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Abstract 

Triple-negative breast cancer (TNBC) is known for its high inter- and intra-tumor 

heterogeneity.  TNBC is associated with poor survival prognosis due to its 

aggressiveness and lack of effective therapies. In this project, we are examining 

single-cell RNA-seq data of primary untreated TNBC tumors obtained from six 

patients. We apply deep unsupervised single-cell clustering method (DUSC) to 

reveal new subpopulations of cells sharing common transcriptomic features and 

proving new biological insights to the TNBC heterogeneity. Our analysis reveals 

subgroups of cells shared among all patients, determine gene signatures associated 

with the poor and good patient survival rates, and could be used in identifying new 

biomarkers. We propose DUSC as a new method to identifying copy-number 

variation tumor subclones, with the copy numbers strongly correlating with the 

patient survival prognosis. 
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1. Background 

1.1 Introduction 

The research we performed was in cancer biology area, addressing the important 

problem of studying cancer tumor heterogeneity. To find out how cancer occurs and 

evolves, researchers are investigating the biological differences between normal and 

cancer cells. The last few decades cancer biology research has revealed new 

mechanisms of cancer development and progression. However, the understanding of 

the cancer evolution and its resistance to the therapy remains a challenging task. In 

our research, we are attempting to identify and to annotate different transcriptomic 

profiles in cancer cells among triple-negative breast cancer (TNBC) tumors. The 

TNBC is known for its high degree of heterogeneity within and among the tumors and 

accounts for approximately 15%-25% of all breast cancer cases [1]. It is associated 

with poor prognosis and remains a type of cancer hard to treat. Due to its biological 

features, the existed drug target therapies available or other breast cancer types are not 

effective for TNBC diagnosed patients.  

Studying TNBC cancer heterogeneity within and among different tumors might reveal 

new cancer cells molecular profiles, pointing to possible strategies for the new 

effective treatment. Our results might contribute to the new drug target identification 

and treatment design. 
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1.2 Cancer 

Cancer is a group of diseases, affecting different parts of the human body. It is 

characterized by the rapid proliferation and the abnormal cell growth beyond their 

usual boundaries, with possible invasion into neighboring tissues in the body and 

spreading to other parts of it. Metastasis, which is spreading of cancer cells to other 

organs, remains the major cause of death from this disease around the world. 

According to the data provided by the World Health Organization (WHO), 9.6 million 

people diagnosed with cancer died in 2018, which puts this disease as second in the 

list of death-causing conditions globally. Cancer keeps effecting economy due to its 

increasing cost of treatment. According to the data from 2010, the total annual 

economic cost of cancer was estimated at approximately US$ 1.16 trillion [9].  

The most frequently occurring types of cancers are: lung (2.09 million cases); breast 

(2.09 million cases); colorectal (1.80 million cases); prostate (1.28 million cases); skin 

cancer (non-melanoma) (1.04 million cases); stomach (1.03 million cases). 

Cancer is caused by the combination of genetic and external factors. The WHO 

defines three main categories of the cancer-causing external factors: physical 

carcinogens, (ultraviolet and ionizing radiation); chemical carcinogens, (asbestos, 

tobacco smoke, aflatoxin), and arsenic (a drinking water contaminant); and biological 

carcinogens, (infections from certain viruses, bacteria, or parasites).  
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An adequate cancer diagnostics and prognosis is an important step in effective cancer 

treatment. Every cancer type follows a unique treatment strategy, frequently, 

employing a combination of several approaches. The most common treatment 

strategies include surgery, radiotherapy, and chemotherapy. A recently introduced and 

promising approach is a drug target therapy, which works by targeting cancer 

associated with specific genes, proteins, or the tissue environment that contributes to 

cancer growth and survival. The identification of the effective targets for such therapy 

remains a challenging problem as cancer cells could develop drug resistance and stop 

responding to the treatment [10-13]. 

1.3 Triple-negative breast cancer 

Triple-negative breast cancer (TNBC) is a cancer, characterized by loss of estrogen 

receptor (ER), progesterone receptor (PgR), and human epidermal growth factor 

receptor 2 (HER2) gene expression. TNBC is a disease associated with poor survival, 

due to its aggressiveness and lack of effective targeted therapies [14]. Up to 15% of all 

breast cancer falls into this category which is associated with a high rate of local and 

systematic recurrence [15]. There are four unique ontologies and differential response 

to standard-of-care chemotherapy TNBC molecular subtypes: basal like-1 (BL1), 

basal like-2 (BL2), mesenchymal (MSL) and luminal AR (LAR) [16].  These subtypes 

differ in age, grade, local and distant disease progression, and histopathology. BL1 
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subtype has an elevated cell cycle and DNA damage response gene expression. BL2 is 

enriched in growth factor signaling and myoepithelial markers.  MSL is known for 

upregulated expression in epithelial-mesenchymal-transition, growth-factor pathways 

and decreased expression of genes involved in proliferation. LAR is defined by 

luminal gene expression and is triggered by its androgen receptor (AR) [16]. 

The genetic profile of TNBC is not well studied. The most common mutation in 

TNBC patients is in TP53 in 62% of basal TNBC and 43% of non-basal TNBC. 

TNBC-associated frequent mutations include PIK3CA (10.2%), USH2A (9.2%), 

MYO3A (9.2%), PTEN (7.7%), and RB1 (7.7%). Comparing genomic data with 

corresponding whole transcriptome data revealed that only 36% of mutations are 

expressed. Although TP53 and PIK3CA/PTEN somatic mutations appear to be 

clonally dominant when compared with other pathways, in some cancers their clonal 

frequencies are incompatible with founder status [17]. 

 Poor TNBC prognosis is also reported to be associated with a tumor 

microenvironment, usually characterized by higher vascular endothelial growth factor 

(VEGF), tumor infiltration lymphocytes (TILs) and Tumor-Associated Macrophages 

(TAM) [18]. The latter play an important role in the immune response to cancer cells, 

but the mechanism of how the tumor microenvironment controls TAMs and T-cell 

response is not well studied. TAMs fill out a major leukocyte population infiltrating 

tumors that originate from circulating blood monocytes, differentiated into 
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macrophages after their relocation into tissues. Later, they usually undergo M1 

(classical) or M2 (alternative) activation. In TNBC, TAMs are reported to promote 

tumor growth and progression by several mechanisms, a few of them include the 

secretion of inhibitory cytokines, the reduction of effector functions of Tumor 

Infiltrating Lymphocytes (TILs) and the promotion of Regulatory T-cell (T-reg) [14]. 

TAMs are reported to, directly and indirectly, modulate anti-programmed cell death 1 

PD-1 and anti-PD-ligand(L)1 agents’ expression in the tumor environment [14]. 

Speculating with TAM unique properties, several TAM-associated TNBC-treatment 

strategies have been proposed. One of them is based on the prevention of TAM 

differentiation, and their quantity reduction, switching M2-type TAMs into antitumor 

M1-phenotype and decelerating TAM-associated molecules [14]. However, the high 

cost of these drugs and the lack of validated predictive biomarkers support the 

development of strategies aimed to overcome resistance and optimize the efficiency of 

these approaches. Also, developing an identification strategy of such macrophage’s 

stages can give an insight into optimal treatment solution. 

The TNBC intratumor diversity causes metastasis, treatment resistance and, thus, poor 

survival rate. Cancer evolution within a primary tumor is suggested to be a reason for 

metastasis development and prevention of the complete elimination of cancer cells. 

Copy-number variations among cancer subclones are known to reflect the punctuated 
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evolution within a tumor [19].  Merging state-of-the-art computational tools and 

single cell analysis can greatly contribute to such tumor subclones identification. 

1.4 Single-cell RNA-seq technology 

High-throughput sequencing methods invented during the last decade, have 

significantly impacted modern biology. Whole transcriptome data analysis has 

revealed many novel biological insights and became an essential part of medical 

research. Unlike RNA-seq (bulk), which averages gene expression patterns across 

thousands to millions of cells, single-cell RNA-seq methods consider biological 

differences between cells by capturing the transcripts of isolated single cells and 

generating sequencing libraries in which the transcripts are mapped to individual cells. 

