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Abstract 

Malware almost always comes without the source code; therefore, it is necessary for 

reverse engineers to examine malware binaries at the assembly level. Malware authors frequently 

re-use pieces of code, therefore new malware can often overlap with other already analyzed 

binaries. Function matching assists in binary diffing in that it reduces the manual labor required to 

examine each file and assists in identifying the differences between the two. If functions that have 

been previously analyzed can be identified in new malware, those results are helpful in increasing 

the speed and accuracy of an analyst’s reverse engineering. However, function matching becomes 

more difficult when matching across different architectures. Although the binaries may have been 

compiled from the same source code, the machine instructions cannot be compared directly, due 

to different instruction sets, calling conventions, register sets, etc. among different architectures.  

Our matcher, the PCodeMatcher, uses PCode, an intermediate representation language 

developed by the NSA for use in Ghidra, their reverse engineering framework. PCode is used by 

Ghidra to decompile machine instructions into C code independent of architecture. Using a fuzzy 

string-matching technique, we were able to match 70% of functions in our cross-architecture 

sample set. We believe that, with further development, function matching using PCode could be a 

valuable tool for analyzing binaries in reverse engineering. 
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Chapter 1: Introduction 

Binary analysis has many uses such as revealing flaws and vulnerabilities in code that can 

be revised to make a program more secure and less vulnerable. It can also aid in computer security 

by examining malicious code to understand its behavior to build better defenses against that 

malware [2]. This can be done through static analysis, by examining the binary directly in a non-

runtime environment, or dynamic analysis, testing the binary during execution [15]. This project 

will focus on static analysis. Manual reverse engineering can take much time and effort on the part 

of the reverse engineer because it requires reading through all the assembly instructions to figure 

out what program does. If the binary contains thousands of functions, this process becomes 

exhausting.  

Function matching tools can assist in this process by reducing the manual labor required to 

examine each file. Examining one binary and comparing that file to another binary whose behavior 

is undetermined can speed up the process of examining multiple files. This can be done using a 

function matching tool which identifies the similarities and differences in functions between the 

two binaries. Malware authors frequently re-use pieces of code, such as functions from libraries, 

therefore, malware can have pieces of code in common with other already analyzed binaries [13]. 

If functions that have been previously analyzed can be identified in new malware, those results are 

helpful in increasing the speed and accuracy of the reverse engineering. Common function 

matching tools used in industry include BinDiff and Ghidra’s Version Tracker [6, 11].  

A significant challenge is that the same source code can have multiple binary 

representations. The reason for this is that the source code must be reduced and translated 

according to the processor’s instruction set during the compilation process. There are multiple 

different compilers, compiler optimization options, and target architectures making matching 

functions across binaries a complicated process [1]. Comparing two binaries of different 

architectures becomes more complicated because they will have different instruction sets, calling 

conventions, register sets, etc. Furthermore, individual assembly instructions from different 

architectures often cannot be compared directly due to the slightly different behavior of different 

architectures (side effects, instruction availability etc.)  

This project investigates this problem using Ghidra, a reverse engineering framework 

developed by the NSA, and its intermediate representation of assembly code to match functions 

from binaries of different architectures. PCode is the intermediate representation language used by 

Ghidra to decompile machine instructions from architectures such as x86, MIPS, PowerPC, and 

ARM. Since PCode is an architecture agnostic representation of assembly instructions, our 

hypothesis is that it could be useful to build a function matcher that compares PCode instructions 

to accurately find matches across two binaries.  

In this report, we present a background chapter that examines binary analysis for reverse 

engineering and the need for cross-architecture function matching. Following the background 

chapter, our system design chapter outlines the design and behavior of our function matcher, the 

PCodeMatcher. In our methodology chapter, we cover our testing methods and test dataset for the 
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PCodeMatcher. In the Results and Discussion chapter, we discuss the results of the PCodeMatcher 

and compare those results to industry tools such as BinDiff and Ghidra’s Version Tracker. Overall. 

the PCodeMatcher was able to correctly match 70% of cross-architecture function pairs compiled 

from the same source to BinDiff’s 33% and Ghidra Version Tracker’s 23%.  
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Chapter 2: Background 

In this chapter, we begin with a discussion of different architectures and compilers as well 

as an overview on cross-compiling. Next, we move into binary analysis for reverse engineering 

and an explanation of why function matching is important and how problems arise when function 

matching across architectures. Lastly, we cover Ghidra, a reverse engineering tool, and its 

intermediate representation language PCode, and other industry tools used in this project.  

