
 

QuizASSIST: Mobile Application for 
ASSISTments 

 
 
 
 
 

An Interactive Qualifying Project 
Submitted to the Faculty of 

WORCESTER POLYTECHNIC INSTITUTE 
in partial fulfilment of the requirements for the 

Degree of Bachelor of Science 
 

 
by 

Yiren Wang 
 
 

Date: 
October 13, 2016 

 
 

 
Submitted to: 

 
Professor Neil Heffernan and Cristina Heffernan 

Worcester Polytechnic Institute 
 
 
  

 



ABSTRACT 

The goal of this IQP project is to develop the initial version of an iOS 

mobile application called QuizASSIST. This app is an successor to the 

ASSISTments website, and allows the users to take quizzes for different 

problem sets. This report describes the development process and talks 

about the design of the app in detail.  

  

1 



ACKNOWLEDGEMENTS 

First of all, I would like to thank Professor Neil Heffernan and Cristina 

Heffernan for providing this IQP opportunity for me. The large amount of 

advice and support coming along the way has been very helpful in the 

development of this project.  

I would also like to thank David Magid and Christopher Donnelly, who 

work as software engineers in the ASSISTments lab, for answering my 

questions and discussing many implementation problems with me. I could 

not have done this project without their instructions and suggestions for 

fields that I am not familiar with. 

Finally, I would like to thank Emily Hao for working on the user 

interface design of this project, and Fangming Ning for his previous work on 

another ASSISTments mobile application, which has inspired me for my 

project.  

 

  

2 



TABLE OF CONTENTS 

ABSTRACT 1 

ACKNOWLEDGEMENTS 2 

TABLE OF CONTENTS 3 

INTRODUCTION 5 

BACKGROUND 6 

METHODOLOGY 9 
Development Platform 9 
Decisions for Design 9 

1. User Account 9 
2. Problem Source 10 
3. Problem Details 12 

APPLICATION 13 
Icon, Logo and Launcher Image 13 
Program Outline 15 

1. Log in Page 16 
2. Sign up Page 16 
3. Home Page 16 
4. Choose Subject Page 17 
5. Quiz Page 17 
6. Quiz Summary Page 18 
7. Account Page 18 

Plan for Version 2 19 
1. Friend System 19 
2. Logging 19 
3. Additional Databases 20 

CONCLUSION 22 
Future Potential Features 22 

1. Selecting Multiple Problem Sets 22 
 

3 



2. Multiple Players for “Challenge” Mode 23 
3. “Rough Match” Problem Type 23 

APPENDIX A: Project Outline Draft 24 

APPENDIX B: Sample Source Codes 27 

 

  

4 



INTRODUCTION 

ASSISTments is a web-based tutoring system developed at WPI and 

has been put into use since 2004. ASSISTments assists students in many 

different subjects, mostly math and science. By working on the problems 

assigned in class, students are supposed to master the materials faster. 

Meanwhile, a large amount of research has been conducted based on 

students’ behaviors and their feedback with respect to the problems. The 

outcomes of these research studies can help the teachers teach better. 

The new idea of QuizASSIST, a mobile application and successor to 

ASSISTments, helps the students enjoy working on problems. Instead of 

asking teachers to give out assignments, QuizASSIST generates questions 

randomly under a topic selected by the student, and sends them out in the 

form of a quiz. The quiz is usually fast-paced and students can practice on 

it as many times as they want. They will be able to see the score they get 

on every quiz, thus knowing whether they have achieved any progress after 

practicing many times.  

The goal of this IQP is to build the first version of QuizASSIST, which 

allows students to practice the quizzes by themselves. Another team will 

keep working on the app and add more functions to it, such as 

implementing a friend system where students can challenge each other by 

taking the same quiz and comparing scores, working again on all the 

problems they did wrong before, etc. The app is planned to be published 

onto the app store by the end of B term 2016. 

5 



BACKGROUND 

Before starting to design QuizASSIST, I have researched other 

mobile applications with similar functions and goals. The one called Trivia 

Crack is the most popular among them.  

 

Figure 1. Trivia Crack Icon 

The first thing that attracted me was the user interfaces, pretty icons 

(seen above in Figure 1), and drawings. The whole design is very 

user-friendly and makes the quiz look fun to play with. This will also be one 

of the key problems we need to consider for QuizASSIST: how can we 

make the app attractive? 

6 



 

Figure 2. Trivia Crack Game View 

In Trivia Crack, the user can start a new game to play with his friends 

or strangers, as shown in Figure 2. The classic mode takes at most three 

days to complete, and the challenge mode is always completed in a few 

minutes. The problems given are multiple choice and cover all kinds of 

knowledge.  

