

This work is sponsored by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract FA8721-05-C-
0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the

United States Government. Approved for public release; distribution is unlimited.

NavPro: Network Analysis and Visualization

using Provenance Data

A Major Qualifying Project

submitted to the Faculty of

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

in

Computer Science

by

Christopher Botaish

Michael Calder

Date: October 16th, 2014

Sponsoring Organization:

MIT Lincoln Laboratory

Project Advisors:

Professor George Heineman, Advisor

This report represents work of WPI undergraduate students submitted to the faculty as

evidence of a degree requirement. WPI routinely publishes these reports on its web site

without editorial or peer review. For more information about the projects program at

WPI, see http://www.wpi.edu/Academics/Projects.

 1

Abstract
 The goal of this project is to develop a tool and framework that will allow

forensic analysts to leverage provenance data when investigating cyber crimes. The

solution supports data collected by an existing in-development provenance-aware

operating system, and is extensible so that other sources can be used in the future. The

product processes live-recorded data, analyzes it internally, and presents a visualization

of the data that users can navigate through in an organized way.

 2

Acknowledgements
 Without the help of certain individuals and organizations, the completion of this

project would not have been possible.

 First, we would like to thank Worcester Polytechnic Institute and Professor Ted

Clancy for presenting us with the opportunity and arranging transportation to Lexington

every day. Additionally, we would like to thank Professor George Heineman for advising

our project and challenging us to make the project as successful as it was in the end.

We would also like to thank Lincoln Laboratory for providing us with the

resources to complete the project in the time we were given, as well as giving us valuable

experience working in the cyber security industry. Thank you Jeff Diewald for working

so closely with us on the project and providing us with guidance in all of the challenges

we faced. Thank you Tom Moyer for helping us solve some of the most difficult issues

the project presented and for always being enthusiastic about the work. Finally, thank you

Nabil Schear for all of your support and for being an encouraging resource throughout the

duration of the project.

 3

Executive Summary
 As the importance of cyber security increases in organizations with sensitive data,

network administrators and forensic analysts need stronger tools to keep up with cyber

criminals.

Data provenance is the history of a system’s activity, commonly collected as a

series of low-level actions and stored locally on the machine. While this data is large and

does not aid analysts in its raw form, it has the potential to be processed and presented in

a way that allows an observer to derive meaning.

 The goal of this project was to produce a tool and framework for organizing,

interpreting, and visualizing provenance data. This involved allowing a user to navigate

through the data in order to understand a cyber attack without knowing all the details of

the incident. There was already a provenance-aware operating system in development

that can collect these low-level actions, but there was no central mechanism to store the

data and process it. This problem led to the creation of the Network Analysis and

Visualization using Provenance Data (NavPro) framework.

 NavPro consists of a classification server and a web application servlet. The

classification server receives data from all provenance-aware machines on a network,

processes the raw data, and normalizes it to a common format so that it can be organized

in a database. The web application servlet queries the database so that it can produce

visualizations of the data and allow a user to navigate through those visualizations to

establish meaning in the events.

 The NavPro framework is extensible in that it allows plugins to be written for

different data sources and operating systems. It also provides APIs that abstract database-

specific functionality so that different databases can be used to store provenance data in

the future. The final product is cross-platform and can be deployed in an automated way

on Mac OS X and Linux operating systems.

 4

Table of Contents
1	
 Introduction ... 9	

1.1	
 Data Provenance .. 9	

1.2	
 Project Scope ... 10	

2	
 Background ... 11	

2.1	
 Information Security .. 11	

2.2	
 Security in Linux .. 11	

2.2.1	
 Classic Operating System Access Rights ... 12	

2.2.2	
 SELinux .. 12	

2.3	
 Cyber Threat Sources ... 13	

2.4	
 Provenance ... 14	

2.4.1	
 Collection .. 15	

2.4.2	
 Encoding ... 15	

2.4.3	
 Storage .. 16	

2.4.4	
 Analytics/Visualization ... 16	

2.4.5	
 Security ... 17	

2.4.6	
 Linux Provenance Modules (LPM) .. 17	

2.5	
 Visualization .. 17	

2.6	
 Analytics .. 19	

2.7	
 Technologies .. 20	

3	
 Methods... 23	

3.1	
 Project Preparation ... 23	

3.2	
 Classification .. 25	

3.2.1	
 Retrieving Provenance Information .. 26	

3.2.2	
 Parsing Raw Data .. 27	

3.2.3	
 Normalizing Actions ... 27	

3.3	
 Database ... 29	

3.3.1	
 Technology Comparisons ... 29	

3.3.2	
 Database Schema .. 30	

3.3.3	
 Java Database Interface Architecture .. 32	

3.4	
 Interpretation .. 33	

 5

3.4.1	
 Server-Side Query API ... 33	

3.4.2	
 Client-Side Web Application .. 34	

4	
 Results ... 36	

4.1	
 NavPro Product .. 36	

4.1.1	
 Data Analysis .. 36	

4.1.2	
 Visualization ... 38	

4.1.3	
 User Features .. 41	

4.2	
 Additional Outcomes ... 45	

4.2.1	
 Scenarios ... 45	

4.3	
 Evaluation .. 46	

4.3.1	
 Requirements .. 46	

4.3.2	
 User Study ... 47	

5	
 Discussion ... 49	

5.1	
 NavPro Future Development ... 49	

5.1.1	
 New Visualizations ... 49	

5.1.2	
 Advanced Filtering .. 50	

5.1.3	
 Added Security .. 50	

5.2	
 Addressing LPM Limitations ... 51	

5.3	
 NavPro Deployment Potential ... 52	

6	
 References ... 53	

7	
 Appendix A – Parsers and Normalizers .. 55	

7.1	
 Parser API .. 55	

7.2	
 Normalizer API .. 55	

7.3	
 Parsing LPM Binary Data .. 55	

7.4	
 Normalizing Parsed LPM Actions ... 57	

8	
 Appendix B – Database APIs ... 58	

8.1	
 Knowledge Cache API ... 58	

8.2	
 User Database API ... 58	

8.3	
 Events Database API .. 59	

9	
 Appendix C - Visualizer Query API ... 61	

9.1	
 GET Queries .. 61	

 6

9.2	
 POST Queries .. 64	

10	
 Appendix D – NavPro Extension Developer’s Guide .. 67	

10.1	
 Sending Data To NavPro ... 67	

10.2	
 Writing A NavPro Parser ... 67	

10.3	
 Writing A NavPro Normalizer ... 69	

10.4	
 Using A Database Other Than MySQL ... 70	

11	
 Appendix E – NavPro Deployment Guide .. 71	

11.1	
 Deployment Directory Layout ... 71	

11.2	
 Configuring NavPro ... 71	

11.3	
 Deployment on Mac OS X ... 74	

11.4	
 Deployment on Linux .. 74	

11.5	
 Deployment on Windows .. 75	

11.6	
 Creating Future Deployments .. 75	

 7

Table of Figures

Figure 1: Data provenance relationships as defined by OPM [3] 15	

Figure 2: Internet map visualization [12] .. 19	

Figure 3: Data storage hierarchy for BigTable ... 21	

Figure 4: D3.js visualization examples ... 22	

Figure 5: NavPro Architecture .. 24	

Figure 6: Project Timeline .. 25	

Figure 7: AJAX Request Architecture .. 35	

Figure 8: Initial Tabular Visualization .. 38	

Figure 9: Chart Based Visualization ... 39	

Figure 10: Filter User Interface ... 40	

Figure 11: Filters and Charts ... 40	

Figure 12: Chart Visualization with Table Visualization ... 41	

Figure 13: Viewing Table Cell Details ... 41	

Figure 14: Profile Selection .. 42	

Figure 15: Profile Dropdown .. 42	

Figure 16: Adding a Bookmark .. 43	

Figure 17: Accessing and Removing Bookmarks ... 43	

Figure 18: Modifying Alert Trigger Settings .. 44	

Figure 19: Alert Notifications Dropdown ... 44	

 8

List of Tables
Table 1: Classic Linux Permissions [27][28] .. 12	

Table 2: Knowledge Cache Schema ... 30	

Table 3: Users Table Schema ... 31	

Table 4: Bookmarks Table Schema .. 31	

Table 5: Alerts Table Schema ... 31	

Table 6: Notifications Table Schema .. 32	

Table 7: Event Table Schema ... 32	

Table 8: Event Types Table Schema .. 32	

 9

1 Introduction
In the modern world, organizations have become dependent on computing and

networking technologies. With operations and intellectual property residing exclusively

in the digital world, cyber security has become vital. Increasingly, motivated attackers

have sought to access internal networks to steal confidential information and compromise

operational integrity.

In this landscape, companies must use strong security measures and vigilance to

prevent cyber attacks. Because cyber attack methods constantly evolve, not all threats can

be prevented. In these cases, the ability to perform quick and effective forensic analysis

on a system can provide crucial details about the mission impact of an attack and help

orchestrate an appropriate response.

1.1 Data Provenance
Data provenance provides one potential forensic outlet. Provenance is the “history

of an object, either physical or digital” [1]. Many fields, such as fine art, use provenance

to track the history of an artifact over time. In computing, data provenance helps answer

questions about the integrity and confidentiality of data. These answers are an important

step in the forensics process.

A system that supports data provenance can be broken into five components [1]:

• Collection – The method through which the data provenance is gathered.

• Encoding – The format with which the data provenance is represented.

• Storage – The method and form of storage used to persist the data provenance.

• Analytics/Visualization – The tools used by a human operator to understand data

provenance.

• Security – The measures taken to ensure the integrity, confidentiality, and

availability of data provenance.

Many of these components have been extensively studied in the research literature

and solutions have been proposed. Linux Provenance Modules (LPM) is one such

solution that focuses on these aspects of data provenance for the Linux operating system

[5]. However, it is difficult for humans to make sense of this data without effective

 10

analytic and visualization solutions. Provenance data can be overwhelmingly large and

difficult for a human to understand.

1.2 Project Scope

The Network Analysis and Visualization using Provenance Data (NavPro)

framework will help analysts explore and investigate cyber attacks by satisfying the

following base requirements:

• NavPro will be accessible through a web browser.

• NavPro will allow a user to input Linux Provenance Modules (LPM) HiFi data.

• NavPro will allow a user to view activity performed on (or by) an entity (user,

process, or file).

• NavPro will simplify provenance data from system calls to readable actions.

• NavPro will allow a user to search for activity based on different types of entities.

• NavPro will be deployable in an automated way.

If time and resources allow, this project will additionally fulfill the following

requirements:

• NavPro will have the capability to accept provenance data from different data

sources, operating systems, etc. through an extensible plugin system.

• NavPro will allow a user to monitor a network of computers from the web

application.

• NavPro will allow a user to view activity performed by a specific host in a

network.

• NavPro will allow backward and forward navigation through visualizations.

• NavPro will allow a user to export the raw data from a table or chart visualization

based on the current filter set.

• NavPro will allow a user to set alerts for entities (hosts, users, processes, files)

and be alerted when an event occurs involving that entity.

 11

2 Background

2.1 Information Security
 Information Security (InfoSec) is the practice of protecting information from

unauthorized access or modification [21]. A common way to describe information

security is that it seeks to assure three principles, known as CIA principles [22]:

• Confidentiality – Information is only accessible by those who are authorized to

access it. For example, classified information is only accessible to those with the

proper clearances and need-to-know.

• Integrity – Information is only modifiable by those who are authorized to modify

it. For example, an attacker cannot add a new account to the /etc/passwd file.

• Availability – Information is always accessible to those who are authorized to

access it. For example, an attacker cannot reduce the availability of a service

through a Denial of Service (DoS) attack.

The tenets of information security are at the core of cyber security, with many

solutions addressing a subset of the CIA assurances. Traditional operating system

permissions systems ensure the confidentiality and integrity of data by limiting read,

write, and execute privileges. Services such as CloudFlare attempt to thwart DoS attacks

and ensure availability [25].

While these solutions work at the prevention level, data provenance allows

analysts to understand which principles were violated after a cyber attack has occurred. A

system administrator can use data provenance to determine the information an attacker

accessed, and show where data has been leaked and confidentiality has been violated.

Likewise, by seeing what information an attacker modified, data provenance can show

where data has been corrupted and integrity has been violated.