2.1 Computer Architectures and Compilers 

An architecture is a set of rules and methods used to describe the functionality, 

organization, and implementation of computer systems. Computer architecture deals with 

balancing the performance, reliability, efficiency, and cost of a computer system [7]. An 

instruction set is a group of commands for the CPU in machine language [3]. Instruction sets 

between architectures may be similar or completely different. There are multiple different types of 

architectures, but this paper will focus primarily on CISC and RISC architectures, specifically 

ARM, MIPS, PowerPC and x86.  

CISC stands for Complex Instruction Set Computer and includes architectures such as x86. 

RISC stands for Reduced Instruction Set Computer and includes architectures such as ARM and 

MIPS. CISC architectures have large complex instruction sets that include single commands 

capable of performing multi-step operations. RISC architectures have smaller reduced instruction 

sets consisting of many simple instructions that complete very small operations [3].  

 

Figure 1: Source code used to generate assembly instructions in Figure 2 

 

int func(int num) { 

    if (num == 1) { 

return num; 

    } else if(num > 1) { 

return 0; 

    } else { 

return -1; 

    } 

} 
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Compilers are programs that translate source code into machine executable code. 

Compilers are important to consider because different compilers will have different effects on the 

final binary executable, a computer-readable file that is used to execute programs, such as different 

optimization options, algorithms, requirements, and language constraints, which will all influence 

the final executable [5]. Both the compiler and the target architecture are important to consider 

when analyzing binaries. Different compilers and different architectures will make a difference 

with the final output.  

For this research, it is also important to consider cross-compiling. If we consider the host 

computer to be the computer we are compiling source code on and the target computer to be the 

computer we are running the final executable on, then a native compiler is one where the target 

and host are the same architecture and a cross-compiler is one where the target and host are 

different architectures. A toolchain is a set of compilers, linker, libraries, and any other tools 

needed to generate an executable. A linker is a computer program that takes one or more object 

files generated by a compiler and combines them into one executable file while a library is a 

collection of precompiled related routines that programs can use [5]. Most systems already have 

the correct toolchain for compilation for their own architecture but when cross-compilation is 

desired, it becomes necessary to install other toolchains for the correct architecture. We have used 

Dockcross, an open source toolchain for cross-compilation using Linux as a host system, to 

implement cross-compilation for this project [8].  

2.2 Binary Analysis for Reverse Engineering 

Binaries can contain multiple sections including executable code and data, such as 

initialized variables and constants. The main executable portion of the binary is generally known 

str     fp, [sp, #-4]! 

add     fp, sp, #0 

sub     sp, sp, #12 

str     r0, [fp, #-8] 

ldr     r3, [fp, #-8] 

cmp     r3, #1 

bne     .L2 

ldr     r3, [fp, #-8] 

b       .L3 

ldr     r3, [fp, #-8] 

cmp     r3, #1 

ble     .L4 

mov     r3, #0 

b       .L3 

mvn     r3, #0 

mov     r0, r3 

add     sp, fp, #0 

ldr     fp, [sp], #4 

bx      lr 

push    rbp 

mov     rbp, rsp 

mov     DWORD PTR [rbp-4], edi 

cmp     DWORD PTR [rbp-4], 1 

jne     .L2 

mov     eax, DWORD PTR [rbp-4] 

jmp     .L3 

.L2: 

cmp     DWORD PTR [rbp-4], 1 

jle     .L4 

mov     eax, 0 

jmp     .L3 

.L4: 

mov     eax, -1 

.L3: 

pop     rbp 

ret 

Figure 2: Source code compiled for ARM (left) and x86 (right) 
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as the text section which is made up of different functions that are included in the program. This 

project will examine functions within the text section of binaries and attempt to match them.  

Conceptually, reverse engineering is the process of taking a man-made object apart to 

determine what purpose it serves. Reverse engineering is the process of examination; the system 

being investigated is not changed at all. For the purposes of cybersecurity, this concept is applied 

to determine the behavior and safety of binary executable files.  

