
Multiple Continuous Query Processing with Relative
Window Predicates

by

Asima Silva

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

April 2004

APPROVED:

Professor Elke Rundensteiner, Thesis Advisor

Professor George Heineman, Thesis Advisor

Professor David Finkel, Thesis Reader

Professor Michael Gennert, Head of Department

Abstract

Efficient querying over streaming data is a critical technology which requires

the ability to handle numerous and possibly similar queries in real time dynamic

environments such as the stock market and medical devices. Existing DBMS tech-

nology is not well suited for this domain since it was developed for static historical

data. Queries over streams often contain relative window predicates such as in the

query: “Heart rate decreased to fifty-two beats per second within four seconds after

the patient’s temperature started rising.” Relative window predicates are a specific

type of join between streams that is based on the tuple’s timestamp.

In our operator, called Juggler, predicates are classified into three types: at-

tribute, join, and window. Attribute predicates are stream values compared to a

constant. Join predicates are stream values compared to another stream’s values.

Window predicates are join predicates where the streams’ timestamp values are com-

pared. Juggler’s composite operator incorporates the processing of similar though

not identical, query functionalities as one complex computation process. This exe-

cution strategy handles multi-way joins for multiple selection and join predicates. It

adaptively orders the execution of predicates by their selectivity to efficiently process

multiple continuous queries based on stream characteristics. In Juggler, all similar

predicates are grouped into lists. These indices are represented by a collection of

bits. Every tuple contains the bit structure representation of the predicate lists

which encodes tuple predicate evaluation history. Every query also contains a simi-

lar bit structure to encode the predicate’s relationship to the registered queries. The

tuple’s and query’s bit structures are compared to assess if the tuple has satisfied a

query.

Juggler is designed and implemented in Java. Experiments were conducted to

verify correctness and to assess the performance of Juggler’s three features. Its

adaptivity of reordering the evaluation of predicate types performed as well as the

most selective predicate ordering. Its ability to exploit similar predicates in multiple

queries showed reduction in number of comparisons. Its effectiveness when multiple

queries are combined in a single Juggler operator indicated potential performance

improvements after optimization of Juggler’s data structures.

ii

Acknowledgements

I would like to thank my advisors, Professor Elke Rundensteiner and Professor

George Heineman. They have both given me guidance and support throughout my

graduate program. I would also like to thank my thesis reader, Professor David

Finkel, for his patience and feedback. Lastly, I would like to thank my family, my

husband, David Silva, and my children, Mudassir, Zainab, and Maimoona for their

understanding and support during my long hours and tight schedule.

Most importantly, I would like to dedicate my work to my grandfather, Hamee-

duddin Ahmed. His passion for knowledge was inspiring. His support, confidence,

and encouragement have been the cornerstone of my academic achievements. His

sacrifices to educate his family remain a timeless gift.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Continuous Queries vs. Traditional Databases 2

1.3 Problem Definition . 3

1.4 State of the Art . 5

1.5 Juggler Overview . 5

1.6 Outline . 8

2 Related Work 10

3 Juggler Architecture 19

3.1 Query Representation . 19

3.1.1 Queries in Running Example 21

3.2 Sharing Computation . 25

3.2.1 Predicate Lists . 27

3.2.2 Juggler Predicate BitSet Structure 30

3.2.3 Query Encoding Dependency Structure 32

3.2.4 Predicate BitSet Structure . 34

3.3 Storing Tuples in Operator . 36

3.3.1 Join Exploitation Structures 37

iv

3.3.2 Window Exploitation Structure 38

3.4 Adaptive Predicate Ordering . 41

3.4.1 Tuple’s JugglerPBS . 41

3.4.2 Predicate Ordering . 42

3.4.3 Output Tuples . 44

3.4.4 Insert Tuples into Exploitation Structures 45

3.4.5 Clean Up . 46

3.4.6 Juggler Architecture Overview 47

4 Running Example 49

4.1 Optimal Selective Predicate Ordering 50

4.1.1 First Predicate Type Evaluation 50

4.2 Second Predicate Type Evaluation 55

4.3 Third Predicate Type Evaluation . 60

4.4 Output Tuples . 61

4.5 Clean Up . 63

4.6 Operator’s Processing Logic . 65

5 Assessing Juggler 67

5.1 Cost Model . 67

5.1.1 Selectivity . 67

5.1.2 Space Cost . 80

5.2 Experimental Evaluation . 84

5.2.1 Binary versus Multi-joins . 85

5.2.2 Predicate Reordering . 88

5.2.3 Overlapping Predicates . 90

v

6 Conclusion 96

6.1 Future Work . 98

6.1.1 Adaptive Predicate Reordering 98

6.1.2 Policies . 98

6.1.3 Optimization . 99

6.1.4 Performance . 99

A Juggler Implementation 104

A.1 Juggler Operator . 104

A.2 Predicate Ordering Manager . 106

A.3 Predicate Type Manager . 106

A.3.1 Attribute Predicate Manager 107

A.3.2 Join Predicate Manager . 108

A.3.3 Window Predicate Manager 108

A.4 Exploitation Structures . 109

A.4.1 Join Exploitation Structure 110

A.4.2 Window Exploitation Structure 111

A.5 Predicate Structure . 112

A.5.1 Attribute Predicate . 113

A.5.2 Join and Window Predicates 114

A.6 Predicate List . 114

A.6.1 Attribute Predicate List . 115

A.7 Join/Window Predicate List . 115

A.8 Predicate Lists . 116

A.8.1 Attribute Predicate Lists . 117

A.8.2 Join/Window Predicate Lists 117

A.8.3 BitPosition . 117

vi

A.9 BitSet Collection . 118

A.9.1 General Predicate BitSet . 118

A.9.2 Predicate BitSet . 119

A.9.3 ExtGeneralType BitSet . 119

A.9.4 ExtPredicate BitSet . 119

A.10 Juggler Predicate BitSet Structure 120

A.10.1 Relevant Predicate BitSet Structure 120

A.10.2 Satisfied Predicate BitSet Structure 120

A.11 Query Encoding Dependency . 121

A.11.1 Juggler Operator’s QEDs . 121

A.12 Juggler Tuple . 122

A.12.1 JugglerTupleList . 122

A.12.2 JugglerWindowTupleList . 123

A.13 Juggler Comparative Keys . 124

A.14 Juggler Comparative Operators . 124

vii

List of Figures

1.1 CAPE Architecture . 6

1.2 Juggler vs. Traditional Binary Operators in a Query Plan 8

2.1 Current CQ Research Topics . 11

3.1 Juggler Query Representation . 20

3.2 Juggler Query Representation Example 21

3.3 Queries in Juggler . 22

3.4 Query plans as Complex DAGs . 23

3.5 One Possible Query Plan with Juggler Operators 24

3.6 Query plan with Juggler Operator . 25

3.7 Calculating Maximum Window Size for Another Possible Query plan 26

3.8 Calculating Maximum Window Size for a Query plan 27

3.9 Algorithm for Registering Predicates in Juggler 27

3.10 Attribute Predicate Lists and BitPositions 28

3.11 Join Predicate Lists and BitPositions 28

3.12 Window Predicate Lists and BitPositions 28

3.13 QEDs for node BTH . 32

3.14 Juggler Tuple’s Relevant Predicate BitSet Structure (RelPBS) 34

3.15 Bit Comparisons with QEDs and tuple’s JugglerPBS 35

viii

3.16 Tuples In Juggler Operator BTHK 36

3.17 Join Exploitation Structures (JESs) in BTHK 37

3.18 Window Exploitation Structures for Juggler Operator BTHK 39

3.19 Join Algorithm . 43

3.20 Tuple Output Algorithm . 44

3.21 Inserting Tuples into Exploitation Structures Algorithm 45

3.22 Juggler Clean Up Algorithm . 46

3.23 Logical Architecture of Juggler Operator 48

4.1 Initial Juggler Predicate BitSet Structure (JugglerPBS) 50

4.2 JugglerPBSbefore First Predicate Type Evaluation in the WAJ Pred-

icate Ordering . 50

4.3 First Window Bucket of Stream B . 50

4.4 Intermediate Tuples After First Predicate Type Evaluation in WAJ

Predicate Ordering . 53

4.5 Intermediate Joined Tuples’ Query List After First Predicate Type

Evaluation in WAJ Predicate Ordering 55

4.6 Tuples’ RelPBS for Second Predicate Type in WAJ Predicate Ordering 56

4.7 Find Most Covering Predicate Algorithm 57

4.8 Tuples after attribute predicate type evaluation 58

4.9 Tuples’ Query List after Second Predicate Type 60

4.10 Tuples’ RelPBS before Third Predicate Type Evaluation for WAJ

Predicate Ordering . 60

4.11 Tuples after Third Predicate Type Evaluation in WAJ ordering . . . 61

4.12 WES after processing input tuples . 64

4.13 WES after purging stale tuples . 65

4.14 Architecture of an Operator . 66

ix

4.15 Juggler Operator’s Functionality . 66

5.1 Queries used to Compare Cost of Overlapping Predicates 76

5.2 Query Plans with Binary Operators 85

5.3 Query Plans with Multi-join Operators 85

5.4 Binary and Multi-join Query Plans 86

5.5 Number of Intermediate Tuples for Binary and Multi-join Query Plans 87

5.6 Tuple Overhead for Binary and Multi-join Query Plans 88

5.7 Number of Comparisons for Binary and Multi-join Query Plans . . . 89

5.8 Query used to test Predicate Reordering 89

5.9 Query Plans with One Multi-join Operator 90

5.10 Adaptive vs. Static Predicate Orderings 91

5.11 Number of Comparisons for Predicate Orderings 92

5.12 Queries with Overlapping Predicates 92

5.13 Query 1 Predicate Overlap . 93

5.14 Query 2 Predicate Overlap . 94

5.15 Query 3 Predicate Overlap . 95

A.1 Juggler Operator Interface . 125

A.2 Predicate Type Managers . 126

A.3 Predicate Exploitation Structures . 127

A.4 Predicates . 128

A.5 Predicate List Structures . 129

A.6 Predicate BitSet Structures . 130

A.7 Query Structures . 131

A.8 Juggler Tuple Structures . 132

A.9 Juggler Comparative Keys . 133

x

A.10 Juggler Comparative Operators . 134

xi

Chapter 1

Introduction

1.1 Motivation

Continuous queries (CQ) are continuously evaluated queries over streaming data.

They are found in many domains that process real-time data such as financial sys-

tems, network management, and medical monitoring. The ability to process and

query streaming data from multiple devices can be a powerful technology. For exam-

ple, critical patients in the intensive care unit (ICU) are constantly monitored with

instruments, such as heart monitors, IV drips, oxygen machines, and heart/kidney

pumps. Currently, data gathered from these machines is displayed for the nurses

to monitor a patient’s condition. There is no system today that allows doctors and

nurses to specify queries that monitor a patient’s condition as it evaluates the data

gathered. Traditional databases only handle static stored data not dynamic data

streams.

1

1.2 Continuous Queries vs. Traditional Databases

Recently, several proposed systems, including STREAM [3] and Rate Based Query

Optimization [17], have addressed CQ challenges. In order to handle changing

stream statistics, dynamically adaptive routing and join algorithms have been ex-

plored. Reducing computation is another key requirement for streaming data. Our

goal is to investigate continuous queries with sliding window joins within this wide

area of CQ requirements.

Continuous queries are an emerging new research area with many unexplored

issues outlined in Models and Issues in Data Stream Systems[2] and Adaptive Query

Processing: Technology in Evolution [8]. Some recent research in continuous queries

include NiagaraCQ [5], Ripple Join [6], Window joins [9], XJoin [14], and MJoin

[15].

Continuous queries differ in many ways from traditional databases which process

queries over static, typically persistently stored data. Before a query is executed

in a traditional database, an optimizer creates a query plan which orders join and

select operations based on known data characteristics [13]. In the traditional ap-

proach, queries are only run once, when a user executes a query. Results are output

after a query completes. This approach also assumes that the data usually changes

only through infrequent updates. Therefore, a snapshot of the data is kept and

synchronized to reflect the updates.

Continuous queries are computed over streaming data, generally within the lifes-

pan of a specified window. Factors such as stream statistics and stream data rates

are thus ever-changing in a continuous query environment. Considering the nature

of continuous data, a complete result is impossible because the data stream may be

infinite. Similarly, continuous queries differ from the traditional approach regarding

2

storage requirements and memory management.

These issues are traditionally handled off-line whereas continuous queries cannot

afford to expend resources on static design strategies. One such design is the tra-

ditional memory management technique of storing data on disks. Infinite storage,

required for continuous queries, is unrealistic. Another issue is query plan opti-

mization. While a static query plan can be generated based on known statistics

in a continuous query environment, a dynamic query plan should constantly be re-

vised to reflect the dynamically changing stream statistics. Lastly, in a traditional

system, the output is returned only after it has been fully computed, whereas con-

tinuous output of intermediate results is necessary in many real-time environments.

A continuous query system must address the above issues related to adaptivity.

1.3 Problem Definition

Continuous queries requires processing of data in a real-time streaming environment.

Juggler proposes a solution with three contributions.

• Grouping similar attribute and join predicates.

• Reordering predicate evaluation using bit structures to maintain history.

• A multi-join operator that processes multiple joins and selects.

Grouping attribute predicates have been investigated by XML subscriptions [12].

Join predicates have been only grouped to share evaluation if identical. Juggler, on

the other hand, groups similar attribute and join predicates to evaluate concurrently

in order to share sub-computations.

Reordering predicate evaluation in an operator also has not been done. Changing

tuple path of evaluation [1] or dynamic query plan migration has been investigated.

3

Introducing an operator that reorders predicate evaluation is a novel idea. Jug-

gler groups similar predicates and reorders evaluation to adapt to changing stream

statistics.

Traditionally, operators have a single functionality. If the operator’s functionality

is to process an attribute predicate, it is a single input operator. If the operator’s

functionality is to process a join predicate, it is a binary input operator. Streaming

environments are usually characterized by a limited number of streams with an

unlimited number of continuous queries over these streams. For this reason, MJoin

[16] has investigated a multi-join operator in this environment. Combining multiple

predicates in one operator has not been proposed. In CQ, the probability of queries

containing similar predicates is significant. Juggler exploits this characteristic by

proposing a multi-join operator that evaluates multiple predicates.

Even though some of Juggler’s contributions have been proposed, the combina-

tion of these features in one operator is novel. Each contribution was tested to assess

Juggler’s performance. As the number of similar predicates increased, the number

of comparisons significantly decreased. Also, the reordering of predicate evaluation

within the operator adapted to changing data stream distributions. This is a key

feature necessary in CQ environments. Lastly, the performance of multi-joins and

its equivalent binary join operators were compared. Juggler’s multi-join feature dis-

played a comparable output rate, but had a significant reduction in the number of

comparisons. Overall, Juggler’s features promise further performance improvements

with optimizations.

4

1.4 State of the Art

Our system, Juggler, incorporates innovative ideas from Eddies [1], SteMs [10], and

M-join [16]. Juggler uses complex DAGs to represent all possible query plans. It

also incorporates Eddies’ [1] idea of dynamically choosing query paths based on

statistics. Relying on their findings that using bits to encode information does not

incur substantial overhead, Juggler encodes intermediate processing information as

bits associated with each tuple. Juggler also aims to confirm and extend M-join’s

[16] findings that one multi-join in many cases is more efficient than its equivalent

binary joins for streaming environments. Lastly, the idea of sharing joins with similar

predicates has been used in XML subscriptions [12]. Juggler introduces a complex

operator for computing several predicates which are similar or even overlapping.

Not only are all these ideas combined into a system, but Juggler now proposes a

novel adaptive predicate ordering scheme that is more suitable for a dynamically

changing environment.

1.5 Juggler Overview

Juggler is a multi-join operator which tackles the problem of continuously query-

ing over streaming data in real-time. Juggler offers a solution which incorporates

multiple query plans, joins, and selects into one composite operator. It bounds the

streaming data using window joins and a window size. To enable the adaptive eval-

uation of predicates, Juggler categorizes the predicates into three types: attribute,

join, and window. Attribute predicates are filter expressions that compare one at-

tribute of a stream value to a constant value. Join predicates are binary expressions

that compare one attribute value of a stream against the value of another stream.

Window predicates are a specific type of join predicate in which the streams’ times-

5

tamp values are compared. These types are dynamically reordered and applied in

order of selectivity, which is the number of tuples output by a predicate type evalua-

tion divided by the Cartesian product these accounts for the potential size. Juggler

can dynamically adapt to the changing stream data distribution. These issues have

been investigated by several systems, yet Juggler’s approach of dynamically ordering

predicate types in a multi-join mega operator is novel.

Stream
Generator

Distribution
Manager

Query Plan
Generator

Stream Data

Raindrop Workhorse
Execution
Controller

Raindrop Workhorse

Raindrop Workhorse
Execution Controller

Raindrop WorkhorseExecution
Engine

Execution
Scheduler

Statistics
GathererCAPE Query Processor

Query 2 . .Query 1Internet ������� �����	�	����
�����
End User

���������	���	�	��� Stream
Receiver

Query n

Connection
Manager

Stream
Feeder

Stream
Sender

Figure 1.1: CAPE Architecture

The Juggler operator runs within the CAPE system, a Continuous Adaptive

Processing Engine implemented at WPI by members of the Database Systems Re-

search Group, Figure 1.1. The query plans were defined and entered into the Query

Plan Generator. CAPE’s ExecutionController calls operators in the system and runs

them for a specified amount of time. Currently, the query plans used for this thesis’

experimentation only contained Juggler operators. In the future, Juggler operators

can be replaced with other operator(s) with different implementations to compare

6

performance.

Juggler handles multiple continuous queries with theta joins and relative window

predicates. It categorizes predicates into three groups: attribute, join and window.

Juggler adaptively reorders the evaluation of these groups to allow for adaptive-

ness to dynamic stream characteristics. Juggler also handles multiple streams and

numerous continuous queries.

Given initial input stream statistics, such as data value ranges and arrival rates,

a query plan can be designed and entered into the CAPE system. The query plan

contains a combination of traditional binary join operators and Juggler multi-join

operators. When there are similar predicates in one query or even several, Juggler

combines these predicates into groups in order to evaluate multiple predicates at

time to reduce the number of comparisons.

CAPE processes queries by distributing the evaluation over several operators.

CAPE uses a StreamGenerator which streams data at a predefined rate. It also uses

an ExecutionController which creates operators input queues and output queues.

It also runs the operators in a query plan for a specified time. During CAPE’s

initialization, CAPE’s config.xml file is parsed to create operators and initialize

each.

Juggler merges these registered queries into one global query plan, if possible,

grouping query predicates such that similar predicates can be combined into one

composite operator, as shown in Figure 1.2. The goal of this thesis was to design

and implement such a composite operator, which we will call Juggler. Three types

of predicates will be considered: attribute, join and window. These predicate types

will be reordered to reflect changes in stream data distributions.

Juggler has three contributions in the CQ environment. First, it groups similar

predicates and dynamically reorders the order of predicate type evaluation. Sec-

7

ondly, it uses bit structures to encode tuple evaluation history and correlate the

relationship of predicates to queries, and vice versa. Third, it is a multi-join opera-

tor that can process multiple streams incorporating joins and selects into one mega

operator. The combination of these three features results in reducing number of

comparisons when queries have many overlapping or similar predicates.

The Juggler composite operator joins, applies predicates, and projects the joined

tuples to its parent nodes in the query plan. I have concentrated on the composite

operator design, its cost model, and the adaptive predicate ordering. I have designed

and developed the Juggler operator within the CAPE system implemented with Java

1.4.

Juggler

B H T K

Result
Q1

Result
Q2

Result
Q3

B H T K

Result
Q1

Result
Q2

Result
Q3

J

S

J

J

J

S

J

J

J

J
SJ

J

J

S

WW
J W

SS

Figure 1.2: Juggler vs. Traditional Binary Operators in a Query Plan

1.6 Outline

The rest of this thesis will be organized as follows. Chapter 2 will describe research

in the CQ area and how each compares to Juggler. Chapter 3 describes the core

8

structures that Juggler utilizes. Juggler’s query representation and Predicate BitSets

are two key structures. Chapter 3 also describes how Juggler maintains the tuple

predicate evaluation history, storage of these tuples in the operator and its join

algorithm. Chapter 4 describes Juggler’s operator using a running example. The

process of the evaluation of one tuple is followed in detail. Chapter 5 details Juggler’s

cost model and describes experiments that were conducted. Conclusions are derived

from the experimental results in Chapter 6, and tasks are outlined for future work.

Appendix A contains implementation details of Juggler’s join algorithm and data

structures.

9

Chapter 2

Related Work

Our operator, Juggler, incorporates innovative ideas from Eddies [1], SteMs [10], and

M-join [16]. Much research has been done in adaptive query processing, maximizing

output rate, and handling multiple continuous queries with multiple streaming data

streams. Three research topics that have been explored are shown in Figure 2.1:

routing algorithms, join algorithms, and exploring different semantics of bounding

streaming data using windows. Many proposed solutions have tried to address one

or more of these issues.

Adaptivity is a core issue for continuous queries. With ever-changing stream data

and its characteristics, static solutions are not viable. Current research has spanned

the issues outlined above. Eddies [1], SteMs [10], and Ripple Join[6] address both the

routing and join algorithms in the CQ environment. CACQ [11], MJoin [16], WJoin

[7], and PSoup [4] have addressed window semantics, routing, and join algorithms.

Eddies [1] proposes dynamic reordering of operators. In this single query system,

each tuple follows its own customized order of visiting operators. Eddies routes

tuples to available operators and this availability is determined by a lottery scheme.

This scheme utilizes the operator’s queue size and output rate to determine the

10

Routing/
Query Plan

Window
Joins

Join
Algorithm

• Order of
operators/joins

• Adaptive

• Sliding Window

• Max number of
Tuples

• Max Window

• Correctness

• Adaptive

CQ

• Efficient

Figure 2.1: Current CQ Research Topics

tuple’s routing path. With this scheme, the tuple is routed to operators that are

available rather than contribute more work to an already over-loaded operator. An

operator’s availability is kept track of by tickets. When a tuple enters an operator,

the ticket count is incremented, and when tuples are output, tickets are decremented.