2.2 Security in Linux
 There are two main components to security in the Linux operating system: classic

Linux access rights and Security-Enhanced Linux (SELinux) policies [23].

 12

2.2.1 Classic Operating System Access Rights

The classic operating systems concept of access rights refer to the read-write-

execute permissions system used to define what a user or group can do with a file. Every

file and directory contains a set of permissions that can be expressed with three octal

digits. The first digit is for the owner of the file, the second is for the group the file is

assigned to, and the third is for all other users [28]. Each octal digit is a three-bit value

between 0 and 7, where the rightmost bit indicates execute permissions, the middle bit

indicates write permissions, and the leftmost bit indicates read permissions. For example,

the permissions value 163 translates to -­‐-­‐xrw-­‐-­‐wx, or that the owner can only execute,

the group can read and write, and other users can write and execute. The mappings

between each number and the corresponding permissions can be seen in Table 1.

Number Permission rwx bits

7 read, write, and execute 111

6 read and write 110

5 read and execute 101

4 read only 100

3 write and execute 011

2 write only 010

1 execute only 001

0 none 000

Table 1: Classic Linux Permissions [27][28]

2.2.2 SELinux

SELinux is a set of Linux kernel patches originally developed by the National

Security Agency and merged into the mainline Linux kernel in August 2003. SELinux

provides Linux support for access control security policies, including the Department of

Defense’s mandatory access controls (MAC) [23]. MAC controls what a process or

thread can do on a system by limiting access to targets such as files, directories, ports,

memory, or devices. In essence, MAC provides sandboxing for processes, containing the

 13

damage that can be caused in an exploit by forbidding the process from accessing targets

outside of itself and its resources.

SELinux implements its access control security policies at the lowest system call

level. When basic functions such as link, inode_alloc, or inode_dealloc, are called,

SELinux checks its policies to see if the call is allowed. A subset of where SELinux

performs its policy checks can be seen in the Hi-Fi system [7].

Provenance data collection mechanisms can leverage the location where SELinux

performs its policy checks to collect its provenance data. By collecting data after

SELinux performs its checks, these mechanisms can ensure that the system calls were

actually executed and not stopped due to policy violations. This allows the capture of all

major events that have actually occurred within a system.

2.3 Cyber Threat Sources
Cyber threats to an organization can take many different forms and come from

numerous sources. Currently, the greatest source of cyber threats is external intruders, or

hackers, that seek to gain access to a system [30]. The goals and motivations of external

intruders can vary greatly, but in general external intruders are attempting to violate

information security principles [21]. These intruders often gain access to a network

through unpatched and exploitable software [29]. Once on the network, these intruders

work to secure a reliable access point. External intruders can often be detected through

their entry point to the network, but the impact of what the intruder has done on the

system is not easily understood.

Malware attacks represent one way that external intruders seek to gain access to

an organization’s networks. Malware has evolved in recent years from being a way to

satisfy curiosity into a source of “illicit financial gain” [29]. This shift has led to

increased malware production – in 2010 alone, over 280 million new malware variants

were detected by Symantec [29].

A key way that malware gains access to a system is through tactics that target

internal individuals, such as spear phishing. Spear phishing is the practice of creating

targeted, personal emails that aim to trick a target into downloading and running

malicious code [24]. Spear phishing represents a major threat and source of weakness of

organizational networks [29]. The symptoms of malware are often easily identified

 14

through the detection of system file modification. Once detected, however, it can be

difficult to deduce where the malware entered the system, information that is vital to

crafting an effective response and ensuring the security of the system. As malware

becomes more profitable, and therefore more pervasive, it will continue to be a growing

problem that organizations must confront.

 The second largest source of cyber threats is insider threats, which can come in

the form of current or former employees and contractors of an organization [30]. The

types of insider threats vary: an insider threat can be malicious, such as a user trying to

steal information from an organization, or benign, such as a user that unknowingly uses

an infected USB drive on organizational equipment. In both of these scenarios, an insider

threat is an individual who, whether maliciously or not, violates information security

policies put in place by the organization.

2.4 Provenance
Provenance, a term commonly associated with fine art, is the history of an artifact.

Many pieces of art have records to indicate their chronology of ownership, allowing

collectors to confirm their authenticity.

Data provenance takes this same concept and applies it to computational systems

and artifacts. On a provenance-aware machine, records of interactions between users,

processes, sockets, and files are stored so that an observer can understand what actions

left the computer in its current state. Figure 1 visualizes the relationships between these

entities.

 15

Figure 1: Data provenance relationships as defined by OPM [3]

The responsibilities of systems that implement computer provenance can be

broken down into five steps: [1]

2.4.1 Collection

During this step, a system is responsible for collecting the raw information that

will form the basis of the data provenance.

There are many research projects that study different mechanisms for collection

of provenance. One example is PASS, which involves modifying a file system to record

activity [6]. Also, modifying the Linux kernel (like Hi-Fi does) can allow low-level

system calls to be tracked [7]. Databases can also be provenance-aware; Trio is an

example [8]. The main concern with collection regards scalability, and each of these

solutions has their own unique methods to minimize the amount of data collected.

2.4.2 Encoding

Once raw information has been captured, the provenance system must properly

encode the information for processing. Decisions need to be made about what metadata

comes along with each event that is encoded, such as whether a timestamp is included or

if host/user attributes should be noted. Each collection system typically proposes its own

encoding based on what information is collected.

 16

The only provenance encoding standard still being updated is W3C PROV, while

PASS provides its own specification and OPM has been used but is no longer active (last

updated in early 2013) [2][3].

2.4.3 Storage

On any given machine running a modern operating system, thousands of actions

occur every minute even when the user is not actively working. Because of the vast

amounts of data that is collected, storing this data in an efficient way can be extremely

difficult. While some research has been done to minimize the amount of storage required

for provenance data, any mechanism that involves keeping the data on the machine where

it is collected can create performance and memory overheads [9].

There is no standard way to determine how to store provenance data; many

different options have been attempted. Storing data in an SQL database allows encoded

provenance actions to be sorted into tables based on the type of information they contain.

If the collected data is all in the same format, a NoSQL database could provide more

scalability. To prevent memory issues on the client, data can be sent off to a central

server that stores the database of events in the cloud. All of these methods provide

different tradeoffs that need to be considered.

2.4.4 Analytics/Visualization

An area where very little success has come so far is the analysis and visualization

of provenance data. While possessing the data creates the potential to perform forensic

analysis of malicious computer activity, searching through and interpreting the data

presents a significant challenge.

The reason almost no work has been done in this area is because big data

visualization can be complex when each action alone can represent significant activity.

While visualizations such as heap maps can make the density of action types

understandable for a human operator, navigating through these visualizations to extract

meaningful data can be difficult. Using analysis to simplify the data prior to the

visualization stage may be a path to solving this problem, but such an avenue has not yet

been explored.

 17

2.4.5 Security

The final responsibility of data provenance is that everything must be collected

securely. When it comes to provenance data, a “secure” collection method has been

defined as being tamperproof, simple to verify, and providing complete observation [4].

2.4.6 Linux Provenance Modules (LPM)

Recently, a framework for developing provenance-aware systems was created;

this framework is called Linux Provenance Modules [5]. LPM is able to leverage Linux’s

existing security features to provide strong provenance security guarantees. This can be

accomplished by inserting data-collecting hooks after the existing security hooks

SELinux has in place. This means that as an interpreter of the data, an analyst can be

confident that permission or policy issues did not later block any recorded actions.

One of the current provenance collection implementations built on LPM is a

version of Hi-Fi that outputs the data collected in the kernel to a relay buffer that can be

removed by a process in user space at any given time to encode and store the data. This

data indicates what kernel-level system calls were executed since the relay buffer was last

emptied. Each data message also contains enough information to associate the call with a

user, process, and possibly a file as well.

While there may be other provenance-aware systems that use LPM over the next

few years, the framework is currently a work in progress and research is still being done

to further enhance LPM's abilities.

2.5 Visualization
The field of Computer science visualization can be subdivided into six different

sub-fields [10]:

• Information visualization

• Interaction techniques and architectures

• Modeling techniques

• Multi-resolution methods

• Visualization algorithms and techniques

• Volume visualization

 18

For this project, we will focus on information visualization, where the information

displayed consists of the actions that represent computer activity collected by

provenance-aware systems.

Information visualization takes advantage of the innate ability of humans to see

and understand large amounts of information rapidly. Information visualization focuses

on “the creation of approaches for conveying abstract information in intuitive ways [11].”

Although the observer interprets the data being presented, the visualization

system is only attempting to display the data in a way that can be understood. The

collection mechanism is responsible for obtaining data that can be used to derive

meaning, and the analysis mechanism is responsible for deriving meaning from the

visualization of the data. The visualization’s responsibilities do not stretch beyond the

presentation of the information.

In addition to having data points in a visualization represent actions over a period

of time, information visualizations can also show relationships between data assuming

the collection mechanism provides that data as well. One example of this strategy applied

in visualization is the Internet map visualization in Figure 2. This visualization uses the

length of lines between two nodes to represent the delay between two IP addresses, where

each node represents a single IP address.

 19

Figure 2: Internet map visualization [12]

Another feature that can be utilized in information visualization is interaction. If a

graph or chart allows entities to be selected in such a way that navigation occurs, the user

experience can potentially be enhanced. This technique becomes most practical when the

data being visualized is extremely large. A common result of making visualizations

interactive is that many more types of data presentations occur. In addition to letting an

analyst zoom in on a particular part of the initial display, the way the data is presented

can morph into different visualizations as the user navigates through it.

This concept of a human manipulating a visual representation of data leads into

the subject of visual data analysis. In the overall flow of information the visualization is

the tool used to perform the analysis. The analysis is where meaning in the data is finally

established.

2.6 Analytics
 While analysis is often perceived as a part of or synonymous to visualization, it is

a significantly different aspect of data interpretation. While the two are often performed

together in the process, neither one is a part of the other. Visualization can allow for

analysis, while analytics can drive visualization.

 20

 With regard to provenance data, analysis must occur both before and after data

visualization. After the raw data is collected, processing needs to be done before storage

that cuts down the amount of information that needs to be visualized. Without this step,

the size of the data is too large to produce meaning. Common methods used to perform

this reduction include record matching, deduplication, outlier detection, and column

segmentation [13].

 After visualizations have been generated, analysis of frequency counts and

associations can be used to establish meaning. The main goal of big data analysis is to

establish patterns in small actions that represent larger actions. In the case of provenance

data, this is a result of having the data collection mechanism record all activity on a

system.

2.7 Technologies
 While the collection mechanism for the provenance data is already in place for

this project, many different technologies can be leveraged for encoding, storage,

analytics, and visualization.

 First of all, the current list of cross-platform programming languages that provide

strong object-oriented extensibility is limited. The most popular is Java, which can be run

on any modern operating system because it is run inside the Java Virtual Machine (JVM)

and lacks kernel-specific dependencies by nature [14].

 Because LPM data is collected as binary data, we leverage an existing parser

written in C using the Java Native Interface (JNI) [15]. While JNI has a bad reputation

for causing large development costs to manipulate Java objects in C, passing strings

between the two languages is not difficult and allows encoding and decoding of data to

be performed without having to inspect each byte received in Java code.

 As far as data storage is concerned, there are many options available. A simple

solution that is more practical as an initial data store is MySQL [16]. The open source

relational database allows batch scripts to be used to store data quickly and leverages the

SQL language to provide simple querying. As the data gets larger over time, this may

become an impractical solution.

 A common solution to the storage scalability problem is to leverage a NoSQL

database, one of the most common being Accumulo [17]. This is effectively a key/value

 21

store that is much more scalable than MySQL and can have strong performance with big

data. The scalability is accomplished by leveraging Google’s BigTable, a distributed

storage system published in 2006 [18]. The implementation uses a three-level hierarchy

depicted in Figure 3. More details can be found in [18].

Figure 3: Data storage hierarchy for BigTable

 Once the data is stored and can be queried, visualizations need to be produced.

d3.js, a popular JavaScript library, allows visual elements to be tied to large datasets and

be intuitively manipulated in a web browser [19]. The library is open source and well-

documented. Examples of visualizations created by d3.js can be seen in Figure 4.

 22

Figure 4: D3.js visualization examples

While the visualizations used to display provenance may be less complex in the

final product, it is clear even at a quick glance that D3.js is powerful enough to handle

any data we may present it with.