Binary analysis in cybersecurity can have many uses, including the identification of 

relationships between different malwares [14]. Reverse engineering a binary can reveal flaws or 

vulnerabilities in the code such as buffer overflows, memory corruption and other bugs [10]. When 

those flaws are revised, the program will be more secure and less vulnerable to attacks. When a 

piece of malicious code is examined, its behavior and structure can be understood, and better 

defenses can be constructed to protect computer systems against that malware [2]. Binary analysis 

can be done through static or dynamic analysis. Static analysis is the process of analyzing the 

internal structure of the binary through examination of the source code, byte code, or binaries to 

determine behavior or identification of security vulnerabilities. Dynamic analysis is where the 

binary is examined from the outside during execution [15]. This project will focus on static analysis 

only.  

Binary diffing is a step in the reverse engineering process in which two files are examined 

to identify the differences in code [4]. It consists of comparing the semantic and syntactic 

differences between the two binaries. Automated function matching assists in binary diffing in that 

it reduces the manual labor required to examine each file and assists in identifying the differences 

between the two [2]. Malware authors frequently re-use pieces of code, such as functions from 

libraries, etc., therefore, malware can often overlap with other already analyzed binaries. If 

functions that have been previously analyzed can be identified in new malware, those results are 

helpful in increasing the speed and accuracy of the reverse engineering. Therefore, when the same 

source code has been compiled for different architectures, this can impede the binary diffing 

process because each binary often must be analyzed and compared manually because common 

binary diffing tools are of limited use when comparing binaries across architectures.  

2.3 Ghidra 

Ghidra is an open source software reverse engineering framework developed and 

maintained by the National Security Agency’s (NSA) Research Directorate in support of the 

Cybersecurity mission [11]. Ghidra can be used to solve a variety of problems involving analysis 

of malicious code as well as identifying potential vulnerabilities in networks and systems. It 

includes a multitude of software analysis tools that allow users to analyze binaries compiled for 

different architectures on a variety of different platforms including Windows, MacOS and Linux. 

Capabilities include decompilation, scripting, disassembly, assembly, and graphing among other 

features. Ghidra supports a wide variety of processor instruction sets and executable formats and 

can be run in both user-interactive and automated modes. Ghidra can also be extended through 

user-developed plug-in components and scripts using Java or Python.  
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2.3.1 PCode 

PCode is an intermediate representation language (IRL) designed for reverse engineering 

applications. Intermediate representation is a representation of a program in between the source 

and target languages [9]. PCode can be interpreted by software to emulate behavior of different 

processors. PCode’s IRL subtype is register transfer language (RTL), a type of IRL that specifies 

the semantics of machine instructions. In this context, semantics describe how an instruction of an 

architecture manipulates data in registers and memory. All data is manipulated explicitly, meaning 

instructions have no indirect effects. Individual PCode operations are designed to mirror typical 

processor tasks by translating individual processor instructions into a sequence of PCode 

operations. The set of PCode operations, known as opcodes, form a set of the arithmetic and logical 

actions performed by general purpose processors.  

 

The core concepts of PCode are address space, varnode, and PCode operation. The address 

space for PCode is a generalization of RAM. It is an indexed sequence of bytes that can be read 

and written by the PCode operations. Varnodes are generalizations of either registers or memory 

locations and are contiguous chunks of bytes that have no type, although PCode operations can 

force three different type interpretations: integer, boolean or floating-point. A PCode operation is 

like a machine instruction. All PCode operations have a common structure which is one or more 

varnodes as input and ideally a single output varnode, although some operations such as the 

BRANCH operation does not support output. The action of the operation is determined by its 

opcode.  

PCode abstracts the complexities of different architectures, allowing for a common 

instruction set for reverse engineers to work with. However, PCode is not completely independent 

of the original target architecture. The original target architecture’s instruction side effects are 

carried over into the PCode representation which complicates the matching. For example, 

arithmetic instructions in many architectures set architecture-dependent flags which record things 

like register overflow, equality with zero, and if the results are positive or negative. 