Since we want to keep QuizASSIST fast-paced, we would like the 

user to always finish a quiz within several minutes. For now the user can 

only do the quiz by himself, but we are looking forward to adding a friend 

system that will make the quiz more interesting.  

The idea of giving out problems randomly works for Trivia Crack 

because the goal of the game is to test the user’s knowledge over 

everything. However, we want our users to master some skills by using 

7 



QuizASSIST, so we will ask the users to choose a problem set that they 

want to practice, and generate random problems from it to create a quiz.  

Trivia Crack has many other functions such as selecting a different 

language for the problems, chatting with a friend before starting the game, 

etc. Many parts of its design are worth learning from, and have helped my 

design with QuizASSIST.   

8 



METHODOLOGY 

Development Platform 

Our goal is to develop QuizASSIST both on the Apple iOS platform 

and Android platform. We are focusing on the iOS platform right now 

because many K-12 schools nowadays have programs to provide students 

with Apple iPads for educational purpose. Therefore a large number of 

students will be able to try out our app for free and provide feedbacks for us 

to improve the app. 

The app is developed using Objective-C, but will switch to Swift 

someday in the future because Swift will supplant Objective-C as it has a 

higher performance compiler.  

The server side of the application is written in Java and uses Spring 

Framework to deal with HTTP requests sent from the app. In order to 

connect with ASSISTments and achieve related problems from it, the 

server code also implements the software development kit (sdk) provided 

by ASSISTments.  

Decisions for Design 

1. User Account 

Since QuizASSIST is a product coming from ASSISTments, at the 

very beginning we would like users in ASSISTments to be able to use 

QuizASSIST with the same accounts, so they can login to QuizASSIST 

9 



directly. However, if there are people who do not know about ASSISTments 

at all and are willing to try QuizASSIST, they will have to create a new 

account using the ASSISTments website, which is inconvenient for them. 

Therefore, we decided to separate QuizASSIST users from 

ASSISTments users by introducing a different user database for 

QuizASSIST. Everyone who needs access to QuizASSIST should create a 

new user account with a unique email address. This simplifies the control of 

user accounts for us developers, and makes QuizASSIST an independent 

application from ASSISTments. 

If researchers are interested in the relation of the two user groups in 

the future, we can still compare the email addresses and names from both 

databases. Once there are two records that match, it is highly possible that 

they belong to the same user and we can connect his performances in 

these applications. 

2. Problem Source 

When we first came up with the idea of QuizASSIST, we wanted to 

distinguish it from ASSISTments by not having teachers involved in it. That 

means the only users of QuizASSIST will be the students. Although we will 

import some existing problems created by teachers from ASSISTments, 

most of the problems should be created by the students. 

Then we have to deal with another concern: who is going to verify 

those problems created by students? The program itself can help us check 

if the problem formatting is right and if all the information needed is filled in, 

but we still need humans to check whether the problem is meaningful, the 

10 



correct answer given is convincing, etc. We need a verification process 

faster than the speed of problems coming in, because otherwise we will 

start to lose users.  

One way to improve the situation is to let the users decide whether 

the problem is useful or not. For example, every time they finish working on 

a problem, they can “like” or “dislike” the problem. Once we receive enough 

feedbacks, we will be able to tell if this problem is reliable, and decide 

whether we need a human to look through it. We can also give a problem 

with many “like”s a higher chance to show up in the quiz.  

There are also other concerns that need to be solved in order for 

students to build problems. Many problem descriptions need to have 

images and formulas, so the problem builder on the phone will be 

complicated to implement. The problems built by students should not be 

stored with the ASSISTments ones because they only apply to 

QuizASSIST. We also need to think about how to create a new quiz with 

questions both from these problems and ASSISTments verified problems if 

they are in two different databases.  

After several discussions during the IQP, we decided for now not to 

let the students build problems. Instead, we will use the existing 

ASSISTments problems only to create a quiz. However, the idea of letting 

students build problems can still be realized in later versions of this app.  

Meanwhile, another IQP team has started to add more Chemistry 

problems into ASSISTments in A term 2016. These problems are mostly for 

the Chemistry 1010 class at WPI in C term 2017. After the app is published 

11 



in B term 2016, those problems will be our main focus for testing when the 

app is used by Chemistry 1010 class students. 

3. Problem Details 

On the ASSISTments website, teachers are allowed to build 

problems with these types: multiple choice, check all that apply, numeric 

and algebraic expressions, exact match (case sensitive or not), ordering 

and open response. We will implement all of them on QuizASSIST except 

ordering, which is rarely used, and open response, which cannot be 

graded.  

