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Abstract 

Throughout the past few years, hikers have been more at risk at being injured or lost 

during their visit on the trails of both national and state parks. With the parks being located in an 

area where there are few to no cellular towers there is no way of communicating to park rangers 

or other emergency personnel. The goal of the Major Qualifying Project was to design a system 

that would make hiking safer by providing a way to indicate to park staff that an emergency had 

occurred. By providing the hikers with a handheld device that when activated will transmit 

important GPS data to park staff without the use of a designated cellular or wifi network it is 

ensured that safety is increased for all visitors.  
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Chapter 1: Introduction  

Problem Statement                            

         The National Park system encompasses 417 national parks in the United States. They 

span across more than 84 million acres in each state extended into the territories including parks 

in Puerto Rico, the Virgin Islands, American Samoa and Guam. Threats to the visitors of these 

national parks range from thefts to murders and in recent years the crime rates in these areas 

have stayed stagnant. While this shows that the crimes are not increasing this also shows that 

there is not preventative actions being taken. This can be seen in following table, which was 

derived from the Federal Agencies website and portrays two years of crimes from 2014 to 2016.  

 

Table 1.1: National Park Service Crimes, 2014 to 2016 

Year Violent 

Crime 

Murder and 

Nonnegligent 

Manslaughter 

Rape Robbery Aggravated 

Assault 

Property 

Crime 

Burglary Larceny 

Theft 

Motor 

Vehicle 

Theft 

Arson 

2014 369 16 62 83 199 95 645 158 92 69 

2015 200 9 72 84 85 87 543 541 92 41 

 

Since a National Park such as Yellowstone spans roughly 2.2 million acres with more 

than 900 miles of hiking trails it was more realistic to test our project on a smaller scale. 

Massachusetts is home to over 145 State Parks spanning over 2,000 miles of trails which was 

slightly more realistic to test the project which can be seen depicted in the figure below. 

 

  

Figure 1.1: State Parks located in Massachusetts 
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Shown below is also the total crime in Forest Parks that occur compared to the crime that 

occurs in Massachusetts and on a National level. 

 

 Table 1.2: Reported annual crime in Forest Park 

Statistic Forest Park 

/100k people 

Massachusetts 

/100k people 

National 

/100k people 

Total Crime 5,416 2,082 2,860 

  

It can be seen from the chart depicted that crimes are more likely to occur in a Forest 

Park. For every 100,000 people, there are 14.84 daily crimes that occur in Forest Parks. This 

means that in a Forest Park you have a 1 in 19 chance of becoming a victim of any crime. That 

means that you are more likely to become a victim of any crime in a Forest Park than on the 

streets. 

  

The Solution 

         As visitors of State and National Parks, the group has been made aware of safety tips, 

preventative course of actions and recommended training by websites and by the park service 

employees. No other safety measures are taken to ensure the safety of the visitors. It for this 

reason that we chose to fulfill our senior project requirement of demonstrating abilities in 

electrical and computer engineering by designing a product that would help create a safe 

environment for the visitors of the State and National Parks. 

 

          From early research, it was found that the preventions taken for visitors of State and 

National Parks to prevent injury and crimes committed against them was less than desirable. The 

system designed is a solution based around the idea of providing visitors of State and National 

Parks with simple remote access to park service emergency personnel. The remote access device 

can be rented from the park and used to alert park service emergency personnel when an 

emergency situation arises with a press of a button. When activated, the device sends GPS 

location data via a modular relay system to Park Service Headquarters. The information would 

not only bypass the need to use a personal cell phone to dial the police but it would also provide 

useful data to the dispatcher, therefore helping first responders to get to the scene of a potential 

crime in a timely manner. 

 

         The system can be broken down into the following parts: a Bracelet, a Beacon that 

retrieves and provides information to the Base station. The device would need to inform park 
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service emergency personnel of the user’s location at the press of the button. Since the user 

simply borrows the device for a certain time period there is no maintenance required on the user 

side. The network of Beacons along the Park trails would receive the emergency signal from the 

wireless module of the Bracelet and transmit it along the shortest route possible to the Park 

Service Headquarters otherwise known as the Base station. Finally, in order to keep track of the 

Bracelets given to the visitors upon the beginning and ending of their visit a system would need 

to be developed that would be capable of tracking the rented devices and maintaining them upon 

return. 

 

         To meet the requirements of the system, numerous different technologies were necessary. 

The Bracelet contains GPS technology, and therefore also contains a low power microcontroller 

to interpret GPS data coming in as well as all of the data being sent out to the network. The 

Bracelet, the Beacon and the Base station use wireless communication technology to create a 

network for sending and receiving packets of information. In order to accomplish these goals, we 

looked into technologies such Bluetooth, Near Field Communication and alternative energy 

sources. Also researched were what other companies were making similar products. Through 

research it was identified that a product like this product would be new and useful since no other 

system would be as user-friendly, modular or inexpensive. 
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Chapter 2: Research 

Current State of the Art 

A number of other companies are working on similar solutions to this problem. Since 

there are no system designed primarily for keeping visitors of National and State Parks safe we 

had to look at systems for school campuses and systems that had the similar goal of enhancing 

the safety of the user. 

 

         The first system that will be looked at are based around existing emergency tower 

systems, similar to the towers located on the WPI campus. 

 

  

    Figure 2.1: An Emergency Tower on WPI Campus 

  

The emergency tower is a system developed by Code Blue, a company working on the 

development of the “Circle of Safety System,” which provides remote access to the Code Blue 

emergency towers on some campuses [1].  This system includes a “panic button” pendant on the 

user which sends a signal to the nearest emergency tower from up to 200 feet away when 

pressed. When the emergency signal is received, the campus police can locate and respond to the 

call and also provides the police with identification of the user and links to his or her personal 

file. This system currently has 300 students using the device at the Butler University in 

Indianapolis for test purposes. Code Blue targets university, corporate and medical campuses as 

its markets. Since the system adds cost to the university if adopted, a solution is to let individuals 

subscribe to the system at a rate of $75 for the pendant and $50 for the annual activation fee. The 

downside of this device is the user has to maintain the device themselves. For the parks, the 
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visitors are only there for a limited timeframe and the park may not be visited frequently enough 

in order to make this affordable for the users and the park. 

 

         Another product on the market that is used for college campuses is called RAVENalert. 

This device sends emergency notifications to students with a brief account of any emergency 

incidents [2]. RAVENalert devices are the size of a keychain and uses wireless technology to 

send alerts to students via voice and vibration. This device serves its purpose of notifying the 

students of emergency cases but lacks the ability to let the students communicate with campus 

security. In the case of the visitors of the parks, they would be notified of wildfires, or possible 

dangers in the park but would not be able to communicate if they were in danger. 

 

 

 Figure 2.2: RAVENalert keychain 

  

         There is a patent for a disaster alert system that has been developed. This device includes 

a radio receiver and a processor programmed to monitor radio transmission from one or more 

central stations for disaster alerts directed to the location of the disaster alert device. The alert 

device will include an audio unit to alert personnel located at the site of the device to the precise 

nature of the disaster. The disaster alert devices are pre-programmed with information 

identifying the precise use location of the warning device. This use location information includes 

latitude and longitude of the use location and may also include other location information such as 

street address and zip code. Warnings are broadcasted from central stations identifying with 

latitude and longitude at-risk regions. To minimize required battery power the devices are 

programmed to listen for a warning for only very short periods of time such as one second each 

five minutes. The awake periods are preferably the same for all battery powered devices located 

in relatively large contiguous regions. The central stations that broadcast warnings are aware of 

the awake times, and the central stations are programmed to broadcast warnings to those devices 

during an awake period. Timing components in the disaster alert devices keep them synchronized 

with computers at the central stations. Each central station is equipped with a computer system 

with digital maps having latitude and longitude overlays so that at-risk regions can be specified. 