2.4 Function Matching Tools 

There are a multitude of different tools for function matching. One of the most common 

tools is BinDiff, which uses multiple techniques to determine the similarity of two files [6]. These 

techniques include different algorithms such as hash matching, name hash matching, MD index 

x86 Assembly Instruction PCode C Code 

00100774 e8 67 fe ff CALL printf 
RSP = INT_SUB RSP, 8:8 
STORE ram(RSP), 0x100779:8 
CALL *[ram]0x1005e0:8 

printf(“%d\n”,local_18) 

Figure 3: x86 Assembly instructions compared with PCode and C Code 
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matching, prime signature matching, call sequence matching, string references, and address 

sequence among other techniques [6]. Similarity is reported as a number describing how similar 

the two functions are. BinDiff is primarily a plugin for the binary analysis tool IDAPro but can 

also be used with other reverse engineering tools, such as Ghidra [6]. 

Ghidra also comes with its own function matching tool, known as the Ghidra Version 

Tracking Tool [11]. The tool is designed to identify differences between an old and new version 

of the same binary. The tool leverages multiple matching algorithms including data matching, 

symbol name matching, function byte matching, function mnemonics matching, and function 

instructions matching. Like BinDiff, the Version Tracking Tool also gives a similarity score for 

each match.  
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Chapter 3: System Design 

The PCodeMatcher proposes using intermediate representation to solve the problem of 

binary diffing across architectures. Our hypothesis is that using intermediate representation allows 

for cross-architecture matching between binaries, decreasing the manual work required of reverse 

engineers leading to faster analysis of binaries. To match functions from each binary, we lifted the 

functions to PCode. This allows for functions to be matched based on their sequence of PCode 

operations. Using an intermediate representation language such as PCode allows for functions to 

be matched regardless of the target architecture.  

Figure 4 shows a system design that compares two binaries. The system extracts functions 

from each binary and lifts them to PCode. The PCode representations of each function are then 

ingested by the matcher and we are then provided with matches between the two binaries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Flow chart for the system 

To match functions, fuzzy string matching (also called approximate string matching) was 

used. We discuss the details of the fuzzy string matcher in Section 3.2. This allowed for matches 

to be found despite some differences between the PCode strings that would complicate exact 

matching.  
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3.1 PCode Translation 

We can acquire the functions within a given binary through Ghidra’s ability to iterate 

through all the functions. As the functions are extracted from each binary, they are ingested by the 

PCode translator which translates the processor instructions into a sequence of PCode instructions. 

PCode generation is handled by the decompiler module, which we invoke first. Once the function 

has been passed in, the first step is to decompile the function to get the high-level function structure 

associated with the decompilation results. If there has been an error with decompilation, such as a 

timeout, the high-level function structure will return null and we cannot proceed with PCode 

translation for that function. In that case, that function is then considered to not match anything 

according to our matcher, and it is not passed on to the fuzzy string matcher to be compared with 

the functions in the other binary. After decompilation, the high-level function structure is then 

broken down into its basic blocks which can then be iterated through to get the PCode instructions.  

 It is at this stage, the PCodeMatcher performs normalization. The first step taken in the 

normalization process is to filter out two specific PCode opcodes: INDIRECT and 

MULTIEQUAL. They are used for generating Single Static Assignment form [12]. The 

MULTIEQUAL operation represents a copy from one or more possible branches while the 

INDIRECT operation is a placeholder for possible indirect effects [12]. Both opcodes are 

generated as side effects from the real control flow instructions. Since they are not mappable to 

any CPU instruction, they were not included in the PCode strings used for comparison by the fuzzy 

string matcher.  

 Once those instruction are filtered out, the rest of the PCode instructions are formatted into 

a string to be passed on to the fuzzy string matcher. The format of each instruction is broken up 

into the inputs, the PCode opcode and the output. An example of a formatted PCode instruction is 

shown below in Figure 5.  

 

Figure 5: PCode Instruction 

In Figure 5, we can see an example of the integer equality operator INT_EQUAL. To the 

right of the opcode are the input varnodes. To the left of the opcode is the output varnode. The 

purpose of this instruction is to compare the integer stored in a register to a constant integer. The 

output is stored in a register.  

3.2 Fuzzy String Matcher 

A fuzzy string matcher, FuzzyWuzzy [16], is used to calculate a similarity score out of one 

hundred between the PCode representations of pairs of the functions within the two binaries. This 

allows for deviations between the PCode strings without disqualification. Where most string 

matchers require two strings to be the same without any disparity, the fuzzy matcher will look to 

find similarity rather than exact equality. The matcher will look at two strings with a few 

discrepancies and see that, while they may not match exactly, they could be close enough to each 

register INT_EQUAL register const 
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other to be considered a match while an exact string matcher would determine that the two strings 

would not be a match based on their differences.  

