Advisor Initials: GTH
Project Number: GTH-SNO1

Project Darkstar
A Major-Qualifying Project Report
submitted to the faculty of
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the
Degree of Bachelor of Science

by
Paul Gible

Robert Martit

Christopher Scalabri

Date: December 15th, 2008

Approved: George T. Heineman, Major Advisor

Worcester Polytechnic Institute

Abstract

Project Darkstar is a game-server infrastructureldged by Sun Microsystems to support on-
line massively scalable game environments. The pvgject team’s primary goal was to
increase the usability and attractiveness of thediuctory documentation and tutorials for
Project Darkstar to appeal to a wider set of dgyaie.

Project Darkstar Page 1

Worcester Polytechnic Institute

Table of Figures

Figure 1: Hierarchical tutorial deSIGN ... eeeeeeiiiiiiieiiiiiiiiiiieiiiiieieeeee e eeeee e e e e e e e e e s aaeaeaeeees 14
Figure 2: Branching game dependencCy SYSteM e oo 15
Figure 3: Installer Back-end UML Diagram.... ..o 19
Figure 4: Portions of World of Warcraft decompog®d modules.ooovviiiiiiiiiiiiiimeenes 22
Figure 5: Project Snowman during game-play. w.cce.....c.uevveriiriiimiiiiiiiiiiiieiieiriereeeee e 23
Figure 6: MatCh-mMaking SCIEEN.............uuum e e e e e e e e e e ettt e e e e 24
Figure 7: Game-Play VIEW ... 25
Figure 8: New Project Darkstar TULOHAlcccceeeeeeiiiiiiii e 31
FIQUIE 92 PrO-TIP BOX ...uuuuuuuiuiiiiiiiiiiiiemmeeeeieeeeeeeeetseeaeeseeeeeasessesssssssss eeneeeeeeeeaeeeeeeeeseeseeeeereeees 32

Project Darkstar Page 2

Worcester Polytechnic Institute

Contents
Y 0153 = ! S PP PP PP PPPPP
TaDIE Of FIQUIES ..ottt e 2
S 011 o Yo [Cod 1 o] o RSP 6
I R A o o U1 AT PP EPPTP T PPPP 6
1.2 ADOUL SUN MICTOSYSIEMS ...ttt 6
I B I e 1= o (0] [T o AP PP PPPPPPPPPPPP 6
1.4 15-minute Out of the BOX EXPENENCE.......co oo 7
1.4 1 SIMPICITY coeiiiiiiiiiiiiiiiee ettt eemma e e e sen b s nnnnes 7
1.4.2 PerfOrMENCE ...coiiiiiiiiiiie ittt ee e eei ettt et e e e e e e e s mreeee e e e enenees 7
R Y o o1 | 8
LD EXAMPIES i 8
01 700 R Y/ V2 1 O PRRR 8
152 SUNSPOTS ... e 9
RS TR B =ol [] = TP PPPPPPPPPPRT 9
2 Project DarkStar OVEIVIEW........ccooiiiii i eeeeeeiiei ittt ieebeebee bbb e ebbmeemneeeeeeeeeeeeeeeeeeees 9
2.1 Persistent and Crash-Proof. ... cemmiiiiieeeee e e e 10
2.2 SCAIADIILY ... 10
2.3 MaASSIVEIY CONCUITENT ...uvviiiiiiiiiiiiiiiiiierree e e e e et e e e e et e et e e e e e e e e e ee e e e et et e e e e tereaaaeaaaaaaaaaaeas 11
2.4 LIghtWeIGNT et a e aaa e 11
2.5 SIMPLCILY IN AP .. 11
3 TRE ProBIEM ... e 11
3.1 Proposed SOIULION ... 13
A B AV 1510 [] (11 o] o PP 13
3.3 AdVISEA SOIULION ...t eee ettt e e e e e e e e e e ne e 14
3.3.1 Refinement of Advised SOIULION.............ummmeeeeiiiiiiee e 16
T B 1T o] (o) o 4 1= o | PP P PRSP 17
4.1 Original Method Of DEPIOYMENT........uuuiiiieeeiiieiiiieieiieieeeee e rreneeeeee s 17
4.2 Characteristics Of INStallersoeuviiiiiie e 17
T R (=T (U1 1] 0 1] o] £ PP 18
4.4 Pre-EXIStiNG SOIULIONS ... e eaa e e e 18
4.5 INStAllEr FEALUINESccceviiiii ettt e e e e e e e e et e e e e e e eeaneannas 19
451 OVErall DESIGNcoooiiiiiiiieee e 19
4.5.2 CUSIOMIZADIIILY ...ooeeiiiiieeieeeeeee e 20
4.5.3 AddItioNal NOTEScoiiiiiiiiii e e e e e e e rana s 20
OIS Y- 1001 o1 [= T o1 PP 20
5.1 Pre-Game RESEAICHuuiiiiiiieiii e ceeeeeee et e e 21
5.1.1 JMONKEYENQINE ...ttt mmmmme et e e e e e e e e e e aaaaaaaaaeeas 21
5.2 Idea 1: Extensible MOdUIE-GamME.............coceeeeiiiiiiieeees et ee e e 22

Project Darkstar Page 3

Worcester Polytechnic Institute

5.2.1 PrODIBM .t e e e e e 23
5.3 Multiplayer Space SNOOLETooviiiieeeeeeiiiii e e seeenennees 23
TR 700 R o 0] o] = o ISP 23
5.4 SOIULION ...ttt e e e e e e e e e e e e e e 23
B PrOJECE SNOWIMAN ..euiiiiiiiiiiiiiiiiiiiieesmmmmensseesansaens s s saaannsssssssesssenessnsnnnes 24
G0 R €= 10 o[o] = PP PPPPPPPPPPPP 24
8.2 PUIMPOSE ...ttt erreeee oo ettt e e e e e et e e e e e e e e e eeeee et ra e e e e eeeanne 25
6.3 BaCKGrOUNG ... 26
6.4 Development CYCIettt a e e 26
6.5 Platform-Independent LAUNCNET.............tceeeeeeiiiiiiiiiiiiiiiiiiiiiiiieiiiienineeeeeeenneeeeeees 26
6.5.1 REQUIFEMENLES ...oiiiiiiiiiiiiiiiiiiiiieiesesmmmmnnsssesenssnsen s s s e snnasssssnsnsnes 27
S A B 1= o | o PP PPPPRPPP 27
B.5.3 PUIMPOSE ...ttt e e ettt aaaee 27
B.5.4 RESUIL .ot e e e e e arnan 28
N 1 V1 o 11 = | SRR 28
7.1 Current Server TULOMAISouuiuiiie e e e e e e e e e e 28
4% 0 R 1= [14T o T o 28
T7.1.2 HEllOLOGOET oo 28
7.1.3 Tasks, Managers, and HellOTIMEruuuuiiieiiieie e 28
T. 014 HEIOUSEIS. ...ttt ettt e e e e e et e e e e e nbebnreeeeeas 29
7.1.5 HelloCNANNEISuiiiiiiiiiieee e 29
4% L S T 110 (o LAY o T 1 o P 29
7.2 CUurrent Client TULOMAISuiiiiiieeeee e e e e e e e e e e e e eanan s 29
7.3 Problems with Current TULONAIS ... ceeeee e 29
7.3.1 Revisions to Tutorial Structure and Content ..., 30
7.4 New Tutorial OULIINEooviiiiiii e ceeee e e e e e e e e e e e e 30
7.5 BasiC TULOrial OULINEueiiiiiieii e 32
7.5.1 Tutorial O: ProjECt SEt-UPcciviiiiiiis i ccmmeetveveeiveueseuensssnensnsnenesnnensnsrensnnseeseees 32
7.5.2 Tutorial 1: A SIMple ECNO SEerVer...........iceeeeeeveeiiiiiiiiiiiiiiiiieieeineninenenesenineenn 32
7.5.3 AddiNgG PerSISIENCE.ccciii i e s nsnenene 33
7.5.4 Allowing USer INTEracCtiON.........ceviiiiiiiiicemmeieeeeeieeiieiitiieietseeineaeeineneeene s nmnnneeees 33
T.5.5 TASKS ..o —————————— 34
7.6 Challenge TULOMAL.......eueiiiiiiiiiiiieees e ettt eee et eeeeeeeeeaaebesesesesbeeneeeeaeeeaeeeeeeeeees 34
7.6. 1 TULOMAI SEE-UPD ..o 34
7.6.2 Tutorial DesSign GOalSccvviiiiiiiiicmeeieeiiviveveeeeeneeabeaeesneaeneae e enarne e 34
L T T U 1 o1 1] TP PPPPPPRPIN 34
T.6.4 USEI TASKS ..ottt e et e e e e e e e e e e e e e 35
T.8.5 RESUIL ...ooiiiiiie e ettt e e e e 35
7.7 Pre-Mad PrOJECEScceiiiiiiiiiiiieiietes s+ e et e e e e e e e e e e e e e e e e aaaaaaaaaaaeaaaaaaaaaaaaaaaaaanaaas 35
% R I 1= o (0] o] = o o 35

Project Darkstar Page 4

Worcester Polytechnic Institute

7.7.2 1SSUES ANA CONIIOVEISY ...cevvvviiriiiiiiieiereeeeeieeaaeiaaaaaaaeaeeaeeeaeaeeeeeaeseteeeaaaananaeaes 36
T.7.3 THE SOIULION ...ciiiiiiiiiiiiee e sttt e e e e e e e e eeas 36
S T Oo] o 11153 o o O 36
8.1 Final DelIVErabIEscccuuiiiiiiiiie et 37
B.L.1 INSTAIIEE ...t 37
8.1.2 Launcher and Project SNOWMan DeMO..........ucceeaeriiiiiiiiiiiiiiieee e 73
S 00 G T U1 (o = £ RPN 38
8.2 EVAIUALION.. ..ot e et ———————————————————— 38
S TG T | 1] PP 39
8.4 FINAI WOKA....coiiiiiiiiii et e e e e e e e e s eeaeeas 40
S B (] (=T (= g (ol OO PP PPPPTPPPR 41
10 Appendix A — Final Metadata.............cooiceee e 44
11 Appendix B: Early Metadataoooii e 48
12 Appendix C: Metadata and System-Specific Variabdesnstallercccccuvevnennees 49
13 Appendix D: Challenge Tutorial SUMMArYccooiiiiiiiiiiiiiiiiieeiieeeiee e 50
14 Appendix E: Challenge Tutorial TeXt.........o e 52

Project Darkstar Page 5

Worcester Polytechnic Institute

1 Introduction

The project team wrote this paper to fulfill thedengraduate requirement at Worcester
Polytechnic Institute (WPI) for the Major QualifgrProject. The students collaborating on this
project are Paul Gibler, Robert Martin, and Chpsier Scalabrini. The team’s advisor is George
Heineman, and the team’s professional liaison at8icrosystems is Jim Waldo. The project
took place during A-term 2008 with a brief folloyp-in B term for completing this report.

1.1 About WPI

WHPI is a private university located in Worcestegdgachusetts. As a core part of the
undergraduate curriculum, all students pursuingeksycomplete a number of projects. Students
typically complete the Major Qualifying Project (NRDin their senior year. The project
represents capstone work for each prospective gtadi his or her major. For this project, each
student is pursuing a bachelors of science in Céenf&cience.

WPI offers a unique opportunity in which to compléte MQP. Known as the Global
Perspective Program, it allows students to collateowith companies and organizations around
the world. In this case, the project team workethatSun Microsystems campus in Burlington,
Massachusetts.

1.2 About Sun Microsystems

Sun Microsystems is a computer hardware and saftd@velopment company based in Santa
Clara, California. Sun, a Fortune-500 compahgs been a key contributor in technological
advancements in the last decade, most notablgnt®issystems and the Java programming
language. Sun is developing a variety of open-soprojects; Project Darkstar is one such
project and is the focus of the project team’s MAPRew technology still in development, the
Project Darkstar team envisioned a 15-minute ouhefbox experience to demonstrate the
capabilities of Project Darkstar and to attraceptial developers.

1.3 The Project

The project team worked directly with both the BovjDarkstar team as well as the project’s
advisor at WPI. The original goal of the projectswa create an out-of-box experience for users
downloading Project Darkstar. These early requirgmenvisioned by the Project Darkstar team
were vague and undefined. As such, much of theeptreyork involved experimentation,
brainstorming, and proposals to the Project Darkstam. In Section 1.4, the project team
outlines the definition and requirements of an afuthe-box experience.

1"184. Sun Microsystems.” CNN Monefortune 500. 2008
<http://money.cnn.com/magazines/fortune/fortune8008/snapshots/881.html>.

Project Darkstar Page 6

Worcester Polytechnic Institute

1.4 15-minute Out of the Box Experience

The Project Darkstar team required a way to hidptlRyoject Darkstar’'s capabilities. They
decided that there should be a 15-minute out-oftheexperience beginning with a simple
installation process. Following the installatiome tout-of-the-box-experience would include a
short and graphically appealing demonstration eftédthnology. This concept was inspired by
out-of-the-box experiences present in technologieh as MySQL, SunSPOTSs, and Eclipse.

An out-of-the-box experience is a quick demonstrathat will attract potential users to the
technology. The project team envisioned that thleg would install Project Darkstar and then
launch a demonstrative application highlightingha# capabilities of Project Darkstar. In
completing this project, we focused on a core sgualing principles

1.4.1 Simplicity

The demonstration application should be simpleiandtive to use. This goal was particularly
difficult, as the main feature the Project Darksesam wanted to highlight was its simple
application programming interface (API). As a réstile project team had to assume all
prospective users were programmers. However, tm #till wanted to target a larger audience
because the goal was to demonstrate not only geeadhe Project Darkstar API, but the power
of the technology to game designers as well. Tamtalso sought a way to explain Project
Darkstar to managers and project leaders who mbagetessarily know Java focusing on how
Project Darkstar could reduce total developmeng tiha project. This additional requirement
led to the development of a multi-staged experiehaestarts with a simple demonstration
accessible to a large audience and then expandssicegly in-depth to the level of Java
developers.

The project team’s main goal throughout the outheHbox experience was simplicity as it is a
key issue in the success of the out-of-box expeeeWhen people attempt to use a product, the
inability to make progress or perform a certairk tean frustrate users. For Project Darkstar, a
potential developer that becomes frustrated thrabgltourse of the out-of-the-box experience
is lost. During the team’s first experience witle fhrovided Project Darkstar binary download,
there was a large time investment before the temshahything functional. As a result, the
project team’s first goal, the Installer (descriliedection 4), alleviates this problem. The team
realized early on that keeping the experience sngasy to use, and problem-free was
instrumental to the success of the project.

1.4.2 Performance

The time investment required by an out-of-the-bxpegience is a primary determining factor
that guides a majority of the experience itseligDally, the Project Darkstar set-up process was
arduous. It required users to perform manuallesserror-prone steps that could be easily
automated. A delayed start due to a drawn-out ggtresents the initial impression of
complexity, which would drive away potential useks.the out-of-box experience is simply a

Project Darkstar Page 7

Worcester Polytechnic Institute

demonstration and nothing more, keeping any sét@m absolute minimum is very important.
The length of the total out-of-box experience itsébuld be brief. The original plan was to keep
the total length around 15 minutes. In the tearasecthe final duration of the out-of-box
experience was altered as requirements changede Wikifinal product contains an estimated
total experience lasting around 2-3 hours, we erckatnumber of short, encapsulated tutorials
each of which can be completed in approximatelynirtutes.

1.4.3 Appeal

An out-of-the-box experience needs to be appeakitgt and foremost, it generates interest in
potential users. Users that are unfamiliar withi@oDarkstar are key members of the project’s
target audience. The out-of-box experience showdd dheir attention by presenting appealing
material. Secondly, it persuades users to usertiipt. While creating decent software is
helpful in accomplishing this, people are goingé¢e the demonstration before they use the final
product. As such, creating a demonstration thauasts prospective users is vital. Content is
less important here; a person is more likely taltz@vn to the demonstration with more flair
regardless of the overall product content. Simylaalsuccessful out-of-box experience will also
provide some degree of flashiness. The project téempts to appeal to users in multiple ways,
the best example being the Project Snowman gareeséssion 6). Here, users see a completed
game that uses Project Darkstar rather than the\WR&t is important is not that Project
Darkstar is fun and exciting, but that it can bedi create a game that is. The SunSPOTSs out-
of-box experience is another good example, disclSsetion 1.5.2.

1.5 Examples

Several instances of modern out-of-box experiepged. Presented below are some of the more
relevant examples, specifically those related ¢thrtelogy and programming including: MySQL,
the SunSPOTs sample program, and Eclipse (as aof-atx experience for the Java language).

1.5.1 MySQL

MySQL is a relational database server program.dihieof-box experience provided is very
basic. Upon downloading, the user can install tlogam, which is done through the use of a
GUI dialog box. This dialog walks the user throwsgple steps such as choosing an install
directory and selecting which components to ins@itice the install is completed, the user is
prompted with the option to run and configure immealy. From here, the user can immediately
open the MySQL command prompt. The idea behindahisof-box experience is to create a
straightforward set-up that can be achieved withimal effort, and allow users access to the
application as soon as possible. This concept erabdlde principle of simplicity, and is a prime
example of what the project team wanted to accahplith the Project Darkstar installer.

