
 

 

MAGNETIC RESONANCE IMAGE SEGMENTATION USING PULSE 

COUPLED NEURAL NETWORKS  

by 

______________________ 
M S Murali Murugavel 

 

A Dissertation 

Submitted to the Faculty 

of the 

WORCESTER POLYTECHNIC INSTITUTE 

in partial fulfillment of the requirements for the 

Degree of Doctor of Philosophy 

in 

Mechanical  Engineering 

May  2009 

APPROVED: 

_____________________________ 
Professor  John M. Sullivan, Jr. 

Advisor 

_______________________________
Professor Matthew O. Ward  

Committee Member 

_____________________________ 
Professor Brian J. Savilonis 

Committee Member 

_______________________________
Professor Gregory S. Fischer 

Committee Member 
 

___________________________ 
Professor Mark W. Richman 

Graduate Committee Representative 



 

 

Abstract 

 

The Pulse Couple Neural Network (PCNN) was developed by Eckhorn to model 

the observed synchronization of neural assemblies in the visual cortex of small 

mammals such as a cat. In this dissertation, three novel PCNN based automatic 

segmentation algorithms were developed to segment Magnetic Resonance 

Imaging (MRI) data: (a) PCNN image ‘signature’ based single region cropping; 

(b) PCNN – Kittler Illingworth minimum error thresholding and (c) PCNN – 

Gaussian Mixture Model – Expectation Maximization (GMM-EM) based multiple 

material segmentation. Among other control tests, the proposed algorithms were 

tested on three T2 weighted acquisition configurations comprising a total of 42 rat 

brain volumes, 20 T1 weighted MR human brain volumes from Harvard’s Internet 

Brain Segmentation Repository and 5 human MR breast volumes. The results 

were compared against manually segmented gold standards, Brain Extraction 

Tool (BET) V2.1 results, published results and single threshold methods.  The 

Jaccard similarity index was used for numerical evaluation of the proposed 

algorithms.  Our quantitative results demonstrate conclusively that PCNN based 

multiple material segmentation strategies can approach a human eye’s intensity 

delineation capability in grayscale image segmentation tasks.   

 

Keywords: PCNN, brain cropping, small mammals, neural networks, 

segmentation, brain segmentation, GM-WM-CSF, breast cropping, adipose-

fibroglandular tissue. 
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Chapter 1  

 

Introduction 

 
1.1 Medical imaging modalities  

 

The discovery of X-rays (1895) by the subsequent Nobel prize winner (1901), 

Wilhelm Roentgen led to the first medical image based diagnosis by Dr. Hall 

Edwards (1896). Since then different parts of the Electro Magnetic (EM) spectrum 

have been exploited for medical imaging. In economic terms the United States 

medical imaging market is estimated to be worth $11.4 billion by 2012 (BCC 

Research, Medical Imaging: Equipment and Related Products).  

 

A recent (2003) Nobel prize (Paul C Lauterbur and Peter Mansfield) recognized the 

discovery of Magnetic Resonance Imaging (MRI) in the early 1970s.  See Keller 

(1988) for a detailed description of MR imaging modality. 

 

Table 1.1 (adapted from Demirkaya et al., 2009) lists the various common medical 

imaging modalities, the EM spectrum range and the corresponding photon energy 

involved.  MRI, owing to its lower energy dosage and excellent soft tissue imaging 

capabilities has witnessed rapid adoption as a medical diagnosis tool. In 2002 alone, 

there were more than 60 million MRI examinations performed 

(http://nobelprize.org/nobel_prizes/medicine/laureates/2003/press.html).  
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Further, the MR modality is being fielded in areas such as surgery (Interventional 

MRI), radiation therapy simulation: to locate and mark tumors, functional MRI: a 

measure of the BOLD (Blood Oxygen Level Dependent) signal and MR 

Elastography (MRE) (Paulsen et al., 2005). Each of these applications has resulted 

in increased need of automatic MR segmentation algorithms. Another quantitative 

metric that highlights the tremendous research interest in this field is reflected by a 

search on Google scholar for the keyword ‘mri segmentation’. In April 2009, this 

search yielded 93,300 possible matches.  

Imaging modality Energy range (eV) Frequency range (Hz) 

MRI 1.654 x 10-7 - 2.068 x 10-7 40 x 106 - 50 x 106 
Light microscopy, 

Fluorescence imaging 1.77 - 3.09 4.28 x 1014 - 7.49 x 1014 
X-ray (Radiograph, 

Computerized 
Tomography, 

Mammography) 20000 - 200000 4.8 x 1018 - 4.8 x 1019 

Low energy gamma rays 
(Single Photon Emission 

Tomography) 60000 - 300000 1.45 x 1019 - 7.25 x 1019 
High energy gamma rays 

(Positron Emission 
Tomography) 511000 1.23 x 1020 

 

Table 1.1: Current medical imaging modalities and their EM spectrum range 

 

1.2 Magnetic Resonance Imaging (MRI) segmentation 

 

Current automatic segmentation algorithms (Pham, et al. 2000)  are usually 

clustered into the one of the following classes:  Thresholding (Mikheev, et al. 2008; 

Schnack, et al. 2001), Classifier based (Ashburner and Friston 2005), Markov 



3 
 

Random Field Models (Rivera, et al. 2007), Artificial Neural Networks (ANN) 

(Reddick, et al. 1997), deformable surface based (Zhuang, et al. 2006) and hybrid 

methods (Ségonne, et al. 2004).  It must be noted that almost all traditional 

segmentation methods lack an actual understanding of the image. See Hawkins and 

Blakeskee (2008) for a general treatment of this idea. However, there has been a 

sustained interest in ANN and pattern recognition methods (Egmont-Petersen, et al. 

2002) for automatic segmentation of MR images.  

 

A few researchers such as Belardinelli, et al. (2003) have attempted to use a neural 

network model that simulates the functionality of the human visual cortex in which 

each pixel is mapped to an individual oscillator to effect segmentation of MR images. 

In this dissertation, a similar ‘biomimetic’ segmentation method known as the Pulse 

Coupled Neural Network (PCNN) is employed for automatic segmentation of MR 

data.  

 

1.3 Pulse Coupled Neural Network (PCNN) 

 

The PCNN is based on neurophysiological studies of the primary visual cortex of a 

cat by Eckhorn et al.(1990). They developed a neural network model which captured 

the observed global linking of cell assemblies as a result of feature similarity in 

sensory systems. The specific algorithm used in this dissertation is the Eckhorn 

model implemented by Johnson and Padgett (1999) and Waldemark et al. (2000). 

The segmentation is accomplished using the feature extraction property that 

Eckhorn et al. (1990) described in the ‘Linking’ part of their neural network model, 
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which associates regions of input images that are similar in intensity and texture. 

Lindblad and Kinser (2005) cover numerous aspects of the PCNN model tuned for 

image processing applications. Several independent research groups have applied 

the basic Eckhorn model for various applications; image segmentation (Kuntimad 

and Ranganath 1999), image thinning (Gu, et al. 2004) and path optimization 

(Caulfield and Kinser 1999). A recent pattern recognition procedure (Muresan 2003) 

involved the use of the PCNN to generate a 1D time signature from an image. This 

time signature was then trained using a back propagation neural network model for 

image recognition. A similar idea is employed in this dissertation to effect multiple 

region image segmentation as opposed to image recognition. 

 

1.4 Outline 

 

The remainder of this dissertation is organized as three separate, self contained 

chapters containing material sourced from published manuscripts or material in 

advanced stage of preparation. 

 

In Chapter two, we show the use of the PCNN as an image segmentation strategy to 

crop MR images of rat brain volumes. We then show the use of the associated 

PCNN image ‘signature’ to automate the brain cropping process with a trained 

artificial neural network. We tested this novel algorithm on three T2 weighted 

acquisition configurations comprising a total of 42 rat brain volumes. The datasets 

included 40 ms, 48 ms and 53 ms effective TEs, acquisition field strengths of 4.7T 

and 9.4T, image resolutions from 64x64 to 256x256, slice locations ranging from +6 
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mm to -11 mm AP, two different surface coil manufacturers and imaging protocols.  

The results were compared against manually segmented gold standards and Brain 

Extraction Tool (BET) V2.1 results. The Jaccard similarity index was used for 

numerical evaluation of the proposed algorithm.  Our novel PCNN cropping system 

averaged 0.93 compared to BET scores circa 0.84.  

 

Variations in intensity distribution are a critical feature exploited in manual 

segmentation of images. In Chapter three, we describe two novel algorithms that 

employ a PCNN model to segment T1 weighted MRI human brain data into its 

constituent classes, Grey Matter (GM), White Matter (WM) and Cerebro-Spinal Fluid 

(CSF). The first technique employs a modified version of the Kittler and Illingworth 

thresholding method to generate a surrogate time signature of the accumulated 

PCNN iterations. We describe the use of this time signature to segment simulated 

and real data from the Harvard Internet Brain Segmentation Repository. The Jaccard 

index returned averages of 0.72 and 0.61 for the GM and WM respectively for the 19 

T1 weighted MRI brain volumes. The second technique estimates the composition of 

each grayscale image slice via a Gaussian Mixture Model (GMM) Expectation 

Maximization (EM) formulation. A feature vector of the estimated means, standard 

deviations and composition proportions was then assembled and compared against 

the corresponding computed measure of individual, accumulated PCNN iterations to 

determine the best segmentation match. This unsupervised approach returned 

Jaccard index averages of 0.76, 0.66 and 0.13 for the GM, WM and CSF 

respectively for the 20 T1 weighted MRI brain volumes. These data compare to 
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Jaccard index averages of 0.88 (GM), 0.83 (WM) for manual segmentations of 4 

brain volumes averaged over two experts and 0.61 (GM), 0.62 (WM), 0.09 (CSF) for 

the average of a dozen other segmentation strategies in use. 

 

In Chapter four we describe the PCNN as a unified tool to automatically crop and 

segment human breast MR volumes into adipose and fibroglandular regions. Each 

2D constitutive grayscale MR slice is represented as a 1D time signature generated 

via the PCNN iterating in an ‘accumulate’ configuration. A Multi Layer Perceptron 

(MLP) classifier was then trained to automatically crop breast tissue from the 

surrounding air and transducer artifacts. Adipose and fibroglandular segmentation 

was effected on the cropped 2D slices by two unsupervised methods; minimization 

of a PCNN based Kittler-Illingworth formulation and a PCNN – Gaussian Mixture 

Model algorithm.  The proposed automatic cropping algorithm was tested on 5 MR 

breast volumes consisting of 248 slices (256 x 256). The results were compared 

against manual selections obtained via the PCNN. The resulting Jaccard index 

mean of 0.99 indicates a highly successful outcome of the method. The 

effectiveness of the proposed adipose – fibroglandular segmentation strategies were 

tested using 10 cropped grayscale slices and corresponding manual PCNN 

segmentation selections. For control, the Kittler-Illingworth thresholding method was 

employed. The mean Jaccard indices for the adipose – fibroglandular regions were 

0.78, 0.94 (PCNN-Kittler Illingworth formulation), 0.78, 0.92 (PCNN – GMM) and 

0.49, 0.86 (Kittler Illingworth thresholding).     

 
Conclusions and future work directions can be found in Chapter five. 
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Chapter 2 
 
Automatic Cropping of MRI Rat Brain Volumes using Pulse 
Coupled Neural Networks 
 

2.1 Introduction: 

 A common precursor to several neuroimaging analyses is the use of Brain 

Extraction Algorithms (BEAs) designed to crop brain tissue from non brain tissues 

such as cranium, eyes, muscles and skin. Following a BEA application, also 

described as intracranial segmentation or skull stripping, several downstream and 

independent applications are applied, such as registration of subjects to an atlas for 

Region Of Interest (ROI) analysis (Grachev et al., 1999), brain tissue segmentation 

(Shattuck et al., 2001), functional Magnetic Resonance Imaging (fMRI) analysis 

preprocessing (Beckmann et al., 2006) and monitoring brain volume as a function of 

time to study brain atrophy (Battaglini et al., 2008). Although these researchers 

applied BEA and subsequent neuroimaging techniques on human subjects, the 

number of neuroimaging studies on animal models such as the rat is growing 

rapidly, providing new insights into brain function as well as improved translation 

to/from analogous clinical studies. Schwarz et al. (2006) cropped 97 brain volumes 

in the development of a stereotaxic Magnetic Resonance Imaging (MRI) template for 

the rat brain. The processing pipeline of the somatosensory pathway mapping fMRI 

study of Lowe et al. (2007), the pharmacological fMRI study of Littlewood et al. 

(2006) included rat brain cropping. Ferris et al. (2005) registered rat brain volumes to 

an atlas for ROI analysis. Yet, an efficient brain cropping algorithm focused on small 

mammals is lacking.  
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Automated brain extraction is a subset (Smith, 2002; Zhuang et al., 2006), of general 

image segmentation strategies which delineates edges between regions frequently 

exhibiting similar texture and intensity characteristics.  However, there is no 

definitive line separating extraction (cropping) and segmentation functions. All 

published automated BEAs use various combinations of basic segmentation (Pham 

et al., 2000) techniques on individual slices or on entire 3D volumes to crop brain 

tissue from non brain tissue. Frequently (Smith, 2002; Ségonne et al., 2004), 

automated BEAs have been clustered into the following broad classes: thresholding 

with morphology based methods (Lee et al., 1998; Lemieux et al., 1999; Mikheev et 

al., 2008), deformable surface based (Aboutanos et al., 1999; Dale et al., 1999; 

Kelemen et al., 1999; Smith, 2002; Zhuang et al., 2006) and hybrid methods (Rehm 

et al., 2004; Rex et al., 2004; Ségonne et al., 2004) . Each of these methodologies 

have advantages and all areas are being advanced. There is clear evidence (Lee et 

al., 2003; Rex et al., 2004; Fennema-Notestine et al., 2006; Zhuang et al., 2006) that 

no single BEA is suitable for all studies or image acquisition protocols.  Generally, 

human intervention is employed for satisfactory cropping. 