 Finally, to tie these visualizations together a front-end framework will be needed

to effectively allow the user to navigate the web application. The most common

technology used to accomplish this is called Bootstrap [20]. This framework provides

quick front-end implementation that a project as short on time as this one will need.

 Many of the technologies discussed in this section are the most common and well-

documented frameworks used to accomplish their respective purposes. It is important to

select easily leveraged technologies so that the majority of our short time for this project

is not spent on learning unnecessarily complex tools and languages.

 23

3 Methods
In this section we begin by discussing our initial steps in preparing for the project.

This involves how we defined our requirements, how we decided on measures for

success, and how we designed our initial architecture. We then break down that

architecture into each of its major components and explain the significant choices we

made at each step. Additionally, we discuss how each component contributes to the

usefulness of NavPro from a user/developer point of view.

3.1 Project Preparation
 In our first week at Lincoln Laboratory, our objective was to read through all of

the documentation we could find, including research papers we were given, to learn the

current state of provenance data research and understand the scope of our project. We

found ourselves speaking with experts in big data, visualization, and computer forensics.

This effort helped us define the concrete requirements for the project. We started by

identifying a core set of user stories to capture the essential features of the project [26].

To increase the effectiveness of these user stories, we created a user persona to represent

the actor in the user stories.

 To learn more about how to create a realistic user persona, we worked closely

with Jeff Diewald (Group 58), who had significant experience with the subject. With his

help, we created Carl the Network Administrator. Carl is 35 years old and has a

Bachelor’s degree in Management Information Systems. He has a wife and two kids, and

is familiar with data provenance but is not an expert in the field. His career goal is to be

more successful at his job so that he can provide a bright future for his family.

 Carl knows that he can use data provenance to be more effective at his job and

impress The Boss, but he needs a tool that allows him to intuitively interact with and

understand the data. When his coworkers come to him looking for help investigating a

cyber threat, he is usually looking to view activity involving a specific host, user, process,

or file. Using this persona along with the different kinds of common cyber threats

discussed in the background, we were able to create the lists of requirements for NavPro

that depict its baseline features, reasonable outcomes, and future direction.

 24

 With the user persona in place, we then designed the overall architecture of the

project. We knew the tool had to provide an extensible framework so that any provenance

data source could be used. Additionally, we knew that the user needed to interact with the

tool through a web browser. When thinking about the different responsibilities NavPro

needed to have, we broke it down into three major components: classification, database,

and interpretation.

The data retrieved from provenance-aware systems would be sent to our classifier,

which would use the appropriate parser to extract the system calls and their arguments

from the raw data. Once those system calls were turned into human-readable actions by

the appropriate normalizer; they would be stored in the database so that they could be

queried and visualized for interpretation as seen in Figure 5.

Figure 5: NavPro Architecture

 Finally, we organized a timeline that depicted our plans regarding development

and paper work. We realized early that the interpretation would require the majority of

out development time, so we made sure to allocate the most time for that part of the

product. The work for the paper was also very spread out so that we did not have to end

 25

up rushing to finish it toward the end of our time at Lincoln Laboratory. The full timeline

for our project is shown in Figure 6.

Figure 6: Project Timeline

3.2 Classification
 The classification component of NavPro turns raw provenance data into objects

that can be queried and visualized by the web application. The raw data may be binary

data, strings, serialized data, or any other format future provenance-aware systems may

use. Because we did not know all of the possibilities during the timeframe of the project,

we needed to provide a flexible way to accept data from different sources.

 To do so, we created a parser “plugin pool” that is a directory the classifier

observes at runtime; it automatically loads any new parsers/normalizers that are placed in

the plugin directory both at startup and during execution. This allows the server to always

be running, even when new hosts are being added to a network that collect provenance

data in a different format.

 Similarly, we created a plugin pool for normalizers, which take the system calls

and their arguments (turned into action objects by a parser) and analyze them to create

human-readable user activity. Examples of these activities include creating a file,

 26

changing a file’s permissions, and sending data through a network. The full parser and

normalizer API can be seen in Appendix A – .

 Because the server may receive data from thousands of hosts, it uses

multithreading to retrieve and process data. We also designed the parser and normalizer

interfaces so that they iterate through one action at a time. Originally, we were processing

the data in the chunk sizes they were sent in, but we quickly noticed that this could cause

memory concerns.

 To prove that our design is effective, we created our own normalizer and parser

for LPM data. The only provenance-aware system we were provided with by Lincoln

Laboratory was a virtual machine running LPM, so we needed to collect its data and

write a parser and normalizer specific to its data [5].

3.2.1 Retrieving Provenance Information

 The LPM kernel allows provenance data to be collected by storing it in a “relay

buffer” that a daemon can access at any time. For our server to retrieve this data, we

needed to develop a daemon that would run on this Linux machine and forward all of the

provenance data to our server. We create a daemon, called “sprovd”, to poll this relay

buffer every five seconds, create a connection with the NavPro server, send all the data it

read, and close the connection. It was necessary to poll so frequently because the kernel

would crash and stop collecting data if the buffer overflowed. With default settings, the

buffer had a capacity of 64MB.

 Because there may be many different data sources that require unique parsers and

normalizer to be classified, we needed to make sure the data source identified itself so

that the right plugins could be selected. To solve this problem, we designed a protocol

that all NavPro input sources must conform to. The messages the NavPro server expects

begin with a string identifier ending with a null character, such as “LPM HiFi”. This is

followed by a string hostname ending with a null character. Finally, the raw provenance

data is sent.

 All parsers and normalizers are required to implement a boolean method

canProcess(String	
 s) that takes in the string identifier and tells the classifier whether

it knows how to process the given input source. The classifier uses the hostname to

 27

guarantee to that all provenance events are received in chronological order, allowing

multi-system-call actions to be derived.

3.2.2 Parsing Raw Data

 For LPM, the raw data is binary C structs (defined in Appendix A –) that cannot

easily be manipulated in Java. We were provided with a C program pcat that translates

these C structures into strings. To reduce development costs, we leveraged pcat instead

of writing reinventing the wheel. With that said, we did not want to add any processing

overhead to the client machines collecting the provenance data, so we decided to use this

program code in our LPM parser plugin.

To effectively leverage this code, we needed to use the Java Native Interface

(JNI). This is accomplished by receiving the input stream from the classifier, loading in a

library (contained in the JAR) that has the C code, calling the methods through JNI and

storing the string response.

 Once the input source for the parser is successfully set, a classifier thread begins

asking it for one system call at a time from the raw data. The LPM parser iterates over the

string (throwing away the parts it has processed) and sends an object representation of a

system call back to the classifier so that it can be normalized. Once the parser runs out of

actions it will notify the classifier so that it can start the next thread to process more

events from the host sending LPM provenance data.

3.2.3 Normalizing Actions

 One of the biggest challenges of this project was converting operating system API

calls into human-readable actions. There was very little documentation explaining what

the data meant at a low level, and none explaining what it meant at a high level. Once we

were able to connect our server to our VM running the LPM kernel, we started recording

what system calls were invoked (with what parameters) when we stepped through simple

actions like creating and deleting files. When looking through the thousands of calls per

second we were receiving, it was nearly impossible to tell which calls were caused by our

actions.

 An example of one of these system calls is link. This function makes a hard link

to a specified inode in the file system. The arguments only contain the inode, the inode of

 28

the containing folder, and the new name for the hard link. Alone, these parameters tell us

nothing that a network administrator would care about. Inode numbers are reused

constantly and knowing a filename does not give enough context to derive a full path for

the file involved. We do not know what user created this hard link, what file was

executed to do so, or whether this is the first hard link to the inode.

 We ended up creating a “knowledge cache”, which is effectively a persistent hash

map that normalizers can use to store what they currently know about a given host. This

allows us to associate user IDs with usernames, usernames with processes, inodes with

file paths, and much more metadata we can use to derive meaning from these actions that

alone contain very little information.

 As we were slowly able to combine our use of the knowledge cache with our

understanding of what each system call did, we defined high-level user actions to insert

into the database so that they can later be searched and visualized. These human-readable

actions include (see Appendix A – for the resulting derivations of each of these actions):

• create a file

• delete a file

• access a file

o read from a file

o write to a file

o execute a file

• change file permissions

• send data on a socket

• receive data on a socket

 Every one of these actions has a host, user, process, and file associated with it that

are understandable for someone who is not familiar with provenance data. The host is the

computer hostname, the user is the username, the process is the file executed that caused

the action, and the file contains the full path to its hard links at the time. Every event also

has a timestamp to keep its time context in the database. Having objects structured this

way in the database allows them to be easily queried based on what the network

administrator knows entering his forensic analysis process.

 29

3.3 Database
Once the provenance data is classified into discrete events, it needs to be stored in a

queryable form for later analysis. This is accomplished by leveraging a database

management system alongside a set of our own Java interfaces that work with the

database. By storing the events in a database, we can craft performant queries that allow

us to quickly present the data in a visualization that empowers the user to derive meaning

from the provenance. This section will elaborate on the reasoning behind our decisions

regarding provenance events storage, as well as an overview of the architecture that

powers the querying structure of NavPro.

3.3.1 Technology Comparisons

The database technology that was chosen to power NavPro was MySQL, a

popular open source relational database that implements the Standard Querying Language

(SQL) [16]. MySQL has the benefit of being well documented and supported through a

vibrant development community. It also has the capability to scale while maintaining

high performance. Above all, MySQL is a solution that we are familiar and comfortable

with. In such a short development timeframe, it is important to rely on technologies that

are easily deployed to fulfill the requirements of the project in a timely manner.

 Alternatives to MySQL that were explored include other SQL databases and

alternative NoSQL systems. Potential competing SQL databases are PostgresSQL and

Oracle. These databases have benefits, drawbacks, and intricacies of their own, but

overall operate on the same premise as MySQL. Due to this, it made sense to go with the

SQL implementation that we are most familiar with over other SQL databases.

 In contrast, comparing NoSQL systems against MySQL required a deeper

understanding of provenance data that will be stored and the performance requirements

that must be met by NavPro. There is a lot of diversity in the NoSQL space – the

databases differ from each other greatly. Potential candidates include MongoDB, a

document-based database, Accumulo, a highly distributed key-value store based off of

Google’s BigTable, and Cassandra, a similarly highly distributed database developed by

Facebook [17][18]. The primary benefit of using a NoSQL system is improved

scalability, concurrency, and performance over large sets of data. Depending on the size

 30

of the provenance events data and the types of queries being executed, a NoSQL solution

would potentially outperform a MySQL implementation.

 In the end, we decided on MySQL because we felt that the ability to quickly

deploy and use MySQL outweighed potential future performance benefits of a NoSQL

database. However, to facilitate easy switching to a NoSQL setup, we designed the Java

database interface in such a way that alternatives can be easily switched in for the

existing MySQL setup.

3.3.2 Database Schema

Three separate databases are utilized to support NavPro: knowledge cache, user

database, and events database.

The knowledge cache is used by the Provenance Classifier to provide a way for

the normalizer to store information for later use. More details on the use of the

knowledge cache can be found in Section 3.2.3 and Appendix A – Parsers and

Normalizers. The knowledge cache is kept in a separate database from the user database

and events database so that the normalizers can access it during the classification process

without impacting the performance of the user and events databases. In the knowledge

cache database, a separate table is created for each host that sends provenance data to the

classifier. The schema of each of these tables can be seen in Table 2.

Field Name Field Type Other Info
entry_key	
 VARCHAR	
 (512)	
 NOT	
 NULL,	
 INDEX	

entry_value	
 VARCHAR	
 (2048)	
 NOT	
 NULL	

Table 2: Knowledge Cache Schema

The user database contains all user-specific data. This includes information on alerts,

notifications, bookmarks, and user profiles. These features are extended functionality that

went beyond the original scope of the project. We elaborate on the features in the

 31

Results section. This data is kept in a separate database from the events database

due to the nature of the data and the frequency with which the data will be accessed. The

user data is small compared to the events data, and as such it would potentially better

benefit from a SQL database. Using multiple databases allows for the user database to be

implemented using a different database technology than the events database.

