Middle School Aspirations Study

An Interactive Qualifying Project Report

submitted to the Faculty
of the

WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the

Degree of Bachelor of Science
by

Nora Rizkalla
Date: April 26, 2007

Professor John M. Wilkes, Major Advisor

1. Career Aspiration
2. Worcester Public School System
3. Gender

Abstract

An $8^{\text {th }}$ grade replication study of a citywide $11^{\text {th }}$ grade aspirations survey was done in two Worcester Public middle schools. The gender comparison revealed an $8^{\text {th }}$ grade moment of gender equity in interest in science. Science was the favorite subject of equal numbers of boys and girls and the most popular academic subject overall. Math was somewhat more likely to be a male favorite. In the $11^{\text {th }}$ grade data there is a gender bias in interest in engineering and medicine. Science is also much less popular. The level of awareness of the small schools programs in the Worcester Public High Schools was low. Only 20% of the $8^{\text {th }}$ graders had heard of the "academy" programs, so they could hardly know which one was in which high school and apply accordingly.

Acknowledgements

Without the continual assistance of Professor John Wilkes, Laura Handler and Elizabeth Tomaszewski the direction and influence of this project would have never been fulfilled. It was their expertise and persistent influence that directed the work seen in this report. I would like to thank my partner Zachary Gatreau for his fine data organization and data analysis. I would also like to thank the Worcester Public School system, especially Burt Vasquez, but also the staff at the Burncoat Middle School and Forest Grove Middle School for helping us gather data from the $8^{\text {th }}$ graders. I hope that our findings will answer Mr. Vasquez’ question about awareness of the small school system and prove beneficial to his efforts to improve the Worcester Public School system. I am certain that the Advisory Committee on the Status of Women in Worcester will find our results thought provoking and that they thank the Worcester Public Schools for their assistance as well.

Table of Contents

Abstract. 2
Acknowledgements 3
Table of Contents 4
List of Tables 6
Introduction 7
Gendered Interests in Math and Science 10
Small Schools Program 12
Methodology 15
History of Development Process 16
Survey Questions and Intent 17
Personal Identification 17
Subjects of Interest 17
High School Interest 18
Career Interest 19
Knowledge of Worcester Public High School 19
Importance of Class Schedule 19
Data Collection Procedures 21
Analysis 22
Data Confidence 22
Data Profiles 23
Gendered Interests 25
Discussion 25
Small Schools 25
Conclusions Error! Bookmark not defined.
References 30
Appendices 31
Career Interest Survey 31
Forest Grove Data Summary 32
Burncoat Data Summary 37
Small School Awareness by Subject Interest. 41
Small School Awareness by Cluster Name 57
Gender Comparison of Subject Interest by School 59
Art 59
Computers 61
Foreign Language 63
Home Economics 65
Language Arts 67
Mathematics 69
Music 71
Physical Education 73
Science 75
Social Studies 77
Gender Comparison of Student Self Rating by School 79
Gender Comparison of Small School Awareness by School 81
Gender Comparison of Post High School Plans by School 94
Gender Comparison of High School Plans by School 96
Ethnicity Comparison of Post High School Plans by School 98

List of Tables

Table 1: Enrollment vs. Survey Response ... 22
Table 2: Male, Female Statistics vs. D.O.E. Statistics.. 22
Table 3: Ethnicity Statistics vs. D.O.E. Statistics ... 22
Table 4: Awareness of Small Schools of Students ... 23
Table 5: Percentage of all students ... 23
Table 6: High Interest in School Subjects by Gender... 24
Table 7: Correlating Job Interests From the 2005-2006 Junior Study.............................. 24

Introduction

In 2005, a high school aspirations study was conducted focusing on $11^{\text {th }}$ graders in the Worcester public Schools ${ }^{(1)}$. This gender based study provided valuable information to the Worcester City Manager’s Advisory Committee on the Status of Women in Worcester as to gender influences on career interests. It was determined that Worcester public schools data exhibited more of a gender difference in aspirations than national statistics on actual career choices. As recommended by the Handler and Hogan study, earlier surveying of the WPS students, (ie. in $10^{\text {th }}$ grade) may prove valuable if the information is used to coach students on how to realize their dreams before they schedule their junior and senior courses. This "coaching" based on $10^{\text {th }}$ grade data recommendation was not well received by the guidance dept.

The WPS guidance position was that $10^{\text {th }}$ graders do not yet have stable and meaningful career intentions. Even if the data were reliable it would be useless, due to the fact that decisions about law and medicine are not going to be made in HS. That kind of commitment comes after succeeding in a good college or university. Only a few colleges (such as engineering, arts schools and music conservatories) are specialized at the undergraduate level.

Having dully noted the position taken by guidance, it is also worth noting that other parts of the organization did not agree, nor did we. The institutional research office and office for secondary school initiatives overruled guidance and authorized the $8^{\text {th }}$ and $10^{\text {th }}$ grade studies. What the students aspire to do matters greatly whether or not they actually end yup doing what they set out to do. Having a dream to motivate effort and inspire exploration is more important than what the cream is and unrealistic dreams will be set aside later as new unexpected doors open and exhibit new possibilities. Further, some colleges of the liberal arts variety have better records that other in preparing undergraduate students for careers in medicine, business or law than others.

However, since the extension of career data aspiration data collection into the $10^{\text {th }}$ grade(a year in which the same students are taking the MCAS, was discouraged by the very people expected to help with data collection) a compromise was reached. In the end,
$10^{\text {th }}$ grade data was collected only at two (Doherty and North) high schools, and there it was justified as a way to locate the students who should be invited to take part in a "Future Scientists and Engineers Club". An after school Club would be advised by faculty members not guidance officers. Guidance was unwilling to experiment with the early coaching scheme that originally led to the proposal to collect $10^{\text {th }}$ grade aspirations data.

Unfortunately, the data collection went badly at North where the students were told to do the survey as homework. It went much better at Doherty where ten minutes of class time was devoted to the study. Only the Doherty data set was deemed suitable for detailed analysis. The Doherty data suggested that while most of the 10 and $11^{\text {th }}$ grade aspirations data distributions were similar, there were a few exceptional fields. One of these was engineering. The $10^{\text {th }}$ graders seemed considerably more interested in theis technical field than the $11^{\text {th }}$ graders in the same school. It was hard to know if the finding would generalize since Doherty is the high school with the Engineering and Technology Academy (ETA), the WPS center of excellence in this career area. Certainly by $10^{\text {th }}$ grade the students had heard of it, whether or not they were participants. Partial though it is, the evidence is that the younger students are more interested in science and technology. It was therefore worth seeing it this implied trend extended back to the Middle school, prior to exposure to ETA and also exists in a school without an academy devoted to that subject right in the school.

There were practical reasons why the Secondary Initiatives office was eager to see up gather data on student perceptions and awareness of the Small school program before they reached High school. Thus, on both practical policy relevant and theoretical grounds the study was approved after a 5 month delay from the time it was proposed.

This review of the events leading up to the study gives one an idea of the complexities, time commitment and political connections necessary to collect data in the necessarily bureaucratic public schools. Still, it was worth the effort. The skepticism of guidance led to the refinement of the Handler and Hogan aspirations survey instrument and the replication of the $11^{\text {th }}$ grade aspirations data in another study the next year. The Marsland et al. study, which was carried out concurrent with the Middle school data
collection demonstrated the stability of the aspirations data and put that concern about its potential value to rest. Further, the revised version disaggregated the category of science and engineering used in the first study to two items, one for each field. Art and politics were disaggregated as well and gender difference immediately emerged that had been blurred in the prior study. These changes proved to be a godsend to us, in doing $8^{\text {th }}$ grade to $11^{\text {th }}$ grade comparisons, as will become evident later. It is essential to distinguish science and engineering when one is looking for changes in levels of interest in science, comparing the aspirations of the males and females and comparing that to levels of interest in other professions, such as law and medicine.

The results is a study that has reshaped thinking about the ability to intervene in a timely way and influence student decisions about careers in $9^{\text {th }}$ and 10 grade. This was long though to be way to late to make much of a difference since gender stereotypes were thought to take effect in later elementary school, certainly by $6^{\text {th }}$ grade and be too fixed to influence very much by $9^{\text {th }}$ grade. Imagine our surprise to find that as late as $8^{\text {th }}$ grade male and female interest in science is high and at about the same level. The dramatic gender differences evident by $11^{\text {th }}$ grade, must be taking shape later than expected, in $9^{\text {th }}$ and $10^{\text {th }}$ grade. Thus they are probably not beyond the reach of policy changes and programs aimed at a high school audience.

The Secondary School Initiatives office of the Worcester Public School system requested that the survey also include a section gauging student interest and knowledge of the district's specialized small vocationally oriented schools program. Though most of the small schools were formed while the City had a major grant from the Carnegie foundation, faculty commitment to the idea was mixed and varied from high school to high school. This had led to ambivalence about encouraging the students to transfer to the high school with the right vocational program. This combined with fears on the logistical level that the student movements would not balance out leading to overcrowding in some school and open spaces in others. Further, daily transportation costs money and the Worcester tradition was neighborhood rather than magnet schools. Indeed, there are 40 small K-6 elementary schools so that at that level most people could walk to school. Then ten elementary schools feed into one middle school and the students pass from there to one of 4 major high schools.