 

Our review of automated BEAs noted a fundamental lack of these algorithms applied 

to small animals.  The methodology has been applied dominantly on human 

subjects. Most brain tissue cropping in small laboratory animals continues to be 

manual or semi automatic (Pfefferbaum et al., 2004; Wagenknecht et al., 2006; 

Sharief et al., 2008). Some studies such as Schwarz et al. (2006) working with T2 

weighted Rapid Acquisition with Relaxation Enhancement (RARE) sequences have 
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successfully used semi automatic segmentation tools (Kovacevic et al., 2002) 

developed for the human brain in animal models. Kovacevic et al. (2002) had 

reported a histogram based technique involving the use of co registered Proton 

Density (PD), T2 weighted anatomy data to crop T1 weighted anatomy images of the 

human brain. This idea has been supported by the skull and scalp stripping work of 

Dogdas et al. (2005) and Wolters et al. (2002) who establish that the inner skull 

boundary can be determined more accurately by the use of PD images. Another 

example Roberts et al. (2006) uses an adaptation of Brain Extraction Tool (BET) 

(Smith, 2002) with manual correction for extraction of the rat brain from RARE 

anatomy data. However, the overall quality of the small animal brain extraction is 

significantly lower than that obtained for human images (FSL). 

 

This article presents a novel Pulse Coupled Neural Network based approach to 

automatically crop rat brain tissue. The proposed method takes advantage of the 

specificity accorded by T2 weighted images in terms of contrast for the proton rich 

brain environment and the inherent segmentation characteristics of the PCNN to 

rapidly crop the rat brain. The method described here does not attempt a second 

level segmentation to differentiate, for instance, White matter from Grey matter.  

Rather, the focus is to crop the brain quickly and automatically so that subsequent 

operations, such as registration can proceed immediately.   

 

Artificial Neural Network (ANN) and Pattern Recognition methods (Egmont-Petersen 

et al., 2002) have been widely applied on the brain tissue type segmentation 



10 
 

problem (Reddick et al., 1997; Dyrby et al., 2008; Powell et al., 2008). However, 

there have been very few neural network approaches that specifically address the 

problem of automatic brain extraction. Congorto et al. (1996) used a Kohonen Self 

Organizing Map approach which combines self-organization with topographic 

mapping and classifies image regions by similarities in luminance and texture. They 

applied this technique on 2 dimensional T1 slices to segment the image into 3 

classes: scalp, brain and skull. Belardinelli et al. (2003) used an adaption of a 

LEGION (Locally Excitatory Globally Inhibitory Network) for segmenting T1 weighted 

2D images. The LEGION is a neural network model that simulates the human visual 

cortex in which each pixel is mapped to an individual oscillator and the size of the 

network is the same as that of the input image. Both Congorto et al. (1996) and 

Belardinelli et al. (2003) provided qualitative results but did not report extensive 

testing of their respective algorithms on large datasets.  

 

The underlying algorithm used in this paper is the standard Eckhorn PCNN model 

(Johnson and Padgett, 1999). The PCNN is a neural network model based on the 

visual cortex of a cat, which captures the inherent spiking nature of the biological 

neurons. The brain extraction is accomplished using the feature extraction property 

that (Eckhorn et al., 1990), described in the ‘Linking’ part of their neural network 

model, which associates regions of input images that are similar in intensity and 

texture. Lindblad and Kinser (2005) cover numerous aspects of the PCNN model 

tuned for image processing applications. Several independent research groups have 

applied the basic Eckhorn model for various applications; image segmentation 
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(Kuntimad and Ranganath, 1999), image thinning (Gu et al., 2004) and path 

optimization (Caulfield and Kinser, 1999). A recent pattern recognition procedure 

(Muresan, 2003) involved the use of the PCNN to generate a 1D time signature from 

an image. This time signature was then trained using a back propagation neural 

network model for image recognition. The method proposed in this article follows a 

similar approach.  

 

2.2 Materials and Methods 

 

2.2.1 Overview 

 

The proposed brain extraction algorithm operates on individual 2D grayscale data 

(slices), Figure 2.1. For purposes of illustration of the proposed algorithm we follow 

the various operations on the representative 2D slice highlighted in Figure 2.1. 

Intensity rescaling to [0 1] is the first operation on each 2D slice, as noted on the 

highlighted slice in Figure 2.1. The PCNN algorithm is then applied in the 

‘accumulate’ mode (discussed subsequently) on individual 2D slices, Figure 2.2. A 

morphological operator is employed to break ‘narrow bridges’ that might link the 

brain tissue with other regions, like the skull, Figure 2.3. A contour operation is used 

with level set to unity.  Only the largest contiguous region from each PCNN iteration 

is selected, Figure 2.4. The contour outlines corresponding to the selected regions 

are then overlaid on the corresponding grayscale image, Figure 2.5. At this stage the 

problem is rendered to one of choosing a particular iteration that best outlines the 
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brain region. The accumulated response as a function of iteration has a 

characteristic behavior as shown in, Figure 2.6. Several techniques can be used to 

identify the first plateau in Figure 2.6. A previously trained ANN can be used to 

identify the iteration that best represents the brain outline.  In this mode, one has the 

option to view the predicted selection with override ability, Figure 2.5. This process is 

repeated for each slice resulting in a set of mask slices that can be used in a 

marching cube routine (Wu and Sullivan, 2003) to create a full 3D geometry 

representation of the cropped brain, Figure 2.7. 
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Figure 2.1. Schematic of a multiple slice volume of a rat brain. The highlighted slice 

has been intensity rescaled [0 1]. 

 

 

 

 

 



14 
 

 

Figure 2.2. Subfigures (a) – (f) illustrate the raw binary PCNN iteration numbers 10, 

20, 25, 30, 40 and 50 respectively of the highlighted coronal grayscale slice of 

Figure 2.1. 

 

Figure 2.3. The center sub-figure is a close-up of the highlighted region on the left. 

The right sub-figure illustrates the result of the applied morphological operation 

meant to break small bridges that connect the brain tissue with the skull.   
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Figure 2.4. Subfigures (a) – (f) illustrate the largest contiguous region of PCNN 

iteration numbers 10, 20, 25, 30, 40 and 50 respectively of the highlighted coronal 

grayscale slice of Figure 2.1 after the morphological operation. 
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Figure 2.5. The predicted PCNN iteration (highlighted) is presented with an override 

option and alternate choices. 
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Figure 2.6. Illustrates the characteristic shape of the normalized image signature G. 
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Figure 2.7. Full 3D representation of the cropped brain with end overlaid by 

corresponding 2D cropped grayscale slice. 

 

 

 

2.2.2 The PCNN Formulation: 

 

The PCNN belongs to a unique category of neural networks, in that it requires no 

training (Lindblad and Kinser, 2005) unlike traditional models where weights may 

require updating for processing new inputs. Specific values (Table 2.1) of the PCNN 

coefficients used in our work were derived from Johnson and Padgett (1999) and 

Waldemark et al. (2000). 
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Generally, a 3D volume of grayscale coronal slices of the rat brain is created in the 

MR system. Since the PCNN operates on 2D data, individual slices are sequentially 

extracted and their grayscale intensities normalized within the range [0, 1]. 

 

Let ijS  be the input grayscale image matrix.  The subscripts ji,  denote the position 

of the PCNN ‘neuron’ as well as the corresponding pixel location of the input 

grayscale image. Each neuron in the processing layer of the PCNN is coupled 

directly to an input grayscale image pixel or to a set of neighboring input pixels with 

a predefined radius r . Functionally, it consists of a Feeding and Linking 

compartment, described by arrays ijF  and ijL , each of dimension equaling the 2D 

input grayscale image, linked by two synaptic weighting matrices M and W . The 

synaptic weighting matrix is square with a dimension of )12( r  and is a normalized 

Gaussian about the center of the square matrix.  

 

    ijFijijij nYMVSnFenF F ])1[*(1       (2.1) 

 

    ijLijij nYWVnLenL L ])1[*(1        (2.2) 

 

      nLnFnU ijijij  1        (2.3) 

 

     nYVnTenT ijTijij
T   1                

 (2.4) 
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  1nYij  if     nTnU ijij         (2.5) 

 

  0nYij  if     nTnU ijij         (2.6) 

 

The PCNN is implemented by iterating through equations (2.1)-(2.6) with n  as the 

current iteration index and ranging from 1 to N  (the total number of iterations). The 

matrices ]0[],0[],0[ ijijij ULF  and ]0[ijY  were initialized to a zero matrix, while ]0[ijT  

was initialized to a unit matrix. For each iteration, the internal activation ijU  is 

computed and compared against the threshold ijT . Thus, the array  nYij  is a binary 

image representing the PCNN mask at that particular iteration.  

 

F , L , T are iteration (surrogate time) constants that determine the internal state of 

the network effecting exponential decay and TLF VVV ,, are magnitude scaling terms 

for Feeding, Linking and Threshold components of the PCNN. * is the two 

dimensional convolution operator.   is a parameter affecting linking strength, Table 

2.1.   
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Constant PCNN coefficient Context 

  0.2 Linking strength 

F  0.3 Feeding decay 

L  1 Linking decay 

T  10 Threshold decay 

FV  0.01 Feeding coupling 

LV  0.2 Linking coupling 

TV  20 Magnitude scaling term for 

threshold 

r  3 Radius of linking field 

 
Table 2.1: The values of the PCNN coefficients used in this algorithm were sourced 

from Johnson and Padgett (1999) and Waldemark et al. (2000). Further coefficients 

TLFTLF ,,,, /2ln    as described by Waldemark et al. (2000). 

 

Our implementation of the PCNN operates in the ‘accumulate’ mode: that is, each 

iteration sums its contributions with the previous PCNN iterations. 

 

    kYnA
n

k
ijij 




1

        (2.7) 
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The process described by equation (2.7) can result in a non binary image ijA .  

However, for our work the accumulated iteration  nAij  is converted into a binary 

image by means of a thresholding operation at unity, Figure 2.2.  

 

2.2.3 Morphological, contour operations on accumulated PCNN iterations 

 

A binary morphological operation breaks ‘narrow bridges’ or clusters of pixels with a 

radius less than p pixels.  Each pixel ji, value (0 or 1) within a PCNN iteration must 

be continuous in at least two orthogonal directions.  That is IF  iipi ,1,...,   is 1 

AND  jjpj ,1,...,   is 1, THEN pixel ji, =1.  

 

Perimeters or contours of isolated islands are created.  The largest area within each 

PCNN iteration is selected.  All pixels within the selected perimeter are filled with 

‘ones’.  This process results in only one contiguous segment for each PCNN 

iteration. We denote each PCNN iteration at this stage by ][nCij with iteration n 

ranging from [1, N].  Figure 2.4 is used to illustrate the outcome of the described 

morphological and contour operations on the same coronal section shown in Figure 

2.1.  

 

A successful brain extraction results when an appropriate PCNN iteration n is 

selected. A 1D time signature is constructed for the PCNN iterations similar to that of 
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Muresan (2003). The abscissa or timeline is the iteration count.  The ordinate is the 

total number of pixels within the largest contoured area for each PCNN iteration. 

 
ij

ij nCnG ][][  

Where n ranges from [1, N]. This image signature has a characteristic shape for 

similar images with similar regions of interest. This information is used as a 

surrogate time series in a traditional ANN training sequence to automatically extract 

the brain tissue.  It is also used as the surrogate time in the first order response 

fitting. The maximum number of iterations (N) of the PCNN is established when the 

sum of the array  nY  (equation (2.6)) exceeds 50% of the image space. This 

maximum iteration count varies somewhat for each slice and subject. The 50% 

setting makes the explicit assumption that the region of interest (ROI) occupies less 

than 50 % of the image space. This variable can be readily set to occupy a higher 

percentage of the entire image space in the event of the ROI’s tending to occupy a 

larger area.   

 

2.2.4 Traditional ANN based selection of brain mask. 

 

A previously trained ANN receives the accumulated response as a function of 

iteration and outputs an iteration number, n.  Multi Layer Perceptron (MLP) is a 

widely used (Haykin, 1998) supervised, feedforward ANN model which can be 

trained to map a set of input data to a desired output using standard 

backpropagation algorithms. Since each grayscale brain coronal section ijS is now 
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represented by the PCNN iterations ][nCij with n ranging from [1, N] and an image 

signature G, it is possible to create a training set for the MLP. 

 

Figure 2.6 shows the characteristic shape of the image signature for the sample mid 

section coronal brain slice. In the illustrated example, iteration numbers 

corresponding to 0.4 to 0.6 will produce very similar brain masks. This characteristic 

step response behavior can be fitted easily. It requires few training volumes to 

create a reliable trained ANN.  For the work presented herein, the number of rat 

brain volumes used to train the network was 7. 

 

The neural architecture of the MLP used in this article consists of one input layer, 

one hidden layer and a single output neuron. The input layer neurons simply map to 

the image signature which is a vector of dimension N. The vector is normalized for 

the purposes of efficient supervised training using the back propagation algorithm. 

The hidden layer consisted of about half the number of neurons in the input layer 

and the single output neuron mapped the desired PCNN iteration corresponding to 

the brain mask.  

 

2.3 Experiment details and description.  

 

2.3.1 Data 

 

T2 weighted RARE anatomical images (Spenger et al., 2000; Ferris et al., 2005; 
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Roberts et al., 2006; Schwarz et al., 2006; Canals et al., 2008) are widely used in rat 

brain studies.  Three different coronal datasets representing different imaging field 

strengths, T2 weightings, resolution and coil manufacturers were assembled to 

demonstrate the proposed algorithm. The field of view was adjusted to span the 

entire cranium of the rat. The images were acquired along the coronal section of the 

rat brain. The data were obtained over multiple imaging sessions and multiple 

studies. 

  

 Anatomy dataset (4.7T, 30 volumes)   

 

The imaging parameters of this dataset are similar to those published by Ferris et al. 

(2005). Adult Long-Evans rats were purchased from Harlan (Indianapolis, IN, USA) 

and cared for in accordance with the guidelines published in the Guide for the Care 

and Use of Laboratory Animals (National Institutes of Health Publications No. 85-23, 

Revised 1985) and adhere to the National Institutes of Health and the American 

Association for Laboratory Animal Science guidelines. The protocols used in this 

study were in compliance with the regulations of the Institutional Animal Care and 

Use Committee at the University Massachusetts Medical School.   