The matcher we used calculates the Levenshtein similarity ratio based on the Levenshtein 

distance as a measure of similarity between two strings. The Levenshtein distance is defined as the 

minimum number of single character changes (i.e. substitutions, insertions, or deletions) required 

to change one sequence into another. The Levenshtein similarity ratio is calculated by subtracting 

the Levenshtein distance for two sequences from the sum of the lengths of those sequences and 

then dividing by the sum of the lengths of the two sequences being compared. Figure 6 shows 

normalized PCode instructions from two functions. Figure 7 shows the formula for the Levenshtein 

similarity ratio. Using the formula, the calculated similarity score for the strings in Figure 6 would 

be sixty-three.  

 
String A: 

register COPY const 
unique INT_ADD register const 
unique INT_ADD register const 
stack COPY const 
stack COPY const 
stack COPY const 
stack COPY const 

 
String B: 
 
stack COPY const 
unique LOAD const ram 
unique INT_ADD ram const 
unique LOAD const unique 
register INT_ADD register const 
stack COPY const 
register INT_ADD register const 

 

Figure 6: Normalized PCode strings for comparison 

(|𝑎| + |𝑏|) − 𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗)

|𝑎| + |𝑏|
 

Figure 7: Levenshtein similarity ratio formula 

Since the function strings can be large and are not likely to match one hundred percent 

based on the discrepancies with side effects across architectures and the addresses within each 

binary, it becomes necessary to establish a threshold for matching. This will set a boundary where 

any similarity score above a certain number will be considered a match and anything below will 

not. When we allow for partial matching, there will be more of an opportunity for a true match to 

be found by the reverse engineer and lessen the possibility of false negatives. 

3.3 Similarity Threshold 

Similarity is defined as how much two functions resembled each other. In the case of our 

PCodeMatcher, similarity is calculated with the Levenshtein similarity ratio and represented as a 

score between zero and one hundred. This is on par with BinDiff as well as Ghidra’s Version 

Tracker, both of which report similarity as a score between zero and one hundred. Because of the 

slight variations within the PCode due to the lift from architecture specific instructions, getting a 

score of one hundred from the fuzzy string matcher for two functions lifted from different 
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architectures is unlikely. Still, we cannot dismiss a potential match for not getting a perfect score. 

Therefore, a similarity threshold is needed to set a minimum similarity that two functions need to 

achieve to be considered a match. The results section below will discuss the derivation of an ideal 

threshold value. 
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Chapter 4: Methodology 

In this chapter, we go over the binaries used to test the PCodeMatcher as well as the 

industry tools we compared our results to. We also describe what we use as ground truth to 

compare our results against.  

4.1 Test Binaries 

To test the PCodeMatcher’s capabilities, we gathered a variety of different binaries to 

compare. Ghidra supports a wide variety of architectures, but we decided to focus on several of 

the most common architectures. We manually cross-compiled binaries for ARM, MIPS, x86 and 

PowerPC. To start, we compiled small self-written C programs that included if-else statements, 

loops, case statements and other simple operations to understand the way that Ghidra handled 

lifting the assembly code from various architectures into PCode in these situations. This also 

allowed us control over what we saw with the PCode as well as how small changes in the 

programming might affect the matching results.  

 

Table 1: Summary of test binaries 

Table 1 displays all the test binaries that we used for this project. There were some criteria 

that the test data needed to meet to be included for testing. We needed existing binaries that were 

much larger than the self-written programs and we needed the functions in those binaries to be of 

varied sizes and operations. This was to ensure that we tested the PCodeMatcher with binaries that 

displayed a variety of different behaviors that would translate to a variety of different PCode 

opcode sequences.  