Thus, as $8^{\text {th }}$ grade students, children are faced with the decision of selecting which high school to attend. The potential influence of the Small Schools on this decision is currently unknown due to limited publicity about them. However, in this study we have a mandate to openly announce them to half of the Middle school population and find out if this is news to most of the students. Further analysis of student perceptions and reactions these options is required to see if a change in the current system is warranted. By creating a way to measure the current level of awareness of $8^{\text {th }}$ graders and the interest of these students in relocating to Small School even if that requires movement out of their district and away from their friends since elementary school we hope to inform future policy decision on this subject. It seems likely that the likely streams of students from the arts to the technical school and vice versa will balance out and remove concerns about at lest one of the problems inhibiting Worcester from fully taking advantage of its (and Carnegie's) existing investment in establishing these special programs.

Gendered Interests in Math and Science

The staff and faculty of Worcester Public High Schools seem convinced that gender stereotypes about what subjects are male and female and what careers are suitable for each sex form well before the students enter $9^{\text {th }}$ grade. If that is so, then middle school students should display gender differences in their choices of favorite subjects. s. If this is not true, and there is no gender stereotyping yet, this means teachers at the high school level may be able to encourage students to continue to keep their options open and pursue interests that are not stereotypical of their gender.

How one could do this effectively in the classroom is suggested by a WPI curriculum development study done in 1990 by Bertrand Lachance. Burt was a math major interested in the S-STS curriculum movement. In this approach one teaches about science by presenting it in social context. One teaches the science on a need to know basis while exploring a Science, Technology and Society issue. He thought the same approach would work for math. Thus, he created a one month statistics unit for $8^{\text {th }}$ graders called "Statistics, Probability and Dead Fish". It focused on illustrations using toxic wastes in a local lake. To asses the unit he studied the relationship between his
curriculum unit and student interest and scholastic performance.. The study was implemented in two classes in Burncoat Middle School, by taking a month off from teaching algebra to do statistics. The subject was new, a fresh start, to all the students and clearly had an unusually applied flavor. These student had not been taught to consider math an applied subject, so this had considerable impact- especially on the students in the lower track who were considered weaker in math.

The students in the more advanced level class did not seem to like the idea of applying math, and told the teacher so. They got an earful on how math was indeed an applied subject and the illustrations she used tended to be from engineering and science. After that they started to modestly improve their grades over what they had been doing with Algebra. By contrast the weaker class loved the idea of applied math and their grades surged up a letter grade on average, to rival that to the more advanced group's normal mid B level of academic performance. This was a marked improvement. The higher level class was mostly white males, and the class below contained a good number of minorities and females. The class full of minority and female students though stereotypically "less interested and less able" in math and science, certainly connected with this approach to teaching. The other group was not hurt by it, but it was not a revelation and part of the process of self discovery that they really could do math if they tried ${ }^{(2)}$.

Burt's experiment suggests that the female disinclination toward math may have more to do with the way the subject is traditionally presented than with the subject matter itself. Make it relevant to public health and safety and the fate of plants and animals around them and you have their attention. The caretaker and protector of the vulnerable living creatures comes out and it is not just a dull necessary task that one does to make money. If one's social conscience and understanding of environmental issues requires math then math is relevant and interesting stuff that is important to know. With that kind of motivation it will be mastered and as more and more math is mastered one gains confidence in being able to master new subjects. Teachers who seize the moment and believe that want happens in 9th and 10th grade matters for future gender equality can make much more of a difference than they know. It is not too late.

According to the U.S. Department of Education, the number of students in the nation attending a "chosen" public school increased from 11 to 15% in the past 10 years. A chosen public school is a public school other than the student's assigned public school. A student in the Worcester Small Schools program would probably fall into this category. They certainly would if they transferred in from another quadrant in the city school system to attend the school.

The way the small schools program is organized in Worcester has some interesting features from the standpoint of gender differences. It is widely accepted that settling into a decision to pursue a scientific or technical career is harder, and takes longer, for females than males due to prevailing cultural stereotypes. Thus it is a matter of potential concern that only one Worcester High School has a small academy oriented in this direction, the Engineering and Technology Academy (ETA) at Doherty HS. Further the window of time given the students to enter this program is short. If one does not enter it during $9^{\text {th }}$ grade it is closed to you. Thus, it is not surprising that the sex ratio in ETA is typically about 4:1 favoring the males. The academies serving the arts are at Burncoat and South High schools. The one serving the Allied Health Professions is at North High. There are other less prominent ones devoted to government service at North and South High schools.

Since this study was done at Forest Grove, the feeder middle school to Doherty HS, and Burncoat Middle School, the feeder to Burncoat HS, the levels of interest in Engineering and The Arts respectively, the small school strengths of the receiving schools if the students just go where they are scheduled to go if they take no action to transfer, is of special interest. These are good schools and roughly comparable in quality.

According to the Massachusetts Department of Education, 6\% of Forest Grove Middle School Students and 4\% of Burncoat Middle School Students exhibited an advanced proficiency in mathematics, as judged by the Massachusetts Comprehensive Assessment System. Both of these figures are below the state average of 13%, but good by the standards of the large urban areas and better than the other two Middle schools in

Worcester. Further, 3\% of Forest Grove students and 2% of Burncoat students exhibited advanced proficiency in science and technology according to the same assessment system. This is in line with the state figure of 4%. Part of the goal of this study is to determine if these students with a flare for math and science are aware of the small schools magnet program, and the advantages it can offer them. If so, the Forest Grove students should be staying put and the Burncoat students with this interest transferring to Doherty. Vice versa would be the case for the Arts oriented students.

The result of this magnet school effect should be a clustering of the $11^{\text {th }}$ graders interested in technology at Doherty and in the Arts at Burncoat. Actually, the $11^{\text {th }}$ grade distribution of career interests at the two schools is not that different(within 5\%). Such differences as exist could be accounted for by the stimulating of interest in students who had no prior inclination one way or the other but are strong and taking advantage of the only strength supported by the school they are in. Possible explanations for the lack of clustering is that at the critical moment when such a change is possible (going for $8^{\text {th }}$ to $9^{\text {th }}$ grade) the students are either unaware of the differences between the schools, or unwilling to leave their friends and commute to another part of the city to take advantage of the program. The first possible explanation is not hard to test for with a survey item. The other second is a bit harder, but we will attempt to get at the question of social ties inhibiting transfers indirectly to see it that explanation is viable.

Another thing that is relatively easy to do is to determine if the number of students highly proficient in these subjects is similar to the number of students highly interested in the subjects on the survey, and what proportion of these students have committed to the small school program where it is available.

In summation, we designed a study intended to gather information about $8^{\text {th }}$ grade students in the Worcester Public School system through the distribution of a survey. Data was gathered regarding favorite school subjects, future plans, and awareness of the Small School options that Worcester Public Schools offers its students in $9^{\text {th }}$ grade. The analysis of this data should lead to a better understanding of the nature of an $8^{\text {th }}$ graders
perspective on their education and their future. It should also allow us to assess the degree to which things change between $8^{\text {th }}$ and $11^{\text {th }}$ grade and estimate the likely consequences of a policy change. That policy change would be a to launch an information campaign such that in the future $8^{\text {th }}$ graders know about (and are encouraged to transfer so as to attend) the small school more aligned with their interests. It is not clear that specialization should occur so early in academic life. But, having created with special vocationally aligned enrichment programs in each high school to help students get into colleges with similar foci, one might as well let the $8^{\text {th }}$ grade students know that they, and their parents, have a big choice to make.

Methodology

In order to develop a survey geared toward an eighth grade student we first analyzed the survey created for use in the Aspirations Study performed by Laura Handler and Pat Hogan ${ }^{(1)}$. The idea is to create a survey which is similar in format and content to this Aspirations survey in order to allow for a comparative measure to be made in the years to come. Essentially, the survey that is being created for the eighth grade students will serve as a precursor survey to the Aspirations survey given to $10^{\text {th }}$ grade students of the WPHS system. The questions are intended to be similar enough to correlate to the $10^{\text {th }}$ grade survey, while still being relevant to the $8^{\text {th }}$ grade population.

Hypotheses

There is little concentration of $11^{\text {th }}$ grade students in the schools with the small school program that aligns with their stated career interests. Hence, students probably are not shifting quadrants to cluster there, but the programs are the locally supported area of excellence. Hence, students who are at the school anyway and strong across the board are likely to join into the enriched program. That could account for the small differences we are seeing. If no magnet school type attraction is happening, then we theorize that the reason is that the students are unaware of the program at the critical moment when they could or should be making a choice. The majority of eight graders will not have heard about the Small school program before out questionnaire describes it to them.

Hypothesis 1. Less than 50\% of students will report being aware of the small schools program. Most of those who are aware of it will not have heard about it thought official school channels.