Additionally, the information in the user database, specifically the alerts and notifications

data, is often accessed. Keeping the user and events databases separate helps prevent the

events database from being slowed down due to a flood of requests for user data. The

user database contains the following tables:

• Users: The user profiles that are used to log in to NavPro. The schema of the

users table can be seen in Table 3.

• Bookmarks: The user-specific bookmarks set on specific views in NavPro.

The schema of the bookmarks table can be seen in Table 4.

• Alerts: The user-specific alert triggers that notify users when an event occurs

matching the trigger’s filters. Table 5 contains the alerts table schema.

Field Name Field Type Other Info
Id	
 MEDIUMINT	
 NOT	
 NULL,	
 AUTO_INCREMENT,	

PRIMARY	
 KEY	

userName	
 VARCHAR	
 (100)	
 NOT	
 NULL,	
 UNIQUE	

Table 3: Users Table Schema

Field Name Field Type Other Info
id	
 MEDIUMINT	
 NOT	
 NULL,	
 AUTO_INCREMENT,	

PRIMARY	
 KEY	

bookmarkName	
 VARCHAR	
 (100)	
 NOT	
 NULL	

userID	
 MEDIUMINT	
 NOT	
 NULL,	
 FOREIGN	
 KEY	
 on	

users(id)	
 ON	
 DELETE	
 CASCADE	

hostFilter	
 TEXT	
 NOT	
 NULL	

userFilter	
 TEXT	
 NOT	
 NULL	

processFilter	
 TEXT	
 NOT	
 NULL	

fileFilter	
 TEXT	
 NOT	
 NULL	

eventTypeFilter	
 TEXT	
 NOT	
 NULL	

timeLowerBound	
 VARCHAR	
 (100)	
 NOT	
 NULL	

timeUpperBound	
 VARCHAR	
 (100)	
 NOT	
 NULL	

tickCount	
 VARCHAR	
 (100)	
 NOT	
 NULL	

Table 4: Bookmarks Table Schema

Field Name Field Type Other Info

 32

id	
 MEDIUMINT	
 NOT	
 NULL,	
 AUTO_INCREMENT,	

PRIMARY	
 KEY	

alertName	
 VARCHAR	
 (100)	
 NOT	
 NULL	

userID	
 MEDIUMINT	
 NOT	
 NULL,	
 FOREIGN	
 KEY	
 on	

users(id)	
 ON	
 DELETE	
 CASCADE	

hostFilter	
 TEXT	
 NOT	
 NULL	

userFilter	
 TEXT	
 NOT	
 NULL	

processFilter	
 TEXT	
 NOT	
 NULL	

fileFilter	
 TEXT	
 NOT	
 NULL	

eventTypeFilter	
 TEXT	
 NOT	
 NULL	

Table 5: Alerts Table Schema

• Notifications: The user-specific notifications that are generated by the alert

triggers. The schema of the notifications table can be seen in Table 6.

Field Name Field Type Other Info
id	
 MEDIUMINT	
 NOT	
 NULL,	
 AUTO_INCREMENT,	

PRIMARY	
 KEY	

alertID	
 MEDIUMINT	
 NOT	
 NULL,	
 FOREIGN	
 KEY	
 on	

alerts(id)	
 ON	
 DELETE	
 CASCADE	

description	
 TEXT	
 NOT	
 NULL	

datetime	
 DATETIME(3)	
 NOT	
 NULL	

unread	
 BOOLEAN	
 NOT	
 NULL	

Table 6: Notifications Table Schema

The events database stores the normalized provenance events that are output by

the classifier. Currently, the database is a MySQL database that contains one table. This

is because we envision the database eventually taking the form of an Accumulo, or other

similar NoSQL, database that would have a single big table. The schema of the events

table can be seen in Table 7.

Field Name Field Type Other Info
description	
 VARCHAR(512)	
 NOT	
 NULL	

descriptionDetails	
 VARCHAR(2048)	
 NOT	
 NULL	

hostName	
 VARCHAR	
 (512)	
 NOT	
 NULL	

userName	
 VARCHAR	
 (512)	
 NOT	
 NULL	

processName	
 VARCHAR	
 (512)	
 NOT	
 NULL	

processDetails	
 VARCHAR(2048)	
 NOT	
 NULL	

fileName	
 VARCHAR	
 (512)	
 NOT	
 NULL	

fileDetails	
 VARCHAR	
 (2048)	
 NOT	
 NULL	

fileIdentifier	
 VARCHAR(512)	
 NOT	
 NULL	

datetime	
 DATETIME(3)	
 NOT	
 NULL,	

INDEX	

eventType	
 VARCHAR(512)	
 NOT	
 NULL	

 33

Table 7: Event Table Schema

An additional table is used to store all of the known types of events that can occur. The

schema of this event types table can be seen in Table 8.

Field Name Field Type Other Info
eventType	
 VARCHAR(512)	
 NOT	
 NULL,	
 UNIQUE	

Table 8: Event Types Table Schema

3.3.3 Java Database Interface Architecture

We developed a set of Java interfaces to allow for easy interaction with the

knowledge cache, user database, and events database in the classifier and query API. This

set of interfaces also allows the database implementation to be switched out without

modifying non-database specific code.

The database architecture centers on three interfaces: IKnowledgeCacheProvider,

IProvenanceUserDatabase, and IProvenanceEventsDatabase. Together, these

interfaces define the methods that a database must make available to be used as a

knowledge cache, user database, or events database, respectively. A full description of

these API interfaces can be found in Appendix B – Database APIs.

With these methods, a Java consumer of any of these interfaces is able to fully

interact with the knowledge cache, user database, or events database. Initially, only

MySQL implementations of these interfaces are provided. Additional options, such as an

Accumulo version, can be easily added by meeting the contracts described in these

interfaces.

This architecture allows for the rest of NavPro to be developed independently of

the database. By providing uniform interfaces for interactions with the database, future

changes to the database will only affect the small amount of database-specific code

present in the project.

3.4 Interpretation

Once the provenance event data has been stored, an interactive visualization is

created that allows a user to gain meaningful insights from the data. Displaying this

visualization is accomplished through a web application that queries a Tomcat-powered

server-side query API. This API provides access to activity metadata (broad details on the

 34

amount of activity occurring during time intervals) and actual event data. The web

application displays the data it receives from these queries by leveraging existing

JavaScript libraries such as d3.js and Bootstrap.js.

3.4.1 Server-Side Query API

The server-side query API provides an interface for a client to access information

from the provenance event database. The API is powered by a Java servlet running on top

of Tomcat. Tomcat provides the basic routing and load-balancing features necessary for a

scalable web based project – allowing us to focus on writing our project-specific code.

We chose a Java-powered server due to its platform-independent nature and our own

personal comfort developing in Java.

Using the Java servlet, we created a RESTful API capable of handling multiple

requests from different clients concurrently. This API provides access to the queries

made available through IProvenanceUserDatabase	
 and IProvenanceEventDatabase.

A full list of these queries can be seen in Appendix C - Visualizer Query API. These

queries are designed to support the specific visualizations that the web application needs

to display to the user.

3.4.2 Client-Side Web Application

The client side web application is the culmination of the work being done by the

architecture throughout the rest of NavPro. Once the provenance events are classified,

stored, and query-able, the web application must display the data in a way that empowers

the user to extract meaning from the provenance.

Deciding on a data visualization that would be capable of doing this was done through an

iterative design and prototyping process. In this process, we first identified a few key

scenarios that a user would want to achieve with NavPro. Then, we thought about how a

user would be able to complete these scenarios when first approaching the tool without

any knowledge other than a time period. We refined the results of these initial

brainstorming sessions by consulting with other members of the project, such as Jeff

Diewald and Tom Moyer (Group 58). More information on the results of this

brainstorming and the final visualization that was implemented can be found in the

 35

Results section.

By taking a user-first and scenario-centric approach to the design process, we

were able to keep ourselves focused on creating features that added immediate value to

the user. This kept us from pursuing superfluous visualizations that did not add important

meaning. By narrowing the focus of our visualization, we were able to create a polished

and stable product that focuses on solving a few key scenarios well.

Powering the visualization is a JavaScript library known as d3.js, an established

library that supports visualizing data in interactive ways [19]. d3.js allows us to rapidly

iterate on our prototypes by using existing library functionality to implement key features

of the visualization. Additionally, d3.js supports advanced features such as data binding

that make working with large amounts of data very fast and easy to code. Using a

supported, and well-documented library such as d3.js greatly sped up development and

allowed for additional visualization ideas to be prototyped and evaluated, leading to a

better final visualization.

For the UI elements of our web application, we relied heavily on Bootstrap.

Bootstrap solves some of the most challenging problems of web design – cross-browser

compatibility and responsiveness – saving us valuable development time and helping us

create a professional web application. We also utilized jQuery to allow for quick and easy

DOM manipulation and to provide some of the animations used in the product. We used

AJAX to make the web application responsive to user input while querying the server for

more information. The AJAX request architecture supporting the functionality of NavPro

can be seen in Figure 7.

 36

Figure 7: AJAX Request Architecture

 37

4 Results
In this section, we discuss the results of our project. By following the process

outlined in the Methods section, we created the NavPro product along with additional

concrete accompanying deliverables. We speak in depth about these deliverables, and

evaluate our performance based on the goals that were initially specified for the project.

4.1 NavPro Product
The NavPro product we created focused on 3 key components:

4.1.1 Data Analysis

In NavPro, data analysis is centered on taking the raw provenance data, parsing it

into objects, and normalizing those objects into human understandable actions. By the

end of our project, we were able to create a normalizer that derived the following human

understandable actions from the LPM provenance data:

• create a file

• delete a file

• access a file

o read from a file

o write to a file

o execute a file

• change file permissions

The derivations that led to these human-understandable actions can be found in

Appendix A – Parsers and Normalizers. Each event captured from the LPM provenance

data is tagged as one of these actions, allowing a user to query by action type. Due to

technical restrictions with LPM, we were not able to include any socket-based actions.

To make these human-understandable actions useful to the user, we also were

able to map the information we were given about users, processes, and files into human-

understandable data. For users, LPM does not provide us with any details on who is

performing what actions. Instead, LPM uses a provenance message called setid	
 to

communicate a user ID associated with file actions. We were able to send over the

 38

mapping of user IDs to usernames through our sprovd daemon and used this mapping to

derive what user was performing what actions.

For processes, the LPM provenance data provided us with a process ID instead of

the actual process name. We were able to derive the process name by examining the forks

and execs that led to the creation of the process. With this, we were also able to record

the arguments that a process was run with, giving us additional context that was

originally hidden in the provenance data.

For files, LPM provides the inode number of the file instead of the actual file

name. This makes it difficult, if not impossible, for an analyst to derive meaning from file

actions. To rectify this, we were able to track file creates and deletes to create our own

knowledge cache mapping of inode numbers-to-file names. This allowed us to see what

files were hard linked to the same source and track what files are accessed, executed, or

deleted. An early limitation of this solution was that it was not able to display the file

name for any files that were created before the machine became provenance-aware. This

is because we would not have a mapping in the knowledge cache from which we could

derive the file name.

As a workaround for this limitation, we created a program called spbang, a

modified version of an existing utility called pbang. This utility sends the NavPro

classifier server inode_alloc, link, and setattr provenance messages for every file on

a given unmounted partition. This allows us to create a full hierarchy of the partition’s

file system in the knowledge cache. Without this hierarchy, files would be displayed in

the form of: “(Partition GUID:Inode Number)/File Name”, which is less than helpful

when performing forensic analysis. This feature was beyond the original scope of the

project, but we were able to implement it regardless.

Additionally, spbang sets an extended attribute on the given partition that can be

used to identify the partition once it is mounted. With this extended attribute set, sprovd	

is able to establish a mapping of extended attributes-to-mount points. This mapping is

sent to NavPro along with the regular provenance data messages. By leveraging this

mapping, we are able to track partitions as they are mounted and unmounted at runtime.

This feature was also beyond the original scope of the project, but had to be implemented

to work around a current limitation of LPM. Because of a different technical restriction

 39

with LPM, we were not able to support this feature for files housed on temporary

partitions, such as /tmp and /boot.	

In addition to making sense of the LPM provenance data, we were able to

optimize our classifier architecture and database schema in a way that reduced memory

usage while not sacrificing time efficiency. In the classifier, we utilized an iterator pattern

for retrieving actions from the parsers, which led to a marked memory usage

improvement. With this change, the space efficiency of parsing the raw LPM data was

improved from O(mn) to O(m), where n is the number of actions being parsed and m is

the size of a single action.

