Log-

ger should respond to this packet stream by creating two log files, one before and one after 

the single UDS attack. 

Pass Conditions: 

1. The Data Logger creates a log file, containing the 10 normal ticks (1800 packets) 

immediately prior to the UDS attack that occurred. 

2. The Data Logger creates a second log file, containing 80 corrupt ticks (90000 

packets) after the last UDS message recorded in the attack. 

3. The Data Logger continuously records corrupt traffic into the circular buffer, 

checking that an attack has occurred after the entire packet stream has been sent 

to the device. 

Figure 37: Screenshot of the Data Logger folder when there is no UDS attack. 
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4. No errors are flagged by the Data Logger during the entirety of the test. 

The screenshot in Figure 38 is this test’s resulting folder containing the single attack’s 

packet stream data in which both the data before and after the attack have been stored. This 

test has been passed as the data before and after the attack was recorded to the SD card 

without any errors signaled by the Data Logger. 

Figure 39 is a screen shot of the After_UDS_Attack_1 text file. The UDS packet is 

the first one recorded as this is when the linear buffer begins. The complete file only con-

tains one UDS packet and 80 corrupt ticks of data after the UDS packet.  

This is the same format of the other attack scenarios files, except the DoS attack. 

The After_UDS_Attack_1 text file for DoS attack will include however many UDS packets 

were sent during the attack.  

5.2.4 Multiple UDS Attack 

A packet stream with no UDS messages present on the vehicle’s CAN Bus was used 

again during this test. In order to simulate specific UDS attack scenarios, we sent in UDS 

packets at certain times. The resulting packet streams contain both normal and corrupt CAN 

traffic, which will test the Data Logger’s ability to determine when multiple attacks occur and 

Figure 39: Screenshot of the After_UDS_Attack_1.txt file. 

The UDS arbitration ID is in the red square. 

Figure 38: Screenshot of the Data Logger folder when there is a single UDS attack. 
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how to store the data properly. The Data Logger should respond to these packet streams by 

creating two log files for each UDS attack (one before and one after each attack). 

Pass Conditions: 

1. The Data Logger creates a log file for each UDS attack, containing the 10 normal 

ticks (1800 packets) immediately prior to the UDS attack that occurred. 

2. The Data Logger creates a log file for each UDS attack, containing 80 corrupt ticks 

(90000 packets) after the last UDS message recorded in the attack. 

3. The Data Logger continuously records corrupt traffic into the circular buffer, check-

ing that an attack has occurred after the entire packet stream has been sent to the de-

vice. 

4. No errors are flagged by the Data Logger during the entirety of the test. 

The screenshot in Figure 40 shows the resulting folder containing the five attacks’ data 

both before and after each attack occurs. This test has been passed as the data before and 

after each attack was recorded to the SD card without any errors signaled by the Data Log-

ger. 

5.2.5 Denial-Of-Service (DoS) Attack 

To test the Data Logger’s ability to record a DoS attack, a packet stream containing 

multiple UDS messages in each corrupt tick was used. The Data Logger should respond to 

this packet stream by creating two log files, one before and one during the UDS attack. 

Figure 40: Screenshot of the Data Logger folder when there is multiple UDS attacks. 
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Pass Conditions: 

1. The Data Logger creates a log file, containing the 10 normal ticks (1800 packets) im-

mediately prior to the DoS attack that occurred. 

2. The Data Logger creates a log file, containing 80 corrupt ticks (90000 packets) after 

the last UDS message recorded in the DoS attack. 

3. The Data Logger continuously records corrupt traffic into the circular buffer, check-

ing that an attack has occurred after the entire packet stream has been sent to the de-

vice. 

4. No errors are flagged by the Data Logger during the entirety of the test. 

The screenshot in Figure 41 shows the resulting folder containing the DoS attack packet 

stream. This test was passed as the data before and during the DoS attack was stored to the 

SD card without any errors signaled by the Data Logger. 

5.3 Chapter Summary 

After executing multiple tests with the BeagleBone Black Test Bench and Data Log-

ger, we examined the files created for each test. It became apparent during our analysis that 

28.2 % of the packets were missed by the Data Logger when faced with a DoS attack. This 

happens when using the C++ library and a linear buffer size of 1024 packets, which is the 

most efficient of the options previously discussed. Other options including different linear 

buffer sizes and the C library have proven to be less effective than the current prototype im-

plementation. 