The conventional wisdom is that gender stereotypes will already be operative by the age of $8^{\text {th }}$ graders, and will reduce the interest of Females in math, technology and science relative to English and social studies.

Hypothesis $2{ }^{(1)}$ Males are significantly more likely to be interested in math than females, and call it their first or second favorite subject.

Hypothesis $3 \cdot{ }^{(1)}$ Males are significantly more likely to be interested in science than females, and call it their first or second favorite subject.

Hypothesis 4. ${ }^{(1)}$ Males are significantly more likely to be interested in computers than females.

Hypothesis 5 Overall student (male and female combined) interest in Science (considering it a favorite subject or potentially interesting career) will be higher in $8^{\text {th }}$ grade than in $11^{\text {th }}$ grade.

The Questionnaire Development Process

While initially developing the survey instrument, there were two main objectives we were trying to reach,. One was making sure there was some correspondence between the middle school survey and the high school survey developed by Laura Handler and Pat Hogan. The other goal was to make sure the survey was written in language easily understood by an eight grade student.

In the high school survey, students were asked about their very specific career goals. The middle school research team worried that $8^{\text {th }}$ grade was too young an age to gauge specific career intentions. Determining favorite subjects in school became the alternative strategy of inquiry.. A favorite school subject is an easy question for an $8^{\text {th }}$ grader to answer.. It is something they are familiar with thinking about. But favorite school subjects can be used to approximate the type of field a person might be interested in later in life. A person who lists their favorite subjects as math and science would probably be more likely to become an engineer than someone whose favorite subject is music, or who strongly dislikes math.

The survey went through many revisions before being finalized. Along with the agenda of the research team, the survey also had to be approved by the Worcester Public School District. In a late version of the survey, it included word association questions asking the survey taker to list the first word that came to mind when they thought of

Worcester's 4 neighborhood public high schools. These questions were removed from the survey at the request of school officials.

Survey Questions and Intent

The survey was limited to 2 sides of one sheet of paper to control costs and assure teachers that the survey would not take too much of their class time to complete. The words chosen were carefully chosen so as to be clear to $8^{\text {th }}$ graders

Personal Identification

The $11^{\text {th }}$ grade Aspirations survey begins with a personal classification section. In this section the students is asked to provide information identifying them with their school of attendance, guidance counselor, gender, ethnicity, school ID \#, and their parent's occupation. We wanted to see if we could do without the ID \#. The results was two alterations from the Aspiration survey. One is the identity of the student's team in Middle School (this is referred to as a cluster in the High School system). However the two terms serve the same purpose. Secondly, this study is done anonymously, so the students name or ID\# are not required.

As identified in the Aspirations study, this section is used to analyze the data demographically. The demographic variables allow for a look into the variation of responses relative to the students ethnicity, school and of course to look for gender differences.

Subjects of Interest

The Subjects of Interest section was developed in parallel to the Careers of Interest section of the Aspirations survey. The formatting was directly replicated in the gradient format. The research team felt that a gradient was applicable for this section in order to allow for some variation in responses. Also this allows the student to rate their interest in subjects on a continuous (more or less) variable scale rather than a dichotomous 'yes or no’ format.

Content of the student's interest was changed in order to accommodate for the students level of understanding for their career interests. It was believed by the research
team that Eighth grade students could better relate to subjects than to careers. In order to provide a complete list of potential subjects, a course subject list was obtained from the Forest Grove School System.

The purpose of this section is to gain knowledge of not only what interests the student, but why they like those subjects they are most interested in. This is hoped to provide an understanding for a potential change in interest responses found in the Eighth grade survey and the Aspirations survey. For example, if 25% of the student population selects Physical Education as their favorite subject in Eighth grade because it is easy yet the high school survey shows that a very small percentage of students intend on pursuing careers related to sports, it could be concluded that the interest of Eighth grade students is not always relative to what they eventually intend to pursue for a career. It is believed that a student will be more likely to pursue a specific career interest if they are interested in that related subject for stronger reasons than the ease or entertainment in that subject.

High School Interest

This section is not directly connected to the Aspirations survey in any direct way. Mainly what will be learned is whether or not the students have thought about their upcoming high school experience and who they are most likely to turn to for advice. This is a setup section which leads into the section regarding the Small School system which is addressed later.

By looking into the interests of the students in regards to high school options the researchers hope to gain information which allows them to evaluate the potential of performing such a survey in upcoming years. It also provides a point of comparison for future year's surveys to gain knowledge on the effectiveness of the survey for broadening knowledge and thinking of career interest and its importance.

The last two questions of this section are used to evaluate the interest in a tailored high school curriculum. Also, these questions are used to gain ideas from the students for potential ways to present them with valuable knowledge about the future and the opportunities they can create for themselves by participating in a Small School which fits their interests.

Career Interest

Similar to the direction of the Aspiration survey, the career section of the Eighth grade survey is used to gain knowledge on the student's interest. One difference in the application of this section which differs from the Aspirations survey is that in the Eighth grade survey this section is more to gain an understanding of how an Eighth grader thinks about a career and its importance.

Also, the questions within this section are intended to gain an understanding of the concerns an eighth grader has with pursuing a career. This application is taken from the Aspirations survey and will be used as a comparative measure between the two age groups.

Knowledge of Worcester Public High School
In order to evaluate the level of understanding around the Small School system which is setup in the city of Worcester, these questions were devised. It is a main objective of this research to gain an understanding of the student awareness of the High School system and how it works. If it becomes apparent that the students are overall not aware of the system then we will have identified the need for a program. In preparation of this response, questions have been included to provide student input into how a program should be set up.

For those students that are aware of the system, a separate set of questions have been included. These questions are setup to provide an understanding of the potential areas of the system which need more information presented than others. If it is found that nearly all of the students are aware of the system yet none are aware of the application process, or some other specific part of the process, then a program would be geared toward those areas. Also, questions regarding the student's interest in the program and potential barriers which may prevent a student from attending a non-defaulted high school.

Importance of Class Schedule

As a non-direct extension of the Career Interest section, the Importance of Class Schedule section is intended to provide an understanding of the level of thought and
concern put into a student's high school career. This is believed to be important because the researchers feel that if a student shows concern for their high school career then they will more likely have a career goal in mind. These students are the ones which will benefit most from the small school program and therefore will receive more attention post-survey.

In order to extend this section for those students who are less directed in their high school plans, a question has been included which allows the students to suggest a program to increase the awareness of career options and requirements of those careers.

Data Collection Procedures

The surveys were taken on February $6^{\text {th }}$, 2006 at Burncoat Middle School, and February $8^{\text {th }}, 2006$ at Forest Grove Middle School. They were distributed to the offices of these schools, and administered by home room teachers

Analysis

Data Confidence

In total, 682 students took the survey, 396 at Forest Grove and 286 at Burncoat.
Table 1: Enrollment ${ }^{(5)}$ vs. Survey Response

	$8^{\text {th }}$ Grade Enrollment	Sample Size	Response Rate
Forest Grove	476	396	83.2%
Burncoat	345	286	82.9%

The sample was made up of 51.0% males, 44.1% females, and 4.9% no response. These figures align with the Massachusetts Department of Education statistics, as shown in the following table.

Table 2: Male, Female Statistics vs. D.O.E. Statistics ${ }^{(5)}$

	DOE Male	Sample Male	DOE Female	Sample Female
Forest Grove	53.1%	49.2%	46.9%	45.2%
Burncoat	51.4%	52.8%	48.6%	43.0%
Total	52.3%	51.0%	47.8%	44.1%

The ethnicity data is comparatively similar to the DOE statistics, although there is slight variation in the number of white and black students at Forest Grove.

Table 3: Ethnicity Statistics vs. D.O.E. Statistics ${ }^{(5)}$

Ethnicity	DOE FG	Sample FG	DOE BC	Sample BC
African American	12.2%	7.6%	12.2%	11.5%
Asian	7.2%	5.3%	2.6%	3.5%
Hispanic	22.5%	24.5%	38.5%	34.3%
White	56.5%	50.5%	45.7%	44.1%
Other	1.7%	8.1%	1.1%	3.8%

Data Profiles

Table 4: Awareness of Small Schools of Students with High Interest In Particular School Subjects

High interest in:	Yes	No
Math	30	131
Computers	34	130
Science	33	123
Art	21	81
Music	33	124

79.8% of students w/ high interest in math, science, or computers were unaware of the small schools program. This finding is in agreement with Hypothesis 1. Overall, 79.5% of students were uninformed about the small schools program. Students with high interest in technology related programs were not more informed about the programs geared towards them.

Table 5: Percentage of all students
highly interested in Subjects by gender

Subject	\%M	\%F
Math	27.7	22.2
Computers	29.2	22.2
Science	23.7	23.8

There is no significant gender bias towards math, science, and computers. Males are slightly more interested in computers and math, but only by 5% for math and 7% for computers. These statistics do not validate Hypotheses 2 and 3, but correspond to Null Hypotheses 2 and 3.