Disaster alert devices within the radio audience of the central station radio are awake during the 
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broadcast and receive the header information. The header information is analyzed by the disaster 

alert devices and compared with their preprogrammed latitude and longitude positions. If they 

are outside the at risk region, they go back to sleep. If they are within the at risk region, they 

respond by recording the warning and instruction, sound an alarm, and audibly broadcast the 

warning and instructions. Mobile disaster alert devices incorporating a GPS device may be made 

available for mobile vehicle such as boats, cars and trucks. Each of these devices compare its 

actual latitude and longitude with the latitude and longitude information broadcast by the central 

station to determine if the device is in an at risk region. These mobile alert warning systems can 

also be incorporated in electronic devices that people typically carry around such as laptop 

computers and cell phones. These devices can get their GPS position from an incorporated GPS 

device or other sources. This is a similar concept to that of the RAVENalert. The user can 

receive where the disaster is occurring but the user cannot transmit their information. 

 

Another device we looked at is called Life Alert, which is primarily used to help elderly 

citizens alert emergency personnel if they are in danger. The Life Alert device operates by using 

two separately encased and remotely positioned components. The first component comprises a 

portable wearable device that contains an emergency button, and a radio transmitter. When the 

emergency button is activated by a user, a radio signal is sent to the second component that 

comprises a base unit. The base unit is usually communication with the land telephone line of the 

building in which the device is used. The portable wearable unit typically comprises a small 

pendant-sized unit that is coupled to a lanyard or rope, and worn like a pendant around the neck 

of the user. The base device is often the size of a multi-line telephone base set, and is placed at a 

position in the house close to a telephone jack, so that it may connect through the phone jack into 

the land line circuitry of the house. To operate the unit, a user presses a button on the 

pendant/portable unit. The pendant then sends a signal to the base unit. The base unit has an 

automatic dialing feature and communicates a signal through the landline of the house to a help 

desk maintained by a company, such as Life Alert or American Alarms. The normal protocol for 

dealing with such a call is that the call is received by the help desk operator, who then tries to 

communicate verbally with the user. This verbal communication is usually attempted through a 

“speaker phone” feature of the base unit. If the remote caregiver (here a help desk operator) can 

communicate with the user and establish that nothing is wrong with the user, or that a false signal 

has been sent, the caregiver can terminate the telephone call knowing that the user is in no 

emergency. On the other hand, if the user is capable of verbally communicating with the help 

desk so that the caregiver can determine the nature of the emergency, the help desk operator 

might be able to obtain enough information to contact the appropriate emergency responder, who 

may be a person such as the next of kin, a closely located friend, an ambulance, fireman or a 

police agency. 
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              Figure 2.3: Life Alert 

 

System and Component Research 

  

Communication 

         To implement this idea, there need to be a wireless network between the Bracelet, Beacon 

and Base station. For this project, different wireless network were researched. The first wireless 

network considered was Wifi. 

 

 

 Figure 2.4: Wifi 

  

             Some positives of Wifi are that it offers the use of a very secure network with a long 

range of transmission and even supports fast transmission speeds which allow more info to be 

transmitted at a time (250Mbs+). A con of using Wifi as the wireless network is that it consumes 
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a lot of power approximately 80mW to send data at a rate of 75 bytes per second [3] at close 

range. With this device being used where there isn’t easily accessible electricity this would be a 

problem. Another con is the applications use in the parks, we would need to construct a cell 

tower in various places of the parks which would interfere with normal wildlife activity and also 

have high costs. Lastly, Wifi being easily accessible in the parks would have an incentive for 

hikers to use their phones but would create noise pollution and would antagonize those who are 

trying to get away from the distractions that cellphones cause. 

 

          With Wifi ruled out we weighed the pros and cons of using Bluetooth technology, which 

is better suited for battery powered applications as they use very little power approximately 

2mW to send data at a rate of 75 bytes per second [3] at close range. It is an inexpensive solution 

to this project and uses less power than other wireless technologies [4]. Although it is not as 

secure or as stable as Wifi it is a good substitute as it allows for peer to peer communication. The 

major downfall of Bluetooth was its max usable range of about 100 meters. 

 

  

Figure 2.5: Bluetooth 

  

            With both Wifi and Bluetooth ruled both having major cons in implementation and range 

respectively, a better suited technology was needed. The XBee’s use the Zigbee protocol which 

allows the creation of personal area networks that allows wireless communication between 

devices. The XBees were a halfway point between Wifi and Bluetooth. They were low power 

devices that could be put in a battery powered devices and had a longer usable range. Some of 

the higher level XBees had large ranges (15 and 40mi) that could even be increased with signal 

repeaters. 
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Figure 2.6: Xbee 

  

         The two pairs of XBees that were chosen were the Series 1 (100m) and Series 1 Pro 

(1Mi) they used little power (could be controlled by a micro controller) 1mW and 60mW during 

transmission respectively and still adhered to FCC laws when using high frequency applications. 

  

Microcontrollers 

When looking for microcontrollers the standard Arduino Uno was looked at. Arduino are 

used often and have a lot of examples and forums dedicated to it allowing for new users to 

program it. It seemed like a good choice but upon further investigation this controller uses quite 

a bit of power (45mA) so it would drain a battery fairly quickly. Lastly from the specifications it 

can be see that this controller can only support one universal asynchronous receiver transmitter 

(UART) device so we would only be able to use either the GPS or XBee with it not both. 

 

  

Figure 2.7: Arduino Uno 
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To see if the different Arduinos varied enough to be useful we checked out the Arduino 

Mini. It uses the same processor as the Arduino Uno but uses far less power (4.74mA) and space 

making it ideal for battery powered applications. Unfortunately because of its small size 

additional equipment needs to be purchased to actually program the controller as it doesn’t have 

a USB port. Also just as the Arduino Uno it lacks the capability to interface with more than one 

UART device making it essentially useless for our intended design. 

 

  

Figure 2.8: Arduino Pro Mini 

  

The MSP430 is a low power microcontroller from TI. This controller was looked into 

because both students had previous experience with this device from an earlier ECE class. We 

knew we need at minimum two UART ports. The MSP430 has 4 ports that allow for 4 different 

peripherals to be controlled. Further looking at the specifications even in its most active powered 

mode it essentially used no power as it consumed a couple hundred micro amps (404 micro amps 

per MHz) which will allow our device to be active a lot longer. Also the controller had voltage 

out pins that could be used to power its peripherals which is a plus so the system will be self-

contained. 
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Figure 2.9: MSP430 

 

The MSP432 is a newer more advanced version of the MSP432 that has a 32bit 

processor. It has all the functions of the MSP432 but uses even less power (80 micro amps per 

MHz) although it is slightly more expensive. This controller was chosen because it still had all 

the functions necessary but was readily available from a friend and didn’t require us to purchase 

anything else. 

  

 

Figure 2.10: MSP432 
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Table 2.1: Microcontroller Pros and Cons 

Microcontroller Operating Voltage Low Power Mode UART 

Arduino Uno 5V Yes 1 

Arduino Pro Mini 3.3V Yes 1 

MSP430 3.3V Yes 4 

MSP432 3.3V Yes 4 

  

GPS 

The AdaFruit FeatherWing Ultimate GPS was the first GPS we researched which we 

ended up using. Since it has 66 channels it has high accuracy in determining where it is within a 

3m radius. It even updates its position from 1 to 10 times a second although a lower refresh 

(1Hz) has better stability. Further looking into the GPS’ datasheet it can be used with the 

MSP432 as it is operated at 3.3V. Many GPS’ communicate differently using I2C, SPI, UART 

etc. For our design the GPS needed to use a UART connection which it does. This specific 

device sends data in the NMEA 0183 format at 9600 BAUD (rate information is transferred). 

NMEA stands for National Marine Electronics Association and is used for electrical 

communication in marine electronics. 