In the database, we were able to specify the time field of an event as an index of

the row, leading to a time efficiency improvement from O(n) to O(log(n)) where n is the

number of events in the events table.

4.1.2 Visualization

Our initial visualization brainstorming sessions allowed us to create a first-pass

tabular visualization, which can be seen in Figure 8.

Figure 8: Initial Tabular Visualization

 40

With this first attempt, we were able to consult with other members of the project,

such as Jeff Diewald and Tom Moyer (Group 58), to further refine and iterate on the

visualization. Eventually, we decided upon using a chart-based visualization that

displayed aggregate overall, user, process, and file activity. This visualization allows a

user to identify interesting changes in levels of activity over time. The visualization can

be seen in Figure 9.

Figure 9: Chart Based Visualization

 We also experimented with implementing live update functionality for the chart

visualization. With live update, the data shown in the charts would automatically change

as time went by, always displaying the most up to date information if the user has not

changed the time bounds. However, once we implemented this feature, we decided

against its inclusion. We felt that it went against the theme of NavPro being a forensic

tool, as opposed to a live monitoring detection tool. Additionally, the user experience of

live update was jarring as the data was constantly changing without any clear

explanation.

As well as the visualization, we created a filtering feature that allows a user to

specify exactly what hosts, users, processes, files, and event types they are interested in.

When a filter is applied, the visualization changes to display the activity that meets the

requirements of the filters. Additionally, a user can modify the time span that they are

 41

viewing, allowing the user to hone in on specific moments in time. The interface for

adding and removing filters can be seen in Figure 10, while the filters alongside the

charts can be seen in Figure 11.

Figure 10: Filter User Interface

Figure 11: Filters and Charts

 Also visible in Figure 11 is the interface for modifying the time span that the user

is viewing. A user can set the time span precisely using the boxes in the upper left corner

of the interface, or they can zoom directly on the graph by drag-selecting a region. When

the user selects a region on the graph, all of the graphs are zoomed to the selected time

span. The user can undo and redo changes to the filter and time span options using the

undo and redo buttons in the top left corner of the interface.

 42

Once a user has refined the data that they are interested in to the point that only a

couple hundred events match the criteria, a table is displayed alongside the chart

visualization. This table allows for the user to see exactly what happened, allowing for

more advanced analysis to take place. This table-chart view can be seen in Figure 12.

Figure 12: Chart Visualization with Table Visualization

 The table displays the information in the human understandable form that we

were able to normalize the provenance data to. Additional information, such as full file

path or process arguments, can be found in some table cells by clicking the blue

information icon in the right of the cell, as seen in Figure 13.

Figure 13: Viewing Table Cell Details

4.1.3 User Features

In addition to the visualization features, we implemented convenience features

such as profiles, bookmarks and alerts. Profiles allow users to create their own personal

profiles that can contain user specific settings. This feature was initially outside of the

scope of our project, but was completed to provide better bookmarks and alerts

experiences. With this feature, a user is first prompted to select a profile before they can

 43

use NavPro. Once they select a profile, their selection is remembered until they logout.

Currently, an authentication method is not included with this feature and is instead a

future consideration for how to further enhance NavPro. The interface for choosing a

profile can be seen in Figure 14, while the interface for logging out and deleting a profile

can be seen in Figure 15.

Figure 14: Profile Selection

Figure 15: Profile Dropdown

Bookmarks allow a user to save a set of filters to be returned to later. Bookmarks

are saved specific to a profile and are persisted across both machines and sessions. This

means that a user can login to their profile on another machine and have access to all of

their bookmarks, while not seeing other user’s bookmarks. The bookmarks feature was

originally outside of the scope of this project. The interface for adding a bookmark can be

seen in Figure 16, while the interface for accessing and removing bookmarks can be seen

in Figure 17.

 44

Figure 16: Adding a Bookmark

Figure 17: Accessing and Removing Bookmarks

Alerts allow a user to specify a set of filters that they wish to be alerted about –

that is, when an event occurs that meets those filters, the user will be notified. This allows

a user to identify interesting activity once and be alerted whenever that activity occurs

again in the future. Like bookmarks, alerts are profile-specific. When a user accesses

their profile from another machine, they will have access to all of their alert triggers and

notifications. The interface for modifying the alert triggers settings can be seen in Figure

18. The interface for viewing alert notifications can be seen in Figure 19.

 45

Figure 18: Modifying Alert Trigger Settings

Figure 19: Alert Notifications Dropdown

 A user can view a notification by clicking on the notification. When that happens,

NavPro will zoom in on the event that triggered the notification to show the user what

happened. From there, the user can adjust the zoom and filters to see contextual

information around the event that occurred. In the alert notifications dropdown,

notifications are initially colored light blue if they are unread. Once a user views a

notification, it will be considered read and will turn a gray color. Likewise, the red badge

at the top of the alerts dropdown will update accordingly to reflect the number of unread

notifications. When there are no unread notifications, it will turn blue instead of red to

signal to the user that there are no new notifications. Notifications are kept until a user

clears them – either by clicking the “X” next to the notification or by clicking “Clear

Notifications”.

 46

4.2 Additional Outcomes
To complement the NavPro product that we created, we created a “NavPro

Extension Developer’s Guide”, which can be seen in Appendix D – NavPro Extension

Developer’s Guide. This guide documents how to send data to NavPro, create a new

parser/normalizer, and swap out the initial MySQL database implementation with a

different database implementation.

 We also created an automatic deployment package for OS X (.pkg). This package

includes all of the dependencies of NavPro, allowing a user to install the package and

immediately get started using the product. We created an installation script for Linux, as

well as automated startup and shutdown scripts for both operating systems.

 For Windows, we provided documentation on how to manually deploy NavPro

and include similar automated startup and shutdown scripts.

 To aid in future deployments, we provide a Makefile that will generate

deployment packages based on the platform specified. Documentation on how to deploy

future builds is included in Appendix E – NavPro Deployment Guide.

4.2.1 Scenarios

To illustrate the power of our product, we came up with two key scenarios that

NavPro can solve. The first of these scenarios focused on understanding the impact of a

phishing attack. In this scenario, a user has been tricked into downloading and running a

malicious executable file. After realizing what has happened, the user alerts their IT

department about the event, and the network administrators move to contain the damage

of the attack.

 Without NavPro, the response team would have to comb through logs and search

for small traces of the process’ activity. With NavPro, a network administrator is able to

filter on the specific executable file that was downloaded and ran. From here, the network

administrators can see exactly what the malicious file affected and respond appropriately.

The second scenario focuses on performing forensics on a system that has been

compromised due to the Shellshock bug. In this scenario, a vulnerable server is running

an Apache Web Server that relies on CGI bash scripts. With this setup, an attacker is able

to run arbitrary bash commands through a specially crafted HTTP request.

 47

Without NavPro, there would be no way to identify that the server had been

attacked using Shellshock without examining the content of every request sent to the

server. With NavPro, a network administrator can filter on the apache user, which runs

the Apache Web Server, and identify any unusual or unexpected behavior. Additionally,

a network administrator can set alert triggers that will raise a notification when suspicious

activity occurs on the web server.

In addition to identifying these scenarios, we were able to successfully mock these

crime scenes and record a user reaction with NavPro where the real data was used to

solve each case.

4.3 Evaluation

4.3.1 Requirements

 By the end of our project, we were able to satisfy all of the base requirements that

we enumerated in Section 1.2:

• NavPro will be accessible through a web browser.

• NavPro will allow a user to input Linux Provenance Modules (LPM) HiFi data.

• NavPro will allow a user to view activity performed on (or by) an entity (user,

process, or file).

• NavPro will simplify provenance data from system calls to readable actions.

• NavPro will allow a user to search for activity based on different types of entities.

• NavPro will be deployable in an automated way.

We were also able to fulfill all of the requirements that we designated as “if time allows”

work in Section 1.2:

• NavPro will have the capability to accept provenance data from different data

sources, operating systems, etc. through an extensible plugin system.

• NavPro will allow a user to monitor a network of computers from the web

application.

• NavPro will allow a user to view activity performed by a specific host in a

network.

• NavPro will allow backward and forward navigation through visualizations.

 48

• NavPro will allow a user to export the raw data from a table or chart visualization

based on the current filter set.

• NavPro will allow a user to set alerts for entities (hosts, users, processes, files)

and be alerted when an event occurs involving that entity.

As well as the work that was described in the initial project scope, we were able to

complete the following additional features:

• NavPro will display condensed high-level versions of “readable” actions.

• NavPro will quantify relationships between entities through search result filters.

• NavPro will live update data in view of the currently visualized entity.

o Note: This feature was implemented, but later removed. More information

on why this feature was removed can be found in Section 4.1.2.

• NavPro will allow a user to save visualizations as bookmarks so they can be

revisited later in the session.

• NavPro will track provenance events that cross multiple host machines.

 By the end of our project, we successfully completed the implementation of the

entire enumerated project scope as well as five major features that fell outside of the

original project scope. We were able to deliver a high quality, production quality product

that shows how provenance data can be leveraged for useful computer forensics.

4.3.2 User Study

Once the product implementation was finalized, Jeff Diewald connected us with

forensic analysts from Lincoln Laboratory’s Information Services Department (ISD) and

Security Services Department (SSD). They sat down with us to interact with the NavPro

user interface and discuss its potential in the field of computer forensics.

First, the analysts were surprised by how much context was provided with each

event that they could view. Both of them had grown accustom to tools that only show the

state of the machine after the cyber crime has been committed. Once they were able to

understand the events-based approach of NavPro, they noted that having a host, user,

process, and file associated with every event could make discovering points of interest

less stressful and time-consuming.

 49

Additionally, they stated that NavPro could “bridge the gap” between network-

and host-based forensic tools. In their experience, all the tools they have used for analysis

were either specific to network traffic or to the state of a given machine. With the latter,

they were often combing through log files and examining file hierarchies. The analysts

were impressed that NavPro provides the ability to derive process hierarchies, file

hierarchies, and network activity for all hosts and users at once. Both analysts wanted to

be added to the loop moving forward with this tool’s development and were excited about

its potential.

 50

5 Discussion
In this section, we primarily discuss the future of NavPro development and the

enhancements we would make if we had another few months to work with Lincoln

Laboratory. We also mention limitations we faced with LPM, and how they could be

addressed moving forward. Finally, we discuss the potential NavPro has to benefit

forensic analysts as it evolves over time.

5.1 NavPro Future Development
At the conclusion of our project, we have multiple ideas for useful features that

could be added to NavPro. These features can be broken down into three categories:

5.1.1 New Visualizations

While the chart and table visualizations NavPro provides enable analysts to

navigate through the data and view specific events, other visualizations may provide

additional benefits.

A visualization we believe would be helpful, though we have not had time to

explore, is a time graph that would represent the life of a single inode. To the user, this

would be the life of a “file”, where the first node would be the creation of the file and

every event moving forward would be permissions changes and added/removed hard

links. The life of the inode would end when it is no longer linked to any files.

To prepare NavPro for this visualization, we included a “fileIdentifier” field for

every ProvenanceEvent. This is a string UUID that corresponds to a single inode on a

partition from the moment it gets its first hard link until it is unlinked for the last time,

making its reference count 0. We did not leverage this UUID or mock the graph due to

time constraints, but creating this visualization may provide better guidance through the

data than charts and tables alone.

Another potentially helpful visualization would be a graph representing the

hierarchy for a given process. If a malicious process spawns a child process that attacks a

system, it is important to be able to make the connection back to the parent process. This

data is available because the normalizer can track parent-child relationships every time a

new process is forked. Time constraints prevented us from mocking or implementing

potential graphs for this data, but NavPro would benefit from visualizing it.

 51

5.1.2 Advanced Filtering

NavPro currently supports filters that can search through the database for events

with specified times, hosts, users, processes, files, and types. These filters also allow for

SQL wildcards to be used when searching. With that said, much more could be done with

the concept of filtering provenance data.

An example is to expand beyond filenames and allow full paths to be filtered on

in a way that doesn’t force the user to specify a full path when they do not want to. If a

user wanted to see all of the files under a certain directory, they could leverage full paths

and wildcards to make a filter that does so.