Single-cell RNA-seq exposes fundamental biological properties of cell populations 

and biological systems at an unprecedented resolution [20].  

Current single-cell RNA-seq protocols involve the following steps (Fig. 1): 1) 

isolation of single cell and RNA, 2) reverse transcription (RT), 3) RNA amplification, 

4) library generation and 5) sequencing. Novel protocols encapsulate individual cells 

in droplets in a microfluidic device, where RT is performed, obtaining cDNA from 

RNAs. Each droplet carries a unique identifier that maps the cDNAs derived from a 

single cell. When RT is over, the cDNAs from many cells can be mixed for 
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sequencing; transcripts from a particular cell are identified by the unique identifier 

[21-22]. 

 

Figure 1. Single-cell RNA-Seq workflow (From [21]). The picture demonstrates the 

major steps in the workflow: 1) extracting the cells from solid tissue, isolation of 

single cell and their RNAs, 2) performing reverse transcription and second-strand 

synthesis, 3) amplification of RNAs, 4) library generation and 5) sequencing. 

 

Single-cell RNA-seq meets a few challenges. One of the challenges is in preserving 

the initial relative abundance of mRNA in a cell. Another challenge is to identify rare 
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transcripts in a cell [23]. The RT is a critical step of the workflow as its efficiency 

determines how much of the cell’s RNA population will be eventually analyzed. To 

amplify cDNA, either Polymerase Chain Reaction (PCR) is used or in vitro 

transcription (IVT). There are a few known single-cell RNA-seq protocols: Tang et al. 

[24], C1-CAGE [25], SMART-seq [26], STRT[27], Quartz-seq [28], RAGE-seq[29] 

and CEL-seq [30]. The protocols differ in RT strategy, cDNA synthesis and 

amplification, and the possibility to accommodate sequence-specific identifiers or to 

process pooled samples [31].  
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2. Methods 

2.1 Dataset 

The dataset contains single-cell RNA-seq data of six tumors of six patients diagnosed 

with triple-negative breast cancer [1]. The tumors underwent the dissociation followed 

by the flow-cytometry sorting of single variable cells (Fig. 2A). Isolated cells went 

through the cDNA preparation and library construction, then through Next Generation 

Sequence (NGS). After quality control and normalization procedures, the total number 

of cells was 1189. The cells were analyzed and labeled by clustering and gene-

markers approaches. It resulted into identification of 1112 epithelial cells (Fig. 2C), 

and 244 non-epithelial cells. Also, the authors identified the cell cycle phases and 

distinguished high cycling cells from the non-cycling (Fig. 2D). Most of the cycling 

cells (98.5%) were epithelial cells. The authors suggested and determined that the 

malignant cells reside among epithelial cells.  
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Figure 2. TNBC dataset description (Adopted, from [1]). a- The illustration of the 

steps preceding the collection of single-cell RNA-seq data for the six primary TNBC 

tumors cells. b – Color-coded heatmap displaying the diversity of the passed quality 

control tumor The columns represent the cells grouped according to the patient 

identifier, with cycling stage color-coding: high cycling cells are pink and low-cycling 

cells are gray. The rows demonstrate the expression of the known cell types gene 

markers. The bottom bar shows the distribution of the cells with the depleted CD45 +.  

c- Bar plots demonstrating the distribution of the assigned cell types among 1112 cells 

in six primary TNBC tumors.  d - Bar plots demonstrating the distribution of the 

assigned low/high-cycling cells among 1112 cells in six primary TNBC tumors. 
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The dataset could be accessed online at the Gene Expression Omnibus database under 

the accession code GSE118390. 

2.2 Deep unsupervised single-cell clustering analysis 

To identify the informative representation of the single-cell transcriptomic data we 

applied deep unsupervised single-cell clustering method (DUSC) [2]. The method is 

based on a deep feature learning approach and further clustering of single-cell RNA-

seq data. In DUCS, the deep feature learning is accomplished with denoising 

autoencoders, which leverage the number of latent features.  

Autoencoder is a type of neural network, which tries to emulate its input [3]. 

Autoencoder projects the input data on a different dimensional space and retrieves the 

data from that dimension onto the original dimension. In the DUSC workflow, the 

model of the autoencoders is trained during the pre-processing stage. The input is 

represented as a matrix, where columns are feature vectors with gene expression 

value, and the rows are the corresponding cell identifiers. The input matrix is 

preprocessed before the training by removing the columns with all zero values. Then, 

the columns are normalized by the formula: 

𝑁𝑜𝑟𝑚(𝑥𝑖) =  
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛 
 ; 

where 𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 are the maximum and the minimum feature values across the 

matrix, and 𝑥𝑖 is a feature value in x. 
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 Autoencoder has two parts: an encoder and a decoder. The encoder projects the input 

data from a higher dimension to a lower dimension according to the formula: 

𝑦 =  𝑠(𝑊𝑥 + 𝑏). 

In DUSC, s(x) is a sigmoid function 𝑠(𝑥) =  
1

1+𝑒−1
. The decoder part, where the 

hidden dimension is again projected to the higher dimension, same as the input is 

described by the formula:  

𝑧 =  𝑠′(𝑊 ′𝑦 + 𝑏′) . 

 Ideally, the projection is such that it reconstructs the input itself. Generally, in the 

case of traditional autoencoders, there is a high chance that it learns the identity 

function to reconstruct the input. This identity although correct is not very useful in 

applications. Also, it cannot make the autoencoder robust to noise in the input. 

Denoising autoencoder does exactly that. It trains in noisy input and reconstructs the 

clean input. Usually, it is done by adding stochastic noise to the input and feeding it to 

the input of the autoencoder. In the DUSC workflow, the noise is introduced by 

randomly selecting n features of each input vector 𝑥𝑖  and assigning them zero values. 

The autoencoder is trained to minimize an error defined as 𝐿𝐻(𝑥, 𝑧), of the latent 

features: 

 𝐿𝐻 (𝑥, 𝑧) =  − ∑ [𝑥𝑘 log 𝑧𝑘 + (1 − 𝑥𝑘  ) log(1 − 𝑧𝑘 )]𝑑
𝑘 , 

where d is a length of the vector of the feature vector. For the reconstruction loss, the 

output of the autoencoder is compared to the original, not corrupted input.  
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The optimization model selects the optimal number of hidden layers and hidden units 

for the denoising autoencoders in this method.  DUSC is implemented using the 

Theano Python library [33], which supports NVidia CUDA. The authors suggest that 

this implementation allows fast training of the neural network layers with the 

increased number of neurons using NVidia GPUs.  

 The DUSC pipeline contains four major parts (Fig. 3). The first step includes the data 

quality check and pre-processing for denoising autoencoders training. The second step 

includes the feature learning using Denoising Autoencoder With Neuronal 

approximation (DAWN), which consists of training denoising autoencoders and 

further hyper-parameter optimization. The third step includes previously published 

unsupervised learning methods: Principle Component Analysis (PCA), Independent 

Component Analysis (ICA), t-SNE, SIMLR, which are used to generate the 

compressed dimensions of the input dataset. This step is made for the comparison 

purpose of autoencoders performance. The fourth step includes reducing the feature 

representation obtained from each of the previously described methods and passing 

them to the clustering methods: K-means and expectation-maximization, to reach the 

clustering accuracy. 
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Figure 3. Illustration of the DUSC workflow.  (Adopted, from [2]). A:  The 

demonstration of DUSC stages: brief description of the datasets used for the 

validation; RNA-seq quantification pipeline; data preprocessing stage; deep feature 

learning; evaluation and result comparison with the other unsupervised methods.   B: 

A more thorough datasets description, which were used for the method validation: 

Embryonic Dataset-1 (E1), Embryonic Dataset-2 (E2), Sensory Neurons (SN), Mouse 

Cortex (MC), and Malignant Melanoma (MM). 
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2.3 Differential expression gene analysis 

Seurat 2.0 performed the differentially expressed gene analysis. Seurat is an R package 

for the analysis of the single-cell RNA-seq data, which aims to identify and interpret 

sources of heterogeneity from single-cell transcriptomic measurements [4, 5].  