  

 

Figure 2.11: AdaFruit Ultimate GPS 
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The AdaFruit FeatherWing Ultimate GPS Breakout is essentially the same as the 

AdaFruit FeatherWing Ultimate GPS above but is much smaller in size and removes all the extra 

stuff leaving just the bare essentials to run the device. This would have been a better choice (for 

simplicity) to use as we only need to use four pins to use the GPS with the MSP432. 

  

 

Figure 2.12: AdaFruit Ultimate GPS Breakout 
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Chapter 3: Design 

When looking at previous design art we knew we would need at least three portions to 

our total design. For the user they would need some sort of device that they could use to send an 

alert (a watch, necklace etc.) we call this the trigger. Then the trigger would need to talk to an 

intermediate device which we’ll call the beacon. This beacon needs to receive the data from the 

trigger and then relay it to the base station (the third device) where there would be people who 

could then act upon the trigger’s notifications. 

 

 

Figure 3.1: Full Device Block Diagram 

 

Trigger 

For the trigger it needed to be portable so that the hiker could take it with them this 

means that the trigger needs to be battery powered for an unknown amount of time. With this 

portion of the device using batteries we have to minimize the current draw until the hiker 

actively needs it. 

 

This led us to the conclusion that we should be able to control all the devices power 

consumption using a microcontroller as they turn on devices when necessary and turn them off 

afterwards. Using the controller (MSP432) will also let us control the data that enters and exits 

the trigger. In order to send the GPS coordinates of the hiker to the Beacon a GPS module and 

communication device (XBee) needed to be connected to the MSP432 using UART channels. 

These channels let the GPS transmit its data into the controller so they can then be transmitted to 

the XBee. 
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Figure 3.2: Trigger Block Diagram 

  

Beacon 

The beacon, our intermediate device that will receive coordinates from the trigger and 

then send them to the base station will need a power source as well. Since these are supposed to 

be scattered around the park they need to be self-sufficient and require little maintenance. To do 

this we decided to use a renewable resource and a battery to keep the beacons up and running. 

The easiest and most abundant resource we could use was solar energy so we would invest in a 

solar panel and a large battery. Following the same basic structure as the trigger the MSP432 

should have two peripherals attached to it but instead of it being a GPS and an XBee it will be 

two XBees of different ranges. One XBee to communicate with the trigger the other to reach and 

communicate with the farther base station. 

  

 

Figure 3.3: Beacon Block Diagram 
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Base Station 

The last portion of our design is to receive the GPS data from the beacon (originally from 

the trigger) and then display it for park staff to see. Like the trigger and beacon before this part 

we will use a microcontroller as well, to control and distribute the incoming data. Although this 

time the MSP432 will be connected to an XBee (for communicating with the beacon) and an 

LCD from TI. We will ignore the power supply for this portion as it is assumed this part of the 

device will be stationed in place where it can use an outlet or something since it will be 

stationary. 

 

 

Figure 3.4: Base Station Block Diagram 
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Chapter 4: Methodology and Implementation  

Our project’s goal is to transmit accurate GPS data to a base station that will notify park 

staff that a hiker is experiencing an emergency at some location and needs assistance. This 

portion of the report demonstrates how we integrated our hardware and software components to 

create our final system. 

  

Trigger 

While going through the datasheet of the MSP432 we located the different UART ports 

that we could use. The MSP432 Launchpad has four UART ports but we only needed two so we 

decided to use port 2’s receive/transmit pins P2.2/P2.3 respectively as well as port 3’s 

receive/transmit pins P3.2/P3.3 respectively. The GPS and XBee peripherals would then be 

connected to these pins for the exchanging of information. For simplicity the peripheral devices 

(GPS and XBee) only required 3V to operate and had voltage regulators to help handle being 

powered so we were able to power them up with the MSP432 controller’s voltage output pins. 

This would let us power only the MSP with batteries while everything else could run off of the 

controller. 

 

With this general setup we could then start figuring out the necessary requirements for 

the trigger’s battery. We assumed that all devices excluding the controller will be off until 

activated by the hiker but until then the MSP432 will be in low power mode waiting for the 

trigger’s button input. With the MSP in low power mode it essentially usually uses no current (a 

few micro amps) so just about any battery will last for years at a time. When the hiker does press 

the input button the controller (0.625mA) will enter active mode then the GPS (25mA), XBee 

(45mA) and LED (20mA, just to show info is being sent) will power up and current will start to 

be drawn. The total max current drawn per hour will be 90.625mA. 

  

Table 4.1: Trigger Power Table 

Device Voltage Current Draw 

MSP432 3V 0.625mA 

XBee1 3.3V 45mA 

GPS 3.3V 25mA 

LED 1.8V 20mA 
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As a security blanket we wanted the trigger to be able to last at least a day at max current 

draw. Multiplying 90.625 by 24 hours means we need a power source with a capacity of 

2,175mAh. We then found high capacity batteries on Amazon, they were AA batteries at 1.2V 

and 2800mAh each. This means we could run the device at full transmitting power for 30.89 

hours on three batteries in series (the controller runs on 3V) which should be more than enough 

for a park ranger to receive the emergency notification and send help to the trigger’s location. 

  

Beacon 

For our beacon we decided to use the same UART setup as the trigger using port 2’s 

receive/transmit pins P2.2/P2.3 respectively as well as port 3’s receive/transmit pins P3.2/P3.3 

respectively. The two XBee peripherals would then be connected to these pins for the 

exchanging of information. For simplicity the peripheral devices (XBee1 and XBee2) only 

required 3V to operate and had voltage regulators to help handle being powered so we were able 

to power them up with the MSP432 controller’s voltage output pins. 

 

With this setup we could still keep most of the beacon powered down having only the 

controller and XBee1 (needs to actively listen for the trigger’s transmission) on. When a 

transmission is received XBee2 can then be activated to transmit to the base station and the LED 

can flash as confirmation. This portion of our device uses more power than the trigger as XBee2 

uses five times more current to transmit (since it transmits a farther distance), also XBee1 needs 

to remain on constantly waiting for a transmission. This device being run at total max current 

draw (375.625mA) which consists of XBee1 (50mA), XBee2 (300mA), MSP (0.625mA) and an 

LED (20mA) can be run for 13.3 hours if we use a 5Ah battery. Although if no transmission is 

activated and only the controller and XBee1 are powered the device can run for 98.8 hours 

without a charge. 

  

Table 4.2: Beacon Power Table 

Device Voltage Current Draw 

MSP432 3V 0.625mA 

XBee1 3.3V 50mA 

XBee2 3.3V 305mA 

LED 1.8V 20mA 
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We chose to use a 12V 5Ah Lead Acid battery for this portion of our project. Lead Acid 

batteries have a high capacity and are easily recharged making it a good choice for our project. 

The capacity will allow the beacon to run for approximately two weeks without a recharge. To 

recharge this battery a panel with a higher voltage was needed so we went with a 10W solar 

panel with an open circuit voltage of 22.41V and a short circuit current of 610mA. At the panel’s 

max power point the voltage is 17.9V and the current is 560mA well above the requirements for 

recharging the chosen battery. The current from the panel can then refill an empty battery in 

under 9 hours of daylight. According to the U.S. Navy Observatory that keeps track of the 

amount of daylight each day of the year has shown that each day has more than 9 hours of sun 

each day (for Worcester, Ma). This means the 5Ah can fully recharge any energy the battery will 

use daily (assuming the panel is not covered) especially from May to September which is when 

most people visit parks and hiking trails. 

  

 

Figure 4.1: Daylight Hours 2017 (Worcester, Ma) 

  

Base Station 

For our base station we decided to use the same UART setup as the trigger and beacon 

using port 2’s receive/transmit pins P2.2/P2.3 respectively as well as port 3’s receive/transmit 

pins P3.2/P3.3 respectively. The XBee and LCD peripherals would then be connected to these 

pins for the exchanging of information. For simplicity the peripheral devices (XBee2 and LCD) 
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only required 3V to operate and had voltage regulators to help handle being powered so we were 

able to power them up with the MSP432 controller’s voltage output pins. 