Project Darkstar Page 8

Worcester Polytechnic Institute

1.5.2 SunSPOTs

SunSPOTs are hand-held, mobile, embedded develagte¢iorm created by Sun
Microsystems. The SunSPOT out-of-box experienca dog¢ highlight any development tools;
rather, it is an expressive program that displagsdevice’s features in a visually appealing
fashion. The device includes the following periie an array of LED lights, a set of buttons,
an accelerometer, and a wireless mechanism capbbtdmnecting to other SunSPOTs. When
the device is activated, one of the LEDs lights aaid as a “bouncing ball.” It travels across the
LED array until it reaches the end, and then reddsun the other direction. The SunSPOT’s
accelerometers, which can detect movement chadgesynstrate this functionality. If a user
shakes the device, the “ball” LED will bounce arddaster. When brought into close proximity
with other SunSPOTSs, the “ball” can travel betwdem, showcasing the wireless support. This
sort of example is a great way of generating af@tppeal to new users by presenting the
capabilities of the device in an amusing fashidmsTan serve to leave a lasting impression on
users and cajole them to use the product.

1.5.3 Eclipse

Eclipse is an Integrated Development EnvironmdbdE]lfor multiple languages, most notably
Java. Eclipse includes several convenient featnobsding project build management,
refactoring, syntax auto-completion, dynamic emassages, and plug-in. Previously, when
writing any code with Java, extra work via the coamah line (using javac and the Java virtual
machine) was required in order to compile and mag@ams. Eclipse effectively creates a
simpler environment for development by abstractingcomplications that are not always
necessary. This greatly reduces the strain of geagramming for newcomers. These qualities
embody the essential elements of a successfulfdutyoexperience: simplifying the experience
by increasing production speed and efficiency.

2 Project Darkstar Overview

Project Darkstar is designed to eliminate compiesiin software systems that attempt to take
advantage of the powerful computers and high-pe@daarking available today. In the past,
software was typically installed as stand-alondiapfions designed to run on a desktop
machine. However, the Internet revolutionized safemdevelopment and, with it, gaming
technology. Taking advantage of the ability to aestrusers on a large scale, early massively
multiplayer online games (MMO) such as Ultima Oaland EverQuest created entire persistent
worlds of human and computer players, introducimgwa style of game-play never before seen.
However, the requirements of such systems were mageComplex distributed systems were
designed to support the vast number of playerss@bgstems were difficult and costly to create
and maintain; a shortcoming of MMO’s that is stdlevant today. When World of Warcraft

Project Darkstar Page 9

Worcester Polytechnic Institute

launched, the user base reached the projectedemmeiwth figure of 300,000 in six weekés a
result, a variety of technical difficulties ands&r mishaps ensued, causing uproar from the
player community. Server outages in Europe wellgesbthat Blizzard gave subscribers two
days of play time for free as an apoldgwith game titles as lucrative as the Warcrafndtsise,
setbacks can cost companies potentially milliondadiars.

Project Darkstar is an open-source solution irtiaty Jeff Kesselman at Sun Microsystems to
address many of the problems encountered in m&gstdtiplayer online games. Similar to
the way developers use game engines to reduceogeneht time, Project Darkstar stands as a
similar technology used to assist the developmetiteodistributed server structure for games.
Freely available, it is a distributed server systemently in development that provides the
following feature set: Persistent and crash-proaigactions, server scalability, massive-scaled
concurrency, a lightweight server design, and pknwell-designed API. While not all games
are designed as MMO games, a large set of gamststieat make it worthwhile to pursue this
line of research and development.

2.1 Persistent and Crash-Proof

Everything that takes place in the Project Darksyastem is persistent, including executing tasks.
This is an important feature for many online ganhslO role-playing games (MMORPGS)
feature characters that exist in persistent fantasyds (e.g., World of Warcraft, Star Wars
Galaxies, EverQuest). Many of these games, p#atigithe more popular commercial variants,
require a monthly fee in order to play. Should veecrash, paying subscribers could lose
player-specific data that represents a large tmaestment. This could potentially result in a loss
of players, which results in revenue losses. Ptdyackstar guarantees that actions will be
atomic; i.e., they either happen completely or theyterminated with no effect . These actions
are persistent, meaning that even in the evensefhaer crash, once the system is rebooted the
game world will resume where it left off, withowtsing precious player data. The underlying
abstraction that ensures persistence is the wellvkrconcept of transactions. The end-user is
intentionally protected from having to know thatrisactions are executing within the Darkstar
infrastructure.

2.2 Scalability

Project Darkstar provides scalability across mldtgervers. Game servers store data for online
worlds across several systems in order to mitigate/ork traffic from a single computer to a
cluster of machines. In order to accommodate cheimgeequirements in terms of player

2 "WoW Downtime Interview at Penny Arcade ." Slashd@d Jan. 2005. 11 Dec 2008
<http://games.slashdot.org/article.pl?sid=05/011285218&tid=209>.

% Gibson, Ellie. "Blizzard to compensate players\iéwrld of Warcraft problems." gamesindustry.li® Aug. 2005.
<http://www.gamesindustry.biz/articles/blizzardgompensate-players-for-world-of-warcraft-problems>.

Project Darkstar Page 10

Worcester Polytechnic Institute

capacity, these clusters must have the abilitikpaed or contract accordingly. Otherwise, the
system is prone to overloading, in the case oftaay players, or underutilization, in the case of
too few. The scalable features of Project Darkatimpt to avoid issues such as this to help
create a more robust network environment.

2.3 Massively Concurrent

In massively-scaled online games, a game senampts to host a large number of players in a
single game world. For this approach to be feasthkeserver system must handle data
contention on an equally massive scale. A coreifeadf the Project Darkstar API is the concept
of managed reference objects — Java objects tagteasistent (to a database back-end storage)
that can be read and written to without worryingdeneral) about dealing with concurrency
overhead.

2.4 Lightweight

The layout of a traditional server system requihes the server takes care of most data
processing and that the client is light and distidable. However, in the gaming industry, the
model is exactly the opposite. Gaming computersramedibly powerful systems designed for
handling extra processing necessary for real-timteraction. In addition, since the servers have
to service a massive number of clients, extra msiog power is a scarce and valuable resource.
Project Darkstar aims to minimize the required cotapons necessary for MMO interaction so
the client gaming applications experience low layen

2.5 Simplicity in API

Finally, while the feature set of Project Darkssaimportant, it ultimately is an API designed to
be used by other programmers to implement theiregas such, the API is designed to be
straightforward and easy to work with. The simpyich which the API is constructed allows for
the impressive server elements of Project Darkethe utilized effectively and efficiently,
giving developers the power to create an incredibiyplex distributed system with ease that
may not have been practical otherwise.

3 The Problem

Sun and the Project Darkstar community have deeelgeveral case studies that demonstrate
the effectiveness of Project Darkstar, suchiask andBunny Hunters’. There is a missed
opportunity, however, in that there is no initigkeu experience that appeals to the larger
demographic of individuals that might be interesteBroject Darkstar. Unfortunately, the

* "Project Darkstar Community - Projects". Sun Mgystems. 07 December, 2008
<http://www.projectdarkstar.com/external/projectsk».

Project Darkstar Page 11

Worcester Polytechnic Institute

existing demonstration applications seem to be @pyeprimarily to the original demographic
for which the Project Darkstar team was aiming, elgmsystem administratotsThis group was
assumed to be mostly UNIX-based developers whéaandiar not only with using open source
technologies but with using the command line fazaating applications. The initial growth of
Massively Multiplayer Online games was supporteddyplex and powerful server
infrastructures to support the games, which werat@iaed by system administrators
themselves.

However, as the popularity of MMO games has in@dathe project has attracted a different
demographic, that of independent game developkrs kaown as Indie developers). The
popularity of MMO games even resulted in IMGDC, thedependent MMO Game Developer’s
Conferencé. Indie developers tend to look for pre-built techugies to facilitate game
development, as they are generally composed ofl $aaahs, most without external funding or
publisher support. As a result, Project Darkste &ttracted a following of indie game
developers.

The Indie game development demographic is lesdifamith UNIX systems, preferring
Windows due to native DirectX support and othehtexdogies available for Windows game
development, such as the XNA Game Developmentd?iatf Project Darkstar’s initial user
experience was geared toward the original demographk a result, the larger Indie developer
demographic was less attracted to actually using it

The Project Darkstar installation process was ghagocumented, and offered few instructions
to guide users. Ideally, a user would unzip tlmaky downloadable, extract the Project Darkstar
main binary downloadable, and then extract the neimgithree libraries to the external library
folder. The user would then go into the runtimieléos for the provided tutorials, and create a
folder named “dsdb.” The user would then crea¢eSG6S HOME environment variable. The
creation of the “dsdb” folder was absent from theuded readme.txt file.

Included with the Project Darkstar binary were stell scripts. One was for UNIX-based
systems, and the other was for Windows systems. Wimdows script did not run properly due
to incorrectly-placed quotation marks, which regdimanual editing in order to restore
functionality. Assuming the user completed all $keps documented in the instructional
document, running the script would result in a adadava application that throws exceptions,
then exiting. Most often, the exceptions weresalteof the “dsdb” folder not being created.

® Personal Conversation with Seth Proctor. 27 Ayg@as.
¢ "Independent MMO Game Developer's Conference MGDC. 7 Dec 2008 <http://www.imgdc.com/>.
" "XNA Creator's Club Online.” 7 Dec 2008 <http:#ators.xna.com/en-US/>.

8 Personal Conversation with Seth Proctor. 27 Ayqas.

Project Darkstar Page 12

Worcester Polytechnic Institute

Once a user figured out where to make folders ametevto place libraries, the various tutorials
ran with little trouble.

The README file was very lacking in general infortioe and reasons why steps were
performed. Most files of the binary download anstallation instructions aren’t necessary to
Project Darkstar development: the batch script siaply for running tutorial code, and the
SGS_HOME environment variable was only used bybtiteh script, and the tutorials are
wholly independent. None of the instructions pedd to getting Project Darkstar itself
working; their actual purpose was to run pre-mauece file tutorials.

Project Darkstar also suffered from lack of markéity. There were no impressive projects
completed with Project Darkstar. Furthermore, wiitoject Darkstar performed well on its unit
testing, it suffered from having no benchmarks #retle was no evidence that it performed
anything it claimed

Despite its small API, Project Darkstar’s tutoriaféered very little in the way of interactive
learning. The pre-packaged server tutorials ctebisf one PDF document that described what
the tutorials did and instructed a user to reagptiogided code as a way of learning. In addition,
the tutorials offered very little in instructinguaer how to get up and running quickly in any
major IDEs, including NetBeans and Eclipse.

3.1 Proposed Solution

The original solution, presented by Jim Waldo h®e aforementioned problems was to produce a
fifteen-minute out-of-the-box-experience for PrajBarkstar. Mr. Waldo based his out-of-the-
box-experience’s design on the MySQL fifteen-minoié-of-the-box-experience, which he
considered very effective in attracting users. Waldo’s proposal presented several issues of
its own.

Mr. Waldo’s basis for comparison was a completdiegipon with which a user could interact.
While developing with a SQL database is extremelyimon (especially in Web-based
applications), a database server with a queryingudage allows for immediate user interaction.
Project Darkstar does not allow for immediate ustaraction. In order to do anything with
Project Darkstar, a user must first develop aniegfpbn using it, which requires a time
investment much longer than fifteen minutes unteesapplication is trivial.

3.2 Revised Solution

The project team agreed that a fifteen-minute dubhe-box-experience was not a feasible
endeavor. However, the project team concludedafygneral-purpose out-of-the-box-
experience was feasible. The intended goal waarfaut-of-the-box experience that would take

° Personal Conversation with Jim Waldo. 25 Augudfg

Project Darkstar Page 13

Worcester Polytechnic Institute

no more than a single evening to complete, andias, $he team set a three hour upper-bound on
the out-of-the-box-experience.

In order to cut out unnecessary time wasting, ¢hent scanned the Project Darkstar community
forums in order to find common problems. Problevese identified,
including getting a project set up in the majoralavegrated

Development Environments (specifically, Eclipse AleiBeans)’, as i

well as simply getting Project Darkstar runriihgThe project team Tutorial

decided that a cross-platform installer would ba#ainable first step 1

in reducing the amount of time a user needs todgpearder to start Completa 2 of 3

working with Project Darkstar. 1r-.trro:1u::1i:»rnr
LILGrals

In addition, in order to reaffirm to Project Darksts a viable server |

technology for their projects, the team decideduitiog a small Complete 4 of 6
sample game that demonstrates Project Darkstafsriss in an '”‘#"J_{';ﬁij:‘&
aesthetically pleasing and entertaining way. Tdn@eg needed to be '
playable by a single player and needed no leartinge '

Complete Gof @
Finally, in order to familiarize developers withofgct Darkstar such ”'}"u“;l"’;‘s"
that work is not impeded on their personal projetis initial package
needed to include a set of comprehensive, inteattitorials that Figure 1: Hierarchical

. i tutorial design
explained as many of the Project Darkstar featanesnuances as

possible. In addition, the tutorials need to ideunstructions on how to set up a project within
the major Java IDEs.

3.3 Advised Solution

In order to devise a solution both Sun Microsystams the Project Darkstar team would find
acceptable, the project team discussed the tugaial sample game with the project advisor,
George Heineman, at length. Several ideas wecaisisd.

The first idea discussed was the concept of bored, customizable game and tutorial
experience. A user would start at a single tutoffdne user would then progress to the first tier
and complete a certain number of the tutorialsethaithough which would be left up to the user.
Once the user completed the prerequisite numbiertarfials, the user would move to the next

10vproject Darkstar Community - Running a servenfroithin NetBeans." 7 Dec 2008
<http://www.projectdarkstar.com/component/optiomcsmf/Itemid,120/topic,634.

1 vproject Darkstar Community - Can't install PraojBarkstar?.” 7 Dec 2008
<http://www.projectdarkstar.com/component/optiomcamf/ltemid,120/topic,714.0>.

12 personal Conversation with Jim Waldo. 25 Augusag

Project Darkstar Page 14

Worcester Polytechnic Institute

tier (which had more tutorials and required a larganber of completed tutorials) and repeat the
process, which continued until the user completedinal tier. See Figure 1 for an example.

This set of tutorials was accompanied with a gasea that each subsystem of the game was a
modular component that was entirely stand-alonetiaiknowledge needed to build the
components would be found in previous tutorialbe Major issue that arose from this course of
action is that no game is truly modular. Everyteysmust at least depend upon a system for
data on the server, and systems for communicaiger, input, and graphical rendering on the
client.

This method of tutorials was discovered to b -
infeasible due to the lack of a guarantee that [1

user would learn all that is needed to comple

tutorials of later tiers. This produced a

situation where the tutorials could not build i Beget

off each other, which defeats the purpose of 1
having tiered tutorials in the first place. Aftel

discussing the ramifications of this Bk Biar o B
complication with Professor Heineman, the 1 1.5 Z
project team set out to refine the concept.

Professor Heineman suggested next a Branch Branch Branch Branch
branching set of tutorials, where each tutoria 1 125 1.75 -
has a set of prerequisite tutorials, any of whi

could be completed in order to qualify a uselrigure 2: Branching game dependency system

for future tutorials. In such a case, a user is

not limited by tiers, but would progress along lotaes of information that was inter-related.
The suggestion changed the focus from a breathtditsrial set to a depth-first tutorial set. See
Figure 2 for an example branch set.

The associated game concept with this tutorialvesta game where each component had a clear
set of dependencies, with the component dependaa lmpthe second would be completed in
both prior tutorials. In the example provided igufe 2, each box represents a tutorial that
implements two components, with horizontally-adradeoxes each having a single built
component in common.

Professor Heineman also suggested the implementaftia system such that a user would not be
required to write any code. A user would simplg euprogram, select a tutorial and the program
would scan through the source code and uncommeminemted blocks of code. The project
team did not implement this concept, as tutoridath wo user involvement do not teach anything
to the user.

Project Darkstar Page 15

Worcester Polytechnic Institute

This method as well proved to be infeasible givenproject team’s available resources. While
proper transmission of information is guaranteedstdsequent tutorials, several problems arose.
The first problem that arose is the fact that cmélad make no assumptions about tutorials from
more than a single tier prior to the current oRer example, in Figure 2, a user could start at the
Intro node, move to Branch 1, then Branch 1.5, farvally Branch 1.75. Given the necessary
structure of information to produce such a sequeheeuld not matter that the final tutorial in
the branch is closer to Branch 2, as the user wioad@ never seen Branch 2. The second
problem is that there would be a large amount gfidated information between tutorials. In
order to complete Branch 1.5, information it neadsild need to be provided by both Branch 1
and Branch 2, which implies that it should be i@ bhtro. However, such a progression would
imply that Branch 1.5’s prerequisite was not Brathadr Branch 2, but rather just the Intro,

which would collapse the structure of the tutorials

3.3.1 Refinement of Advised Solution

The project team, upon condensing the conceptemies by Professor Heineman, decided that
the simpler solution was the preferred one. Thentepted for a single line of tutorials that
follow a linear progression, with optional tutosdb include instructions for something a user
would not explicitly need, but might be benefidialknow. The Project Darkstar API is far too
simple to produce a set of tutorials as extenssveraposed by Professor Heineman, and would
very quickly become general game programming guidlles original proposed concepts were
on the scale of Dark Age of Camelot, which hadwess-year production cycle and a staff of
twenty-five individuals®.

In addition, the team decided that the tutoriatsusth not produce a production-quality game as
their capstone, for several reasons. The primgagan is that the project team simply would not
have the time and resources to produce a profedsigmoduction-quality game. Secondly, the
project team decided a tutorial that encompass$elydeatured game would require far too
many media resources and far too much client-sialeegcode, which would detract from the
quickly learning the Project Darkstar API and coetiplg something meaningful in an evening.