Since the Data Logger prototype is incapable of logging all packets that are moni-

tored on the bus during and after a UDS attack has occurred, further design and optimiza-

tion is necessary. This issue can be attributed to the extended write latency when storing 

large amounts of CAN traffic to the SD card with a single threaded CPU. A possible solu-

tion to this problem is to use a microcontroller that is capable of running multiple threads on 

one or more CPU cores. One thread can be used to read the traffic on the CAN network 

Figure 41: Screenshot of the Data Logger folder when there is a DoS UDS attack. 
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while the other thread writes previously recorded traffic to the SD card. This design shift 

would entail further algorithm optimization in which a second circular buffer would be used 

to allow both threads to access the corrupt traffic at once. This would mitigate the need for 

the linear buffer currently used to assist in the stream to the SD card and make CAN data 

reading and writing parallel tasks.  
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6.0 Conclusion 

Although detection and recovery are progress for vehicle security, there is still the is-

sue of preventing vehicle attacks and forming countermeasures that can potentially save 

lives. A device that addresses all of these issues could prevent UDS attacks, as long as there 

is support from vehicle manufacturers. A data logger could be installed in all vehicles or in-

stead the data logged from the vehicle could be used to patch bugs in source code. Regard-

less of how vehicle manufactures install and use a data logging device, there must be a way 

to prevent and/or counter UDS attacks from within the vehicle itself. 

Vehicle technology is continually advancing, in order to assist the driver and passen-

gers by making their ride more safe and enjoyable. Some of these advancements include as-

sisted parallel parking, assisted braking, and automated highway driving. Even though these 

advancements provide better service to the consumers, they present security risks. Vehicle 

advancements usually involve automated or assisted services. This means the vehicle opera-

tor is not in control while the vehicle’s microcontrollers and ECUs are actually in control. It 

is easy to see how this presents a security risk; if a hacker were to gain access to certain 

ECUs, he could control an automated or assisted vehicle service. Vehicle manufacturers are 

working to develop proper vehicle security, but have not been able to keep up with the tech-

nological advancements, in large part due to the long vehicle development time. This proto-

type Data Logger would be beneficial to both vehicle operators and manufacturers, as it 

would help protect the operators, while giving manufacturers important information about 

how hackers are using the UDS services to compromise vehicles. 

 Once final testing was completed, the Data Logger was concluded to per-

form appropriately, but some CAN packets were dropped. This can be attributed to two rea-

sons; the CPU on the Teensy is a single core, single threaded CPU and the CAN libraries are 

not fully optimized. If the selected microcontroller had a CPU capable of multi-threading, 

one thread could read CAN data from the vehicle, while the other recorded this CAN data 

to external storage. A new library could be optimized for this new CPU in order to take ad-

vantage of onboard caches available to the developer.  
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7.0 Recommendations 

There are many expansions that could be completed by future project groups using 

the Data Logger developed in this MQP as a starting point. Research completed in this 

MQP covers vehicle hacks, the CAN network, vehicle simulation with a test bench, and data 

logging hardware. A project team starting a project in this field would have a solid founda-

tion of knowledge, hardware, and software to build upon in pursuing the following recom-

mended expansions. One of these project expansions alone would not by itself merit a full 

MQP project, but using some of the expansions in combination would make the device a 

standalone product that is desperately needed in the vehicle market today. 

Power via Vehicle - Although the Data Logger developed in this MQP can run via USB, it was 

out of project scope to use the device on a vehicle, and therefore, power the device via 

OBD-II port. The 12 volt rail on the OBD-II port can be dampened to 5V with a voltage 

regulator to power the Teensy and all other devices in the system. Additionally, a battery 

could be added to prevent the Teensy from losing memory if the vehicle’s power is turned 

off. 

Wireless Communication - The Teensy 3.2 board has the ability to interface with Bluetooth, Wi-

Fi, and cellular peripherals. A future project group could use one of these peripherals to send 

data wirelessly to off-site storage. Using cellular capability may be the best option as data can 

be sent from anywhere. This expansion would also allow for email and text messages to be 

sent to the device owner, providing updates about the vehicle. 

Vehicle Tests - The testing for this MQP was done using vehicle packets but on a separate 

Beagle Bone Black test bench. This is because sending UDS packets to a vehicle is danger-

ous and can damage the vehicle. A future MQP group should work to obtain an actual test 

vehicle, in order to perform in-vehicle testing.   