Science as a favorite subject experienced only a 0.1% difference in popularity among students. This is not a statistically significant difference, and these percentages can be considered equal. This disproves Hypothesis 4 and confirms Null Hypothesis 4.

Table 6: High Interest in School Subjects by

Gender				
Subject	M \#	M \%	F \#	F \%
Math	96	27.7	67	22.2
Computers	101	29.2	67	22.2
Science	82	23.7	72	23.8
Art	43	12.4	62	20.5
Music	68	19.7	87	28.8
Social Studies	56	16.2	58	19.2
Language Arts	25	7.2	61	20.2

Table 7: Correlating Job Interests From the 2005-2006 Junior Study ${ }^{(1)}$

Job	\#M	\%M	\# F	\% F
Engineering	91	23	20	4.6
Computers	73	18.6	29	6.7
Science	17	4.3	23	5.3
Medical Related	73	18.5	388	89.4
Arts	116	29.4	252	58
Politics	66	16.7	50	11.5
Teaching	14	3.6	35	8.1

This table shows the corresponding career interest data from the original survey. Engineering can be considered a channeling of interest in math, science, and computers. Computer related careers are direct analogs for the $8^{\text {th }}$ grade computer interest data. Science is also a direct analog. Medical related fields are considered to be linked to interest in science as a subject indirectly.
$8^{\text {th }}$ grade art and music interest is being compared to careers in the arts, and social studies interest is being compared to political interest.

Discussion

Gender Differences in Interests

Gendered interests do not appear in the $8^{\text {th }}$ grade sample. These students have a pattern of interest in their school subjects that is not determined by traditional sex role expectations. Yet the technical, medical and arts choices made in the $11^{\text {th }}$ grade sample about career aspirations are strongly tied to gender. Looking at the data, by $11^{\text {th }}$ grade females are less likely to channel their interest in technological fields towards engineering, science, and computers. Even though as $8^{\text {th }}$ graders they expressed great interest in them as academic subjects.

Females are much more likely to express interest in medical related fields. Medicine and nursing can be considered applied sciences just as technology is applied science, but there is a difference. Many of the jobs available involve backgrounds in biology and chemistry, and often require the use of technological equipment and computers. Why do females choose these jobs if they are in a hospital rather than a factory? Perhaps working in a hospital is more of a social experience, but not necessarily. The staff interacts with each other, and with patients rather than customers but the differences seems to be more symbolic. It is easy for a hospital employee to feel that they are serving people and helping their community. That is a valued part of the female role in traditional terms. Production and reward, gathering resources for yourself or your family is the contrasting male orientation in stereotypic terms.

It is not directly obvious to most people that technological careers are benefiting their communities, though they may be vital to health and welfare, warmth and food. The type of work being done is often more isolated from other workers or the clients who benefits. Often the real action going on in the back room not out in front where one is dealing with the public. . Technology developers work on small portions of a project and often do not get to have control over the direction of a project as a whole. The sense of workplace community can be harder to find, since employees are working on separate specialized tasks.

Small Schools

Students in the Worcester Public Middle Schools are not aware of the opportunities available to them. Only one fifth of the student population had heard
anything about the small schools programs implemented in the high schools. They were not well informed and had no way to know of the benefits they may have been able to receive. This is particularly unfortunate because students exiting middle school may be able to switch from their designated area high school to another WPHS in order to attend the small schools. If they are unaware of the program, the chance to switch high schools passes unnoticed.

Conclusions

The study hypothesis dealing with awareness of the small schools system was supported. It seems to be lack of awareness of the program that accounts for the lack of clustering in the centers of excellence that the schools system has created in the different high schools. Only about 20% are aware of them as $8^{\text {th }}$ graders, and most of those people heard about them from the parents. Were students encouraged to transfer it is not clear whether they would do so in great numbers or not, as the community base of the schools is strong. On the other hand, at least the arts and technical small school programs might be able to support a fairly even exchange in terms of the numbers of students wanting to transfer.

Turning to the gender questions, the prevailing view that gender stereotypes are stashing earlier than $8^{\text {th }}$ grade and affect "favorite subjects" was not supported with regard to science but got some support with regard to math. There is a moment of gender equity in the $8^{\text {th }}$ grade science classes. Science is popular and about 20% of both the males and females consider it their favorite subject. The $11^{\text {th }}$ grade data indicates only 5% of each sex expressing strong interest in a science career, but the missing males seem to be interested in engineering now, as 20% express an interest in that. Only 5% of the females express interest in engineering. On the other hand, three times as many females and males are interested in the medical profession by 11th grade. The $8^{\text {th }}$ grade males are somewhat more interested in math, so the interest in science in $8^{\text {th }}$ grades may have referred to Biology for the females and other physical sciences for the males. We did not look into that and should have.

Females are even less likely to be interested in computers and the computer profession than they are to be interested science and in engineering. On the other hand this may have as much to do with the way the materials are presented as the subject matter itself.

The view that the differences in gender identity are longstanding in their connection to what kind of subject and work are appropriate for each sex by the time one gets to high school was not supported. The results of the process of differentiation by sex that is so clearly displayed by $11^{\text {th }}$ grade seems to take shape in only the two prior
years when one is already at high school. This is good news in terms of the potential for policy interventions to try to improve the prospects for gender equity.

Future research should include an effort to tie down when and how the gender differences appear after $8^{\text {th }}$ grade and their relationship, if any, to gender identity as measured by the Bem Sex Role Inventory (which measures masculine, androgynous and feminine self images among both men and women). More work also needs to be done on the symbolic association that makes professional jobs appeal to or repel young women.

Science and technology related careers may not immediately seem like jobs providing nurture and support to a community. But, there are many ways technology benefits society, including both public health and family safety. Imposing a framework relating math to community issues has sparked diverse (especially female) student interest in the past ${ }^{(2)}$, and maybe it should be tried again, given the Math science difference on is finding among the $8^{\text {th }}$ graders.. If students with "save the world" tendencies felt a connection to the subject material, their performance and satisfaction would increase. A sense of unity and identity with other technology minded students would also encourage students, particularly females, to choose technological careers.

There is already a system of support and encouragement for the technically inclined people in the Worcester public schools. The ETA small school provides a cooperative learning environment for like minded students with high interest in specialized technical careers. Other potential career areas have their supportive academies as well. Either the $8^{\text {th }}$ graders have to go to them or some sort of outreach from the academy to the students with that same interest at other schools those without a small school in that field) needs to be created. Maybe the future Scientist and Engineer Clubs at high schools other than Doherty could affiliate with ETA is some fashion.

Sadly, very few students at the $8^{\text {th }}$ grade level know of the program. Even if they did know of it would probably not help the girls very much since it requires a nearly immediate commitment (in $9^{\text {th }}$ grade) to a career line that is harder for women than for men to commit to at that age. Engineering and science careers are highly paid positions that are always seeking new employees. There is no reason for the women of Worcester to miss out on those opportunities when they could easily be encouraged to find fulfillment and satisfaction in those jobs.

The current system channels too many of them to aspire to medical careers where the numbers interested really can't be accommodated and those that do succeed in getting into a college that offers a premed program still face a truly arduous, long and expensive period of training compared to that of engineering. If the 9 and $10^{\text {th }}$ grade females can be induced to keep their technical profession options open, more of them will succeed in becoming respected professionals who are making a difference.

References

${ }^{(1)}$ Handler, L.; Hogan, P. Gender Based Comparative Survey of Public HS Students, 2005.
${ }^{(2)}$ LaChance, B. Teaching Math Via an M-STS Curricula, 1990.
${ }^{(3)}$ U.S. Department of Education, National Center for Education Statistics. (2004). The Condition of Education 2004 (NCES 2004-076), Indicator 25.
${ }^{(4)}$ Massachusetts Department of Education, (2005) Massachusetts Comprehensive Assessment System
${ }^{(5)}$ Massachusetts Department of Education, Directory Information: District of Worcester, Retrieved 2006 from http://profiles.doe.mass.edu/

Appendices

Career Interest Survey

PERSONAL INFORMATION
Guidance Counselor: \qquad School ID\#: \qquad Grade: \qquad
School: \qquad Cluster Name: \qquad Gender: $\square \mathrm{M} \square \mathrm{F}$
Ethnicity: \square Asian \square Black \square Hispanic \square White \square Other
Parents'/Guardians' Occupation: (please list the title or occupation, NOT name or company)
Father: \qquad Mother: \qquad Other: \qquad
Where indicated, please circle your answer on a scale of 1 to 5: 1-least likely/interested, 5 -most likely/interested

HIGH SCHOOL INTEREST
What are your high school plans?
\square Go where you parents want you to
\square Go where your friends go
\square Go to Vocational High School
\square Go to neighborhood high school
\square Go to different Public High School
\square Go to private high school
\square I don't know

How interested would you be in participating in a program which will help you prepare for your career interest in high school?

1	2	3	4	5

On a scale from 1 to 5 , how would you rate yourself as a student (1- poor student, 5 -excellent student)?