 

All data volumes were obtained in a Bruker Biospec 4.7 T, 40 cm horizontal magnet 

(Oxford Instruments, Oxford, U.K.) equipped with a Biospec Bruker console (Bruker, 

Billerica, MA, U.S.A) and a 20 G/cm magnetic gradient insert (inner diameter, 12 cm; 

capable of 120  s rise time, Bruker). Radiofrequency signals were sent and 
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received with dual coil electronics built into the animal restrainer (Ludwig et al., 

2004). The volume coil for transmitting RF signal features an 8-element microstrip 

line configuration in conjunction with an outer copper shield. The arch-shaped 

geometry of the receiving coil provides excellent coverage and high signal-to-noise 

ratio. To prevent mutual coil interference, the volume and surface coils were actively 

tuned and detuned. The imaging protocol was a RARE pulse sequence (Eff TE 48 

ms; TR 2100 ms; NEX 6; 7 min acquisition time, field of view 30 mm; 1.2 mm slice 

thickness; 256 25612 (nrowncolnslice) data matrix; 8 RARE factor).   

 

Functional dataset (4.7T, 6 volumes) 

 

This dataset was obtained with the same hardware and animal specifications as 

those described in the 4.7 T anatomy dataset. The imaging protocol was a multi-

slice fast spin echo sequence (TE 7 ms; Eff TE 53.3 ms; TR 1430 ms; NEX 1; field 

of view 30 mm; 1.2 mm slice thickness; 646412 (nrowncolnslice) data matrix; 

16 RARE factor). This sequence was repeated 50 times in a 5 minute imaging 

session of baseline data on 6 different rats. The dataset comprised of MRI functional 

volumes at the 35th time step of the study. 

 

Anatomy dataset (9.4T, 6 volumes) 

 

The imaging parameters of this dataset are similar to those published by Lu et al. 

(2007, 2008). The volumes were of a Sprague-Dawley rat, scanned with a Bruker 
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coil setup, 72 mm volume coil for RF transmission with a 3 cm flat receiver surface 

coil. The imaging protocol was a RARE sequence (Eff TE 40 ms; TR 2520 ms; field 

of view 35 mm   35 mm; 1 mm slice thickness; matrix size 192192, zero-padded 

to 256256 for reconstruction). For the purposes of this study 18 slices from +6 mm 

to -11 mm AP (Paxinos and Watson 1998) in a coronal plane passing through the 

Bregma were considered.   

 

 

2.3.2 Parameters employed  

 

The algorithm employing the methods described in Section 2.2 is presented as a 

pseudo code in Table 2.2. The entire algorithm was implemented in MATLAB 2007b 

(Mathworks, MA, U.S.A). 

 

The input grayscale brain volumes were treated as the subject data and individually 

referred to as ‘grayscaleAnatomy’ variable in Table 2.2. The PCNN algorithm was 

implemented and the ‘PCNNInputParametersVector’ of Table 2.2 contained 

numerical values of the various PCNN parameters, F , L , T ,  , TLF VVV ,, , and r  

described in Table 2.1. The PCNN image signature was determined for each slice 

based on equation (2.6) summing to 50% (parameter described by ‘areaCutOff’ in 

Table 2.2) of the image space.  This length N of each PCNN image signature vector 

was generally in the range of 40-50 iterations. The grayscale anatomy file was 

passed to the PCNN algorithm and the N binary output pulses for each slice 
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computed, which corresponds to A  of equation (2.7) and held in variable 

‘binaryPCNNIterations’. This data was further processed by means of a binary 

morphological operation to break ‘bridges’, as described in section 2.2.3. The value 

of the ‘bridge’ radius p was set to 2 for this study. This setting allowed for small 

‘bridges’ to be broken, early in the PCNN iteration. A higher value of the 

variable p would be useful when larger strands connect the brain tissue with 

surrounding tissue. 

 

The neural network classifier in direct relation to the choice of the number of pulses 

had N input neurons, two hidden layers of 24 and 12 neurons and one output. For 

purposes of training, 7 rat volumes were used, each containing 12 slices.  The 

activation function of the hidden layer was chosen to be a nonlinear hyperbolic 

tangent function while that of the output layer was linear.  The ‘newff’ and ‘train’ 

functions available in Matlab 2007b’s Neural Network toolbox V5.1 was used to train 

the classifier using the gradient descent with momentum backpropagation algorithm.    
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function [autoCroppedBrainVolume(nrow,ncol,nslice)] = 

autoCrop[grayscaleAnatomy(nrow,ncol,nslice),  areaCutOff, PCNNInputParametersVector] 

for i = 1 : nslice 

      j = 1; PCNNImageSignature(i,j) = 0; 

      while (PCNNImageSignature(i,j))/(nrow * ncol) <= areaCutOff 

            // PCNN returns binary array A on input of S (see equations (2.1) - (2.7)) 

            binaryPCNNIterations(:,:,i,j) = PCNN(greyscaleAnatomy(:,:,i),PCNNInputParametersVector),j) 

            // binary morphological operator to break ‘narrow bridges’ with a radius less than p pixels. 

            binaryPCNNIterations (:,:,i,j) = breakBridges(binaryPCNNIterations(:,:,i,j), p) 

            // assuming largest area of corresponding iteration contain the desired brain mask 

            binaryPCNNIterations(:,:,i,j) = largestArea(binaryPCNNIterations(:,:,i,j))  

            // stores image signature in vector form 

            PCNNImageSignature(i,j) = area(binaryPCNNIterations(:,:,i,j))  

            // increment counter  

             j = j+1;   

       end 

// determines iteration                        

choiceOfIteration = preTrainedNeuralNetworkClassifier(PCNNImageSignature(i,:))  

autoCroppedBrainVolume(:,:,i) = binaryPCNNIterations(:,:,i,choiceOfIteration) 

end      

 

Table 2.2. Pseudo code of rat brain cropping algorithm.  
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2.4 Discussion 

 

2.4.1 Results 

 

The PCNN based automated algorithm was tested on 42 volumes acquired on the 

three different rat brain acquisition parameter settings, described in Section 2.3. 

These volumes were different from the 7 data volumes used to train the ANN for 

automatic cropping. The compute time of the algorithm including original volume 

input (4.7 T, 25625612 anatomy volume) to cropped and mask volume outputs is 

about 5 minutes on a modern Pentium 4 class machine with 4GB RAM. Figure 2.8 

provides a qualitative handle of the results obtained using the proposed PCNN 

based brain extraction algorithm compared to BET. 

 

For purposes of numerical validation, we created manual masks for each of the 

volumes, employing MIVA (http://ccni.wpi.edu/miva.html) with the Swanson 

(Swanson, 1998), Paxinos and Watson (Paxinos and Watson, 1998) rat atlases for 

reference. The manually created masks served as the ‘gold’ standard. For a 

quantitative metric, we employed the Jaccard’s index (Jaccard, 1912). This index is 

a similarity measure in the range [0, 1], where 1 describes an ideal match between 

the subject mask SubA generated by the proposed algorithm and the ground truth 

represented by the manually created mask GM for that subject. The Jaccard 

similarity index is defined by: 
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We computed these indices using our automated PCNN algorithm for all volumes 

and summarized the results in Table 2.3. It has been established that popular 

automated brain extraction methods such as BET (Smith, 2002) have been 

inherently developed for cropping the human brain and offer lesser performance in 

cropping rat brain volumes (FSL). In the interest of experimentation we conducted 

tests on our rat brain volumes using BET V2.1. The average Jaccard index for these 

tests is also reported in Table 2.3. To obtain the highest BET score we scaled the rat 

brain image dimensions by a factor of 10 (Schwarz et al., 2007). We then manually 

specified the centre coordinates and initial radius of the rat brain for each individual 

animal. The fractional intensity threshold was iterated to 0.3 since the default setting 

of 0.5 yielded poor results.  

 

A paired Student’s t-test was conducted on the 4.7 T anatomy (256x256) dataset to 

test the null hypothesis that difference of means between the PCNN cropping 

method and BET V2.1 are a random sample from a normal distribution with mean 0 

and unknown variance. The one tailed test on 30 volumes yielded a P value < 

0.0001, effectively rejecting the null hypothesis at a 99.999 % confidence level in 

support of the alternate hypothesis that the mean Jaccard index of the PCNN 

method is higher than that of BET V2.1 for the 4.7 T anatomy (256x256) dataset. 

The corresponding t value equaled -14.06 and degrees of freedom were 29.      
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Dataset, Method Mean Std. dev. Median Min Max

4.7 T Dataset (256256), PCNN 0.93 0.02 0.94 0.89 0.94

4.7 T Dataset (256256), BET 0.84 0.04 0.85 0.70 0.85

4.7 T Dataset (128128) 2D rebinning, PCNN 0.92 0.02 0.92 0.88 0.94

4.7 T fMRI Dataset (6464), PCNN 0.91 0.03 0.91 0.87 0.95

9.4 T Dataset (256256), PCNN 0.95 0.01 0.95 0.94 0.96

9.4 T Dataset (256256), BET 0.78 0.05 0.78 0.71 0.84

9.4 T Dataset (128128) 2D rebinning, PCNN 0.93 0.02 0.94 0.91 0.95

 

Table 2.3. Lists the performance metrics of the automatic PCNN, BET V2.1 on the 

three different datasets described in the paper.  
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Figure 2.8. The 3 columns (L to R) represent the contours of the brain mask 

predicted by BET (Jaccard index 0.84), Manual gold standard (Jaccard index 1.0) 

and the Automatic PCNN (Jaccard index 0.95) overlaid on the corresponding 

anatomy image. 
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These results support our proposed automated brain extraction algorithm for small 

animals such as rats, as the BET results are significantly lower than that presented 

using the PCNN strategy.  

 

The PCNN as an algorithm has outstanding segmentation characteristics and as 

such independent of the image orientation and voxel dimension scaling. The PCNN 

readily segments the entire rat brain volume as delineated by Paxinos and Watson 

1998, (+6 to -15mm AP in a coronal plane passing through Bregma).  However, our 

current selection strategy identifies the largest area within the PCNN iteration mask.  

This poses a problem in extreme coronal slices (> +7mm AP) where the eyes are 

larger and brighter as a result of T2 weighting, than the brain region. Surface coils 

can inherently lower sensitivities in regions distant from the coil diminishing overall 

image intensities. The PCNN operates only on 2D regions and one of the PCNN 

iterations would normally capture the brain anatomy and that iteration would be on 

the plateau (Figure 6) identified by the proposed selection strategy.   

 

2.4.2 Alternate PCNN iteration selection strategies 

 

The main contribution of this paper is the recasting of a complex 2D image 

segmentation task into a selection of an appropriate point a 1D time series curve. 

Several alternate strategies may be employed to automate or otherwise train the 

classifier. The accumulated response (Figure 2.6) can be modeled as a first order 

response system 
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with the selected iteration corresponding to a value of 2 ionTpcnnIterat . Creating a 

trained ANN or augmenting an existing one can be done using the manual override 

option (Figure 2.5).  To illustrate, if a blank trained ANN is used, the system predicts 

the N/2 iteration and displays a 3x3 grid centered about the predicted iteration.  The 

iteration contours are superimposed on the grayscale image.  If the identified 

iteration is acceptable (N/2 in this example), one accepts the default and the next 

slice is analyzed.  If an alternate iteration is desired, the user identifies its number 

and the next slice is analyzed.  The process is the same for any decision pathway 

selected (blank ANN, partially trained ANN, trained ANN, or First Order Response).  

If the user specifies a manual override option, the PCNN output will display the 

forecasted iteration for each slice allowing the user to override its selection.  Once 

the volume set is analyzed the user has the option to merge the dataset responses 

into the trained ANN matrix.  

 

2.5 Conclusion  

 

A novel, brain extraction algorithm was developed and tested for automatic cropping 

of rat brain volumes. This strategy harnessed the inherent segmentation 

characteristics of the PCNN to produce binary images. These image masks were 

mapped onto a timeline curve rendering the task into an appropriate iteration 
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selection problem.  The surrogate ‘time’ signature was passed to a previously 

trained ANN for final iteration selection. The algorithm was tested on rat brain 

volumes from 3 different acquisition configurations and quantitatively compared 

against corresponding manually created masks which served as the reference. Our 

results conclusively demonstrate that PCNN based brain extraction represents a 

unique, viable fork in the lineage of the various brain extraction strategies.  

 

2.6 Supplementary Material 

 

The PCNN code and data (4.7T 25625612 anatomy volumes, ‘Gold’ standard 

masks) described in this chapter are available as a supplementary download 

(NeuroImage/Elsevier web products server) on a ‘Non profit, academic/research 

use only’ type of license. The included code is suitable for a Matlab 2007b 

environment with Image Processing Toolbox V2.5 and Neural Network Toolbox 5.1. 
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Chapter 3  

Multiple region segmentation using a PCNN 

 

3.1 Introduction: 

 

Automatic brain tissue segmentation into GM (Grey Matter), WM (White Matter) and 

CSF (Cerebro-Spinal Fluid) classes is a basic requirement for conducting 

quantitative statistical tests on large sets of subjects (Cocosco, et al. 2003), 

(Zijdenbos, et al. 2002) and GM atrophy detection and monitoring in patients with 

multiple sclerosis (MS)  (Nakamura and Fisher 2009). Published brain tissue 

classification approaches may be broadly classified based on the principal image 

segmentation (Pham, et al. 2000) strategy employed: Thresholding (Schnack, et al. 

2001),  Classifier based (Ashburner and Friston 2005; Hasanzadeh and Kasaei  

2008), a priori Atlas-Guided, Clustering, Deformable models, Markov Random Field 

Models (Rivera, et al. 2007) and Artificial Neural Networks (Reddick, et al. 1997). 

Most recent published methods are hybrids, employing combinations of several 

image segmentation methods (Cocosco, et al. 2003; Nakamura and Fisher 2009) to 

improve voxel classification accuracy.   