An operator with a small number of tickets implies it is not overwhelmed. In this

way, the Eddies algorithm adapts to variations in stream selectivity by dynamically

reordering operator evaluation.

To maintain a tuple’s evaluation history, Eddies uses a bit mechanism. Two sets

of bits are used to maintain evaluated and unevaluated operators to be processed,

named done and ready respectively. Each bit represents operators in the system.

The setting of a tuple’s ready bit indicates that the operators represented by the bit

still remains to be evaluated. A setting of a tuple’s done bit indicates the operators

have been evaluated. Eddies’ experimentation and evaluation indicate that bits do

not add significant overhead. Therefore Eddies represents an efficient continuous

query routing system.

11

While Eddies handles a single query requiring a pre-optimizer to determine op-

erators in the system, STeMs [10], based on Eddies, requires no pre-optimizer and

calculates everything on the fly. This query processing algorithm is based on half-join

state modules. Using Eddies as its routing algorithm, SteMs proposes an improved

join algorithm, which contains half-join operators. This allows sharing of interme-

diate evaluations. It incorporates selections, joins, and adaptive query plans all in

one operator. Each SteM groups predicates by operator, reducing the number of

tuple comparisons when evaluating attribute predicates. These predicates compare

a stream’s value to a constant. Its basic algorithm builds tables of tuples grouped

by streams that serve as a cache or a hash table. When a tuple enters the sys-

tem, its value is used to find matching tuples to join from the hash tables. Global

timestamps are assigned to each tuple to avoid duplicates.

Both STeMs and Eddies use the dynamic Ripple Join [6] algorithm. This binary

join algorithm exploits the ordering of its inputs. When one data input arrives,

it is joined with the other input. If one input becomes blocked, the other input’s

data is used to join. This algorithm adapts to varying arrival rates of the streams,

appropriate for CQ environments.

Our operator, Juggler, applies similar ideas to the Eddies concept of dynamic

reordering. Juggler is a multi-join operator that processes multiple queries and

reorders predicate type evaluations. Eddies is a single query system, whereas Jug-

gler handles multiple query processing. Eddies uses bits to encode processing and

routing information. Like Eddies, Juggler uses bits to encode relevant and satisfied

predicates within the operator. These bits determine the predicates that remain

to be evaluated for a given tuple, and thus, determine its path within the Juggler

operator. Also similar to Eddies’s Ripple Join, Juggler’s join algorithm updates

the operator’s predicate type selectivities and reorders the predicate types, thereby

12

handling variations in stream selectivities.

STeMs is similar to Juggler in that it shares intermediate predicate evaluations

and uses bits to maintain the evaluation history. Juggler is a composite operator that

combines joins and selects into one operator, whereas, SteMs is a half join operator

that processes only attribute predicates. Juggler groups both attribute and join

predicates to reduce comparisons. SteMs only groups attribute predicates. Also

SteMs is composed of single stream and binary stream operators whereas, Juggler

processes multiple join, selects and multiple queries in one operator.

STeMs shares some similarities with Juggler. The Juggler operator aims to

incorporate selections, joins, and an adaptive query plan all into one mega operator.

Both STeMs and Juggler share the idea of building structures of tuples, a temporary

cache, which allows efficient access to retrieve relevant tuples.

CACQ [11], MJoin [16], WJoin [7], and PSoup [4] have investigated combining

several current CQ research topics: window semantics, routing, and join algorithms.

Juggler also investigated these topics. These proposed systems aim to accomplish

one or more CQ goals: maximizing output rate, reducing computation, and finding

dynamic, adaptive, and scalable solutions.

CACQ [11], based on both STeMs and Eddies, is a Continuously Adaptive Con-

tinuous Query system. It handles multiple continuous queries by grouping filters for

selections. Joins are split into SteMs, a half-join operator, allowing sharing of joins

between multiple queries. Eddies is used as the tuple router, choosing a path at the

granularity of each tuple. Building on Eddies’ maintenance of tuple evaluation his-

tory, CACQ also uses bits to maintain a list of queries the tuple has satisfied. Each

tuple is appended with done and ready bits, as in Eddies, and queriesCompleted

bits. The queriesCompleted bits indicate which queries have been satisfied. Before

a tuple is output, the queriesCompleted bits are compared to the indicated queries’

13

CompletionMask bits. CACQ allows operators to be shared by multiple queries by

using two more bit structures, queriesCompleted and CompletionMask, than SteMs.

Similar to Eddies, CACQ maintains that the bit structures do not add substantial

overhead.

CACQ addresses similar ideas, however, instead of incorporating adaptive query

plans into one single operator as done in Juggler, it requires a router that chooses

dynamic paths. Juggler incorporates joins and selects into one operator, but CACQ

relies on multiple half join state modules to process tuples, SteMs.

SteMs is very similar to Juggler’s attribute predicate type since it groups at-

tribute predicates and evaluates multiple selections at a time. CACQ requires a

dynamic router and STeMs in order to achieve what Juggler attempts to accom-

plish with its one operator. Juggler not only combines attribute predicates, it also

groups join and window predicates. This could further reduce the number of inter-

mediate tuples in the system and can also further reduce the number of comparisons.

These two strategies can be compared in the future.

M-join [16] proposes a multi-way symmetric join operator which implements bi-

nary operators in one single functionality. It considers sliding window where tuples

outside of a defined time window are considered stale and no longer joined or pro-

cessed. It aims to produce outputs sooner than its equivalent binary operators.

Performance is based on rate rather than cardinality. It claims to adapt to chang-

ing rates of input streams. A multi-way join also reduces the need to modify the

query plan in order to adapt to its changing environment, since a multi-way join

incorporates several possible query plans. It builds on concepts of XJoin, flushing

tuples to disk for processing at a later time. Tuples are partitioned by timestamps,

and stored in hash tables. Partitions are used to retrieve tuples within a query’s

window, and all possible joined tuples within the window is then filtered by the

14

other remaining predicates before being output. MJoin recommends at most five

inputs for the multi-way join to avoid degradation in performance [16].

W-join [7] introduces several join algorithms for a continuous query with a sliding

window. All streams are assumed to be involved in a single query containing one

join predicate. Three join algorithms, all variations of W-join, are described and

compared: nested-loop (NLW-join), hash (HW-join), and merge join (MW-join).

MW-join consists of two modes. The first mode identifies the relevant window for a

tuple to be joined. The second mode admits tuples that are contained in the relevant

window and joins them. Three different window constraints are considered: a single

maximum window over a query, relative window constraints between streams, and

no window constraints on a stream. NLW-join does not perform well in situations

when a stream blocks. HW-join assumes all the join predicates are equality joins.

MW-join outperformed NLW-join and behaves well even under variable stream rates.

PSoup [4], based on the Telegraph project, extends the concept of Eddies and

SteMs. It processes multiple queries by creating indexes on both queries and data.

All predicates in the system are assumed to be attribute predicates which compare

a stream’s value to a constant. Queries can be swapped in and out of the system by

creating and removing query indexes. These indices allow similar processing for an

entry of a new tuple and a new query. PSoup incrementally maintains a materialized

view of joined tuples within a window size in order to quickly respond to a user’s

intermittent request for output. The joined state is shared by the queries in the

system. Also, window size is defined by the number of tuples and not timestamp

range.

Juggler offers a key adaptive feature that MJoin does not. MJoin is a multi-join

operator that combines all possible query plans, but it does not exploit changing

stream statistics. MJoin’s join algorithm traverses each of its input streams to create

15

a joined tuples from all streams within a time window. After all the possible joined

output tuples are created, MJoin filters these tuples using the predicates registered

in its operator. Juggler, on the other hand, is not only a multi-join operator which

incorporates multiple query plans, it also filters tuples earlier in the algorithm by

reordering predicate types by selectivity. This reduces the number of intermediate

tuples which in turn reduces the number of comparisons.

W-join only considers a single continuous query containing one join predicate.

Juggler introduces an adaptive join algorithm which processes multiple continuous

queries with multiple predicates in one operator. The queries registered in Juggler

are not restricted to a specific number of predicates and consist of multiple selections

and joins.

PSoup addresses registering and deregistering continuous queries into its system

dynamically. It processes tuples in real-time, but only outputs in response to user

requests. PSoup only contains queries with attribute predicates, while Juggler han-

dles both join and window predicates. Juggler does not consider query registration

and deregistration. It leaves this task as future work.

Juggler is similar in many ways to the work described above. Juggler is a multi-

way join operator that evaluates queries composed of attribute and join predicates.

These predicates include equality and theta joins evaluated over a sliding window.

Juggler introduces an adaptive join algorithm by categorizing predicates into

three types. These predicate types are reordered to adapt to changing stream statis-

tics. Each predicate type is evaluated in order of selectivity, reducing the number of

intermediate tuples. Only relevant predicates are applied and used to retrieve tuples

to join. These temporary joined tuples contain a list of query IDs that the tuple has

satisfied during the evaluation process. This list is updated after each evaluation

phase. After the third and last predicate evaluation phase, the tuple’s list of query

16

IDs represent the queries that the tuple has satisfied.

Juggler’s join algorithm exploits the overlap of predicates in multiple queries. It

aims to reduce computation by applying the query’s most selective predicate type

first. Unlike PSoup where a user request determines when a result is output, Juggler

outputs results incrementally, otherwise known as sliding window semantics. It does

not process any results over historical data larger than the operator’s window size,

as PSoup and M-Join do. Maximum window size of all the queries determines

if data has become stale. Juggler does not store any tuples that lie outside of

the maximum window to process at a later time. Many applications, such as the

medical monitoring devices, have no value for historical results. PSoup is suited for

an environment that is triggered by frequency of user requests.

Juggler represents a balance between the Eddies routing scheme and M-join.

Eddies sends individual tuples across different paths in a possibly huge query plan.

Juggler utilizes selectivities of predicate types to route tuples through the appro-

priate paths in the operator. Like Eddies, Juggler provides a evaluation of tuples

that adapts to the changing selectivities of the predicate types. Traditional binary

joins output more tuples per operator whereas the equivalent multi-way join used

in Juggler and M-join reduces this number. The combination of a dynamic routing

scheme and multi-way joins can lead to performance improvements.

Juggler’s operator runs within the CAPE system and uses DAGs, directed acyclic

graphs, to represent all possible query plans. Each path chosen in a DAG repre-

sents one possible query plan. Relying on Eddies’ findings that using bits to encode

information does not incur substantial overhead, Juggler encodes intermediate pro-

cessing information as bits associated with each tuple. Juggler also aims to confirm

and extend M-join’s [16] findings that one multi-join, in many cases, is more efficient

than its equivalent binary joins for streaming environments. Lastly, the idea of shar-

17

ing similar predicates has been used in XML subscriptions [12] but only attribute

predicates have been considered. Predicates are grouped and ordered such that

predicates are only evaluated if dependent or more covering predicates are satisfied.

Juggler also aims to extend sharing sub computations to join predicates.

Juggler introduces a complex operator for computing several similar or even

overlapping predicates. These predicates consist of single stream selects and complex

joins, which include theta operators such as A.col1 >= B.col1. Not only are all these

ideas combined into a system, but Juggler now proposes a novel adaptive predicate

ordering scheme that is suitable for a highly dynamically changing environment.

18

Chapter 3

Juggler Architecture

Juggler is composed of several structures that enable it to process tuples and share

sub computations. Structures that aid in sharing sub computations between queries

include: Predicate Lists, Predicate BitSets, and Query Encoding Dependency. Other

structures are used to store and quickly retrieve tuples to join, such as the Join Ex-

ploitation Structure and the Window Exploitation Structure. These core structures

are used in Juggler’s adaptive join algorithm to reduce number of comparisons and

filter tuples at an earlier stage of processing.

3.1 Query Representation

Queries are registered into the CAPE system using the syntax shown in Figure

3.1. The Select, From, and Where clauses are as in SQL. The From clause defines

the streams involved in the query. The Where clause contains attribute and join

predicates. These predicates compare a stream’s value to a constant or to another

stream’s value, respectively. Window and Max Window clauses are used specifi-

cally by Juggler. The Window clause are time oriented constraints between query’s

streams. These are specific type of theta joins based on stream timestamps. Max

19

Select <v1c, v2.. vn list>

From S1, S2, S3

Window S1.ts > S2.ts

and

S2.ts <= S3.ts

MaxWindow 6sec

Where S1.col1 < 0.5 * S3.col2

and

S2.col1 * 2 = 103c

Figure 3.1: Juggler Query Representation

Window clauses defines the maximum window or maximum window range of the

query. This window size is a time range that shifts as time passes, called a sliding

window. Only data within this window size is considered when processing a tuple.

Any data outside this window size is considered stale and irrelevant. Queries are

evaluated as each input tuple is being processed in the operator.

For example, the query shown in Figure 3.2 involves three streams: blood, temp

and heart. It contains one attribute predicate, T.fluct * 2 = 103, and one join

predicate, T.fluct < 0.5 * B.pressure. The Window clause defines the query’s rela-

tive window predicates, B.ts > T.ts and B.ts <= H.ts. Relative window predicates

are either theta or equi-joins on the streams’ timestamps. Lastly, the Max Window

clause bounds the data to a window size of six seconds which is evaluated in a sliding

fashion. All queries registered in Juggler are specified in this query language and

20

Select Heart.alert

From Heart H, Temp T, Blood B

Window B.ts > T.ts

and

B.ts <= H.ts

MaxWindow 6sec

Where T.fluct < 0.5 * B.pressures

and

T.fluct * 2 = 103

Relative

Window Predicates

Streams

Attribute Predicates

Max Window

Join Predicates

Figure 3.2: Juggler Query Representation Example

are given a query ID.

3.1.1 Queries in Running Example

Many scenarios can occur with intensive care unit (ICU) patients. Patients are

constantly monitored by machines and nurses. Each machine indicates a critical

condition based on values of its data streams. Nurses are responsible for monitoring

each data stream and correlating possible dangers. Using Juggler, each scenario

can be monitored automatically. Figure 3.3 describes queries registered in Juggler,

assuming four data streams: blood (B), temperature (T), kidney (K), and heart

(H). Each query describes a possible critical scenario. All queries define the set of

streams considered, join predicates, attribute predicates, and window predicates,

relative and general.

In Juggler, queries that contain at least one predicate for each type will use

Juggler’s join algorithm to its fullest. If a query does not contain a predicate type,

21

Query ID: 1

Select H.alert
From B, H, K, T
Window T.ts > B.ts
MaxWindow 4sec
Where H.beatrate = 52 and

B.temp > H.vib and
B.pressure > T.fluct

Query ID: 2
Select B.alert
From B, T, H
Window B.ts > T.ts and

B.ts <= H.ts
MaxWindow 6sec
Where T.fluct < 0.5 * B.pressure

T.fluct * 2 = 103

Query ID: 3
Select H.alert
From T, H
Window T.ts > H.ts
MaxWindow 5sec
Where T.fluct = 103 and

T.incr = H.vib

Figure 3.3: Queries in Juggler

the filtering process after the corresponding predicate type evaluation is missed. This

reduces the chance to filter tuples as early as possible, which increases the number

of intermediate tuples kept in the operator while processing the input tuples.

Query 1, for example, is a join of blood, temperature, kidney, and heart (streams

BTKH). Query 2 is a join of blood, temperature, and heart (streams BTH) and

Query 3 is a join of temperature and heart (streams TH). Note, even though the

queries do not contain identical combination of the operator’s input streams, Juggler

can group them into one operator.

Traditionally, each query to be executed can be represented by a query plan com-

posed of primitive operators as shown in Figure 3.4. Query plans are used to order

operations of joins and selects. Juggler’s goal is to combine plans, subsets of possi-

bly several query plans into one mega-operator. This is accomplished by grouping

similar predicates, collecting statistics at run-time, and evaluating predicate types

22

BT TK TH

B T K H

BK BH KH

BTKTKH BKHBTH

BTKH

Query 1

TH

T H

Query 3

BTH

BT TH BH

B T H

Query 2

Figure 3.4: Query plans as Complex DAGs

in order of selectivity.

Each query can be represented by a query plan as seen in Figure 3.4. Each oper-

ator represents a sub computation, which can be either a join or select. The joined

tuple output from an operator is represented by combining the names of its inputs.

For example, a node BT computes the join of blood and temperature streams. Note

that each query plan contains many alternative paths for achieving the same query

semantics. Two possible query plans with Juggler operators are shown in Figures

3.5 and 3.6. A specific query plan will be selected by the constructed by the opti-

mizer based on cost estimates. In Figure 3.6 for example Queries 1, 2, and 3 share

the Juggler operator, BTHK.

When a Juggler operator is shared with multiple queries, the window size of

the operator must be computed. We use two query plans for the queries defined

23

Query 3

Queue

TH

Queue

B

Queue

T

Queue

H

Queue

K

Query 2

Queue

BTH

Query 1

Queue

BTHK

BTH

BTHK

Figure 3.5: One Possible Query Plan with Juggler Operators

in Figure 3.3 to display the calculation of each operators’ window size. These two

query plans are shown in Figures 3.7 and 3.8. The largest of the Maximum Window

sizes of the registered queries in an operator will become the operator’s maximum

window size. Taking the largest window size of the queries allows sharing of sub

computation satisfying all the queries’ window sizes. The query plan and maximum

window size shown in Figure 3.7 will be used in our running example.

BTHK is a multi-join operator that evaluates predicates for all three queries. An

operator will only contain predicates for queries that are contained in the operator

and predicates that involve its input streams. For example, in Figure 3.5, operators

BTH and BTHK are Juggler operators. In this case, the operator BTH will contain

predicates that involve only the streams B, T, and H. Similarly, the operator BHTK

will only contain predicates that involve only the streams B, T, H, and H. It will also

24

Query 3

Queue

BTHK

Queue

B

Queue

H

Queue

T

Queue

K

Query 2

Queue

BTH

Query 1

Queue

TH

BHTK

Figure 3.6: Query plan with Juggler Operator

contain predicates that have not been evaluated by operator BTH. For example, if

Query 1 had a predicate, B.pressure > K.fluid, which could not have been evaluated

by operator BTH, operator BTHK would evaluate this predicate before any tuples

are output for Query 1. As Query 1 is defined in our example, since the all the

predicates can be evaluated and processed by BHT, BHTK would only evaluate if

tuples K are within the maximum window range of tuples BHT.

3.2 Sharing Computation

Juggler’s operator combines the query plans of the registered queries to share sub

computations. It also dynamically reacts to changing stream characteristics by

reordering predicate type evaluation. Juggler’s responsibility can be summarized in

three requirements.

• First, Juggler needs a mechanism to share computation and maintain tuple

predicate evaluation history.

25

Query 3

Queue

TH

Queue

B

Queue

T

Queue

H

Queue

K

Query 2

Queue

BTH

Query 1

Queue

BTHK

BT

BTH

BTHK

Max WIn(6, 4)

Max WIn(6)
Max WIn(6,5,4)

Figure 3.7: Calculating Maximum Window Size for Another Possible Query plan

• Second, it also needs a mechanism to store tuples in the operator within the

window boundary.

• Finally, Juggler also needs to adapt to changing stream statistics, which is

incorporated into its join algorithm.

Juggler contains structures that enable it to share computations and maintain

evaluated predicate history. These structures enable Juggler to quickly process a

tuple and quickly identifies if a tuple possibly satisfies multiple queries. Predicate

Lists are used to group similar predicates, allowing Juggler to reduce the number

of comparisons. Predicate BitSet is a structure composed of a collection of BitSets.

This structure is used in several places and allows Juggler to correlate predicates to

queries and tuple evaluation histories to evaluated predicates, and vice versa.

26

Query 3

Queue

BTHK

Queue

B

Queue

H

Queue

T

Queue

K

Query 2

Queue

BTH

Query 1

Queue

TH

BHTK

MaxWin(6,5,4)

Figure 3.8: Calculating Maximum Window Size for a Query plan

- For each predicate type in a query {

- For each predicate

- Parse query into appropriate predicate structure:

AttributePredicate or JWPredicate

- For each Predicate List

- If Predicate List’s stream(s), column(s),

and operator match predicate stream(s), column(s), and operator

- Normalize predicate

- If predicate is not already contained in the Predicate List

- Add predicate in covering order to Predicate List

- Set bit in QED to correlate predicate in the Predicate List

}

Figure 3.9: Algorithm for Registering Predicates in Juggler

3.2.1 Predicate Lists

During query registration in each operator, the predicate lists of each predicate type

order similar predicates from most to least covering. Traditionally only identical

predicate evaluation was shared. Similar predicate grouping allows more intermedi-

ate sharing of results between queries.

Similar attribute predicates are those that share the same stream, column, and

operator. The group of similar predicates may differ in its constant and/or the need

for any arithmetic operation. For example, the attributes B.pressure = 110 and

27

B.pressure = 75 are similar predicates. Predicates B.pressure =110 and B.pressure

- 50 = 45 are also similar and can be grouped after normalization. Similarly, any

join predicates that share the same streams, columns, and operator can be grouped.

For example, B.pressure > T.temp is similar to B.pressure > 2 * T.temp by our

definition, and thus they can share tuple evaluation.

BitPos Stream Column Op V alue

ListIndex PredIndex

0 0 H beatrate = 52
1 0 T fluct = 103
1 1 T fluct = 52.5

Figure 3.10: Attribute Predicate Lists and BitPositions

BitPos Stream Column Op Stream Column

ListIndex PredIndex

0 0 B temp > H vib
1 0 B pressure > 2∗ T fluct
1 1 B pressure > T fluct
2 0 T incr = H vib

Figure 3.11: Join Predicate Lists and BitPositions

BitPos Stream Column Op Stream Column

ListIndex PredIndex

0 0 T ts > B ts
1 0 B ts > T ts
2 0 B ts < H ts
3 0 T ts > H ts

Figure 3.12: Window Predicate Lists and BitPositions

Figures 3.10, 3.11, and 3.12 indicate the BTHK operator’s predicate lists and

predicates in each list. Each list groups predicates with common streams, columns,

and operator. Supported operators are <, >, <=, >=, and =. Each predicate is

identified by its BitPosition, coordinates that store the predicate’s list index, and

its position within the list. These predicate BitPositions correlate the positions of

the predicates in the predicate lists with the bits in Juggler’s representation of a

28

query object, called Query Encoding Dependency and tuple’s predicate evaluation

history, Join Predicate BitSet.