Size (KB) Number of  
Functions 

Filename Source Architecture 

9-73 18-22 
Self-written  
programs 

Self-compiled ARM, MIPS, x86, PowerPC 

990-1,427 3180-3575 BusyBox 1.32.0 BusyBox ARM, MIPS, x86, PowerPC 

431-626 163-305 zlib 1.2.11 zlib ARM, MIPS, x86, PowerPC 

364-467 321-558 libmicrohttpd-0.9.70 GNU ARM, MIPS, x86, PowerPC 

1,296-1,611 879-1439 gnuchess-6.27 GNU ARM, MIPS, x86, PowerPC 

3,296-4,614 2782-5049 bash-5.0 GNU ARM, MIPS, x86, PowerPC 

758-1,061 665-1068 grep-3.5 GNU ARM, MIPS, x86, PowerPC 

723-1,114 809-1789 readline GNU ARM, MIPS, x86, PowerPC 
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We used these test binaries to test and evaluate the PCodeMatcher as well as BinDiff and 

Ghidra’s Version Tracker to compare the results of the PCodeMatcher against common industry 

tools. Each set of source code was compiled into each architecture and comparisons were made 

between each pair of architectures (always comparing within the same source code). For example, 

BusyBox compiled for ARM was only compared against BusyBox compiled for the other three 

architectures, readline compiled for one architecture was only compared against the readline 

compiled for the other three architectures and so on. This resulted in six different architecture to 

architecture comparisons for each binary. This process was completed for the PCodeMatcher, 

BinDiff and Ghidra’s Version Tracker. The results of these comparisons can be found in the 

Results and Discussion chapter.  

4.2 Ground Truth 

To determine the accuracy of our PCodeMatcher, we needed to establish a ground truth to 

compare our results to. In binary matching, there could be multiple definitions for a true match 

between two binaries. For example, a score of one hundred for a binary comparison between two 

functions could be considered a true match. Reverse engineers trying to accomplish different 

purposes will have different definitions of a true match. For this project, we define a true match to 

be two functions that have the same name as recorded by the symbols compiled into the binary. 

We do not take possible duplication of functions into account.  
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Chapter 5: Results and Discussion 

 In this section, we provide and discuss our results. We provide our determination for the 

similarity threshold as well as a breakdown of results by function size for the PCodeMatcher, 

BinDiff, and Ghidra’s Version Tracker. We also provide a comparison of results from all three 

matchers.  

5.1 Data Plots for PCodeMatcher 

The performance of the PCodeMatcher is displayed in the Receiver Operator Characteristic 

(ROC) curve shown in Figure 8 below.  

 

Figure 8: PCodeMatcher results displayed in a ROC curve 

In a ROC curve, a true positive rate equal to the false positive rate will give a straight line 

along the diagonal. Figure 8 demonstrates that our ROC curve veers towards the upper left-hand 

corner and then heads into the right-hand corner. Note that data was not collected for matches of 

less than 70 out of 100, causing the straight line to the top-right. ROC curves are more appropriate 

for datasets that are balanced among each class. Our data set is very imbalanced because for every 

function in one binary, there is only one true match in the other binary being compared and every 

other function in that binary that is not the true match is classified as a false match. This means 

that our data is dominated by true negatives and Precision-Recall (PR) curves are more appropriate 

for interpreting our data. Figure 9 below displays the results from the PCodeMatcher in a PR curve.  
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Figure 9: PCodeMatcher results displayed in a PR curve 

In Figure 9 we can see that the PR curve generated by the PCodeMatcher results is not 

obscured by the high number of true negative results. From Figure 9, we can see that the optimal 

threshold for our matcher balancing both precision and recall would be in the range of seventy – 

eighty as the values within this range span the top right corner of the PR curve.  

5.2 Similarity Threshold 

To determine the optimal minimum threshold for the PCodeMatcher, we tested the 

implementations with three different similarity thresholds based on our observation of the PR 

curve. We needed a threshold that was high enough as to not lead to false positives and low enough 

where true matches would not be eliminated for not meeting the threshold. The minimum 

similarities we tested were seventy, seventy-five and eighty. Figure 10 displays the results of each 

threshold when comparing all binaries in confusion matrices.   

 

 

 

Figure 10: Similarity threshold results displayed in confusion matrices 
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After examination of the results from all three similarity thresholds, we conclude that a 

minimum threshold of seventy is the best of these values to optimize for true positive rate. First, 

we can see that the similarity threshold of eighty should not be used due to its true positive rate of 

31%. From analysis of the confusion matrices of the remaining similarity thresholds, we can see 

that the minimum threshold of seventy has the highest true positive rate of 70% compared with a 

true positive rate of 55%. The minimum threshold of seventy does have a higher false positive rate 

of .02% compared with a false positive rate of .006% for a threshold of seventy-five. Higher 

thresholds increase the precision, meaning more of the matches they find are indeed true matches, 

but this comes at the cost of a lower recall rate as shown. 