The project team concluded that the tutorials wangtead produce a package for a chat
program, which would demonstrate all of the featwEProject Darkstar in a quick and concise
manner. The team also decided that a very smdlsenple game that uses Project Darkstar
would be ideal, but only to show off what Projecetrkstar can do.

13 »Gamasutra - Features - Postmortem: Mythic's Ray& of Camelot." Gamasutrd Dec 2008
<http://www.gamasutra.com/features/20020213/firarthm>.

Project Darkstar Page 16

Worcester Polytechnic Institute

4 Deployment

To describe the requirements and goals of thellestieveloped for this project, the project
team briefly outlines the original means by whicterested end-users retrieved and installed
Project Darkstar.

4.1 Original Method of Deployment

When the project team first began work on the dtthie-box experience, they evaluated the
original method of deployment used by Project Dikdnitially, Project Darkstar was installed
by having the end-user unzip into a desired locadid ext Archive (TAR) file that contained the
pre-compiled libraries used to run Project Darkst&e user then had to set certain environment
(or shell) variables that Project Darkstar religomn, such aSGSHOM#hich had to point to the
directory that the files were unzipped to. Onces¢ghenvironment variables were set, the user
could launch the server using a Windows batchaiila UNIX shell script. In each case, the user
had to supply command line arguments pointing th leeCLASSPATHbf the server
implementation and to a properties file that comfegl the server.

This process was not detailed in the installatioilg for Project Darkstar, and thus a need for a
tool to manage the installation process. The pyngaal of the new deployment strategy was to
automate the process as much as possible, whethigvieloping an installation tool or

acquiring for use such a tool (whether freely occat). Additionally, some of the problems with
the existing deployment were the current legakiegins imposed by Project Darkstar’s use of
the freely available Berkley Database System, knasvBerkley DB. Specifically, the Berkley
DB license did not permit the reorganization of fitess included in the Berkley DB distribution

— it had to be deployed in its original distributidAR as-is.

4.2 Characteristics of Installers

The common goal of all installers is to alter tisen’s file system and settings such that the target
product is able to function without any alteratie@she system directly by the user. The
changes an installer could make to a user’s systelode: changes to the file system (which can
include the addition of files, folders, shortcutddinks), changes to system environment
variables (to add a program’s installation patthtomain path variable, for example, although
the application could make use of several custovir@mment variables), and — in the case of
Windows systems — changes to the registry.

The most common type of installer for Windows-basgstems is a wizard installer. A wizard
installer is a program that guides a user througéries of steps, with each step representing
some sort of request for information from the uskypical steps include selecting an installation
directory, agreeing to a terms-of-service agreeraean end-user license agreement, and
configuring the installation. This type of instlls also the most familiar to the Independent
game developer demographic.

Project Darkstar Page 17

Worcester Polytechnic Institute

Another common form of installer is the unattendechmand-line installer. This type of

installer is common among systems where a commagdshell is the norm. In this type of
installation, any step that requires user confiromais assumed to have it, and all the

information the user needs to provide is eitheriged as a parameter, or the default value is
inserted. This type of installation process waagheal to the system administrator demographic.

4.3 Requirements

The requirements for the project changed as thegrteam worked to complete the application.
Initially, it only had two requirements: properlglocate the Berkley DB files into their correct
location; and provide a graphical interface and mwamd-line interface. The team developed an
early prototype that mimicked exactly the user afiens required by the original Project
Darkstar deployment. While the functionality wasreat and its design was simple, the installer
was fragile (since it only worked for the exact sktiles in the original installation) and it did

not provide for the “one-click install” that Jim \lda was looking for.

Eventually, the initial version of the project wagapped, as the requirements changed
drastically, once the project team along with Jmd &eorge realized that the initial
requirements wouldn’t work for the final installdithe new requirements demanded robustness
in the form of easily maintainable installationipatas well as system specific variables so that
only the proper files are installed depending andperating system and CPU architecture that
the installer is run on.

4.4 Pre-Existing Solutions

Rather than writing an installer, which would tatdeast some time, the project team evaluated
pre-existing installer creators and frameworks. fpraect team first reviewed InstallShieldV

a popular installer generator. The biggest issule lustallShield™ is that it is proprietary
software and required an up-front investment. Hast expensive version of InstallShield™
detailed on the shopping page on Acresso’s wehsitastallShield 2009 Express (Windows) +
InstallShield Express (Windows) Maintenance — Silsericed at $949.08 Additionally, since
Project Darkstar is an open source project, the teguired that only open-source available
installer frameworks would be used. Another disatlvge of InstallShield™ is that it only
generates installers for Microsoft Windows.

14 "|nstallShield - MSI Windows Installer and Ins@diript Installation Tool - Acresso”. Acresso Softeal5 Dec
2008 <http://www.acresso.com/products/is/instaikhioverview.htm>.

15"Acresso Software eShop - Buy Acresso Softwarel@ts”. Acresso Software. 15 Dec 2008
<http://shop.acresso.com/product/fullproducts.asp#q

18 "|nstallShield Features - MSI Software Installatibools - Acresso". Acresso Software. 15 Dec 2008
<http://www.acresso.com/products/is/installshieddifires.htm>.

Project Darkstar Page 18

Worcester Polytechnic Institute

The project team decided to take a look at some-sparce solutions, such as IzPdand
InstallJammef. A major problem with the open-source tools wéa they did not deliver the
level of customizability and the features neededtie installer until they were actually used.
Rather than settling with the lack of robustnesthefopen-source solutions, the team instead
decided to build an installer.

4.5 Installer Features

The installer the team developed is simple to negning that the graphical interface resembles

ones that users would be accustomed to; the comimanuhstaller also operates as expected.

Importantly, both of these versions had to shaeesime back-end functionality, so that the

execution of both the GUI and command-line versiointhe installers would behave similarly.

The Installer is designed to support a generi@llagton (within reason) which provides the
required flexibility should the

T installation artifacts change in the

e future. It also supports a set of

rﬁ customizability options.

AhstractMetadata

IStep 4.5.1 Overall Design

initializaStop e [Embeadeatexisiep] 1 he project team designed the
EmbeddedMetadata| — — —— -~

: e installer to allow the user to navigate
' nstallerPathStep Emmeddeaiovesies] Dackwards to earlier steps of the
installation process, to review past

- [RunMetadatastep Embeadedunzpstes] decisions, for example. The team

L decomposed the installation process
NalidaminstaliaionPathStop into steps — sequences of actions

= involving processing user input.

|
|
|
|
| ainterfaces
|
|
|
|
|

Figure 3: Installer Back-end UML Diagram Each step implemented the IStep
interface, as shown in Figure 3. In
this way, the project team easily implemented tramand-line version of the installer and GUI
version of the installer using the same backeridgube Model-View-Controlléf as the basis
for the installer’s design. The new design is gengs it can be used for any project, and it is
flexible enough so that if someone wanted to malkeecements to the various steps, they

" ponge , Julien. "1zPack - Package once. Deplogyeeere.". 15 Dec 2008 <http://izpack.org/>.

18 "|nstallJammer - A free, open source, multiplatidnstaller - Home". 15 Dec 2008
<http://www.installjammer.com/>.

19 "Model-View-Controller Pattern”. eNode. 15 Dec 86¢thttp://www.enode.com/x/markup/tutorial/mvc.html>

Project Darkstar Page 19

Worcester Polytechnic Institute

would propagate to both the graphical and commanreiversions of the installer. The project
team also devised a metadata to model the fultnmétion about the installation process.

4.5.2 Customizability

The metadata information for the installation psxeontains all information about the tasks to
be accomplished by the installer. It determineditred location of all files put onto the file
system during the installation process. In addjtibuses pattern matching with custom
variables to maintain the directory structure afhbembedded artifacts and the installation
directories. A special type of settable variabiswhe system-specific variable, which would be
set to a certain variable depending on the opeyatystem and architecture that the installer was
running on. This was useful in the case of systpatific binaries that needed to be installed to a
certain directory. The installer would automatigaletermine which variable to use and would
replace all instances of the system-specific végialith the proper one at runtime.

See Appendix A for the final version of the insalinetadata.

4.5.3 Additional Notes

The installer took the project team a week andlatb@omplete, during which more robustness
was expected. In the end, it was finished anditked, while being flexible, maintainable, and
robust. The project team added more features, asichetadata variables for commonly used
paths and system-specific variables for instalbnty the proper binaries depending on the target
system.

See Appendix B for an early version of the instaifetadata, for comparison purposes to the
final version.

See Appendix C for the final version of the ingaBystem-specific and metadata variables.

5 Sample Game

A sample game was a necessary part of the outeslbdbx experience. Assuming the user is
already interested in Project Darkstar, given thagleted installation process, the sample game
would provide the user with a demonstration of lneject Darkstar facilitates rapid
development. There is a game written with Propantkstar called Haék However, the
requirements for the sample game specified thedtto be graphically detailed enough to
impress a user, and Hack specifically uses eighgrbphics. In addition, the game had to be
small enough that the user could make noticealdagds to it.

2 vdarkstar-hack: Hack - A Project Darkstar GameDet 2008 <https://darkstar-hack.dev.java.net/>.

Project Darkstar Page 20

Worcester Polytechnic Institute

5.1 Pre-Game Research

The most pressing issue facing the team was whailsslect an existing Darkstar application or
develop one from scratch for the out of the boxesigmce. The team knew that something flashy
that the team could use to show off what ProjeckEtar could do was necessary, and the team
agreed that a sample game was the best methoddmplish this. The issue here was
determining what was feasible within the 7-weelketfirame while still fulfilling the requirements
of a usable and effective out-of-box experience.

The first major topic under discussion was the disngnality of the game itself; that is, whether
or not it should be 2D or 3D. Each had its own @og cons. For 2D, game development was
much simpler. In order to create a finalized gamiet of content creation is involved. A 2D
game meant that the visual content was limite@xeures and flat image files. While the
simplicity of a 2D game was alluring, it lacks tisual appeal of standard 3-dimensional games
currently on the market. A 3D game has the advantdgppealing more to the current MMO
community which is accustomed to games that invekm@oration of a 3-dimensional game
world. In this respect, it was decided that 3D wesway the project team wanted to approach
the team’s demo game.

The team knew at this point that the decision éat a 3D game meant that not only was
content creation more difficult, but so was thentecalities of dealing with real-time interactions.
In short, the team needed an engine that coultdelditty work for us. With Java as the team’s
development platform, options were limited, duentost engines being written in C++ for
efficiency. During this time, the Project Wondedaeam had been mentioning that they were
planning on switching their current rendering systever to one called jMonkeyEngine (JME).
One of the more popular 3D game engines availablddva it boasted high performance as well
as being an open-source project. In the end, itdeagled that if the team was indeed going to
create a full 3D game, jMonkeyEngine would be tlasy/wo do it.

5.1.1 jMonkeyEngine

The feasibility of J]ME was unknown before use, déimerefore additional research into this topic
was carried out. The team investigated the capiasilof J]ME while the installer was being
written, hoping to reach a conclusion within a weBbkwards its advantage, the JME web site
contains several tutorials available with sampleecprovided. The team evaluated these
tutorials and created a quick demo application &siacase. The process of going through all the
tutorials took longer than expected and once tlas @omplete, the project team decided that the
demo would be a simple World of Warcraft-style ceameomething that should have been a
trivial task: it was not. The process of creatnghort demo revealed some major problems in
working with jME.

First of all, there was very little versioning. @mo versions of J]ME were available to
download; 1.0 and 2.0. There was no intermediatem@ng. Any updates to the engine were

Project Darkstar Page 21

Worcester Polytechnic Institute

committed to the latest version meaning that texe no true consistent version of the software
available. In addition, J]ME lacked good design picss, in the team’s opinion. The entire
structure consisted of a massive tree of derivagsels with little organization other than package
relation. In order to use or extend any class,ysually had to read down through the various
parent classes in order to determine the functityndlhis structure was not consistent;
seemingly related input classes would be structurédo entirely different manners. In general,
the engine was not designed to include an API, mgahat functionality was derived from the
use and knowledge of the entire framework as a @yhméking it difficult to work with.

In the end, it was clear that JME was causing ntayeble than it was helping, and that it would
create a great deal of work in order to creategtirae the the team felt was necessary to generate
appeal for new users. In this sense, the use ofWd¬ advised, and it was decided that
creating something decent was out of the scopereivaek project.

5.2 ldea 1: Extensible Module-Game

As described previously, one of the ideas propayeldrofessor Heineman was a modular
component-based game. There were several designsoasible implementations discussed.
For example, any module would have both the akidityead information from it and to allow
other modules to cause events within the moduleindJthis assumption, several of World of
Warcraft's systems were decomposed into modules iattempt to see if it would work. An
example is shown Figure 4.

Character
Quests * lems 4 Supparting Chgf;;:tri DB: i Game World
Statistics
9 s r 3 r 3
A T
; ; Character
Character History ﬁ:::&fi | Character Skills w Charggﬁ;ﬁ _E;WEH] Movement and
1 y i Positioning
Fy Y
s
Character Character Stalus
Exuipment Effacts Character Combat
Fy

Character Talents

Figure 4: Portions of World of Warcraft decomposednto modules.

Project Darkstar Page 22

Worcester Polytechnic Institute

5.2.1 Problem

The only problem that arose with a modular-basedagi@ea is that such an idea is far too
ambitious and would require too much manpower tmlpce in the allotted time. The project
team has agreed that should the Project Darkstar keve additional time, implementing a
sample game a similar manner would be a worthvarigeavor. A modular game system of this
sort also works well with Project Darkstar’s arebiure, as related pieces of data are kept
separate, which would minimize contention.

5.3 Multiplayer Space Shooter

The second idea the project team came up with wadea for a very simple multiplayer space
shooter game. Based on a JMonkey tutorial, playetdd attempt to shoot each other while
moving their avatars around in a spherically boahgieme world.

5.3.1 Problem

While this idea was sufficiently small and simpbeprogram, it had a similar issues to Hack; it
simply was not impressive enough an idea to impaasser, both graphically and in terms of
game-play. In addition, the vast
majority of the client code was
tied to JMonkey, which meant a
user would have to learn the
JMonkey engine to do anything
with the game beyond playing it.
The game also did not lend itself
well to single-player game play,
which is a necessary part of the
sample game due to the fact that
there is no public server on which
the game could be run.

EE Snowman

5.4 Solution

For the sample game in the out-of-
the-box experience, the project
team decided to use Project
Snowman'. This decision was made since the project teanmdichave a lot of time to design
and develop a quality game in the short periodnoé that they had left, as Project Snowman

Figure 5: Project Snowman during game-play.

2 "project-snowman: Project Snowman". Sun Microsystems. 15 Dec 2008 <https://project-

snowman.dev.java.net/>.

Project Darkstar Page 23

Worcester Polytechnic Institute

was an already working game with Project Darkstal that it looked acceptably pleasing as it
was a complete 3D game.

6 Project Snowman

Project Snowman is a third-person shooter wheregnuamd Al players are pitted against each
other in a snowy tundra wasteland with the goaafh player being to capture the opposing
team’s flag and return it to that player's b45&he game was developed using Project Darkstar
as its server technology, and has been stress t@gteup to 6,000 clients connected to a single
Project Snowman servét Figure 5 depicts an example of game play in Pt&eowman

6.1 Game-play

Project Snowman’s game play consists of capturdhtigestyle objectives with shooter elements
in which two teams each consisting of human anéll@ontrolled players attempt to steal the
opposing team'’s flag and capture it at their owsebarlhere are a variety of game features that
players will utilize and become accustomed to, aghow the rules of the game are defined, the
view of the world, and the snowman's capabilities.

In Project Snowman, the goal of the game for
each team is to have one of their players
capture the other team's flag and return it to
their base successfully. If a team succeeds at
doing this, then that team wins the round, and
a new game is started. Game play usually
consists of teams either moving to the enemy
flag to retrieve it in tandem, as seen in Figure 5.
Each team member is responsible for
protecting each other from the volley of
snowballs from the other team by returning a
volley of their own, or by being sneaky and

:E-S.nowman i E“E‘ El

Waiting for server to match you into a game...

Figure 6: Match-making Screen having an individual player avoid the rest of
the calamity and steal the enemy flag.

Each player also has a view of the world, and n@drie things that each player sees while
playing the Project Snowman is similar. Every playehile starting the game, will see an intro

22 "TWiki . Games . ProjectSnowman". Sun Microsystems. 15 Dec 2008
<http://wiki.java.net/bin/view/Games/ProjectSnowman>.

23 personal Conversation with Owen Kellet. 30 Augnsns.

Project Darkstar Page 24

Worcester Polytechnic Institute

screen, as seen in Figure 6, of a rotating cirdalagl with text that says, “FINDING A GAME.”
Once that player has successfully joined a ganes, tteir view is immediately switched to a
game play view, as seen in Figure 7, in which #weyviewing the game world behind a
snowman in a8 person perspective. In the game, players aregyed as snowmen in an icy
tundra that is surrounded by some hills, dead tieeésw houses, and two flag points, one for
each team. Each snowman starts off with the saauts,tand the only difference between the
snowmen on each team is the color of their scarulss is set this way so that players can easily
know which players are on their team afFEEes SEL]

which players are their enemies. Player ke
will see if other players are moving,
attacking, running with the flag, or
performing any other game related actie
When a game ends, the player is return
to the matchmaking screen, and the ga
start process begins again.