 

In this paper we introduce the Pulse Coupled Neural Network (PCNN) as a viable 

multiple material segmentation algorithm. The PCNN is based on neurophysiological 

studies of the primary visual cortex of a cat by Eckhorn et al.(1990). They developed 

a neural network model that captured the observed global linking of cell assemblies 
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as a result of feature similarity in sensory systems. The specific algorithm used in 

this article is the Eckhorn (Eckhorn, et al. 1990) model implemented by Johnson and 

Padgett (1999) and Waldemark et al. (2000). In this formulation, the PCNN operates 

on 2D grayscale data. In Figure 1b through Figure 1f, we graphically illustrate the 

segmentation characteristics of the PCNN operating in ‘accumulate’ mode 

(discussed subsequently), on a cropped T1 weighted brain data (from volume 1_24, 

IBSR), Figure 3.1a (IBSR). In this illustration, the accumulated iterations are capped 

at unity. By observation, the problem is one of identifying which iteration yields the 

best segmentation. Note that in Figure 3.1f, the PCNN iteration number 110 bleeds 

into the zero intensity region beyond the cropped brain anatomy. Subsequent PCNN 

iterations would fill up the entire 2D space.  
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Figure 3.1. Subfigure (a) is a sample cropped grayscale slice from the IBSR volume 

1_24. Subfigures (b)-(f) illustrate the raw, accumulated binary PCNN iterations 

5,10,15,20 and 110 respectively. 

 

The PCNN (Murugavel and Sullivan Jr. 2009a) has successfully been used to 

automatically crop T2 weighted rat brain volumes. Figure 3.2 illustrates sample 

results obtained. The reported PCNN algorithm was engaged in ‘accumulate’ mode 

on individual grayscale slices and thresholded at unity. A morphological operator 

was applied to break ‘bridges’ that thinly connected large adjacent regions. The 

algorithm selected the largest contiguous area from each PCNN iteration. The binary 

area occupied at each PCNN iteration was used as a time series signature on the 

lines of Muresan (2003) to train an ANN (Artificial Neural Network) to effect 

successful cropping. 
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Figure 3.2. Subfigure (a) illustrates a 3D surface mesh (Ziji Wu 2003) of the rat brain 

overlaid with 3 cropped grayscale slices. Subfigures (b) – (d) illustrate the brain 

masks obtained using the automatic PCNN algorithm (Murugavel and Sullivan Jr. 

2009a). 

 

The work herein is focused on segmentation of brain tissue rather than brain 

cropping. Brain extraction or cropping is essentially a subset of general image 

segmentation strategies (Murugavel and Sullivan Jr. 2009a) wherein one material 

(the brain) is segmented from surrounding tissue.   
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3.2. Materials and Methods 

 

3.2.1 The Eckhorn Pulse Coupled Neural Network: 

  

The PCNN operates on 2D grayscale intensity images described by variable ijS with 

i,j describing the location of each grayscale pixel and the corresponding PCNN 

‘neuron’. Each PCNN neuron is directly coupled to a set of neighboring neurons 

encompassed by a predefined radius r , known as the ‘linking field’ (Waldemark, et 

al. 2000). The functionality is effected by means of a Feeding and Linking 

compartment, described by arrays ijF  and ijL , each of dimension equaling the 2D 

input grayscale image, linked by two synaptic weighting matrices M and W . The 

synaptic weighting matrix is square with a dimension of )12( r  and is a normalized 

Gaussian about the center of the square matrix.  

 

    ijFijijij nYMVSnFenF F ])1[*(1       (3.1) 

 

    ijLijij nYWVnLenL L ])1[*(1        (3.2) 

 

      nLnFnU ijijij  1        (3.3) 

 

     nYVnTenT ijTijij
T   1       

 (3.4) 
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  1nYij  if     nTnU ijij         (3.5) 

 

  0nYij  if     nTnU ijij         (3.6) 

 

The PCNN is implemented by iterating through equations (3.1)-( 3.6) with n  as the 

current iteration index and ranging from 1 to N  (the total number of iterations). The 

matrices ]0[],0[],0[ ijijij ULF  and ]0[ijY  were initialized to a zero matrix, while ]0[ijT  

was initialized to a unit matrix. For each iteration, the internal activation ijU  is 

computed and compared against the threshold ijT . Thus, the array  nYij  is a binary 

image representing the PCNN mask at that particular iteration.  

 

The PCNN coefficients used in this article were originally sourced from the work of 

Johnson and Padgett (1999) and Waldemark et al. (2000). The same constants 

were used for rat brain cropping (Murugavel and Sullivan Jr. 2009a). F , L , T are 

iteration (surrogate time) constants that determine the internal state of the network 

effecting exponential decay and TLF VVV ,, are magnitude scaling terms for Feeding, 

Linking and Threshold components of the PCNN. * is the two dimensional 

convolution operator.   is a parameter affecting linking strength, Table 3.1.   
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Constant PCNN coefficient Context 

  0.2 Linking strength 

F  0.3 Feeding decay 

L  1 Linking decay 

T  10 Threshold decay 

FV  0.01 Feeding coupling 

LV  0.2 Linking coupling 

TV  20 Magnitude scaling term for threshold

r  3 Radius of linking field 

 

Table 3.1: The values of the PCNN coefficients used in this algorithm were sourced 

from Johnson and Padgett (1999) and Waldemark, et al. (2000). Further coefficients 

TLFTLF ,,,, /2ln    as described by Waldemark, et al. (2000). 

 
 

Our implementation of the PCNN operates in the ‘accumulate’ mode: that is, each 

iteration sums its contributions with the previous PCNN iterations. 

 

    kYnA
n

k
ijij 




1

        (7) 
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3.2.2 Minimum Error Thresholding 

 

The segmentation effected by the PCNN was characterized by the multiple threshold 

clustering method proposed by Kittler and Illingworth (1986). A recent review paper 

by Sezgin and Sankur (2004) surveyed and quantitatively compared the 

performance of 40 different thresholding methods categorized by the information 

space the methods exploit. The domains spanned histogram shape, measurement 

space clustering including fuzzy algorithms, entropy including cross entropy and 

fuzzy entropy methods, object attributes, spatial correlation and locally adaptive 

thresholding methods. Their study ranked the method of Kittler and Illingworth 

(1986) as the top performer among the 40 different methods surveyed. Within the 

MRI segmentation domain, the minimum error thresholding method has found 

application in initializing the FCM (Fuzzy C Means) clustering component of the 

unsupervised T1 weighted MRI brain segmentation algorithm proposed by Xue et al. 

(2003).    

 

Consider a grayscale imageS , with gray levels g, whose histogram )(gh  has m  

modes representing a mixture of m  normal densities. Kittler and Illingworth (1986) 

had shown the optimal separation thresholds Xi can be obtained at the minimum of 

the criterion, J, described by equation 8. 

         ,loglog21,...,
1

1 


 
m

i
iiiiiim XPXXPXXJ       (3.8)  
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where a priori probability  ii XP , modal mean  ,ii X  and standard deviation  ii X  

are described by equations (3.9) – (3.12). 
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3.2.3 1D ‘Time signature’ representation of multi region segmentation 

 

In this section we demonstrate the idea of the multi-threshold extension of Kittler and 

Illingworth’s (1986) method to generate a stopping criterion for the PCNN iteration.  

 

If priori information on the number of regions, nRegions, were available, it is possible 

to compute the corresponding segment proportion ( ins , with 1
Re

1




gionsn

i
ins  and 1ins  

), mean ( ins ) and standard deviation ( ins ). Since the minimum error criterion (see 

equation (3.8)) is based on the minimization of the Kullback Information distance 

(Demirkaya et al. 2009; Haralik and Shapiro 1992), we can construct a time series 

representation of the multiple region segmentation on the lines of equation (3.8). 
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gionsn

i
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Re

1

loglog21                                                              (3.13) 

 

The minimum of this function was found to yield the optimal segmentation among 

the various PCNN iterations with nRegions. We illustrate this procedure on a 

simulated dataset provided by IBSR. Figure 3.3(a) shows a 3 region shape phantom 

with a Signal to Noise Ratio (SNR) of 15. We introduced a cropping on the original 

dataset to better represent the cropped brain anatomy, comprising of 3 regions CSF, 

GM and WM. Figure 3.3(b) illustrates the corresponding PCNN time series 

signature. The segmentation corresponding to the minimum value on the curve is 

selected and presented in Figure 3.3(c).  
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Figure 3.3. Illustrates the adaptation of the Kittler Illingworth (1986) method to 

segment multiple regions on a simulated dataset. Figure 3(a) shows a 3 region 

grayscale image (IBSR simulated data) corrupted with noise (SNR = 15). Figure 

3.3(b) is a plot of the computed PCNN Kittler – Illingworth time measure for 3 

regions against the corresponding accumulated PCNN iterations. Figure 3.3(c) 

shows the accumulated pulse 102, which corresponds to the minimum of the time 

series representation in Figure 3.3(b).  
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3.2.4 ANN based selection 

 

Posing the 2D segmentation problem as a 1D time series signature enables the 

option of training an ANN to select the appropriate PCNN iteration. Multi Layer 

Perceptron (MLP) is a widely used supervised feedforward ANN model (Haykin 

1998; Murugavel and Sullivan Jr. 2009a)  that can be trained via standard 

backpropogation algorithms to map a vector of inputs to a suitable output. Figure 3.4 

illustrates accumulated PCNN iterations  nA  (described by Equation (3.7)) of the 

grayscale brain slice illustrated in Figure 3.1(a). Each accumulated PCNN iteration 

yields a potential segmentation. Subfigure 3.4(a) is the third accumulated PCNN 

iteration and consists of only 1 region (WM). Subfigure 3.4(b) consists on only one 

region, but is included to highlight the opportunity it accords to segment CSF, which 

is highlighted within the surrounding white colored region (combined WM and GM). 

Subfigures 3.4(c) and 3.4(d) encompass two regions WM (colored white) and GM 

(yellow). Subfigures 3.4(e) and 3.4(f), with included colorbars, are segmentations 

containing 4 and 5 regions respectively. Note that the brighter intensities correspond 

to WM; darker shades (orange, red) correspond to CSF while the mid intensities 

(yellow) correspond to GM.     
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Figure 3.4. Subfigures (a)-(f) illustrate the raw, accumulated PCNN iterations 3, 13, 

50, 54, 148 and 242 of the grayscale slice illustrated in Figure 3.1(a). 

 

Figure 3.5 shows a characteristic 1D PCNN time signature based on the Kittler-

Illingworth formulation (Equation 3.13, with number of regions set to two, GM and 

WM segmentation) for the grayscale slice described in Figure 3.1(a). The signature 

will be similar for a particular segmentation problem, for example GM, WM 

segmentation. In this work we generate a training set based on a single brain 

volume from the ISBR database (IBSR) by generating the PCNN image signatures 

for each grayscale sliceS and automatically selecting the best GM-WM 

segmentation from the corresponding manual mask by maximizing the Jaccard 

Index (explained subsequently). Alternately, the best GM-WM segmentation may be 
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selected manually from among the various accumulated PCNN iterations as an 

interactive tool which can be used for training the MLP. This latter option is useful in 

situations where prior reference masks do not exist. 

 

Figure 3.5. Plot of the computed PCNN Kittler – Illingworth time measure for 2 

regions against the corresponding accumulated PCNN iterations. 

 

The neural architecture of the MLP used in this article consists of one input layer, 

two hidden layers and a single output neuron. The input layer neurons directly map 

to the Kittler-Illingworth PCNN signature which is a vector of dimension N. The 

vector is normalized using the min-max method as described by Umbaugh, S.E. 

(2005) for efficient supervised training using the back propagation algorithm. The 

two hidden layers consisted of about 0.5 N and 0.25 N neurons, respectively. The 

single output neuron identifies the PCNN iteration corresponding to the best GM-WM 

segmentation.  
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3.2.5 Gaussian Mixture Model (GMM) based selection 
 
 
GMM based methods have been widely adopted to address the GM-WM-CSF 

segmentation problem (Ashburner and Friston 2005). A distribution describing a 

grayscale imageS , consisting of only those pixels within the cropped brain can be 

modeled by a mixture of k Gaussians (Ashburner and Friston 2005). This univariate 

mixture with pixel intensities x, can be represented as the following weighted 

summation of k class conditional probability distribution functions (Demirkaya, et al. 

2009).  
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where i , i , i  represent the mean, standard deviation and mixing proportion of 

class i. with 1
1




k

i
i  and 1i .  

 

The standard Expectation Maximization (EM) (Dempster, et al. 1977; Bishop 1995) 

algorithm can be used to as an estimator to generate a  feature vector consisting of 

means, standard deviations and mixing proportions of the k Gaussians of each 

grayscale image,  kkke  ......ˆ 111 . As described in Section 3.2.3, 

accumulated PCNN iterations  nA  may be computed for each grayscale image S. 

With access to a priori information on the number of regions (equal to k), we can 

generate a feature vector for each PCNN 
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iteration,  knnknnknnn sssssse  ...... 111 , similar to the estimate ê  

from the GMM-EM formulation described in this section. In this implementation, the 

subscript n represents only those accumulated PCNN iterations with a total of k 

regions. The appropriate choice of the PCNN segmentation is simply that iteration n, 

which minimized the Euclidean norm nee ˆ . This strategy is unsupervised and 

requires no prior classifier training.  

 

 
3.3. Experiment details 

 

3.3.1 Data 

 

The 20 normal T1 weighted MR brain data sets and their manual segmentations 

were provided by the Center for Morphometric Analysis at Massachusetts General 

Hospital and are available at http://www.cma.mgh.harvard.edu/ibsr/. 