5.3 PCodeMatcher 

Figure 11 shows the results of the PCodeMatcher for all binary comparisons. A threshold 

of seventy was used. From these results, we can see that at this threshold the PCodeMatcher has a 

sensitivity of 70%, also called the true positive rate, meaning that it is able to correctly match 70% 

of truly matching functions compared. The PCodeMatcher also has a specificity of 99% which is 

also called the true negative rate and means that it can correctly identify true negatives 99% of the 

time. 
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Figure 11: PCodeMatcher results displayed in a confusion matrix 

Figure 12 displays results broken down by function size for the PCodeMatcher. A 

similarity threshold of seventy was used to generate these results. The sizes we used were eighty 

to five hundred bytes, five hundred to one thousand bytes and over one thousand bytes. We ignored 

functions that were below eighty bytes because these functions only contain about twenty 

instructions or less. When taking a binary that is already analyzed and comparing that to another 

unknown binary, attempting to match functions under 80 bytes would not give us much insight 

about the unknown binary.  
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Figure 12: Results from different function sizes displayed in confusion matrices 

After evaluation of the results for each size range, we can say that the PCodeMatcher 

performed slightly better for functions that are between five hundred and one thousand bytes in 

size for our sample binaries. The PCodeMatcher was able to match 78% of functions correctly 

within that size range. The PCodeMatcher matched 70% of functions greater than one thousand 

bytes correctly and 68% of functions between eighty and five hundred bytes correctly. The 

PCodeMatcher uses functions lifted to PCode, essentially a pattern of PCode instructions to match 

functions between binaries. Functions that are between five hundred and one thousand bytes could 

be more easily matched by the PCodeMatcher since the pattern of PCode instructions produced 

from these functions can be distinguished from other functions by the fuzzy string matcher. 

Functions that are between eighty and five hundred bytes are smaller and therefore the pattern of 

PCode instructions generated from these functions will have enough similarity to throw off the 

fuzzy string matcher while functions that are over one thousand bytes will have more differences 

that will also throw off the fuzzy string matcher. Future study in this area would be necessary to 

definitively confirm this speculation.  

5.4 Comparing against Industry Tools 

Comparing the results of the PCodeMatcher to industry tools is also important. Testing 

against widely accepted and used industry tools will help determine the real-world usefulness of 

our matcher. The industry tools we compared the PCodeMatcher against are BinDiff and Ghidra’s 

Version Tracker [6, 11]. Figure 13 shows the comparisons of the PR curves generated from the 

results from all three matching tools. Here we can see that the PCodeMatcher has higher recall 

than BinDiff and the Version Tracker for many thresholds and has higher precision than Version 

Tracker for many thresholds. 
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Figure 13: Results from all three matchers displayed in a PR curve 

5.4.1 BinDiff 

The results from BinDiff are shown in the confusion matrix in Figure 14. The data 

presented here was obtained with BinDiff 6 using the default configuration and a match threshold 

of 70.  
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Figure 14: BinDiff results displayed in a confusion matrix 

From the results shown in Figure 14, we can see that the BinDiff has a true positive rate of 

33%. BinDiff also has a true negative rate of 99%. BinDiff had very few false positives, meaning 

that of the functions it matched, it did so accurately for the most part. However, BinDiff had many 

false negatives, managing to only match around 33% of functions that were truly matches. In 

comparison, the PCodeMatcher performed much better at 70% of functions matched accurately. 

Figure 15 shows the results from BinDiff broken down by function size.  
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Figure 15: Results from different function sizes displayed in confusion matrices 

After evaluation of the results, BinDiff performed slightly better for functions that are 

between five hundred and one thousand bytes in size within our sample binaries, similar to the 

PCodeMatcher. BinDiff was able to match 37% of functions correctly within that size range. 

BinDiff matched 33% of functions greater than one thousand bytes correctly and 33% of functions 

between eighty and five hundred bytes correctly.  