6.2 Purpose

Using Project Snowman for this project
had a clear purpose — the project team
needed to answer the question “What
does the user do first after running the
installer?” Ideally, this was going to be a gamef&ably, it was going to be a good looking
game. Project Snowman fit the bill, as it's a gémaking 3D game with fully developed client-
server interaction using Project Darkstar, and m&sg actively maintained by Owen Kellet and
Keith Thompson of the Project Darkstar team, whies important to the project team since the
example game had to be in a stable state, integesthd enjoyable. The other option was
“Hack”, a rogue-like dungeon crawler, but the gaseot stable, enjoyable, or good looking,
living up to its namesake of being hacked togethas a simplistic, 2D dungeon-crawler, it did
not meet the standards set by the project team §ame that would highlight Project Darkstar’s
potential as a large-scale massively multiplayerese The limitations of the game did not
convey the power and scalability of Project Dankgtat a game with higher production value
would convey to a potential developer.

Figure 7: Game-Play View

% ndarkstar-hack: Hack - A Project Darkstar Gam8un Microsystems. 15 Dec 2008 <https://darkstar-
hack.dev.java.net/>.

Project Darkstar Page 25

Worcester Polytechnic Institute

6.3 Background

Project Snowman is a game devised by the Projedisiza team to showcase the Project
Darkstar server technologyJeff Kesselman did create a game before it c&8lethy Hunters;
however, it was a proof-of-concept to show thatRhgject Darkstar technology could run a
game and not something that highlighted the sditlabf Project Darkstaf® Bunny Hunters
has a low player max, while Project Snowman capasr@ large number of players. Project
Snowman was originally intended to be a massivaljtiplayer game, supporting non-player
characters and an expansive wdtldt.is now a non-massively multiplayer game in vieén of
Quake or Counter-Strike, as the game instancescangersistent® Primarily the following
people developed the game: Keith Thompson, Yi Wand,Owen Kellet.

6.4 Development Cycle

The game was created in July of 2008, and was tedmty to showcase for the Austin Game
Developer conference two months after that. Thassets were made in this period of time by
an unspecified artist contracted by Sun, butitosknown when the art assets were put in the
game? Recently, the game has been developed by Owertkeitl Keith Thompson, who were
able to implement the client-server connection witivo weeks — an impressive development
cycle for any team, considering competitive 3D gaim&ve development cycles counted in years
rather than weeR8 Right now, Project Snowman is receiving increrabapdates in the form of
dependency removal from NetBeans and Ant. OweteKisl actively maintaining it.

6.5 Platform-Independent Launcher

Launching Project Snowman was still going to beablem. It required several VM settings to
be set on the command-line and also required thenaents that it itself used. Rather than giving
the user instructions with command-line optionsuto, the project team created a command-line
argument running application.

% Kellet, Owen. "Project Snowman: Lessons Learn&f"Dec 2008 <http://owenkellett.com/2008/09/23/pcbj
snowman-lessons-learned/>.

% "punny-hunters: Project Home Page ". Sun Micrasyst 15 Dec 2008 <https://bunny-hunters.dev.jatiene
2" Project Snowman Code. 2 September, 2008.

2 »TWiki . Games . ProjectSnowman". Sun MicrosystelfsDec 2008
<http://wiki.java.net/bin/view/Games/ProjectSnowrman

29 personal Conversation with Keith Thompson. 4 Saepes, 2008.
*¥ "Gamasutra - Features - Postmortem: Mythic's Dark Age of Camelot." Gamasutra. 7 Dec 2008

<http://www.gamasutra.com/features/20020213/firor_01.htm>.

Project Darkstar Page 26

Worcester Polytechnic Institute

6.5.1 Requirements

There were a few things required of the launchiest Bf all, it had to be platform independent
such that it would run on all platforms that ProjBarkstar ran. This was the most important
requirement for the launcher. For Project Darkgtas, meant choosing the correct Berkley DB
binary to use depending on the operating systenagstdtecture that the launcher was run on.
For Project Snowman, this meant choosing the apatep.WJGL binaries. As well, it had to be
incredibly easy to use — a “one-click launch” @imple launch via command-line was important
to Jim Waldo®

6.5.2 Design

The launcher retrieved the command to run fronr@pgrties file, which is the Java standard for
program setting®? The .properties file contained settable variahtes system-specific variables
that were set depending on the system that thet@uwas run on. The libraries created to
perform this duty were originally in the installemt were later removed, put into the platform-
independent launcher, and eventually copied baek tovthe installer as the requirements of the
project changed.

6.5.3 Purpose

The original purpose of the launcher originally wasun Project Darkstar without shell or batch
scripts, since the ones supplied with Project Darksontained bugs such as incorrect path
settings to binary files and proved to be a messdmtain, causing several end users to run into
errors>3**%Thijs was put on hold for a large stretch of theigut team’s time at Sun. Sun later
revived the project, as it would be useful for laling the Project Snowman client and server.
The project team used it with Project Snowman wasmove the dependency on NetBeans and
Ant — these were dependencies that the project tkadmot want their OOTBE to have, as
requiring multiple installations to get Project Rstar up and running would have hindered the
quality of the out-of-the-box experience.

31 personal Conversation with Jim Waldo. 30 Augu8fe

32 »properties (Java Platform SE 6) . Sun Microsystel5 Dec 2008
<http://java.sun.com/javase/6/docs/api/java/utdffarties.html>.

33 »gerver Installation not working on WindowsXP 32 bSun Microsystems. 15 Dec 2008
<http://www.projectdarkstar.com/component/optiomcemf/ltemid,120/topic,720.0>.

34 vProject Darkstar Community - Can't install ProjBarkstar?”. Sun Microsystems. 15 Dec 2008
<http://www.projectdarkstar.com/component/optiomcemf/ltemid,120/topic,714.0>.

% "project Darkstar Community - Problems runningléMlorld example”. Sun Microsystems. 15 Dec 2008
<http://www.projectdarkstar.com/component/optiomcamf/ltemid,120/topic,672.0>.

Project Darkstar Page 27

Worcester Polytechnic Institute

6.5.4 Result

The platform-independent launcher streamlined thegss of running Project Snowman’s client
and server portions, and it is flexible enoughéaubed for running Project Darkstar itself. It
fulfilled the need for a customizable, lightweigbtopss-platform program launcher.

7 Tutorials

In order to provide Project Darkstar users withethd to begin work rapidly on their own
development projects, the project team designed afgutorials to demonstrate the Project
Darkstar API.

7.1 Current Server Tutorials

The original Project Darkstar server tutorials ¢stesl of a set of six wholly unrelated tutorials,
each with the intent to teach a user part of tlogelet Darkstar API. All six tutorials were in a
single PDF document, with SwordWorld as an appetfiThe project team briefly summarizes
these tutorials here to show their limited scope.

7.1.1 HelloWorld

A user completing the first tutorial would simplgrestruct a Project Darkstar application to
output “Hello World”. Much of the tutorial was deteal to repeating what was stated in the
original installation document, as well as howua the shell script that came with the original
binary download. As such, the tutorial documerggparate download) was dependent on not
only Project Darkstar itself, but also a set addiseparate from the code itself.

7.1.2 HelloLogger

Project Darkstar’s second tutorial had very litdedo with Project Darkstar itself. It simply
described a basic use of the Jawvgging package provided by the Java Software
Development Kit. While this tutorial has no dependes separate from the first tutorial, it still
does not cover anything related to Project Darkstar

7.1.3 Tasks, Managers, and HelloTimer

This tutorial’s purpose is to introduce tasks alhdfathe managers that come with Project
Darkstar’s API. This tutorial, in the main drivelass, provides code for a repeating task.
Ignoring the improper delegation of functionalititie tutorial’s code, the tutorial’s sole

3 Kesselman, Jeffrey. "Project Darkstar Server Agion Tutorial.” 24 April 2008 7 Dec 2008
<http://www.projectdarkstar.com/ccount/click.phpZ2@>.

Project Darkstar Page 28

Worcester Polytechnic Institute

purpose is to describe a single method call. ftharial could fold in elsewhere.
HelloPersistence

This tutorial’s purpose is to introduce persistgiorage. This tutorial is actually three miniature
tutorials. The first is similar to the Hello Timeutorial, where it instead stores the previous
timestamp without using tH@ataManager . In the second tutorial, it abstracts the task to
new class, and in the third tutorial, it instruttte user to rewrite the class in order to use the
DataManager . This tutorial provides a roundabout way to instithe user in performing a
simple task.

7.1.4 HelloUsers

This tutorial introduces the developer to userisess known a€lientSession s. Itis split

up into a smaller set of tutorials, each of whieguests the user to rewrite the same code several
times. The code ends with a server applicatiohgbhoes all messages back to the client.
However, the tutorial provides no client-side ctmléemonstrate that it works.

7.1.5 HelloChannels

This tutorial introduces the developer to the boaating API, known as channels. This tutorial
shows the user how to make small chat program ws$iagnels. Most of the code is in the form
of Java logging code, rather than actual Projeckfar code. This tutorial bears a striking
resemblance in concept to Hello Users; howeverpde it bears little resemblance.

7.1.6 SwordWorld

This tutorial is supposed to act as a sort of @aqesto the tutorials. Unlike the previous two
tutorials, which have associated client-side code separate file, there is no tutorial around the
construction of a client for SwordWorld, which pumés a situation where a user cannot interact
with the server.

7.2 Current Client Tutorials

The original Project Darkstar client tutorials csh®f two tutorials, each of which describes the
construction of a Project Darkstar client. Thetials are provided in a single PDF document.
Each tutorial’s focus is specifically on writingetlelient associated with the server tutorials
previously described. While the server tutoriadlshdve associated client tutorials, they are not
in a single location, and thus provide a frustigtiser experience.

7.3 Problems with Current Tutorials

In the first week of the project, the team carwoed these tutorials as the team worked to
understand Project Darkstar. Because these tigtgriavided the team its first real experience to

Project Darkstar Page 29

Worcester Polytechnic Institute

Project Darkstar, the team is able to evaluate thhem the perspective of the end-users for
which they were written originally.

The team found that the primary weakness of thaials is they represent separate tasks
without a clear context for how these tasks intatee There is no notion of iterative
development, and no notion of how to develop tispeetive programs properly. They simply
provided a completed source file and a shell séoiptunning it. Individual lines, left
unexplained and undocumented, leave inexperiensex with little actual knowledge about the
system.

In addition, several of the server tutorials requilients in order to demonstrate that they are
functional. The client tutorials and client biremriare completely separate from the servers,
which produces a disconnection in the developmeugss.

7.3.1 Revisions to Tutorial Structure and Content

The project team decided to keep the linear pregraf tutorials present in the original Project
Darkstar tutorials. In addition, the project tefait the need to add several optional tutorial$ tha
instructed users in basic pieces of informationdiactly related to Project Darkstar, but which
are otherwise extremely useful. For example, togept team felt an effective optional tutorial
would instruct the user in producing usable NetBeamd Eclipse projects.

In addition, the project team felt that cutting astmuch information pertaining to topics other
than getting started with Project Darkstar was sg@g/. As such, the original Hello World
tutorial and the Hello Logger tutorial were enyrelt, leaving only information directly
pertaining working with Project Darkstar.

7.4 New Tutorial Outline

The basic idea with the new set of tutorials wasréate a simple environment for users to learn
the essentials of Project Darkstar while simultarsgocreating a client/server basis for future
projects. Individual tutorials also build upon aareother iteratively, culminating in a complete
system that demonstrates all aspects of the Priopatistar API. Once completed, the user can
then choose to partake in a challenge tutorialvlzdiks through the development of the server
system for an actual game. Specifically, this s@mowman Game, as mentioned in Section 6.
Participants are encouraged to code along withutieeials. This has the added benefit of
involving the users immediately and keeping usevslved while holding their interest.

All tutorial layouts use ariTMLformat created using Cascading Style Sheets (O®8)team

does this to simplify tutorial creation for us dhgidevelopment as well as for Sun employees
should they desire to make changes or additioes e team departs Sun. The CSS is designed
to fit the aesthetic standards of the Project Darksebsite for consistency, as shown in Figure 8.

Project Darkstar Page 30

Worcester Polytechnic Institute

PROJECT () DARKSTAR,

Getting Started: Connecting to Users

Overview

In this tutorial you will learn the basics of Project Darkstar and write your first simple Project Darkstar client and
Server.

Goals and Deliverables Requirements
Correctly established projeck

& functional Project Darkstar server that echos text messages sent back to
the client,

Server Directions

1. Implement Applistenar
S0 now that Project Darketar is corracthy installed on your computar, it's hirme to get in and start leaming about how
it works. You have to start somewhere, soilet’s start from the top.

Evary Project Darkstar server apalication starts with an interface called AppListensr. Implanting this will be our
first task,

Create o new file called TutorialServer.dava. Thiswill be cur Applistener class. In this file, enter'the following

Figure 8: New Project Darkstar Tutorial

The tutorials are hosted on a web page which amhitaiks to the various documents, including:
two introductory articles defining Project Darkstastallation procedures as well as how to
create a project; the four basic tutorials; andctilenge tutorial. Every page has a link that
leads back to the index, and a link that leadgéamain Project Darkstar website.

Each individual tutorial has three major sectidfisst is the overview section. This contains the
title, an overview, and a description of goals detiverables. In addition, it describes the
prerequisite knowledge and skills required to categpthe tutorial. These refer to previous
tutorials and are represented as links for the eoi@nce of the user. The other two sections are
the client and server sections. These are maielytical in terms of features; the only difference
is the separation of client and server units fahdatorial. Both contain a list of directions and
conclude with a “wrap-up” that recapitulates thateat of the section. A few special properties
of these sections are worth mentioning. Firstthaltext is written in a simple style that defers
from a more formal style to better connect withras8econd, all code is formatted in its own
font to differentiate between it and normal texdrde blocks of code are placed in specialized
code blocks that employ syntax highlighting. Fipathajor Project Darkstar API interfaces and
concepts are displayed in small pop-up boxes beatdam called “Pro Tips.” These pop-up
boxes appear on a mouse-over event and list diaflermation on their respective subjects.
Figure 9 shows a sample of a Pro Tip.

Project Darkstar Page 31

Worcester Polytechnic Institute

7.5 Basic Tutorial Outline

The final set of basic tutorials is as

follows:
e

7.5.1 Tutorial O: Project Set-up rerefeeiistenes [

e B AL R At i e b AR LT
Tutorial O is an optional set-up wnce for initializatic The AppListenser is the starting
. . . ashes, it can be re point of your user created Broject
tutorial. Itis Optlonal because the lizing tutori Darkstar progeam. The Applistensr |

project team provides a set of pre-« application was * does two things of note; it gives you 3
. the dsdb folder [(w place to handle validated client logins
made projects that allows users tohe project. Since and an initialize() method
bypaSS this Step if they so choose »itializing t where you can perfnrl_-rr gll cuf_ your
. setup steps, The 1nitializel)
(More about the pre-made projects methiod is in essence the maing)
are discussed in detail in section 2"t 9sdb folde function of your application.
7.7). Complete Project Darkstar urther and make it do something a bit more
applications require the Figure 9: Pro-Tip Box
construction of a development
environment in order to properly run and build. Gpeally, the user must first install Project
Darkstar to get the required libraries and creatgept files if using an IDE. If no IDE is to be
used, the semantics of writing the actual Java tobidt to the user. Project Darkstar
applications also require two additional componekitst, a properties file that specifies various
variables of the Project Darkstar stack must baterte during which project-specific settings are
defined. Also, the user must create a folder nafdedb” that will serve as the location for all
database information. These requirements detait¢lcessary prerequisites to build. To run, the
Java virtual machine needs a specific set of argtsnd@hese arguments include setting the main
class to be the Kernel class that is provided loyelet Darkstar (All applications are a set of
classes that implement the interfaces of the Pr@adkstar AP, i.e., applications are
components run on top of the Project Darkstar $takdditionally, the location of the properties
file and Berkeley DB native libraries must be sfiedi as well as any project-specific
command-line arguments. These steps are all detailill in this tutorial. The team knew that
users would be using a variety of different IDEds this process, and the team did not want to
create any limitations or dependencies on any sand¢DE or method, therefore, this tutorial has
three different sections: Using Eclipse, using Nstiss, and using no IDE.

7.5.2 Tutorial 1: A Simple Echo Server

This is first of the four “basic” tutorials. It sta by introducing the user to the basics of the
Project Darkstar API. This starts with the explamabf theAppListener

ClientSession , andClientSessionListener interfaces. This tutorial also introduces
the AppContext static class, a class which provides an access fwoa variety of manager
classes that are introduced and applied in lateriés. A small introduction to client/server
architectures is also discussed. By the end ofutosial, the user had a functional Project

Project Darkstar Page 32

Worcester Polytechnic Institute

Darkstar server application that allows users tineat and send text messages, which are
echoed back to the client. The tutorial also presithstructions to create a client application
capable of communicating with the server applicatote that the pre-made NetBeans project
allows users to run both the client and serveoyatig them to test the results of the tutorial
immediately.

7.5.3 Adding Persistence

The persistence tutorial attempts to familiarizeraswvith the concept of persistence in online
applications. This begins with a discussion ofdtiterence between thdanagedObject and
Serializable interfaces in Project Darkstar applications; theserfaces are necessary for
storing data persistently in the database and salvie differences when writing Project
Darkstar applications. ThdanagedReference andDataManager objects are introduced
as ways to access the data stored in these objéese objects and interfaces form the core of
persistence in Project Darkstar.