 

Since we are assuming the last stage of our project will be stationary and have a 

dedicated power source we can ignore the power requirements. All this portion of the device has 

to do is listen for incoming data and when it receives something transmit it to the MSP432 

microcontroller to be sent to the LCD where park staff can see the location of the person in 

distress. 

  

Setup 

For our complete system at first we thought we should have the beacons deployed along 

the hiking trails much like how street lights are spaced along busy streets as shown below in 

Figure 4.2. This would reduce the amount of beacons needed and we could space them in a 

manner where the hiker’s trigger is always in range of at least one beacon. The beacons would 

then be in range of the base station to communicate there is an emergency. 

  

 

 Figure 4.2: Trail Setup 

  

The black outlined circles indicate the range (100m) where the trigger’s XBee1 can 

communicate with the beacon’s XBee1 while the blue rectangle indicates the hiking trail. The 

Beacons (white circles) will then need to be within 1Mi of the base station. 

 

As we were getting further into the project we started to notice that placing beacons just 

along the trail might have some gaps in providing safety to the hiker. For instance if the hiker 

was walking on a trail near a cliff and fell off or if a hiker just accidentally walked off of a trail’s 

path because there was no light. They would not be in a position to activate their trigger and have 



26 

the signal be received by a beacon, a major flaw in how we were planning to implement the 

system. 

  

To combat these holes we came up with a solution shown in Figure 4.3 below. This lets 

us encompass the entire park in beacons spaced out in a way that the hiker is always within range 

of a beacon. This will ensure that the hikers in the park are always able to communicate with 

park staff as the outermost beacons will be within the usable range of the base station (for our 

project we are imagining a smaller park although the project could be adapted for bigger national 

parks). This way would cost more initially but would lower cost for actually getting the hikers 

help as the park staff would know exactly where to go and start their search. It would also 

increase the chances of finding the hikers safely, instead of waiting for someone to notice a hiker 

has been gone for days and starting a blind search reducing the hiker’s survival. 

  

 

 Figure 4.3: Park Setup 

  

The black outlined circles indicate the range (100m) where the trigger’s XBee1 can 

communicate with the beacon’s (white circle) XBee1. While the multicolored circle’s display the 

beacon’s XBee2 range which intersects with the base station (black box in the center). The blue 

circle centered on the base station is the max range its XBee2 has.  
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Chapter 5: Testing and Results 

Once we had all of our hardware we had to run some tests on our equipment to ensure 

that all our equipment was working. 

 

We started with the XBees first as one pair had come from a friend who had all the 

necessary pieces (USB and Breadboard docks). To make sure the pair of Xbee1s could talk each 

other we downloaded Digikey’s XCTU program. This let us configure each XBee so they could 

communicate. We wanted to make the transmission process easy so we made it so that one 

Xbee1 would act only as a transmitter while the other XBee1 acted only as a receiver. We were 

able to do this by changing the address of the receiving XBee1 to 89, then we had the 

transmitting XBee1 start sending its low byte to address 89 (receiving XBee1). The different 

XBee1 setups are shown in Figures 5.1 and 5.2 below. The channel and PAN ID are the same for 

both XBee1s so that they are in the same network allowing them to communicate. Although the 

channel and ID are the same they are unique so that there is almost no chance that anyone else 

using XBees will be operating in our network let alone send to the proper addresses causing 

interference. 

  

 

Figure 5.1: Tx XBee1 Setup 
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Figure 5.2: Rx XBee1 Setup 

  

With both XBee1s setup we could then test the connection by switching the XCTU 

program from setup mode to console mode. In this mode we could write in the console log and 

see what was being transmitted and received by each XBee1. The statements being transmitted 

are shown in blue and the statements being received are shown in red. For our designated 

transmitting XBee1 we started by writing “It’s Working!” in the console log (Figure 5.3). We 

then clicked over to our receiving Xbee1 (Figure 5.4) to see if the statement was received which 

it was as “It’s Working!” was written in red. Just to check if the receiving XBee1 could send to 

our transmitting XBee1 we wrote “Can’t Send!” in the console. The transmitting XBee1 didn’t 

receive the message as was expected because the receiving XBee1 sends to a different address. 

 

With the pair of XBee1s configured how we liked, we moved onto configuring and 

testing the longer ranged pair of XBee2s. We went through the same process as before with the 

XBee1s but changed the PAN ID to 13 as precaution even though the XBee2s and XBee1s 

shouldn’t be able to communicate anyways based on the implemented zigbee protocol. 
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Figure 5.3: Tx XBee1 Test 

  

 

Figure 5.4: Rx XBee1 Test 

  

With both pairs of XBees functioning as expected we progressed onto testing the three 

microcontrollers in order to do this we downloaded the Energia Integrated Development 

Environment (IDE) and all the associated drivers for our version of the MSP432. With the IDE 

fully updated we downloaded the simple blink LED program to each controller to test if they all 

worked, which they did. The program made an RGB LED flash red once a second. To test some 

more sophisticated parts of the microcontroller we ran a program that let us send data using 

UART to the computer so we knew we had all the functions we needed from the different 

MSP432s. 
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For testing our GPS the AdaFruit people had created a driver library for our GPS so all 

we had to do was download and install the library into Energia. With this library we were able to 

connect the GPS to the UART pins in port 3. The GPS starts sending data automatically once it 

is powered up so we just sent the data coming into the computer’s serial port to see the raw GPS 

data. The NMEA 0183 format sends a lot of raw data so we edited the program (Appendix A 

“GPSTest”) using the AdaFruit library so we could parse through the necessary info and send 

only what was necessary. In Figure 5.5 below the parsed GPS data is shown, the initial test 

occurred indoors so this is a general position. However if we were outside and got a fix on a 

satellite then specific coordinates would be displayed. 

  

 

Figure 5.5: Serial Monitor Results 

  

With a working GPS we then turned to seeing if we could print to our LCD. First we used 

an LCD example (Appendix A “LCD Example”) already created by Energia to confirm we LCD 

functionality. Then we edited the file (Appendix A “LCDTest”) to take input from UART pins 

and display them on the LCD as if the GPS data was being received from the XBee. This 

program didn’t work quite as expected, the LCD would display single characters at a time then 

overwrite them, but not the entire sentence at once. We also noticed when printing to the LCD 

that there would be too many characters from GPS string to be nicely displayed. With this 

information it was determined that it is better to display the information on the actual computer 

screen, this would reduce cost and be easier to implement. 

 

During the process of trying to program all the different MSP432s we realized that 

Energia didn’t map out all of the different physical UART pins. The only UART ports I could 

use were port 3 and the computer’s port. This wasn’t a problem yet but it meant we couldn’t use 
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the serial monitor so we couldn’t see what was being sent and/or received. So when the XBee 

was connected to the computer’s port as a substitute there was no way to be sure the correct GPS 

data was being written to the XBee which meant we then couldn’t know if the data from the 

trigger would even make it to the beacon. 

 

This grew to be a problem so we deceided to switch to Code Composer Studio (CCS) 

where it was slightly more difficult to use but gave us more features to use. This meant we had to 

start from scratch and learn how to setup all the pins we wanted to use manually. This led us to 

download CCS version 6 and all the necessary drivers to use the controllers. We ran a blink LED 

program again to make sure we had everything setup and running properly first. 

 

Next a program (Appendix B “CCS UART Test”) was edited to test the transmission of 

data from one port to another. For this program we had to configure certain pins to UART mode 

and setup whether they were input or outputs as well as create interrupts to handle receiving and 

transmitting data. For the most part it worked initially but we noticed inside the MSP432 buffers 

the data would appear in the Tx register but then wouldn’t be sent to the Rx register we’ve 

assumed we might be missing one line of code to receive the data that is being transmitted but as 

we were debugging we realized that the port was transmitting but we didn’t connect the Tx pin to 

an Rx pin. When the Tx pin was connected to an Rx pin we could then see the data in the Rx 

buffer. This offered us valuable information in using the computer’s port for UART 

communication as we could now test transmission in Energia using pins 1.2 (Rx) and 1.3 (Tx) 

then sending the data to a second microcontroller and viewing the data in the serial monitor. 