The existing problems in ASSISTments usually have hints provided, 

and the students will lose some points if they choose to see the hints 

before trying the problem. The students can also provide feedback 

regarding whether they think the hints are useful. We will not implement 

hints and feedback on the first version of QuizASSIST, but they can be 

added in future versions. 

  

  

12 



APPLICATION 

Icon, Logo and Launcher Image 

The icon, logo and launcher image for QuizASSIST were developed 

using Adobe Illustrator. For the QuizASSIST logo in Figure 3, I decided to 

use a smiling face inside a “Q” as the theme, and arranged the word 

“QuizASSIST” with “Q” and “A” standing out. In order to make a connection 

with ASSISTments, I put a right tick above the “i” like the ASSISTments 

logo shown in Figure 5.  

The icon in Figure 4 is especially for a mobile app, and it will be 

shown on the home screen of the mobile device. The picture for the icon is 

taken from the “Q” in the QuizASSIST logo.  

The launcher image in Figure 6 is shown as soon as the user clicks 

the app icon on his mobile device. It will stay there for about three seconds 

and then disappear. The picture has a very similar design with the logo, but 

I picked a different color theme for it.  

 

Figure 3. QuizASSIST Logo 

13 



 

Figure 4. QuizASSIST Icon 

 

 

Figure 5. ASSISTments Logo 

 

Figure 6. QuizASSIST Launcher Image 

14 



Program Outline

 

Figure 7. QuizASSIST Application Flow Chart (created by Emily Hao) 

 

The flowchart of the first version of the app is shown in Figure 7. We 

will discuss more about each page in the following sections.  

15 



1. Log in Page 

As the user opens the app, after the launcher image disappears, he 

will be directed to the login page. He can login with an email address and a 

password, or click on “Sign up” and go to the sign up page. 

2. Sign up Page 

The user will use this page to create a QuizASSIST account. The 

email address he uses must be unique among the QuizASSIST users.  

There is a strict requirement for the password he can use. The 

password has to be at least 6 characters long, contain at least one 

uppercase letter, one lowercase letter, a number and a special character. 

This requirement comes from the software development kit used by 

ASSISTments.  

The user has to fill in all the information in order to create his account. 

If the account is created successfully, the user will be automatically 

directed to the home page.  

3. Home Page 

The user will create a new quiz starting from here. The only game 

mode available for the first version is “Practice”, which means the user 

practices the quiz by himself. The total problem count varies from 5 to 20, 

and the user can pick a value using the slider. Then he can continue to the 

next page by clicking “Choose Subject”. 

16 



4. Choose Subject Page 

The user will choose the problem set as he navigates through the 

pages. For example, under the class “CH 1010” there are seven chapters, 

and under each chapter there are different numbers of problem sets. The 

user will end up choosing one problem set and start the quiz with it, and he 

can also go back and forth during this process. 

5. Quiz Page 

The quiz will start by giving out one problem at a time. The problem 

set name, current progress of the game and problem description will show 

up. If it is a “multiple choice” or “check all that apply” problem, four options 

will be listed for the user to choose. Note that some problems in our 

database may contain more than four choices, but we will only display four 

of them and must include the correct ones. For a “fill in the answer” 

problem, we will only show a text field and wait for the user’s input. After 

the user puts in his answer, a “Continue” button will pop up. The design of 

the “Continue” button makes sure that the user has to answer every 

problem before moving on to the next one. 

After the user selects an answer for a “multiple choice” problem, we 

will show immediately whether his answer is correct. If it is, the answer he 

selects will be marked as green, otherwise we will mark his answer as red 

and show the correct one in green. Then a “Continue” button will show up 

for the user to go to the next problem.  

17 



For a “check all that apply” problem, there can be more than one 

correct answer. If the first answer the user selects is correct, we will mark it 

as green and wait for his next answer without showing the “Continue” 

button. “Continue” is only shown once the user has selected all the correct 

answers or one wrong answer. In the latter case we will display all the 

correct answers to him.  

With a “fill in the answer” problem, the user will put in his answer and 

click “Submit” on his keyboard. We will let the server decide whether his 

answer is correct, and display the correct answer if it is wrong.  

At the end of the quiz page, there is a “Quit Game” choice, and the 

user can give up the quiz at any time during the quiz. He cannot come back 

to the quiz later once he gives it up, so we do not need to think about how 

to save his progress.  