In addition to server applications and client/selasehitectures, users new to creating these
systems need to know about effective communicdigiween the client and server. Therefore,
the team acquaints users with the concepts of bpereodes and wire protocols. The project
team does this once persistence is explained.i&\pthint users will implement a simple wire
protocol that they will use throughout the remaimalethe tutorials.

At the conclusion of this tutorial, users will kedtlwith an upgraded version of the client and
server applications that will store that last mgessent by clients. Using the new wire protocol,
users can send messages that will retrieve thisageswhich will be echoed back to the user.

7.5.4 Allowing User Interaction

Tutorial 2 ended with a discussion of communicabetween client and server through the use
of wire protocols. In tutorial 3, the team disciss®re communication; this time within the
server application itself. The echo server appbeatvritten in tutorial 1 communicates
messages back to the user. The server is alsoleagfaiontrolling direct communication
between users fairly easily; however, in online garand applications there are times when
users may wish to speak to a group of people a.oht example of this would be simple online
instance messaging programs. To facilitate messagenunication in the server, Project
Darkstar employs the concept of channels. Thisepinio introduced to the user through the
explanation of th€hannel interface and th€hannelManager class. For the client, the
ClientChannel interface is also covered. At the conclusion & thbtorial, the client and
server applications are upgraded to echo messagefrem a given client to all connected users.

Project Darkstar Page 33

Worcester Polytechnic Institute

7.5.5 Tasks

Tutorial 4 marks the final tutorial in the firsttsd “basic” tutorials. Here, users are introduted
theTask interface and its uses. Server applications haveake large numbers of computations
based on data received from connected users. Sgaghres, if gone unchecked, can interrupt
running processes which can ultimately lead topptesyer data. To protect against this, Project
Darkstar uses the concept of tasks. These taskeewiember the current state of execution in
the event of a crash and, when the server is tedtawill continue from the point of interruption.
Tasks are implemented through the use offék interfaces and are scheduled and controlled
using theTaskManager object, both of which are explained in this fipaktion of the
introductory tutorials. At the completion of thigarial, users will have upgraded their previous
client and server applications to include a pedddsk that echoes the current server time to all
connected users.

7.6 Challenge Tutorial

A challenge tutorial was devised that would give tiser a chance to muck around in the Project
Snowman code and implement various parts of ite piotocol on the Project Snowman client
and Project Darkstar implementation. This tutonak important to the project-team’s OOTBE,
but it was a secondary objective in comparisoréasic tutorials. Fortunately, time permitted
and the project team was able to create this altfwr the user.

7.6.1 Tutorial Set-up

The challenge tutorial came with two a pre-packagetBeans project — a fully complete
version, which could be run as-is, and a scratehioe in which the user implemented the
material that the tutorial covers.

7.6.2 Tutorial Design Goals

It was important that the user not only got to iempént the server and client code, but that they
understood how it worked. It would have been easgirhply tell the user to implement various
chunks of code and not explain it, but that wowdgihdefeated the purpose of the tutorials.
Fortunately, this was kept in mind, and as a rakeltvay in which the tutorial was written
reflected the conscious decision of teaching thdee

7.6.3 Purpose

Once the user of the tutorials has completed thieay, ideally understand of how to send
messages to and from a Project Darkstar serveeimgitation and a client that uses the Project
Darkstar wire-communication protocol. The challetgerial exists for users that want a more
in-depth look at how Project Darkstar would workha fully featured game. As such, the
challenge tutorial built on what the user learnethie basic tutorials. It takes it a step further,

Project Darkstar Page 34

Worcester Polytechnic Institute

with the user making changes and additions torttegnals of the Project Snowman client and its
server implementation that uses Project Darkstéadititate communication between them.

7.6.4 User Tasks

When the user begins the tutorial, they first aedilatchmakerTask to perform the
matchmaking duties that are necessary for gamies toeated when users join the server. Once
that is complete, they go to the Project Snowmamthnd implement logging in, using the
SimpleClient class to create a connection with the server. Tihey implement on the

server a way of handling clients connecting by ttngagGameinstances and putting clients in
thoseGameinstances. Also implemented on the server is ibgatching of a game ready
message, sent to each client connected to the gétina socket message. After this is
implemented, the user then implements on the cliemhy of handling a game ready message
from the server by generating a local view of taeng. The user also implements the sending of
a movement update message on the client, seng wetiver when the user clicks on the ground.
Back on the server, the user implements the hagdliclient position update messages, and
relays those back to all clients connected to #raqy including the client that sent the message.
Finally, the user implements on the client a wahardling player position update messages
sent from the server, to update the local posiithe client.

See Appendix D for a detailed outline of the ussks in the Challenge Tutorial.
7.6.5 Result

By the end of the tutorial, the reader of the tadlashould have a fully version of Project
Snowman. The goal here was to give the user a sg¢smeEomplishment and show them that it is
not difficult to implement client/server communiicat using Project Darkstar.

See Appendix E for the full text of the Challenggdrial.
7.7 Pre-Made Projects

In addition to the tutorial documents, a set ofdementary pre-made NetBeans projects are
included. This section discusses the reason farithedusion in the final set of deliverables and
the importance of these projects as an additidhegaut-of-box experience.

7.7.1 The Problem

Project Darkstar applications require some pritiugethat is specific to the application. This is
beyond the team’s control and cannot be automatedgh the use of the installer. Instead, the
user has to perform this set-up. This is not adriask. In order to start coding with Darkstar,
users must download and install Darkstar, creaigegis with build scripts, and create properties
files. Also, in order to run the application uskave to run the java virtual machine with a long
list of specific but required arguments. Ideallgynusers should be able to skip this step, as

Project Darkstar Page 35

Worcester Polytechnic Institute

forcing them to do it can potentially cause setlatkhey can’'t adequately create the project
themselves. Note that adding another level of doitplis advantageous for the success of an
out-of-box experience, as described earlier inisedt.4. Pre-made projects hide this set-up from
the user and provide them with immediate acceasnorking programming environment once
Project Darkstar is installed.

7.7.2 Issues and Controversy

In order to abstract the set-up process, the teggimally chose to provide various IDE project
files. Using a single IDE created a dependencyhenDE that the team would rather have
avoided, if possible. The team wanted to providgqet files in Eclipse and NetBeans, two
popular IDE’s for the Java language. The projeatrtevas able to create NetBeans projects
without trouble, but Eclipse gave us an issue. {Eaen needed multiple project files to cover all
tutorials, each of which had to have a referendbeaequired Project Darkstar libraries. While
NetBeans enables project files to use relative pathes for libraries, Eclipse will only allow
relative paths for projects within the workspachkisTimitation meant that the team had to side
with NetBeans for all the team’s project files,atieg an unwanted dependency. The alternative
to using project files was a simple project setutprial that explains this process. Note that this
information will have to taught to the user evetifyas this set-up is specific to the application;
thus, always hiding it from the user would crea®ies when users attempt to create a project
from scratch on their own.

7.7.3 The Solution

In the end, it was decided to keep the pre-madegrbles. The main reason behind this was
because that although the team could only suppsirighe IDE, the benefits in terms of usability
outweighed the disadvantages of a NetBeans dependEme addition of the pre-made projects
grants a critical improvement in the ease of whisérs can begin learning about Project
Darkstar. Along with the project files, it was d#ed to also create a tutorial that explains the
set-up procedure, since this will have to be disedsat someone regardless of whether or not the
user chooses to use the pre-made projects. Tlisradant that this tutorial could be listed as
optional for users who wish to skip it.

The pre-made project files and set-up tutorial togegive the user an option as to how to go
about the tutorials, increasing the positive aspetthe out-of-box experience by adapting to
various user demands.

8 Conclusion

Much progress was made over the course of this M@Q® team concludes by discussing the
final set of deliverables and an evaluation offihgect as a whole. The project team then makes
its final statement.

Project Darkstar Page 36

Worcester Polytechnic Institute

8.1 Final Deliverables

At the time of project completion, the project tedaveloped the following set of deliverables:

An installer for Project Darkstar, A platform indement launcher for the Snowman game, and
an extensive set of tutorials. The final out-of-lexyperience uses these in a step-by-step fashion,
moving from simple steps that can be performedryyuser with basic computer knowledge, to
advanced steps designed for implementers of gamersgystems. Here the team recapitulates
the various deliverables and the methodologiesrgkthie creation of each.

8.1.1 Installer

The installer program was written to solve the pgobof a complicated set-up. Originally, users
had to perform a large set of monotonous task$y asc¢he relocation of files and folders, before
any work with Project Darkstar could ensue. Thitienced the effectiveness of an out-of-box
experience in a negative fashion because it predamters from immediate access to Project
Darkstar and created the potential for errors tauoduring the set-up process. The installer
alleviates these issues. It is written in Javataedefore does not discriminate against the
operating system of the user. Previous monotorasistcould now be performed by the installer.
This increases the ease of set-up by making toisass faster and more efficient. The installer is
also highly extensible and easily modified by Smpkyees should Project Darkstar
requirements change in the future.

8.1.2 Launcher and Project Snowman Demo

After installation, the next logical step in thet-@i-box experience was to appeal to users by
demonstrating Project Darkstar in action. Projeciv@man is a simple MMO game developed at
Sun Microsystems to serve two purposes: Provid@tbgct Darkstar development team with a
complete application with which to test the perfarmoe of their software, and to use as a
demonstration for game conferences. The team eshiize potential for using Project Snowman
as a demonstration for the Project Darkstar olief-experience as it simplified the
development of the out-of-box experience and reliews of the task of creating an entire game
from scratch, something which would have takenrs®erable effort and would have been
arguably infeasible. An issue with using Projecv®man remained, however. The game used
Apache Ant in order to run. This created a depeogémat the team would rather not burden
users with. To overcome this, the team createaidopim-independent launcher program, written
in Java. This was easily feasible because the &iygtaused to run simply ran the game via
command line arguments that varied based on thextipg system of the user. With the addition
of the launcher application, the team added an paisy-and-click method for users to get a
first-hand experience of Project Darkstar applaag| appealing to users and increasing the
effectiveness of the out-of-box experience.

Project Darkstar Page 37

Worcester Polytechnic Institute

8.1.3 Tutorials

The tutorials are the final step in the out-of-l@xperience, designed for users familiar with Java
that will use Project Darkstar to create their aygme server systems. A set of tutorials already
existed prior to the onset of this MQP; howeveeytivere large inadequate for a variety of
reasons. Consistency in design was a major isheetulorials were originally separated into
two documents: one for server tutorials and onelient tutorials. The final product of each set
of tutorials was a functional client or server apgtion for the client and server tutorials,
respectively. The issue here was that these apiplsawere not designed to interact with each
other. This gave users a set of examples, butatidadress such issues as coherency and
communication between the client and server. Theegisting tutorials also were provided in
separate downloads from the Project Darkstar webElte project team felt that this detracted
from the overall experience as it could potentifdlystrate users who would want to view
tutorials that explained the creation of a cliesver architecture. Finally, each individual
tutorial was unrelated with other tutorials, evieoge within the same client or server document.
The team’s revamped version of the tutorials combinoth client and server aspects of the
tutorials into one document. Also, each sequetitakial builds off the last, reducing iteration
and simplifying the coding process. Tutorials ds® aeformatted into colorful html pages,
which employ a simple and easy-to-read designishabre appealing than the black and white
format of the pre-existing tutorials.

Along with the tutorial documents, supplementargieeor every tutorial is provided. Pre-made
projects are included to give users immediate acteworking Project Darkstar code. These
projects eliminate required set-up that would ndiyrtaave to be performed by the user,
enhancing the out-of-box experience by allowingrthe bypass the initial set-up tutorial.

Tutorials are split into two major sections. Fiestset of basic tutorials walks users through the
Project Darkstar APl and introduced the variousriiaices and client/server architecture
concepts incrementally. An optional “challenge’otigl is also provided following the
completion of the basic tutorials. The challengerial walks users through the production of
the server system for the Project Snowman gamgisers both a first-hand experience at
what is required to create a complete MMO gameguBimject Darkstar, as well as
demonstrating the ease as which this system canglemented.

The challenge tutorial is the final deliverable atsb represents the conclusion of the out-of-box
experience.

8.2 Evaluation

The final deliverables represent an out-of-box epee, a usability device aimed at increasing
awareness and interest for Project Darkstar. AB,saicomprehensive evaluation would include
the results of a usability study. The requiremeetsessary for completing such a study were not
feasible within the seven-week timeframe of thgqm nor did the team’s Sun liaison request it.

Project Darkstar Page 38

Worcester Polytechnic Institute

An effective evaluation of the current status @& fnoject is left to the improvements made over
the existing system to create a more usable enwvieahand the comments received from various
Sun employees.

The first major improvement was the addition of itigtaller program. There have been many
complications regarding the previous installationgeduré’, which have been eliminated with
this program. Second, the team has included a gadkgame that utilizes the Project Darkstar
server system and an included launcher, givingsusérst-hand experience at the capabilities of
Project Darkstar that was not included otherwisealfy, the tutorials improve on the existing
tutorial set by uniting the server and client setdiinto a complete representation of a full
Project Darkstar system with provided code. Allkiables are designed to be easily adaptable
by Sun employees for future use.

The team presented the result of the project tmapgof Sun employees at the conclusion of A-
term. The comments the team received were veryipesi-® and the general consensus was that
the project was beneficial to Sun and the ProjeakBtar team. John Crowell, a Sun employee,
stated the following in an email to the projecttedYou guys did a great job. I'm looking
forward to being able to test it myself and usingsi a springboard to introduce newbie users to
Darkstar.*®

8.3 Future

As Project Darkstar continues to grow and devetbpnges may need to be made to the various
components of the out-of-box experience. Changésatinstaller need only be minor, as the
installer was designed to be extensible and eaddytable to various changes. One possible
adaptation to the user interface could includermfto choose which components to install; e.g.
users could elect to not install the Project Snowgeme to save hard disk space. The launcher
application also needs little to no adjustmentt asnply hides JVM command-line arguments,
which a user can re-enter as necessary. Mosefwtark will lie in the tutorial documents and
supplements. Sun Microsystems will add new feataves time, and the tutorial documents will
need to change accordingly. The project team piegethe aesthetic style associated with the
Project Darkstar logo and website onto the desfgheotutorialHTMLIayout, which will also

need necessary changes in order to maintain censist Content changes as mandated by Sun
and/or the community members using the tutoriadsagpossibility, including various edits to

*’"Project Darkstar Community - Can't install ProjBetrkstar?." 7 Dec 2008
<http://www.projectdarkstar.com/component/optiamc smf/ltemid,120/topic,714.0>.

* Personal Conversation with Jim Waldo. 15 Octob@d82
** Kotzen, Jennifer. "Re: Stay in touch!" Email to Gibler, et al. 15 October 2008.

*° crowell, John. "Re: Stay in touch!" Email to Gibler, et al. 15 October 2008.

Project Darkstar Page 39

Worcester Polytechnic Institute

both the tutorial text and supplementary code. Ikineoncrete evidence as to the effectiveness
of the out-of-box experience can be obtained thnahg employment of a usability study. This
study is, at this point in time, undefined; it mustwever, must be comprehensive enough to
encapsulate all areas of the out-of-box experiasosell as comparisons with the previous set-
up. This can be represented informally (most likély feedback from community members or
more formally as a professional analysis obtaimethfa larger audience.

8.4 Final Word

Following the conclusion of this project the teaapés that it has made a profound impact on
Project Darkstar and that the team’s work will Iseful in generating attention for the system
and improving the way developers create MMO appboa. The impact of this project has
potential far-reaching effects. The game industsywell as several other applications, can
greatly benefit from the proliferation of ProjecaiBstar, the advent of which could change the
focus of MMO development from a costly venture t@asonable effort. For games, this creates
more competition for large game corporations arfthanes the quality of MMO applications as
a whole. The team hopes that Sun utilizes Projeck®ar for the betterment of the MMO
developer community and that the project has beaeficial in working towards this goal.

Project Darkstar Page 40

Worcester Polytechnic Institute

9 References
"184. Sun Microsystems.”" CNN Money. Fortune 50M&0

<http://www.wpi.edhttp://money.cnn.com/magazinedtfoe/fortune500/2008/snapshots/
881.html>.

"Acresso Software eShop - Buy Acresso Software ltstl. Acresso Software. 15 Dec 2008
<http://shop.acresso.com/product/fullproducts.asp#q

"bunny-hunters: Project Home Page ". Sun Microsygstel5 Dec 2008 <https://bunny-
hunters.dev.java.net/>.

"darkstar-hack: Hack - A Project Darkstar GameDet 2008 <https://darkstar-
hack.dev.java.net/>.

"darkstar-hack: Hack - A Project Darkstar Game.h $ticrosystems. 15 Dec 2008
<https://darkstar-hack.dev.java.net/>.

"Gamasutra - Features - Postmortem: Mythic's Dagk 6f Camelot." Gamasutra. 7 Dec 2008
<http://www.gamasutra.com/features/20020213/firath@m>.

Gibson, Ellie. "Blizzard to compensate players\wrld of Warcraft problems."
gamesindustry.biz. 09 Aug. 2005. <http://www.gameastry.biz/articles/blizzard-to-
compensate-players-for-world-of-warcraft-problems>.

"Independent MMO Game Developer's Conference BMGDC. 7 Dec 2008
<http://www.imgdc.com/>.

"InstallJammer - A free, open source, multiplatfanstaller - Home". 15 Dec 2008
<http://www.installjammer.com/>.