 

3.3.2 Parameters employed in the ANN based selection method 

 

The algorithms described in the ANN based selection method is presented as 

pseudo code in Table 3.2. The algorithm was implemented in Matlab 2008a 

(Mathworks, MA, U.S.A.).  The 19 input grayscale brain volumes from IBSR were 

treated as the subject data and individually addressed by the 

‘croppedGrayscaleAnatomy’ variable in Table 3.2. The PCNN algorithm was 

implemented and the ‘PCNNInputParametersVector’ of Table 3.2 contained 
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numerical values of the various PCNN parameters, F , L , T ,  , TLF VVV ,, , and r  

described in Table 3.1. In this implementation, the number of regions, ‘nRegions’, 

was set to two (considered only GM and WM). CSF was ignored as it did not occur 

in all the slices and the overall proportion of CSF is negligible in comparison to GM 

and WM. Several researchers working with this dataset have either not reported 

CSF (Shan Shen, et al. 2005; Solomon, et al. 2006) or have pooled CSF and GM 

(Rivera, et al. 2007) voxels.  The PCNN time series representation, 

‘kittlerIllingworthPCNNTimeSeries’ was determined for each slice based on equation 

(3.13). The length of the time series vector was generally in the range of 80-90 

iterations. This vector was normalized to length N = 84 to match the pre-trained ANN 

classifier.  The neural network classifier in direct relation to the choice of the number 

of pulses had N input neurons, two hidden layers of 40 and 12 neurons and one 

output. For purposes of training, a single human brain volume with the identifier 

‘1_24’ consisting of 55 slices was used. The activation function of the hidden layer 

was chosen to be a nonlinear hyperbolic tangent function while that of the output 

layer was linear.  The ‘newff’ and ‘train’ functions available in Matlab 2008a’s Neural 

Network toolbox V6.0 were used to train the classifier using the gradient descent 

with momentum backpropagation algorithm.    

 

3.3.3 Parameters employed in the GMM – EM based selection method 

 

The algorithms described in the GMM – EM based selection method is presented as 

pseudo code in Table 3.3. The algorithm was implemented in Matlab 2008a 
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(Mathworks, MA, U.S.A.).  The 20 input grayscale brain volumes from IBSR were 

treated as the subject data and individually addressed by the 

‘croppedGrayscaleAnatomy’ variable in Table 3.3. The PCNN algorithm was 

implemented and the ‘PCNNInputParametersVector’ of Table 3.3 contained 

numerical values of the various PCNN parameters, F , L , T ,  , TLF VVV ,, , and r  

described in Table 3.1. In this implementation, the number of regions, ‘nRegions’, 

was set to three (GM, WM and CSF were considered). The grayscale intensities of 

each individual 2D slice S were modeled as a mixture of three Gaussians and the 

basic EM algorithm described by the function ‘gmmb_em’ operating with default 

parameters, available as part of the GMMBayes Toolbox Version 1.0 (open source 

GNU license, http://www.it.lut.fi/project/gmmbayes) was used to generate the 

estimated feature vector  kkke  ......ˆ 111 . The Euclidean distance 

between the estimated feature vector described by the variable 

‘estimatedFeatureVector’ and each of the individual feature vectors, described by 

variable ‘featureVec’ was computed, ‘euclideanDistance’.  The three region 

segmentation for each grayscale slice S is the accumulated PCNN iteration that 

corresponds to the minimum of the vector, ‘euclideanDistance’.  
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function [segmentedBrainVolume(nrow,ncol,nslice)] = 

autoSegPCNNTimeSeries[croppedGrayscaleAnatomy(nrow,ncol,nslice),  PCNNInputParametersVector, 

nRegions] 

for i = 1 : nslice 

// PCNN returns accumulated array A on input of S (see equations (3.1) - (3.7)). Cropped brain mask  

// applied on each iteration. Function returns only accumulated PCNN iterations with a total of nRegions. 

accumulatedPCNNIterations = pcnnAccumulateMode(croppedGrayscaleAnatomy(: , : , i),  

PCNNInputParametersVector, nRegions) 

// Determine number of PCNN pulses in the accumulatedPCNNIterations volume 

[nrow, ncol, noPulses] = size(accumulatedPCNNIterations) 

// Initialize Kittler-Illingworth based time series vector 

kittlerIllingworthPCNNTimeSeries(1 : noPulses) = 0 

// Begin loop to compute the time series vector 

for j = 1 : noPulses 

if noRegions(accumulatedPCNNIterations(: , : , i) ) == nRegions 

kittlerIllingworthPCNNTimeSeries( j ) =                              

computeKittlerIllingworthMeasure(accumulatedPCNNIterations(: , : , i) 

end 

end 

// Normalize the time series vector to Length N and range 0 to 1 (see Section 3.2.4) 

kittlerIllingworthPCNNTimeSeries = minMaxAndLengthNorm(kittlerIllingworthPCNNTimeSeries) 

// Begin ANN based prediction 

segmentedBrain(nrow, ncol, i) = preTrainedNeuralNetworkClassifier(kittlerIllingworthPCNNTimeSeries) 

end 

Table 3.2. Pseudo code of PCNN – ANN based selection method 
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function [segmentedBrainVolume(nrow,ncol,nslice)] = 

autoSegPCNNGaussian[croppedGrayscaleAnatomy(nrow,ncol,nslice),  PCNNInputParametersVector, nRegions] 

for i = 1 : nslice 

// PCNN returns accumulated array A on input of S (see equations (3.1) - (3.7)). Cropped brain mask  

// applied on each iteration. Function returns only accumulated PCNN iterations with a total of nRegions. 

S = croppedGrayscaleAnatomy(: , : , i) 

accumulatedPCNNIterations = pcnnAccumulateMode(S, PCNNInputParametersVector, nRegions) 

// Determine number of PCNN pulses in the accumulatedPCNNIterations volume 

[nrow, ncol, noPulses] = size(accumulatedPCNNIterations) 

// Estimate the means, standard deviations and mixing proportion of the nRegions (GM, WM and CSF) in  

// S  [eMu1 ..  eMunRegions eSD1 .. eSDnRegions eMp1 .. eMpnRegions] (see section 3.2.5) 

estimatedFeatureVector = gmmEM(S, nRegions) 

// Begin loop to compute feature vector (identical to the estimate ) for individual PCNN iterations, distance  

// measure 

for j = 1 : noPulses 

if noRegions(accumulatedPCNNIterations(: , : , i) ) == nRegions 

// compute feature vector [Muj,1 ..  Muj,nRegions SDj,1 .. SDj,nRegions Mpj,1 ..  

// Mpj,nRegions]  

featureVec(j) =  

computeMeansStdDevProportions(accumulatedPCNNIterations, S) 

// Euclidean distance between estimate and computed feature vector of each  

// iteration 

euclideanDistance(j) = euclideanNorm(estimatedFeatureVec – featureVec(j)   

end 

end 

// Begin GMM – EM based selection. Select PCNN iteration corresponding to min of euclidean distance 

segmentedBrain(nrow, ncol, i) = minSelect(euclideanDistance, accumulatedPCNNIterations) 

end  

Table 3.3. Pseudo code of PCNN – GMM EM based selection method 
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3.4. Results and Discussion 

3.4.1 Results 

The PCNN based segmentation algorithms described in Sections 3.3.2 (PCNN time 

series – ANN) and 3.3.3 (PCNN – GMM – EM selection) were tested on the 20 

volumes obtained from IBSR. A modern Pentium 4 class machine with 4 GB RAM 

was employed for testing each algorithm. The compute time of the PCNN time series 

– ANN selection algorithm including original volume input to segmented outputs is 

about 2 minutes.  The PCNN – GMM – EM selection algorithm averaged about 4 

minutes for each brain volume. Qualitative results obtained by the proposed 

methods are described in Figure 3.6 and compared against the manual masks 

provided by IBSR.  
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Figure 3.6. Qualitative comparison of the performance of the PCNN ANN and the 

PCNN – GMM EM algorithms is shown. Rows (a) through (c) span the brain 

spatially. The two extreme columns show segmentation results from the PCNN ANN 

and PCNN – GMM EM algorithms, respectively. The middle column shows the 

corresponding manual mask obtained from IBSR. 
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For purposes of numerical validation, the manual masks provided by IBSR were 

considered as the ‘gold standard’. As a quantitative comparison metric, we 

employed the Jaccard index (Jaccard 1912) for each class. This is identical to the 

Tanimoto coefficient (Duda and Hart 1973). Since Rajapakse and Kruggel (1998) 

this overlap metric has been employed by multiple researchers (IBSR publications) 

to report the performance of their respective methods on the IBSR data. For each 

region (GM, WM, CSF) this index is a similarity measure in the range [0, 1]. A 

numerical value of 1 for a particular region and subject, describes an ideal match 

between the corresponding mask )(Re, igionSubA  (with region index i ranging from 1 to 

number of regions) generated by the algorithm being evaluated and the ground truth 

represented by the ‘gold standard’ for that particular region, )(Re, igionGM . The Jaccard 

similarity index is defined by: 

 
)(Re,)(Re,

)(Re,)(Re,

)(Re,

igionGigionSub

igionGigionSub

igionSub
MA

MA
Jaccard




  

We computed these indices for each of the 20 volumes using the proposed PCNN 

time series – ANN and the PCNN – GMM – EM selection methods. The results 

obtained from our automated methods for each individual subject are summarized in 

Table 3.4. In Table 3.5 we have included a comprehensive comparison of the PCNN 

based methods against previously published methods on the IBSR data. These 

results demonstrate the viability of PCNN based segmentation strategies in 

addressing complex segmentation tasks.  
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Brain ID 

PCNN - ANN 
selection PCNN -  EM selection 

GM WM GM  WM CSF 

100_23 0.812 0.715 0.813 0.680 0.143 

110_3 0.757 0.493 0.811 0.676 0.050 

111_2 0.782 0.673 0.795 0.708 0.107 

112_2 0.769 0.600 0.770 0.669 0.113 

11_3 0.784 0.661 0.806 0.705 0.143 

12_3 0.765 0.621 0.781 0.633 0.232 

13_3 0.726 0.470 0.776 0.634 0.068 

15_3 0.681 0.577 0.636 0.572 0.085 

16_3 0.735 0.606 0.677 0.585 0.062 

17_3 0.770 0.683 0.729 0.649 0.077 

191_3 0.724 0.670 0.815 0.694 0.060 

1_24 0.706 0.648 0.790 0.703 0.141 

202_3 0.699 0.650 0.810 0.688 0.467 

205_3 0.671 0.652 0.802 0.691 0.378 

2_4 0.600 0.552 0.657 0.561 0.011 

4_8 0.651 0.575 0.627 0.557 0.029 

5_8 0.753 0.640 0.729 0.648 0.088 

6_10 0.729 0.630 0.733 0.667 0.111 

7_8 0.600 0.584 0.788 0.701 0.096 

8_4 0.631 0.608 0.766 0.679 0.042 
 

Table 3.4 Jaccard indices obtained on each subject of the IBSR database for each 

class. Indices are presented for both the PCNN - ANN selection and the PCNN - 

GMM EM selection strategies. 
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Grey White  CSF Method Reference 

0.56 0.57 0.07 adaptive MAP 
IBSR, Rajapakse and 

Kruggel (1998) 

0.56 0.56 0.07 biased MAP 
IBSR, Rajapakse and 

Kruggel (1998) 

0.47 0.57 0.05 fuzzy c-means 
IBSR, Rajapakse and 

Kruggel (1998) 

0.55 0.55 0.07 
Maximum Aposteriori Probability 
(MAP) 

IBSR, Rajapakse and 
Kruggel (1998) 

0.53 0.55 0.06 Maximum-Likelihood 
IBSR, Rajapakse and 

Kruggel (1998) 

0.48 0.57 0.05 tree-structure k-means 
IBSR, Rajapakse and 

Kruggel (1998) 

0.53   0.64 n/a 
fuzzy c-means with Neural 
Network Optimization 

Shan Shen, et al. 
(2005) 

0.58 0.69 n/a 
Hidden Markov Model (16 
volumes) Solomon, et al. (2006)

0.59 0.63 0.21 
Data-driven, Edge confidence, a 
priori information 

Jimenez-Alaniz, et al. 
(2006) 

0.72 0.61 n/a 
PCNN, time series, ANN 
selection (19 volumes) 

Proposed (Section 
3.2.4) 

0.66 0.68 n/a 
Mamimizer of Posterior Marginals 
(MPM) MAP 

Marroquin, et al. 
(2002) 

0.77 0.67 n/a Hidden Markov Model Ibrahim, et al. (2006) 

0.76 0.66 0.13 
PCNN, EM Maximization 
stopping 

Proposed (Section 
3.2.5) 

0.79 0.70 0.57 Fuzzy Membership connectedness 
Maryam Hasanzadeh 

(2008) 

0.82 0.74 n/a 
Entropy controlled quadratic 
Markov measure field Rivera, et al. (2007) 

0.88 0.83 n/a 
Manual (4 brains averaged over 
2 experts) IBSR 

 

Table 3.5. Comprehensive comparison of published average Jaccard indices on the 

20 T1 weighted volumes available at IBSR. 
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Two statistical tests were conducted to compare the performance of the PCNN-

GMM-EM method against previously proposed methods, such as the Maximum 

Likelihood and tree-structure k-means (IBSR; Rajapakse and Kruggel (1998)). 

These two methods were chosen as their respective performance metrics (Jaccard 

index) were reported for individual volumes on IBSR.  A paired Student’s t-test was 

conducted to test the null hypothesis that difference of means between the PCNN-

GMM-EM selection strategy and previously proposed methods (Maximum 

Likelihood, tree-structure k-means) are a random sample from a normal distribution 

with mean 0 and unknown variance. For GM, the one tailed test on 20 volumes 

yielded a P value < 0.0001 for both methods (Maximum Likelihood, tree-structure k-

means), effectively rejecting the null hypothesis at a 99.999 % confidence level in 

support of the alternate hypothesis that the mean Jaccard index of the PCNN- GMM-

EM method is higher than that of Maximum Likelihood and tree structure k-means. 

The corresponding t values equaled -7.75 and -14.07 respectively. Similar tests on 

WM segmentation effectively rejected the null hypothesis at a reduced 95 % 

confidence level, with p values equaling 0.0101 (t value = -2.54) and 0.0244 (t value 

= -2.10) respectively for the Maximum Likelihood and tree structure k-means 

methods. 