Predicate lists exploit similar predicates between queries. For example, Queries

1 and 2 share the predicate B.temp > H.vib. This predicate is listed only once in

the join predicate list for streams: B and H; columns: temp and vib respectively;

with operator: >.

During predicate registration of a new operator, described in Figure 3.9, each new

predicate is first compared with the available predicate lists’ streams and columns.

A predicate is inserted into a predicate list when the streams, columns, and operator

of both are identical. If a list is matched to the predicate, the predicate’s operator is

then normalized. For example, during registration of Query 1’s predicate B.pressure

> T.fluct, none of the predicate lists seem to match. Therefore a new list is created

for the predicate’s streams, columns, and operator: B, T, pressure, fluct and >.

During the initialization phase, when a new predicate list is created, the predicate’s

left side is chosen to be the normalized side. For example, in the above mentioned

predicate list, the side of B.pressure was chosen to be the normalized side. Later,

as Query 2’s predicates are registered, a predicate list match was found for the

predicate T.fluct < 0.5 * B.pressure. At a glance, the relevant streams and columns

for the predicate list do not seem to be a match, but the operator needs to be

normalized to finalize the list match. Since the list had chosen the first predicate’s

left side to be the normalized side, the resulting partially normalized predicate is

B.pressure * 0.5 > T.fluct. It is now apparent that the operator is also a match for

the list.

Before the predicates are ordered in the matching list from most to least covering,

they are further normalized. The structure of the predicates before normalization

is of the following form: factor1 * (str1.col1 + add1 - sub1)) operator ((str2.col2

29

+ add2 - sub2) * factor2. Consider the join predicate list for B pressure, T fluct,

and the operator >. In this list, the partially normalized predicate B.pressure *

0.5 > T.fluct has been normalized to B.pressure > 2 * T.fluct. The predicate,

T.fluct < B.pressure * 0.5 has factor1 value of 1, factor2 value of 0.5, and add1,

add2, sub1 and sub2 all had a value of 0. After normalization, predicates appear

as 1 * (str2.col2 + 0 - 0)) operator ((str1.col1 + addNor - subNor) * factorNor.

Continuing with our example, the normalized predicate, B.pressure * 0.5 > T.fluct

has factor1 value of 0.5, factor2 value of 1, and add1, add2, sub1 and sub2 all had

a value of 0. This allows listing the predicates in an ordered manner.

Join and window predicate lists have a side that is chosen to be the normalized

side. Attribute predicates have a similar structure in comparison to the join and

window predicates, but one side of the equation is a constant. Therefore, attribute

predicates do not choose the normalized side. Rather, the non constant side is

always normalized. For example, Query 2’s attribute predicate is defined as T.fluct

* 2 = 103. Since attribute predicates normalize the non-constant side, the resulting

normalized predicate is: T.fluct = 52.5.

3.2.2 Juggler Predicate BitSet Structure

The Juggler Predicate BitSet Structure (JugglerPBS) is used by two other Juggler

structures, Query Encoding Dependency (QED) and each tuple. It is used by each

query object to correlate the predicates in the predicate lists to their queries. It is

also used by each tuple to maintain a tuple’s relevant predicates and its evaluation

history.

Each tuple carries two Predicate BitSets, one maintains relevant predicates and

the another maintains the tuple’s predicate evaluation history to calculate a tuple’s

relevancy to the queries in the operator thus far. Most importantly, this structure

30

enables quick bit comparisons of the tuple’s JugglerPBS and a query’s QED to

determine if a tuple has satisfied or could satisfy a query. These comparisons are

done by using bit comparisons offered by Java’s BitSet class.

The predicate bitset structure is determined by the predicate lists. Each predi-

cate list is represented by an array of java.util.BitSets. The size of the BitSet array

is determined by the number of predicates in the list. The JugglerPBS is a repre-

sentation of all the predicate lists as a collection of BitSet arrays. This structure is

essential for the adaptive join algorithm since it enables quick bit comparisons which

identify predicates that need to evaluated. These comparisons include a combination

of ANDing/ORing the corresponding BitSets in the tuple’s JugglerPBS structure

and the query’s QED structure. To identify if a tuple has satisfied all the query’s

predicates before it is output, the tuple’s JugglerPBS and query’s QED are ANDed.

If the result is identical to the query’s QED the tuple has satisfied all of the query’s

predicates. To indicate tuple’s relevant predicates to be evaluated, the query’s QED

and the tuple’s JugglerPBS are ORed. Juggler uses these bit comparisons often

during its evaluation phases.

The size of an operator’s predicate bitset structure is determined after the regis-

tration of all the queries and its predicates. The config.xml file defines the operator’s

queries and their predicates. Each predicate is registered into the operator as they

are parsed from this file. As each predicate is registered, predicate lists are created

as needed.

The JugglerPBS structure is local and only relevant to the operator which con-

tains it. When a tuple enters the operator, it is appended with one JugglerPBS.

This structure represents all the predicate lists and the predicates they contain. For

example, in Figure 3.12, the window predicate type has four predicate lists each

containing only one predicate. This is represented by the BitSet array shown in

31

Figure 3.13. Query 1 contains only one window predicate, therefore only one bit is

set. If there are several similar predicates in a list, there are an equal number of

BitSets to represent each predicate. This is shown by the attribute’s second list,

which contains two BitSets, representing two predicates in this list.

The JugglerPBSs used throughout the evaluation of the tuple by the operator.

It is used to indicate the predicates which the tuple has satisfied thus far. Based

on this, it is also used to verify the relevancy of the queries and the remaining

unevaluated predicates. Once the resulting joined tuples are sent to the output

queue, the predicate bitset structure is cleared since it is no longer valid for other

operators.

Query BTHK Attr. Join Window

Query1 1111 1 1 1
00 01 0

0 0
0

Query2 1110 0 1 0
01 10 1

0 1
0

Query3 0110 0 0 0
10 00 0

1 0
1

Figure 3.13: QEDs for node BTH

3.2.3 Query Encoding Dependency Structure

A Juggler query object represents a query’s predicates as BitSets. These BitSets are

used to correlate the query’s predicates in the predicate lists. This avoids storing

predicates in multiple places. The query object contains a JugglerPBS and names

of the streams it pertains to. The query object is referred to as the Query En-

coding Dependency (QED). Thus, Juggler’s query representation is a collection of

java.util.BitSets, where each BitSet corresponds to a BitPosition. A BitPosition is

32

a coordinate composed of the predicate list index and the index of the predicate

within the list. Therefore, the structure of a query’s QED is determined by the

number of predicate lists and the number of predicates in each list. If a predicate

is relevant to a query, the BitSet in the corresponding location of the predicate’s

BitPosition is set to 1 to indicate its relevancy. A BitPosition set to 0 indicates the

predicate in the corresponding location is not relevant to the query. The tuple’s

JugglerPBS and query’s QED is used to efficiently evaluate relevant predicates and

maintain the tuple’s queries that it may satisfy. The evaluation consists of bit com-

parisons between these structures to identify tuples that have satisfied a query and

also identify predicates that are to be evaluated on a tuple.

In order to output only the tuples that satisfied a query, the QED is needed to

define the attribute, window, and join predicates’ relevancy to a query. This also

allows for optimization. If evaluating the predicate types in the Attribute-Window-

Join order and a tuple satisfies the attribute predicates listed in a query’s QED,

the irrelevant join and window predicate bits are cleared to 0. These predicate

bits are identified by using the query’s QED. Each bit set in the QED is cleared

in the tuple’s RelPBS, the bitset that represents tuple’s relevant predicates to be

evaluated. This is done using a combination of bit manipulations, ANDing, ORing,

and XORing. Comparisons of unnecessary predicates are thus avoided. The Query

Encoding Dependency also helps to eliminate outputting tuples that may be false

positives since a tuple is only output if its predicate bit encodings satisfy at least

one query. If the tuple satisfies several queries, it is only output once. The tuple

will carry query IDs for all the queries it has satisfied.

The QED of a composite operator such as BTHK describes the relationship of

the predicates and the queries as shown in Figure 3.13. Figures 3.10, 3.11, and 3.12

indicate the predicates represented by each bit in the BTHK’s QED. BitPosition

33

i :j for attribute predicate type corresponds to the jth predicate in the ith attribute

predicate list, as shown in Figure 3.10. The join and window predicates are also

similarly encoded as illustrated in Figures 3.11 and 3.12. Each bit in the QED cor-

responds to only one predicate in either the attribute, join, or window bit encodings.

The predicates are attached as a collection of BitSet arrays to each tuple.

3.2.4 Predicate BitSet Structure

Attr. Join Window

0 0 0
00 00 0

0 0
0

Figure 3.14: Juggler Tuple’s Relevant Predicate BitSet Structure (RelPBS)

Every tuple contains two sets of Predicate BitSet structures. This is to maintain

the satisfied and relevant predicates. Before every predicate type evaluation and

before the tuple is output, the tuple’s JugglerPBS is compared to its relevant queries’

QEDs. This determines if the tuple has satisfied the queries’ predicate requirements.

The two sets of the predicate BitSet structures are relevant predicate bitset

(RelPBS) and satisfied predicate bitset (SatPBS). RelPBS for the node BTHK is

shown in Figure 3.14. SatPBS has the same structure as RelPBS, but RelPBS main-

tains the relevant predicates to be evaluated and SatPBS maintains the predicates

satisfied by the tuple thus far at each predicate evaluation phase. When a BitSet

is set to 1 in a tuple’s RelPBS, this designates the predicate in the corresponding

BitPosition is relevant and needs to be evaluated. When a BitSet is set to 0 in a

tuple’s RelPBS, this indicates the predicate in the corresponding BitPosition is not

relevant and need not be evaluated. The SatPBS is only relevant if the bits in the

corresponding RelPBS are set. In this case, if a bit in the tuple’s SatPBS is set to 1,

34

this indicates the tuple has satisfied the predicate in the corresponding BitPosition.

When it is set to 0, this designates the tuple has not satisfied the predicate. Note,

both RelPBS and SatPBS have identical structures since they both represent the

operator’s predicate lists and the predicates in each list.

Each predicate list is represented by a BitSet,

which is an array of bits.

Comparisons: AND, OR, XOR, are BitSet comparisons.

\\To identify if a tuple has satisfied a query

- result = query’s QED AND tuple’s RelPBS

- If result == query’s QED

- result2 = query’s QED and tuple’s SatPBS

- If result2 == query’s QED

- Output tuple for query

\\To identify a candidate query for a tuple

\\Only compare tuples that relevant

- result = query’s QED AND tuple’s RelPBS

- result2 = result AND tuple’s SatPBS

- If result 2 == result

- Tuple has satisfied query predicates

that were relevant to the tuple

query is a candidate query

- Else

query is not a candidate query

tuple has not satisfied a relevant and

required predicate

\\To identify tuple’s irrelevant predicates

- result = query’s QED AND tuple’s RelPBS

- result2 = result XOR result

//To maintain the predicates that have been evaluated

- result3 = result2 OR tuple’s SatPBS

- tuple’s RelPBS = result3

\\To identify tuple’s relevant predicates

- result = query’s QED OR tuple’s RelPBS

- Tuple’s RelPBS = result

Figure 3.15: Bit Comparisons with QEDs and tuple’s JugglerPBS

Initially, when a tuple enters the operator, all RelPBSs are set to indicate that

all predicates of the first most selective predicate type are relevant and need to be

evaluated. During the predicate phase evaluation, the satisfied predicates for the

predicate type are set in the SatPBS whenever a predicate evaluates to true. After

the predicate evaluation phase is completed, the tuple’s SatPBS resulting from the

current phase will be compared to the relevant queries’ QED. This will indicate

35

which predicates the tuple has satisfied and which queries it may possibly satisfy.

The tuple’s candidate query IDs are updated, and these queries’ QEDs are used to

set the tuple’s RelPBS for the next predicate type. Each candidate query’s QED for

the next predicate type is combined with the tuple’s RelPBS for the corresponding

predicate type by ORing BitSets. the tuple’s RelPBS will indicate the relevant

predicates to be evaluated during the next predicate evaluation phase reducing the

number of unnecessary computations.

For example, if a tuple has satisfied window predicates in the BitPositions 0:0

and 1:0, the only candidate query found by comparing the tuple’s SatPBS and

the queries’ QED is Query 3, Figure 3.15. Although the tuple has satisfied the

predicate in BitPosition 1:0, it has not satisfied the predicate in BitPosition 2:0.

This eliminates Query 2 as a candidate query. The updated candidate queries are

used to set the next phase’s relevant predicates. In this case, only predicates relevant

to Query 3 will be set and evaluated in the next evaluation phase, thus reducing the

number of comparisons.

Stream Stream Stream

H K B

ts beatrate vib ts fluid ts press temp

0 6 98 1 150 1 150 101
1 1 90 2 100 2 97 101
2 7 98 3 150 4 35 101
3 2 98 5 150 5 100 101
4 8 89 6 75 8 150 101

Figure 3.16: Tuples In Juggler Operator BTHK

3.3 Storing Tuples in Operator

Juggler must store tuples within the current window to join them with newly in-

coming tuples typically referred to as “state”. It also needs a mechanism to quickly

retrieve tuples to join. Tuples in Juggler are stored in two places: Join Exploita-

36

B.temp H.vib

T.fluct T.incr

101

4, 85, 101

1, 97, 101

5, 100, 101

2, 150, 101

6, 150, 101

90

1, 6, 90

89

4, 8, 89
98

0, 1, 98

2, 7, 98

3, 2, 98

B.pressure

97

6, 85, 101

1, 97, 101

7, 100, 101

2, 150, 101

8, 150, 101

85 100

150

Figure 3.17: Join Exploitation Structures (JESs) in BTHK

tion Structure and Window Exploitation Structure. Join Exploitation Structures

are used when join predicates are being evaluated, namely to retrieve tuples to join

with. Similarly, the Window Exploitation Structures are used to retrieve tuples to

join with when window predicates are being evaluated. These structures store tuples

within the current window, i.e. the current state. They also allow quick retrieval

of tuples based on a value for value based join processing or for time-based join

predicates.

3.3.1 Join Exploitation Structures

To allow for efficient computation of theta joins, one structure, Join Exploitation

Structure (JES), a collection of Red-Black trees, is needed in conjunction with the

predicate lists. This is a list of covering predicates for a stream and its column

that will indicate if multiple predicates are concurrently satisfied by a tuple. In our

running example, the join predicate represented by the second list’s first position,

BitPosition 1:0, is a theta join, Figure 3.11. It is a binary expression comparing a

37

stream’s column to an expression involving another stream’s column: B.pressure >

2 * T.fluct. Normalized predicates allow for theta joins with additions, subtractions,

fractions, and the combinations of all three.

In our example, in Figure 3.6, the operator BTHK contains four join exploitation

structures. Each exploitation structure represents a stream and column pair in

registered predicates in the operator. In other words, for each stream and column

involved in a join predicate, there is a corresponding JES. One such exploitation

structure is for the data stream blood (B) and its pressure column, (rightmost tree

in Figure 3.17). Maximum number of possible JESs in an operator is the number

of predicates * 2. In this case, none of the predicates have any identical stream

and column pairs. If there are stream-column pairs that are in more than one

predicate, the number of JESs in an operator is reduced. Red-Black trees, like

those shown in Figure 3.17, will be used to sort the values of incoming tuples so

that those within a specified range can be quickly retrieved. For example, when

processing the join between B.pressure and T.fluct, tuple T.fluct’s value can be

used to retrieve candidate B’s tuples whose pressure values are greater than half

of its value. This only allows for efficient retrieval of candidate tuples that will

satisfy the predicate. It thus also reduces the number of intermediate joined tuples

compared to the number of intermediate tuples generated if all the streams tuples

in the operator were retrieved and joined.

3.3.2 Window Exploitation Structure

Similar to join predicates, another data structure in conjunction with window pred-

icate lists is needed to allow for both purging based on window range as well as

filtering and joining based on theta window predicates. These are join predicates

that are joined based on tuple timestamps. A list of window predicates in order of

38

H

Start TS = 0

End TS = 2

0, 1, 98

1, 6, 98

2, 7, 98

Start TS = 4

End TS = 6

4, 8, 89

T

Start TS = 0

End TS = 2

K

Start TS = 1

End TS = 3

1, 100

2, 150

3,150

Start TS = 5

End TS = 6

5, 150

6, 75

B

Start TS = 1

End TS = 3

1, 97, 101

2, 150, 101

Start TS = 4

End TS = 6

4, 85, 101

5, 100, 101

6, 150, 101

Figure 3.18: Window Exploitation Structures for Juggler Operator BTHK

most to least covering for a stream’s column is used to reduce the number of compar-

isons. The predicate list for B, pressure, T and fluct in Figure 3.11, is an example

of a list that contains predicates in order of most to least covering. In Juggler’s cur-

rent implementation, a predicate with a higher factor is considered more covering.

If the factors are equivalent, then the addends are compared. The predicate with

the higher addend is considered more covering. This is repeated for the minuends.

Juggler has only tested predicates with a factor or addend. Juggler’s tests have

not violated the ordering algorithm since the data distributions were known and

predicates were created with this information in consideration. This restriction can

be relaxed in the future.

Tuples are assumed to arrive in order of their timestamps. A Window Exploita-

tion Structure (WES) groups tuples into a buffer to efficiently access relevant tuples.

Each WES can contain a maximum number of buckets defined by the user during

operator’s initialization. If a user desires each bucket to represent one time unit,

the user must define the number of buckets equal to the operator’s window size. For

39

example, if an operator has a general window size of 6 time units and each window

bucket contains tuples within a range of 3 time units, only two buckets per WES

are needed. The bucket structures not only allow quick removal of stale tuples but

also provide a mechanism to retrieve tuples to join with for a given timestamp.

To join tuples using window predicates, one stream’s timestamp value can be

used to access the other stream’s values by retrieving tuples from its appropriate

buckets. Note, Juggler uses tuple’s maximum timestamps to compare values. The

maximum window size for each query is defined in a SQL-like query description,

Figure 3.3. The maximum of the queries’ window sizes is used to determine the

operator’s maximum window size, as shown in Figures 3.7 and 3.8. This size de-

termines the range of time units that a WES will store. The number of buckets is

pre-defined for the operator, allowing the user to define number of buckets in each

operator. Given queries’ window predicates, there is an opportunity for future work

to change bucket size dynamically to reflect the changing stream arrival rates. Since

buckets are only an efficient mechanism to retrieve tuples within a range, the ability

to change WESs bucket granularity could further optimize this structure.

The maximum window range is divided equally into the number of buckets. Each

bucket maintains the start and the end timestamp of the tuples it contains. The

range of the tuples contained in a bucket is less than or equal to the operator’s

maximum window size divided by the number of buckets. The tuples in the WESs

are sorted by timestamp, guaranteeing the tuples’ timestamp values are within the

WES’s range.

Assuming the tuple has not yet been joined, when the appropriate WES is found

for the predicate, each bucket’s start and end timestamp is used to compare if the

bucket could be relevant to the predicate and the input tuple’s timestamp. If the

bucket’s start and end timestamps satisfy the predicate, all the tuples in the bucket

40

are retrieved to join with the input tuple. After that, the algorithm proceeds to

the next bucket for tuple retrieval. If the start timestamp of the bucket satisfies

the predicate, but the end timestamp does not, then only the relevant tuples in

the bucket are retrieved. If both the start and end timestamps do not satisfy the

predicate, none of the tuples in the bucket are retrieved.

A WES also provides a quick way for removing stale tuples. When the WESs time

range exceeds maximum window size, the tuples in the first partition are removed

and a new partition is created. This algorithm assumes that the tuples arrive in

order of their timestamp. Input tuples that are already a join tuple, an output of

another Juggler operator, is ordered by its maximum timestamp. Handling cases

when tuples arrive out of order will be left as future work.

In our example, the node BTHK’s maximum window size is six seconds. If the

incoming data tuples are partitioned into two buckets, the most recent incoming

tuples are contained in the last bucket of the WESs. Using these buckets, the

number of candidate tuples within a specified window range are quickly retrieved.

For example, for Query 2, one of the window predicates specifies B.ts must be less

than T.ts. If T’s ts value is located in the first bucket, then B candidate tuples will

only be retrieved from the first bucket and the other bucket can be ignored.

3.4 Adaptive Predicate Ordering

3.4.1 Tuple’s JugglerPBS

There are three types of predicates a query may specify: attribute, window and

join. A tuple entering an operator must undergo all three predicate type evaluations

assigned for this operator before it can be output. Predicate types to be applied to

a tuple are ordered by their selectivity as the stream value distributions change.

41

To maintain which predicates have already been evaluated and which out of

those a tuple has satisfied, a JugglerPBS is attached to each tuple. JugglerPBS

is composed of two identical structures. One structure, Relevant Predicate BitSet

(RelPBS), maintains tuple’s relevant predicates. The other structure, Join Predicate

BitSet (JugglerPBS), maintains tuple’s evaluated and satisfied predicates. Each of

these structures is an array of BitSets representing the predicate lists and each bit

represents predicates in the list.

Note that since an operator can be shared, it may have multiple parents. In

Figure 3.5, the operator BTH is shared by two queries: Query 1 and 2. Query 1

takes relevant tuples that are output by the operator BTH and joins these tuples

with those from the kidney (K) data stream. JugglerPBSs are used to associate

tuples with the satisfied queries they have satisfied and vice versa. This allows an

operator to process multiple queries and output relevant tuples for each accordingly.