Algorithm Optimization - One optimization for a future MQP group is to have the algorithm 

automatically determine the length of a normal and corrupt tick. This would be helpful be-

cause then the Data Logger could connect to any vehicle and determine the proper length of 

a normal and corrupt tick to gather sufficient information during an attack. Furthermore, the 
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optimizations described in Chapter 5.3 would assist in recording all packets monitored on 

the network. 

Teensy CAN Library Optimization - The CAN libraries tested on this prototype have limited 

CAN Bus capabilities that allow them to interface with CAN and are not optimized to be as 

fast as possible. This C++ library uses polling to retrieve the incoming messages instead of 

more advanced mechanisms such as interrupts. The C library, developed by Hristos Gian-

nopoulos, is more advanced and was optimized to use the Teensy FIFO queues. It uses in-

terrupts to directly interface with the FIFO buffers. This library offered slightly better per-

formance overall, but testing has proven the Teensy has speed limitations. Once a multicore 

or multithreaded microcontroller has been chosen for a new prototype Data Logger, a new 

optimized CAN library will be necessary to interface with the hardware efficiently. 

Multithread Application - Since the Data Logger prototype is incapable of logging all packets 

that are monitored on the bus during and after a UDS attack has occurred, further design 

and optimization is necessary. This issue can be attributed to the extended write latency 

when storing large amounts of CAN traffic to the SD card with a single threaded CPU. A 

possible solution to this problem is to use a microcontroller that is capable of running multi-

ple threads on one or more CPU cores. One thread can be used to read the traffic on the 

CAN network while the other thread writes previously recorded traffic to the SD card. This 

would entail choosing a multithreaded CPU and implementing the CAN reading algorithm 

to take advantage of the new CPU’s multithreading capabilities.  

 
Report on UDS Attack - Another recommendation is to purchase the UDS ISO guide. This 

guide will provide information about what UDS packet corresponds to each UDS service. 

This would be useful because now a future MQP would be able to determine exactly what 

the UDS packets mean. They could use this information to determine the proper form of ac-

tion in order to protect the vehicle.  

Expansion of Security - Currently, the Data Logger helps in the detection and recovery from a 

vehicle hack. A future MQP group could work to evolve the device to help with prevention, 

deflection and countermeasures to a vehicle hack. Prevention involves developing a defense 

that prevents a hacker from ever sending hazardous UDS message to the vehicle. Deflection 
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is a similar type of defense, but now the device would re-direct the hacker to a non-vital part 

of the vehicle. A countermeasure defense would involve the device attacking the hacker and 

preventing them from harming the vehicle. 
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Glossary Definitions 

CAN Bus 

This is the current universal network standard within vehicles. This has been imple-

mented in all production vehicles since 2008. The CAN Bus is a multicast system, meaning 

any node on the bus can send data packets. Other nodes choose whether or not they would 

like to filter packets monitored on the bus based on the packet’s Arbitration ID. 

Arbitration ID 

This is the unique identifier for different types of packets. This allows each ECU to 

filter exactly which packets it wants to act upon within the CAN network. For instance, in a 

2014 Nissan Altima, UDS packets have an Arbitration ID of 0x7E0 and other peripheral 

control packets could have Arbitration IDs such as 0x60D or 0x358. 

OBD-II Port 

This port is usually found under the steering wheel of the vehicle. It can be accessed 

by an OBD-II reader and used by service technicians to clear warning codes and download 

diagnostic information from the vehicle. The OBD-II port is directly tied into the CAN Bus 

meaning any device on the OBD-II port can monitor all packets on the CAN Bus. 

Service ID 

This is the unique identifier for the different types of UDS commands. These range 

from restarting to loading firmware onto ECUs. Some of these Service IDs can be especially 

harmful to the vehicle, even if they are sent in arbitrarily generated, meaningless packets. The 

Service ID is the first data byte within a UDS packet. 

Types of CAN Errors: 

Bit Error 

A node that is sending data on the bus also monitors the bus. A Bit Error is detected 

when the value monitored differs from the value sent. 
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Stuff Error 

This error is flagged when the 6th consecutive identical bit is found in a field where 

bit stuffing should occur. 