1	2	3	4	5

SUBJECTS OF INTEREST

Circle your interest level in the following subjects (1—Not interested, 2 - A little interested, 3 - Pretty Interested, 4-Very interested):

Art	1	2	3	4
Computers	1	2	3	4
Foreign Language	1	2	3	4
Home Ec.	1	2	3	4
Language Arts	1	2	3	4
Math	1	2	3	4
Music	1	2	3	4
Phys. Ed	1	2	3	4
Science	1	2	3	4
Social Studies	1	2	3	4

Please write your favorite subject(s) on the lines below:

How important is it to challenge yourself with the classes you take?

1	2	3	4	5

How important is it to take classes in high school that are directed toward your career interest?

```
|1
```

Would you take advantage of an assistance program which helped you select your high school classes?

What type of a program would help you prepare your high school class schedule?
\square Career Fair with speakers from various careers
\square Written program description
\square Program outline you could follow for your careerOther

KNOWLEDGE OF WPHS

Are you aware of the Worcester Public School 'Small School' system? $\square \mathrm{Y} \square \mathrm{N}$

If Yes,

1) Do you or your parents understand the application process? $\square \mathrm{Y} \square \mathrm{N}$
2) Do the opportunities interest you? $\square \mathrm{Y} \square \mathrm{N}$
3) Do you or your parents intend to look into attending one of these schools? $\square \mathrm{Y} \square \mathrm{N}$
4) How were you informed of the 'Small School' system? (Check all that apply)
\square Guidance counselor \square Friends

\square Teacher
 \square Parents

\square Other
5) Are you willing to select a WPHS based on your interests? $\square \mathrm{Y} \square \mathrm{N}$
6) What do you feel makes selecting a different high school difficult?

\square Friends \square Academics
 \square Parents \square Confusion about the process

 \square Athletics \square OtherCAREER INTEREST
What are your plans following high school?

\square Start Working	\square Start a family
\square Go to college	\square Not sure
\square Travel	\square Other

Do you have a clear picture of what you want to be when you get older?One clear goalMany ideasA few goalsSome idea, but not well defined
If yes, please list any/all of your goals as well as careers or jobs that you are interested in pursuing:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How long have you had this goal?

$\square 1$ week to 1 month
$\square 1$ month to 6 months6 months to 1 yearLonger than 1 year
Is there any thing that would prevent you from pursuing a goal?
\square Low gradesYou don't know enough about the careerPoor test scoresNone of these things worry me
\square College is too expensiveFamily wishes
\square Other

How interested are you in learning about the Small School system?

\section*{| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |}

Forest Grove Data Summary

	Art	Foreig Comput ers	Langua ge	Hom e Ec	LA	Mat h	Mus ic	PE	Scien ce	SS
Average	2.3	2.6	2.0	2.4	2.3	2.6	2.2	3.1	2.6	2.4

Respon se										
1st Fav. Subj	14	27	16	12	58	99	4	67	58	34
Percent age	3.5	6.8	4.0	3.0	14.6	25.0	1.0	16.9	14.6	8.6
2nd Fav. Subj	16	27	13	17	55	70	12	48	73	42
Percent age	4.0	6.8	3.3	4.3	13.9	17.7	3.0	12.1	18.4	10.6 6
3rd Fav. Subj	18	39	17	27	38	32	12	46	50	46
Percent age	4.5	9.8	4.3	6.8	9.6	8.1	3.0	11.6	12.6	11. 6
Overall	4.0	7.8	3.9	4.7	12.7	16.9	2.4	13.6	15.2	10.

	Where parents want you to	Where friends go	Vocational	Default	Different	Private	Don't know	No Response
HS Plan	42	25	86	110	19	27	82	5
Percentage	10.6%	6.3%	21.7%	27.8%	4.8%	6.8%	20.7%	1.3%

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Career Interest Program	11	34	84	121	133
Student Self- Rating	1	4	124	189	71
Importance to Chall.	4	11	90	148	127
HS Course Direction	0	1	5	25	93

	Yes	No
Advantage Program?	260	115
Percentage	65.7	29.0

	Career Fair	Written Descrip.	Program Outline	Other
Type of Program	94	42	100	125
Percentage	23.7	10.6	25.3	31.6

	Yes	No	Percent Aware
Small School	82		28%
Awareness	20.7	289	
Percentage	73.0		

	Yes	No
Understand App. Process?	65	15

Interest in Opportunities	61	19
 Intention of Attending Yes No		

	Guidance	Teacher	Friends	Parents	Other
How Informed	9	26	22	28	20

	Yes	No
Willing to Select	56	22

	Friends	Academi cs	Parents	Confusio \mathbf{n}	Athletics	Other
Difficulty in Attending	30	23	21	13	9	13

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Interest in Learning More	52	57	103	65	22
Percentage	13.1%	14.4%	26.0%	16.4%	5.6%
Average Response	2.78				

	Start Working	Start Family	College	Not Sure	Travel	Other	Respo nse
Post HS Plan	35	3	253	78	2	6	19
Percentage	8.8%	0.8%	63.9%	19.7%	0.5%	1.5%	0.0%

	No	One Clear Goal	Many Ideas	A Few Goals	Not Well Defined
Clear Career Goal	61	76	85	97	53

	1 Week to 1 Month	1-6 Months	Months to 1 Year	Longer than Year
Length of Goal	14	27	45	215

	Low Grades	Lack of Info.	Poor Test Scores	Nothing	Expens \mathbf{e}	Family Wishe \mathbf{s}	Other
Prevention	100	52	55	83	51	21	61

	Male	Female	No Response
Gender	195	179	22
Percentage	49.2%	45.2%	5.6%

	Asian	Black	Hispanic	White	Other	No Respon

						se
Ethnicity	21	30	97	200	32	16
Percentage	5.3%	7.6%	24.5%	50.5%	8.1%	4.0%

	Art	Computers	Foreign Language	Home Ec	LA	Math	Music	PE	Science	SS
Male	400	516	351	405	418	535	391	662	507	456
Average Response	2.1	2.6	1.8	2.1	2.1	2.7	2.0	3.4	2.6	2.3
Female	455	468	401	483	465	452	428	482	469	430
Average Response	2.5	2.6	2.2	2.7	2.6	2.5	2.4	2.7	2.6	2.4
No Response	52	58	37	47	38	44	44	66	53	50
Average Response	2.4	2.6	1.7	2.1	1.7	2.0	2.0	3.0	2.4	2.3

	Art	Computers	Foreign Language	Home Ec	LA	Math	Music	PE	Science	SS
Asian	55	67	43	62	54	62	44	70	55	46
Average Response	2.6	3.2	2.0	3.0	2.6	3.0	2.1	3.3	2.6	2.2
Black	68.0	69.0	44.0	59.0	67.0	76.0	62.0	95.0	75.0	70.0
Average Response	2.3	2.3	1.5	2.0	2.2	2.5	2.1	3.2	2.5	2.3
Hispanic	227	246	209	229	220	261	217	301	249	215
Average Response	2.3	2.5	2.2	2.4	2.3	2.7	2.2	3.1	2.6	2.2
White	451	538	402	481	481	515	431	602	529	510
Average Response	2.3	2.7	2.0	2.4	2.4	2.6	2.2	3.0	2.6	2.6
Other	70	85	65	76	73	81	76	96	86	70
Average Response	2.2	2.7	2.0	2.4	2.3	2.5	2.4	3.0	2.7	2.2
No Response	36	37	26	28	26	36	33	46	35	25
Average Response	2.3	2.3	1.6	1.8	1.6	2.3	2.1	2.9	2.2	1.6

	Where parents want you to	Where friends go	Vocati onal	Default	Differe nt	Privat e	Don't know	No Resp ons
Male	24	9	51	45	8	17	37	4
Percentag e	12.3%	4.6%	26.2%	23.1%	4.1%	8.7%	19.0%	2.1%
Female	15	14	33	59	10	7	40	1
Percentag e	8.4%	7.8%	18.4%	33.0%	5.6%	3.9%	22.3%	0.6%
No Response	3	2	2	6	1	3	5	0
Percentag e	13.6%	9.1%	9.1%	27.3%	4.5%	13.6%	22.7%	0.0%

	Start Working	Start Family	Go to College	Not Sure	Travel	Other	Rospo nse
Male	23	2	122	33	1	3	11
Percentage	11.8%	1.0%	62.6%	16.9%	0.5%	1.5%	5.6%
Female	11	1	119	40	1	2	5
Percentage	6.1%	0.6%	66.5%	22.3%	0.6%	1.1%	2.8%
No Response	1	0	12	5	0		
Percentage	4.5%	0.0%	54.5%	22.7%	0.0%	4.5%	13.6%

						No Respon se
Male	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	5
Percentage	0.5%	2	63	95	29	5
Female	0	1.0%	32.3%	48.7%	14.9%	2.6%
Percentage	0.0%	1	55	86	37	0
No Response	0	0.6%	30.7%	48.0%	20.7%	0.0%
Percentage	0.0%	4.5%	6	8	5	2