The Seurat workflow starts with the alignment of the input, which is a list of at least 

two scRNA-seq data sets. The alignment consists of two steps. The first step includes 

the application of canonical correlation analysis, learning gene correlation between the 

two datasets (Fig. 4A) and optional identification of the outliers, which cannot be 

described by the learned function. This step can help to identify outlying cell 

communities, which do not lie in the intersection of the two compared datasets and 

could be further analyzed. Then, the two datasets are aligned into a low-dimensional 

manifold using nonlinear algorithms and further analyzed by, for example, applying 

clustering methods. The second step of the workflow includes a comparative analysis of 

the intersection of the two datasets and the original datasets. It reveals changes in 

population density or gene expression (Fig. 4B). In the original paper, these steps of the 

workflow were successfully applied and verified on the five different datasets of single-

cell RNA-seq experiments.  
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Figure 4. Overview of the Seurat alignment of single-cell RNA-seq datasets 

(Adopted, from [5]). A - The use of canonical correlation analysis (CCA) to reveal a 

common correlation between two datasets. Further, the cells are projected into a low-

dimensional manifold (visualized here in 2D with t-SNE). B - After alignment, 

clustering methods can highlight unique cell types across the datasets, which proceeds 

to identify shifts in cell type proportion. 

 

We applied Seurat methods on the cell clusters of interest. We obtained the list of 

differentially expressed genes with pre-calculated adjusted for multiple hypothesis p-

value, log fold change, which sign shows the direction of the change and other 

parameters (Supplementary Table S1-10). Then, we used the adjusted p-value cut-off 

= 0.05 to select only statistically significant differentially expressed genes among 
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clusters. For each cluster, we obtained lists of up- and down-regulated genes, based on 

the log fold change value. 

2.4 Survival analysis 

For the survival analysis, we used the Kaplan-Meier survival curve. The survival 

curve is a function of time and the event of interest of a subject (patient). Time could 

be bounded by the time of the subject enrollment in a study, the beginning or the end 

of the treatment, when the event of interest is reached, or the subject is censored 

(withdrawing) from the study. This duration of time is known as serial time, and it 

describes the clinical-course time. 

In the Kaplan-Meier survival analysis, each subject is characterized by three 

parameters: 1) serial time, 2) status at the end of their serial time, and 3) study group 

[6]. When constructing the survival curve, the serial times of the subjects are arranged 

from the smallest to the biggest, disregarding when they entered the study. All the 

subjects within the group are mapped to the curve at its beginning and then marked 

when withdraw or meet the event of interest. Censoring happens when a subject drops 

out, is lost to follow-up, or the required data is not available anymore. Alternatively, 

the study might end before the subject meets the event of interest. Therefore, 

censoring can occur before the study ends. The serial time duration is bounded by the 

event of interest, known as an interval and is indicated as a horizontal line on a 
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Kaplan-Meier curve. All censored subjects are marked on the curve as tick or “star” 

marks and do not terminate the interval. 

 In this project, to analyze the prognostic value of a gene transcript, we divided 

transcripts into two cohort according to the median (or upper/lower quartile) of gene 

expression.  The two groups can be compared in terms of relapse-free survival, overall 

survival, and distant metastasis-free survival. The curves were generated for each gene 

by the online tool available at the web address: www.kmplot.com [7]. The background 

database was established using gene expression data, and survival information of 

1,809 patients downloaded from GEO (Affymetrix HGU133A and HGU133+2 

microarrays). Using the online tool, for each we obtained the Kaplan-Meier curve, 

hazard ratio with 95% confidence intervals, log-rank p-value, and False Discovery 

Rate (FDR) (Fig. 5). 

  

http://www.kmplot.com/
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Figure 5. Kaplan-Meier plot for a gene of interest. The two curves are displayed 

corresponding to the lower- an upregulated gene expression of a gene of interest. The 

lengths of the horizontal lines along the X-axis of serial times represent the survival 

duration for that interval, terminated by the event of interest. The thick dashes on the 

curve are representing censoring data. In the bottom of the graph, there are numbers of 

patients corresponding to the time values on the x-axis. The color encodes the patients 

carrying up-(red) or downregulated (black) gene of interest. 
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We addressed the two groups of patients: triple-negative breast cancer diagnosed 

patients and any other breast cancer type, patients. We obtained the curves for these 

two groups of patients and further analyzed them. 

2.5 Inferring copy-number variations 

Copy-number variations (CNVs) are structural changes in the genome, where the 

fragment is repeated several times or deleted. There events are called duplication and 

deletion respectively. There are a variety of computational methods estimating CNVs 

from single-cell RNA-seq. In this project we use InferCNV [8]. 

InferCNV is an R package, which deduces somatic large-scale chromosomal copy 

number alterations, such as gains or deletions of an entire chromosome or its 

fragment. InferCNV is developed under the approach, which is based on exploring 

expression intensity of genes across positions of the genome in comparison to 

“normal” cells. In our analysis, since we do not have any labeled malignant cells, we 

do not use any “normal” cell reference. Instead, a refence cell cluster is picked by a 

default and compared to the remaining clusters. As the output of the tool, a heatmap is 

generated, which illustrates the relative expression intensities across the genome of 

cells. The visualization and the color-code makes it obvious which regions of the cell 

cluster genome is over-abundant or less-abundant with CNVs in comparison with the 

other clusters. In addition, InferCNV builds a dendrogram of cell clusters, defining the 
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cell cluster hierarchy according to their pattern of heterogeneity. In the InferCNV 

package, there is a possibility to pick residual expression filters to explore minimizing 

noise and further highlighting the signal supporting CNVs.  
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3. Results 

3.1 Cellular diversity in primary TNBC 

The first step of our analysis was the identification of cell populations shared among 

all tumors. We hypothesized that DUSC identifies the groups of cells sharing 

molecular subtype or a cell type. On the dataset represented by six primary tumors 

(Fig. 6A), we applied DUSC and obtained 9 clusters (Fig. 6B). We observed clear 

separation (Fig. 6C) of clusters containing immune cells (cluster 5), from the rest of 

the cell clusters. The epithelial cells were distributed among clusters 1, 2, 3, 4, 6, 7 

and 8, suggesting their patient-specific nature. The unsupervised UMAP visualization 

tool on the clusters (Fig. 5D) demonstrated the same clear separation between immune 

and non-immune cells. 



28 
 

 

Figure 6. Cellular heterogeneity of 6 primary TNBC tumors. A - t-SNE plot of 

tumor cells mapped to their patient’s identifier. It shows not clear patient-specific 

cells separation, which suggests a shared cell group among all patients.  B - t-SNE 

plot of cells after DUSC application. The plot demonstrates the formation of 9 

clusters. Most of the clusters overlap each other, while cluster 5 forms a distinct 

sub-group. C - t-SNE plot of cell type mapping, which shows that the most cell 

type group is represented by epithelial cells. The latter forms distinct subgroups. 

There is an immune cells cluster (T-cells, B-cells, and Macrophages), which is 

positioned separately and does not overlap with the others. D - Application of 
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unsupervised UMAP visualization tool on obtained by DUSC clusters. The plot 

demonstrates a gradual transcriptomic transition among the clusters represented by 

epithelial, stromal, and endothelial cells. The immune cell cluster is isolated and 

does not communicate with the rest of the cells. 

 

In addition, this analysis revealed a graduate transition among cells clusters, which 

might suggest a shared transcriptomic profile of the defined cell clusters. 