 

Now with a way to view the transferring of data with Energia we started using Energia 

again. In order to make sure we were sending and receiving the proper data we setup our 

hardware without the GPS connected so we could maintain control of the data by sending a 

hardcoded string. This hardcoded string was sent from the trigger’s microcontroller to the XBee1 

(Appendix B “UART Tx Test”) and wirelessly transmitted to the beacon’s XBee1 this data was 

then transferred to the beacon’s computer port to be displayed in the serial monitor (Appendix B 

“UART Rx Test”). The first line in the serial monitor unfortunately was a bunch of garbage 

characters we then decided to retry and give the XBees time to power up first this greatly 

improved the data received and showed a repeating series of numerical characters. We went back 

into the code and noticed that we were using the line “Serial.print(Serial1.read());” to display to 

the monitor which was throwing off our results by encoding the string into an unreadable format. 

Simply switching from “Serial.print(Serial1.read());” to “Serial.write(Serial1.read());” displayed 

our hardcoded string perfectly not only confirming proper communication between both XBee1s 

but that we could use the computer’s UART pins for other devices. 

 

 With the pair of XBee1s communicating properly as part of the system we needed to then 

test the pair of XBee2s. Upon going to test the XBee2s it was noticed that we couldn’t use this 
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pair of XBees with a breadboard because the pins were too close together (2mm) and our two 

XBee breakout boards were being used by the XBee1s. We thought we may have to purchase 

two new breakout boards which would have taken days to get so we got a little creative and 

figured we could use the XBee USB board since they had a place to solder on pins. After going 

through the schematic of the XBee USB boards we figured we could get away with it and 

soldered pins the boards. We had trouble soldering such a small device since we didn’t want to 

ruin any electrical components on the boards as we only had the two. Luckily Mr. Appleyard in 

the ECE shop was able to solder the pins on for us. We then replaced the XBee1s in the system 

with XBee 2s then made sure the hardcoded string was still sent perfectly, which it was. 

 

 Knowing the wireless components for our devices worked would make any problems that 

could occur easier to debug. Although when our hardware was changed to use both pairs of 

XBees we saw that one XBee Explorer’s power LED was not lighting this led us to believe the 

Explorer wasn’t getting any power or just the LED stopped working. We ruled out the LED just 

not working by plugging a USB into the Explorer port and seeing the power LED light up. 

Knowing that the Explorer wasn’t getting power we tried using a different breadboard, adjusting 

the soldered pins and checking the individual XBees to see if they still worked as expected. The 

XBees worked like normal but nothing we did powered up the Explorer, after a few hours of 

trying to figure out how to fix it we noticed that one of the connections was a little skewed so we 

had to place the Explorer in the breadboard slightly crooked and it powered up perfectly. 

 

 The XBee Explorer now powers up correctly which allowed us to test both pairs of 

XBees together. Instead of writing to the serial monitor we removed the MSP432 jumper and 

attached the Tx pin to the XBee2 to wirelessly transmit to the base station XBee2 and then to the 

serial monitor. We originally got the same numerical characters from the first test but since we 

have seen this problem before, we knew that the problem was we wrote 

“Serial.print(Serial1.read());” instead of “Serial.write(Serial1.read());” which was quickly 

corrected. During this test were still using the hardcoded strings so we still knew what data was 

being sent.  

 

The hardcoded string that we sent made it successfully from the trigger to the base 

station’s serial monitor we then exchanged the hardcoded string for the actual GPS module. 

Since this initial testing was indoors we just expected a general string of GPS data with no 

coordinates shown because the GPS can't find a satellite signal if not directly near a window 

while inside of Atwater Kent. Our expectations were confirmed as the necessary strings from the 

GPS would still be transmitted to the serial monitor. 
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Figure 5.6: Fully Assembled Trigger Hardware 

 

 

Figure 5.7: Fully Assembled Beacon Hardware 
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Lastly with the core of our project assembled and tested we made the GPS data on the 

serial monitor a little bit more user friendly so the park staff would be able to easily see what the 

longitude, latitude and altitude of the trigger are. The complete trigger code (Appendix C “Final 

Trigger Code”) will only print the relevant info (longitude, latitude and altitude) if the GPS has a 

satellite fix, if the GPS does not have a fix it will print the two necessary NMEA strings in the 

format of the hardcoded strings shown above previously. To show data transmission for all three 

different portions of our device we use LEDs so we can have confirmation of when data is being 

sent and/or received. 

 

 

Figure 5.8: Fully Assembled Base Station Hardware  

 

Finally with full and complete code the hardware and software were ready to be tested 

out in the real world. We attached the trigger to a laptop as a power source and roamed around a 

neighborhood in Manchester, NH. The beacon was using an outside outlet for power while the 

base station was also connected to a laptop inside of a house. We proceeded to walk around the 

neighborhood with just the trigger for a few minutes collecting GPS data every 10 seconds. 

Accuracy testing for the Safety Sensor was done by taking a sample of the data collected and 

entering it into Google Maps in a specified format. When the coordinates were entered, Google 

Maps quickly zoomed onto our location showing our device truly worked as anticipated. 

Furthermore we did experiment with how long it took the trigger to send relevant information as 

the GPS needs time to power up and find where it is. From a cold start and sending instantly it 

took between 55 (NMEA format) and 65 (fixed format) seconds to send good info. Although if 
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the GPS already had power (a warm start), we saw it start sending good data in approximately 25 

seconds for the fixed format GPS data.  

 

 

Figure 5.9: Base Station Results (Top Format: With Fix, Bottom Format: Without Fix) 

 

 

 Figure 5.10: Trigger’s GPS Coordinates in Google Maps 
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This device runs properly on micro USB power from an outlet or computer which can 

limit mobility of the device if you don’t have a battery pack or small laptop you can easily walk 

around with. So, we designed power circuits for both the trigger and beacon (not needed for the 

base station) to represent how they would be used in the real world. Upon further inspection of 

the MSP432’s datasheet we saw that the microcontroller itself can handle 4.17V max but the pins 

can take 3.7Vmax this is fine as our three batteries in series only produce 3.6V. We also noted 

that the pin we use to power the GPS and XBee peripherals is physically connected to the pin we 

are going to put the battery power on meaning any voltage we use will be put through our 

peripheral devices. Our devices aren’t able to handle the 3.6V that we will be using as they run 

on a voltage range of 2.8V to 3.4V so our external voltage needs to be reduced to a usable level 

(3V or 3.3V) or risk being damaged. 

 

For our trigger portion the power circuit was fairly straightforward we just needed to drop 

our batteries 3.6V down to 3V which was quickly accomplished using the LM317 (represented 

as the LT317A regulator if Figure 5.11) adjustable voltage regulator. This regulator can output a 

voltage between 1.25V and 37V, in order to output 3V we just need to use the right resistor ratio 

which can be found by rearranging the equation Vout = 1.25 * (1 + R2/R1) into R2 = R1 * 

(Vout/1.25 – 1). We chose R1 to be 250 ohms which yields an R2 of 350 ohms giving us a 

steady 3V output that can be used to power the microcontroller and its devices for approximately 

30.89 hours at full transmitting power. 