CRC Error 

This error is flagged by the receiver when the calculated CRC does not equal the 

CRC sent in the packet. 

Form Error 

This error is flagged when a fixed form field contains one or more illegal bits. 

Acknowledgement Error 

This error is flagged by a transmitter whenever it does not monitor a “dominant” bit 

in the ACK Slot. 
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Appendices 

Appendix A: Bibliography Annotations 

1)     Wikipedia CAN 
Has general information about the CAN Bus and its structure. 

 
2)     R.R Nayak Automotive Diagnostic Services  

Explains general information about what UDS messages are and how they are sent on 
the CAN Bus. It also describes its applications such as: troubleshooting issues with the 
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6)C. Timberg, 'The definitive account of how hackers can gain access to our cars', Washing-
ton Post, 2015. [Online]. Available: http://www.washingtonpost.com/sf/busi-
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were performed by students at the University of Washington and University of Califor-
nia San Diego. 

 
7) A. Dharmawan, "Electric Cloud," 8 December 2014. [Online]. Available: http://electric-
cloud.com/blog/2014/12/continuous-delivery-puts-automotive-software-high-gear/. [Ac-
cessed 3 January 2016]. 

Explains what an ECU is and has an image that shows some of the systems in the car 
that use microcontrollers (ECUs) in the cars. 
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[Online]. Available: [9]. [Accessed: 05- Oct- 2015]. 
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what they did at each step. 

 
11)  C. M. a. C. Valasek, Remote Exploitation of an Unaltered Passenger Vehicle 1st ed., 
2015, pp. 3-88. 

This is the actual published paper by Miller and Valasek about the technical steps they 
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This links to the research done by University of Washington and University of Califor-
nia San Diego. Students in those schools were able to hack into the vehicle remotely 
and control all of its components. They hacked into the vehicle’s emergency communi-
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hack into an autonomous car and confuse the system which is used to detect objects 
such as walls and other cars. He was able to gain access and then trick the system into 
thinking there were cars and/or walls around the car in order to force it to stop sud-
denly. 
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ence, 2015. [Online]. Available: [14]. [Accessed: 12- Oct- 2015]. 
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DAR system. It describes how much money his hardware setup cost and how he es-
sentially replicated echoes from objects such as cars and tricked the LiDAR system 
into believing there was actually other cars around. 
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16) BBC, "Fiat Chrystler Recalls 1.4 Million Cars after Jeep Hack," p. 1, 24 July 2015.  

Shows the 1 million vehicle recall done by Chrysler to fix a security flaw exposed by C. 
Miller and Valasek. 

 
17) CAN with Flexible Data-Rate, 1st ed. Bosch, 2012. 
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communication methods, fault detection, error handling, and expandability. This was 
especially helpful when developing our plan of attack. 
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28) Quick2Wire, "I2C and SPI," 2016. [Online]. Available: http://quick2wire.com/arti-
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29) Arduino.cc, "ArduinoBoardUno," 2015. [Online]. Available: https://www.ar-
duino.cc/en/Main/ArduinoBoardUno. [Accessed 5 October 2015]. 
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image of the board which indicates what the ports and features are. 
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fun.com/products/13736. [Accessed 9 February 2016]. 
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https://www.sparkfun.com/products/12857. [Accessed 16 February 2016]. 

Contains the specifications for the BeagleBone Black board. Obtained from the spark-
fun website. 
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https://github.com/linux-can/can-utils/. [Accessed November 2015]. 
 

This GitHub includes the Socketcan tools used in order to simulate a virtual CAN Bus 
on a Linux machine  
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Appendix B: Zip File Inventory 

Beaglebone_Black_Setup - Test Bench setup files and script to be used with the Beaglebone 

Black tutorial described in the MQP Report Appendix 

Data_Logger_Prototype_Code - Libraries and code used in the prototype Data Logger (options 

for both C and C++ CAN libraries) 

Experimental_Results - Contains test data read from the 2014 Nissan Altima, tests conducted 

to optimize the linear buffer, and final Data Logger prototype results 
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Appendix C: Normal Packet Transfer (no UDS) Timing Data by Arbitra-

tion ID (AID) 

AID 

Max In-

terval  

(ms) 

Min In-

terval 

 (ms) 

Average 

Interval 

 (ms) 