 To determine how gene expression signatures differ between these clusters, we 

analyzed differentially expressed genes in various clusters using Seurat and 

obtained top 24 up- and down-regulated genes for each of the 9 clusters. The 

threshold of the number of top regulated genes was determined by the minimum of 

statistically significant up- and down-regulated genes of one of the clusters. To 

better understand the functional relevance of these different clusters in cancer and 

patient outcome, we further performed the survival analysis of the obtained gene 

cluster signatures using the Kaplan-Meier plots for two cohorts of untreated 

patients: TNBC-diagnosed and any breast cancer types diagnosed patients. The 

survival effect profile of the TNBC cluster markers (Fig. 7A) does not reflect the 

one obtained for all breast cancer patient cohort (Fig 7.B). Cluster 5 (immune cell 

cluster) (Fig. 7A) demonstrates the increased number of upregulated gene-markers 

associated with positive survival prognosis, while cluster 7 has an increased 
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number of gene-signatures suggesting poor survival. Clusters 6, 7, 8 (epithelial cell 

clusters) markers are more likely to negatively affect the patients’ survival rate in 

any breast cancer type diagnosed patients. In contrast to the TNBC cohort, the 

majority of the cluster 9 (stromal cells) gene-signatures demonstrate good survival 

prognosis in any breast cancer type diagnosed patients’ cohort. 
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 Figure 7. Survival association of the gene signatures of 9 cell clusters obtained 

by DUSC. Y-axis shows the number of genes, X-axis - cluster number and gene- 

signature regulation level. A - Survival effect of top 24 up- and down-regulated 

gene-signatures of 9 clusters for untreated TNBC-diagnosed patients’ cohort. The 

bar plot shows that the majority of cluster 5 (immune cells cluster) gene-signatures 

are associated with better survival prognosis. Cluster 7 (epithelial cluster) gene-

signatures are associated with poor survival rates. B - Survival effect of top 24 up- 

and down-regulated gene signatures of 9 clusters for any breast cancer type 

diagnosed patient cohort. Cluster 5 (immune cluster) and cluster 9 (stroma cluster) 

signatures demonstrate a positive effect on the survival rate, whereas clusters 6, 7, 

8 (epithelial clusters) markers are associated with negative survival prognosis. 
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Gene pathway analysis was used to find out if the differentially expressed genes 

are associated with a certain biological process or molecular function. We obtained 

a list of the statistically significant biological processes associated with the 

differentially expressed genes for each cluster (Supplementary Table S12). Cluster 

5 markers are involved in a range of important gene pathways like Ribosome, 

Spliceosome, RNA transport, Phagosome, Antigen processing, and presentation. 

Cluster 9 gene-markers affect Drug metabolism - cytochrome P450, Tyrosine 

metabolism, Antigen processing and presentation, and other important cellular 

processes. 

We further investigated cluster 5 (immune cells cluster). We recursively applied 

DUSC on cluster 5 cells and obtained two subclusters C5.1 and C5.2 (Fig. 8C). 

Subcluster C5.1 contains mostly T- and B-cells (Fig. 8A), whereas subcluster 5.2 is 

mostly macrophage cells populated. The latter is shared among all patients (Fig. 

8B), which makes it an interesting subgroup to study. We performed the 

differentially expressed gene analysis (DEGA) on subclusters C5.1 and C5.2 and 

obtained the Kaplan-Meier plots for the resulted subcluster gene-signatures. Most 

of the up-regulated gene-markers of subcluster 5.1 demonstrate positive survival 

prognosis (Fig 8D), while subcluster C5.2 upregulated genes-signatures show a 

mixed (suggested neutral) survival prognosis. The downregulated signatures of 

subcluster C5.2 demonstrate negative survival effect. 
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Figure 8. Cluster 5 (immune cells cluster) intracellular heterogeneity. A - t-

SNE plot of cluster cells mapped to their cell types. Macrophage cells are mostly 

separated from the rest of the cells, whereas T-cells, B-cells, and epithelial cells are 

united in one subcluster. B - t-SNE plot of cluster 5 cells mapped to their patient-

specific identifiers. Subclusters cells are shared among all patients and do not 

contain the patient’ specific cells only. C - t-SNE plot of the subclusters shows the 

overlap between subclusters C5.1 and C5.2. D – Survival analysis of two 

subcluster gene-signatures. In TNBC patient’s cohort (left) many of the signatures 
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of both of the subclusters are associated with the good survival effect. In all breast 

cancer patients’ cohort (right), down-regulated signatures demonstrate poor 

survival prognosis for subcluster 5.1 signatures (T-cells and B-cells mostly) and 

for 5.1(macrophages).  

Gene pathway enrichment analysis revealed C5.1 subcluster gene-markers’ 

involvement in T cell receptor signaling pathway and complement and coagulation 

cascades affection and drug metabolism - cytochrome P450 pathway in subcluster 

C5.2 (Supplementary Table S12). 

We further studied cluster 7 (epithelial cell cluster), which is shared among 

different patients (Fig. 9A). We applied DUSC on the cells and obtained two 

subclusters 7.1 and 7.2 (Fig. 8B). 
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Figure 9. Cluster 7 (epithelial cluster) intracellular heterogeneity. A - t-SNE 

plot of cluster 7 cells mapped to patient-specific identifiers. B - t-SNE plot of 

subclusters C7.1 and C7.2 does not demonstrate clear cluster separation. 

 

Further differentially expressed gene analysis did not reveal any statistically 

significant signatures between two subclusters.  

3.2 TNBC intratumor heterogeneity 

To study the TNBC heterogeneity within a tumor, we picked two patient’s samples 

as case studies. Patients PT081 and PT039 have been previously reported to 

contain epithelial cancer cells and cancer subclones, which differ in copy number 

variations (CNVs). We applied DUSC on PT081 epithelial cells and obtained 4 

clusters (Fig. 10A). To check how these clusters reflect the copy-number variation 

diversity in the tumor, we applied InferCNV computational tool (Fig. 10C), which 

infers CNVs from the transcriptomic data, and based on that performs hierarchical 

clustering of the input cell clusters. Sample PT081 CNVs analysis exposes the 

“main” sub-clone - cluster 4, enriched in CNVs, characterized by a gain in 

chromosome 1, 8 and 10 and a loss in chromosome 9. In contrast, cluster 3 

demonstrates the opposite CNVs pattern, where there is a loss in chromosome 1 

and 8. The dendrogram suggests that cluster 1, 2, and 3 originated from the “main” 
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cluster 4, consistently evolving in CNVs.  Given that most of the cells in PT081 

sample are basal like-1 molecular subtype (Fig. 10B), we applied InferCNVs just 

for these cells to find out their impact on the tumor CNVs profile. 

 

 

Figure 10. Patient PT081 intratumor analysis. A - t-SNE plot of clusters 

obtained by applying DUSC on epithelial PT081 cells. There are no distinctly 

separated clusters. B -  Molecular subtype diversity within a PT081 tumor. The 

most of the epithelial cells is represented by basal like-1 molecular subtype type. C 
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- InferCNV results for PT081 epithelial cells reveal possible evolution pattern 

within a tumor. Cluster 4 could be a possible main clone and cluster 2 and three 

subclones.  

 

Basal like-1 molecular subtype cells reflect the main trends in the tumor CNVs 

(Fig. 11) suggesting their great impact to the sample CNVs and the clonal 

evolution within the tumor. 
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Figure 11. Patient PT081 basal-like-1 InferCNVs analysis. The pattern reflects 

the PT081 epithelial cells inferCNVs results suggesting basal like-1 cells great 

impact in the clonal diversity.  

 

DUSC identified 3 clusters in PT039 epithelial cells (Fig. 12A), which were not 

clearly separated on the t-SNE plot. InferCNVs exposed clear CNVs patterns in 

chromosome 1 and 12 (Fig. 12C): cluster C1 had gains, and cluster C3 had losses 

in these genomic regions. The cells in clusters 1 and 3 demonstrate very similar 

CNV patterns yet were separated by DUSC. This suggests that one of these 

clusters of cells were originated from another with further genetic or epigenetic 

changes. The cells dendrogram obtained by InferCNV is consistent with this idea. 

DEGA did not reveal any statistically significant up- or downregulated genes in 

these clusters. Since the tumor PT039 cells were represented mostly by basal like-1 

and mesenchymal molecular subtype (Fig. 12B), we checked the contribution of 

these cell molecular subtypes to the tumor CNVs.  The basal like-1 cells resemble 

the pattern of all epithelial cells CNVs (Fig. 13A), which suggests their great 

contribution to the tumor CNVs. PT039 mesenchymal cell clusters looks more 

similar in CNVs, compared to basal like-1 clusters. This suggest that basal like-1 

epithelial cells are more diverse in CNVs than mesenchymal cells (Fig. 13B). 
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Figure 12. Patient PT039 intratumor heterogeneity. A - t-SNE plot of clusters 

obtained by applying DUSC on epithelial cells of tumor PT039. There are no 

distinctly separated clusters. B -  Molecular subtype diversity within a PT039 

tumor. The tumor mostly consists of basal like-1 and mesenchymal molecular 
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subtypes. C - InferCNV heatmap results for tumor PT039 epithelial cells illustrate 

possible evolution pattern within a tumor. Cluster C4 could be a possible main 

clone and cluster 2 and 3 - subclones. 