3.4.2 Predicate Ordering

The order of applying the predicate types can be interchanged. Six orderings

are possible: Attribute-Join-Window (AJW), Attribute-Window-Join (AWJ), Join-

Attribute-Window (JAW), Join-Window-Attribute (JWA), Window-Attribute-Join

(WAJ), and Window-Join-Attribute (WJA). The first predicate type applied maxi-

mizes the efficiency of its exploitation structures and is selected for being the most

selective of the three, reducing the list of predicate evaluations for the intermedi-

ate tuples. Exploitation structures are only used by its corresponding predicate

type. The second and third predicate type will only evaluate predicates indicated

as relevant on the intermediate tuples found by the previous predicate type.

The predicates applied to these tuples after the first evaluation stage will only

be relevant to the tuple’s candidate queries. These are queries that a tuple may

42

possibly satisfy. If the first predicate type can reduce the number of candidate

queries, the number of subsequent predicate type evaluations will also be reduced.

The resulting output will be the same regardless of the predicate type orderings, but

applying the predicate types in order of selectivity can greatly reduce the number

of computations and intermediate tuples.

Figure 3.19 outlines the algorithm for ordering of the three predicate types. All

six orderings of the three predicates are incorporated into the algorithm.

For each predicate type {

- If first and most selective predicate type {

- Set all tuple’s Relevant Predicate BitSets (RelPBSs) to true

}

- Evaluate predicate type

- For all relevant predicates indicated by tuple’s RelPBS{

- If predicate type is not attribute {

- Retrieve candidate tuples to join using the join/window exploitation structures

}

- Binary Search on the predicate list containing the relevant predicate to find the most covering

- Set bits in tuple’s Satisfied Predicate BitSet (SatPBS) for all covering bits for the predicate list

}

- Compare with Query Encoding Dependency (QED)

- If tuple’s JugglerPBS encoding is not a superset of any query QED, delete tuple

- If superset, set tuple’s RelPBS of the remaining predicate types

using candidate query’s QED

- Store candidate tuples in intermediate buffer, storing joined tuples during processing

}

Join remaining candidate tuples:

- Combine tuple’s and candidate tuple’s attribute JugglerPBS by ORing BitSets

- Apply all remaining attribute predicates that have not been evaluated,

identified by tuple’s RelPBS and JugglerPBS

(This is the case when a stream was not involved in a predicate.

All the tuples of that stream become candidate tuples.

These tuples may not have had some predicates evaluated.)

Output joined tuples to output buffer(s) for appropriate queries the tuple has satisfied

Insert input tuples into Exploitation Structures

Clean-up Exploitation Structures to remove stale tuples

Figure 3.19: Join Algorithm

43

-For each query in the tuple’s query list{

- Compare tuple’s streams with query’s streams

- If tuple does not contain all of query’s streams

- Retrieve all the tuples of the missing stream

- Join tuple with the tuples of the missing stream

- If tuple has not evaluated all of query’s predicates

//compare tuple’s RelPBS and query’s QED

- Evaluate these predicates

- If tuple has satisfied all query predicates

//if tuple’s SatPBS is a superset of query’s QED

- Output tuple for this query

- Else

- Remove query from tuple’s query list

- If tuple’s query list is empty

- Remove tuple from output tuple list

}

\\Route tuples

\\During initialization each output queue is associated with

\\ query/queries output buffer

\\ Correlation of query and its index in operator’s array of output queues

\\ is stored a hash table

For each query remaining in tuple’s query list{

- Find output queue index for query using hash table

- Delete tuple’s JugglerPBS structure \\ this is a local structure, only relevant to the operator

- Add copy of tuple to output queue

}

Figure 3.20: Tuple Output Algorithm

3.4.3 Output Tuples

A tuple is output if it has satisfied at least one query. Before a tuple is output,

each of the queries in the tuple’s list is used to verify that the tuple contains all the

streams defined in the query’s From clause and that all the query’s predicates have

been evaluated and satisfied. For example, if an operator includes a query which

contains the streams, A, B and C. Assume the operator also includes a second query

which contains streams A and B. Tuples, AB, that have satisfied the second query

cannot be output for the first query since stream C is missing. If a tuple AB satisfies

both queries, and the first query does not include a join predicate where tuples of

stream C were not retrieved, this tuple needs to join with the missing stream. If the

tuple is missing a stream, the missing stream’s tuples within the time window are

44

retrieved and joined with this tuple.

Before the joined tuples are output, tuple’s JugglerPBS and queries’ QED are

compared to ensure all predicates have been evaluated. Any predicates that may

not have been evaluated since the tuple was found to be missing a stream, will be

evaluated at this time. After the evaluation, the tuple’s evaluated and satisfied

predicates are compared to the query’s predicates. If all the predicates have been

satisfied, the tuple is output for this query. If not, the query is removed from the

tuple’s query list. This algorithm is described in more detail in Figure 3.20.

3.4.4 Insert Tuples into Exploitation Structures

-For each tuple{

//Enter tuple in WES

//Find appropriate WES

- For each WES{

- If WES’s stream(s) == tuple’s stream(s)

- Retrieve last bucket

- Enter copy of tuple in order of timestamp

- break;

}

//Enter tuple in JES

//Find appropriate JESs

- For each JES {

- If JES’s stream == tuple’s stream

- valueCol = Retrieve tuple’s value for JES’s column

- Enter copy of tuple in JES, with value of valueCol

}

}

Figure 3.21: Inserting Tuples into Exploitation Structures Algorithm

After joined tuples have been output, the tuples that had entered the operator

must be entered into the exploitation structures to be joined with future input

tuples. This algorithm is outlined in Figure 3.21. The tuple is entered in every JES

that includes the tuple’s stream. The tuple is entered in the JES on the its value of

the JES’s column.

All tuples are also entered into a WES. Each WES is traversed until one is found

that includes the tuple’s stream(s). Since, Juggler assumes that tuples arrive in

45

order of timestamp, the tuple will be entered into the last bucket of the WES. Note,

copies of tuples are entered into the JESs and WES. To optimize these structures

in the future, references to the tuple should be stored.

3.4.5 Clean Up

-For each input tuple{

- For each tuple stream’s WES bucket

- If tuple falls within the bucket time range

- Store tuple in this bucket

- Return, no clean up is needed

- If a bucket for the tuple has not been found

- Create a new bucket and increment the bucket count

- If WES’s time range has exceeded operator’s maximum window,

indicating stale tuples

- The first stream bucket is purged

- For each tuple in the purged bucket

- For each JES

- If the JES’s stream and tuple’s stream are a match

- Remove copy of tuple from JES

}

Figure 3.22: Juggler Clean Up Algorithm

After tuples are output, the operator maintains its window size. The input

tuples must be entered into the operator to join with incoming data. There are two

conditions that activate the clean up process. The first condition occurs when the

range of the minimum and maximum timestamps of the WESs is greater than the

operator’s maximum window. In this case, the buckets in the WESs are purged until

the range falls within the operator’s window size. Buckets are only used to partition

the tuples within the operator’s window size. The second condition occurs when an

input tuple requires the creation of a new WES bucket, incrementing the stream’s

WES bucket count. If the WES’s time range exceeds the operator’s maximum

window size, the stream’s first bucket is purged. This maintains the window range

of the operator.

When a WES bucket is purged, the tuples must also be removed from the JESs.

Each tuple being purged is removed from all the JESs that contain the tuple’s

46

stream. A copy of the tuple in the JES is identified by its values and timestamp.

This avoids removing tuples that may have identical values from the JESs. This

clean up process is described in Figure 3.22. The JESs are a collection of Red-Black

trees in which current Juggler implementation stores copies of tuples in the JESs.

This is a drawback of using Java’s Red-Black trees. In the future, another data

structure or tuple referencing scheme should be used to reduce this overhead.

3.4.6 Juggler Architecture Overview

Juggler is composed of several data structures used in Juggler’s adaptive predicate

ordering algorithm. These structures enable Juggler to reduce the number of com-

putations when processing a tuple and share sub computations between queries.

Computation is also shared by Juggler’s multiple functionalities, specifically due to

the combination of joins and selects into one operator.

One of Juggler’s data structures is a Predicate List. Predicate Lists are contained

in each of the predicate types. Predicate Lists allow the operator to group similar

predicates and order them from most to least covering. This enables the operator to

evaluate multiple predicates at a time and quickly narrow down evaluation to only

the relevant predicates. As the most covering predicate is found, tuple’s SatPBS

bits are set to reflect all the predicates the tuple has concurrently satisfied.

Exploitation structures are also an integral part of Juggler. Only the predicate

types that result in joined tuples have associated exploitation structures. These

consist of join and window predicate types. During each evaluation phase, Predicate

Lists and the QED bits are compared to assess the tuple’s candidacy for the queries.

The interaction of these structures are key to Juggler’s adaptive join algorithm.

Juggler’s components and its logical architecture is shown in Figure 3.23. The

operator’s intermediate buffer, an array, stores the joined tuples during the tuple

47

processing is not shown in Figure 3.23. All the structures interact with each other

during Juggler’s join algorithm, especially during join processing, tuple filtering,

and predicate evaluation. The details are illustrated in the running example.

Attrib
ute

Window

Predicate

Lists

PredicateLists

WESs

Jo
in

P
re

d
ica

te

L
ists

JE
S

s

QEDs
Q1 Q2 Q3

Figure 3.23: Logical Architecture of Juggler Operator

48

Chapter 4

Running Example

In our running example, the predicate types will be applied in this order of selec-

tivity: window, attribute, and join (WAJ). Selectivity for each predicate type is

calculated while tuples are evaluated in the operator. The number of tuples given

to a predicate manager and the number of tuples resulting determine the predicate

type’s current selectivity.

The running example will follow the algorithm outlined in Figure 3.19, and each

step will be described in greater detail. To begin the algorithm, we will assume

that the tuple arrives in operator BTHK’s input queue, T. The new incoming tuple

has values of (1, 103, 101, 98) for the columns ts, fluct, degree, incr, respectively.

CAPE’s execution controller will detect a tuple has arrived on an input queue and

call BTHK’s run method. This method will retrieve the tuples from the input

queues.

Assuming tuples in Figure 3.16 from streams B, H, and K have been previously

evaluated by the operator, the resulting JESs and WESs are populated as shown in

Figures 3.17 and 3.18. We will also assume that there has not been another tuple

T that had previously been evaluated by the operator. Hence, JESs and WESs for

49

stream T are empty. This is to simplify the description of the clean up process and

the storage of the tuples in the exploitation structures.

4.1 Optimal Selective Predicate Ordering

4.1.1 First Predicate Type Evaluation

RelPBS SatPBS
Relevant Satisfied

Attr. Join Window Attr. Join Window

0 0 0 0 0 0
00 00 0 00 00 0

0 0 0 0
0 0

Figure 4.1: Initial Juggler Predicate BitSet Structure (JugglerPBS)

RelPBS SatPBS
Relevant Satisfied

Attr. Join Window Attr. Join Window

0 0 1 0 0 0
00 00 1 00 00 0

0 1 0 0
1 0

Figure 4.2: JugglerPBSbefore First Predicate Type Evaluation in the WAJ Predicate
Ordering

Stream B
ts press temp

2 150 101
6 85 101
7 100 101
8 150 101

Figure 4.3: First Window Bucket of Stream B

We will assume that the most selective predicate type is the window. Before

an incoming tuple is processed, a new JugglerPBSas in Figure 4.1 is created each

time and associated with the tuple. All the bits are initially set to 0 to indicate

50

that no predicates have been evaluated or satisfied. The bits for the first evaluated

predicate type of RelPBS, which is window in our example, are all set to true, as

shown in Figure 4.2. For the first relevant predicate type evaluation, all predicates

need to be evaluated to be able to assess potential queries the tuple may satisfy.

The first predicate evaluation phase will retrieve a set of intermediate joined tuples

from its corresponding exploitation structure and also determine candidate queries

for each. The predicate list for this predicate type will be traversed to evaluate

predicates and retrieve candidate tuples to join from the corresponding exploitation

structures. The predicate in the first window predicate list is T.ts > B.ts. In our

simple running example, our tuple T has a timestamp value of 1. Once we have

extracted the tuple’s timestamp value, which is 1, the predicate then becomes B.ts

< 1. This value is used to retrieve the satisfying tuples from B’s WES. The start

timestamp of B’s first bucket quickly indicates that there are no relevant tuples that

can be retrieved for this predicate. The next predicate list evaluated is B.ts > T.ts.

Using the newly incoming tuple T’s value, the predicate becomes B.ts > 1. Using

B’s WES, the start and end timestamps of both buckets, 1, 4 and 3, 6 respectively,

indicate this time that there may be some relevant tuples in the first bucket and

that all tuples in the second bucket satisfy the predicate. After traversing the first

bucket and retrieving all the tuples in the second, the resulting tuples to join are

listed in Figure 4.3.

The algorithm continues to traverse the window predicate lists, Figure 3.12. The

next list contains the predicate: B.ts < H.ts. Since the tuple being processed is T,

the tuple’s stream is not included in the predicate streams, B and H. This predicate

is unable to be evaluated. The RelPBS in the Bit Position 2:0 is unset to indicate the

predicate is not relevant to this tuple. The last list contains the predicate: T.ts >

H.ts. Using the incoming tuple T’s value of 1, the predicate becomes H.ts < 1. The

51

WES of H in Figure 3.18 has a start timestamp of 0 and an end timestamp of 2 for its

first bucket which implies only the first bucket contains possibly relevant H tuples.

Only one tuple is retrieved, H: (0, 1, 98). Tuples added to the candidate tuple list,

which will be joined to tuple T resulting in Figure 4.4. During processing, these

tuples are joined on the fly because the retrieved tuple must be able to maintain its

JugglerPBS for future joins with other stream tuples. Before a tuple is output, the

tuples are joined. Before this tuple is added to the candidate tuple list, the list is

checked to guarantee that this tuple has not already been added during a previous

predicate evaluation. Each tuple in the list is traversed and the tuples’ timestamps,

streams, and values are compared to eliminate the possibility of duplicates. Since

the current candidate list only contains tuples from stream B, tuple H can be added

without the possibility of duplication.

After the predicate lists have been traversed, all predicates for each of the five

candidate tuples are re-evaluated. This is to evaluate predicates that were not evalu-

ated in the previous step. When there are more queries with overlapping predicates,

each tuple needs to have all relevant predicates evaluated in order to calculate the

tuple’s potentially satisfied queries. All relevant predicates are indicated by the

tuple’s set bits in its RelPBS.

Figure 4.4 lists all the intermediate joined tuples, which are set of stream sub-

tuples, that resulted during the first predicate type evaluation. It also lists the

JugglerPBS for each tuple indicating the relevant and satisfied window predicates.

Since this is the first predicate type to be evaluated, tuple’s relevancy to all the

registered queries in the operator will be evaluated to populate the query list with

candidate query IDs.

To update the query list for each tuple after the predicate type evaluation, the

tuple’s JugglerPBS and each registered query’s QED are compared. The first step

52

Relevant Satisfied
Str Attr Join Win Attr Join Win

TB ts fluct deg incr ts press temp RelPBS SatPBS
TB 1 103 101 98 2 150 101 0 0 1 0 0 0

00 00 0 00 00 0
0 0 0 0

1 1
TB 1 103 101 98 4 85 101 0 0 1 0 0 0

00 00 0 00 00 0
0 0 0 0

1 1
TB 1 103 101 98 5 100 101 0 0 1 0 0 0

00 00 0 00 00 0
0 0 0 0

1 1
TB 1 103 101 98 6 150 101 0 0 1 0 0 0

00 00 0 00 00 0
0 0 0 0

1 1
TH ts fluct deg incr ts beatrate vib RelPBS SatPBS
TH 1 103 101 98 0 1 98 0 0 0 0 0 0

00 00 1 00 00 1
0 0 0 0

0 0

Figure 4.4: Intermediate Tuples After First Predicate Type Evaluation in WAJ
Predicate Ordering

in this evaluation process compares a QED with the tuple’s RelPBS. If the BitSets

in both the QED and tuple’s RelPBS are set, indicating the predicates in the corre-

sponding positions were not relevant and therefore not evaluated, these predicates

are ignored in this evaluation. If there are BitSets in which both the QED and

tuple’s RelPBS are set, indicating the predicate is relevant to the tuple and was

evaluated, then the QED and the tuple’s SatPBS are compared. In this case, only

the BitSets set in both the QED and tuple’s RelPBS bits are considered for the tu-

ple’s SatPBS comparison, which is referred to as tempBS. TempBS will be a subset

of the BitSets in the query’s QED. If tempBS’s BitSets are also set in the tuple’s

SatPBS, indicating the tuple satisfied all the predicates that were relevant and re-

quired by the query, the query remains in the tuple’s candidate query list. If not,

the tuple has not satisfied one or more predicates that were relevant and required

by the query and its query ID is removed from the tuple’s query list. Considering

53

only the BitSets relevant to the query, if the RelPBS and SatPBS are identical and

subsets of the query’s QED, the query is still a candidate query. This tuple may

satisfy the remaining required predicates for the query in later predicate evaluation

phases.

For example, the intermediate tuple TB (1, 103, 101, 98, 2, 150, 101) has the

BitPositions of 0:0 and 1:0 of the window RelPBS set. Query 1’s QED has the

BitPosition of 0:0 also set. This indicates that Query 1 requires the corresponding

predicate in the window predicate list to be satisfied. The BitPosition 0:0 represents

the predicate T.ts > B.ts indicating the BitSet in the tuple’s SatPBS in the corre-

sponding BitPosition is not set, the tuple has not satisfied this predicate; tuple has

failed this predicate. Query 1’s ID is removed from the tuple TB’s candidate query

list.

Query 2’s QED and tuple TB’s RelPBS do not have any matching BitSets set.

Therefore either this tuple has not yet violated any required query predicates, or all

of the predicates for this query may not have been relevant to this tuple. Query 2’s

ID will remain in the tuple’s list.

Query 3 and TB both have the BitSets in BitPosition 1:0 set. The corresponding

predicate is B.ts > T.ts. BitPosition 1:0 is also set in the tuple’s SatPBS. Therefore

Query 3’s ID remains in the tuple’s list. The other three TB tuples undergo an

analogous evaluation process resulting in Queries 2 and 3 as candidate queries after

the first evaluation phase.

Tuple TH will be similarly evaluated. Query 1’s QED does not match any of the

set BitSets in the tuple’s RelPBS. This indicates that the tuples required by Query

1 were not relevant since the tuple streams did not match the predicates’ streams.

These predicates could possibly be evaluated at a later time when the tuple is joined

with the appropriate stream. Therefore, Query 1’s ID remains in the tuple’s list.

54

Query 2’s evaluation is similar to Query 1 for this tuple. Therefore, Query 2’s ID

also remains in this list. Query 3’s QED contains a match for BitPosition 3:0, which

has a corresponding predicate, T.ts > H.ts. The tuple’s SatPBS indicates that this

predicate is satisfied. Therefore, Queries 1, 2, and 3 all remain in the tuple TH’s

query list.

Before the next predicate type is processed and after all the tuples have had

their query lists updated, the tuple’s streams are compared to the queries’ streams.

If the intermediate joined tuple contains a stream not included in a query, the query

is removed from its candidate query list. For example, tuples TB contain Queries 2

and 3’s IDs in their candidate query list. The From clause of Query 3, as defined in

Figure 3.3, indicates that the query only involves streams T and H. Stream B is not

included in this query. For this reason, Query 3’s ID is removed from the tuple’s

query list. A summary of the tuple’s query list evaluation is given in Figure 4.5.

All relevant predicates need to be evaluated for each of the candidate queries.

The algorithm is outlined in Figure 3.15.

Query List
TB ts fluct deg incr ts press temp

TB 1 103 101 98 2 150 101 2
TB 1 103 101 98 4 85 101 2
TB 1 103 101 98 5 100 101 2
TB 1 103 101 98 6 150 101 2
TH ts fluct deg incr ts beatrate vib

TH 1 103 101 98 0 1 98 1, 2, 3

Figure 4.5: Intermediate Joined Tuples’ Query List After First Predicate Type
Evaluation in WAJ Predicate Ordering

4.2 Second Predicate Type Evaluation

The next predicate type to be evaluated for the predicate ordering of window-

attribute-join is attribute (WAJ). This predicate type’s evaluation process slightly

55

differs from the evaluation of join or window predicate types. Regardless of its pred-

icate type ordering, attribute predicate evaluation does not result in more interme-

diate joined tuples. Also, this predicate type does not have exploitation structures.

Evaluating attribute predicates requires a simple comparison of the tuple’s value

with the predicate’s constant.

Since the four TB tuples, listed in Figure 4.5, only have Query 2’s ID in the

tuple’s query list, Query 2’s QED is used to set the appropriate predicate type of

BitSets tuple’s RelPBS. Query 2’s QED contains only two BitSets in the BitPositions

0:0 and 1:0, as shown in Figure 3.13. Therefore these two BitSets in the BitPositions

are set in the tuple’s RelPBS.

Similarly, tuple TH’s appropriate attribute predicate type of RelPBS is also set

using Queries 1, 2, and 3. Figure 4.6 summarizes the resulting RelPBS for each

intermediate tuple.

Relevant Satisfied
Attr Join Win Attr Join Win

TB ts fluct deg incr ts press temp RelPBS SatPBS
TB 1 103 101 98 2 150 101 0 0 1 0 0 0

01 00 1 00 00 1
0 0 0 0

0 0
TB 1 103 101 98 4 85 101 0 0 1 0 0 0

01 00 1 00 00 1
0 0 0 0

0 0
TB 1 103 101 98 5 100 101 0 0 1 0 0 0

01 00 1 00 00 1
0 0 0 0

0 0
TB 1 103 101 98 6 150 101 0 0 1 0 0 0

01 00 1 00 00 1
0 0 0 0

0 0
TH ts fluct deg incr ts beatrate vib RelPBS SatPBS
TH 1 103 101 98 0 1 98 1 0 0 0 0 0

11 00 1 00 00 1
0 0 0 0

1 1

Figure 4.6: Tuples’ RelPBS for Second Predicate Type in WAJ Predicate Ordering

A similar process to the one described in the previous window predicate phase

56

is conducted to evaluate relevant predicates with the joined tuples. Tuple TB’s

only set RelPBS attribute bit is in BitPosition 1:0. The corresponding predicate

is: T.fluct = 52.5, the only relevant predicate for this tuple. This predicate is not

satisfied since tuple TB’s fluct value is 103. The BitSet of SatPBS in the predicate’s

BitPosition 1:0 is not set, indicating the predicate evaluation failed. The remaining

three TB tuples are evaluated in a similar manner.