"InstallShield Features - MSI Software Installatibools - Acresso”. Acresso Software. 15 Dec
2008 <http://www.acresso.com/products/is/instafikhfeatures.htm>.

"InstallShield - MSI Windows Installer and Instatt$t Installation Tool - Acresso". Acresso

Project Darkstar Page 41

Worcester Polytechnic Institute

Software. 15 Dec 2008 <http://www.acresso.com/petaiis/installshield-overview.htm>.

"Model-View-Controller Pattern”. eNode. 15 Dec 2008
<http://www.enode.com/x/markup/tutorial/mvc.html>.

Kellet, Owen. "Project Snowman: Lessons Learne8'D&c 2008
<http://owenkellett.com/2008/09/23/project-snownt@ssons-learned/>.

Kesselman, Jeffrey. "Project Darkstar Server Agpian Tutorial.” 24 April 2008 7 Dec 2008
<http://www.projectdarkstar.com/ccount/click.phpZ2@>.

Personal Conversation with Jim Waldo. 25 Aug2e@8.

Personal Conversation with Jim Waldo. 30 Aug28@8.

Personal Conversation with Keith Thompson. 4 &apter, 2008.

Personal Conversation with Seth Proctor. 27 Ayqgo8.

Ponge, Julien. "lzPack - Package once. Deplogyesere.". 15 Dec 2008 <http://izpack.org/>.

"Project Darkstar Community - Can't install ProjBetrkstar?." 7 Dec 2008
<http://www.projectdarkstar.com/component/optiomcemf/Itemid,120/topic,714.0>.

"Project Darkstar Community - Problems running Blbrld example”. Sun Microsystems. 15

Dec 2008
<http://www.projectdarkstar.com/component/optiamc smf/ltemid,120/topic,672.0>.

"Project Darkstar Community - Projects”. Sun Migstems. 07 December, 2008
<http://www.projectdarkstar.com/external/projectsk».

"Project Darkstar Community - Running a server froeithin NetBeans." 7 Dec 2008
<http://www.projectdarkstar.com/component/optiomcemf/Itemid,120/topic,634.

Project Snowman Code. 2 September, 2008.

"Properties (Java Platform SE 6) ". Sun Microsysteh® Dec 2008
<http://java.sun.com/javase/6/docs/api/java/utdfiarties.html>.

"Server Installation not working on WindowsXP 32'bBSun Microsystems. 15 Dec 2008

Project Darkstar Page 42

Worcester Polytechnic Institute

<http://www.projectdarkstar.com/component/optiomcaemf/Itemid,120/topic,720.0>.
"TWiki . Games . ProjectSnowman". Sun MicrosystehisDec 2008
<http://wiki.java.net/bin/view/Games/ProjectSnowman
"WoW Downtime Interview at Penny Arcade ." Slashdat Jan. 2005. 11 Dec 2008
<http://games.slashdot.org/article.pl?sid=05/011/285218&tid=209>.

"XNA Creator's Club Online." 7 Dec 2008 <httpr#ators.xna.com/en-US/>.

Project Darkstar Page 43

Worcester Polytechnic Institute

10 Appendix A — Final Metadata
EMBEDDED

name:PDS_SERVER

source:/targets/

file:pds-server.zip

destination:./#PDS_BINARY_DIR#/server/

EMBEDDED
name:PDS_SERVER_BDB
source:/targets/
file:bdb.zip
destination:./#PDS_BINARY_DIR#/server/lib ~_[bdb /

EMBEDDED
name:PDS_SERVER_MINA
source:/targets/
file:mina-core.zip
destination:./#PDS_BINARY_DIR#/server/lib !

EMBEDDED
name:PDS_SERVER_SLF4J
source:/targets/
file:sifdj.zip
destination:./#PDS_BINARY _DIR#/server/lib !

EMBEDDED
name:PDS_CLIENT
source:/targets/
file:pds-client.zip L
destination:./#PDS_BINARY _DIR#/client/

EMBEDDED
name:SNOWMAN_EXEC
source:/targets/
filezsnowmanexec.zip
destination:./#SNOWMAN_DIR#/

EMBEDDED
name:SNOWMAN_CLIENT_LIB
source:/targets/
file:sm_clientlib.zip L
destination:./#SNOWMAN_DIR#/Client/lib !

EMBEDDED
name:SNOWMAN_CLIENT_LIB_LWJGL_BIN

source:/targets/

Project Darkstar Page 44

Worcester Polytechnic Institute

file:lwjgl_bin.zip
destination:./ASNOWMAN_DIR#/Client/lib

EMBEDDED
name:SNOWMAN_CLIENT_LIB_LWJGL_JAR
source:/targets/
file:lwjgl_jar.zip L
destination:./#&SNOWMAN_DIR#/Client/lib

EMBEDDED
name:SNOWMAN_CLIENT_LIB_MINA
source:/targets/
file:mina-core.zip
destination:./#SNOWMAN_DIR#/Client/lib

EMBEDDED
name:SNOWMAN_CLIENT_LIB_SLF4J
source:/targets/
file:sifdj.zip
destination:./#ASNOWMAN_DIR#/Client/lib

EMBEDDED
name:SNOWMAN_CLIENT_LIB_JORBIS
source:/targets/
filezjorbis.zip
destination:./ASNOWMAN_DIR#/Client/lib

EMBEDDED
name:SNOWMAN_SERVER_LIB
source:/targets/
file:sm_serverlib.zip L
destination:.#SNOWMAN_DIR#/Server/lib

EMBEDDED
name:SNOWMAN_SERVER_LIB_BDB
source:/targets/
file:bdb.zip
destination:./#&SNOWMAN_DIR#/Server/lib

EMBEDDED
name:SNOWMAN_SERVER_LIB_MINA
source:/targets/
file:mina_core.zip
destination:./ASNOWMAN_DIR#/Server/lib

EMBEDDED
name:SNOWMAN_SERVER_LIB_MINA
source:/targets/
file:slf4j.zip

Project Darkstar

_ Iwigl

__Ibdb /

Page 45

Worcester Polytechnic Institute

destination:./#&SNOWMAN_DIR#/Server/lib /

EMBEDDED
name:PDS_TUTORIALS
source:/targets/
file:tutorials.zip L
destination:./#TUTORIAL_DIR#/

EMBEDDED
name:PDS_TUTORIALS_MINA
source:/targets/
file:mina-core.zip
destination:./#TUTORIAL_DIR#/tutorial_projects/tuto

EMBEDDED
name:PDS_TUTORIALS_BDB_JAR
source:/targets/bdb .zip /
file:db.jar

destination:./#TUTORIAL_DIR#/tutorial_projects/tuto

EMBEDDED
name:PDS_TUTORIALS_BDB_BIN
source:/targets/bdb .zip /
file:#BDB#

destination:./#TUTORIAL_DIR#/tutorial_projects/tuto

EMBEDDED
name:PDS_TUTORIALS_SGS
source:/targets/pds -server.zip _ /lib _/
file:sgs.jar

destination:./#TUTORIAL_DIR#/tutorial_projects/tuto

EMBEDDED
name:PDS_TUTORIALS_SLF4J
source:/targets/
file:sifdj.zip
destination:./#TUTORIAL_DIR#/tutorial_projects/tuto

EMBEDDED
name:PDS_TUTORIALS_SGS_CLIENT_JAR
source:/targets/pds -client.zip /lib /

file:sgs-client.jar
destination:./#TUTORIAL_DIR#/tutorial_projects/tuto

EMBEDDED
name:PDS_TUTORIALS_TUTORIAL_PROJECTS
source:/targets/
file:nb_projects.zip

Project Darkstar

rial_libs/

rial_libs/

rial_libs/bdb /

rial_libs/

rial_libs/

rial_libs/

Page 46

Worcester Polytechnic Institute

destination:./#TUTORIAL_DIR#/tutorial_projects/

Project Darkstar Page 47

Worcester Polytechnic Institute

11 Appendix B: Early Metadata
EMBEDDED

name:PDSlInstall

source:/targets/

file:pds-server.zip

destination:./pds-server/

EMBEDDED
name:BDB
source:/targets/
file:bdb.zip
destination:./pds-server/lib/bdb/

EMBEDDED
name:MINA
source:/targets/
file:mina-core.zip
destination:./pds-server/lib/

EMBEDDED
name:slf4j
source:/targets/
file:slf4j.zip
destination:./pds-server/lib/

EMBEDDED
name:CLIENT
source:/targets/
file:pds-client.zip
destination:./pds-client/

Project Darkstar

Page 48

Worcester Polytechnic Institute

12 Appendix C: Metadata and System-Specific Variableor Installer

This file contains all of the installer wide vari
metadata.

This section contains the system specific variabl
follows the pattern

[varname].sys.[os].[architecture], then the syste
variable database

a variable named [varname] who is set to the prop

operating system
that the application is run on. As a side effect,
property named sys,

and you should not have a variable being set that

system variable.

LWJGL.sys.windows.x86 = win32-x86
LWJGL.sys.macosx.x86 = macosx-x86
LWJGL.sys.linux.x86 = linux-x86
BDB.sys.windows.x86 = win32-x86
BDB.sys.macosx.x86 = macosx-x86
BDB.sys.linux.x86 = linux-x86
BDB.sys.linux.x64 = linux-x86_64
BDB.sys.macosx.ppc = macosx-ppc
BDB.sys.solaris.sparc = solaris-sparc
BDB.sys.solaris.x86 = solaris-x86

Variables that do not start with sys. are treated
TEST_DIR = test
PDS_BINARY_DIR = binaries

SNOWMAN_DIR = snowmanexec
TUTORIAL_DIR = tutorials

Project Darkstar

ables used in the

es. If the variable

m will store in the

er value based on the
you cannot have a

has the same name as a

as regular variables.

Page 49

Worcester Polytechnic Institute

13 Appendix D: Challenge Tutorial Summary

1)

2)

3)

4)

5)

6)

7)

On the server, spawn a MatchMakerTask so that fgayan join a game.

a. Have the server store joining players in an Arrapeques, which are
ManagedObijects.

On the client, implement logging in.

a. Have the reader use the SimpleClient to connettecerver.

b. Once connected, the user authenticates their useraad password, and then
logs in once they're authenticated.

On the server, implement the processing of logiuests.

a. When a client joins, create a SnowmanPlayerListembsten to messages from
that client.

b. Put the SnowmanPlayerListener into the Deque ofgptawaiting to join a game,
that is held in the MatchmakerTask.

On the server, implement the startup of a game.

a. Spawn a new instance of a Game using a GameFactory.

b. Add players to the Game.

c. Inform all players in the Game that they're coneddb it and tell them that the
game is ready.

d. Also, send each of them information about everyagse’s starting position.

On the client, implement the startup of a game.

a. When a user receives a game ready packet fronetkiersthe client game
spawns a new Game instance.

b. The client Game world is populated with all of fflayers it's informed are in the
current instance of the Game.

On the client, implement the sending of packetsaiaimg the updated position of the
player.

a. Have the client generate a packet containing taedcy coordinates of their
Snowman.

b. Send that packet to the server.

On the server, implement the processing of client packets, namely, position update
messages.

a. When a packet is received from a client, the seraédates the packet and
determines what kind of message it contains.

b. Once the message is determined, the packet infammiatextracted.

c. The goal here is to implement the processing ajsitipn update message. When
the server receives one, it simply repackages dlokqt into a packet the client
can process and relays the position update tdiatits connected to the Game
where the packet was received from.

Project Darkstar Page 50

Worcester Polytechnic Institute

8) On the client, implement the processing of sereat packets, namely, position update
messages.
a. When a packet is received from the server, detegrthia type of packet.
b. Once the type has been determined, the informatarbe extracted from it.
c. Since the user is implementing the position upgatket, they make it so that
when the message is received, the entity to upsladentified and their position
in the client game is updated.

Project Darkstar Page 51

Worcester Polytechnic Institute

14 Appendix E: Challenge Tutorial Text

The project team includes the full text of oneld tompleted tutorials to show the level of
detail which is asked and to demonstrate the timaestment necessary for the longest tutorial

offered.

TITLE
Implementing multiplayer into Project Snowman

OVERVIEW

This tutorial covers all of the key aspects for imp
Project Snowman, from writing the login code for cl
invoking a game state update when a move message is
does not cover all aspects - many of the details ar

to peruse further into the Project Snowman code, bu
purpose of this tutorial is to give a quick introdu

things to work in a "real" game.

REQUIREMENTS
Project Showman source code with code segments stri
NetBeans 6.1+ (for building and running the client

GOALS & DELIVERABLES
A complete Project Snhowman that allows logins and m

STEPS

Before we get started, it should be noted that you

lot of code in a lot of empty methods in many diffe
important that whenever you make a change to a clas
you made a change to, so you don't experience any s
Another thing that should be pointed out is that th
such that you give the server functionality to hand
client, and then implement client-side the ability
messages to the server to be handled. With that sai
onto the tutorial.

Your first task is to load the Project Snowman file
accomplished by opening NetBeans, selecting File->O
the folder where you unpacked your Project Snowman
holding down the Ctrl key, click each project to se

the 'Open Project' button. The projects you should
snowman-common, and snowman-server

Your 'Projects' box in NetBeans should now be popul

SnowmanCommon, SnowmanClient, and SnowmanServer. Th

SnowmanServer contain code unique to the client and

Project Darkstar

lementing multiplayer into
ient and server to
received. However, it

e skimmed over. Feel free
t remember that the

ction into how to get

pped and dependencies
and server)

ultiplayer.

will be asked to fill in a
rent classes. It's

s that you save the file
trange side-effects later.
e tutorials are structured
le messages from the

to send the corresponding
d, we can now continue

s into NetBeans. This is
pen Project, navigating to
projects, and while

lect them, and then click
select are snowman-client,

ated with 3 projects -
e SnowmancClient and
server portions of

Page 52

Worcester Polytechnic Institute

Project Snowman, respectively. SnowmanCommon is a |
structures and processing logic that is common to b

All 3 projects are incomplete. Much of the code nee
is present, but a few things are missing that we ar
ability to login and the ability to send "move" mes
updated across all client computers.

What we want to do first is make it possible for pl

thing we want to do in this case is prepare the ser
requests from the client. This is handled in the Sn

class [com.sun.darkstar.example.snowman.server.Snow
[initialize] method, and insert the following code

[

this.appContext = SnowmanAppContextFactory.getAppCo
this.gameFactory = new GameFactorylmpl();
this.entityFactory = new EntityFactorylmpl();

this.waitingDeques = new ManagedReference[NUMDEQUES

for(inti = 0; i < waitingDeques.length; i++) {

Deque<ManagedReference<SnowmanPlayer>> deque = new

ScalableDeque<ManagedReference<SnowmanPlayer>>();
waitingDeques[i] = appContext.getDataManager().cre

}

this.config();
appContext.getTaskManager().scheduleTask(new
MatchmakerTask(numPlayersPerGame,

numRobotsPerGame,

robotDelay,

gameFactory,

entityFactory,

appContext,

waitingDeques));

]

This code looks complex, but it’s really not doing

This line

[
this.appContext = SnowmanAppContextFactory.getAppCo

]

just gets the [AppContext] of the SnowmanServer, wh
all of the [Manager] objects in Project Darkstar.

These lines

[

this.gameFactory = new GameFactorylmpl();
this.entityFactory = new EntityFactorylmpl();

]

Project Darkstar

ibrary that contains data
oth the client and server.

ded to run Project Showman

e going to implement - the
sages to keep characters

ayers to log in. The first

ver to receive login
owmanServer project in the
manServer]. Go down to the
into it.

ntext();

I

ateReference(deque);

much right now.

ntext();

ich gives you access to

Page 53

Worcester Polytechnic Institute

are implementations of the factory design pattern a
and entities.

This line

[

this.waitingDeques = new ManagedReference[NUMDEQUES
]

creates an array containing a certain number of [De

10. A [Deque] is a double-ended queue, and is used

are trying to join a game. The advantage of a Deque
joining clients can only be understood if you under
between [Task]s and [ManagedObiject]s. The [Matchmak
uses these Deques to grab clients who want to play
many [Task]s pulling from a single data structure,

the Project Darkstar transaction system, which can
speed way down. Fortunately, Project Snowman has a
is designed to prevent this problem — it's written

for many [MatchmakerTask]s to pull players from it

The loop

[

for(inti = 0; i < waitingDeques.length; i++) {
Deque<ManagedReference<SnowmanPlayer>> deque = new
ScalableDeque<ManagedReference<SnowmanPlayer>>();
waitingDeques]i] = appContext.getDataManager().cre

}

]

populates the array of [Deque]s by instantiating [S
[ManagedReference]s to [SnowmanPlayer]s and storing
the [ScalableDeque]s into the [waitingDeques] array

The [config] method sets the various game settings
properties and setting the corresponding variables
system properties.

This chunk of code schedules a [MatchmakerTask] tha
players and the game settings. The [MatchmakerTask]
further later.
[
appContext.getTaskManager().scheduleTask(new
MatchmakerTask(numPlayersPerGame,

numRobotsPerGame,

robotDelay,

gameFactory,

entityFactory,

appContext,

waitingDeques));

Project Darkstar

nd are used to spawn games

I

gue]s, which by default is
for storing clients who
over simply a list of
stand the relationship
erTask] that is created

a game, and if there are
then contention occurs in
bring the overall system
[ScalableDeque] class that
such that it's possible
efficiently.

ateReference(deque);

calableDeque]s containing
a [ManagedReference] to

by grabbing system
to the corresponding

t knows about the waiting
will be explained in

Page 54

Worcester Polytechnic Institute

The next step is to add players to the [Deque] when
done in the [loggedin] method in [SnowmanServer].