 

 

Figure 13. PT039 mesenchymal and basal-like-1 cells analysis. A - InferCNVs 

of basal like-1 epithelial cells. B - InferCNVs of mesenchymal-epithelial cells. The 

results suggest a contribution to the CNVs tumor pattern from the basal like-1 

cells, rather than mesenchymal cells. 
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Basal like-1 epithelial cells showed their great impact on CNVs in both PT081 and 

PT039 tumors. We applied InferCNV (Fig. 14) on all basal like-1 epithelial cells 

across six tumors. The revealed CNVs pattern (high CNVs in PT081 and PT039) 

are concordant with the published data [1]. However, InferCNV illustrates high 

CNVs in PT089 and PT126, which was not reported previously. The obtained 

result indicates great CNVs in four out of six patients, suggesting that basal like-1 

molecular subtype might be more diverse in CNVs than any other TNBC 

molecular subtype. 
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Figure 14. Epithelial basal like-1 cell analysis across patients. The CNVs 

pattern resembles the original paper insights (high CNVs in PT081 and PT039) in 

addition to the newly revealed high CNVs in PT089 and PT126.  
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4. Discussion 

In this project, we analyze single-cell RNA-seq data of six TNBC tumors. We 

apply novel unsupervised clustering method DUSC to reveal new subgroups of 

cells shared among patients, and to determine which transcriptomic profiles might 

affect the patients’ survival outcome. Our results indicate that some immune cells 

(macrophages, T-cells, B-cells) gene-signatures, could be interpreted as good 

survival prognosis markers for TNBC patients as well as for any other breast 

cancer type patients. Macrophages, which formed a distinct subcluster during all 

patients’ cells DUSC analysis, were present in all patients’ tumors samples and 

characterized by the signatures, associated with the survival prognosis. Their 

genomic signatures, which were involved in tyrosine, glutathione, and drug- 

cytochrome P450 metabolism could be used as potential biomarkers of the 

patient’s survival prognosis. The drastic difference in gene-signatures survival 

association between TNBC patients and all breast cancer types patient cohorts 

might highlight cancer type-specific gene markers. For example, stromal cells 

gene-signatures positive survival association in any breast cancer type patient 

cohort might reveal a cell population that is not present in TNB but is in other 

breast cancer types.   

 The cells with the large-scale CNVs were hypothesized to be malignant cells and 

impact the patients’ survival rates [1]. The effective detection of such cell 
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subclones could be a potential prognosis metric for the patient outcome. Our 

results suggest that DUSC captures the subpopulations of basal like-1 epithelial 

cells sharing CNVs pattern. These findings are consistent with the whole exome 

sequence data of the tumors and their inferred CNVs obtained for this dataset using 

a different approach [1]. Besides, PT089 and PT126 are suggested to contain 

CNVs subclones, which was not reported previously. In addition, TNBC basal 

like-1 molecular subtype is suggested to be more diverse in CNVs than other 

molecular subtypes, like mesenchymal.  

Future research could be directed into the TNBC tumor microenvironment 

studying. Since several TAM-associated TNBC-treatment strategies have been 

recently proposed [14], identification of malignant M2 stage of macrophages and 

their gene-signatures could be greatly beneficial. These gene-signatures could 

become potential biomarkers of patient’s eligibility for TAM-associated therapies. 

Our survival analysis did not reveal any poor survival associated macrophages 

gene-signatures for TNBC patients. This could be due to that all macrophages in 

our dataset are in the stage M1. However, further experimental or computational 

analysis should be done to prove this hypothesis. 

Collecting more data like increasing the number of analyzed cells would greatly 

contribute to the CNVs analysis and clonal evolution reconstruction. Some of the 

patients’ tumors were represented just in 200-300 cells, which is not enough for the 
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further CNVs analysis. Adding more cells to the dataset could help to understand 

the CNVs and their subclonal diversity within a tumor. Since the cells with large-

scale CNVs are considered to be cancerous, revealing subclones of such cells, 

differ in CNVs in various genomic regions, could be beneficial for the survival 

prognosis of the patients. 

In addition, attaching malignant-/non-malignant cells labels to the current dataset 

could potentially reveal many new biological insights of TNBC cells, ranging in 

molecular subtypes and cell types and their survival impact. 
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5. Supplementary materials 

We used Seurat 2.0 to obtain a list of DEG. In the tables S1-S9 the output data frames 

columns are: 

- p_val: unadjusted p-value; 

- avg_logFC: average log fold change; the sign of the value shows the direction 

of the change; 

- pct.1: percentage of the cells in the first cluster that have some gene expression 

(non-zero value); 

- pct.2: percentage of the cells in the second cluster that have some gene 

expression (non-zero value); 

- p_val_adj: Bonferroni corrected p-value; 

 

Gene p_val avg_logFC pct.1 pct.2 p_val_adj 

HNRNPH1 2.65E-33 3.309946 0.986 0.872 4.33E-29 

TRA2A 1.39E-32 2.870889 0.944 0.79 2.26E-28 

PPP1CB 8.44E-32 2.837504 0.972 0.815 1.38E-27 

PADI2 8.77E-27 1.935371 0.817 0.322 1.43E-22 

ACTG1 7.47E-24 -2.65748 0.338 0.823 1.22E-19 
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PSAP 1.09E-23 -3.10497 0.141 0.754 1.78E-19 

CFL1 1.16E-23 -1.19619 0.113 0.761 1.89E-19 

RPL10 8.21E-23 -0.95225 0.085 0.755 1.34E-18 

HNRNPL 1.07E-22 1.247621 0.859 0.73 1.75E-18 

CALM1 2.71E-22 -1.76323 0.07 0.697 4.43E-18 

SERF2 8.16E-22 -1.28159 0.127 0.787 1.33E-17 

RPL13 8.93E-22 -1.67563 0.197 0.754 1.46E-17 

OAZ1 3.43E-21 -1.67416 0.085 0.708 5.60E-17 

SYNC 7.91E-21 1.223223 0.662 0.25 1.29E-16 

ALDOA 7.99E-21 -2.32677 0.099 0.684 1.30E-16 

C1orf56 9.98E-21 2.192791 0.859 0.668 1.63E-16 

RPLP0 1.83E-20 -1.34426 0.183 0.762 3.00E-16 

CTNNB1 2.37E-20 2.207563 0.887 0.813 3.88E-16 

TPM3 6.39E-20 -0.99394 0.465 0.847 1.04E-15 

RPL8 1.83E-19 -1.1955 0.211 0.768 2.99E-15 

TFAP2C 2.18E-19 2.420334 0.817 0.488 3.57E-15 

RPS3 3.15E-19 -1.23766 0.127 0.725 5.15E-15 
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HLA-C 8.32E-19 -1.55234 0.113 0.702 1.36E-14 

SRSF7 1.47E-18 -1.2531 0 0.596 2.41E-14 

EEF2 1.64E-18 -1.57623 0.127 0.677 2.67E-14 

EEF1G 4.07E-18 -1.50315 0.31 0.762 6.65E-14 

GLG1 4.19E-18 -1.30107 0.211 0.721 6.84E-14 

SRSF5 7.95E-18 -1.07005 0.056 0.632 1.30E-13 

GUK1 1.14E-17 -1.27998 0 0.577 1.86E-13 

Table S1. DEG list (fragment) for cluster 1. 
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Gene p_val avg_logFC pct.1 pct.2 p_val_adj 