\\set initial predicate index in predicate list

- index = predicate list size / 2

- current predicate list size = predicate list /2

- While (true){

- Evaluate predicate

- If predicate is satisfied

- If predicate includes the ’=’ operator

- set appropriate bit in tuple’s SatPBS

- Else \\if operator is not ’=’

\\ predicate is satisfied, there may be a more covering predicate

- index = current predicate list size + (current predicate list size / 2)

- Else \\if predicate is not satisfied

\\ there may be a less covering predicate

- index = current predicate list size - (current predicate list size / 2)

- If current predicate list size == 0

break; \\ reached end of list

}

Figure 4.7: Find Most Covering Predicate Algorithm

The first relevant predicate evaluated for tuple TH is: H.beatrate = 52. This

predicate is satisfied. Therefore the SatPBS in the predicate’s BitPosition of 0:0

is set. If there are several predicates that are relevant from a list, these predicates

will be evaluated in a binary search using the findMostCovering method, outlined

in Figure 4.7. To evaluate similar predicates the predicate list, the initial current

predicate index is set to the size of the predicate list. Once the binary search

to find the most covering predicate has begun, the current predicate index will

be determined by dividing the current index by 2. Therefore, the first predicate

evaluated will be at the index: predicate list size / 2. In our example, predicate list

size is 2.

To find the most covering predicate in the predicate list of B, pressure,T and

57

Relevant Satisfied
Attr Join Win Attr Join Win

TB ts fluct deg incr ts press temp RelPBS SatPBS
TB 1 103 101 98 2 150 101 0 0 1 0 0 0

01 00 1 00 00 1
0 0 0 0

0 0
TB 1 103 101 98 4 85 101 0 0 1 0 0 0

01 00 1 00 00 1
0 0 0 0

0 0
TB 1 103 101 98 5 100 101 0 0 1 0 0 0

01 00 1 00 00 1
0 0 0 0

0 0
TB 1 103 101 98 6 150 101 0 0 1 0 0 0

01 00 1 00 00 1
0 0 0 0

0 0
TH ts fluct deg incr ts beatrate vib RelPBS SatPBS
TH 1 103 101 98 0 1 98 1 0 0 0 0 0

11 00 1 10 00 1
0 0 0 0

1 1

Figure 4.8: Tuples after attribute predicate type evaluation

fluct in Figure 3.11, the current predicate index that the evaluation will begin is at

index 1, the second predicate in the list. If this predicate is satisfied, it indicates

that a more covering predicate could be satisfied. Then the current predicate index

is set to current predicate index / 2. If the predicate is not satisfied, the current

predicate index is set to current predicate index + predicate list size / 4. The search

is continued until the most covering predicate is found.

Returning to our example, predicate T.fluct = 52.5 is not satisfied. But T’s

value is higher than the predicate value. This is an indication that the predicates

in the upper half of the list could be satisfied. The only predicate in the upper half

of the list is T.fluct = 103. If this predicate is satisfied, we have found the most

covering predicate.

The binary search predicate evaluation method stops under two conditions. The

first condition is if the evaluation reaches the beginning or end of the predicate

list while trying to find the most covering predicate. The second condition is if

58

the evaluation is over a predicate list containing the ’=’ operator. The evaluation

process ceases when the tuple has satisfied a predicate. There can be no covering

predicate other than the satisfied one in the case of equality.

Figure 4.8 lists the tuples after the attribute predicate evaluation. Predicates

corresponding to set BitSets in the tuples’ RelPBS were evaluated and every predi-

cate that was satisfied has the corresponding BitSet set in the tuple’s SatPBS. The

query list for each candidate tuple is re-evaluated using the attribute predicate of

RelPBS and SatPBS. This updates the query list to only include queries that a tuple

may satisfy after the attribute predicate evaluation.

Tuple TB with values (1, 103, 101, 98, 2l, 150, 101) had only one query ID, 2,

in its query list. Query 2 requires the attribute predicate listed in BitPosition 1:1

to be satisfied. If the tuple’s RelPBS in the corresponding BitPosition is also set,

the predicate is relevant to the tuple and also has been evaluated. Therefore, if the

tuple’s SatPBS in the same BitPosition has not been set nor satisfied, the tuple

no longer satisfies Query 2. This leaves TB’s query list empty, indicating that this

tuple will not satisfy any query, and it is removed from the intermediate buffer. The

rest of the TB tuples have a similar evaluation.

Tuple TH has three query IDs in its query list. Each query will be evaluated one

at a time. The first query, Query 1, requires that the predicate in BitPosition 0:0,

H.beatrate = 52, be satisfied. The tuple’s RelPBS in the corresponding BitPosition

is also set, but the SatPBS in the corresponding BitPosition indicates that this

predicate has not been satisfied. Thus, Query 1’s ID is removed from TH’s query

list.

Query 2 requires predicate T.fluct = 52.5 in BitPosition 1:1. This predicate is

relevant to TH, but it has not been satisfied. Therefore Query 2 is also removed

from TH’s query list. Only Query 3 remains. Query 3 requires the predicate, T.fluct

59

= 103, in BitPosition 1:0 to be satisfied. Since the tuple has this BitPosition set in

its SatPBS, Query 3 will remain a candidate query. Figure 4.9 lists the tuples that

have survived the predicate type filtering. In this example, only one tuple remains.

Query List
TH 1 103 101 98 0 1 98 3

Figure 4.9: Tuples’ Query List after Second Predicate Type

4.3 Third Predicate Type Evaluation

For this running example, join is the last predicate type remaining to be evaluated.

Evaluating the join predicate type is very similar to the evaluation of the window

predicate type. Since this predicate type was not evaluated before the window

predicate type, it is not going to use its exploitation structures to retrieve tuples to

join. Therefore it will only be used as the last filter on the remaining tuples. Figure

4.10 lists the remaining tuple after the second predicate type evaluation.

Before the join predicate type is evaluated, tuple TH has its join segment of

RelPBS set by its query, Query 3, contained in its query list. As shown in Figure

4.10, Query 3 requires only one join predicate in BitPositions 2:0 to be satisfied,

which is T.incr = H.vib.

Relevant Satisfied
Attr Join Win Attr Join Win

TH ts fluct deg incr ts beatrate vib RelPBS SatPBS
TH 1 103 101 98 0 1 98 1 0 0 0 0 0

11 00 1 00 00 1
1 0 0 0

1 1

Figure 4.10: Tuples’ RelPBS before Third Predicate Type Evaluation for WAJ
Predicate Ordering

Join predicates are evaluated in a similar manner to the attribute predicates.

60

The join predicate evaluation will not be shown in detail, but the resulting SatPBS

is shown in Figure 4.11. Tuple TH has satisfied Query 3’s join predicate. This

tuple will be forwarded to the final stage of this algorithm, which assesses if it has

completely satisfied all the predicates for a given query before it is output. This

way Juggler avoids outputting any false positives.

Relevant Satisfied
Attr Join Win Attr Join Win

TH ts fluct deg incr ts beatrate vib RelPBS SatPBS
TH 1 103 101 98 0 1 98 1 0 0 0 0 0

11 00 1 00 00 1
1 0 1 0

1 1

Figure 4.11: Tuples after Third Predicate Type Evaluation in WAJ ordering

4.4 Output Tuples

Before tuples are output to the queues, the tuples’ validity to the queries in its query

list are verified. For each tuple, two checks are conducted for each of the candidate

queries before it is output. This is outlined in Figure 3.20. The first check is to

compare the tuple’s streams to the query’s streams that were defined in the query’s

From clause. If the query’s and tuple’s streams are a match, the tuple proceeds to

the second check. If not, more evaluation is needed to assess if the tuple is truly

valid for this query. All the tuples for the missing stream in Juggler’s WESs are

retrieved to join before the tuples are processed by the second check.

The second check verifies that all the relevant predicates for a query have been

evaluated before it is output to the query’s output queue. The tuple’s SatPBS

is compared to the query’s QED. If it is a superset, the tuple has evaluated all

the relevant predicates and has also satisfied them. If the tuple’s SatPBS is not a

superset, the tuple’s RelPBS is compared. If the tuple’s RelPBS is a superset of

61

the query’s QED, the tuple has not satisfied the required and relevant predicates of

the query and the query’s ID is removed from the tuple’s query list. If the tuple’s

query list is empty, the tuple is removed from the list of output tuples. Otherwise,

the tuple will repeat this verification process for its other queries.

If the tuple’s RelPBS is not a superset, the tuple may still satisfy the query. This

occurs when the tuple may have been missing required stream(s). For this case, the

missing stream tuples were retrieved in the first check. The RelPBS and the query’s

QED are compared to assess if there are any predicates that are required by the

query and were not previously relevant to this tuple. These predicates include the

missing stream and therefore could not have been evaluated before. If so, these

predicates are applied at this time and the tuple’s SatPBS and QED are compared

for a final verification. Note, when Predicate BitSets, such as the query’s QED and

tuple’s JugglerPBS, RelPBS and SatPBS, are compared, the process is composed of

bit operations, as described in Figure 3.15. After the tuples have been verified for

all their queries, they are output to the queue.

In our example, only one tuple remains and before it is output, the candidate

queries must be updated to denote satisfied queries. First, the streams for Query 3

are compared with the tuple’s streams. Since the tuple contains all the streams for

the query, there is no need to retrieve any tuples that may not have been retrieved

during the evaluation phases. For example, if Query 3 required streams B, T, and

H, tuples from Stream B’s WESs would have been retrieved and joined with our

intermediate tuple, TH. Then any predicates that involved stream B could not have

been evaluated before. At this time, to remove any false positives, these predicates

would be evaluated before the tuples are output.

In this example, tuple TH satisfies the stream requirement for Query 3 as stated

within its From clause. Thus Query 3’s QED will be used to compare the tuple’s

62

SatPBS. If the SatPBS is a superset of Query 3’s QED, the tuple is output. If not,

the tuple is removed from the output tuple list.

In our example, only one tuple is output by the operator. This tuple only satisfies

Query 3. The algorithm quickly identifies potential tuples, and also quickly filters

ones that did not satisfy the queries. The ordering of the predicate types are key to

reducing both the number of computations and the number of intermediate tuples.

4.5 Clean Up

Cleanup of the Juggler operator’s exploitation structures occurs when an input tu-

ple’s timestamp requires a new WES bucket and the WESs’ time range has exceeded

the operator’s maximum window size. This algorithm is described in Figure 3.22.

In the running example, the creation of a new WES bucket was explained. If a tuple

does not fall in the timestamp ranges of the WES buckets, a new bucket is created

and the number of buckets in the WES is incremented. The start timestamp and

end timestamp of the new WES is set to the tuple’s timestamp value. The WES’s

time ranges also changes, which is the first bucket’s first tuple’s timestamp to the

last bucket’s last tuple’s timestamp. As more tuples are entered in this bucket, the

end timestamp of the bucket is updated. If the WES’s time range is greater than

the maximum window, the first bucket in the WES is purged. Copies of these tuples

are also purged from the JES’s Red-Black trees. This removes all tuples that have

become stale in the operator.

After the input tuple T (1, 103, 101, 98) has been processed, it is entered into

the exploitation structures for future processing with other tuples. To demonstrate

the WES clean up process, we will assume more input tuples have arrived into the

operator and have been processed. These tuples have been entered into WES and

63

H

Start TS = 0

End TS = 2

0, 1, 98

1, 6, 98

2, 7, 98

Start TS = 4

End TS = 6

4, 8, 89

T

Start TS = 0

End TS = 2

1, 103, 101, 98

2, 99, 98, 101

Start TS = 3

End TS = 5

3, 99, 98, 101

5, 99, 98, 101

K

Start TS = 1

End TS = 3

1, 100

2, 150

3,150

Start TS = 5

End TS = 6

5, 150

6, 75

B

Start TS = 1

End TS = 3

1, 97, 101

2, 150, 101

Start TS = 4

End TS = 6

4, 85, 101

5, 100, 101

6, 150, 101

Figure 4.12: WES after processing input tuples

are shown in Figure 4.12. If another input tuple T (15, 99, 98, 101) now arrives

into the operator, the first bucket’s start and end timestamp in Figure 4.12 are

compared to the input tuple’s timestamp. Since the range is not included in this

bucket, the next bucket is checked. Since none of the buckets include the input

tuple’s timestamp, a new bucket must be created. The range of the WES is 10,

which is greater than the maximum window size of 6. This indicates that the tuples

in the first bucket have most likely become stale, and all the tuples it contains are

purged. The bucket IDs are decremented to indicate the purging of stale tuples, see

Figure 4.13.

As each bucket is purged, each tuple in the bucket is removed from its relevant

Red-Black trees. Since Red-Black trees do not store references, each Red-Black

tree is considered and the each stale tuple is removed one at a time. This is not

an optimal way of purging tuples from all of Juggler’s data structures. Storing

Java’s WeakRef instead of copies of the tuples would be an option and should be

investigated further.

64

H

Start TS = 0

End TS = 2

0, 1, 98

1, 6, 98

2, 7, 98

Start TS = 4

End TS = 6

4, 8, 89

T

Start TS = 3

End TS = 5

3, 99, 98, 101

5, 99, 98, 101

K

Start TS = 1

End TS = 3

1, 100

2, 150

3,150

Start TS = 5

End TS = 6

5, 150

6, 75

B

Start TS = 1

End TS = 3

1, 97, 101

2, 150, 101

Start TS = 4

End TS = 6

4, 85, 101

5, 100, 101

6, 150, 101

Start TS = 6

End TS = 8

7, 99, 98, 101

Figure 4.13: WES after purging stale tuples

4.6 Operator’s Processing Logic

An operator is responsible for processing tuples, cleaning expired tuples, storing in-

put and intermediate join tuples, and producing joined tuples in the output queue.

The architecture and operator’s processing logic is shown in Figure 4.14. To effi-

ciently execute the operator’s responsibilities, the operator’s functionality consists

of three modes. The first mode, Data Admission, filters tuples by applying the most

selective type of predicate. In our example it is assumed to be the window predi-

cate. The second mode, Propagation, applies the remaining two predicate types and

stores the resulting joined tuples in the output buffer. Before a candidate tuple is

output, the predicate bit encodings are compared with the queries’ QEDs listed in

the tuple’s query list. This determines the tuple’s relevancy to its queries. The last

mode, CleanUp, maintains the window range by removing the expired tuples and

updating the exploitation structures. Pseudo code of this functionality is described

in Figure 4.15.

65

Joined Tuple Buffer

Incoming Tuple Buffer

Intermediate Joined Tuples

Max Window: 6

Data

Admission

Computation

CleanUp

Routing

Predicate Lists

Window

Attribute

Join

Filtering

Exploitation

Structures

QEDs

Window

Join

1

2*

3*

4

5

Figure 4.14: Architecture of an Operator

Mode 1: Data Admission

//Filter and buffer the new data

Check operator’s most selective predicate type

If tuple passes

Append predicate bits

Store in the operator’s intermediate Buffer

Mode 2: Propagation

//Completes Predicates and Routes

Apply remaining 2 predicate types and

and set relevant predicate bits

//ROUTE

Route joined tuples to output buffer

Mode 3: CleanUp

//if a new data tuple exceeds

//the maximum time window boundary

Store tuple in exploitation structures, JESs and WES

Delete all tuples outside of window range

in the WES

Also delete tuples in the Join Exp Structures

Figure 4.15: Juggler Operator’s Functionality

66

Chapter 5

Assessing Juggler

5.1 Cost Model

The cost model estimates the cost of each operator in a query plan in terms of

the number of intermediate tuples, the average cost of processing an input tuple,

and the cost of accessing Juggler’s data structures. It compares both the worst

case scenario, which is a conservative estimate, and one simple example to display

Juggler’s savings in processing and space cost. The cost model is dependent upon

the data structures in the Juggler operator as well as the algorithms chosen for this

implementation.

5.1.1 Selectivity

Assuming a binary join of stream A and stream B, the operator AB has a window

size which bounds the tuples’ validity within a time. An operator can be shared by

multiple queries, each contributing to the operator’s local predicates. The operator

contains the union of all the queries’ predicates that share it. The operator’s output

tuples become the input for its parent(s).

67

T → A window size (5.1)

λ → average arrival rate of stream (count/sec) (5.2)

S = number of tuples in window for a stream(Tλ) (5.3)

The number of input tuples from one input/stream can be calculated using

Equation 5.3. Assuming there are n input streams to the operator, the total number

of input tuples entering into an operator is:

(5.4)

n is the number of inputstreams :

Iop is the number of the input into the operator

λ is arrival rate of stream i (count/sec)

Iop =
n∑

i=1

(Tλi)

In Juggler, there are three types of predicates: attribute, window, and join. Each

selectivity factor for a predicate type is calculated as the number of output tuples

divided by the size of the Cartesian product of the input streams within a window

size. This corresponds to all possible output tuples that could be produced if the

predicates were not applied.

σj → join selectivity factor for all join predicates in the range [0 : 1]

σw → window selectivity factor for all window predicates in the range [0 : 1]

68

σa → attribute selectivity factor for all attribute predicates in the range [0 : 1]

(5.5)

(5.6)

The output of a traditional single functionality operator O(opTrad),

M is the number of tuples in the operator to join with

cop is the number of all possible tuples output,

Cartesian product of input tuples within a window size

Cop = Iop × M

OopTrad
= σa (Cop)

The equations in 5.5 represent the selectivity factor of each predicate type. For

example, assuming the possible number of output tuples in a traditional select op-

erator is Cop, the number of tuples output from this operator would be equal to the

selectivity of the attribute predicate multiplied by the size of the Cartesian prod-

uct. This is shown in Equation 5.6. Similarly, if it had been a join operator, the

selectivity of the join would have been applied to the size of the Cartesian product.

Since Juggler applies all predicates to the input tuples, the number of output tuples

for a given ordering in Juggler is shown in Equation 5.7.

Oopwja
= (σw)(σj)(σa)(Cop) (5.7)

Notice that the selectivities of the three predicate types can be applied in any

order resulting in the same output although the number of intermediate tuples would

69

differ as a consequence. This is what Juggler tries to exploit in its adaptive ordering

of applying predicate types.

Assuming no operators are shared, the query plan is only composed of traditional

single functionality binary operators. These operators combine selects and joins.

Window predicates are join operators which join on the input’s timestamp values.

The number of tuples output for each of these single functionality operators can be

easily calculated, as seen in Equation 5.8.

(5.8)

where a denotes an operator for an attribute predicate type

and s denotes an operator for a join predicate type

and w denotes an operator for a window predicate type

and OqpTrad
is the output of the query plan with traditional binary operators

OqpTrad
= σaj

Copj
+ · · · + σak

Copk
+ σjs

Cops
+ · · · + σjt

Copt
+ σwu

Copu
+ · · ·+ σwv

Copv

OopTrad
=

k∑

j=1

(σajCopj
) +

t∑

s=1

(σjs
Cops

) +
v∑

u=1

(σwu
Copu

)

Adaptive Versus Static Predicate Ordering

Adaptive predicate ordering reduces the number of intermediate tuples that are

processed in a query plan. Comparing an adaptive join algorithm with a static

predicate ordering of JAW, <join, attribute, window>. We will assume from window

of time of Ti to Tn, that predicates in the order selectivity will be JAW, namely

join, attribute, window. From window time of Tn+1 to Tm, we will also assume the

data distribution has changed, and the order of predicate selectivity becomes AJW,

<attribute, join, window>. Two ordering will be compared, static and dynamic.

70

Static predicate strategy will always apply predicates in JAW ordering. Dynamic

predicate strategy will change its ordering to reflect the changes in data distribution.

For window time of Ti to Tn, the dynamic predicate strategy will apply predicates

in JAW ordering. For window time of Tn+1 to Tm, the dynamic predicate strategy

will adapt and apply predicates in AJW ordering.

The number of intermediate tuples after applying all three predicate types for

time window Ti to Tn will be equal to the number of intermediate tuples for the

adaptive predicate ordering. This is true for the case when the static predicate

ordering is identical to the adaptive predicate ordering. The number of output tu-

ples for this time is given in Equation 5.9. The number of the intermediate tuples

after each predicate type evaluation is also given as Phase1, Phase2, and Phase 3.

For time window Ti to Tn, Phase1 will represent the intermediate tuples resulting

from applying the join predicate type. Phase2 will represent the intermediate tuples

resulting from the attribute predicate type. Lastly, Phase3 will represent the inter-

mediate tuples resulting from the window predicate type. For this time window, the

number of intermediate tuples produced after each evaluation phase is the same for

both static and adaptive predicate ordering.

(5.9)

for time 0 ≤ Ti ≤ Tn

for window time Ts1 = Ti to Tn

attribute predicate type selectivity at window time Ts1is σas1

join predicate type selectivity at window time Ts1is σjs1

window predicate type selectivity at window time Ts1is σws1

71

Cartesian product between the tuples within the window time Ts1 is Cops1

with predicate ordering join, attribute, window (JAW)

OTs1
is the output of the operator for the time window Ts1

OTs1
= (σws1

(σas1
(σjs1

Cops1
)))

number of intermediate tuples at each predicate evaluation phase :

Phase1s1 is the output after the

first predicate type is applied for time window Ts1

Phase2s1 is the output after the

second predicate type is applied for time window Ts1

Phase3s1 is the output after the

third predicate type is applied for time window Ts1

Phase1s1 = σjs1
Cops1

Phase2s1 = σas1
Phase1s1

Phase3s1 = σws1
Phase2s1

The difference in the number of intermediate tuples between the two types of

orderings can be seen for window size of Ti to Tn. In this time range, the selectivity

of the predicate types has changed, resulting in the adaptive ordering of AJW,

<attribute, join, window>. The static ordering remains JAW, <join, attribute,

window>. Therefore, the number of intermediate results is listed in Equations 5.10.