 

3.4.2 Discussion  

 

The main contribution of this paper is the demonstration and quantitative evaluation 

of the PCNN as a viable, multiple material segmentation strategy in automatically 
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segmenting T1 weighted MRI volumes. Previous pioneering work using the PCNN 

showed qualitative segmentation results (Keller and McKinnon 1999; Kuntimad and 

Ranganath 1999; Lindblad and Kinser 2005). However, they did not include 

quantitative evaluation on open databases.  We further introduced a novel time 

series representation of a complex 2D multiple region segmentation task and 

demonstrated an ANN based method that can be rapidly adapted for various 

segmentation tasks. An unsupervised PCNN iteration selection strategy was 

introduced in the PCNN – GMM EM section. In Table 3.5, our highly successful 

automated results on 20 volumes compare well against manual results obtained on 

4 brain volumes averaged over two experts. These results viewed against the 

backdrop of Figure 3.4 (see accumulated pulse numbers 148, 242 with number of 

regions > 3) show qualitatively that accumulated PCNN iterations can approach a 

human eye’s intensity delineation limits. Most recent segmentation methods require 

a priori information in the form of tissue probability maps (Jimenez-Alaniz, et al. 

2006). While such an approach is clearly not suitable in situations where there is 

significant difference between the brain tissue atlas and the subject, it provides the 

option of improving subject voxel classification accuracy. For example, such prior 

information can be used to train two different classifiers (GM-WM, GM-WM and 

CSF) depending on the a priori prediction of the number of classes in a particular 2D 

grayscale slice. Hybrid methods (Ségonne, et al. 2004) involving pooling of results 

from multiple segmentation algorithms constitute another trend that could be 

adapted in augmenting PCNN based segmentation of brain tissue. The accumulated 

PCNN iteration that best matches the results from a different segmentation algorithm 
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will increase the overall probability of correct tissue classifications in the hybrid 

method.   

 

3.5 Conclusions 

Two novel PCNN based algorithms (PCNN – ANN, PCNN – GMM EM) were 

developed and tested for automatic segmentation of human T1 weighted MRI brain 

volumes. The PCNN – ANN based selection method introduced the concept of a 1D 

time series representation of a 2D multiple material segmentation task. This 

signature was then used to train a ANN based classifier to automatically segment 

brain tissue into GM – WM classes. The PCNN – GMM EM method is completely 

unsupervised and was used to segment brain tissue into GM – WM – CSF. Both 

algorithms were tested on the 20 normal T1 weighted MRI brain volumes from 

Harvard’s Internet Brain Segmentation Repository. Our quantitative results 

conclusively demonstrate that PCNN based multiple material segmentation 

strategies can approach a human eye’s intensity delineation capability in grayscale 

image segmentation tasks.   

 

3.6 Supplementary Material 

 

The PCNN code of the two algorithms described in this chapter will be made 

available as a supplementary download on a ‘Non profit, academic/research use 

only’ type of license. The included code is suitable for a Matlab 2008a environment 

with the corresponding Image Processing Toolbox and Neural Network Toolbox 6.0. 
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The 20 T1 weighted human brain volumes and their corresponding expert 

segmentations described in this article are available at 

http://www.cma.mgh.harvard.edu/ibsr/. The data will need to be converted into 

SDT/SPR (http://www.cmrr.umn.edu/stimulate/stimUsersGuide/node57.html) file 

format employed by programs such as MIVA (http://ccni.wpi.edu/)  and Stimulate 

(http://www.cmrr.umn.edu/stimulate/). The GMMBayes Toolbox Version 1.0 (open 

source GNU license) used in the PCNN – GMM EM algorithm is available at, 

http://www.it.lut.fi/project/gmmbayes.  
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Chapter 4  
 
Automatic cropping and segmentation of MRI breast 
volumes using Pulse Coupled Neural Networks 
 
 
4.1 Introduction 

Alternative breast imaging modalities such as MR Elastography (MRE), Electical 

Impedance Spectroscopy (EIS), Microwave Imaging Spectroscopy (MIS) and Near 

Infrared Imaging (NIS) are being developed (Paulsen, et al. 2005). They are ‘model-

based’ modalities (Paulsen, et al. 2005) requiring iterative, convergent, numerical 

techniques to map non-linear data to a target volume. MR image data is often used 

for comparison and validation purposes (Brooksby, et al. 2006). Frequently finite 

element models (FEM) for such applications are generated from MR images of the 

breast. Constructing a FEM requires cropping of the breast volume from the 

surrounding air and/or the receiver, driving transducer arrays of the alternate breast 

imaging modalities which are frequently in contact with the breast tissue during MR 

image acquisition.  Predicting breast tissue deformation (Plewes, et al. 2000; 

Samani, et al. 2001; Lee, et al. 2009) via biomechanical modeling (FEM) of breast 

tissue is a necessary requirement for certain surgical and biopsy procedures which 

utilize images acquired under significant tissue deformation.  Other applications of 

breast MR segmentation include tissue monitoring (Reichenbach, et al. 1999; Nie, et 

al. 2008),  precursor to automated lesion classification  (Ertaş, et al. 2008), volume 

registration (Gong and Brady 2008) and correlation studies between mammogram 

data and MR volumes (Wei, et al. 2004; Klifa, et al. 2004). 
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While MR based methods such as dynamic contrast – enhanced (DCE-MRI) have 

shown great potential as diagnostic tools in addressing breast cancer (Behrens, et 

al. 2007), our review of literature noted a lack of automated segmentation methods 

to specifically address breast MRI in comparison to for example, automatic MRI 

brain segmentation. Most breast MR segmentation is manual, semi-automated or 

involve simple thresholding methods. For example, Wei et al. (2004) describe a 

breast boundary detection with manual correction, followed by gray level 

thresholding and a morphological operator to exclude skin, Samani et al. (2001)  use 

thresholding to segment fibroglandular and adipose tissue and Twellmann et al. 

(2005) uses the Otsu (Otsu 1979) thresholding  method to crop breast tissue. 

 

Other reported examples of MR breast tissue segmentation include, histogram fitting 

of Gaussians (Reichenbach, et al. 1998),  Fuzzy C-Means (FCM) classification to 

exclude air and lung tissue with B-spline fitting to exclude chest wall muscle and 

dynamic searching to exclude skin (Nie, et al. 2008), Hidden Markov Random 

Measure Field model using expectation-maximization (EM) (Gong and Brady 2008), 

balloon snake segmentation to crop DCE-MRI volumes (Hill, et al. 2008) and 

Oriented Active Shape Models (Liu and Udupa 2009). 

 

In this paper, we propose the PCNN (Pulse Coupled Neural Network) as a basic 

segmentation algorithm that can handle multiple segmentation tasks in breast MRI; 

such as automatic cropping of breast tissue followed by automatic or interactive 
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fibroglandular, adipose tissue segmentation. The PCNN used in this paper is based 

on the work of Eckhorn et al. (1990) who described synchronization in firing of 

otherwise distributed (spatially) biological neurons of small mammals such as cats in 

response to common stimulus features. This discovery has found multiple 

applications such as image segmentation (Keller and McKinnon 1999; Kuntimad and 

Ranganath 1999), image thinning (Gu, et al. 2004) and path optimization (Caulfield 

and Kinser 1999). A comprehensive description of the PCNN for image processing 

applications is described by Lindblad and Kinser (2005).  

 

4.2 Materials and Methods 

4.2.1 Overview 

 

The proposed segmentation algorithm described in this paper consists of two 

independent algorithms each based on the PCNN. The first step is the cropping of 

the breast volume and is based entirely on the automatic rat brain cropping work of 

Murugavel and Sullivan (2009a). That algorithm is structured similarly to a PCNN 

based pattern recognition algorithm (Muresan 2003). Both the cropping and 

subsequent segmentation algorithms involved the generation of a 1D time signature 

from an image via a PCNN and a trained Multi Layer Perceptron (MLP) classifier to 

effect image segmentation and recognition, respectively. In this section we briefly 

describe the proposed two stage process. Figure 4.1 illustrates a sample 3D MR 

breast volume in coronal, sagittal and transverse orientations with transducer 

artifacts. Our breast cropping algorithm operates on 2D coronal grayscale data and 
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we track various operations on the 2D slice described by Figure 4.1(a). Each 2D 

slice is intensity normalized [0 1]. The PCNN is then applied in ‘accumulate’ 

(discussed subsequently) mode on each individual 2D slice, Figure 4.2. This 

operation is followed by a morphological operator which is designed to break narrow 

bridges that might connect transducer artifacts to the breast tissue, Figure 4.3. The 

largest, contiguous and enclosed area is selected by means of a contour operation 

at unity, Figure 4.4. The contour masks corresponding to the accumulated PCNN 

iterations are overlaid on the grayscale image, Figure 4.5. The accumulated 

response as a function of PCNN iteration has a characteristic signature as illustrated 

by Figure 4.6. The breast cropping task is reduced to simply identifying a PCNN 

iteration close to the beginning of the plateau region. Several techniques (Murugavel 

and Sullivan Jr. 2009a) can be used to identify the first plateau in Figure 4.6. A 

previously trained ANN can be used to identify the iteration that best represents the 

breast outline.  An interactive mode also exists with the option to view the predicted 

selection and override that selection, Figure 4.5. This process is repeated for each 

slice resulting in a set of mask slices that can be used in a marching cube routine 

(Wu and Sullivan 2003) to create a full 3D geometry representation of the cropped 

breast, Figure 4.7.  

 

The second step is based on the multiple material segmentation work described by 

Murugavel and Sullivan (2009b).  The PCNN Kittler minimization and PCNN – GMM 

EM algorithms operate on cropped coronal tissue to segment fibroglandular and 

adipose tissue, Figure 4.8. 
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Figure 4.1. Subfigures (a) – (c) show coronal, sagittal and transverse sections of a 

breast volume. The serrated pattern observed on the periphery was caused by the 

transducer arrays positioned as required by the alternate breast imaging modalities 

such as NIS described in Section 4.1. The adipose tissue is generally of a higher 

intensity, while the darker irregular pattern constitutes fibroglandular tissue. 
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Figure 4.2. Subfigures (a) – (e) illustrate the raw, accumulated binary PCNN 

iteration numbers 5, 10, 15, 20, 30 and 40 respectively of the coronal grayscale slice 

of Figure 4.1(a). 
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Figure 4.3. Subfigures (L-R) show respectively, the accumulated PCNN iteration 

number 27 of the grayscale slice of Figure 4.1(a), detail of unbroken bridges 

highlighted in left figure before application of the morphological operator and detail 

after the application of the morphological operator. 
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Figure 4.4. Subfigures (a) – (e) illustrate, the morphologically processed largest 

enclosed contiguous areas. The morphological operator serves to break small 

slivers that might connect transducer array artifacts to the breast tissue in a few 

early iterations. 
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Figure 4.5. The ANN based prediction (highlighted) with manual override option. 
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Figure 4.6. Illustrates the characteristic shape of the normalized image signature G. 

The task is to simply identify a PCNN iteration close to the beginning of the plateau 

region.  
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Figure 4.7. 3D surface mesh of the breast volume shown in Figure 4.1 with inlays of 

2 sample coronal grayscale slices. The mesh was generated via the Multiple 

Material Marching Cubes (M3C) algorithm described by Wu and Sullivan (2003). 
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Figure 4.8. Qualitative results of two region segmentation algorithms on 2D slices 

identified by ‘1907_40’ and ‘506_32’ (Table 4.6) in columns. Figures in rows illustrate 

results of manual PCNN selection (‘Gold’ standard), PCNN-Kittler, PCNN-GMM-EM 

and Kittler-Illingworth thresholding algorithms. The red colored region marks adipose 

tissue, while the green color region encodes fibroglandular tissue.    
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4.2.2 The Eckhorn Pulse Coupled Neural Network 

 

The PCNN operates on 2D grayscale intensity images described by variable ijS with 

i,j describing the location of each grayscale pixel and the corresponding PCNN 

‘neuron’. Each PCNN neuron is directly coupled to a set of neighboring neurons 

encompassed by a predefined radius r , known as the ‘linking field’ (Waldemark, et 

al. 2000). The functionality is effected by means of a Feeding and Linking 

compartment, described by arrays ijF  and ijL , each of dimension equaling the 2D 

input grayscale image, linked by two synaptic weighting matrices M and W . The 

synaptic weighting matrix is square with a dimension of )12( r  and is a normalized 

Gaussian about the center of the square matrix.  

 

    ijFijijij nYMVSnFenF F ])1[*(1       (4.1) 

    ijLijij nYWVnLenL L ])1[*(1        (4.2) 

      nLnFnU ijijij  1        (4.3) 

     nYVnTenT ijTijij
T   1       

 (4.4) 

  1nYij  if     nTnU ijij         (4.5) 

  0nYij  if     nTnU ijij         (4.6) 

 

The PCNN is implemented by iterating through equations (4.1)-( 4.6) with n  as the 

current iteration index and ranging from 1 to N  (the total number of iterations). The 
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matrices ]0[],0[],0[ ijijij ULF  and ]0[ijY  were initialized to a zero matrix, while ]0[ijT  

was initialized to a unit matrix. For each iteration, the internal activation ijU  is 

computed and compared against the threshold ijT . Thus, the array  nYij  is a binary 

image representing the PCNN mask at that particular iteration.  

 

The PCNN coefficients used in this article were originally sourced from the work of 

Johnson and Padgett (1999) and Waldemark et al. (2000). The same constants 

were used for rat brain cropping (Murugavel and Sullivan Jr. 2009a). F , L , T are 

iteration (surrogate time) constants that determine the internal state of the network 

effecting exponential decay and TLF VVV ,, are magnitude scaling terms for Feeding, 

Linking and Threshold components of the PCNN. * is the two dimensional 

convolution operator.   is a parameter affecting linking strength, Table 4.1.   

 

Our implementation of the PCNN operates in the ‘accumulate’ mode: that is, each 

iteration sums its contributions with the previous PCNN iterations. 

    kYnA
n

k
ijij 




1

        (4.7) 

The process described by equation (7) can result in a non binary image ijA .  