The same concept can be applied to processes. In addition to filtering by a process

name, a user may want to find all processes that used a specific environment variable as

one of their arguments. They also may want to discover the values of environment

variables at a given time, which our normalizer knows but omits to prevent clutter in the

table visualization.

Another example is allowing a user to specify a sequence of actions that they

would like to search for or be alerted on. This could be viewed as a “compound filter”,

which searches for a sequence of events, that fit certain criteria, all happening within a

specified time of one another. This would be complicated work, as we could potentially

end up defining our own language for analysts to use when defining compound events

they want to search for. With that said, the benefits could outweigh the development cost.

5.1.3 Added Security

NavPro currently makes the assumption in many places that its physical server is

not compromised. The classifier loads in classes from the parser and normalizer plugin

pools without verifying their authenticity, and the visualizer does not authenticate users

when they log in. The configuration files for both are also unencrypted.

While internal security was not a point of emphasis for this project, these issues

should be addressed as it moves toward production. Ensuring that all user and provenance

data is validated at all steps will be vital. Additionally, all of the data sent from the LPM

daemon to the server should be encrypted.

 52

5.2 Addressing LPM Limitations
During this project, NavPro became the first large-scale consumer of Linux

Provenance Modules data. Overall, this data provided us with a solid foundation to build

our final product, but there were gaps in the data that are worth mentioning. We would

also like to propose solutions to those limitations so that they can be implemented as

NavPro and LPM continue to be developed.

First, the lack of mount information in LPM data caused a lot of work for our

daemon and still did not provide location context for all files. For every partition on a

host, a partition is given a unique identifier that can be used by the normalizer to identify

its file system. With that said, LPM alone does not establish mappings between these

identifiers and their mount points. Additionally, LPM does not provide any way, even

with workarounds, to establish an identifier for a temporarily mounted file system. This

lack of data prevents NavPro from providing full file paths for all events on a host.

This problem can be solved by creating two new provenance messages: one that

identifies when a partition is mounted and another that identifies when a partition is

unmounted. They can both contain the path of the mount point, the location of the

partition, and the file identifier that can be used to associate other messages with that file

system. There are already hooks in place to identify when these events happen, LPM just

needs to be modified to create messages at those times.

Another known issue is that socket data is not being accurately collected. The

messages that capture when data is sent and received on a network are broken. Also, the

structs do not include important data such as how many bytes were sent/received or when

a specific port is bound to. These issues can be remedied by altering the send/receive

messages to contain more metadata and adding a new call, or modifying sockalias, to

identify when a socket is bound to.

Also, LPM does not provide the ability to accurately identify when a symbolic link

is made to a file. The readlink call may be helpful in marking when a soft link is being

created, but knowing which file the link is to will require more link metadata.

Finally, encoding for LPM data to remove the need for manual binary struct

processing would cause less development costs moving forward.

 53

5.3 NavPro Deployment Potential
Looking ahead, NavPro has the potential to be deployed on live networks to

provide forensic analysts and network administrators with a tool that can help them with

their daily workload. Provenance data can provide footprints of suspicious activity that

are otherwise not collected, and NavPro presents that data in an organized way.

We have automated the deployment of NavPro for Mac OS X and for Linux

operating systems. Analysts that want to leverage this tool only need to have access to a

web browser.

As parsers and normalizers are developed for more provenance-aware systems,

the likelihood of having a full network of provenance-aware hosts increases. Leveraging

NavPro in this kind of environment can demonstrate the usefulness of provenance data in

performing computer forensics and understanding the impact of cyber crime.

 54

6 References
[1] Thomas Moyer, Jeff Diewald, Nabil Schear. WPI MQP: Data Provenance

Visualization and Analytics. Work in progress.

[2] PROV-Overview: An Overview of the PROV Family of Documents.

http://www.w3.org/TR/prov-overview/.

[3] The Open Provenance Model. http://openprovenance.org/.

[4] J. P. Anderson. Computer security technology planning study. Technical Report

ESD-TR-73-51, ESD/AFSC, Hanscom AFB, Bedford, MA, October 1972.

[5] Adam Bates, Kevin R. B. Butler, and Thomas Moyer. Linux Provenance Modules:

Secure Provenance Collection for the Linux Kernel. Work in Progress.

[6] David A. Holland, Margo I. Seltzer, Uri Braun, and Kiran-Kumar Muniswamy-

Reddy. Passing the provenance challenge. Concurrency and Computation: Practice

and Experience, 20(5):531–540, 2008.

[7] Devin J. Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin Butler. Hi-fi:

collecting high- fidelity whole-system provenance. In Proceedings of the 28th

Annual Computer Security Applications Conference, ACSAC ’12, pages 259–268,

New York, NY, USA, 2012. ACM.

[8] Jennifer Widom. Trio: A system for data, uncertainty, and lineage. In Managing and

Mining Uncertain Data. Springer, 2008.

[9] Yulai Xie, Kiran-Kumar Muniswamy-Reddy, Dan Feng, Yan Li, and Darrell D. E.

Long. Evaluation of a hybrid approach for efficient provenance storage. Trans.

Storage, 9(4):14:1–14:29, November 2013.

[10] Frits H. Post, Gregory M. Nielson and Georges-Pierre Bonneau (2002). Data

Visualization: The State of the Art. Research paper TU delft, 2002.

[11] James J. Thomas and Kristin A. Cook (Ed.) (2005). Illuminating the Path: The

R&D Agenda for Visual Analytics. National Visualization and Analytics Center.

[12] Internet Visualization. http://en.wikipedia.org/wiki/Information_visualization.

[13] Data Cleaning. Microsoft Research. Retrieved 26 October 2013.

[14] The Java Virtual Machine. http://docs.oracle.com/javase/specs/jvms/se7/html/.

[15] Java Native Interface Specification.

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/jniTOC.html.

 55

[16] MySQL Reference Manual. http://dev.mysql.com/doc/refman/5.6/en/index.html.

[17] Apache Accumulo User Manual. http://accumulo.apache.org.

[18] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach

Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber. Bigtable: A

Distributed Storage System for Structured Data. 2006.

[19] d3.js – Data-Driven Documents. http://d3js.org.

[20] Bootstrap. http://getbootstrap.com/2.3.2/getting-started.html.

[21] Nichols, Randall K. Defending your digital assets against hackers, crackers, spies,

and thieves. McGraw-Hill Professional, 2000.

[22] Whitman, Michael, and Herbert Mattord. Principles of information security.

Cengage Learning, 2011.

[23] Loscocco, Peter, and Stephen Smalley. "Meeting critical security objectives with

security-enhanced linux." Proceedings of the 2001 Ottawa Linux symposium. 2001.

[24] Hong, Jason. "The state of phishing attacks." Communications of the ACM 55.1

(2012): 74-81.

[25] Cloudflare. https://www.cloudflare.com.

[26] User Stories. http://www.mountaingoatsoftware.com/agile/user-stories.

[27] Chmod. http://en.wikipedia.org/wiki/Chmod.

[28] chmod(1). http://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=1.

[29] Choo, K. K. R. (2011). The cyber threat landscape: Challenges and future research

directions. Computers & Security, 30(8), 719-731.

[30] Greitzer, Frank L., et al. "Combating the insider cyber threat." Security & Privacy,

IEEE 6.1 (2008): 61-64.

 56

7 Appendix A – Parsers and Normalizers

7.1 Parser API
Tells the classifier if the parser can interpret data based on the source identifier.
boolean	
 canParse(String	
 identifier);	

Sets the parser's input stream to generate actions from. This will always be called before

getNextAction is called for the first time.
void	
 setInputStream(InputStream	
 inputStream);

Gets the next ProvenanceAction from the previously set input.
ProvenancAction	
 getNextAction();	

7.2 Normalizer API

Tells the classifier if the normalizer can interpret data based on the source identifier.
boolean	
 canNormalize(String	
 identifier);	

Sets the normalizers host and knowledge cache to the given string and cache. This will

always be called before normalize is called for the first time.
void	
 setHostAndKnowledgeCache(String	
 host,	
 KnowledgeCache	

knowledgeCache);

Normalizes the given ProvenanceAction into a ProvenanceEvent.
ProvenanceEvent	
 normalize(ProvenanceAction	
 provenanceAction);	

	

7.3 Parsing LPM Binary Data
 The C struct that LPM collects many instances of is called prov_msg. Each

contains a message type, a content length, and a pointer to a character array of the length

specified by the second field. The first of those fields categorizes the struct as one of the

following types:

• boot (the system booted)

 57

• inode_alloc (a new inode was allocated)

• inode_dealloc (an inode was deallocated)

• link (a new hard link was created to an inode)

• unlink (a hard link was removed from an inode)

• credfork (a new process was forked)

• credfree (a process ended)

• readlink (a process read the location of another file)

• mmap (memory was mapped)

• setattr (permissions/ownership of a file changed)

• setid (a process is associated with a user and group)

• socksend (data was sent on a socket)

• sockrecv (data was received on a socket)

• iperm (inode metadata was accessed)

• fperm (file block contents of an inode were accessed)

• exec (an exec system call was made)

• mqsend (message queue data was sent)

• mqrecv (message queue data was received)

• shmat (shared memory was attached to an address space)

• sockalias (a socket was bound to)

 There is an existing C program called “pcat” that takes this binary data as input

and produces string representations of each (i.e. “[42] link abcdef12-abcd-acbd-acbd-

acbdef1234567890:1234 to 1233:hello” means process 42 linked inode 1234 on partition

abcdef12-abcd-acbd-acbd- acbdef1234567890 to a file named ‘hello’ in the directory that

is inode 1233).

 The LPM parser we built uses JNI to leverage this program and turns the output

string into a list of ProvenanceActions. These objects contain a method name (i.e. “link”),

an array of arguments (i.e. [“42”, “abcdef12-abcd-acbd-acbd-acbdef1234567890:1234”,

“to” “1233:hello”]), and a timestamp. Because LPM data does not currently include

timestamps, we simply use the current time of day for each action so that they stay in

chronological order.

 58

7.4 Normalizing Parsed LPM Actions
 The normalizer then takes these ProvenanceActions as input and produces

ProvenanceEvents (defined in the database schema) when an action implies a user-level

event. The derivations for each of these events are as follows:

• Create file – a link call is made (this is a new file if only inode_alloc was

called on that inode previously and no other link calls have happened on it

before)

• Delete file – an unlink call is made (inode_dealloc	
 will follow if the

reference count to the given inode becomes 0 with this unlink call)

• Access file – an fperm call is made on an inode with either Read, Write, or

Execute permissions (we consider many fperm calls on the same inode with the

same permissions within 10 seconds to be a single file access)

• Change file permissions – a setattr call is made with information containing the

new list of owner/group/other permissions, as well a possibly new owner

socksend and sockrecv also directly indicate network activity, but current issues with

LPM prevented us from leveraging this data in our implementation. sockalias is

another action type that is currently ignored, but most of the rest are used (as explained in

the bulleted list in the previous section) to collect metadata that is stored in the

knowledge cache so that every ProvenanceEvent produced will have a full file path, a

process with all of its arguments, a username, and a hostname.

 59

8 Appendix B – Database APIs

8.1 Knowledge Cache API
Associates the given value with the host name and key.
boolean	
 rememberData(String	
 hostName,	
 String	
 dataKey,	
 String	

dataValue);	

Retrieves the data associated with the given host name and key.
String	
 retrieveData(String	
 hostName,	
 	
 String	
 dataKey);	

8.2 User Database API
Stores an alert in the database.
boolean	
 addAlert(int	
 userID,	
 ProvenanceAlert	
 alert);	

	

Add a bookmark to the database for the given user ID.
boolean	
 addBookmark(int	
 userID,	
 ProvenanceBookmark	
 bookmark);	

	

Stores a notification in the database.
boolean	
 addNotification(

int	
 alertID,	
 	

ProvenanceNotification	
 notification);	

	

Adds a provenance user to the database.
boolean	
 addUser(String	
 username);	

	

Updates a notification in the database to be read.
boolean	
 readNotification(int	
 primaryKey);	

Removes the alert with the given primary key from the database.
boolean	
 removeAlert(int	
 userID,	
 int	
 primaryKey);	

	

Removes the bookmark with the given primary key from the database.