The intermediate results for the adaptive predicate ordering is listed in Equation

5.11.

(5.10)

72

for time Tn ≤ Tn+1 ≤ Tm

for time Ts2 = Tn+1 to Tm

attribute predicate type selectivity at window time Ts2is σas2

join predicate type selectivity at window time Ts2is σas2

window predicate type selectivity at window time Ts2is σas2

Cartesian product of tuples within this time window Ts2is, Cops2

with predicate ordering join, attribute, window (JAW)

OTs2
is the output of the operator for the time window Ts1

OTs2
= (σws2

(σas2
(σjs2

Cops2
)))

number of intermediate tuples at each predicate evaluation phase :

Phase1statics2
is the output after the

first predicate type is applied for static strategy for time window Ts2

Phase2statics2
is the output after the

second predicate type is applied for static strategy for time window Ts2

Phase3statics2
is the output after the

third predicate type is applied for static strategy for time window Ts2

Phase1statics2
= σjs2

Cops2

Phase2statics2
= σas2

Phase1statics2

Phase3statics2
= σws2

Phase2statics2

(5.11)

for time Ts2

73

with predicate ordering attribute, join, window (AJW)

OTs2
= (σws2

(σjs2
(σas2

Cops2
)))

number of intermediate tuples at each predicate evaluation phase :

Phase1adaptives2
is the output after the

first predicate type is applied for adaptive strategy for time window Ts2

Phase2adaptives2
is the output after the

second predicate type is applied for adaptive strategy for time window Ts2

Phase3adaptives2
is the output after the

third predicate type is applied for adaptive strategy for time window Ts2

Phase1adaptives2
= σas2

Cops2

Phase2adaptives2
= σjs2

Phase1adaptives2

Phase3adaptives2
= σws2

Phase2adaptives2

Since the adaptive predicate ordering applies predicates in order of predicate

type selectivity, the number of intermediate tuples passed to the next phase will be

reduced. This is explained in more detail is Equations 5.12.

(5.12)

for time Ts2

output for both adaptive and static strategy is the same

adaptive strategy applies predicates in JAW ordering

dynamic strategy applies predicates in AJW ordering

number of output tuples of the adaptive strategy is Oopajws2

74

number of output tuples of the static strategy is 0opjaws2

OTs2
= 0opajws2

= 0opjaws2

number of intermediate tuples at each predicate evaluation phase :

Phase1adaptives2
= σjs2

Cops2

Phase1statics2
= σas2

Cops2

since σjs2
< σas2

,

Phase1statics2
> Phase1adaptives2

after applying the second predicate type,

both orderings have applied the same predicate types : attribute and join

Phase2adaptives2
= σas2

(σjs2
Cops2

)

Phase2statics2
= σjs2

(σas2
Cops2

)

Phase2statics2
= Phase2adaptives2

for the last predicate type,

Phase3adaptives2
= σws2

(σas2
(σjs2

Cops2
))

Phase3statics2
= σws2

(σjs2
(σas2

Cops2
))

the number of intermediate tuples passed to this type are now identical,

Therefore,

Phase3statics2
= Phase3statics2

In our simple comparison, we are only considering one operator at one point in

time where the static predicate ordering is not optimal. In this example, Phase1static >

Phase1adaptive may not result in a significant difference. If more instances occurred

where the ordering is not optimal in a static strategy, the difference in number of

intermediate tuples for the two strategies widens. Therefore, with more instances of

75

data distribution changes, which changes the selectivity of predicates, the adaptive

predicate ordering’s cost savings will be more apparent.

Overlapping Predicates

Juggler contains Predicate Lists which group similar predicates in order to avoid

repeated similar comparisons or predicate evaluations. In Juggler, predicates that

have identical or similar structures are referred to as overlapping predicates. These

are grouped to reduce the number of comparisons. We will use a simple example

to compare the number of intermediate tuples for a query plan that contains non-

overlapping predicates and another that contains two overlapping predicates.

Query 1:

Select *

From A, B

Window A.ts > B.ts

MaxWindow 2sec

Where A.col1 >= B.col2 and

A.col1 > 50

Query 2:

Select *

From A, B

Window A.ts < B.ts

MaxWindow 2sec

Where A.col1 >= 2 * B.col2 and

B.col1 < 40

Figure 5.1: Queries used to Compare Cost of Overlapping Predicates

Consider two query plans, each containing the two queries defined in Figure 5.1.

The first query plan will contain one Juggler operator that will evaluate all the

predicates of both queries. The second query plan we will consider contains two

multi-functionality operators which evaluate both joins and selects, but it does not

group similar predicates. The second query plan will contain two operators, each

evaluating a query defined in Figure 5.1.

Since the window predicates are identical, and the attribute predicates are not

similar, we will ignore the cost of computing these. Juggler will not be able to

76

exploit non-similar predicates. Just like Juggler, traditional operators can combine

identical predicates. Therefore, the reduction in cost for these cases will not be

unique to Juggler.

The join predicates of Queries 1 and 2, A.col1 >= B.col2 and A.col1 >= 2 *

B.col2, are similar since they share the same streams, columns, and operator. For

the query plan that does not use Juggler’s Predicate Lists, the join predicates of the

two queries are evaluated in two operators. The cost of this is outlined in Equation

5.13. If there are tuples that satisfy both predicates, they will be duplicated in this

query plan.

(5.13)

Assuming operator Op1nonoverlap
contains Query 1′s join predicate

A.col >= B.col2

and operator Op2nonoverlap
contains Query 2′s join predicate

A.col >= 2 ∗ B.col2

and since both operators are have

the same maximum possible number of output tuples :

Cop = | Cop
1nonoverlap

| = |Cop
2nonoverlap

|

and the selectivities of each join predicate is :

Selectivity of Query 1′s join predicate → σjQ1

Selectivity of Query 2′s join predicate → σjQ2

andσjQ1
< σjQ2

total number of intermediate tuples for query plan

with no overlapping predicates is TotalInternonoverlap

77

TotalInternonoverlap
= σjQ1

(Cop
1
) + σjQ2

(Cop
2
)

TotalInternonoverlap
= (σjQ1

+ σjQ2
) ((Cop

1
) + (Cop

2
))

TotalInternonoverlap
= (σjQ1

+ σjQ2
) (2 × (Cop)

In the Juggler operator, which uses the Predicate Lists, these two predicates will

be grouped into one predicate list. When evaluating the data, a binary search eval-

uation will be used to find the most covering predicate. Since Juggler incorporates

evaluating both predicates in one operator, the query plan only requires one copy of

the input data. It also processes both predicates. The tuples that have satisfied the

more covering predicate will then be processed for the other predicate, thus avoid-

ing duplicating and repetitive evaluation of tuples which satisfy both predicates.

Therefore, the Juggler operator reduces the cost in terms of number of intermediate

tuples. This is shown in Equation 5.14.

(5.14)

Assuming operator Op1nonoverlap
contains Query 1′s join predicate

A.col >= B.col2

and also contains Query 2′s join predicate

A.col >= 2 ∗ B.col2

and the operator′s

maximum number of possible output tuples : Cop

and the selectivities of each join predicate is :

Selectivity of Query 1′s

join predicate → σjQ1

78

Selectivity of Query 2′s

join predicate → σjQ2

total number of intermediate tuples for the query plan

with overlapping predicates is TotalInteroverlap

TotalInteroverlap
=

(σjQ1
(Cop)) + (σjQ2

(σjQ1
Cop))

TotalInteroverlap
=

σjQ1
Cop(1 + σjQ2

)

TotalInteroverlap
< TotalInternonoverlap

Considering that duplicate tuples are not output,

the number of intermediate tuples

for an operator containing overlapping predicates,

TotalInter
−Duplicates

, is more reduced

TotalInter
−Duplicates

< TotalInteroverlap

Multi-join Versus Binary join

Our overlapping predicate example simultaneously illustrates the reduction in the

number of intermediate tuples when using a multi-join versus binary join operators.

The input data had to be copied or reprocessed by each operator when using binary

joins over the same data. Also similar to the overlapping predicates example, us-

ing a multi-join reduces the number of intermediate tuples, since tuples that have

satisfied both predicates are not duplicated. The overlapping example indicated

that combining multiple queries in one operator reduces the number of intermediate

tuples in the query plan. If the operator accepted multiple inputs, the chance of

79

overlapping predicates in an operator increases. Thus the cost analysis of the over-

lapping example also explains the benefits of a multi-join over its equivalent binary

joins.

5.1.2 Space Cost

The computation cost for each operator is a combination of the cost of processing

the tuples and the size of Juggler’s data structures. The cost of processing tuples

incorporates cost of accessing and comparing the local predicates in the operator for

each tuple. This cost is dependent upon the number of predicates registered in the

operator and the number of predicates that are overlapping. These are predicates

that are either identical or similar.

There are two data structures in the operator that we will consider, JES and

Predicate Lists. WES is not considered since every operator needs to have a struc-

ture to store tuples within a time window. The variables used to calculate the space

cost for all the predicates of registered queries in the operator are shown in the list

below.

|jp| → total number of join predicates

|wp| → total number of window predicates

|ap| → total number of attribute predicates

|np| → total number of predicates

|np| = |jp| + |wp| + |ap| (5.15)

The maximum number of JESs in an operator is 2*|jp|. This is the case where

none of the join predicates share streams and columns. The maximum number of

possible Predicate Lists is equal to the total number of the predicates registered in

80

the operator, Equation 5.15. This is the case when none of the predicates are similar

and none could be grouped into a list. This situation also arises when each query is

processed in separate operators or query plans without sharing any operators.

In the worst case, the size of Juggler’s data structures will be as described above.

Juggler will reduce the number of Predicate Lists and the number of JESs in the

operator when there are two or more similar predicates. In the case when two

join predicates share a stream and column, the number of JES in the operator is

2 ∗ |jp| − 1. Each time a stream and column are shared in a join predicate, the

number of JES required in the operator is reduced by 1.

Similarly, in the worst case, the size of the Predicate Lists in Juggler is equal to

the number of registered predicates. When there are similar predicates, the number

of Predicate Lists in the operator is reduced by 2 since there are two streams and

columns that are similar to two other predicate’s streams and columns. In the

best case scenario, when all predicates are similar for all three predicate types, the

minimum number of Predicate Lists required is three. In this case, Juggler will

contain one predicate list for each type containing all the predicates of that type.

Therefore, the more predicates that overlap the more number of JESs and Pred-

icate Lists in Juggler decreases. Note the cost of these structures is specific to

Juggler’s implementation. In this analysis, the cost of access and cost of storing

tuples into the index has not been considered. Currently, Juggler implements Pred-

icate Lists as ArrayLists. The difference in cost of using a different implementation

structure such as a hash table should be compared. This cost is an overhead for

Juggler’s attempt to exploit similar predicate evaluation and also to quickly retrieve

tuples to join. The operator’s overhead cost can be compared to other operator

implementations with similar functionality. This is left for future work.

81

Processing Cost

The processing cost of a tuple is dependent upon the number of predicates registered

in the operator and the data structures and the number of overlapping predicates.

Similar predicates will reduce the size of the Join Exploitation Structure and Pred-

icate Lists and thus reduce the cost of processing the tuples. We will assume that

all predicates are non-overlapping unless otherwise stated.

To process a tuple in a Juggler operator, few factors determine the processing

cost: cost of binary search over the Attribute Predicate Lists, cost of binary search

over the Join Predicate Lists, cost of accessing tuples to join from the JESs, cost

of binary search over the Window Predicate Lists, and the cost of retrieving tuples

to join from the WESs. This is shown in Equations 5.16. First we will assume the

worst case, where there are no overlapping predicates.

In the worst case scenario, the number of predicate lists for each type is equal

to the number of predicates for that type. The cost of accessing a predicate is equal

to a sequential search over each Predicate List, O(n), where n is the size of the list.

Since all the predicates are non-overlapping and cannot be grouped, all Predicate

Lists are of size 1. Therefore, the cost of accessing each predicate is 1 and the cost

of accessing all the predicates is equal to the number of predicates. The cost of

accessing each predicate in this scenario can be represented as:

Ci → cost of traversing a predicate list (5.16)

Cost of accessing a predicate within the predicate list is:

Cjp → cost of accessing join pred = |jp| ∗ Ci

Cwp → cost of accessing win. pred = |wp| ∗ Ci

Cap → cost of accessing attr. pred = |ap| ∗ Ci

82

In the worst case, cost of accessing a predicates, is Ci = 1

Cp = |jp| + |wp| + |ap|

If there is one similar join predicate, the operator contains |jp|−1 join Predicate

Lists. The cost of the binary search over this predicate list is O(log(|jp|)), which in

this case will equal 1 since the size of the list is 2. Therefore, the cost of accessing

each join predicate will become Ci(|jp| − 1)+1. Therefore, as the number of similar

predicates increases in an operator, the more it reduces the cost of accessing a

predicate to evaluate.

Similarly, the cost of retrieving tuples from the JES is represented by CJES. In

the worst case scenario, the cost of evaluating all the join predicates is to use half

of the JESs to retrieve tuples to join, (1/2)(|jp|CJES).

In the case where there are two similar join predicates, the number of JESs in the

operator becomes |jp| − 1. If all predicates are relevant to a tuple, half of the JESs

will be used to retrieve tuples that satisfy each predicate. Thus, cost of retrieving

tuples from the JESs is 1/2(|jp| − 1)CJES, which less than the worst case scenario.

As more similar predicates are registered in a Juggler operator, the cost of retrieving

tuples from the JESs are reduced. Cost of retrieving tuples from the WESs has a

similar cost analysis as the analysis of JESs.

Cost of processing a tuple is composed of binary searches over the Predicate

Lists to find the most covering and the cost of retrieving tuples to join. In the

worst case scenario, for each of the subparts of the cost calculation represents single

functionality operators. Juggler’s cost analysis indicates that Juggler exploits similar

predicates and thus reduces the cost of processing an input tuple.

Even though the cost of processing an input tuple is reduced when using a

83

Juggler operator, the overhead of the data structures needs to be determined. Im-

plementing Juggler with less memory intensive and time consuming data structures

will highlight Juggler’s savings. The current implementation uses memory and time

intensive structures, which may overshadow Juggler’s savings in processing input

data.

5.2 Experimental Evaluation

Several experiments were run to assess if Juggler’s mega operator processes multi-

way joins with numerous predicates. Experiments were conducted to assess if Jug-

gler adapts its predicate ordering to the dynamic characteristics of data streams.

Several different environment variables, such as stream statistics, number of regis-

tered queries, and number of input streams, will determine predicate ordering. Data

was generated using CAPE’s Data Generator and was streamed into the operator

using CAPE’s Stream Generator. The input streams, data rates, and values are

synthetically generated by the system.

To test the features of the proposed system, I ran the following tests:

1. Compare the total number of output tuples of a plan composed of one multi-

join versus its corresponding plan composed of several binary join operators.

2. Compare adaptivity of the predicate ordering vs. a static ordering for the

same query and data set.

3. Compare the number of comparisons required for the operator which adap-

tively reorders predicate types vs. static predicate type ordering.

4. Identify system limitations in terms of number of streams, queries, and pred-

icates our composite operator can handle.

84

5.2.1 Binary versus Multi-joins

BH TK

BHTK

B H T K

Query Plan

BH_TK

BK TH

BHTK

B K T H

Query Plan

BK_TH

TB HK

BHTK

T B H K

Query Plan

TB_HK

Figure 5.2: Query Plans with Binary Operators

BHK T

BHTK

B H K T

Query Plan

BHK_T

BHT K

BHTK

B H T K

Query Plan

BHT_K

BKT K

BHTK

B K T H

Query Plan

BKT_H

Figure 5.3: Query Plans with Multi-join Operators

Tests were run ten times each on an IBM T40 laptop with 1 Gigabyte of RAM.

The average statistics were used to assess the performance of Juggler’s features.

These tests revealed a drawback of Juggler in its current implementation: Juggler

is very time consuming. Cleanup of Juggler’s data structure, cost of traversing the

Juggler tuple representation, avoiding duplicate joined tuples, and converting Jug-

gler tuples to CAPE’s XATTuples and vice versa are all memory and time intensive.

To compare the total number of output tuples for a multi-join versus its corre-

sponding binary joins, four inputs with 100 tuples in each input were processed over

several equivalent query plans. Some query plans were composed of several binary

85

joins and other query plans were composed of a combination of a multi-join and a

binary join operator. BH TK, BK TH, and TB HK are query plans composed of

binary joins and are shown in Figure 5.2. The remaining query plans are multi-joins

combined with a binary join as shown in Figure 5.3 and are named BHT K, BKT H,

and BHK T.

Binary Vs Multi-Join Operators

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

T
h

o
u

s
a
n

d
s

Time Elapsed (Minutes)

N
o

.
o

f
T

u
p

le
s

O
u

tp
u

t

BH_TK

BHK_T

BHT_K

BK_TH

BKT_H

TB_HK

Figure 5.4: Binary and Multi-join Query Plans

Figure 5.4 charts the output of each query plan over time. One binary query

plan, BH TK, had the fastest output rate. Although, on average, the output rate

of the multi-join query plans was better than the output rate of the binary plans.

This is promising indicating that multi-join operators can lead to faster output than

their equivalent binary joins. Overall, the operator output rate was very slow due

to the current non-optimized implementation of Juggler’s structures. To assess the

cause of this performance hit, the time spent on traversing the tuple’s linked list

structure was measured. This time consisted of either retrieving a tuple’s value or

avoiding creating duplicates. Figure 5.6 compares the time taken for each query

plan to finish processing and the time taken to traverse the JugglerTuple structure.

86

Total No. of Intermediate Tuples

0

20

40

60

80

100

120

140

160

180

200

BH_TK BHK_T BHT_K BK_TH BKT_H TB_HK

T
h

o
u

s
a
n

d
s

Query Plan

N
o

.
o

f
In

te
rm

e
d

ia
te

T
u

p
le

s

Figure 5.5: Number of Intermediate Tuples for Binary and Multi-join Query Plans

According to Figure 5.6, JugglerTuple’s current implementation spends a lot of time

in traversing the data structure, and that this would be an area to investigate for

future improvements.. More than fifty-percent of the processing time was taken

to traverse the JugglerTuple structure. The same figure also indicates that most

multi-join query plans either reduced processing time by a considerable amount or

performed comparably to the binary join operators. Replacing the time intensive

structures with more optimal structures can further reduce processing time.

The number of intermediate tuples for each query plan was also measured. This

is the sum of the intermediate tuples resulting after each operator’s predicate type

evaluation. Figure 5.7 indicates that most multi-join query plans significantly re-

duced the number of intermediate tuples. One binary plan, TB HK, had a reduced

number of intermediate tuples, which was not the case with other binary plans. As

the size of intermediate tuples in Juggler increased, JugglerTuple, a tuple structure

used in Juggler, consumed more time, resulting in a slower output rate, as seen in

BK TH’s performance. Juggler implements a joined tuple as a linked list of Juggler

87

Processing Time Vs Tuple Structure Overhead

0

5

10

15

20

25

30

35

40

BH_TK BHK_T BHT_K BK_TH BKT_H TB_HK

Query Plan

T
im

e
E

la
p

s
e
d

(M
in

u
te

s
)

Processing Time

Tuple Structure Overhead

Figure 5.6: Tuple Overhead for Binary and Multi-join Query Plans

Tuples. Avoiding duplicates and joining tuples require traversal of a tuple’s linked

list and this greatly compromised performance. Overall, query plans with multi-join

operators had a faster output rate, seen in Figure 5.4, and also greatly reduced the

number of intermediate tuples produced within the operators.

5.2.2 Predicate Reordering

To compare the adaptivity of the predicate ordering, one query was registered into

the operator. The query plan for this test is shown in Figure 5.9. The query is

listed in Figure 5.8. Tests were run while the operator dynamically reordered the

evaluation of the predicate types. The same query was run with each of the six

static predicate orderings. Figure 5.10 charts the performance of each predicate

ordering. The names of the query plans are followed by three letters to indicate

the predicate ordering. For example, AJW indicates the static predicate ordering

of Attribute-Join-Window. The query plan with no predicate ordering following its

88

Binary Vs Multi-Join Operators

0

500

1000

1500

2000

2500

3000

BH_TK BHK_T BHT_K BK_TH BKT_H TB_HK

T
h

o
u

s
a
n

d
s

Query Plans

N
o

.
o

f
C

o
m

p
a
ri

s
o

n
s

Figure 5.7: Number of Comparisons for Binary and Multi-join Query Plans

Select *

From B,H,T

Window B.ts <= T.ts and H.ts <= T.ts

MaxWindow 20sec

Where B.pressure < 90 and

H.beatrate > 115 and

B.pressure <= H.vib and

B.ts <= H.ts and

T.fluct lt 200 and

B.temp lt= T.degree and

H.vib lt= T.fluct

Figure 5.8: Query used to test Predicate Reordering

name dynamically reorders the predicate types. For this particular query and its

stream statistics, the dynamic predicate reordering fared as well as the static order-

ing of AJW. There is a point when the dynamic reordering had a higher output rate,

but the static AJW quickly caught up. More tests with varying stream statistics

and queries must be run to formulate a concrete claim.

The bar chart in Figure 5.11 illustrates the number of comparisons the static

predicate orderings incurred versus the number of the comparisons incurred by the

dynamic predicate orderings. The bar chart indicates that the adaptive predicate

89

BHT

B H T

Query Plan

BHT

Figure 5.9: Query Plans with One Multi-join Operator

reordering results in fewer comparisons than all the other static orderings. A com-

parison is defined as any calls comparing BitSets, exploitation structures, and eval-

uation of predicate lists. The number of comparisons decreases when using adaptive

reordering. Candidate tuples are discarded earlier in the join algorithm if the eval-

uation of predicate types adapts to changing data distributions. For this particular

query, the attribute predicate type was consistently the more selective predicate

type. Hence, it performed comparably to the dynamic reordering test. The cost of

bit comparison is not as expensive as a lookup in the WES. To completely assess

the benefit of reducing the number of comparisons, more tests are needed in order

to identify the specifics of these comparisons.