Data 

Count 

002 11 9 10 1647 

160 11 10 10 1609 

174 11 9 10 1647 

176 12 8 10 1647 

177 12 7 10 1647 

180 11 9 10 1609 

182 11 9 10 1609 

215 21 18 20 823 

216 21 18 20 823 

245 21 19 20 823 

280 21 19 20 824 

284 21 19 20 824 

285 21 18 20 824 

292 21 18 20 823 

300 22 18 20 823 

351 102 98 100 165 

354 42 38 40 411 

355 41 39 40 412 

358 101 99 100 165 

385 101 98 100 164 

421 62 58 60 275 

551 104 100 102 161 

560 102 98 100 165 

580 104 101 102 161 
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6E2 105 100 102 161 

625 103 97 100 164 

5E4 102 98 100 164 

02A 101 99 100 165 

1F9 11 9 10 1610 

2DE 13 7 10 1647 

35D 102 98 100 165 

3EC 23 17 20 823 

54C 101 99 100 164 

5C5 102 99 100 165 

60D 102 97 100 165 
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Appendix D: Packet Transfer (with UDS) Timing Data by Arbitration ID 

(AID) 

AID 

Max 

Inter-

val 

(ms) 

Min 

Inter-

val 

(ms) 

Avg Inter-

val (ms) 

Data 

Count 

002 500 9 10 30993 

02A 600 99 100 3099 

160 501 9 10 30269 

174 500 9 10 30987 

176 501 7 10 30987 

177 500 7 10 30987 

180 502 9 10 30269 

182 501 9 10 30269 

1F9 501 9 10 30269 

215 500 15 20 15635 

216 500 4 20 15639 

245 519 17 20 15497 

280 500 17 20 15646 

284 499 18 20 15499 

285 500 18 20 15499 

292 519 17 20 15497 

2DE 489 7 10 31292 

300 500 17 20 15498 

342 329 329 329 2 

351 599 20 100 3137 

354 519 37 40 7750 

355 520 37 40 7823 

358 599 20 100 3137 
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35D 600 10 99 3155 

385 500 10 100 3135 

3EC 500 17 20 15494 

421 540 10 60 5178 

512 276 52 164 3 

54C 501 98 100 3100 

551 614 100 103 3027 

560 601 10 100 3103 

580 614 100 103 3026 

5C5 600 97 100 3130 

5E4 500 97 100 3101 

60D 578 19 98 3204 

625 599 6 100 3141 

6E2 614 100 103 3026 

71D 71 49 51 23 

71F 530 471 501 3 

72D 70 49 51 23 

7DF 565 49 75 4120 

7E8 1911 49 75 4100 

7E9 2330 58 127 2428 

 

  



UDS Based Attack Data Logger 

106 

Appendix E: Linux and Python Commands 

The Virtual CAN networks are simulated within the Linux machine and use de-

scriptors that allow virtual devices through the terminal to send and receive messages on 

them. Virtual networks simulate real networks and are useful for testing hardware or running 

simulations. The physical CAN networks allow Linux machines to communicate with physi-

cal devices through GPIO pins. Vcan stands for Virtual CAN, and type can should be used to 

initialize physical networks. Setting up the CAN networks is done by using the following 

commands [56] [57] [58] [59]. 

$sudo modprobe vcan 

$sudo ip link add dev vcan0 type vcan 

$sudo ip link set up vcan0 

 For physical devices you also have to use an additional command to indicate the bi-

trate in bits. For example, this would set the bitrate to 1MB:  

$sudo ip link set can0 up type can bitrate 1000000 

In order to send files on the network you can use the tools cansend command. Shell 

scripts can be used to send series of messages as well. Another useful command is the 

canplayer command that allows you to playback previously recorded commands on the net-

work. Finally, the candump command prints all of the messages that are being sent on the 

specified network to the terminal. Some example commands are listed below 

$candump vcanX 

$canplayer -I file.txt 

The canplayer tool has multiple options. The –I option indicates the input file. There 

is also a –l option to indicate how many times to play that file. The messages are played back 

on the network at the same speed there were recorded. Log files use the following format  

(TIMESTAMP) <CAN_NAME> <ARBITRATION_ID#PACKET_PAYLOAD>  

The following example uses the cansend command to send a message on the Virtual 

CAN network number 0. In this example, 123 is the arbitration ID in hexadecimal, and 