Burncoat Data Summary

	Art	Computers	Foreign Language	Home Ec	LA	Math	Music	PE	Science
SS									
Average Response	2.2	2.6	2.3	2.1	2.1	2.3	2.5	3.1	2.7
1st Fav. Subj	47	16	14	1	19	37	22	66	36
Percentage	16.4	5.6	4.9	0.3	6.6	12.9	7.7	23.1	12.6
2nd Fav. Subj	24	18	18	5	21	46	17	39	54
Percentage	8.4	6.3	6.3	1.7	7.3	16.1	5.9	13.6	18.9
3rd Fav. Subj	25	11	21	13	20	28	13	4.7	
Percentage	8.7	3.8	7.3	4.5	7.0	9.8	4.5	14.7	15.7
Overall	11.2	5.2	6.2	2.2	7.0	12.9	6.1		

	Where parents want you to	Where friends go	Vocational	Default	Different	Private	Don't know	No Response
HS Plan	19	6	75	94	18	12	59	3
Percentage	6.6%	2.1%	26.2%	32.9%	6.3%	4.2%	20.6%	1.0%

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Career Interest Program	5				
Student Self- Rating	19	66	76	115	
Importance to Chall.	1	14	86	134	47
HS Course Direction	5	18	83	116	61

	Yes	No
Advantage	229	49
Program?	80.1	17.1
Percentage		

	Career Fair	Written Descrip.	Program Outline	Other
Type of Program	111	36	62	75
Percentage	38.8	12.6	21.7	26.2

	Yes	No
Small School	49	219
Awareness	17.1	76.6
Percentage		

	Yes	No
Understand		
App.		
Process?		43

	Yes	No

	Yes	No
Intention of Attending		31

	Guidance	Teacher	Friends	Parents	Other
How Informed	6		7		14

	Yes	No
Willing to Select	32	

	Friends	Academics	Parents	Confusion	Athletics	Other
Difficulty in						
Attending	22	5		6	11	3

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Interest in Learning More	27				
Percentage	9.4	14.7	31.1	15.0	16.1
Average Response	3.0		89	43	46

	Start Working	Start Family	College	Not Sure	Travel	Other	No Response
Post HS Plan	25	57	165	28	4	3	4
Percentage	8.7%	19.9%	57.7%	9.8%	1.4%	1.0%	1.4%

	No	One Clear Goal	Many Ideas	A Few Goals	Not Well Defined
Clear Career Goal	37				

	1 Week to 1 Month	1-6 Months	6 Months to 1 Year	Longer than Year
Length of Goal	10	12	23	182

	Low Grades	Lack of Info.	Poor Test Scores	Nothing	Expense	Family Wishes	Other
Prevention	51		9	8	59	22	4

	Male	Female	No Response
Gender	151	123	12
Percentage	52.8%	43.0%	4.2%

	Asian	Black	Hispanic	White	Other	No Response
Ethnicity	10		33	98	126	11

Percentage	3.5%	11.5%	34.3%	44.1%	3.8%	2.8%

	Art	Computers	Foreign Language	Home Ec	LA	Math	Music	PE	Science
SS									
Male	334	420	302	282	305	355	372	507	413
Average Response	2.2	2.8	2.0	1.9	2.0	2.4	2.5	3.4	2.7
Female	278	300	313	288	277	285	322	333	323
Average Response	2.3	2.4	2.5	2.3	2.3	2.3	2.6	2.7	2.6
No Response	24	24	38	27	31	29	28	35	34
Average Response	2.0	2.0	3.2	2.3	2.6	2.4	2.3	2.9	2.8

	Art	Computers	Foreign Language	Home Ec	LA	Math	Music	PE	Science	SS
Asian	21	26	21	18	20	26	24	34	25	21
Average Response	2.1	2.6	2.1	1.8	2.0	2.6	2.4	3.4	2.5	2.1
Black	74	89	74	71	77	90	96	116	91	89
Average Response	2.2	2.7	2.2	2.2	2.3	2.7	2.9	3.5	2.8	2.7
Hispanic	231	265	225	211	195	220	267	314	258	218
Average Response	2.4	2.7	2.3	2.2	2.0	2.2	2.7	3.2	2.6	2.2
White	275	318	289	261	289	288	287	351	348	305
Average Response	2.2	2.5	2.3	2.1	2.3	2.3	2.3	2.8	2.8	2.4
Other	22	30	26	25	19	32	30	42	30	29
Average Response	2.0	2.7	2.4	2.3	1.7	2.9	2.7	3.8	2.7	2.6
No Response	13	16	18	11	13	13	18	18	18	15
Average Response	1.6	2.0	2.3	1.4	1.6	1.6	2.3	2.3	2.3	1.9

	Where parents want you to	Where friends go	Vocational	Default	Different	Private	Don't know	No Response
Male	11	2	47	38	11	7	33	2
Percentage	7.3%	1.3%	31.1%	25.2%	7.3%	4.6%	21.9%	1.3%
Female	7	3	26	52	7	5	22	1
Percentage	5.7%	2.4%	21.1%	42.3%	5.7%	4.1%	17.9%	0.8%
No Response	1	1	2	4	0	0	4	0
Percentage	8.3%	8.3%	16.7%	33.3%	0.0%	0.0%	33.3%	0.0%

| | Start
 Working | Start
 Family | Go to
 College | Not Sure |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | Travel $\left.$| Other |
| :--- | | No |
| :--- |
| Response | \right\rvert\,

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	No Response
Male	1	7	50	67	22	4
Percentage	0.7%	4.6%	33.1%	44.4%	14.6%	2.6%
Female	0	7	35	59	22	0
Percentage	0.0%	5.7%	28.5%	48.0%	17.9%	0.0%
No Response	0	0	1	8	3	0
Percentage	0.0%	0.0%	8.3%	66.7%	25.0%	0.0%

| Mode
 Response | Art | Computers | Foreign
 Language | Home Ec | LA | Math | Music | PE | Science |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | SS | SA |
| :--- |
| Male |

Small School Awareness by Subject Interest
Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Small Sch. Awar. * Art * School	598	87.7\%	84	12.3\%	682	100.0\%
Small Sch. Awar. * Computers * School	604	88.6\%	78	11.4\%	682	100.0\%
Small Sch. Awar. * Foreign Language * School	593	87.0\%	89	13.0\%	682	100.0\%
Small Sch. Awar. * Home Ec* School	590	86.5\%	92	13.5\%	682	100.0\%
Small Sch. Awar. * LA * School	603	88.4\%	79	11.6\%	682	100.0\%
Small Sch. Awar. * Math * School	608	89.1\%	74	10.9\%	682	100.0\%
Small Sch. Awar. * Music * School	597	87.5\%	85	12.5\%	682	100.0\%
Small Sch. Awar. * PE * School	611	89.6\%	71	10.4\%	682	100.0\%
Small Sch. Awar. * Science * School	609	89.3\%	73	10.7\%	682	100.0\%
Small Sch. Awar. * SS * School	607	89.0\%	75	11.0\%	682	100.0\%

Crosstab

School				Art				Total
				1	2	3	4	
BMS	Small Sch. YesAwar.		Count	14	18	10	6	48
			\% within Small Sch. Awar.	29.2\%	37.5\%	20.8\%	12.5\%	100.0\%
			\% within Art	20.3\%	22.8\%	13.5\%	15.8\%	18.5\%
		No	Count	55	61	64	32	212
			\% within Small Sch. Awar.	25.9\%	28.8\%	30.2\%	15.1\%	100.0\%
			\% within Art	79.7\%	77.2\%	86.5\%	84.2\%	81.5\%
	Total		Count	69	79	74	38	260
			\% within Small Sch. Awar.	26.5\%	30.4\%	28.5\%	14.6\%	100.0\%
			\% within Art	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%
FG	Small Sch. Awar.	Yes	Count	14	25	19	15	73
			\% within Small Sch. Awar.	19.2\%	34.2\%	26.0\%	20.5\%	100.0\%
			\% within Art	25.5\%	21.0\%	19.0\%	23.4\%	21.6\%
		No	Count	41	94	81	49	265
			\% within Small Sch. Awar.	15.5\%	35.5\%	30.6\%	18.5\%	100.0\%
			\% within Art	74.5\%	79.0\%	81.0\%	76.6\%	78.4\%
	Total		Count	55	119	100	64	338
			\% within Small Sch. Awar.	16.3\%	35.2\%	29.6\%	18.9\%	100.0\%
			\% within Art	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	2.518^{a}	3	.472
	Likelihood Ratio	2.566	3	.463
	Linear-by-Linear	1.186	1	.276
	Association	260		
	N of Valid Cases	1.034^{b}	3	.793
FG	Pearson Chi-Square	1.025	3	.795
	Likelihood Ratio	.102	1	.749
	Linear-by-Linear	338		
	Association			
	N of Valid Cases			

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 7.02 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 11.88 .