5.4.2 Ghidra’s Version Tracker 

Ghidra’s Version Tracker has multiple different matching algorithms it can use to find 

matches within binaries. The Version Tracker assigns a score to each match within a range of 0.0 

to 1.0. First, we ran the Exact Data Match algorithm and accepted all the matches above the 

threshold 0.7. Next, we ran the rest of the matching algorithms excluding those that compared 

symbols because we wanted to see results of direct examination of the functions. Since there were 

multiple matching algorithms, there were duplicate matches with different similarity scores 

because they were found by different matching algorithms. In these cases, we kept the match with 

the highest similarity score and ignored the others. The results for matches above a similarity of 

0.7 are shown in Figure 16 below.  
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Figure 16: Version Tracker results displayed in a confusion matrix 
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 From these results shown in Figure 16, we can see that the Ghidra’s Version Tracker has 

a true positive rate of 23%. The Version Tracker also has a true negative rate of 99%. The Version 

Tracker had more false positives than BinDiff, meaning that it was less accurate at matching 

functions correctly. The Version Tracker also had many false negatives, managing to only match 

around 23% of functions. In comparison, the PCodeMatcher performed much better at 70% of 

functions matched accurately. Figure 17 shows the results from the Version Tracker broken down 

by function size.  

 

 

Figure 17: Results from different functions sizes displayed in confusion matrices 

After evaluation of the results, as was the trend with other matchers, the Version Tracker 

performed slightly better for functions that are between five hundred and one thousand bytes in 

size within our test binaries. The Version Tracker was able to match 29% of functions correctly 

within that size range. It matched 25% of functions greater than one thousand bytes correctly and 

21% of functions between eighty and five hundred bytes correctly.  
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Chapter 6: Conclusions 

The scope of the project was to attempt to solve the problem of cross-architecture 

comparisons of binaries using PCode, an architecture agnostic representation of assembly 

language. When compared to industry tools such as BinDiff and Ghidra’s own matching tool, 

Version Tracker, the PCodeMatcher showed significantly higher recall while maintaining similar 

precision to Version Tracker for many thresholds.  

With the given test sets, the fuzzy matcher performed well, matching most of the largest 

functions in each binary comparison. It did not perform as well with many of smaller functions 

within each binary where there was much more similarity between functions, meaning there is 

room for further improvement in our system.  

6.1 Future Work 

We have identified several areas for improvement within the project. One improvement 

that could be made is the implementation of other matching techniques using PCode. This project 

used fuzzy string matching which had some complications due to the requirement of string 

normalization before comparison and the arbitrary encoding lengths introduced by opcode and 

varnode labels. This led us to believe that in the future, other matchers could be implemented to 

avoid these problems. One example of another matcher is to use Abstract Syntax Trees (AST). 

Ghidra already has the capability to build ASTs using PCode which would allow for graph 

matching. Graph matching would allow for more accurate matching since it would eliminate the 

complications of string matching. Further normalization, such as removing variations in the PCode 

due to the lift from architecture specific instructions, could also improve results from the fuzzy 

string matcher. 

Another area of improvement for this project is the time optimization of the PCodeMatcher. 

Currently the PCodeMatcher runs comparisons of every function within Binary A against every 

function within Binary B to find potential matches, taking up hours of compute time to run two 

large binaries with upwards of a thousand functions each. There was a line of inquiry into 

parallelization, but it was determined that this was not within the scope of the current project and 

would be left for further research. Another area for optimization about time is using preprocessing 

techniques before running the functions through the matcher. If there was a way to narrow down 

the list of functions into groups that are only partially similar to each other in either size or 

behavior, the matcher would not have such a large list of functions to match to each other and 

therefore finding matches for each function would be less time consuming.  

6.2 Lessons Learned 

Throughout this project, we learned many lessons. This project was somewhat intimidating 

at the beginning, knowing almost nothing about reverse engineering or binary analysis. But 

through research and problem solving, we learned a lot about reverse engineering. Talking to 
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experts was also a great resource that we utilized many times throughout the completion of this 

project. Reaching out for help instead of spending significant amounts of time on problems was 

also a good lesson to learn. Many times, other people will have the answers you need, and it is not 

necessary to struggle through problems on your own.  

The completion of this project led to much more knowledge in computer science topics 

such as binary diffing and reverse engineering techniques but it also led to project management 

skills and learning to set and manage expectations from sponsors and advisors.  
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