SERPING1 4.72E-
95 

2.368978 0.858 0.178 7.72E-91 

RBMS3 4.30E-
93 

1.250729 0.597 0.035 7.02E-89 

RARRES2 1.74E-
85 

1.583086 0.625 0.059 2.84E-81 

COL1A2 4.64E-
83 

3.19924 0.636 0.073 7.58E-79 

TIMP3 4.32E-
82 

2.530081 0.67 0.088 7.05E-78 

BGN 1.05E-
81 

1.671627 0.483 0.021 1.71E-77 

SPARC 3.10E-
80 

1.6329 0.847 0.229 5.06E-76 

SPARCL1 9.08E-
80 

2.566908 0.682 0.104 1.48E-75 

COL6A2 2.25E-
79 

1.319615 0.58 0.054 3.67E-75 

CCDC80 2.95E-
79 

1.890668 0.517 0.032 4.81E-75 

LAMA4 3.42E-
77 

1.573028 0.528 0.04 5.59E-73 

C1S 1.05E-
75 

2.747192 0.744 0.159 1.72E-71 

THY1 1.99E-
75 

1.539258 0.438 0.016 3.25E-71 

COL3A1 5.20E-
75 

3.238868 0.557 0.055 8.50E-71 

NNMT 1.99E-
73 

1.643841 0.722 0.133 3.24E-69 

MMP2 5.12E-
73 

2.405058 0.568 0.062 8.37E-69 
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C1R 4.35E-
72 

2.309258 0.739 0.163 7.11E-68 

COL6A1 1.39E-
70 

1.359883 0.568 0.064 2.27E-66 

COL1A1 8.61E-
70 

2.847557 0.682 0.131 1.41E-65 

CXCL12 8.00E-
69 

2.174506 0.5 0.043 1.31E-64 

DCN 2.36E-
68 

3.308089 0.602 0.089 3.86E-64 

SERPINF1 2.73E-
68 

1.559197 0.574 0.076 4.46E-64 

CAV1 2.38E-
67 

1.746373 0.58 0.076 3.88E-63 

TIMP1 2.05E-
66 

1.696699 0.795 0.22 3.34E-62 

COL6A3 6.02E-
66 

2.547719 0.483 0.043 9.83E-62 

IGFBP4 2.94E-
65 

1.099144 0.591 0.081 4.81E-61 

MYL9 3.02E-
65 

0.665549 0.688 0.145 4.94E-61 

CFI 3.46E-
65 

1.889476 0.415 0.022 5.65E-61 

ANGPTL2 6.82E-
65 

0.918793 0.375 0.013 1.11E-60 

Table S2. DEG list (framgent) for cluster 2. 
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Gene p_val avg_logFC pct.1 pct.2 p_val_adj 

EIF5A 9.99E-
59 

-1.2367 0.031 0.906 1.63E-54 

H3F3B 9.92E-
58 

-1.88907 0.359 0.972 1.62E-53 

CALR 3.06E-
56 

-1.61258 0.078 0.922 5.00E-52 

PFN1 3.21E-
56 

-2.29203 0.078 0.891 5.24E-52 

RPS6 1.32E-
55 

-0.89037 0.055 0.897 2.15E-51 

RPS18 3.42E-
53 

-1.81492 0.039 0.852 5.59E-49 

SON 8.05E-
53 

-1.51069 0.039 0.867 1.32E-48 

RPL41 2.02E-
52 

-1.17847 0.086 0.917 3.30E-48 

RPL5 3.90E-
52 

-1.60032 0.07 0.875 6.38E-48 

RPS8 2.58E-
51 

-1.31114 0 0.811 4.22E-47 

RPS25 2.63E-
51 

-1.28366 0.039 0.867 4.29E-47 

RPS27 2.70E-
51 

-0.60079 0.055 0.9 4.42E-47 

MYL6 8.15E-
51 

-2.01842 0.07 0.849 1.33E-46 

RPS14 8.31E-
51 

-1.38222 0.031 0.842 1.36E-46 

FTH1 1.34E-
50 

-0.90039 0.289 0.96 2.19E-46 

HNRNPL 3.86E-
50 

-0.45906 0.023 0.838 6.31E-46 

CALM2 4.17E-
50 

-2.30577 0.219 0.895 6.82E-46 

RPS19 5.16E-
50 

-1.49843 0.062 0.857 8.44E-46 

RPL3 6.99E-
50 

-2.51727 0.109 0.851 1.14E-45 

EEF1A1 1.98E-
49 

-1.32457 0.227 0.935 3.23E-45 

PTMA 2.17E-
49 

-1.22641 0.133 0.917 3.54E-45 

CTNNB1 2.54E-
49 

-2.08749 0.133 0.913 4.15E-45 

SRSF6 2.76E-
49 

-2.53511 0.172 0.881 4.51E-45 

Table S3. DEG (fragment) list obtained by Seurat for cluster 3.  
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Gene 

 

p_val avg_logFC pct.1 pct.2 p_val_adj 

LTF 9.69E-98 2.7037 0.888 0.123 1.58E-93 

CDKN2A 2.27E-79 0.697913 0.816 0.104 3.71E-75 

C1orf186 7.50E-72 0.665698 0.544 0.039 1.22E-67 

ORM2 4.86E-67 0.62828 0.392 0.012 7.94E-63 

ITGB8 7.05E-63 2.365868 0.952 0.414 1.15E-58 

C12orf45 1.63E-61 0.776732 0.72 0.129 2.66E-57 

PSMB4 2.24E-61 1.648755 0.984 0.571 3.66E-57 

SLC35F2 5.80E-61 1.48775 0.84 0.205 9.47E-57 

BCL2A1 1.24E-59 1.133044 0.664 0.096 2.03E-55 

CCL20 4.41E-59 1.121516 0.528 0.051 7.21E-55 

ETNK1 2.93E-55 1.66502 0.984 0.593 4.79E-51 

TLK1 4.57E-55 1.19704 0.992 0.522 7.47E-51 

TRPS1 7.73E-55 1.29116 0.976 0.475 1.26E-50 

YWHAE 1.35E-54 1.277587 1 0.742 2.20E-50 

ORM1 6.23E-54 0.326706 0.344 0.014 1.02E-49 

PRRT3-AS1 9.96E-54 0.331575 0.408 0.028 1.63E-49 

SOX11 1.32E-52 1.042883 0.896 0.263 2.15E-48 

LARP4B 6.17E-52 1.440543 0.896 0.35 1.01E-47 

GRHL2 7.90E-52 0.655504 0.944 0.323 1.29E-47 

AEBP2 2.01E-51 1.355363 0.952 0.442 3.28E-47 

ANP32E 3.96E-51 1.537728 0.928 0.461 6.48E-47 

BIRC3 3.89E-50 1.763789 0.808 0.263 6.35E-46 

UBE2V2 1.03E-49 1.154713 0.888 0.334 1.68E-45 
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INSR 1.28E-49 1.515857 0.968 0.52 2.10E-45 

EIF2S3 4.52E-49 1.257828 0.984 0.75 7.39E-45 

TRA2A 2.00E-48 0.773919 1 0.774 3.26E-44 

NUDT19 2.17E-48 1.753247 0.976 0.729 3.55E-44 

TBL1XR1 3.67E-48 1.55923 0.984 0.629 5.99E-44 

DNAJC3 3.79E-48 1.464214 0.952 0.574 6.19E-44 

Table S4. DEG list (fragment) list for cluster 4 obtained by Seurat. 
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Gene p_val avg_logFC pct.1 pct.2 p_val_adj 

CD53 1E-139 2.090139 0.769 0.01 1.7E-135 

LAPTM5 1.7E-130 2.969218 0.827 0.04 2.8E-126 

SRGN 2.5E-122 2.033341 0.929 0.097 4.1E-118 

PTPRC 6E-113 2.324262 0.891 0.114 9.9E-109 

RGS1 2.5E-111 3.19317 0.731 0.038 4E-107 

ITGB2 6.9E-108 2.329949 0.692 0.03 1.1E-103 

IL2RG 2.4E-106 2.015151 0.628 0.014 4E-102 

CORO1A 7.1E-103 2.258112 0.686 0.036 1.17E-98 

EVI2B 1.1E-99 1.445047 0.564 0.006 1.81E-95 

SAMSN1 7.04E-98 1.435302 0.564 0.008 1.15E-93 

FYB 4.04E-97 1.829954 0.705 0.048 6.6E-93 

LCP1 3.54E-94 2.56124 0.853 0.134 5.79E-90 

ALOX5AP 6.14E-94 1.200419 0.609 0.022 1E-89 

CYTIP 6.07E-93 1.68834 0.526 0.005 9.91E-89 

RAC2 3.41E-92 1.733411 0.551 0.012 5.57E-88 

HCLS1 1.9E-90 1.677458 0.66 0.044 3.1E-86 

IL10RA 6.75E-87 1.680911 0.532 0.013 1.1E-82 

CD52 4.81E-86 1.189366 0.526 0.013 7.86E-82 
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ARHGAP9 2.88E-84 1.220137 0.455 0 4.71E-80 