 

 

 Figure 5.11: Trigger’s Power Circuit 

 

The intermediate portion of our device the beacon’s power circuit was a little more 

complicated than the trigger’s circuit as we needed to use a solar panel to recharge a battery. The 
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first step was to filter and lower the voltage the solar panel was producing as the original 

waveform could hurt the battery by having to high of a voltage. In the circuit is a 0.1 microfarad 

filter capacitor which will reduce any ripple voltage so its output is essentially DC this is put 

through the LM7815 (represented by a LT317A regulator in Figure 5.12) fixed voltage regulator 

which outputs a steady 15V. This regulator was chosen as it was close to the charging voltage for 

the 12V battery. The diode (D1) in place serves two purposes first it blocks the battery from 

passing voltage through the voltage regulator if the battery has the higher potential. Secondly the 

diode drops the 15V down to about 14.3V which is what we are using to charge the battery. With 

the renewable energy portion of the circuit designed all that was needed now was to drop the 

battery voltage down to a usable level (so we don’t damage any electronic components) like we 

did with the trigger so we used another LM317 adjustable voltage regulator and the same ratio of 

resistors to get a 3V output for the microcontroller and its peripheral devices. This power circuit 

will allow the beacon to run without charge for 13.3 hours at full power and 98.8 hours if only 

the beacon is listening. The solar panel at max power will charge the battery in just under 9 hours 

in sunlight assuming it is not being blocked so the battery will be fully replenished everyday 

allowing to the device to function solely on battery power during the night. 

 

 

Figure 5.12: Beacon’s Power Circuit  
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Chapter 6: Conclusions 

Overall our goal was to be able to improve hiker safety by creating a device that can send 

the GPS coordinates of the hiker to park staff so they can get help to that specific location. This 

goal was met and is able successfully receive GPS data from the AdaFruit GPS module then 

have them parsed for the important data and then sent from the trigger all the way to the base 

station and displayed on a computer screen in an easy to understand format for the park staff that 

can easily be entered into Google Maps to show the physical location of the trigger. 

 

The project took about a month longer than the anticipated 7 weeks of D-Term as we 

faced some challenges when doing research for parts and learning how to use unfamiliar coding 

environments. As well as preparing for life after school while working on this MQP. 

 

Without this device if a hiker goes missing or get hurt they have to rely on someone 

noticing they are gone and waiting for help or try and find their way to help.  This reduces their 

chances at getting help in a timely manner and will increase cost and the amount of man hours 

required to find the missing or hurt hiker as the park staff will have an extremely broad area to 

search through with no guarantee they’re even in the right place. This why our device is need to 

help assist both the hiker and park staff in having a safe and friendly visit to hiking trails and 

parks. 

 

Although we have a fully completed system that accomplishes all the goals we set in the 

beginning of the project there are still some aspects of the device that can be improved. If in 

future works these recommendations are expanded on more this device could become more 

reliable and actually be tested in an actual park environment. 
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Chapter 7: Future Works 

While going through the process of creating this hiking safety device we came up with a 

few suggestions that could be used to help further the development of this MQP. 

  

First when we were initially trying to figure out the scale of our project we wanted to 

focus mostly on national parks because a lot of people go missing in them. So it would be nice to 

have a cost analysis on implementing a large scale hiking safety system in such a vast area to see 

if a national park would even want to spend the money to place the beacons throughout the park 

as well as give every visitor a trigger. 

  

Next since we would want to experiment with such a large area it would be better if using 

longer ranged XBees would be beneficial for the transmission. Almost going hand in hand with 

the longer ranged XBees would be to see if the beacon could be constructed into a mesh network 

so if a person with a trigger is really far away one beacon could pick up the distress signal and 

pass it to another beacon that is closer to the base station and keep passing it off until the data 

gets to the base station itself instead of the two step transmission we did. That would allow for 

more efficient transmissions and theoretically increase the transmission range to as far as needed.  

  

Lastly they could see if using XBees really are the best choice for communication. So 

they should look into implementing the system using Wifi, Bluetooth or etc. which could end up 

being a better choice for added reliability and large parks. 
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Appendices 

Appendix A 

  

GPSTest 

#include <Adafruit_GPS.h> 

  

#define GPSSerial Serial1 

  

Adafruit_GPS GPS(&GPSSerial); 

  

  

String NMEA1; 

String NMEA2; 

char c; 

  

void setup() { 

  // put your setup code here, to run once: 

  Serial.begin(115200); 

  Serial.println("If you're reading this...the code may work"); 

  GPS.begin(9600); 

  GPS.sendCommand("$PGCMD,33,0*6D"); 

  GPS.sendCommand(PMTK_SET_NMEA_UPDATE_1HZ); 

  GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCGGA); 

  pinMode(77, OUTPUT); 

  delay(1000); 

  

} 

  

void loop() { 

  // put your main code here, to run repeatedly: 

  readGPS(); 

  delay(20); 

} 

  

void readGPS() { 

  

  clearGPS(); 
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  while(!GPS.newNMEAreceived()) { 

 c=GPS.read(); 

  } 

  

  GPS.parse(GPS.lastNMEA()); 

  NMEA1=GPS.lastNMEA(); 

  

  while(!GPS.newNMEAreceived()) { 

 c=GPS.read(); 

  } 

  

  GPS.parse(GPS.lastNMEA()); 

  NMEA2=GPS.lastNMEA(); 

  

  Serial.println(NMEA1); 

  Serial.println(NMEA2); 

  Serial.println(""); 

  

  digitalWrite(77, HIGH); 

  delay(100); 

  digitalWrite(77, LOW); 

  

} 

  

void clearGPS() { 

  

  while(!GPS.newNMEAreceived()) { 

 c=GPS.read(); 

  } 

  

  GPS.parse(GPS.lastNMEA()); 

  

  while(!GPS.newNMEAreceived()) { 

 c=GPS.read(); 

  } 

  

  GPS.parse(GPS.lastNMEA());  

} 
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LCD Example 

// 

//  Sharp BoosterPackLCD SPI 

//  Example for library for Sharp BoosterPack LCD with hardware SPI 

// 

// 

//  Author :  Stefan Schauer 

//  Date   :  Jan 29, 2014 

//  Version:  1.00 

//  File   :  LCD_SharpBoosterPack_SPI_main.ino 

// 

//  Version:  1.01 : added support for CC3200 

// 

//  Based on the LCD5110 Library 

//  Created by Rei VILO on 28/05/12 

//  Copyright (c) 2012 http://embeddedcomputing.weebly.com 

//  Licence CC = BY SA NC 

// 

//  Edited 2015-07-11 by ReiVilo 

//  Added setOrientation(), setReverse() and flushReverse() 

// 

 

// Include application, user and local libraries 

#include "SPI.h" 

#include "OneMsTaskTimer.h" 

#include "LCD_SharpBoosterPack_SPI.h" 

 

// Variables 

LCD_SharpBoosterPack_SPI myScreen; 

uint8_t myOrientation = 0; 

uint16_t myCount = 0; 

 

 

// Add setup code 

void setup() { 

    Serial.begin(9600); 

 

    myScreen.begin(); 

    myScreen.clearBuffer(); 
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    myScreen.setFont(1); 

    myScreen.text(10, 10, "Hello!"); 

    myScreen.flush(); 

     

    for (uint8_t i=0; i<20; i++) delay(100); 

    myScreen.reverseFlush(); 

    for (uint8_t i=0; i<20; i++) delay(100); 

     

    myScreen.clear(); 

     

    for (uint8_t i=0; i<4; i++) 

    { 

        myScreen.setOrientation(i); 

        myScreen.text(10, 10, String(i)); 

        myScreen.flush(); 

    } 

    for (uint8_t i=0; i<20; i++) delay(100); 

     

    Serial.print("myCount = "); 

} 

 

// Add loop code 

void loop() 

{ 

    myCount++; 

    Serial.print(-myCount, DEC); 

    if (myCount > 16) 

    { 

        myOrientation++; 

 //       if (myOrientation > 4) myOrientation = 0; 

        myOrientation %= 4; 

        myScreen.setOrientation(myOrientation); 

        myCount = 0; 

        Serial.println(); 

        Serial.print("** myOrientation = "); 

        Serial.println(myOrientation, DEC); 