6. Quiz Summary Page 

As the user completes all the problems for the quiz, we will show a 

summary page, and from here the user can go back to the home page. For 

now we only show the user’s score and total problem count. The summary 

page will need to be redesigned after implementing the friend system in the 

B term 2016.  

7. Account Page 

The user account page can be accessed from the home page by 

choosing the tab at the bottom of the page. This page shows the user’s 

name and email address, and allows the user to log out.  

18 



Plan for Version 2 

1. Friend System 

As we plan to publish the app to the app store by the end of B term 

2016, we hope to have the friend system implemented. The “Challenge” 

game mode will be available, and the user will be able to choose to do the 

quiz with a friend or random QuizASSIST user.  

First of all the user will be able to add a new friend and accept friend 

requests from others. This has actually been done in the first version, and 

we also allow the user to delete a friend.  

When the user starts a new quiz, the user interface will change to 

allow him to choose a friend from a list to play with. A notification for this 

quiz request will be sent to his friend. Then we will need another new user 

interface for his friend to deal with this request.  

These two users will not need to play the quiz at the same time, but 

the server will be able to record their progress for the quiz. When one user 

has started or finished the quiz, the server will have a way to display this 

change to the other user. By the time both users finish the quiz, their final 

scores will be shown to each other.  

2. Logging 

Another important thing we will do for Version 2 of QuizASSIST is to 

log the user’s actions. We are mostly interested in the users’ performance 

on each quiz, and we would like to record their answer on each problem in 

19 



particular. We will show these records to the user on a new “Achievements” 

page so that they will be able to check their performance on every quiz and 

problem set as well. This way they can improve skills by practicing on those 

problem sets that they have not got a high score on.  

Meanwhile, the data will be very useful for future research. The 

researchers in the ASSISTments lab can do different analyses on the data, 

and come up with some advice about how we can modify the app to have 

better user experience.  

Moreover, after we build a connection between the ASSISTments 

users and QuizASSIST users, we will have an idea of how many students 

using ASSISTments are involved in QuizASSIST. While the students are 

practicing on QuizASSIST for a class, we can generate reports based on 

their performance and send them to the teacher. This will also help the 

teacher to teach better, such as focusing more on those parts where most 

of the students got low scores.  

The logging will be implemented on the server side only and will use 

some sdk from ASSISTments, so that the information logged will be 

consistent with the ASSISTments logging formatting.  

3. Additional Databases 

The ASSISTments sdk handles most of the databases for the first 

version, such as the user’s information, problems and the problem sets. 

The only thing that the server will do is to make queries on those 

databases, and send the organized information back to the app. However, 

20 



the friend system and logging will require additional databases particularly 

for the QuizASSIST application.  

In order to exchange information between two users, first of all we 

need to record the tokens of the mobile devices they are using. The token 

strings are stored in the database called “mobile_devices”, and the 

database should be updated everytime a user logs in. The server will 

communicate with a certain device by using ApnsService to create a 

package with this string and send it to the device. Then the mobile device 

will receive a notification from the Control Center and then handle the 

incoming package.  

The Android app to be built in the future will need a similar database 

for the friend system. Therefore, we have an attribute “device_type” in the 

“mobile_devices” database, so we can store its tokens in this database as 

well by using a different “device_type” number. For now we only use iOS 

devices, so we put a “1” for every “device_type”. 

After a user sends a friend request, we need to record this request in 

our database “friends”, and update the information if the other user accepts 

or deletes this request. When we want to get the list of friends for a user, 

we also go to this database and do a query based on the user id.  

When we are logging for the QuizASSIST application, we may need a 

separate logging database from the ASSISTments ones, though it will use 

the same structure as the ASSISTments databases do. This may need 

further discussion and will depend on how we want to use the logging 

information. 

21 



CONCLUSION 

Building the first version for QuizASSIST will be done successfully by 

the end of A term. I designed the icon, logo and launcher image; worked 

with Emily to come up with the user interfaces and the flow of the app; 

programmed most of the codes both on the client and server side. I have 

also met up with the other IQP team in A term 2016 a lot, introducing the 

app to them and helping them to create problems needed by the app.  

During this process I have also thought about many other functions. 

Since the time for my IQP is limited, I cannot implement all of them in the 

first version. The design of QuizASSIST has also changed many times and 

we gave up some functions which previously worked due to many reasons. 

These potential functions to be done in the future all need further 

discussions before implementation, and I will leave them here as a 

reference for the other teams. More of these can be found in the Appendix 

A.  