However, for our work the accumulated iteration  nAij  is converted into a binary 

image by means of a thresholding operation at unity, Figure 4.2.  
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Constant PCNN coefficient Context 

  0.2 Linking strength 

F  0.3 Feeding decay 

L  1 Linking decay 

T  10 Threshold decay 

FV  0.01 Feeding coupling 

LV  0.2 Linking coupling 

TV  20 Magnitude scaling term for threshold 

r  3 Radius of linking field 

 

Table 4.1. The values of the PCNN coefficients used in this algorithm were derived 

from Johnson and Padgett (1999) and Waldemark, et al. (2000). Further coefficients 

TLFTLF ,,,, /2ln    as described by Waldemark, et al. (2000). 

 

4.2.3 Morphological, contour operations on accumulated PCNN iterations 

 

A binary morphological operation breaks ‘narrow bridges’ or clusters of pixels with a 

radius less than p pixels.  Each pixel ji, value (0 or 1) within a PCNN iteration must 

be continuous in at least two orthogonal directions.  That is IF  iipi ,1,...,   is 1 

AND  jjpj ,1,...,   is 1, THEN pixel ji, =1. 
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Perimeters or contours of isolated islands are created.  The largest area within each 

PCNN iteration is selected.  All pixels within the selected perimeter are filled with 

‘ones’.  This process results in only one contiguous segment for each PCNN 

iteration. We denote each PCNN iteration at this stage by ][nCij with iteration n 

ranging from [1, N].  Figure 4.4 is used to illustrate the outcome of the described 

morphological and contour operations on the same coronal section shown in Figure 

4.1(a).  

 

A successful breast cropping results when an appropriate PCNN iteration n is 

selected. A 1D time signature is constructed for the PCNN iterations similar to that of 

Muresan (2003). The abscissa or timeline is the iteration count.  The ordinate is the 

total number of pixels within the largest contoured area for each PCNN iteration. 

 

  
ij

ij nCnG ][][  

 

Where n ranges from [1, N]. This image signature has a characteristic shape for 

similar images with similar regions of interest. This information is used as a 

surrogate time series in a traditional ANN training sequence to automatically extract 

the breast tissue. The maximum number of iterations (N) of the PCNN is set to a 

suitable large number which allows for capturing the entire region of interest in each 
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slice and subject.   

 

4.2.4 Traditional ANN based selection of breast mask 

 

A previously trained ANN receives the accumulated response as a function of 

iteration and outputs an iteration number, n.  Multi Layer Perceptron (MLP) is a 

widely used (Haykin 1998) supervised, feedforward ANN model which can be 

trained to map a set of input data to a desired output using standard 

backpropagation algorithms. Since each grayscale breast coronal section ijS is now 

represented by the PCNN iterations ][nCij with n ranging from [1, N] and an image 

signature G, it is possible to create a training set for the MLP. 

 

Figure 4.6 shows the characteristic shape of the image signature for the sample mid 

section coronal breast slice. In the illustrated example, iteration numbers 

corresponding to 14 to 20 will produce very similar breast masks. This characteristic 

step response behavior can be fitted easily. It requires few training volumes to 

create a reliable trained ANN.  For the work presented herein, a single breast 

volume with 83 individual 2D slices was sufficient to train the network. The neural 

architecture of the MLP used in this article consists of one input layer, one hidden 

layer and a single output neuron. The input layer neurons simply map to the image 

signature which is a vector of dimension N. The vector is normalized for the 

purposes of efficient supervised training using the back propagation algorithm. The 

hidden layer consisted of about half the number of neurons in the input layer and the 
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single output neuron mapped the desired PCNN iteration corresponding to the 

breast mask.  

 

4.2.5 Minimum Error Thresholding  

 

This section is adapted from the multiple material segmentation work described by 

Murugavel and Sullivan (2009b). In this section we describe the multiple threshold 

clustering method proposed by Kittler and Illingworth (1986) as a possible 

fibroglandular – adipose tissue segmentation method. Our choice of this method is 

based on the quantitative results reported in the recent review paper by Sezgin and 

Sankur (2004), where they compared the performance of 40 different thresholding 

methods and ranked the method of Kittler and Illingworth (1986) as the best 

performer among the 40 different methods surveyed. While their tests did not involve 

MR images, the minimum error thresholding method has found application in 

initializing the FCM (Fuzzy C Means) clustering component of the unsupervised T1 

weighted MRI brain segmentation algorithm proposed by Xue et al. (2003).    

 

Consider a grayscale imageS , with gray levels g, whose histogram )(gh  has m  

modes representing a mixture of m normal densities. Kittler and Illingworth (1986) 

had shown the optimal separation thresholds Xi can be obtained at the minimum of 

the criterion, J, described by equation 4.8. 

         ,loglog21,...,
1

1 


 
m

i
iiiiiim XPXXPXXJ       (4.8)  
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where a priori probability  ii XP , modal mean  ,ii X  and standard deviation  ii X  

are described by equations (4.9) – (4.12). 

   ,
11
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and 

.1

,

0 



X

elsrOfGreyLevtotalNumbeXm        (4.12) 

 

Murugavel and Sullivan (2009b) have extended this idea to generate a stopping 

criterion for the accumulated PCNN iterations. If apriori information on the number of 

regions, nRegions, were available, it is possible to compute the corresponding 

segment proportion ( ins , with 1
Re

1




gionsn

i
ins  and 1ins  ), mean ( ins ) and standard 

deviation ( ins ). Since the minimum error criterion (see equation (4.8)) is based on 

the minimization of the Kullback Information distance (Demirkaya, et al. 2009; 

Haralick and Shapiro 1992), we can construct a time series representation of the 

multiple region segmentation as shown in equation (4.8). 

 

    



gionsn

i
ininin sssnJs

Re

1

loglog21                                                               (4.13) 

The minimum of this function was found (Murugavel and Sullivan Jr. 2009b) to yield 
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the optimal segmentation among the various PCNN iterations with nRegions.  

 
4.2.6 Gaussian Mixture Model (GMM) based selection 
 

This section is adapted from the multiple material segmentation work described by 

Murugavel and Sullivan (2009b). We reported highly successful segmentations of 

Grey Matter (GM) – White Matter (WM) and Cerebro Spinal Fluid (CSF) regions on 

20 publicly (IBSR) available T1 weighted MR brain volumes. In this section, we 

attempt breast tissue segmentation using the same technique. A distribution 

describing a grayscale image S , consisting of only those pixels within the cropped 

breast can be modeled by a mixture of k Gaussians. This univariate mixture with 

pixel intensities x, can be represented as the following weighted summation of k 

class conditional probability distribution functions (Demirkaya, et al. 2009);  
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where i , i , i  represent the mean, standard deviation and mixing proportion of 

class i. with 1
1




k

i
i  and 1i .  

 

The standard Expectation Maximization (EM) (Dempster, et al. 1977; Bishop 1995) 

algorithm can be used as an estimator to generate a  feature vector consisting of 

means, standard deviations and mixing proportions of the k Gaussians of each 
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grayscale image,  kkke  ......ˆ 111 . As described in Section 4.2.5, 

accumulated PCNN iterations  nA  may be computed for each grayscale image S. 

With access to a priori information on the number of regions (equal to k), we can 

generate a feature vector for each PCNN 

iteration,  knnknnknnn sssssse  ...... 111 , similar to the estimate ê  

from the GMM-EM formulation described in this section. In this implementation, the 

subscript n represents only those accumulated PCNN iterations with a total of k 

regions. The appropriate choice of the PCNN segmentation is simply that iteration n, 

which minimized the Euclidean norm nee ˆ . This strategy is unsupervised and 

requires no prior classifier training.  

 

 
4.3 Experiment details 

4.3.1 Data 

The test data consisted of 6 breast MR volumes comprising a total of 331 (256 x 

256) slices obtained from Dartmouth College, NH. One of the volumes consisting of 

83 slices was used to train the ANN for automatic cropping of the breast. The other 5 

volumes served as test data and were manually cropped using the PCNN 

formulation to create the ‘Gold’ standard.  Two slices from each of these volumes 

were selected for testing the fibroglandular – adipose segmentation algorithms 

described in Section 4.2. 
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4.3.2 Software specifications 

All described algorithms were implemented in Matlab 2008a (Mathworks, MA, 

U.S.A).  

 

4.3.3 Parameters employed in the ANN based cropping scheme 

 

The algorithm employing the methods described in Section 4.2.4 is presented as a 

pseudo code in Table 4.2.  The input grayscale breast volumes were treated as the 

subject data and individually referred to as ‘grayscaleAnatomy’ variable in Table 4.2. 

The PCNN algorithm was implemented and the ‘PCNNInputParametersVector’ of 

Table 4.2 contained numerical values of the various PCNN parameters, F , L , T , 

 , TLF VVV ,, , and r  described in Table 4.1. This length N of each PCNN image 

signature vector was set to 42. This setting ensured that the entire image space was 

filled by the accumulated PCNN iterations. The grayscale anatomy file was passed 

to the PCNN algorithm and the N binary output pulses for each slice computed, 

which corresponds to A  of equation (4.7) and held in variable 

‘binaryPCNNIterations’. This data was further processed by means of a binary 

morphological operation to break ‘bridges’, as described in section 4.2.3. The value 

of the ‘bridge’ radius p was set to 2 for this study.  
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The neural network classifier in direct relation to the choice of the number of pulses 

had N input neurons, one hidden layer of 20 neurons (approximately 0.5N) and one 

output. For purposes of training, a single breast volume consisting of 83 slices was 

used.  The activation function of the hidden layer was chosen to be a nonlinear 

hyperbolic tangent function while that of the output layer was linear.  The ‘newff’ and 

‘train’ functions available in Matlab 2008a’s Neural Network toolbox V6.0 were used 

to train the classifier using the gradient descent with momentum backpropagation 

algorithm.   
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function [autoCroppedBreastVolume(nrow,ncol,nslice)] =  

                                 autoCrop[grayscaleAnatomy(nrow,ncol,nslice), PCNNInputParametersVector, N]

for i = 1 : nslice 

     for j = 1 : N 

            // PCNN returns binary array A on input of S (see equations (4.1) - (4.7)) 

            binaryPCNNIterations(:,:,i,j) = PCNN(greyscaleAnatomy(:,:,i),PCNNInputParametersVector),j) 

            // binary morphological operator to break ‘narrow bridges’ with a radius less than p pixels. 

            binaryPCNNIterations (:,:,i,j) = breakBridges(binaryPCNNIterations(:,:,i,j), p) 

            // assuming largest area of corresponding iteration contain the desired breast mask 

            binaryPCNNIterations(:,:,i,j) = largestArea(binaryPCNNIterations(:,:,i,j))  

            // stores image signature in vector form 

            PCNNImageSignature(i,j) = area(binaryPCNNIterations(:,:,i,j))  

      end 

end 

// determines iteration                        

choiceOfIteration = preTrainedNeuralNetworkClassifier(PCNNImageSignature(i,:))  

autoCroppedBreastVolume(:,:,i) = binaryPCNNIterations(:,:,i,choiceOfIteration) 

end      

 

Table 4.2. Pseudo code of the automatic breast cropping algorithm 
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4.3.4 Parameters employed in the PCNN minimum error thresholding method  

 

The algorithm described in the PCNN based minimum error thresholding formulation 

described in Section 4.2.5 is presented as pseudo code in Table 4.3. The 10 

cropped grayscale breast slices described in Section 4.3.1 were treated as subject 

data and individually addressed by the ‘croppedGrayscaleAnatomy’ variable in Table 

4.3. The PCNN algorithm was implemented and the ‘PCNNInputParametersVector’ 

of Table 4.2 contained numerical values of the various PCNN parameters, 

F , L , T ,  , TLF VVV ,, , and r  described in Table 4.1. In this implementation, the 

number of regions, ‘nRegions’, was set to two (adipose and fibroglandular). The 

PCNN time series representation, ‘kittlerIllingworthPCNNTimeSeries’ was 

determined for each slice based on equation (4.13). The minimum of this time series 

yielded the optimal segmentation among the various PCNN iterations with 2 regions.  
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function [segmentedBreastVolume(nrow,ncol,nslice)] = 

autoSegPCNNTimeSeries[croppedGrayscaleAnatomy(nrow,ncol,nslice),  PCNNInputParametersVector, nRegions] 

for i = 1 : nslice 

// PCNN returns accumulated array A on input of S (see equations (4.1) - (4.7)). Cropped breast mask applied on each 

// iteration. Function returns only accumulated PCNN iterations with nRegions. 

accumulatedPCNNIterations =  

                                      pcnnAccumulateMode(croppedGrayscaleAnatomy(: , : , i), PCNNInputParametersVector,  nRegions) 

// Determine number of PCNN pulses in the accumulatedPCNNIterations volume 

[nrow, ncol, noPulses] = size(accumulatedPCNNIterations) 

// Initialize Kittler-Illingworth based time series vector 

kittlerIllingworthPCNNTimeSeries(1 : noPulses) = 0 

// Begin loop to compute the time series vector 

for j = 1 : noPulses 

if noRegions(accumulatedPCNNIterations(: , : , i) ) == nRegions 

kittlerIllingworthPCNNTimeSeries( j ) =   

                             computeKittlerIllingworthMeasure(accumulatedPCNNIterations(: , : , i) 

end 

end 

// Determine iteration. Select PCNN iteration corresponding to minimum of the PCNN Kittler Illingworth time series   

 segmentedBreast(nrow, ncol, i) = minSelect(kittlerIllingworthPCNNTimeSeries, accumulatedPCNNIterations) 

end 

 

Table 4.3. Pseudo code of PCNN - Minimum Error Thresholding based selection 

method 
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4.3.5 Parameters employed in the GMM – EM based selection method 

 

The algorithm for the GMM – EM based selection method is presented as pseudo 

code in Table 4.4. The 10 cropped grayscale breast slices described in Section 4.3.1 

were treated as subject data and individually addressed by the 

‘croppedGrayscaleAnatomy’ variable in Table 4.4. The PCNN algorithm was 

implemented and the ‘PCNNInputParametersVector’ of Table 4.2 contained 

numerical values of the various PCNN parameters, F , L , T ,  , TLF VVV ,, , and r  

described in Table 4.1. In this implementation, the number of regions, ‘nRegions’, 

was set to two (adipose and fibroglandular). The grayscale intensities of each 

individual 2D slice S were modeled as a mixture of two  Gaussians and the basic EM 

algorithm described by the function ‘gmmb_em’ operating with default parameters, 

available as part of the GMMBayes Toolbox Version 1.0 (open source GNU license, 

http://www.it.lut.fi/project/gmmbayes) was used to generate the estimated feature 

vector  kkke  ......ˆ 111 . The Euclidean distance between the 

estimated feature vector described by the variable ‘estimatedFeatureVector’ and 

each of the individual feature vectors, described by variable ‘featureVec’ was 

computed, ‘euclideanDistance’.  The two region segmentation for each grayscale 

slice S is the accumulated PCNN iteration that corresponds to the minimum of the 

vector, ‘euclideanDistance’.  
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function[segmentedBreastVolume(nrow,ncol,nslice)] 

 =autoSegPCNNGaussian[croppedGrayscaleAnatomy(nrow,ncol,nslice),PCNNInputParametersVector,nRegions] 

for i = 1 : nslice 

// PCNN returns accumulated array A on input of S(see equations (4.1) - (4.7)). Cropped breast mask applied on each     

// iteration. Function returns only accumulated PCNN iterations with nRegions. 