        Serial.print("myCount = "); 

    } 

    myScreen.clearBuffer(); 

    myScreen.setFont(0); 
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    myScreen.text(myCount, 10, "ABCDE", LCDWrapNone); 

    for (uint8_t i=10; i<LCD_HORIZONTAL_MAX-10; i++) { 

        myScreen.setXY(i,20,1); 

    } 

     

    myScreen.text(10,30,String(myCount,10)); 

     

    for (uint8_t i=0; i<=20; i++) { 

        myScreen.setXY(50+i,30,1); 

        //    } 

        //    for (uint8_t i=0; i<=20; i++) { 

        myScreen.setXY(50,30+i,1); 

        //    } 

        //    for (uint8_t i=0; i<=20; i++) { 

        myScreen.setXY(50+i,50,1); 

        //    } 

        //    for (uint8_t i=0; i<=20; i++) { 

        myScreen.setXY(70,30+i,1); 

    } 

     

    myScreen.setFont(1); 

    myScreen.setCharXY(10, 40); 

    myScreen.print("ABC"); 

    myScreen.setFont(0); 

    myScreen.setCharXY(60, 60); 

    myScreen.print(0x7F, HEX); 

    myScreen.print(0x81, HEX); 

    myScreen.setCharXY(10, 60); 

    myScreen.println("Break!"); 

    myScreen.print("ABC\nabc"); 

    myScreen.flush(); 

     

    for (uint8_t i=0; i<2; i++) delay(100); 

} 

 

  



46 

LCDTest 

#include "SPI.h" 

#include "OneMsTaskTimer.h" 

#include "LCD_SharpBoosterPack_SPI.h" 

  

// Variables 

LCD_SharpBoosterPack_SPI myScreen; 

char c; 

  

// Add setup code 

void setup() { 

 Serial.begin(9600); 

 myScreen.begin(); 

   // myScreen.clearBuffer(); 

 myScreen.setFont(0); 

 myScreen.text(10, 10, "Eh!"); 

 myScreen.print("Ah!"); 

 myScreen.flush(); 

 delay(500); 

 myScreen.clear(); 

} 

  

// Add loop code 

void loop() 

{ 

  //Serial.println("From the Loop"); 

  printScreen(); 

  myScreen.setCharXY(10, 30); 

  delay(1000); 

  //myScreen.clear(); 

} 

  

void printScreen() { 

  myScreen.clearBuffer(); 

  myScreen.setFont(0); 

  Serial.println("From the Function"); 

  if (Serial.available()) { 

  delay(1); 

  c=Serial.read(); 

  //myScreen.text(10,40,c); 
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  myScreen.print(c); 

  myScreen.flush(); 

  

  digitalWrite(77, HIGH); 

  delay(100); 

  digitalWrite(77, LOW); 

  } 

} 
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Appendix B 

  

CCS UART Test 

/* DriverLib Includes */ 

#include "driverlib.h" 

 

/* Standard Includes */ 

#include <stdint.h> 

 

#include <stdbool.h> 

 

/* UART Configuration Parameter. These are the configuration parameters to 

 * make the eUSCI A UART module to operate with a 9600 baud rate. These 

 * values were calculated using the online calculator that TI provides 

 * at: 

 *http://software-

dl.ti.com/msp430/msp430_public_sw/mcu/msp430/MSP430BaudRateConverter/index.html 

 */ 

 

char info = 'g'; 

const eUSCI_UART_Config uartConfig = 

{ 

        EUSCI_A_UART_CLOCKSOURCE_SMCLK,          // SMCLK Clock Source 

        78,                                     // BRDIV = 78 

        2,                                       // UCxBRF = 2 

        0,                                       // UCxBRS = 0 

        EUSCI_A_UART_NO_PARITY,                  // No Parity 

        EUSCI_A_UART_LSB_FIRST,                  // LSB First 

        EUSCI_A_UART_ONE_STOP_BIT,               // One stop bit 

        EUSCI_A_UART_MODE,                       // UART mode 

        EUSCI_A_UART_OVERSAMPLING_BAUDRATE_GENERATION  // Oversampling 

}; 

 

void flash_once(void) 

{ 

 MAP_GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0); 

 //_delay_cycles(1000); 

 //MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0); 
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} 

 

void flash_one(void) 

{ 

 MAP_GPIO_setAsOutputPin(GPIO_PORT_P2, GPIO_PIN1); 

 //_delay_cycles(1000); 

 //MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0); 

} 

 

void flash_done(void) 

{ 

 MAP_GPIO_setAsOutputPin(GPIO_PORT_P2, GPIO_PIN0); 

 //_delay_cycles(1000); 

 //MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN0); 

} 

 

int main(void) 

{ 

    /* Halting WDT  */ 

    MAP_WDT_A_holdTimer(); 

 

    // Selecting P1.2 and P1.3 in UART mode 

    MAP_GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P1, 

            GPIO_PIN2 | GPIO_PIN3, GPIO_PRIMARY_MODULE_FUNCTION); 

    //Set LED 1.0 as output 

    //MAP_GPIO_setAsOutputPin(GPIO_PORT_P1, GPIO_PIN0); 

    //MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0); 

     

     

    // Selecting P2.2 and P2.3 in UART mode 

    MAP_GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P2, 

            GPIO_PIN2 | GPIO_PIN3, GPIO_PRIMARY_MODULE_FUNCTION);     

    //Set LED 2.0 as output 

    //MAP_GPIO_setAsOutputPin(GPIO_PORT_P2, GPIO_PIN0); 

    //MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN0); 

     

     

    // Selecting P3.2 and P3.3 in UART mode 

    MAP_GPIO_setAsPeripheralModuleFunctionInputPin(GPIO_PORT_P3, 

            GPIO_PIN2 | GPIO_PIN3, GPIO_PRIMARY_MODULE_FUNCTION);     
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    //Set LED 2.1 as output 

    //MAP_GPIO_setAsOutputPin(GPIO_PORT_P2, GPIO_PIN1); 

    //MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN1); 

     

    /* Setting DCO to 12MHz */ 

    CS_setDCOCenteredFrequency(CS_DCO_FREQUENCY_12); 

 

    // Configuring UART Module0 

    MAP_UART_initModule(EUSCI_A0_BASE, &uartConfig); 

     

    // Configuring UART Module1 

    MAP_UART_initModule(EUSCI_A1_BASE, &uartConfig); 

     

    // Configuring UART Module2 

    MAP_UART_initModule(EUSCI_A2_BASE, &uartConfig);  

     

    // Enable UART module0 

    MAP_UART_enableModule(EUSCI_A0_BASE); 

     

    // Enable UART module1 

    MAP_UART_enableModule(EUSCI_A1_BASE); 

     

    // Enable UART module2 

    MAP_UART_enableModule(EUSCI_A2_BASE); 

 

    // Enabling interrupts0 

    MAP_UART_enableInterrupt(EUSCI_A0_BASE, 

EUSCI_A_UART_RECEIVE_INTERRUPT); 

    MAP_Interrupt_enableInterrupt(INT_EUSCIA0); 

    //MAP_Interrupt_enableSleepOnIsrExit(); 

    MAP_Interrupt_enableMaster(); 

     

    // Enabling interrupts1 

    MAP_UART_enableInterrupt(EUSCI_A1_BASE, 

EUSCI_A_UART_RECEIVE_INTERRUPT); 

    MAP_Interrupt_enableInterrupt(INT_EUSCIA1); 

    //MAP_Interrupt_enableSleepOnIsrExit(); 

    MAP_Interrupt_enableMaster();  

     

    // Enabling interrupts2 
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    MAP_UART_enableInterrupt(EUSCI_A2_BASE, 

EUSCI_A_UART_RECEIVE_INTERRUPT); 

    MAP_Interrupt_enableInterrupt(INT_EUSCIA2); 

   // MAP_Interrupt_enableSleepOnIsrExit(); 