SELPLG 6.3E-83 1.845598 0.519 0.016 1.03E-78 

LCP2 2.52E-80 0.438209 0.545 0.023 4.11E-76 

C16orf54 1.47E-79 2.046384 0.635 0.06 2.4E-75 

CD69 6.93E-79 2.746239 0.564 0.034 1.13E-74 

GMFG 1.28E-78 0.872346 0.571 0.034 2.09E-74 

DOCK2 1.78E-77 1.321824 0.442 0.004 2.9E-73 

ITGA4 2.14E-77 1.262795 0.532 0.025 3.5E-73 

PARVG 8.33E-77 0.866198 0.417 0 1.36E-72 

GPSM3 1.18E-76 0.361837 0.494 0.016 1.93E-72 

ARHGDIB 1.21E-76 2.17519 0.929 0.303 1.98E-72 

Table S5. GEG list (fragment) obtained by Seurat for cluster 5. 
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Gene p_val avg_logFC pct.1 pct.2 p_val_adj 

KRT86 2.3E-104 0.396571 0.833 0.048 3.7E-100 

KRT81 9.51E-97 2.588612 0.846 0.066 1.55E-92 

DSG1 1.01E-95 1.376917 0.808 0.051 1.65E-91 

KIF1A 5.35E-91 0.537983 0.577 0.016 8.75E-87 

TTYH1 9.21E-88 0.801265 0.705 0.04 1.5E-83 

HEY2 1.16E-87 0.664853 0.692 0.037 1.9E-83 

UCHL1 1.85E-84 0.804932 0.641 0.032 3.02E-80 

FBN3 5.18E-84 0.331529 0.487 0.01 8.46E-80 

CDH2 2.6E-82 0.919117 0.692 0.043 4.24E-78 

AIF1L 1.25E-81 1.413457 0.885 0.092 2.04E-77 

ETV4 6.12E-78 0.316419 0.615 0.031 1E-73 

IGSF9 6.13E-75 0.635562 0.654 0.042 1E-70 

USP5 4.39E-72 1.098142 0.846 0.102 7.18E-68 

NLRP2 1.68E-71 0.621777 0.705 0.058 2.74E-67 

DHCR7 4.2E-70 1.323806 0.91 0.122 6.86E-66 

PRR4 8.93E-70 0.779228 0.667 0.049 1.46E-65 

DBN1 1.12E-68 0.554811 0.782 0.081 1.83E-64 
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GUCY1A3 1.39E-66 1.432863 0.923 0.141 2.28E-62 

HORMAD1 1.73E-66 0.539814 0.718 0.066 2.83E-62 

KRT5 6.01E-66 1.003278 0.91 0.128 9.82E-62 

SORBS2 9.81E-66 1.035304 0.91 0.136 1.6E-61 

CLSTN3 4.5E-65 0.563158 0.91 0.131 7.35E-61 

RERG 5.81E-65 1.173296 0.821 0.101 9.49E-61 

SCARB1 8.88E-65 0.720235 0.769 0.086 1.45E-60 

FAM222B 3.21E-64 0.486058 0.833 0.105 5.24E-60 

PTK7 3.48E-64 0.824088 0.833 0.103 5.69E-60 

PXDN 5.82E-64 1.483077 0.91 0.153 9.51E-60 

AKT3 1.26E-63 0.529611 0.808 0.094 2.05E-59 

MUC5B 2.9E-63 0.366972 0.769 0.089 4.74E-59 

Table S6. DEG list (fragment) for cluster 6 obtained by Seurat. 
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Gene p_val avg_logFC pct.1 pct.2 p_val_adj 

KIT 2.86E-47 1.474181 0.683 0.148 4.67E-43 

TRIM2 1.67E-40 1.253683 0.722 0.191 2.73E-36 

NDRG2 1.09E-39 1.352391 0.825 0.301 1.77E-35 

KRT15 5.34E-36 1.593123 0.603 0.156 8.73E-32 

CLDN4 4.67E-34 1.393095 0.849 0.336 7.63E-30 

DSC2 2.89E-32 1.309256 0.817 0.334 4.71E-28 

SLC6A14 2.35E-31 1.171813 0.659 0.235 3.84E-27 

EHF 4.25E-31 0.965804 0.841 0.33 6.95E-27 

TM4SF1 1.08E-30 1.042694 0.889 0.444 1.76E-26 

SOX9 1.26E-30 0.57226 0.706 0.232 2.06E-26 

FAM60A 4.42E-30 1.001657 0.849 0.393 7.23E-26 

PRSS8 5.08E-30 1.042537 0.587 0.176 8.30E-26 

GUCY1A3 2.99E-28 0.940687 0.563 0.15 4.89E-24 

EPCAM 2.40E-27 0.739339 0.817 0.352 3.93E-23 

CHST9 3.05E-26 0.758166 0.349 0.058 4.98E-22 

SFRP1 1.63E-25 0.940651 0.643 0.227 2.66E-21 
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EFNA1 2.78E-25 0.877305 0.786 0.344 4.54E-21 

APP 4.17E-25 0.872372 0.698 0.275 6.82E-21 

GAS5 1.04E-24 0.584502 0.833 0.428 1.71E-20 

SHANK2 1.33E-24 0.452045 0.516 0.136 2.18E-20 

DSP 2.48E-24 0.800389 0.81 0.363 4.05E-20 

RPS6 3.45E-24 0.767384 0.96 0.773 5.64E-20 

TACSTD2 9.02E-24 1.222521 0.81 0.404 1.47E-19 

PERP 1.43E-23 0.975681 0.802 0.361 2.33E-19 

DSG2 6.80E-23 0.955243 0.897 0.607 1.11E-18 

PKP2 1.13E-22 1.194007 0.595 0.23 1.85E-18 

KRT23 1.73E-22 1.283966 0.571 0.198 2.82E-18 

LRP6 2.02E-22 1.03786 0.603 0.213 3.30E-18 

GABRP 4.64E-22 1.201761 0.643 0.259 7.59E-18 

Table S7. DEG list (fragment) obtained by Seurat for cluster 7. 
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Gene p_val avg_logFC pct.1 pct.2 p_val_adj 