5.2.3 Overlapping Predicates

Another set of experiments was run to assess if overlap of similar predicates in multi-

ple queries improved performance. Five queries were registered into each query plan

90

Adaptive Vs Static Predicate Ordering

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Time Elapsed (Minutes)

N
o

.
o

f
T

u
p

le
s

O
u

tp
u

t BHT

BHT_AJW

BHT_AWJ

BHT_JAW

BHT_JWA

BHT_WAJ

BHT_WJA

Figure 5.10: Adaptive vs. Static Predicate Orderings

containing one Juggler operator, BH. These queries are shown in Figures 5.13, 5.14,

and 5.15. The first query plan contained approximately twenty-five percent over-

lap of predicates. Predicates are considered overlapping when they can be grouped

into one predicate list. These predicates can be identical or similar. The second

query plan contained approximately fifty percent overlap and the third contained

approximately seventy-five percent overlap. When an operator contains overlapping

predicates, many of the predicates can be evaluated using the binary search on the

predicate lists. This reduces the number of predicate lists in the operator and also

reduces the number of comparisons required to process each input tuple.

The results were promising and indicates that the overlap of predicates were

exploited by Juggler. There was a consistent percentage of decrease in the num-

ber of comparisons required when queries had a greater percentage of overlapping

predicates as depicted in Figure 5.12.

91

Adaptive Vs Static Predicate Ordering

0

0.5

1

1.5

2

2.5

3

3.5

BHT BHT_AJW BHT_AWJ BHT_JAW BHT_JWA BHT_WAJ BHT_WJA

M
il
li
o

n
s

Predicate Orderings

N
o

.
o

f
C

o
m

p
a
ri

s
o

n
s

Figure 5.11: Number of Comparisons for Predicate Orderings

Reduced Comparisons for Overlapping Predicates

0

100

200

300

400

500

600

700

25% predicate overlap 50% predicate overlap 75% predicate overlap

Percentage Overlapping

N
o

.
o

f
C

o
m

p
a
ri

s
o

n
s

p
e
r

O
u

tp
u

t
T
u

p
le

Figure 5.12: Queries with Overlapping Predicates

92

Twenty-Five Percent Overlap

Query 1:

Select *

From BH

Window B.ts > H.ts

Max Window 20 sec

Where B.pressure < 90 and

B.pressure > H.vib

Query 2:

Select *

From BH

Window B.ts <= H.ts

Max Window 20 sec

Where B.pressure < 115 and

H.beatrate > 115 and

B.pressure <= H.vib * 2 and

B.pressure < H.beatrate

Query 3:

Select *

From BH

Window B.ts <= H.ts

Max Window 20 sec

Where B.pressure < 116 and

H.beatrate >= 115 and

H.vib > 80 and

B.pressure <= H.vib * 3 and

B.pressure > H.beatrate and

B.temp > H.beatrate

Query 4:

Select *

From BH

Window B.ts gt H.ts

Max Window 20 sec

Where B.pressure < 117 and

H.beatrate < 115 and

H.vib < 80 and

B.temp > 90 and

B.pressure <= H.vib * 4 and

B.pressure = H.beatrate and

B.temp >= H.beatrate and

B.temp > H.vib

Query 5:

Select *

From BH

Window B.ts >= H.ts

Max Window 20 sec

Where B.pressure < 118 and

H.beatrate = 115 and

H.vib = 100 and

B.temp = 98 and

B.pressure > H.vib and

B.pressure >= H.beatrate and

B.temp < H.beatrate and

B.temp >= H.vib

Figure 5.13: Query 1 Predicate Overlap

93

Fifty Percent Overlap

Query 1:

Select *

From BH

Window B.ts >= H.ts

Max Window 20 sec

Where B.pressure < 110 and

B.pressure <= H.vib

Query 2:

Select *

From BH

Window B.ts >= H.ts

Max Window 20 sec

Where B.pressure > 113 and

H.beatrate > 110 and

B.pressure >= H.vib and

B.pressure > H.beatrate

Query 3:

Select *

From BH

Window B.ts >= H.ts

Max Window 20 sec

Where B.pressure > 115 and

H.beatrate >= 110 and

H.vib gt 80 and

B.pressure >= H.vib * 2 and

B.pressure < H.beatrate and

B.temp > H.beatrate

Query 4:

Select *

From BH

Window B.ts >= H.ts

Max Window 20 sec

Where B.pressure > 117 and

H.beatrate < 110 and

H.vib < 80 and

B.temp > 90 and

B.pressure >= H.vib * 3 and

B.pressure = H.beatrate and

B.temp >= H.beatrate and

B.temp >= H.vib

Query 5:

Select *

From BH

Window B.ts >= H.ts

Max Window 20 sec

Where B.pressure > 120 and

H.beatrate = 115 and

H.vib = 100 and

B.temp = 98 and

B.pressure >= H.vib * 4 and

B.pressure >= H.beatrate and

B.temp < H.beatrate and

B.temp <= H.vib

Figure 5.14: Query 2 Predicate Overlap

94

Seventy-Five Percent Overlap

Query 1:

Select *

From BH

Window B.ts <= H.ts

Max Window 20 sec

Where B.pressure < 110 and

B.pressure <= H.vib and

Query 2:

Select *

From BH

Window B.ts <= H.ts

Max Window 20 sec

Where B.pressure < 113 and

H.beatrate > 115 and

B.pressure <= H.vib and

B.temp > H.beatrate

Query 3:

Select *

From BH

Window B.ts <= H.ts

Max Window 20 sec

Where B.pressure < 115 and

H.beatrate > 117 and

H.vib > 80 and

B.pressure <= H.vib * 2 and

B.temp > H.beatrate * 2 and

B.pressure < H.beatrate

Query 4:

Select *

From BH

Window B.ts <= H.ts

Max Window 20 sec

Where B.pressure < 117 and

H.beatrate > 120 and

H.vib < 80 and

B.temp > 90 and

B.pressure <= H.vib * 3 and

B.temp > H.beatrate * 3 and

B.pressure = H.beatrate and

B.temp >= H.vib

Query 5:

Select *

From BH

Window B.ts <= H.ts

Max Window 20 sec

Where B.pressure < 120 and

H.beatrate > 125 and

H.vib = 100 and

B.temp = 98

B.pressure <= H.vib * 4 and

B.temp > H.beatrate * 4 and

B.pressure >= H.beatrate and

B.temp = H.vib

Figure 5.15: Query 3 Predicate Overlap

95

Chapter 6

Conclusion

In the area of real time streaming data, continuous queries are used to process

streaming data from multiple sources into results useful for various fields. From

medicine to the stock market, if the data becomes stale, it is no longer useful.

The nature of streaming data also makes it impossible to get a complete result.

Intermittent outputs are necessary.

Juggler, a multi-join operator, proposes a solution in the CQ area. With the

use of multiple query plans, joins, and selects in one operator, Juggler bounds the

streaming data using window joins and a maximum window size.

The Juggler operator combines three features into one operator. The contribu-

tions of Juggler are:

• Grouping similar predicates.

• Reordering predicate evaluation.

• A multi-join operator with multiple attribute and join predicates.

The feature of Juggler which promises to be the most useful is the dynamically

reordering and applying the predicate types in order of selectivity, allowing Juggler

96

to dynamically adapt to the changing data stream distribution. Although the area of

continuous queries has been investigated by many, Juggler’s approach of dynamically

ordering predicate types in a multi-join mega operator has not been done.

Juggler has shown to reduce computations when predicates overlap. This im-

provement is the result of Juggler’s grouping of similar predicates. Efficiencies also

come into play by dynamically changing the order of predicate type evaluation in

a multi-join operator. Multi-join operators collapse a query plan or a subset of a

query plan into one operator. If a multi-join operator dequeues data from inputs

in a predefined order, the operator may block if an input has no data. Juggler will

dequeue from any input that has data to process. This avoids blocking an operator

from waiting on a slow input stream, instead Juggler will proceed to process tuples

from other inputs.

The Juggler operator is a mega operator which proposes a solution to process-

ing continuous queries with sliding windows. Juggler has three contributions: it

proposes an adaptive predicate type reordering mechanism, it groups similar pred-

icates in an attempt to reduce the number of comparisons, and it combines joins

and selects into one mega multi-input operator. Juggler proposes an adaptive join

algorithm by reordering predicate type evaluation within the operator. Tuples are

routed through different predicate types to adapt to changing stream characteristics.

Juggler was designed and implemented in Java. Preliminary tests were conducted

to probe Juggler’s features and performance. On average, multi-join outperformed

its equivalent binary joins. Adaptive predicate ordering resulted in a reduction in

the number of comparisons when queries contained many similar predicates. More

experiments are needed to confirm and identify the limitations of these features.

97

6.1 Future Work

Much work remains for Juggler. The most important remaining task is optimiza-

tion. When Juggler was integrated into the CAPE system, tuples were converted

and reverted to CAPE’s format of tuples. This caused some performance degrada-

tion. Also, Juggler’s tuple representation is an extended form of Linked List. This

also resulted in a performance hit, since duplicate elimination was very expensive

with this tuple design. Since JugglerTuples are implemented as a LinkedList, to

identify a duplicate tuple, each tuple’s linked list is traversed and the tuples’ values

and timestamps are compared. This is explained in more detail in the appendix.

The WESs are also implemented as linked lists, and thus another factor in the

performance hit. JugglerTuples can be converted to an extending class of CAPE’s

XATTuples which are implemented as an array of values instead of a LinkedList.

This would simplify duplicate elimination and retrieval of a tuple’s value.

6.1.1 Adaptive Predicate Reordering

More research in the timing and frequency of predicate reordering is needed. Cur-

rently, Juggler reorders predicates after a pre-defined set of tuples have been pro-

cessed, which may not be an optimal solution. Instead, predicate type selectivities

can be updated when the operator can detect a significant change in data distribu-

tions. This would require another algorithm that monitors streams’ statistics.

6.1.2 Policies

More research is also needed in the output policy. Currently, Juggler outputs tuples

as they are processed.. Approximate output may be acceptable in certain appli-

cations. A more flexible policy may be preferable, where the user can define if an

98

approximate or complete result policy is desired.

6.1.3 Optimization

The current implementation of Juggler did not investigate the cost and overhead

of its implementation choices and structures. As seen by the experimental results,

Juggler’s Tuple structure was very time-consuming which affected its output rate.

This is only one of many data structures which need optimizing. Also, there may

be some redundant bit comparisons during processing. Further investigation of the

algorithm can identify these areas. Some data structure that will need optimizing

are listed below.

• The Juggler tuple representation is a LinkedList.

• The duplicate elimination process traverses Linked Lists.

• The WES buckets use the Juggler tuple’s representation.

• JESs store tuple copies.

6.1.4 Performance

As stated in the Experimental Evaluation section, more tests are needed to assess

Juggler’s features. Preliminary tests probed and indicated some initial results, but

Juggler’s implementation limitations were also identified, in particular its scalabil-

ity. Work is needed to optimize data structures to determine the limitations and

performance of Juggler and to evaluate the maximum number of input streams and

queries it can handle.

Juggler incorporates innovative ideas and proposes a possible solution in a dy-

namic, bursty, and real-time environment of CQ. Juggler proposes one possible

99

solution in this relatively new and uncharted research area. It combines three novel

ideas of reordering predicate types, grouping similar predicates, and combining joins

and selects into one operator. This has indicated to be promising solution.

100

Bibliography

[1] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query process-

ing. In W. Chen, J. F. Naughton, and P. A. Bernstein, editors, Proceedings

of the 2000 ACM SIGMOD International Conference on Management of Data,

May 16-18, 2000, Dallas, Texas, USA, volume 29, pages 261–272. ACM, 2000.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues

in data stream systems. In Proceedings of 21st ACM Symposium on Principles

of Database Systems (PODS 2002), 2002.

[3] S. Babu and J. Widom. Continuous Queries over Data Streams. In Proceedings

of the 2001 ACM SIGMOD International Conference on Management of Data,

Santa Barbara, CA, USA, volume 30, pages 109–120, 2001.

[4] S. Chandrasekaran and M. J. Franklin. Psoup: a system for streaming queries

over streaming data. The VLDB Journal, 12(2):140–156, 2003.

[5] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable contin-

uous query system for internet databases. In W. Chen, J. F. Naughton, and

P. A. Bernstein, editors, Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA,

volume 29, pages 379–390. ACM, 2000.

101

[6] P. Haas and J. Hellerstein. Ripple Joins for Online Aggregation. In SIGMOD

1999, Proceedings ACM SIGMOD International Conference on Management of

Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA. ACM Press, 1999.

[7] M. Hammad, W. Aref, and A. Elmagarmid. Joining multiple data streams with

window constraints. Proceedings of the 28th VLDB Confrerence, 2002.

[8] J. Hellerstein, M. Franklin, S. Chandrasekaran, A. Deshpande, K. Hildrum,

S. Madden, V. Raman, and M. Shah. Adaptive Query Processing: Technology

in Evolution. IEEE Data Engineering Bulletin, 23(2), June 2000.

[9] J. Kang, J. Naughton, and S. Viglas. Evaluating Window Joins

Over Unbounded Streams. http://www.cs.wisc.edu/niagara/papers/knv02-

windowjoin.pdf, 2002.

[10] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive

continuous queries over streams. In Proceedings of the 2000 ACM SIGMOD

International Conference on Management of Data, 2002, Madison, Wisconsin,

USA, pages 49–60. ACM, 2002.

[11] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive

continuous queries over streams. In Proceedings of the 2002 ACM SIGMOD

international conference on Management of data, pages 49–60. ACM Press,

2002.

[12] J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient matching for web-

based publish/subscribe systems. In Conference on Cooperative Information

Systems, pages 162–173, 2000.

[13] J. Ullman and J. Widom. A first course in database systems, 1997.

102

[14] T. Urhan and M. J. Franklin. XJoin: Getting fast answers from slow and bursty

networks. Technical Report CS-TR-3994, 1999.

[15] S. Viglas, J. Naughton, and J. Burger. Maximizing the Out-

put Rate of Multi-Join Queries over Streaming Information Sources.

http://www.cs.wisc.edu/niagara/papers/mjoin.pdf, 2002.

[16] S. Viglas, J. Naughton, and J. Burger. Maximizing the Output Rate of Multi-

Join Queries over Streaming Information Sources. In Proceedings of the 28th

International Conference on Very Large Databases (VLDB), 2002.

[17] S. Viglas and J. F. Naughton. Rate-based query optimization for streaming

information sources. In SIGMOD 2002, Proceedings ACM SIGMOD Interna-

tional Conference on Management of Data, June 4-6, Madison, Wisconsin,

USA, 2002.

103

Appendix A

Juggler Implementation

A.1 Juggler Operator

PURPOSE: XATJugglerOperator is an interface to the CAPE system. It allows

the operator to run and initialize its state. XATJugglerOperatorImp implements

this interface and processes the input tuples and initializes the queries and their

predicates.

The Juggler operator extends the XATMultiQueueStreamOperator which ex-

tends both the XATMultiSourceOperator and the XATStreamOperator. Three

methods in XATJugglerOperatorImp are used to initialize and run the operator.

One method is visitInt. Its parameters are: String numQueues, String queryInfo,

String attrPredicates, String joinPredicates, and String winPredicates. This method

is called by edu.wpi.cs.dsrg.xmldb.xat.component.queryplangenerator.ClassVariableVisitor

during the query registration and query plan generation. The method initializes the

operator’s queries and their predicates in Juggler’s structures. After this method,

the predicates need to be parsed and stored in Juggler’s predicate representation

structures.

104

When the operator is given a chance to run by CAPE’s Execution Controller,

the operator checks to see if its state has been initialized. If not, the operator’s

initialize method is called. This method parses the predicate strings that were

passed to visitInit. As predicates are parsed, the predicate lists are also created and

entered into the appropriate lists followed by the creation of . the queries’ QEDs.

The operator then registers itself with the input queues and output queue. Also the

operator’s three predicate managers, attribute, join and window, are initialized by

creating predicate lists and exploitation structures. After the initialize method has

been called, the operator is prepared to process tuples. If the operator has been

initialized, the operator dequeues tuples and calls its PredicateOrderingManager to

process them.

Before each predicate type is applied, the tuples are converted into Juggler-

Tuples. JugglerTuple extends XATTuple and contains a structure, Join Predicate

BitSet Structure (JugglerPBS), that is used by the operator to filter the intermedi-

ate tuples. The PredicateOrderingManager processes tuples by applying predicate

types in order of selectivity. Each predicate type manager applies predicates and the

intermediate tuples are filtered by comparing the tuple’s JugglerPBS to the queries’

QEDs. The intermediate tuples that remain after all three predicate types are ap-

plied are tuples that are output. Before tuples are output, the tuples are entered into

the operator’s exploitation structures and then are re-converted to XATTuples. The

structures specific to the Juggler operator, such as JugglerPBS, are only relevant to

the operator that created it.

105

A.2 Predicate Ordering Manager

PURPOSE: The Predicate Ordering Manager is responsible for processing and en-

tering the tuples into the operator’s structures. It contains the three predicate type

managers: attribute, join and window. Tuples are passed to each predicate manager

in order of predicate type selectivity. It also maintains selectivity of each predicate

type and reorders them to reflect changes in data characteristics. After joining tuples

using Juggler’s join algorithm and checking to confirm they have satisfied at least

one query, the list of resulting joined tuples is returned to XATJugglerOperatorImp.

XATJugglerOperatorImp calls the PredicatOrderingManager’s processTuples method.

This method incorporates Juggler’s processing algorithm outlined in Figure 3.19.

This class has many helper methods for processing tuples, such as creating a tu-

ple’s JugglerPBS before processing, comparing tuples’ RelPBS to query QEDs, and

maintaining selectivities of each predicate type.

A.3 Predicate Type Manager

PURPOSE: There is a predicate type manager for each predicate type. Join and

window predicate type managers contain a collection of Predicate Lists and ex-

ploitation structures. Attribute predicate manager only contains Predicate Lists.

The Predicate Lists are populated when the PredicateOrderingManager’s initial-

ization method is called. Each manager must be able to find the most covering

predicate for each predicate list it contains, retrieve relevant tuples to join when

given an input tuple, and apply all relevant predicates to an intermediate tuple.

Each predicate type managers also contains its selectivity .

Each of the three predicate type managers implements IPredicateManager, Fig-

ure A.2. This interface requires all its classes to implement two methods: getSe-

106

lectivity() and applyPredicates(). This interface allows PredicateOrderingManager

to reorder the predicate type by selectivity and call each type manager’s method to

process tuples.

Each of the predicate managers implements the method registerQueries(). This

method is called during the Juggler operator’s initialize method. Each predicate

manager creates the predicate lists and associates each predicate to its queries.

Attribute Predicate Manager differs slightly from the Join and Window Predi-

cate Managers. JWPredicateManager is an interface that extends IPredicateMan-

ager. It incorporates the differences between attribute and the other two predicate

types. These differences are reflected in the predicate structure, predicate lists,

and exploitation structures. Attribute predicates only have one side that involves a

stream’s value and the other side is a constant. Join and Window predicates have

both sides that involve stream values. Attribute predicate manager does not con-

tain any exploitation structures but Join and Window predicate managers contain

exploitation structures, JES’s Red-Black trees, and WES’s buckets respectively.

A.3.1 Attribute Predicate Manager

PURPOSE: Attribute predicate manager finds the most covering predicates from

its Predicate Lists and also applies only the relevant predicates to an intermediate

tuple.

Attribute predicate manager does not contain any exploitation structures. Predi-

cateManager is a class that extends IPredicateManager. It contains AttrPredOrderListS,

which is a structure that orders the attribute predicates. This structure will be de-

scribed in more detail later, but it assumes that the attribute predicate has three

parts: stream value, an operator, and a constant.

The method, applyPredicates(), takes an Iterator and an input tuple. If this

107

predicate type is the first or most selective predicate to process tuples, the Iterator

will be null. In this case, the input tuple will have all the attribute predicates

applied. Otherwise, the Iterator can be a collection of intermediate tuples and the

manager will only evaluate each tuple’s relevant predicates.

A.3.2 Join Predicate Manager

PURPOSE: Join predicate manager finds most covering predicates from its Predi-

cate Lists, retrieves relevant tuples to join from its JESs and applies only the relevant

predicate to intermediate tuples.

JWPredicateManger is an interface that contains an array of Red-Black trees

implemented by java.util.TreeMap. It also contains a list of OrderListS, which

differs from AttrPredOrderListS. Join predicates, as mentioned above, differ from

attribute predicates in their structure. OrderListS incorporate this difference and

contains these predicates in an ordered manner.

Join Predicate Manager also implements the method applyPredicates(). The

parameters are also the same as the parameters described in the Attribute Predicate

Manager. If this predicate type is the first type to process the tuples, the Iterator

is null. In this case, all the predicates are applied to the input tuple. If the Iterator

is not null, only the relevant predicates are applied to the intermediate tuples.

A.3.3 Window Predicate Manager

PURPOSE: Same as Join Predicate Manager.

Similar to Join Predicate Manager, Window Predicate Manager also differs from

the Attribute Predicate Manager for the same reasons. It also extends JWPredi-

cateManager, but the Window Predicate Manager will initialize the array of JES

in the JWPredicateManager to null, since it is not used by this predicate manager.

108

Instead, it contains an array of Window Exploitation Managers, and each of these

manages a WES. The applyPredicates() method behaves similarly to the way it does

in Join Predicate Manager.

A.4 Exploitation Structures

PURPOSE: In Juggler, there are two Exploitation Structures. These are used to

store tuples within a window size and also to quickly retrieve tuples to join.