DEADBEEF is payload of the message in hexadecimal as well.  
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$cansend vcan0 123#DEADBEEF 

. The Pip Linux client has to be installed to facilitate the installation of the Python 

Linux tools. In order to use the Socketcan library, one has to include the Python module by 

using the standard import statement [60]. This Python tool allows the program to receive 

CAN bus messages sent in CAN networks (virtual or physical). The Python API is used in 

the following way: 

 #initializes the CAN bus interface 

 bus = can.interface.Bus(‘vcan0’,bustype='socketcan_native') 

 #retrieves message from the CAN into a message object 

 message = bus.recv() 

 

 

 

  



UDS Based Attack Data Logger 

108 

Appendix F: BeagleBone Black CAN Software Setup 

 

This section covers the setup required to install and configure the SocketCAN Linux 

tools on a BeagleBone Black microcontroller. The following steps were completed in order 

to configure the device according to the constraints required of a CAN test bench. 

Initial Device Setup 

 

The initial device setup can be found at Beagleboard.org. This part of the setup in-

cludes configuring communications with the BeagleBone Black over USB and getting famil-

iar with the features of the board. 

Now that the initial configuration is complete, you can use an SSH client to connect 

to the board with the following parameters: 

 
IP address: 192.168.7.2 

Username: root 

Password: No password until you have set it (this is not re-

quired) 

WinSCP can also be used with the same parameters to move files between a PC and the Bea-

gleBone Black. 

Setup BeagleBone Black internet connection link over USB 

In order to download Linux tools, the BeagleBone Black must be connected to the 

internet. Since the board does not have built in wireless hardware, it will have to share the 

resources of the computer it is connected to via USB. Using the link below, the internet con-

nection on a windows machine can be setup to be shared with the BeagleBone Black. 

  http://ofitselfso.com/BeagleNotes/HowToConnectBeagleBoneBlackToTheInter-

netViaUSB.php  

Install and Configure SocketCAN Utilities 

Note: You must be logged in as root for this to work correctly. 

http://ofitselfso.com/BeagleNotes/HowToConnectBeagleboneBlackToTheInternetViaUSB.php
http://ofitselfso.com/BeagleNotes/HowToConnectBeagleboneBlackToTheInternetViaUSB.php
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Step 1: Device tree overlay to set pin multiplexing 

This is done to setup the GPIO pins on the BeagleBone Black to receive and send CAN 

data on two pins (Tx and Rx lines). 

http://www.embedded-things.com/bbb/enable-canbus-on-the-BeagleBone-black/  

The device tree overlay file (found in the zipped appendix) must be copied to the 

BeagleBone Black. Make sure it is saved as “BB-DCAN1-00A0.dts”, the .dts refers to device 

tree source file. 

Now compile this overlay, creating an overlay binary, “BB-DCAN1-00A0.dtbo” 

$dtc -O dtb -o BB-DCAN1-00A0.dtbo -b 0 -@ BB-DCAN1-00A0.dts 

To use the overlay, copy it to /lib/firmware: 

$sudo cp BB-DCAN1-00A0.dtbo /lib/firmware 

And execute the following to add the CAN hardware to the selection of available pinout 

pairs. 

$echo BB-DCAN1 > /sys/devices/bone_capemgr.*/slots 

Now all the correct pin outs are set for creating a physical CAN network. The next step is to 

install all the CAN Linux tools. 

First, install GCC tools: 

$sudo apt-get install git build-essential gcc make autoconf 

libtool 

Next, install CAN utilities: 

$mkdir can-dev && cd can-dev 

$git clone https://github.com/linux-can/can-utils.git 

$cd can-utils 

$./autogen.sh 

$./configure 

http://www.embedded-things.com/bbb/enable-canbus-on-the-beaglebone-black/
https://github.com/linux-can/can-utils.git
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$make 

$sudo make install 

The following commands will help in setting up and turning off physical can networks. 

 
Setup can tools: 

$sudo modprobe can 

$sudo modprobe can-dev 

$sudo modprobe can-raw 

Turn on can0: 

$ifconfig can0 txqueuelen 10000 

$sudo ip link set can0 up type can bitrate 500000 loopback off 

listen-only off 

Turn off can0: 

$sudo ifconfig can0 down 

Get can0 status: 

$ip -details link show can0 

Now, you can use all the tools available with the Linux SocketCAN Library. 