Symmetric Measures

School		Value	Approx. Sig.	
BMS	Nominal by Nominal	Contingency Coefficient	.098	.472
	N of Valid Cases		260	
FG	Nominal by Nominal	Contingency Coefficient	.055	.793
	N of Valid Cases		338	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Crosstab

School				Computers				Total
				1	2	3	4	
BMS	Small Sch. Awar.	Yes	Count	7	8	22	11	$\begin{array}{r} 48 \\ 100.0 \% \\ 18.7 \% \end{array}$
			\% within Small Sch. Awar.	14.6\%	16.7\%	45.8\%	22.9\%	
			\% within Computers	18.4\%	12.3\%	25.9\%	15.9\%	
		No	Count	31	57	63	58	$\begin{array}{r} 209 \\ 100.0 \% \\ 81.3 \% \end{array}$
			\% within Small Sch. Awar.	14.8\%	27.3\%	30.1\%	27.8\%	
			\% within Computers	81.6\%	87.7\%	74.1\%	84.1\%	
	Total		Count	38	65	85	69	$\begin{array}{r} 257 \\ 100.0 \% \\ 100.0 \% \end{array}$
			\% within Small Sch. Awar.	14.8\%	25.3\%	33.1\%	26.8\%	
			\% within Computers	100.0\%	100.0\%	100.0\%	100.0\%	
FG	Small Sch. Awar.	Yes	Count	9	21	22	23	$\begin{array}{r} 75 \\ 100.0 \% \\ 21.6 \% \end{array}$
			\% within Small Sch. Awar.	12.0\%	28.0\%	29.3\%	30.7\%	
			\% within Computers	28.1\%	22.3\%	17.5\%	24.2\%	
		No	Count	23	73	104	72	272
			\% within Small Sch. Awar.	8.5\%	26.8\%	38.2\%	26.5\%	100.0\%
			\% within Computers	71.9\%	77.7\%	82.5\%	75.8\%	78.4\%
	Total		Count	32	94	126	95	347
			\% within Small Sch. Awar.	9.2\%	27.1\%	36.3\%	27.4\%	100.0\%
			\% within Computers	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	4.983^{a}	3	.173
	Likelihood Ratio	4.945	3	.176
	Linear-by-Linear	.148		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 7.10.
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 6.92 .

Symmetric Measures

School		Value	Approx. Sig.	
BMS	Nominal by Nominal	Contingency Coefficient	.138	.173
	N of Valid Cases		257	
FG	Nominal by Nominal	Contingency Coefficient	.084	.477
	N of Valid Cases		347	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Crosstab

School				Foreign Language				Total
				1	2	3	4	
BMS	Small Sch. Awar.	Yes	Count	10	13	13	12	48
			\% within Small Sch. Awar.	20.8\%	27.1\%	27.1\%	25.0\%	100.0\%
			\% within Foreign Language	14.7\%	19.7\%	18.3\%	23.5\%	18.8\%
		No	Count	58	53	58	39	208
			\% within Small Sch. Awar.	27.9\%	25.5\%	27.9\%	18.8\%	100.0\%
			\% within Foreign Language	85.3\%	80.3\%	81.7\%	76.5\%	81.3\%
	Total		Count	68	66	71	51	256
			\% within Small Sch. Awar.	26.6\%	25.8\%	27.7\%	19.9\%	100.0\%
			\% within Foreign Language	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%
FG	Small Sch. Awar.	Yes	Count	28	16	20	10	74
			\% within Small Sch. Awar.	37.8\%	21.6\%	27.0\%	13.5\%	100.0\%
			\% within Foreign Language	25.2\%	17.0\%	22.2\%	23.8\%	22.0\%
		No	Count	83	78	70	32	263
			\% within Small Sch. Awar.	31.6\%	29.7\%	26.6\%	12.2\%	100.0\%
			\% within Foreign Language	74.8\%	83.0\%	77.8\%	76.2\%	78.0\%
	Total		Count	111	94	90	42	337
			\% within Small Sch. Awar.	32.9\%	27.9\%	26.7\%	12.5\%	100.0\%
			\% within Foreign Language	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	1.543^{a}	3	.672
	Likelihood Ratio	1.544	3	.672
	Linear-by-Linear	1.166	1	.280
	Association	256		
	N of Valid Cases	2.116^{b}	3	.549
FG	Pearson Chi-Square	2.174	3	.537
	Likelihood Ratio	.055	1	.815
	Linear-by-Linear	337		
	Association			
	N of Valid Cases			

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 9.56 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 9.22 .

Symmetric Measures

School		Value	Approx. Sig.	
BMS	Nominal by Nominal	Contingency Coefficient	.077	.672
	N of Valid Cases		256	
FG	Nominal by Nominal	Contingency Coefficient	.079	.549
	N of Valid Cases		337	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Crosstab

School				Home Ec				Total
				1	2	3	4	
BMS	Small Sch.	Yes	Count	13	6	15	12	46
	Awar.		\% within Small Sch. Awar.	28.3\%	13.0\%	32.6\%	26.1\%	100.0\%
			\% within Home Ec	15.7\%	9.4\%	28.3\%	24.5\%	18.5\%
		No	Count	70	58	38	37	203
			\% within Small Sch. Awar.	34.5\%	28.6\%	18.7\%	18.2\%	100.0\%
			\% within Home Ec	84.3\%	90.6\%	71.7\%	75.5\%	81.5\%
	Total		Count	83	64	53	49	249
			\% within Small Sch. Awar.	33.3\%	25.7\%	21.3\%	19.7\%	100.0\%
			\% within Home Ec	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%
FG	Small Sch.	Yes	Count	14	16	26	18	74
	Awar.		\% within Small Sch. Awar.	18.9\%	21.6\%	35.1\%	24.3\%	100.0\%
			\% within Home Ec	24.6\%	15.5\%	24.8\%	23.7\%	21.7\%
		No	Count	43	87	79	58	267
			\% within Small Sch. Awar.	16.1\%	32.6\%	29.6\%	21.7\%	100.0\%
			\% within Home Ec	75.4\%	84.5\%	75.2\%	76.3\%	78.3\%
	Total		Count	57	103	105	76	341
			\% within Small Sch. Awar.	16.7\%	30.2\%	30.8\%	22.3\%	100.0\%
			\% within Home Ec	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	8.530^{a}	3	.036
	Likelihood Ratio	8.715	3	.033
	Linear-by-Linear	3.810		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 9.05 .
b. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 12.37 .

	Symmetric Measures			
School				
BMS	Nominal by Nominal	Contingency Coefficient	.182	.036
	N of Valid Cases		249	
FG	Nominal by Nominal	Contingency Coefficient	.098	.343
	N of Valid Cases		341	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Crosstab

School				LA				Total
				1	2	3	4	
BMS	Small Sch.	Yes	Count	15	12	14	6	47
	Awar.		\% within Small Sch. Awar.	31.9\%	25.5\%	29.8\%	12.8\%	100.0\%
			\% within LA	23.8\%	12.8\%	18.9\%	21.4\%	18.1\%
		No	Count	48	82	60	22	212
			\% within Small Sch. Awar.	22.6\%	38.7\%	28.3\%	10.4\%	100.0\%
			\% within LA	76.2\%	87.2\%	81.1\%	78.6\%	81.9\%
	Total		Count	63	94	74	28	259
			\% within Small Sch. Awar.	24.3\%	36.3\%	28.6\%	10.8\%	100.0\%
			\% within LA	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%
FG	Small Sch.	Yes	Count	8	28	22	15	73
	Awar.		\% within Small Sch. Awar.	11.0\%	38.4\%	30.1\%	20.5\%	100.0\%
			\% within LA	14.8\%	23.9\%	18.8\%	26.8\%	21.2\%
		No	Count	46	89	95	41	271
			\% within Small Sch. Awar.	17.0\%	32.8\%	35.1\%	15.1\%	100.0\%
			\% within LA	85.2\%	76.1\%	81.2\%	73.2\%	78.8\%
	Total		Count	54	117	117	56	344
			\% within Small Sch. Awar.	15.7\%	34.0\%	34.0\%	16.3\%	100.0\%
			\% within LA	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	3.425^{a}	3	.331
	Likelihood Ratio	3.489	3	.322
	Linear-by-Linear	.039	1	.844
	Association	259		
	N of Valid Cases	3.286^{b}	3	.350
FG	Pearson Chi-Square	3.343	3	.342
	Likelihood Ratio	.918	1	.338
	Linear-by-Linear	344		
	Association			
	N of Valid Cases			

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 5.08 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 11.46 .