Only two predicate types contain exploitation structures, join and window, Fig-

ure A.3. Each exploitation structure is used to retrieve tuples to join. The attribute

predicate manager does not contain any exploitation structures and therefore does

not produce any tuples to join. Only one predicate type, for any predicate type

ordering, either join or window, can retrieve candidate tuples when processing an

input tuple. For example, if a join predicate type is more selective than window, the

join predicate manager’s method applyPredicates() is called first. The join predicate

manager will use its JESs to retrieve tuples to join since there are no candidate joined

tuples from previous predicate type evaluation. When window predicate manager is

processed, the applyPredicates() will be passed an Iterator of intermediate tuples.

Since this was called after the join predicate manager, tuples were joined and the

window predicate manager will only apply relevant predicates to these tuples.

If the window predicate type was to be more selective than join, the window

predicate manager would use its WESs to retrieve tuples to join. In this case, the

join predicate manager will only apply relevant predicates on the joined tuples that

resulted from the previous evaluation phase. Therefore, the first predicate manager

in the ordering of either join or window will use its corresponding exploitation struc-

ture to retrieve tuples to join. The predicate manager following it will only apply

109

predicates to these intermediate tuples and not use its exploitation structure.

If a query registered in the operator has at least one predicate for each of the

three predicate types, the algorithm is used in its most optimal way. In the case

where a query does not contain a predicate involving one of its streams, all the

tuples in the exploitation structures for this stream will be returned in order to be

joined.

A.4.1 Join Exploitation Structure

PURPOSE: The join exploitation structure is used to store and quickly retrieve

tuples to join.

For each stream and column involved in a join predicate, a new JES is created.

If there are 5 predicates, and none of the stream and column pairs are identical,

10 JESs will be created. This allows efficient retrieval of tuples using the input

tuple’s value. When an input tuple arrives into the operator, as a predicate is being

evaluated, the tuple’s column value will be used to retrieve tuples for the other

stream to join. For instance, when evaluating the predicate T.incr = H.vib and the

input tuple T with values (1, 103, 101, 98), T’s incr value of 98 is used to retrieve

tuples from the JES structure for stream H. The tuples retrieved for candidate H

are: {(0, 7, 98), (2, 7, 98), (3, 2, 98)}.

The array of JESs are contained in the Join Predicate Manager. The collection

of JES’s streams and columns represent all the join predicates’ streams and columns

registered in the operator. The maximum possible number of JESs in an operator

is 2 * the number of join predicates registered in the operator. Since this algorithm

assumes that most predicates registered in the operator are overlapping, the number

of JESs in the operator will be less than the maximum. Without JESs to find

relevant tuples to join, all of the tuples in the operator must be traversed.

110

Tuples in the JESs are removed when the tuples in a WES are identified as stale.

Each tuple removed from a WES is also removed from any JESs that represent

the stale tuple’s stream. Duplicate insertions and wrongful deletions in the Red-

Black trees are avoided by comparing timestamps. This also enables the operator

to distinguish the stale tuple from another tuple with the same values.

There is room for optimization in the cleanup process. Currently, the JES stores

copies of tuples. Java.util.TreeMap does not store references, therefore a copy of the

tuple is used when inserted into a Red-Black tree. This means if there are three Red-

Black trees for a stream, the tuple will be copied in each of them. During a WES

cleanup, if stale tuples are set to null, the removal of these tuples from their relevant

Red-Black trees is necessary. The JESs would be more efficient if an implementation

similar to a Red-Black tree accepts and stores references. It also needs to recognize

that if the reference is set to null, the tuple entry is also decremented and deleted.

A possibility is using WeakRef instead of creating a copy of the tuple before it is

inserted into a JES.

A.4.2 Window Exploitation Structure

PURPOSE: The window exploitation structure stores tuples in order of timestamp

values and quickly retrieves tuples to join.

The number of WESs in an operator is determined by the number of input

streams. If a query plan only contains one Juggler operator, the number of WESs

in this operator is equal to the number of streams in this plan, or the number of

input queues. If a query plan contains multiple Juggler operators, the number of

WESs will be determined by the number of input queues of the operator.

WESs do not contain any structures provided by the Java API. A WES contains

a collection of buckets and each bucket contains a JugglerWindowTupleList. This

111

structure will be described in a later section.

The number of buckets that each WES can contain is determined by the bucket

limit value in the config file set during initialization time. The buckets will divide

the timestamp range equally among themselves. If a tuple is outside the range of the

last bucket, a new bucket is created. If the number of buckets exceeds the limit and

the WES’s time range has also exceeds the operator’s maximum window size, the

first bucket has become stale and all the tuples in this bucket are removed. While

the tuples in the bucket are being removed, the copies of the tuples in the JESs are

also removed. This process is described in Join Exploitation Structure section.

A.5 Predicate Structure

PURPOSE: The predicate structure is a representation of all the predicates regis-

tered in the operator. Predicates are normalized after initialization to allow com-

paring one predicate to another in order to identify similar predicates.

String representation of predicates cannot be used to order similar predicates.

The Predicate structure allows ordering of predicates in a predicate lists. In con-

fig.xml, where predicates for each operator are specified, the predicates are in the

format: stream1.column1 operator stream2.column2. During query and predicate

registration, each of the predicate strings defined in the config file are parsed and

converted to the Juggler’s predicate structure. This structure is composed of two

Juggler’s PredicateParts and one Juggler operator, Figure A.4. In the case of an

attribute predicate, there is a special predicate structure called AttrPredicate. This

structure is composed of a Juggler PredicatePart, a Juggler operator, and a constant.

The Predicate architecture is based on Juggler’s PredicatePart. This class is

composed of a stream name, column name, and column index. The AttributePred-

112

icate is composed of only one PredicatePart since it compares to a constant, not

another stream’s value. Juggler Predicate representation for join or window predi-

cates are composed of two PredicateParts. Both AttributePredicates and Predicates

can be contained by several queries, and this is maintained in the predicate’s list of

queryIDs.

IPredicate is an interface which AttrPredicate and Predicate classes inherit. It

requires the vital method getBit() be implemented. This method returns the pred-

icate’s BitPosition in the JugglerPBS and QED structures. This information links

the predicate to Juggler’s filtering structures.

A.5.1 Attribute Predicate

PURPOSE: Attribute predicates are a representation of the attribute predicates

registered in the operator. It also allows comparisons of similar predicates after

normalization.

Attribute predicates are defined in the config file in the format: stream.column

operator value. While parsing, the stream and column are stored in the AttributePred-

icate’s PredicatePart structure. Juggler’s operator structure is defined in a later

section. The value of the attribute predicate is stored in an AttributePredicatePart

structure. The predicate’s constant value is stored as a KeyInterface. This interface

is specific to Juggler and it allows for many types of values. Currently, the type

of values that have been tested and used is KeyDouble. It is a representation of a

double number, but there is room for future enhancements to allow for more types

of values and to compare different types interchangeably.

The operator is designed for limited streams and multiple queries with overlap-

ping predicates. The predicate is listed once. To maintain the queries that contain

a predicate, each predicate structure contains an array of queryIDs.

113

A.5.2 Join and Window Predicates

PURPOSE: Join and window predicates represent the join and window predicates

registered in the operator. It also compares and orders similar predicates.

Join and Window predicates are defined in the config file in the same format:

stream1.column1 operator stream2.column2. Both join and window predicates are

represented by the Predicate structure. Since these two types of predicates contain

two streams and two columns, the Predicate structure contains two PredicateParts.

The operator is stored as a KeyInterface, which is similar to AttributePredicate’s

operator described above.

A.6 Predicate List

PURPOSE: Predicate Lists allow grouping of similar predicates and are also respon-

sible for finding the most covering predicate for a tuple.

The collection of similar predicates are defined by the abstract class OrderList,

Figure A.5. This class implements common methods for all predicate types. It con-

tains a LinkedList of the predicates, the common operator among the predicates, the

list index, and the predicate streams. The OrderList only contains one stream and

column. The JWPredOrderList extends this class to also include another stream

and column to accommodate the difference between attribute and join/window pred-

icates. All lists require that all predicates it contains share streams, columns and

operator. A predicate list is used to find the most covering predicate using a binary

search, implemented by findMostCovering().

114

A.6.1 Attribute Predicate List

PURPOSE: The attribute predicate list orders attribute predicates in order of most

to least covering.

AttrPredOrderList lists the attribute predicates in an ordered manner. This

particular list contains only one stream and column, as defined in the abstract class,

OrderList. The method, findMostCovering(), compares a tuple’s column value, as

indicated in the predicate, to a constant. This algorithm is dependent upon the

predicate list’s operator. For example, if the operator is =, the algorithm stops

when the tuple’s value is equal to the predicate’s constant value. If the operator is

>, the binary search on the list does not stop until the largest satisfying constant

value is found.

The list’s index indicates its position within the collection of attribute predi-

cate lists. Using the list index and the predicate index in the list, the predicate’s

BitPosition correlates the BitSet in the Predicate BitSet Structure to the predicate.

A.7 Join/Window Predicate List

PURPOSE: Join and window predicate lists order join and window predicates in

most to least covering. During tuple evaluation, the list is used to find the tuple’s

most covering predicates.

JWPredOrderList is an ordered list of join/window predicates. Join and Window

predicate lists contain two common streams, two common columns, and a common

operator. JWPredOrderList also extends OrderList. It implements findMostCov-

ering(), but it differs in implementation from AttrPredOrderList. When an input

tuple is processed over a join or window predicate list, the tuple’s value is used to

retrieve tuples from the join or window exploitation structure. If a candidate joined

115

tuple is processed over a join or window predicate list, the value of one stream and

the value of the second stream are extracted from the joined tuple to determine if

the predicate has been satisfied.

A.8 Predicate Lists

PURPOSE: Predicate Lists order predicates in most to least covering. Each list

also contains a list index, which is used to correlate predicates to its position in the

Predicate BitSet.

Predicate Lists play an important role in Juggler’s algorithm. Finding the most

covering predicate for a tuple is easier when using lists of ordered predicates. While

the predicates are parsed and registered, the predicate lists are created. When a

predicate is registered, the lists of predicates are probed to find a match. If a match

is not found, a new predicate list is created. There are some differences in finding a

matching predicate list between join/window and attribute. These differences will

be described further in detail.

Attribute predicates are grouped in lists by AttrPredOrderListS and join/window

predicates are grouped in lists by PredOrderListS. OrderListS is an abstract class

which implements some of the common methods among the predicate lists. For

example, getBitPosition() returns the predicate in the corresponding BitPostion

parameter which describes the list index and position within the list. AttrPre-

dOrderListS and PredOrderListS both implement the method findMostCovering(),

which differs in its implementation between predicate types.

116

A.8.1 Attribute Predicate Lists

PURPOSE: Attribute Predicate Lists contain predicate lists of attribute predicates.

It is used by the attribute predicate manager and aids in finding a tuple’s most

covering predicate.

AttrPredOrderListS extends OrderListS and implements methods specific for

attribute predicates. For example, findMostCovering() for attribute predicates lists

is different from both join and window’s method, but due to the difference in the

predicate structures, have similar logic in their findMostCovering() method. If an

input tuple is processed, the predicate lists, if relevant to the tuple, are processed

to find the most covering predicate in each. If an intermediate tuple is processed,

only the predicates that are indicated as relevant by its RelPBS are processed.

A.8.2 Join/Window Predicate Lists

PURPOSE: Join and window predicate lists order join and window predicates re-

spectively. It is used to find the tuple’s most covering predicates.

PredOrderListS contains a collection of join or window predicate lists. Pre-

dOrderListS is a collection of only join predicate lists, or JWPredOrderLists. Pre-

dOrderListS are similar to AttrPredOrderListS but differ in implementation of the

method findMostCovering(). This method traverses through each predicate list to

find the most covering predicate.

A.8.3 BitPosition

PURPOSE: The BitPosition structure aids in correlating the predicates in the pred-

icate lists to the PredicateBitSet structures.

BitPosition contains the predicate list’s index and the index of the predicate in

117

that list. These two coordinates indicate the predicate’s bit position in the Predi-

cateBitSet structure, JugglerPBS, RelPBS, and query QED. All predicate types use

this structure since all predicate type managers contain predicate lists.

A.9 BitSet Collection

PURPOSE: This is an array of BitSets, representing predicates in a Predicate List.

Predicates are grouped into lists that have similar streams, columns, and oper-

ators. Predicate Lists are contained by predicate types. Each query is represented

by the group of all three predicate types and their predicate lists.

Each predicate in the predicate list is represented by a bit in a BitSet. All

predicates in a predicate list are represented by an array of BitSets, Figure A.6.

Each predicate type has a collection of all its predicate lists. The collection of all

three predicate types are used to represent a query or a tuple’s filtering predicate

structures, JugglerPBS, SatPBS and RelPBS.

A.9.1 General Predicate BitSet

PURPOSE: General Predicate BitSet represents Predicate Lists as collection of

BitSets.

This structure represents predicate lists as an array of BitSets. It also contains

the name of the predicate type that the list pertains to. Methods that compare

if BitSets are supersets of each other are used to process the tuple’s relevancy to

queries. Another method, setMostCoveringBits(), sets the index returned from the

predicate list’s findMostCovering(), and all other indexes that have also been cur-

rently satisfied.

118

A.9.2 Predicate BitSet

PURPOSE: Predicate BitSet represents Predicate Lists of a predicate type as bits.

PredicateBitSet extends GeneralPredicateBitSet. This represents one predicate

type for a query or for a tuple. This class implements IPredicate, which requires the

implementation of methods such as isSuperSet(). This methods is used to evaluate

a tuple’s relevancy to a query’s QED. This is vital to the Juggler’s join algorithm.

A.9.3 ExtGeneralType BitSet

PURPOSE: ExtGeneralType BitSet represents tuples for one predicate type.

The ExtGeneralTypeBitSet is composed of two GeneralPredicateBitSet for a

predicate type. One of these GeneralPredicateBitSets represents the relevant pred-

icates in a list while the other represents the satisfied predicates. Therefore, to rep-

resent each predicate type, three ExtGeneralTypeBitSet are needed, one for each

predicate type.

A.9.4 ExtPredicate BitSet

PURPOSE: ExtPredicate BitSet represents tuples JugglerPBS for all predicate

types.

This represents all of the predicate types in the Juggler operator. It contains

an array of ExtGeneralTypeBitSets. Since we have defined only three predicate

types, there will be three ExtGeneralTypeBitSets. This represents a query consisting

of all its predicate types, each of the predicate type’s lists, and the predicates in

each list. It is also used to represent a tuple’s filtering scorecard. JugglerPBS,

an ExtGeneralTypeBitSet, is composed of RelPBS and SatPBS. This is a crucial

structure to Juggler’s join algorithm processing to validate a tuple’s relevancy to

119

queries.

A.10 Juggler Predicate BitSet Structure

PURPOSE: JugglerPBS is used by tuples to maintain its predicate evaluation his-

tory.

JugglerPBS, Juggler Predicate BitSet Structure, is a filtering structure for every

tuple. As a tuple enters into a Juggler operator, JugglerPBS is attached to the input

tuple. JugglerPBS is composed of RelPBS (Relevant Predicate BitSet Structure)

and SatPBS (Satisfied Predicate BitSet Structure). Both of these structures are

logical structures that aid in calculating the tuple’s relevant predicates and the

tuple’s candidate queries.

A.10.1 Relevant Predicate BitSet Structure

PURPOSE: RelPBS identifies unnecessary predicates that do not need to be evalu-

ated.

RelPBS is the logical structure of ExtGeneralTypeBitSet’s ExtPredicateBitSet.

This contains relevant GeneralPredicateBitSets for all three predicate types. It is

only a way to group the predicate type’s relevant BitSet collection, GeneralPred-

icateBitSets. During tuple processing, RelPBS indicates which predicates need to

be evaluated for the tuple reducing the number of comparisons. It is also used to

quickly assess if a tuple will satisfy a query registered in the operator with simple

BitSet comparisons.

A.10.2 Satisfied Predicate BitSet Structure

PURPOSE: SatPBS maintains a tuple’s evaluated predicates.

120

SatPBS, Satisfied Predicate BitSet, is also a logical structure for all three pred-

icate types, similar to RelPBS. This structure represents the predicates that the

tuple has satisfied. Comparing the tuple’s SatPBS, RelPBS and QED, a tuple’s

candidate query and relevant predicates are quickly identified. BitSet manipulation

provides a quick and easy mechanism of filtering intermediate tuples early in the

join algorithm, thereby reducing the number of intermediate joined tuples in the

operator.

A.11 Query Encoding Dependency

PURPOSE: QED represents queries and its bit representation of its Predicate Lists.

QED, Query Encoding Dependency, is a structure that aids in filtering candidate

tuples in the join process. A QED is represented by a ExtPredicateBitSet which

is a collection of predicate lists for all three predicate types. The satisfied BitSet

representation of ExtPredicateBitSet is not used. This structure only represents all

the predicates that the query requires. Only one of the GeneralPredicateBitSet is

used in this structure. Every query registered in a Juggler operator has a QED

associated.

A.11.1 Juggler Operator’s QEDs

PURPOSE: QED is a representation of a registered query.

The Juggler operator has multiple queries registered. The collection of QEDs

for all the registered queries is called JugglerQEDs. The size of the QED array is

determined by the number of queries registered in the operator. This structure is

used to find all candidate queries for a tuple by comparing each of the query’s QED

to the tuple’s JugglerPBS. The query QED is compared to the tuple’s RelPBS. The

121

BitSets that are indicated as relevant to the tuple and required by the query are

then checked to see if they have been satisfied by comparing the tuple’s SatPBS. If

all the common BitSets in RelPBS and the query’s QED are satisfied in the tuple’s

SatPBS, the query is a candidate tuple for this query. To assess if a candidate tuple

has been satisfied by a query, the query’s QED and tuple’s JugglerPBSare compared

again. If the common BitSets include all the BitSets in the query’s QED, and all the

common BitSets have been satisfied in the tuple’s SatPBS, the tuple has satisfied

the query.

A.12 Juggler Tuple

PURPOSE: The JugglerTuple stores tuple values, a JugglerPBS, and a candidate

query list.

JugglerTuple extends XATTuple. When a XATTuple is dequeued from the queue

and enters the Juggler operator, it is cast as a JugglerTuple. This structure adds

some structures to XATTuple that is specific for the Juggler operator’s algorithm.

Every JugglerTuple has a JugglerPBS, or ExtPredicateBitset, which maintains the

relevant and satisfied predicates for the input or candidate joined tuple. The Jug-

glerTuple also maintains a list of candidate queries. These queries are updated after

a predicate type has been evaluated. Tuple’s XATTimestamp’s MaxTimeStamp is

used to evaluate window predicates.

A.12.1 JugglerTupleList

PURPOSE: JugglerTupleList is a collection of Juggler Tuples before joining.

JugglerTupleList is a linked list of JugglerTuples. This list holds the each tuple

in the intermediate joined tuple until the tuple is finally joined before it is output.

122

It also enables the tuples to maintain their own JugglerPBS. For instance after an

input tuple has been processed, it is stored in the operator’s exploitation structures.

The input tuple’s attribute predicates that have been evaluated are stored along with

the tuple. This avoids repeated predicate evaluation when this tuple is joined with

other new input tuples. When tuples are retrieved from the exploitation structures,

the retrieved tuples will already have their satisfied attribute predicates set. The

retrieved tuple’s JugglerPBS and the input tuple’s JugglerPBS can be combined

before joining and comparing the joined tuple’s relevancy to queries in the operator.

JugglerTupleListIterator extends the Iterator and allows for easy traversal over

the collection of JugglerTuples. This is a convenient class, which only simplifies

implementation.

A.12.2 JugglerWindowTupleList

PURPOSE: JugglerWindowTupleLists are a collection of JugglerTupleLists used by

WES and JES.

A collection of JugglerTupleLists is a JugglerWindowTupleList. This structure

is used while an input tuple is being processed, resulting in multiple candidate

joined tuples or JugglerTupleLists. This structure avoids adding duplicate Juggler-

TupleLists in the JugglerWindowTupleList. During join or window predicate type

processing, each relevant predicate is used to retrieve candidate tuples to join. If

during this process duplicate tuples are returned, they are not added to this struc-

ture.

Also, WES uses this structure to store tuples in its buckets. Each bucket is

created for each of its input queues. This structure allows the ability to store

JugglerTupleLists.

JugglerWindowTupleListIterator extends Iterator and allows for easy traversal

123

over the collection of JugglerTupleLists. This is another convenient class which only

simplifies implementation.

A.13 Juggler Comparative Keys

PURPOSE: Juggler’s comparative keys are used in comparing tuple values. It is

also extendable to allow for future extensions.

KeyInterface defines the methods required for implementing all its inheriting

classes: KeyString, KeyLong, KeyInt, and KeyDouble. The structure allows for

future implementation of comparing one type to another, for example, KeyString

to KeyLong. It can allow for values to be compared, such as urls, request objects,

or server addresses. The Juggler operator currently evaluates predicates using Key-

Double. Every tuple value involved in a predicate is cast as a KeyDouble during

evaluation.

A.14 Juggler Comparative Operators

PURPOSE: Juggler’s comparative operators are used in comparing similar predi-

cates and tuple evaluation.

The operator interface defines the methods required to be implemented by all

Juggler comparative operators: EqualToOperator, LessThanEqualToOp, LessThanOp,

GreaterThanEqualToOp, and GreaterThanOp. When the predicates are parsed, the

predicate operators are parsed into an Operator type. Each of the Operator’s in-

herited classes must implement evaluate(). These methods return true if the value

satisfies the Operator. These classes are used throughout predicate evaluation. All

classes have been tested and are used in the Juggler Operator.

124

Figure A.1: Juggler Operator Interface

125

Figure A.2: Predicate Type Managers

126

Figure A.3: Predicate Exploitation Structures

127

Figure A.4: Predicates

128

Figure A.5: Predicate List Structures

129

Figure A.6: Predicate BitSet Structures

130

Figure A.7: Query Structures

131

Figure A.8: Juggler Tuple Structures

132

Figure A.9: Juggler Comparative Keys

133

Figure A.10: Juggler Comparative Operators

134