Uncomment the following code inside of the [loggedl|

[

if (logger.isLoggable(Level.FINE))

logger.log(Level. FINE, "Player {0} logged in", ses

SnowmanPlayerListener player =

new SnowmanPlayerListener(appContext,

entityFactory.createSnowmanPlayer(appCont

Biglnteger id = player.getSnowmanPlayerRef().getld(

BigInteger index = id.mod(BigInteger.valueOf((long)

waitingDequesJindex.intValue()].get().add(player.ge
return player;

]

The first set of lines

[

if (logger.isLoggable(Level.FINE))
logger.log(Level.FINE, "Player {0} logged in", ses
]

is used to log that a player has joined the server.
multi-threaded architecture like Project Darkstar,
when there is a problem, and often times printing t
time since the console can be filled with text quit
is a very useful way of drilling down to the cause
Darkstar.

The next code chunk

[

SnowmanPlayerListener player =

new SnowmanPlayerListener(appContext,

entityFactory.createSnowmanPlayer(appCont

]

creates a new [SnowmanPlayerListener]. This class i

[ClientSessionsListener], and its purpose is for li

its corresponding client. There is an instance of [

the server for each connected client.

The rest of the code

[
Biglnteger id = player.getSnowmanPlayerRef().getld(
BigInteger index = id.mod(BigInteger.valueOf((long)

waitingDequesJindex.intValue()].get().add(player.ge

return player;

]

Project Darkstar

they log in. This will be

n] method:

sion.getName());

ext, session));
);
NUMDEQUES));

tSnowmanPlayerRef());

sion.getName());

This is useful - in a

it can be hard to debug

o stdout is a waste of

e quickly. Logging events
of a problem in Project

ext, session));
s an implementation of

stening for messages from
SnowmanPlayerListener] on

);
NUMDEQUES));

tSnowmanPlayerRef());

Page 55

Worcester Polytechnic Institute

ensures that each player in each [Deque] will have
for a multiplayer game, as an id number lets the se
the various entities present in the current game. O
generated, the player is added to a [Deque], and th
[SnowmanSessionListener] is returned.

The [SnowmanServer] class is now complete. Support
implemented, but not much else is capable. We would
the players into a game. To do this, we're going to
[MatchmakerTask] to do this very thing.

Now, open the class
[com.sun.darkstar.example.snowman.server.tasks.Matc
notice that most of the code is filled in except fo
[startGame] methods. These are the "meat" of the [M
are where the magic (and matchmaking) is made.

First, lets implement the [run] method. Uncomment t
that method:
[
boolean playersFound = false;
for(inti = 0; i < waitingDeques.length; i++) {
ManagedReference<SnowmanPlayer> nextPlayer = waiti
if(nextPlayer != null) {
playersFound = true;
waitingPlayers.add(nextPlayer);
}
if(waitingPlayers.size() == numPlayersPerGame) {
startGame();
break;
}
}

if(playersFound)
appContext.getTaskManager().scheduleTask(this);
else

appContext.getTaskManager().scheduleTask(this, POL

]

The [run] method initially assumes that no players
begins iterating through the [Deque] containing the
are waiting players, it adds that players to a loca
players, to be used later. If it has found enough p
If it fails to start a game, it reschedules itself
players waiting, since it does not want the current
any further. Otherwise, it does a periodic schedule
it run immediately - this is useful if there are ot
[MatchmakerTask] will not "hog" the scheduler to it

Project Darkstar

a unique id. This is vital
rver differentiate between
nce a unique id has been
eir

for client login has been
like to be able to put
have to set up

hmakerTask]. You will
r the [run] and
atchermakerTask] - they

he following code into

ngDequesJi].get().poll();

LINGINTERVAL);

have been found. Then, it
waiting players. If there

| [List] of waiting

layers, it starts a game.
immediately if it has

ly waiting players to wait
since its not urgent that
her tasks running as the
self.

Page 56

Worcester Polytechnic Institute

When a game is started, the [startGame] method is ¢
in that method to give it some life:
[
boolean needMore = false;
for(Iterator<ManagedReference<SnowmanPlayer>> ip =
ip.hasNext();) {
try {
ip.next().get();
} catch(ObjectNotFoundException e) {
ip.remove();
needMore = true;
}
}

if(needMore)
return;

String gameName = NAME_PREFIX + (gameCount++);
SnowmanGame game = gameFactory.createSnowmanGame(ga
numPlayersPerGame + numRobotsPerGame,
appContext,
entityFactory);
ETeamColor color = ETeamColor.values()[0];
for(lterator<ManagedReference<SnowmanPlayer>> ip =
ip.hasNext();) {
game.addPlayer(ip.next().get(), color);
color = ETeamColor.values()[(color.ordinal() + 1)
ETeamColor.values().length];
}
for (inti = 0; i < numRobotsPerGame; i++) {
game.addPlayer(entityFactory.createRobotPlayer(gam
robotDelay),
color);
color = ETeamColor.values()[(color.ordinal() + 1)
ETeamColor.values().length];

}

game.sendMaplnfo();

waitingPlayers.clear();

]

The first chunk of code
[
boolean needMore = false;
for(Iterator<ManagedReference<SnowmanPlayer>> ip =
ip.hasNext();) {
try {
ip.next().get();
} catch(ObjectNotFoundException e) {
ip.remove();

Project Darkstar

alled. Uncomment this code

waitingPlayers.iterator();

meName,

waitingPlayers.iterator();

%

eName +"_robot" + i,

%

waitingPlayers.iterator();

Page 57

Worcester Polytechnic Institute

needMore = true;

}

}
if(needMore)

return;

]

is there to check for any players that disconnected
was grabbing players. If any players are missing fr
[startGame] method returns and the [run] method con
for more players to join before calling [startGame]

Uncomment the following code in the [startGame] met
[
String gameName = NAME_PREFIX + (gameCount++);
SnowmanGame game = gameFactory.createSnowmanGame(ga
numPlayersPerGame + numRobotsPerGame,
appContext,
entityFactory);
ETeamColor color = ETeamColor.values()[0];
for(Iterator<ManagedReference<SnowmanPlayer>> ip =
ip.hasNext();) {
game.addPlayer(ip.next().get(), color);
color = ETeamColor.values()[(color.ordinal() + 1)
ETeamColor.values().length];
}
for (inti=0; i < numRobotsPerGame; i++) {
game.addPlayer(entityFactory.createRobotPlayer(gam
robotDelay),
color);
color = ETeamColor.values()[(color.ordinal() + 1)
ETeamColor.values().length];

}

game.sendMaplnfo();

]

This part
[
String gameName = NAME_PREFIX + (gameCount++);
SnowmanGame game = gameFactory.createSnowmanGame(ga
numPlayersPerGame + numRobotsPerGame,
appContext,
entityFactory);
]
creates a unique game instance which is to be popul
following code does just that.
[
ETeamColor color = ETeamColor.values()[0];
for(lterator<ManagedReference<SnowmanPlayer>> ip =
ip.hasNext();) {

Project Darkstar

while the [run] method
om the [Deque], the
tinues execution, waiting
again.

hod:

meName,

waitingPlayers.iterator();

%

eName +"_robot" + i,

%

meName,

ated with players. The

waitingPlayers.iterator();

Page 58

Worcester Polytechnic Institute

game.addPlayer(ip.next().get(), color);
color = ETeamColor.values()[(color.ordinal() + 1)
ETeamColor.values().length];
}
for (inti = 0; i < numRobotsPerGame; i++) {
game.addPlayer(entityFactory.createRobotPlayer(gam
robotDelay),

color);
color = ETeamColor.values()[(color.ordinal() + 1)
ETeamColor.values().length];

}
]

It looks complicated, but don't worry - it really i
here are

[

color = ETeamColor.values()[(color.ordinal() + 1) %
ETeamColor.values().length];

]

and

[

color = ETeamColor.values()[(color.ordinal() + 1) %
ETeamColor.values().length];

]

All these lines do is ensure that each team will ge
players in the case that the number of players is d
the teams - in the other case, some teams may have
others may have one less. The rest of the lines in
players to the game instance. The method [game.send
information to each connected player. The final lin
[waitingPlayers.clear();] simply clears the list of

new game with new players can be spawned.

So now we have an initialized game that players can
server may be able to handle players joining, the ¢
Time to switch gears for a moment and hop to the cl
up the SnowmanClient project, and navigate to
[com.sun.darkstar.example.snowman.ClientApplication
point of the client. You will notice that a [Client

object are created - these give you a way of commun
Navigate to both classes, and you will see that the

this is intentional. As you will notice in [Client]

simply make calls to the [SimpleClient] class, sign

pain of communicating with the server. Once initial
passes in a [MessagelListener] to the [SimpleClient]
[MessagelListener] is the yin to the [Client]'s yang

from the server and channel rather than sending the

to the class at
[com.sun.darkstar.example.snowman.client.handler.me
lets take a look at some of the things it does.

Project Darkstar

%

eName + " _robot" + |,

%

sn't. The confusing lines

t the same number of
ivisible by the number of
one more players and

this chunk of code add the
Maplinfo();] sends the map
€,

waiting players so that a

join. But while the
lient still can't connect.
ient side of things. Open

]. This is the starting
Handler] and [Client]
icating with the server.

y have been filled in -

, most of the methods
ificantly reducing the
ized, the [Client] object
constructor. The

- it receives messages
m out to either. Navigate

ssage.Messagelistener] and

Page 59

Worcester Polytechnic Institute

First of all, you'll notice that it has the [logged
[getPasswordAuthentication], [joinedChannel], and t
methods all implemented. Note that we are only inte
[receivedMessage] method that accepts only a [ByteB
one utilized in Project Snowman. When [SimpleClient
the server, it contains an OpCode. That OpCode indi
be invoked, and [SimpleClient] does just that. The
[loginFailed] methods both spawn a [Task] when they
the various aspects of each. We will not concern ou
but its important to understand that both simply up
client. The method [joinedChannel] just returns the

as it is both a [ClientChannelListener] and [Simple
we're more concerned about is the the [MessageHand|
parse packets from [ByteBuffer]s. Before we get int
make sure that the client is logged in.

To accomplish this, navigate to the class
[com.sun.darkstar.example.snowman.game.Authenticate
client side [Task] - its much different than a Proj
shares some similarities. Client side [Task]s, like

do some sort of job. They differ in that all Projec
handled concurrently, whereas the client [Task]s ar
Still, it gives us a useful way of splitting up pro
[AuthenticateTask] is a good example of this. Uncom
the [execute] method in [AuthenticateTask]:

[

final LoginGUI gui =
((LoginState)GameStateManager.getinstance().getChil
String())).getGUI();
gui.setStatus(gui.getDefaultStatus());
InputManager.getinstance().setinputActive(false);
this.game.getClient().getHandler().authenticate(thi
this.password);

Properties properties = new Properties();
properties.setProperty("host", System.getProperty("
properties.setProperty("port", System.getProperty("
this.game.getClient().login(properties);

]

Initially, the [execute] method tells the gui to go
which is attempting to log in. You should not conce
the next line, [InputManager.getinstance().setinput
jMonkeyEngine related code snippet - all it does is
the game will automatically log the player in with
The next line is used to generate a [PasswordAuthen
[ClientHandler], which is used when logging into th

[

Project Darkstar

In], [loginFailed],

wo [receivedMessage]
rested in the

uffer], as it is the only

] receives a message from
cates which method is to
[loggedin] and

are invoked, to handle
rselves with this for now,
date the state of the game
[MessagelListener] object,
ClientListener]. What

er] that is called to

o that, though, we should

Task]. This class is a

ect Darkstar [Task], but
Project Darkstar [Task]s,
t Darkstar [Task]s are

e handled synchronously.
cessing logic, and

ment the following code to

d(EGameState.LoginState.to

s.username,

host", "localhost"));
port", "3000"));

to its default status,

rn yourself too much with
Active(false);]. It's a
disable user input, since
no user action required.
tication] object in the

e server.

Page 60

Worcester Polytechnic Institute

this.game.getClient().getHandler().authenticate(thi
this.password);

]

The next series of code attempts to login to the se
[
Properties properties = new Properties();
properties.setProperty("host", System.getProperty("
properties.setProperty("port", System.getProperty("
this.game.getClient().login(properties);
]
The [properties] object simply holds settings about
passes this information to the [login] method in th
the class used for sending data and messages to the
method in the [Client] class wraps in the [SimpleCI
the [SimpleClient] being part of the standard Java
the client is successfully logged in, the [loggedin
in [MessageListener] is invoked, and the game state
newly created connection with the server. Now that
server is going to want to tell us to start a game
joined. Recall that the [receivedMessage] method is
received from the server. Open up the class
[com.sun.darkstar.example.snowman.client.handler.me
go to [receivedMessage] method with the stub [recei
arg0)] and uncomment the following code in it.
[
SingletonRegistry.getMessageHandler().parseClientPa
this.handler.getProcessor());
]
The code [this.handler.getProcessor()] retrieves th
instance used by this [MessageHandler]. The [IClien
used by the [MessageHandler] is the class [MessageP
processor is retrieved, the rest of the code makes
SnowmanCommon library, and to get logins working co
dive into it. Open up ProjectSnowman and navigate t
[com.sun.darkstar.example.snowman.common.protocol.h
]. This is the class whose purpose is to determine
the client and server, and react accordingly. In th
game, the server must first ask the client if its r
must respond that its ready before the game can beg
[parseCommonPacket] method. Uncomment the following
[parseCommonPacket] method:
[
switch (code) {
case READY:
logger.log(Level.FINEST, "Processing {0} packet",
processor.ready();
break;
default:
this.logger.warning("Unsupported OPCODE: " + code

Project Darkstar

s.username,

rver.

host", "localhost"));
port", "3000"));

the host to join. It then

e game [Client], which is
server. The [login]

ient]'s [login] method,
Project Darkstar API. When
] method that we covered
is updated to reflect the
we're logged in, the

once enough people have
invoked when data is

ssage.Messagelistener] and
vedMessage(ByteBuffer

cket(message,

e [IClientProcessor]
tProcessor] implementation
rocessor]. After the

a call to part of the

rrectly, we're going to

o the class
andlers.MessageHandlerimpl
the message type for both
e case of starting a new
eady, and then each client
in. This is handled in the
code in the

code);

.toString());

Page 61

Worcester Polytechnic Institute

}
]

Notice that the [parseCommonPacket] method takes an
parameter. That interface has one method, [ready],
both the [IServerProcessor] and [IClientProcessor]
simply fire off a ready packet so that the other ca

up the SnowmanClient project and go to the class
[com.sun.darkstar.example.snowman.client.handler.me
Uncomment the following code in the [ready] method:

[
public void ready() {

TaskManager.getinstance().createTask(ETask.Ready);

}
]

It creates a task, [ReadyTask], which when executed
ready packet back to the server. Once the server re
it invokes its own [ready] method. The [IServerProc
in the class
[com.sun.darkstar.example.snowman.server.impl.Snowm
the following code in it's [ready] method:
[
public void ready() {
if (gameRef I= null) {
setReadyToPlay(true);
gameRef.get().startGamelfReady();

}
}
]

If the game exists, the server is ready to start th
variable refers to an instance of a [SnowmanGame].
implemented in the class
[com.sun.darkstar.example.snowman.server.impl.Snowm
class now, and uncomment the following code in the
[
public void startGamelfReady(){
appContext.getDataManager().markForUpdate(this);
readyPlayers++;
if(readyPlayers >= realPlayers)
send(ServerMessages.createStartGamePkt());

}
]

The method prepares its own object for an update, a
server-side. It then uses [ServerMessages] to creat
will create a packet later, but for now you just ne
simply creating a [ByteBuffer] that contains a NEWG
data about the game. It then uses the [send] method
to the game channel, to let all clients know about
simultaneously.

Project Darkstar

[IProtocolProcessor] as a
which is implemented in
classes. Both classes
n react accordingly. Open

ssage.MessageProcessor].

by the client sends a
ceives that ready packet,
essor]'s [ready] method is

anPlayerimpl]. Uncomment

e game. The [gameRef]
That interface is

anGamelmpl]. Open that
[startGamelfReady] method:

s data is about to change

e a start game packet. We

ed to understand that it’s
AME OpCode and some other
, Which fires off a packet

the new game

Page 62

Worcester Polytechnic Institute

This means that each client is going to receive a N

next part, open the SnowmanCommon project, and open
[com.sun.darkstar.example.snowman.common.protocol.h
], which inherits the [MessageHandler] interface. |

note that the [parseClientPacket] method with the m
[parseClientPacket(ByteBuffer packet, IClientProces
only one used by external classes - the method simp
from the packet and calls a more extensive [parseCl

the stub [parseClientPacket(EOPCODE code, ByteBuffe
unit)]. In that method, uncomment the following [ca
statement:

[

case NEWGAME:

int myID = packet.getint();

byte[] mapname = new byte[packet.getint()];
packet.get(mapname);

String mapString = new String(mapname);
logger.log(Level.FINEST, "Processing {0} packet :
Object[}{code, myID, mapString});

unit.newGame(myID, mapString);

break;

]

What this [case] does is retrieve the players id as

name of the map. Finally, a new game is started.