    MAP_Interrupt_enableMaster(); 

 

    while(1) 

    { 

     UART_transmitData(EUSCI_A0_BASE, info); 

     //UART_transmitData(EUSCI_A1_BASE, info); 

     //UART_transmitData(EUSCI_A2_BASE, info); 

     //MAP_PCM_gotoLPM0(); 

    } 

} 

 

// EUSCI A0 UART ISR - Echoes data back to PC host 

void EUSCIA0_IRQHandler(void) 

{ 

    uint32_t status = MAP_UART_getEnabledInterruptStatus(EUSCI_A0_BASE); 

 

    flash_once(); 

 

    MAP_UART_clearInterruptFlag(EUSCI_A0_BASE, status); 

 

    if(status & EUSCI_A_UART_RECEIVE_INTERRUPT_FLAG) 

    { 

     flash_done(); 

 

        MAP_UART_transmitData(EUSCI_A0_BASE, 

MAP_UART_receiveData(EUSCI_A0_BASE)); 

        //MAP_GPIO_setOutputHighOnPin(GPIO_PORT_P1, GPIO_PIN0); 

    } 

     

    //MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P1, GPIO_PIN0); 

 

} 

 

// EUSCI A1 UART ISR - Echoes data from P2 to PC host 

void EUSCIA1_IRQHandler(void) 

{ 
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    uint32_t status = MAP_UART_getEnabledInterruptStatus(EUSCI_A1_BASE); 

 

    flash_one(); 

 

    MAP_UART_clearInterruptFlag(EUSCI_A1_BASE, status); 

 

    if(status & EUSCI_A_UART_RECEIVE_INTERRUPT_FLAG) 

    { 

     flash_done(); 

        MAP_UART_transmitData(EUSCI_A1_BASE, 

MAP_UART_receiveData(EUSCI_A1_BASE)); 

        //MAP_GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN0); 

    } 

 

    //MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN0); 

} 

 

// EUSCI A2 UART ISR - Echoes data P3 to P2 

void EUSCIA2_IRQHandler(void) 

{ 

    uint32_t status = MAP_UART_getEnabledInterruptStatus(EUSCI_A2_BASE); 

 

    flash_once(); 

 

    MAP_UART_clearInterruptFlag(EUSCI_A2_BASE, status); 

 

    if(status & EUSCI_A_UART_RECEIVE_INTERRUPT_FLAG) 

    { 

     flash_done(); 

        MAP_UART_transmitData(EUSCI_A2_BASE, 

MAP_UART_receiveData(EUSCI_A2_BASE)); 

        //MAP_GPIO_setOutputHighOnPin(GPIO_PORT_P2, GPIO_PIN1); 

    } 

 

    //MAP_GPIO_setOutputLowOnPin(GPIO_PORT_P2, GPIO_PIN1); 

} 

 

 

  



53 

UART Tx Test 

void setup() { 

  Serial.begin(9600); 

  pinMode(77, OUTPUT); 

  delay(1000); 

} 

  

void loop() { 

Serial.println("$GPGGA,092750.000,5321.6802,N,00630.3372,W,1,8,1.03,61.7,M,55.2,M,,*76"

); 

Serial.println("$GPRMC,092750.000,A,5321.6802,N,00630.3372,W,0.02,31.66,280511,,,A*43"

); 

Serial.println(""); 

 

digitalWrite(77, HIGH); 

delay(100); 

digitalWrite(77, LOW);  

delay(1000); 

} 

 

UART Rx Test 

 void setup() { 

  Serial.begin(115200); 

  Serial1.begin(9600); 

  pinMode(76, OUTPUT); 

  delay(1000); 

} 

  

void loop() { 

digitalWrite(76, LOW);  

if (Serial1.available() > 0) { 

  digitalWrite(76, HIGH); 

  Serial.write(Serial1.read()); 

} 

} 
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Appendix C 

  

Final Trigger Code 

#include <Adafruit_GPS.h> 

 

#define GPSSerial Serial1 

 

Adafruit_GPS GPS(&GPSSerial); 

 

char c; 

int look = 0; 

String NMEA1; 

String NMEA2; 

int buttonState = 0; 

const int buttonPin = PUSH1; 

 

void setup() { 

  // put your setup code here, to run once: 

  Serial.begin(9600); 

  GPS.begin(9600); 

  GPS.sendCommand("$PGCMD,33,0*6D"); 

  GPS.sendCommand(PMTK_SET_NMEA_UPDATE_1HZ); 

  GPS.sendCommand(PMTK_SET_NMEA_OUTPUT_RMCGGA); 

  pinMode(77, OUTPUT); 

  pinMode(78, OUTPUT); 

  pinMode(buttonPin, INPUT_PULLUP); 

  delay(1000); 

 

} 

 

void loop() { 

  // put your main code here, to run repeatedly: 

  while (look == 0) { 

    buttonState = digitalRead(buttonPin); 

    if (buttonState == LOW) { 

       look = 1; 

       digitalWrite(78, HIGH); 

    } 
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  } 

      readGPS(); 

      delay(10000); 

} 

 

void readGPS() { 

   

  clearGPS(); 

   

  while(!GPS.newNMEAreceived()) { 

    c=GPS.read(); 

  } 

   

  GPS.parse(GPS.lastNMEA()); 

  NMEA1=GPS.lastNMEA(); 

 

  while(!GPS.newNMEAreceived()) { 

    c=GPS.read(); 

  } 

   

  GPS.parse(GPS.lastNMEA()); 

  NMEA2=GPS.lastNMEA(); 

 

   

  if (GPS.fix == 1) { 

    Serial.print("Latitude: "); 

    Serial.print(GPS.latitude, 4); 

    Serial.println(GPS.lat); 

    Serial.print("Longitude:"); 

    Serial.print(GPS.longitude, 4); 

    Serial.println(GPS.lon); 

    Serial.print("Altitude:"); 

    Serial.println(GPS.altitude); 

    Serial.println(""); 

 

  digitalWrite(77, HIGH); 

  delay(100); 

  digitalWrite(77, LOW); 

  } 

  else { 
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    Serial.println(NMEA1); 

    Serial.println(NMEA2); 

    Serial.println(""); 

 

  digitalWrite(77, HIGH); 

  delay(100); 

  digitalWrite(77, LOW); 

  } 

} 

 

void clearGPS() { 

   

  while(!GPS.newNMEAreceived()) { 

    c=GPS.read(); 

  } 

   

  GPS.parse(GPS.lastNMEA()); 

 

  while(!GPS.newNMEAreceived()) { 

    c=GPS.read(); 

  } 

   

  GPS.parse(GPS.lastNMEA()); 

 

  while(!GPS.newNMEAreceived()) { 

    c=GPS.read(); 

  } 

   

  GPS.parse(GPS.lastNMEA());  

} 
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Final Beacon Code 

#define LED GREEN_LED 

 

void setup() { 

Serial.begin(9600); 

Serial1.begin(9600); 

pinMode(LED, OUTPUT); 

delay(1000); 

} 

 

void loop() { 

  digitalWrite(LED,LOW); 

  readXBee1(); 

} 

 

void readXBee1() { 

  if (Serial1.available() > 0) { 

    digitalWrite(LED,HIGH); 

    Serial.write(Serial1.read()); 

  } 

} 
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Final Base Station Code 

#define LED1 BLUE_LED 

 

void setup() { 

Serial.begin(9600); 

Serial1.begin(9600); 

pinMode(78, OUTPUT); 

pinMode(LED1, OUTPUT); 

delay(1000); 

} 

 

void loop() { 

  digitalWrite(78, HIGH); 

  digitalWrite(LED1, LOW); 

  readXBee2(); 

} 

 

void readXBee2() { 

  if (Serial1.available() > 0) { 

    digitalWrite(LED1,HIGH); 

    Serial.write(Serial1.read()); 

  } 

} 

 

 

 

 