S = croppedGrayscaleAnatomy(: , : , i) 

accumulatedPCNNIterations = pcnnAccumulateMode(S, PCNNInputParametersVector, nRegions) 

// Determine number of PCNN pulses in the accumulatedPCNNIterations volume 

[nrow, ncol, noPulses] = size(accumulatedPCNNIterations) 

// Estimate the means, standard deviations and mixing proportion of the nRegions (GM, WM and CSF) in S 

// [eMu1 ..  eMunRegions eSD1 .. eSDnRegions eMp1 .. eMpnRegions] (see section 4.2.5) 

estimatedFeatureVector = gmmEM(S, nRegions) 

// Begin loop to compute feature vector (identical to the estimate ) for individual PCNN iterations, distance measure 

for j = 1 : noPulses 

if noRegions(accumulatedPCNNIterations(: , : , i) ) == nRegions 

// compute feature vector [Muj,1 ..  Muj,nRegions SDj,1 .. SDj,nRegions Mpj,1 .. Mpj,nRegions]  

featureVec(j) = computeMeansStdDevProportions(accumulatedPCNNIterations, S) 

// Euclidean distance between estimate and computed feature vector of each iteration 

euclideanDistance(j) = euclideanNorm(estimatedFeatureVec – featureVec(j)   

end 

end 

// Begin GMM – EM based selection. Select PCNN iteration corresponding to min of euclidean distance 

segmentedBreast(nrow, ncol, i) = minSelect(euclideanDistance, accumulatedPCNNIterations) 

end  

 

Table 4.4. Pseudo code of PCNN – GMM EM based selection method 
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4.4 Results and Discussion 

4.4.1 Breast cropping results 

 

The PCNN based automated breast cropping algorithm was tested on 5 volumes 

described in Section 4.3.1. An average breast cropping including original volume 

input to cropped and mask outputs was completed in under 10 minutes on a 

Pentium 4 class machine with 4 GB RAM. Figure 7 provides a sample result from 

the described breast cropping algorithm.  

 

For purposes of numerical validation, we created masks for each of the volumes by 

manually selecting an appropriate PCNN iteration. The manually created masks 

served as the ‘gold’ standard. For a quantitative metric, we employed the Jaccard’s 

index (Jaccard 1912). This index is a similarity measure in the range [0, 1], where 1 

describes an ideal match between the subject mask SubA generated by the proposed 

algorithm and the ground truth represented by the manually created mask GM for 

that subject. The Jaccard similarity index is defined by: 

 
GSub

GSub

MA

MA
Jaccard




  

We computed these indices using our automated PCNN algorithm for all volumes 

and summarized the results in Table 4.5.  
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4.4.2 Adipose and Fibroglandular tissue segmentation results 

 

The PCNN minimum error thresholding and PCNN – GMM –  EM algorithms were 

tested on the 10 individual, cropped breast slices described in Section 4.3.1. 

Qualitative results are illustrated in Figure 4.8. The compute time for each slice is 

about 5 seconds on a Pentium 4 PC with 4 GB RAM. For quantitative evaluation, we 

manually selected masks using the PCNN algorithm, which served as the ‘Gold’ 

standard. For a quantitative metric we employed the Jaccard similarity index for 

each region. The results obtained are presented in Table 4.6.  For comparison, the 

popular Kittler Illingworth thresholding method (see Equation 4.8) was applied on the 

10 test slices and the results included in Table 4.6. A paired Student’s t-test was 

conducted to test the null hypothesis that difference of means between the PCNN-

GMM-EM selection strategy and the control Kittler Illingworth thresholding are a 

random sample from a normal distribution with mean 0 and unknown variance. For 

Fibroglandular tissue segmentation, the one tailed test on 10 grayscale slices 

yielded a P value = 0.0023, rejecting the null hypothesis at a 99.5 % confidence level 

in support of the alternate hypothesis that the mean Jaccard index of the PCNN -

GMM-EM method is higher than that of the Kittler Illingworth thresholding operation. 

The corresponding t value equaled -3.75. Similar tests on Adipose tissue 

segmentation effectively rejected the null hypothesis at a reduced 98 % confidence 

level, with p values equaling 0.0106 (t value = -2.78). The degrees of freedom was 9. 

These results showcase the PCNN as a viable cropping and two region 

segmentation algorithm for breast MRI. It is evident a single threshold method such 
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as the Kittler Illingworth method (Kittler and Illingworth 1986) is not as effective for 

breast MR, as fibroglandular tissue has intensity variations that would cause it to be 

incorrectly labeled if spatial proximity is not considered. One of the advantages of 

the PCNN based breast cropping method is the ability to handle 2D slices where the 

fibroglandular tissue is located close to the breast-air interface.  

 

 

Breast 
volume  

PCNN 
cropping 

Number of 
slices 

504 0.988 42 
505 0.993 39 
501c 0.996 53 
1907 0.985 77 
506 0.999 37 

 

Table 4.5. Jaccard indices obtained on five breast volumes employing the PCNN 

based cropping method. 
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Breast 
slice ID 

PCNN Kittler 
minimization PCNN GMM EM Kittler Thresholding 

  Fibroglandular Adipose Fibroglandular Adipose Fibroglandular Adipose 
1907_23 1.00 1.00 0.81 0.89 0.55 0.83 
1907_40 0.80 0.94 0.95 0.99 0.51 0.87 
501c_20 0.92 0.96 0.89 0.95 0.76 0.91 
501c_50 0.90 0.95 0.91 0.96 0.76 0.90 
504_13 0.87 0.96 0.80 0.92 0.40 0.84 
504_34 0.45 0.89 0.58 0.83 0.43 0.88 
505_11 0.82 0.94 0.78 0.91 0.30 0.81 
505_24 0.35 0.78 0.75 0.86 0.27 0.76 
506_13 1.00 1.00 0.48 0.92 0.70 0.98 
506_32 0.66 0.93 0.86 0.96 0.26 0.85 

Average 0.78 0.94 0.78 0.92 0.49 0.86 
 

Table 4.6. Jaccard indices obtained on the 10 breast slices employed in evaluation 

of the PCNN minimum error thresholding, PCNN GMM – EM based formulation and 

the standard Kittler Illingworth (single threshold) method. 

 

4.5 Conclusion 

Two PCNN based automatic cropping and adipose – fibroglandular tissue 

segmentation  methods (PCNN – Kittler Illingworth formulation and PCNN – GMM) 

were described and tested on 5 MR volumes (total of 248 slices) and 10 individual 

cropped 2D slices. Our numerical comparison metric indicates that the PCNN, on 

account of its inherent intensity delineation and spatial linking characteristics, is an 

effective tool for handling MR breast volume segmentation tasks.  
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Chapter 5 

Conclusions and Future Work 

The main contribution of this dissertation is the demonstration and quantitative 

evaluation of the PCNN as a viable, multiple material segmentation strategy in 

automatically segmenting MRI volumes. This dissertation was not intended to focus 

on PCNN model development, but rather the design of systems that helped select a 

suitable PCNN iteration. To this end, the dissertation focused on MR images of the 

rat brain, human brain and the human breast.  

 

A NeuroImage reviewer summarized "To date, approaches to brain extraction from 

rat MRI data have often involved the application of algorithms developed for Human 

images (with mixed results, for example, working well over only a certain 

rostrocaudal range of brain coverage), hand delineation (tedious, and likely operator-

dependent, heuristic approaches such as intensity thresholding (non-standard and 

not of general applicability) or the application of a standard brain mask after co-

registration (requires spatial normalization prior to masking and does not readily 

allow differences in brain morphology to be obtained). There has been a general 

lack of brain extraction algorithms designed and optimized for rat brain MRI data". 

  

To address this niche, a novel, brain extraction algorithm was developed and tested 

for automatic cropping of rat brain volumes. These image masks were mapped onto 

a timeline curve rendering the task into an appropriate iteration selection problem.  

The surrogate ‘time’ signature was passed to a previously trained ANN for final 
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iteration selection. The algorithm was tested on rat brain volumes from 3 different 

acquisition configurations and quantitatively compared against corresponding 

manually created masks which served as the reference. A paired Student's t-test on 

results from BET V2.1 and the PCNN cropping tool supported the alternate 

hypothesis that the mean Jaccard index of the PCNN method is higher than that of 

BET V2.1 for the 4.7 T anatomy (256x256) dataset at a 99.999% confidence level.  

Our results conclusively demonstrate that PCNN based brain extraction represents a 

unique, viable fork in the lineage of the various brain extraction strategies.  

 

The PCNN code and data (4.7T 25625612 anatomy volumes, ‘Gold’ standard 

masks) described in the dissertation was made available as a supplementary 

download (NeuroImage/Elsevier web products server) on a ‘Non profit, 

academic/research use only’ type of license. 

 

In chapter three we addressed the problem of segmenting human brains. Two novel 

PCNN based algorithms (PCNN – ANN, PCNN – GMM EM) were developed and 

tested for automatic segmentation of human T1 weighted MRI brain volumes. These 

were bench marked against data publically available at Harvard’s Internet Brain 

Segmentation Repository.  The PCNN – ANN based selection method introduced 

the concept of a 1D time series representation of a 2D multiple material 

segmentation task. A paired Student’s t-test was conducted to test the null 

hypothesis that difference of means between the PCNN-GMM-EM selection strategy 

and previously proposed methods (Maximum Likelihood, tree-structure k-means) are 
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a random sample from a normal distribution with mean 0 and unknown variance. For 

GM, the one tailed test on 20 volumes yielded a P value < 0.0001 for both methods 

(Maximum Likelihood, tree-structure k-means), effectively rejecting the null 

hypothesis at a 99.999 % confidence level in support of the alternate hypothesis that 

the mean Jaccard index of the PCNN- GMM-EM method is higher than that of 

Maximum Likelihood and tree structure k-means. Similar tests on WM segmentation 

effectively rejected the null hypothesis at a reduced 95 % confidence level, with p 

values equaling 0.0101 and 0.0244 respectively for the Maximum Likelihood and 

tree structure k-means methods. 

 

Our quantitative results on human brain volumes demonstrated that PCNN based 

multiple material segmentation strategies can approach a human eye’s intensity 

delineation capability in grayscale image segmentation tasks.  

 

Our survey of literature revealed that there are no specific tools designed for 

automatic breast cropping and segmentation. This dissertation has generated 

specific tools and datasets to address this issue. The PCNN –ANN method, PCNN – 

Kittler Illingworth formulation and the PCNN – GMM method were adapted for 

cropping and segmenting human breast volumes.  A paired Student’s t-test was 

conducted to test the null hypothesis that difference of means between the PCNN-

GMM-EM selection strategy and the control Kittler Illingworth thresholding are a 

random sample from a normal distribution with mean 0 and unknown variance. For 

Fibroglandular tissue segmentation, the one tailed test on 10 grayscale slices 
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yielded a P value of 0.0023, rejecting the null hypothesis at a 99.5 % confidence 

level in support of the alternate hypothesis that the mean Jaccard index of the PCNN 

-GMM-EM method is higher than that of the Kittler Illingworth thresholding operation. 

Similar tests on Adipose tissue segmentation effectively rejected the null hypothesis 

at a reduced 98 % confidence level, with p values equaling 0.0106. The degrees of 

freedom were 9. 

 

These results showcase the PCNN as a viable cropping and two region 

segmentation algorithm for breast MRI. 

 

Future Work 

 

Rat brain cropping: A centroid based selection strategy for cropping rat brain 

volumes needs to be incorporated for regions beyond the +6 mm to -11 mm AP 

(with reference to the Paxinos Atlas) region. To improve the cropping results, the  

PCNN algorithm could be employed in a hybrid configuration to initiate a model 

based cropping algorithm, such as an active contours formulation. Information from 

neighboring slices could be used to improve the cropping by computing the Jaccard 

index between consecutive cropped slices. It is evident that the difference in the 

Jaccard indices between consecutive slices should be within a small threshold. Any 

local sequence of slices that violates this threshold setting could be subjected to a 

more aggressive bridge breaking operator, before re-computing the 'time signature' 

and updating the prediction.  
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Human brain segmentation: Prior information from tissue probability maps can be 

used to train two different classifiers (GM-WM, ‘GM-WM’ and CSF) depending on 

the a priori prediction of the number of classes in a particular 2D grayscale slice. 

Currently the PCNN constants have been sourced from Johnson and Padgett 

(1999) and Waldemark et al. (2000). The performance of the PCNN algorithm could 

perhaps be improved by optimizing PCNN parameters for specific tasks. A closed 

loop formulation that tracks a predefined 'time signature', while updating PCNN 

parameter gains would be a significant update to the proposed segmentation 

method. 

A breast segmentation repository similar to that of IBSR is currently lacking. We 

hope to address this via our collaborators at Dartmouth College, NH. Objective 

evaluation of multiple segmentation algorithms on breast data similar to the Sezgin 

and Sankur (2004) paper will follow. The PCNN needs to be evaluated as a tumor 

segmentation stratergy.   
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