 60

boolean	
 removeBookmark(int	
 userID,	
 int	
 primaryKey);	

	

Removes the notification with the given primary key from the database.
boolean	
 removeNotification(int	
 primaryKey);	

Removes a provenance user from the database.
boolean	
 removeUser(int	
 userID);	

Retrieves a single alert based on a notification’s primary key.
ProvenanceAlert	
 retrieveAlertForNotification(int	
 primaryKey);	

Retrieves a list of all alerts.
List<ProvenanceAlert>	
 retrieveAlerts();	

Retrieves a list of all alerts for the given user ID.
List<ProvenanceAlert>	
 retrieveAlerts(int	
 userID);	

	

Retrieves a list of all of the bookmarks for a given user.
List<ProvenanceBookmark>	
 retrieveBookmarks(int	
 userID);	

	

Retrieves a list of all of the notifications for a given user.
List<ProvenanceNotification>	
 retrieveNotificationsForUser(int	
 userID);	

	

Retrieves a list of all of the provenance users.
List<ProvenanceUser>	
 retrieveUsers();	

8.3 Events Database API
Retrieves the activity metadata from the database that describe the level of activity over

the given time span.
ProvenanceActivityMetadata	
 retrieveActivityMetadata(

String[]	
 hosts,	
 String[]	
 users,	
 String[]	
 processes,	
 	

String[]	
 files,	
 String[]	
 eventTypes,	
 Date	
 timeLowerBound,	
 	

Date	
 timeUpperBound,	
 int	
 ticks);	

 61

Retrieves an array of all of the provenance event types.
String[]	
 retrieveProvenanceEventTypes();	

	

Stores the given provenance event in the database.
Boolean	
 storeProvenanceEvent(ProvenanceEvent	
 eventToStore);	

	

Stores a provenance event type in the database.
Boolean	
 storeProvenanceEventType(String	
 eventTypeToStore);	

 62

9 Appendix C - Visualizer Query API

9.1 GET Queries

• /query/metadata

o Performs a metadata request. The response to a metadata request includes

activity metadata over time for overall activity, user activity, process

activity, file activity, and network activity. Also includes the list of

provenance events that matched the query if the count of those events if

below a configured threshold. Finally, includes an array of provenance

event types that can be used to filter the provenance events in future

queries.

o Parameters:

! host: A list of host names to query. If left null, this parameter is

ignored.

! user: A list of user names to query. If left null, this parameter is

ignored.

! process: A list of process names/ids to query. If left null, this

parameter is ignored.

! file: A list of file names to query. If left null, this parameter is

ignored.

! eventType: A list of event types to query. If left null, this

parameter is ignored.

! tl: The lower bound of the time span that the query will focus on,

inclusive. This parameter MUST NOT be null. Must be in the

format of MS since Unix Epoch.

! tu: The upper bound of the time span that the query will focus on,

inclusive. This parameter MUST NOT be null. Must be in the

format of MS since Unix Epoch.

! ticks: The number of ticks to retrieve information. The timespan

will be divided into "tick" number of buckets, and activity counts

will be retrieved for each of those buckets.

 63

! forceEvents: Whether or not to force the query to send back the

provenance events for the filters. If not provided, defaults to false.

• /query/fulldata

o Performs a full data request, retrieving a list of provenance events that

matched the query. Also includes an array of provenance event types that

can be used to filter the provenance events in future queries.

o Parameters:

! host: A list of host names to query. If left null, this parameter is

ignored.

! user: A list of user names to query. If left null, this parameter is

ignored.

! process: A list of process names/ids to query. If left null, this

parameter is ignored.

! file: A list of file names to query. If left null, this parameter is

ignored.

! eventType: A list of event types to query. If left null, this

parameter is ignored.

! tl: The lower bound of the time span that the query will focus on,

inclusive. This parameter MUST NOT be null. Must be in the

format of MS since Unix Epoch.

! tu: The upper bound of the time span that the query will focus on,

exclusive. This parameter MUST NOT be null. Must be in the

format of MS since Unix Epoch.

• /query/export

o Performs an export request, retrieving an exported tab-separated version of

the provenance events that match the query.

o Parameters:

! host: A list of host names to query. If left null, this parameter is

ignored.

! user: A list of user names to query. If left null, this parameter is

ignored.

 64

! process: A list of process names/ids to query. If left null, this

parameter is ignored.

! file: A list of file names to query. If left null, this parameter is

ignored.

! eventType: A list of event types to query. If left null, this

parameter is ignored.

! tl: The lower bound of the time span that the query will focus on,

inclusive. This parameter MUST NOT be null. Must be in the

format of MS since Unix Epoch.

! tu: The upper bound of the time span that the query will focus on,

exclusive. This parameter MUST NOT be null. Must be in the

format of MS since Unix Epoch.

• /query/bookmark/view

o Retrieves all of the bookmarks stored in the database for a user.

o Parameters:

! userID : The user to retrieve the bookmarks for.

• /query/alert/view

o Retrieves an alert for a given notification.

o Parameters:

! notificationID: The notification to retrieve the alert for.

• /query/alerts/view

o Retrieves all of the alerts stored in the database.

o Parameters:

! userID: The user to retrieve the alerts for.

• /query/notifications/view

o Retrieves all of the notifications stored in the database.

o Parameters:

! userID: The user to retrieve the notifications for.

• /query/notifications/poll

o Retrieves all of the new notifications stored in the database.

o Parameters:

 65

! userID: The user to retrieve the notifications for.

• /query/users/view

o Retrieves all of the users stored in the database.

9.2 POST Queries
! /query/bookmark/add

o Adds a bookmark with the given parameters to the database. Returns

whether or not the query failed.

o Parameters:

! name: The name of the bookmark.

! host: A list of host names to query. If left null, this parameter is

ignored.

! user: A list of user names to query. If left null, this parameter is

ignored.

! process: A list of process names/ids to query. If left null, this

parameter is ignored.

! file: A list of file names to query. If left null, this parameter is

ignored.

! eventType: A list of event types to query. If left null, this

parameter is ignored.

! tl: The lower bound of the time span that the query will focus on,

inclusive. This parameter MUST NOT be null. Must be in the

format of MS since Unix Epoch.

! tu: The upper bound of the time span that the query will focus on,

inclusive. This parameter MUST NOT be null. Must be in the

format of MS since Unix Epoch.

! ticks: The number of ticks to retrieve information. The timespan

will be divided into "tick" number of buckets, and activity counts

will be retrieved for each of those buckets.

! userID: The user to add the bookmark for.

! /query/bookmark/remove

 66

o Removes a bookmark with the given identifier from the database. Returns

whether or not the query succeeded.

o Parameters:

! bookmarkID : The identifier of the bookmark.

! userID : The user to remove the bookmark for.

! /query/alert/add

o Adds an alert with the given parameters to the database. Returns whether

or not the query succeeded.

o Parameters:

! name : The name of the alert.

! host : A list of host names to query. If left null, this parameter is

ignored.

! user : A list of user names to query. If left null, this parameter is

ignored.

! process : A list of process names/ids to query. If left null, this

parameter is ignored.

! file : A list of file names to query. If left null, this parameter is

ignored.

! eventType: A list of event types to query. If left null, this

parameter is ignored.

! userID : The user to add the alert for.

! /query/alert/remove

o Removes an alert with the given identifier from the database. Returns

whether or not the query succeeded.

o Parameters:

! alertID : The identifier of the alert.

! userID : The user to remove the alert for.

! /query/notification/read

o Marks a notification with the given identifier as read in the database.

Returns whether or not the query succeeded.

o Parameters:

 67

! notificationID: The notification to mark as read.

! /query/notification/remove

o Removes a notification with the given identifier from the database.

Returns whether or not the query succeeded.

o Parameters:

! notificationID: The identifier of the notification.

! /query/users/add

o Adds a user with the given username to the database. Returns whether or

not the query succeeded.

o Parameters:

! userName: The name of the user.

! /query/users/remove

o Removes a user with the given user ID from the database. Returns whether

or not the query succeeded.

o Parameters:

! userID: The ID of the user to remove.

 68

10 Appendix D – NavPro Extension Developer’s Guide

10.1 Sending Data To NavPro
When sending data from a provenance-aware system to NavPro, the sending

process must repeatedly take the following steps every few seconds (or any other time

interval, in the case of LPM HiFi it is 5 seconds):

1. Open a TCP connection with the NavPro classifier server.

2. Send the hostname of your machine, followed by a null character (i.e. “lpm-

2014-09-22-mitll” + ‘\0’, 21 bytes in this case).

3. Send a string that your Parser and Normalizer will use to identify you, followed

by a null character (i.e. “LPM HiFi” + ‘\0’, 9 bytes in this case).

4. Send the bytes of data that you want to be handled by your Parser and

Normalizer, no termination character needed.

5. Close the TCP connection with the NavPro classification server.

It is important that your sending process does not maintain an open connection

with the server because it will only begin to process the data once the connection is

closed.

Notes

• The hostname and identifier strings will be interpreted using Java’s String

constructor (i.e. “new String(identifierBytes)”, where identifierBytes is a byte

array containing the bytes prior to the first null character).

• The daemon that implements this protocol for LPM HiFi is called “sprovd”,

sprovd.c can be found in the Cyber-Provenance/analytic-platform repository.

10.2 Writing A NavPro Parser
 When the NavPro classifier server receives data from the sending process on your

provenance-aware machine, your Parser will be passed that data as a Java InputStream

immediately. This stream should either be stored for later use or fully read from before

being discarded (the latter using significantly more memory).

 69

 Later, the method getNextAction will be called repeatedly until your Parser

returns null, indicating it has no more actions to parse from the input. Until your parser

is out of input to parse actions from, it should be returning the next action from the raw

provenance bytes. This action is represented as a ProvenanceAction object (defined in

ProvenanceClassifier.jar), which contains:

1. methodName – an string identifier for the type of action this is (i.e. “exec”)

2. args – an array of strings representing the arguments for the method (i.e. [“touch”,

“helloWorld.txt”] for the method “exec”)

3. timestamp – a java.util.Date object specifying when the action occurred

Each of these ProvenanceAction objects will be passed to your Normalizer one by

one, with the order being guaranteed (even if sent in different bursts from the sending

process).

Notes

• The interface Parsers need to implement is IProvenanceParser, which (in

addition to setInputStream() and getNextAction() mentioned above) requires

implementing a canParse() method, which takes in an identifier string (like

“LPM HiFi” in the example from the previous section) and returns whether or not

it can parse data from that source.

• To make your Parser, create an Eclipse Java project (with any name) and have a

package called “Parser” with a class called “Parser” that implements the

IProvenanceParser interface.

• Export your project as a JAR file and place it in the NavPro classifier’s

ParserPool folder (specified in your classifier.config file) to start accepting data.

This can be done at runtime without restarting the server.

• The implementation of IProvenanceParser for LPM HiFi is in the “LPMParser”

folder in the Cyber-Provenance/analytic-platform repository. It uses JNI to

leverage a C parser that can interpret the binary data sent from sprovd, which is

not a recommended method of parsing moving forward.

 70

10.3 Writing A NavPro Normalizer
As explained in the previous section, your Parser will be returning single

ProvenanceAction objects to the classifier until it reads all the way through its input

stream. Each one of these objects will be passed into your Normalizer (one by one, in

order) so that they can be turned into ProvenanceEvent objects. The specific details of

this object can be found in the Javadocs for the project.

Each time your Normalizer is passed a ProvenanceAction object, it needs to

decide whether or not to create a ProvenanceEvent. Every time it creates and returns a

ProvenanceEvent, the event will be stored in the database and can be seen in the web

application’s visualization.

Before receiving these actions through the “normalize” method, you will be given

the hostname of the machine this data is from. Additionally, you will be given what we

call the “knowledge cache”. This will effectively function as a persistent HashMap for

your Normalizer, which you can use in any way you’d like. An example is storing file

name mappings to inode numbers so that your Normalizer can tell how many hard links a

specific file has at any given time.

Notes

• The interface Normalizers need to implement is IProvenanceNormalizer, which

(in addition to setHostAndKnowledgeCache and normalize mentioned above)

requires implementing a canNormalize method, which takes in an identifier

string (like “LPM HiFi” in the example from the previous section) and returns

whether or not it can normalize actions parsed from that source.