TMSB10 1.08E-23 1.750295 0.904 0.79 1.77E-19 

AZGP1 4.57E-21 1.373789 0.777 0.378 7.46E-17 

SRSF6 1.41E-19 -0.83594 0.394 0.834 2.30E-15 

KLF6 5.60E-17 -0.93897 0.287 0.783 9.15E-13 

RNASE1 8.92E-17 1.630199 0.436 0.129 1.46E-12 

CLK1 9.17E-17 -0.85406 0.106 0.607 1.50E-12 

TMBIM6 1.64E-16 -0.91279 0.255 0.749 2.67E-12 

MTRNR2L2 2.39E-16 1.049068 0.936 0.906 3.91E-12 

TOR1AIP2 1.06E-15 -1.21386 0.862 0.925 1.73E-11 

DNAJC3 1.11E-15 -1.39944 0.213 0.658 1.81E-11 

PPP1CB 1.30E-15 -1.93755 0.436 0.864 2.12E-11 

PPP3CA 1.51E-15 -0.6891 0.213 0.699 2.47E-11 

STRN3 2.25E-15 -1.22115 0.074 0.524 3.67E-11 

R3HDM2 2.37E-15 -0.62217 0.223 0.664 3.87E-11 

CALML5 2.46E-15 2.227362 0.479 0.198 4.01E-11 

PAFAH1B2 7.34E-15 -1.02663 0.511 0.795 1.20E-10 



61 
 

MCL1 1.16E-14 -0.99164 0.149 0.59 1.89E-10 

ANKRD10 2.05E-14 -0.52463 0.245 0.699 3.36E-10 

ITM2B 2.81E-14 -0.96051 0.213 0.61 4.59E-10 

DDX5 3.04E-14 -0.74931 0.404 0.783 4.96E-10 

DDX3X 3.46E-14 -0.58579 0.309 0.746 5.65E-10 

ZFP36L2 4.43E-14 -0.47689 0.138 0.588 7.23E-10 

MIF 4.64E-14 1.675903 0.777 0.72 7.58E-10 

TBL1XR1 5.67E-14 -0.94393 0.298 0.707 9.26E-10 

WTAP 6.88E-14 -1.2055 0.298 0.772 1.12E-09 

MTRNR2L8 8.22E-14 0.951719 0.915 0.912 1.34E-09 

RUFY3 8.40E-14 -0.61904 0.106 0.542 1.37E-09 

NOP58 9.27E-14 -1.43715 0.223 0.63 1.51E-09 

KRT19 1.09E-13 1.544979 0.723 0.482 1.79E-09 

Table S8. DEG list (fragment) for cluster 8 obtained by Seurat. 
 

 

 

 



62 
 

Gene p_val avg_logFC pct.1 pct.2 p_val_adj 

AGR2 3.1E-144 2.045165 0.81 0.022 5.1E-140 

ANKRD30A 4.1E-142 2.898919 0.87 0.037 6.7E-138 

TTC39A 3.6E-138 1.642882 0.79 0.023 5.9E-134 

MLPH 1.3E-131 1.978822 0.88 0.05 2.1E-127 

AGR3 5.4E-127 0.894156 0.78 0.031 8.9E-123 

TFAP2B 4.1E-126 1.031095 0.71 0.018 6.7E-122 

SERPINA5 2.8E-119 1.742475 0.7 0.022 4.5E-115 

PIP 7.4E-115 2.898264 0.64 0.016 1.2E-110 

TFF3 2.2E-112 0.908269 0.59 0.009 3.6E-108 

SPDEF 2.1E-110 1.300739 0.68 0.025 3.4E-106 

TFF1 3.6E-106 1.569557 0.48 0 5.9E-102 

EFHD1 5.7E-103 1.177751 0.72 0.039 9.4E-99 

NEK10 5.4E-99 0.847011 0.55 0.013 8.76E-95 

PGR 1.18E-97 0.784987 0.5 0.006 1.92E-93 

CCDC74A 1.05E-95 1.300041 0.67 0.036 1.71E-91 

REEP6 2.38E-95 0.778097 0.57 0.018 3.9E-91 
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DNAJC12 4.32E-95 0.656242 0.53 0.012 7.05E-91 

C1orf168 1.3E-94 0.628848 0.47 0.004 2.12E-90 

ZG16B 5.05E-94 0.590956 0.57 0.019 8.26E-90 

CCDC74B 2.32E-90 0.524514 0.48 0.007 3.79E-86 

CAPN8 3.45E-90 0.584486 0.49 0.009 5.64E-86 

TBX3 3.79E-90 1.336033 0.79 0.074 6.18E-86 

SERPINA3 1.18E-88 2.789551 0.89 0.128 1.92E-84 

TSPAN1 2.41E-88 0.969208 0.54 0.018 3.93E-84 

ESR1 9.84E-84 1.168974 0.58 0.028 1.61E-79 

SEC14L2 1.21E-83 1.444746 0.77 0.08 1.97E-79 

ADIRF 1.23E-83 0.850953 0.95 0.138 2.01E-79 

VAV3 4.06E-83 1.366785 0.84 0.1 6.62E-79 

DHCR24 1.48E-82 2.045319 0.85 0.117 2.42E-78 

Table S9. DEG list (fragment) obtained by Seurat for cluster 9. 
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Gene pathway enrichment analysis was performed using the R package GAGE [32]. 

 

5.1_down 5.1_up 5.2_down 5.2_up 

Complement and 

coagulation cascades 

ECM-receptor 

interaction 

Phagosome 

Protein digestion and 

absorption 

Focal adhesion 

T cell receptor signaling 

pathway 

Jak-STAT signaling 

pathway 

Phosphatidylinositol 

signaling system 

 Natural killer cell 

mediated cytotoxicity 

Fc epsilon RI signaling 

pathway 

Drug metabolism - 

cytochrome P450 

Tyrosine metabolism 

Glutathione 

metabolism Valine, 

leucine, and 

isoleucine 

degradation 

 Fatty acid 

metabolism 

Drug metabolism 

- cytochrome 

P450 

Tyrosine 

metabolism 

Glutathione 

metabolism 

Valine, leucine 

and isoleucine 

degradation 

Fatty acid 

metabolism 

Table S10. Gene enrichment pathway analysis for cluster 5 (immune cells cluster). The column 

names indicate the number of cluster and the type of DEG gene regulation. The pathways are 

listed in the decreasing manner of their p-values. 
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1_down  

Lysosome 

Cell adhesion molecules (CAMs) 

Glycolysis / Gluconeogenesis 

Antigen processing and presentation 

Leukocyte transendothelial migration 

1_up  

Oxidative phosphorylation 

Ribosome biogenesis in eukaryotes 

Spliceosome 

Ribosome 

Proteasome 

2_down  

Oxidative phosphorylation 

Antigen processing and presentation 

Purine metabolism 

NOD-like receptor signaling pathway 

Proteasome 

2_down  

ECM-receptor interaction 

Focal adhesion 

Protein digestion and absorption 

Complement and coagulation cascades 

TGF-beta signaling pathway 
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3_down Spliceosome 

Protein processing in endoplasmic reticulum 

RNA transport 

Ribosome 

Proteasome 

3_up Apoptosis 

Jak-STAT signaling pathway 

Bile secretion 

Adipocytokine signaling pathway 

Tryptophan metabolism 

4_down Ribosome 

Lysosome 

Complement and coagulation cascades 

Antigen processing and presentation 

Jak-STAT signaling pathway 

4_up Proteasome 

Ubiquitin mediated proteolysis 

RNA transport 

Ribosome biogenesis in eukaryotes 

Spliceosome 

5_down Ribosome 

Spliceosome 

RNA transport 

Ribosome biogenesis in eukaryotes 

Valine, leucine and isoleucine degradation 
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5_up Antigen processing and presentation 

Phagosome 

 Lysosome 

Osteoclast differentiation 

Natural killer cell mediated cytotoxicity 

6_down Ribosome 

Antigen processing and presentation 

NOD-like receptor signaling pathway 

Oxidative phosphorylation 

RIG-I-like receptor signaling pathway 

6_up  

 Glycolysis / Gluconeogenesis 

Protein processing in endoplasmic reticulum 

 Gap junction 

Adherens junction 

 Aminoacyl-tRNA biosynthesis 

7_down Apoptosis 

Antigen processing and presentation 

 NOD-like receptor signaling pathway 

 Phagosome 

Lysosome 

7_up  

Ribosome 

Spliceosome 

Adherens junction 
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hsa03013 RNA transport 

junction 

8_down Jak-STAT signaling pathway 

Osteoclast differentiation 

Apoptosis 

NOD-like receptor signaling pathway 

Focal adhesion 

8_up Ribosome 

Oxidative phosphorylation 

hsa03040 Spliceosome 

Cardiac muscle contraction Proteasome 

9_down Antigen processing and presentation 

NOD-like receptor signaling pathway 

 Phagosome 

Focal adhesion 

Apoptosis 

9_up Drug metabolism - cytochrome P450 

Tyrosine metabolism 

Glutathione metabolism 

Valine, leucine and isoleucine degradation 

Fatty acid metabolism 

Table S12. Gene pathway enrichment analysis for 9 clusters (up- and down-regulated DEG) 

obtained by DUSC. The column names indicate the number of a cluster and the type of DEG 

gene regulation. The pathways are listed in the decreasing manner of their p-values. 
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