Now, we are able to have a player log into the serv
started. Our last goal is to add in the ability to

around and keep player positions synchronized acros
Fortunately, it's very similar to what we just did.
[SnowmanPlayerListener] instance for each connected
methods in [SnowmanPlayerListener] are invoked when
received from the client. Open up the SnowmanServer
class [com.sun.darkstar.example.snowman.server.Snow
the [receivedMessage] method and uncomment the foll
[

try {

SingletonRegistry.getMessageHandler().parseServerPa
getProcessor());

} catch (ObjectNotFoundException disconnected) {}

]

This code makes a call to the [MessageHandler] that
but this makes a call to [parseServerPacket] rather
Both functions are very similar in nature - they ha

deal with them in a different manner, as [parseClie

side code to be executed, and [parseServerPacket] c
be executed. Open up
[com.sun.darkstar.example.snowman.common.protocol.h
] again and go to the method with the stub [parseSe

Project Darkstar

EWGAME message. For this
the class
andlers.MessageHandlerimpl
n [MessageHandlerimpl],
ethod stub of

sor processor)] is the

ly extracts the OpCode
ientPacket] method with

r packet, IClientProcessor
se] in the [switch]

{1}, {2}", new

set by the server and the

er and a game can be
handle players moving

s all game clients.

Recall that there is a
client, and that the
certain messages are
project and open the
manPlayerListener]. Go to
owing code.

cket(arg0,playerRef.get().

we dealt with previously,
than [parseClientPacket].
ndle network messages but
ntPacket] causes client
auses server side code to

andlers.MessageHandlerimpl
rverPacket(ByteBuffer

Worcester Polytechnic Institute

packet, IServerProcessor processor)]. Note that the
the OpCode from the [ByteBuffer] and then calls the
method with the stub [parseServerPacket(EOPCODE cod
IServerProcessor unit)]. That method has a [switch]
different behaviors depending on the OpCode that is
this [case] to the [switch] statement:
[
case MOVEME:
float moveStartX = packet.getFloat();
float moveStartY = packet.getFloat();
float moveEndX = packet.getFloat();
float moveEndY = packet.getFloat();
logger.log(Level. FINEST, "Processing {0} packet :
new Object[]{code, moveStartX, moveStartY, mo
unit. moveMe(moveStartX,
moveStartY,
moveEndX,
moveEndY);
break;
]
What occurs here is quite simple - the server pulls
the player from the packet, logs the occurrence, an
server-side instance to move. The [moveMe] method ¢
[com.sun.darkstar.example.snowman.server.impl.Snowm
class and go to the [moveMe] method with the stub [
starty, float endx, float endy)]. Uncomment this co
[
Long now = System.currentTimeMillis();
moveMe(now, startx, starty, endx, endy);
]
The server stores the time when the [moveMe] method
useful in the case of lag, so that the server may p
even if the player hasn't sent an update message to
code in the method with the stub [moveMe(long now,
starty, float endx, float endy)].
[
/Ino op if player is dead or not in a game
if(state == PlayerState.DEAD || state == PlayerStat
return;

appContext.getDataManager().markForUpdate(this);

[Iverify that the start location is valid
Coordinate expectedPosition = this.getExpectedPosit

if (checkTolerance(expectedPosition.getX(), expecte
startx, starty,
POSITIONTOLERANCESQD)) {

/lcollision detection

Project Darkstar

method simply extracts
[parseServerPacket]

e, ByteBuffer packet,
statement that executes
passed to it. Uncomment

{1}, {2}, {3}, {4}",
veEndX, moveEndY});

out the new position of

d then tells the players
an be found in the class
anPlayerimpl]. Go to the
moveMe(float startx, float
de in the method:

is invoked. This is

redict where a player is

the server. Uncomment the
float startx, float

e.NONE)

ionAtTime(now);

dPosition.getY(),

Page 64

Worcester Polytechnic Institute

Coordinate trimPosition = appContext.getManager(Ga
trimPath(new Coordinate(startx, starty),
new Coordinate(endx, endy));

this.timestamp = now;

this.startX = startx;

this.startY = starty;

this.destX = trimPosition.getX();
this.destY = trimPosition.getY();
this.state = PlayerState. MOVING;

sendAll(ServerMessages.createMoveMOBPKt(id, startX
}

else {

logger.log(Level. FINE, "move from {0} failed start

this.timestamp = now;
this.setLocation(expectedPosition.getX(), expected
sendAll(ServerMessages.create StopMOBPkt(id,
expectedPosition.getX(),
expectedPosition.getY()));
}
]
Initially, the method checks to see if the player i
player.
[
/Ino op if player is dead or not in a game
if(state == PlayerState.DEAD || state == PlayerStat
return;
]
In that case, there is no need to do any further pr
simply return from the method - you won't be able t
If the player is around and alive, its time to prep
store for an update. This is accomplished by this |
[appContext.getDataManager().markForUpdate(this);]
The next block of code is for collision detection.
[
Coordinate trimPosition = appContext.getManager(Gam
trimPath(new Coordinate(startx, starty),
new Coordinate(endx, endy));
]
The [trimPath] method determines if there is anythi
impede movement. If so, the [trimPath] method retur
path before the collision with the map would occur.
is allowing only a valid move to occur, and prevent
through things. This is a good example of the serve
that the server controls the constraints of the gam

[

this.timestamp = now;

Project Darkstar

meWorldManager.class).

, startY, destX, destY));

position check”, name);

Position.getY());

s dead or that there is no

e.NONE)

ocessing and you can

0 move the player anyways.

are the object in the data
ine:

eWorldManager.class).

ng on the map that would
ns a [Coordinate] on the
The server, in this case,
ing the player from moving
r holding the "truth" in

e, not the client.

Page 65

Worcester Polytechnic Institute

this.startX = startx;

this.startY = starty;

this.destX = trimPosition.getX();
this.destY = trimPosition.getY();
this.state = PlayerState.MOVING;

sendAll(ServerMessages.createMoveMOBPkt(id, startX,
]
The [SnowmanPlayer] whose [moveMe] method was calle
to [MOVING], and their current position and destina
[sendAll] method is used to broadcast a move packet
Let’s take a look at how this packet is formed. Ope
SnowmanCommon, and then open up the class
[com.sun.darkstar.example.snowman.common.protocol.m
and go to the method [createMoveMOBPKt]. Uncomment
[
byte[] bytes = new byte[1 + 8 + 28];
ByteBuffer buffer = ByteBuffer.wrap(bytes);
buffer.put((byte) EOPCODE.MOVEMOB.ordinal());
buffer.putint(targetID);
buffer.putFloat(startx);
buffer.putFloat(starty);
buffer.putFloat(endx);
buffer.putFloat(endy);
return buffer;
]
This code creates a [ByteBuffer] and fills it with
transmitted, namely the OpCode (MOVEMOB), the id of
updated, the starting position of the character, an
the character. This information is then broadcast t
client. Now that the server is capable of handling
now add the client-side capability to send out move
Open the SnowmancClient project and then open the cl
[com.sun.darkstar.example.snowman.game.entity.contr
This class handled events on the client-side, such
the method [onButton] and uncomment the following ¢
[
if('this.isActive()) return;
if(this.getEntity().getState() == EState.Attacking)
if(this.getEntity().getState() == EState.Hit) ret
if(button == 0 && pressed) {
TaskManager.getinstance().createTask(ETask.UpdateC
this.entity, x, y).execute();
switch(this.getEntity().getCursorState()) {

case Invalid:

/ldo nothing

break;

case TryingToMove:

Project Darkstar

startY, destX, destY));

d has their state updated
tion updated. Then, the
to the game channel.

n up the project

essages.ServerMessages]
the following code:

the data to be

the character to be

d the ending position of

o the channel and to each
client movement, we will
messages to the server.
ass
oller.SnowmanController].
as button presses. Go to
ode:

return;
urn;

ursorState,

Page 66

Worcester Polytechnic Institute

TaskManager.getinstance().createTask(ETask.Mo
X, Y);
break;
case Targeting:
TaskManager.getinstance().createTask(ETask.At
this.getEntity().getTarget().getID());
break;
case TryingToGrab:
TaskManager.getinstance().createTask(ETask.At
this.getEntity().getTarget().getID(), this.entity.g
break;
}
}
]
The chunk that we're interested in is this one.
[
case TryingToMove:
TaskManager.getinstance().createTask(ETask.MoveCha
y);
break;
]
This [onButton] method is invoked when the player c
The [case] [TryingToMove] creates a [MoveCharacterT
player. Open the class
[com.sun.darkstar.example.snowman.game.task.state.b
and go to the method [getDestination]. Uncomment th
[
if(this.local) {
DisplaySystem display = DisplaySystem.getDisplaySy
CollisionManager collisionManager =
SingletonRegistry.getCollisionManager();
Ray ray = new Ray();
display.getPickRay(new Vector2f(this.x, this.y), f
World world =
this.game.getGameState(EGameState.BattleState).getw
Vector3f click = collisionManager.getintersection(
Vector3f(), true);
if(click == null) return null;
try {
Spatial view =
(Spatial)ViewManager.getinstance().getView(this.cha

Vector3f local = view.getLocalTranslation().clone

this.game.getClient().send(ClientMessages.createMo
local.z, click.x, click.z));

return collisionManager.getDestination(local.x, |

click.z, world.getStaticRoot());
} catch (ObjectNotFoundException e) {
e.printStackTrace();

Project Darkstar

veCharacter, this.entity,

tack, this.entity.getlD(),

tach,
etlD(), true),

racter, this.entity, x,

licks in the game window.
ask], which moves the

attle.MoveCharacterTask],

e code in it:

stem();

alse, ray);

orld();
ray, world, new

racter);

0;

veMePkt(local.x,

ocal.z, click.x,

Page 67

Worcester Polytechnic Institute

return null;
}
}else {
return new Vector3f(this.endX, 0, this.endZ);

}

]

Take a look at the try block, specifically, this li

[
this.game.getClient().send(ClientMessages.createMov
click.x, click.z));

]

This is where the client actually sends a message t
destination. Let’s take a look at how the move me p
SnowmanCommon project and open the class
[com.sun.darkstar.example.snowman.common.protocol.m
Uncomment the following code in the [createMoveMePk
[

byte[] bytes = new byte[1 + 8 + 16];

ByteBuffer buffer = ByteBuffer.wrap(bytes);
buffer.put((byte) EOPCODE.MOVEME.ordinal());
buffer.putFloat(x);

buffer.putFloat(y);

buffer.putFloat(endx);

buffer.putFloat(endy);

return buffer;

]

You will notice that this function is extremely sim
[createMoveMOBPkt] method in [ServerMessages], and
the enum used for the OpCode and that it does not s
There is a good reason for not storing the id - the

is sending it a message when it receives one since
[SnowmanPlayerListener] instance for each player co
waste of data that could be put to better use elsew
scalable online game, you want to send only the min
server neccessary so that the game state is synchro
clients, to keep latency low. Our final goal is to
capability to handle move messages from the server
other player. Recall the class [MessagelListener], w

us. This class handles all messages received from t

me messages. Open the project SnowmanClient and ope
[com.sun.darkstar.example.snowman.client.handler.me
to the [receivedMessage] method with the stub [rece
message)]. Recall the code you uncommented in it:

[
SingletonRegistry.getMessageHandler().parseClientPa
this.handler.getProcessor());

]

This is again using the SnowmanCommon class [Messag
message and use the [MessageProcessor] of the clien

Project Darkstar

ne.

eMePkt(local.x, local.z,

o the server with its
acket is created. Open the

essages.ClientMessages].
t] method:

ilar to the

that it differs only in

tore its id in the packet.
server already knows who
it has a

nnected - it would be a
here. When writing a

imal amount of data to the
nized properly among all
give the client the

to update the positions of
hich handled logins for

he server, including move
n the class
ssage.Messagelistener]. Go
ivedMessage(ByteBuffer

cket(message,

eHandler] to parse the
t to execute the behavior

Worcester Polytechnic Institute

indicated by the message. Open up the ShowmanCommon
class
[com.sun.darkstar.example.snowman.common.protocol.h
]. Go to the [parseClientPacket] method with the st
[parseClientPacket(EOPCODE code, ByteBuffer packet,
and uncomment the following [case] in the [switch]
[
case MOVEMOB:
int moveld = packet.getint();
float moveStartX = packet.getFloat();
float moveStartY = packet.getFloat();
float moveEndX = packet.getFloat();
float moveEndY = packet.getFloat();
logger.log(Level.FINEST, "Processing {0} packet :

new Object[]{code, moveld, moveStartX, moveSt
moveEndY});
unit.moveMOB(moveld,

moveStartX,

moveStarty,

moveEndX,

moveEndY);
break;

]

This [case] handles movement packets received from
[
int moveld = packet.getint();
float moveStartX = packet.getFloat();
float moveStartY = packet.getFloat();
float moveEndX = packet.getFloat();
float moveENndY = packet.getFloat();
]
retrieves all of the numerical data from the packet
player to move, that players start position, and th
The next chunk
[
logger.log(Level.FINEST, "Processing {0} packet : {
new Object[[{code, moveld, moveStartX, moveSta
]
logs the occurence. As stated earlier, this is very
something goes wrong. The chunk
[
unit. moveMOB(moveld,
moveStartX,
moveStarty,
moveEndX,
moveEndY);
]
is the part that we're interested in. Recall that t
was passed in was the [MessageProcessor] class from

Project Darkstar

project and open the
andlers.MessageHandlerimpl
ub

IClientProcessor unit)]
statement:

{1}, {2}, {3}, {4}, {5}",

artY, moveEndX,

the server. The code

- the id number of the
at players end position.

1}, {2}, {3}, {4}, {5},
rtY, moveEndX, moveEndY});

useful for debugging when

he [IClientProcessor] that
the client, and therefore

Worcester Polytechnic Institute

the behavior for the [moveMOB] method will be found
SnowmanCommon project, and open the class
[com.sun.darkstar.example.snowman.client.handler.me
Go to the method [moveMOB] and uncomment the follow
[

if(objectID == this.myID) return;
TaskManager.getinstance().createTask(ETask.MoveChar
starty, endx, endy);

]

The if statement [if(objectID == this.myID) return;

move me message is broadcast to the channel, the cl
message back, and there is no purpose to update the
what the server tells it - the client already knows

position. Otherwise, a [MoveCharacterTask] is execu
class
[com.sun.darkstar.example.snowman.game.task.state.b
Uncomment the following code in the [execute] metho

[

if (this.character == null) return;
try {
this.character.resetVelocity();
this.character.resetForce();
Vector3f destination = this.getDestination();
if (destination != null) {

this.character.setDestination(destination);

Spatial view =
(Spatial)ViewManager.getinstance().getView(this.cha
if('this.local) {

in it. Open up the

ssage.MessageProcessor].
ing code:

acter, objectlD, startx,

] is there since when the
ient will receive that
clients position based on
its local snowman's

ted client-side. Open the

attle.MoveCharacterTask].
d:

racter);

view.getLocalTranslation().x = this.startX;
view.getLocalTranslation().z = this.startZ;

}

destination.y = 0;

Vector3f Icoal = view.getLocalTranslation().clon e();

Icoal.y = 0;

Vector3f direction = destination.subtract(lcoal)

direction.y = 0;
direction.normalizeLocal();

view.getLocalRotation().lookAt(direction, Vector 3f.UNIT_Y);

Vector3f force =
direction.multLocal(EForce.Movement.getMagnitude())
this.character.addForce(force);

PhysicsManager.getinstance().markForUpdate(this. character);

/I Step 9.

this.character.setState(EState.Moving);

ViewManager.getinstance().markForUpdate(this.cha racter);

}
} catch (Exception e) {

e.printStackTrace();
}

Project Darkstar

Page 70

Worcester Polytechnic Institute

]

The initial if statement just checks to see if the

- if it doesn't, there is no reason to execute the

is there to actually update the position of the sno

Engine API. Simply stated, it gets the destination

and moves it there. Feel free to look into the jMon
they are beyond the scope of this tutorial.

Time to give yourself a pat on the back, and to tak

lot of work! However, it would be wise to review wh
actually quite simple. When the client sent out a m

had an OpCode specifying the type of message. Then
message based on the OpCode and data, and repackage
and similar data and sent it back out to the client

with it based on the OpCode the server sent along w
Darkstar makes it very easy to implement this funct
ability to fully utilize this technology, as many g

on will implement their messaging system using simi

To recap:

SnowmanServer - [SnowmanServer] Initializes the ser
Snowman; accepts incoming connections.
SnowmanServer - [MatchmakerTask] Sets up all of the
SnowmanClient - [MessageListener] Listens for messa
from the server.

SnowmanClient - [MessageProcessor] Contains behavio
messages that the client receives.

SnowmanCommon - [MessageHandler]/[MessageHandlerimp

client-side and server-side and makes the proper ca
[IProtocolProcessor], [IClientProcessor], or [IServ
SnowmanServer - [SnowmanPlayer]/[SnowmanPlayerimpl]
handle the various messages that the server receive
SnowmanClient - [SnowmanController] Responds to use
game window.

SnowmanCommon - [ClientMessages]/[ServerMessages] E

methods used for generating packets, for the client

Project Darkstar

character actually exists
task. The rest of the code
wman, using the jMonkey
of the snowman to update
key Engine API calls, as

e a break - you just did a
at you just did - it was
essage to the channel, you
the server validated the

d it with the same OpCode
s, who knew how to deal
ith the message. Project
ionality. You now have the
ame projects you may work
lar concepts.

ver portion of Project

game's on the server.
ges client-side that come

r to handle the various

[] Parses packets both
Is to the

erProcessor] supplied.
Contains behavior to
s from the client.

r interaction with the

ach contains a set of
and server respectively.

Page 71