Future Potential Features 

1. Selecting Multiple Problem Sets 

Our plan for the first and second versions is that the user starts a quiz 

with only one problem set at a time, but sometimes the user may want to 

do a review for several problem sets. In the future we can allow the user to 

choose multiple problem sets at a time, such as implementing a check box 

in front of every problem set.  

22 



2. Multiple Players for “Challenge” Mode 

The “Challenge” mode of the quiz to be implemented in B term is only 

for two users. If we have more users joining QuizASSIST later, having 

multiple players doing the same quiz will be more fun for the users, since 

they can value their skills among more people.  

3. “Rough Match” Problem Type 

Our “fill in the answer” type problem uses “exact match” when 

comparing answers in plain text. This means if the user misspelled an 

answer even by one letter, the answer will be marked as wrong. Since 

QuizASSIST will be a fast-paced game, it is highly possible that the user 

types in the answer too fast to make it correct.  

Therefore, we would like the problem to be more user-friendly and the 

user only gets it wrong for not knowing the answer. A “rough match” 

problem should allow the user to misspell several letters in the answer, and 

still mark him correct as he gets the general idea right.  

This will need extra implementation in the ASSISTments sdk and 

need more discussion for details. 

  

23 



APPENDIX A: Project Outline Draft 

A term - Version 1 
User should be able to  

● Start a new game for practice only 
● Add and delete friends 

Tasks for coding group 
● Make the app support these problem types: multiple choice, check all 

that apply, exact match text answer (ignore case or not), numeric and 
algebraic type question (all kinds) 
(*according to assistments question types) 

● Make sure html codes and images can be displayed properly 
● New icons, logos and launcher image work on different screen sizes 
● Remove redundant codes and databases and saved for future  
● Publish the app for testing by random users 
● User should be able to leave a game at any time - should not need to 

finish a game to leave  
Tasks for content group 

● Generate some organized problem sets into assistments database 
● Generate at least 20 questions for some problem sets 
● For each problem type, generate some questions for testing on the 

app 
(MC & CA : >=4 answers for each problem, only text in answers) 

● Images and specified text styles are allowed 
● Hints and feedback can be put in and used in the future 

 
B term - Version 2 
User should be able to  

● Start a new game with a friend or stranger 
Tasks for coding group 

24 



● Add challenge mode for game: user selects to play with a friend 
(choose a friend from friend list) or stranger; server side sends the 
same problems to both players 

● Show notification when receiving a challenge; challenge has to be 
completed in some time; show whether opponent completed the 
challenge; when both players complete the challenge, update the 
status and show scores 

● Show the score history (exact numbers or percentages, different 
game modes) to user 

● Publish the app to app store 
● Save progress on a particular practice quiz if the user left the game 

early 
Tasks for content group 

● Generate enough questions to be ready for use in C term 
 
Potential tasks for future 

● Implement “Like” and “Dislike” for each problem; “popularity” of the 
problem shown to users or only shown to teachers; more “popular” 
problem shows up in quiz more frequently 

● User select multiple problem sets to start a game 
● User start a game with “all the problems he did wrong before” 
● User be able to start a game with multiple players (friends or 

strangers) 
● User can exit the game and play it later (different from our current 

design) 
● Logging user actions on server side; be able to generate reports for 

teachers 
● Display hints and receive feedback 
● User be able to create problems (most codes have been done, but 

think about a more complicated problem builder (etc. images), where 
to store the new problems, who to verify the problems are valid, when 
starting a game these problems can be reached) 

25 



● A new question type “Rough match”: judge answer is correct if 
misspelled 

● Allow users to change names/password 
● Make a new storyboard for ipad 
● Switch from objective-c to swift 
● On login page, user chooses to remember login or not; if remember 

login then do not show login page, go to home page directly 
● User has ability to change themes (color, pic, etc.) 
● User should be able to skip a problem and come back to it later in the 

quiz 
 

 

  

26 



APPENDIX B: Sample Source Codes 

There are about 30 code files for the iOS app and 20 files for the 

server side. They can be accessed on the fusion website using SVN. 

Contact the ASSISTments lab for more details about how to achieve them. 

Here I will show screenshots for some main codes in 

GameTableViewController.m for iOS and some server side codes.  

 

 

Figure A. Preparation before displaying the next problem 

27 



 

Figure B. Adjusting the user interface after the user selects an answer 

28 



 

Figure C. Adjusting the user interface after the user types in an answer 

29 



 

Figure D. Handling the situation where the “Continue” or “Quit Game” button is pressed 

30 



 

Figure E. Server side code dealing with user login  

31 



 

Figure F. Server side code achieving random problems for a given problem set 

 

32 