• If you would like to add new EventTypes (in addition to the default ones

provided), you can create an enum that implements IProvenanceEventType and

use one of those values instead. For an example implementation, see

ProvenanceEventTypeDefault.java in the ProvenanceCommon project.

• To make your Normalizer, create an Eclipse Java project (with any name) and

have a package called “Normalizer” with a class called “Normalizer” that

implements the IProvenanceNormalizer interface.

 71

• Export your project as a JAR file and place it in the NavPro classifier’s

NormalizerPool folder (specified in your classifier.config file) to start accepting

data. This can be done at runtime without restarting the server.

• The implementation of IProvenanceNormalizer for LPM HiFi is in the

“LPMNormalizer” folder in the Cyber-Provenance/analytic-platform repository.

10.4 Using A Database Other Than MySQL
 For our initial implementation of NavPro, we used a MySQL database to store the

ProvenanceEvents generated by the classifier. As the data gets larger, it may be

necessary to migrate to something more scalable.

 To accommodate this change, we have created an interface called

IProvenanceEventDatabase that can be implemented to easily substitute in any new

database system. In our version of NavPro, the MySQLProvenanceEventDatabase class

contains all of the MySQL specific code. The specific methods that need to be

implemented for the interface can be found in the Javadocs for the project.

 72

11 Appendix E – NavPro Deployment Guide

11.1 Deployment Directory Layout
The directory layout of all NavPro deployments can be seen below:

• bin: This directory contains the installations of MySQL (if included), Tomcat,

Provenance Classifier, and Provenance Visualizer.

• classifier.config: The configuration file for the classifier. Modify this file to

update classifier-specific settings. See Configuring NavPro for more details.

• log: The log files for the visualizer and classifier.

• NormalizerPool: The pool of Normalizers for the classifier to use. Initially,

this includes the sample LPM Normalizer. Future normalizer JARs should be

placed here as well.

• ParserPool: The pool of Parsers for the classifier to use. Initially, this includes

the sample LPM Parser. Future parser JARs should be placed here as well.

• startup.sh (Linux & OS X Only): The script used to start up NavPro.

• shutdown.sh (Linux & OS X Only): The script used to shutdown NavPro.

• visualizer.config: The configuration file for the visualizer. Modify this file to

update visualizer-specific settings. See Configuring NavPro for more details.

11.2 Configuring NavPro
When NavPro is installed, there are two configuration files that can be customized

to modify the behavior of NavPro.

The first configuration file is classifier.config. In it, there are the following customizable

options:

• SERVER_IP_ADDRESS: The IP that the classifier server can be accessed at. It

must be set correctly for connections to be made to the classifier server.

• SERVER_PORT: The port that the classifier server can be accessed at. It must be

set correctly for connections to be made to the classifier server.

• PARSER_POOL_PATH: The path to the parser pool.

• NORMALIZER_POOLPATH: The path to the normalizer pool.

 73

• KNOWLEDGE_CACHE_SERVER: The IP of the knowledge cache server.

• KNOWLEDGE_CACHE_PORT: The port of the knowledge cache server.

• KNOWLEDGE_CACHE_USERNAME: The username to the knowledge cache.

• KNOWLEDGE_CACHE_PASSWORD: The password to the knowledge cache.

• KNOWLEDGE_CACHE_NAME: The database name for the knowledge cache.

• KNOWLEDGE_CACHE_MAX_POOL_SIZE: The maximum number of

connections to pool for connecting to the knowledge cache.

• KNOWLEDGE_CACHE_INITIAL_POOL_SIZE: The minimum number of

connections to pool for connecting to the knowledge cache.

• EVENT_DATABASE_SERVER: The IP of the events database server.

• EVENT_DATABASE_PORT: The port of the events database server.

• EVENT_DATABASE_USERNAME: The username to the events database.

• EVENT_DATABASE_PASSWORD: The password to the events database.

• EVENT_DATABASE_NAME: The name of the events database.

• EVENT_DATABASE_MAX_POOL_SIZE: The maximum number of

connections to pool for connecting to the events database.

• EVENT_DATABASE_INITIAL_POOL_SIZE: The minimum number of

connections to pool for connecting to the knowledge cache.

• USER_DATABASE_SERVER: The IP of the user database server.

• USER_DATABASE_PORT: The port of the user database server.

• USER_DATABASE_USERNAME: The username to the user database.

• USER_DATABASE_PASSWORD: The password to the user database.

• USER_DATABASE_NAME: The name of the user database.

• USER_DATABASE_MAX_POOL_SIZE: The maximum number of connections

to pool for connecting to the user database.

• USER_DATABASE_INITIAL_POOL_SIZE: The minimum number of

connections to pool for connecting to the user database.

The second configuration file is visualizer.config. In it, there are the following

customizable options:

 74

• EVENT_DATABASE_SERVER: The IP of the events database server.

• EVENT_DATABASE_PORT: The port of the events database server.

• EVENT_DATABASE_USERNAME: The username to the events database.

• EVENT_DATABASE_PASSWORD: The password to the events database.

• EVENT_DATABASE_NAME: The name of the events database.

• EVENT_DATABASE_MAX_POOL_SIZE: The maximum number of

connections to pool for connecting to the events database.

• EVENT_DATABASE_INITIAL_POOL_SIZE: The minimum number of

connections to pool for connecting to the knowledge cache.

• USER_DATABASE_SERVER: The IP of the user database server.

• USER_DATABASE_PORT: The port of the user database server.

• USER_DATABASE_USERNAME: The username to the user database.

• USER_DATABASE_PASSWORD: The password to the user database.

• USER_DATABASE_NAME: The name of the user database.

• USER_DATABASE_MAX_POOL_SIZE: The maximum number of connections

to pool for connecting to the user database.

• USER_DATABASE_INITIAL_POOL_SIZE: The minimum number of

connections to pool for connecting to the user database.

• MAX_QUERY_RESULT_COUNT: The maximum number of results to send

back in table form for a metadata request.

There are additional Tomcat-specific configuration files located at

bin/tomcat/conf. For information on how to configure Tomcat, please reference the

Tomcat User Guide.

 If you do not have MySQL pre-installed on your system and rely on the MySQL

installation packaged with the Linux and OS X deployment options, there are additional

MySQL configuration files located at bin/mysql/.	
 For information on how to configure

MySQL, please reference the MySQL User Guide.

 75

11.3 Deployment on Mac OS X
As a prerequisite, NavPro requires that you have a Java Virtual Machine installed

on your machine with the ability to run jar files through the java command.

Included in the deployment.tar.gz archive in the NavPro repository is a file called

NavPro-1.0.pkg. This file is an automated package installer for Mac OS X. To install

NavPro, simply double click this file and follow the instructions in the installation

dialogs. This installer installs NavPro at the location /usr/local/NavPro/. From there,

the startup.sh and shutdown.sh scripts can be run to startup and shutdown NavPro,

respectively.

On first startup, the Linux distribution of NavPro will automatically setup the

database and any permissions settings that need to be configured to run the application.

It is recommended that you already have MySQL installed on your machine as a

prerequisite to installing NavPro. However, if you do not have MySQL, the OS X

deployment of NavPro will use a MySQL installation prepackaged with the installer. This

MySQL instance is installed at /usr/local/NavPro/bin/mysql/.

11.4 Deployment on Linux
As a prerequisite, NavPro requires that you have a Java Virtual Machine installed

on your machine with the ability to run jar files through the java command.

Included in the deployment.tar.gz archive in the NavPro repository is a file called

NavPro-1.0-linux.tar.gz. This file is the NavPro deployment package for Linux. To install

NavPro from this package, untar the package somewhere on your file system and run the

install.sh script in the root of the untar-ed directory. This script will install NavPro at the

location /usr/local/NavPro/. From there, the startup.sh and shutdown.sh scripts can be run

to startup and shutdown NavPro, respectively.

On first startup, the Linux distribution of NavPro will automatically setup the

database and any permissions settings that need to be configured to run the application.

It is recommended that you already have MySQL installed on your machine as a

prerequisite to installing NavPro. However, if you do not have MySQL, the Linux

deployment of NavPro will use a MySQL installation prepackaged with the installer. This

MySQL instance is installed at /usr/local/NavPro/bin/mysql/.

 76

11.5 Deployment on Windows
As a prerequisite, NavPro requires that you have a Java Virtual Machine installed

on your machine with the ability to run jar files through the java command.

Unlike OS X and Linux, deploying on Windows must be done manually. In the

deployment.tar.gz archive included in the repository, there is a NavPro-1.0-Windows.zip

file. This file contains the NavPro binaries needed to run NavPro on Windows.

To install NavPro, you must first install and configure MySQL on your computer.

MySQL is not packaged with the Windows deployment of NavPro. Then, you can unzip

the NavPro-1.0-Windows.zip file anywhere on your file system. After this, you must run

the SQL script located at [Path	
 to	
 NavPro	

Directory]/bin/setup/DatabaseSetup.sql	
 on your MySQL server.

Once you have completed these steps, you can then start NavPro by running the

following commands:

To start the provenance classifier:

java –jar [Path to NavPro Directory]/bin/provenance-classifier.jar

To start the provenance visualizer:

[Path to NavPro Directory]/bin/tomcat/bin/startup.bat

And you can stop NavPro by running the following commands:

 To stop the provenance classifier:

 Open Task Manager -> Select Java -> End Task

To stop the provenance visualizer:

[Path to NavPro Directory]/bin/tomcat/bin/shutdown.bat

11.6 Creating Future Deployments

 To create future deployments of NavPro, you can use the Makefile included in the

deployment.tar.gz archive provided in the repository. To do this, first you must update

 77

the binaries that you modified in the corresponding locations in the deployment folder. A

list of files that must be updated based on the projects you modified can be seen below:

• LPMParser

o If you modified the LPM Parser, you must export the LPM Parser into a

.JAR file and place it in deployment/Shared/ParserPool.

o To export the LPM Parser into a .JAR file, right-click on the LPM Parser

project in Eclipse and choose Export > JAR File

• LPMNormalizer

o If you modified the LPM Normalizer, you must export the LPM

Normalizer into a .JAR file and place it in

deployment/Shared/NormalizerPool.

o To export the LPM Normalizer into a .JAR file, right-click on the LPM

Parser project in Eclipse and choose Export > JAR File

• ProvenanceClassifier

o If you modified the Provenance Classifier, you must export the

Provenance Classifier as a .JAR file and place it in
deployment/Shared/bin.	

o To	
 export	
 the	
 Provenance	
 Classifier	
 into	
 a	
 .JAR	
 file,	
 right-­‐click	
 on	
 the	

ProvenanceClassifier	
 project	
 in	
 Eclipse	
 and	
 choose	
 Export	
 >	
 Runnable	

JAR.	
 When	
 prompted	
 about	
 Library	
 handling,	
 choose	
 the	
 “Package	

required	
 libraries	
 into	
 generated	
 JAR”	
 option.

• ProvenanceCommon

o If	
 you	
 modified	
 the	
 Provenance	
 Common	
 project,	
 you	
 must	
 export	
 the	

Provenance	
 Common	
 project	
 as	
 a	
 .JAR	
 file	
 and	
 place	
 it	
 in	
 the	
 lib	

directories	
 for	
 both	
 ProvenanceClassifier	

(ProvenanceClassifier/lib)	
 and	
 ProvenanceVisualizer	

(ProvenanceVisualizer/WebContent/WEB-­‐INF/lib).

o Then,	
 you	
 must	
 rebuild	
 both	
 the	
 provenance	
 classifier	
 and	

provenance	
 visualizer	
 and	
 follow	
 the	
 instructions	
 for	
 deploying	
 those	

projects.

 78

• ProvenanceVisualizer

o If	
 you	
 modified	
 the	
 Provenance	
 Visualizer	
 project,	
 you	
 must	
 copy	
 the	

contents	
 of	
 the	
 WebContent	
 folder	
 in	
 the	
 ProvenanceVisualizer	
 folder	

to	
 the	
 deployment/Shared/bin/tomcat/webapps/NavPro	
 folder.

Once you have updated the files necessary for your changes, you can use make to create

the deployment packages using any of the following commands:

• make all: Build all deployment packages.

o Note: You can only build the OS X deployment package when running OS

X.

• make osx: Build the OS X deployment package.

o Note: This command will only work on OS X

• make linux: Build the linux deployment package.

• make windows: Build the windows deployment package.