Symmetric Measures

School		Value	Approx. Sig.	
BMS	Nominal by Nominal	Contingency Coefficient	.114	.331
	N of Valid Cases		259	
FG	Nominal by Nominal	Contingency Coefficient	.097	.350
	N of Valid Cases		344	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Crosstab

School				Math				Total
				1	2	3	4	
BMS	Small Sch.	Yes	Count	15	11	13	9	48
	Awar.		\% within Small Sch. Awar.	31.3\%	22.9\%	27.1\%	18.8\%	100.0\%
			\% within Math	21.7\%	17.2\%	16.7\%	17.6\%	18.3\%
		No	Count	54	53	65	42	214
			\% within Small Sch. Awar.	25.2\%	24.8\%	30.4\%	19.6\%	100.0\%
			\% within Math	78.3\%	82.8\%	83.3\%	82.4\%	81.7\%
	Total		Count	69	64	78	51	262
			\% within Small Sch. Awar.	26.3\%	24.4\%	29.8\%	19.5\%	100.0\%
			\% within Math	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%
FG	Small Sch.	Yes	Count	13	19	21	21	74
	Awar.		\% within Small Sch. Awar.	17.6\%	25.7\%	28.4\%	28.4\%	100.0\%
			\% within Math	22.8\%	26.8\%	19.4\%	19.1\%	21.4\%
		No	Count	44	52	87	89	272
			\% within Small Sch. Awar.	16.2\%	19.1\%	32.0\%	32.7\%	100.0\%
			\% within Math	77.2\%	73.2\%	80.6\%	80.9\%	78.6\%
	Total		Count	57	71	108	110	346
			\% within Small Sch. Awar.	16.5\%	20.5\%	31.2\%	31.8\%	100.0\%
			\% within Math	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	$.752^{\mathrm{a}}$	3	.861
	Likelihood Ratio	.733	3	.865
	Linear-by-Linear	.412		1

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 9.34 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 12.19 .

Symmetric Measures

School		Value	Approx. Sig.	
BMS	Nominal by Nominal	Contingency Coefficient	.053	.861
	N of Valid Cases		262	
FG	Nominal by Nominal	Contingency Coefficient	.073	.599
	N of Valid Cases		346	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Crosstab

School				Music				Total
				1	2	3	4	
BMS	Small Sch. Awar.	Yes	Count	10	9	10	18	47
			\% within Small Sch. Awar.	21.3\%	19.1\%	21.3\%	38.3\%	100.0\%
			\% within Music	18.5\%	15.3\%	18.2\%	21.2\%	18.6\%
		No	Count	44	50	45	67	206
			\% within Small Sch. Awar.	21.4\%	24.3\%	21.8\%	32.5\%	100.0\%
			\% within Music	81.5\%	84.7\%	81.8\%	78.8\%	81.4\%
	Total		Count	54	59	55	85	253
			\% within Small Sch. Awar.	21.3\%	23.3\%	21.7\%	33.6\%	100.0\%
			\% within Music	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%
FG	Small Sch. Awar.	Yes	Count	19	18	23	15	75
			\% within Small Sch. Awar.	25.3\%	24.0\%	30.7\%	20.0\%	100.0\%
			\% within Music	20.9\%	17.5\%	29.5\%	20.8\%	21.8\%
		No	Count	72	85	55	57	269
			\% within Small Sch. Awar.	26.8\%	31.6\%	20.4\%	21.2\%	100.0\%
			\% within Music	79.1\%	82.5\%	70.5\%	79.2\%	78.2\%
	Total		Count	91	103	78	72	344
			\% within Small Sch. Awar.	26.5\%	29.9\%	22.7\%	20.9\%	100.0\%
			\% within Music	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	$.816^{\mathrm{a}}$	3	.846
	Likelihood Ratio	.825	3	.843
	Linear-by-Linear	.354	1	.552
	Association	253		
	N of Valid Cases	3.918^{b}	3	.270
FG	Pearson Chi-Square	3.788	3	.285
	Likelihood Ratio	.425	1	.514
	Linear-by-Linear			
	Association			
	N of Valid Cases			

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 10.03 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 15.70 .

Symmetric Measures

School		Value	Approx. Sig.	
BMS	Nominal by Nominal	Contingency Coefficient	.057	.846
	N of Valid Cases		253	
FG	Nominal by Nominal	Contingency Coefficient	.106	.270
	N of Valid Cases		344	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Crosstab

School				PE				Total
				1	2	3	4	
BMS	Small Sch. Awar.	Yes	Count	5	7	9	27	48
			\% within Small Sch. Awar.	10.4\%	14.6\%	18.8\%	56.3\%	100.0\%
			\% within PE	16.1\%	16.3\%	16.7\%	20.0\%	18.3\%
		No	Count	26	36	45	108	215
			\% within Small Sch. Awar.	12.1\%	16.7\%	20.9\%	50.2\%	100.0\%
			\% within PE	83.9\%	83.7\%	83.3\%	80.0\%	81.7\%
	Total		Count	31	43	54	135	263
			\% within Small Sch. Awar.	11.8\%	16.3\%	20.5\%	51.3\%	100.0\%
			\% within PE	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%
FG	Small Sch. Awar.	Yes	Count	5	9	16	45	75
			\% within Small Sch. Awar.	6.7\%	12.0\%	21.3\%	60.0\%	100.0\%
			\% within PE	16.1\%	17.3\%	25.4\%	22.3\%	21.6\%
		No	Count	26	43	47	157	273
			\% within Small Sch. Awar.	9.5\%	15.8\%	17.2\%	57.5\%	100.0\%
			\% within PE	83.9\%	82.7\%	74.6\%	77.7\%	78.4\%
	Total		Count	31	52	63	202	348
			\% within Small Sch. Awar.	8.9\%	14.9\%	18.1\%	58.0\%	100.0\%
			\% within PE	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	$.573^{\mathrm{a}}$	3	.903
	Likelihood Ratio	.575	3	.902
	Linear-by-Linear	.458		1

a. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 5.66 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 6.68 .

Symmetric Measures

School		Value	Approx. Sig.	
BMS	Nominal by Nominal	Contingency Coefficient	.047	.903
	N of Valid Cases		263	
FG	Nominal by Nominal	Contingency Coefficient	.070	.635
	N of Valid Cases		348	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Crosstab

School				Science				Total
				1	2	3	4	
BMS	Small Sch. Awar.	Yes	Count	5	10	19	14	48
			\% within Small Sch. Awar.	10.4\%	20.8\%	39.6\%	29.2\%	100.0\%
			\% within Science	13.9\%	19.2\%	17.6\%	21.2\%	18.3\%
		No	Count	31	42	89	52	214
			\% within Small Sch. Awar.	14.5\%	19.6\%	41.6\%	24.3\%	100.0\%
			\% within Science	86.1\%	80.8\%	82.4\%	78.8\%	81.7\%
	Total		Count	36	52	108	66	262
			\% within Small Sch. Awar.	13.7\%	19.8\%	41.2\%	25.2\%	100.0\%
			\% within Science	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%
FG	Small Sch. Awar.	Yes	Count	11	18	27	19	75
			\% within Small Sch. Awar.	14.7\%	24.0\%	36.0\%	25.3\%	100.0\%
			\% within Science	25.6\%	23.4\%	19.7\%	21.1\%	21.6\%
		No	Count	32	59	110	71	272
			\% within Small Sch. Awar.	11.8\%	21.7\%	40.4\%	26.1\%	100.0\%
			\% within Science	74.4\%	76.6\%	80.3\%	78.9\%	78.4\%
	Total		Count	43	77	137	90	347
			\% within Small Sch. Awar.	12.4\%	22.2\%	39.5\%	25.9\%	100.0\%
			\% within Science	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	$.908^{\mathrm{a}}$	3	.823
	Likelihood Ratio	.928	3	.819
	Linear-by-Linear	.572	1	.450
	Association	262		
	N of Valid Cases	$.848^{\mathrm{b}}$	3	.838
FG	Pearson Chi-Square	.836	3	.841
	Likelihood Ratio	.496	1	.481
	Linear-by-Linear	347		
	Association			
	N of Valid Cases			

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 6.60 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 9.29.

Symmetric Measures

School		Value	Approx. Sig.	
BMS	Nominal by Nominal	Contingency Coefficient	.059	.823
	N of Valid Cases		262	
FG	Nominal by Nominal	Contingency Coefficient	.049	.838
	N of Valid Cases		347	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Crosstab

School				SS				Total
				1	2	3	4	
BMS	Small Sch.	Yes	Count	8	14	18	8	48
	Awar.		\% within Small Sch. Awar.	16.7\%	29.2\%	37.5\%	16.7\%	100.0\%
			\% within SS	17.0\%	16.9\%	19.6\%	20.5\%	18.4\%
		No	Count	39	69	74	31	213
			\% within Small Sch. Awar.	18.3\%	32.4\%	34.7\%	14.6\%	100.0\%
			\% within SS	83.0\%	83.1\%	80.4\%	79.5\%	81.6\%
	Total		Count	47	83	92	39	261
			\% within Small Sch. Awar.	18.0\%	31.8\%	35.2\%	14.9\%	100.0\%
			\% within SS	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%
FG	Small Sch.	Yes	Count	19	13	24	19	75
	Awar.		\% within Small Sch. Awar.	25.3\%	17.3\%	32.0\%	25.3\%	100.0\%
			\% within SS	27.1\%	13.8\%	23.5\%	23.8\%	21.7\%
		No	Count	51	81	78	61	271
			\% within Small Sch. Awar.	18.8\%	29.9\%	28.8\%	22.5\%	100.0\%
			\% within SS	72.9\%	86.2\%	76.5\%	76.3\%	78.3\%
	Total		Count	70	94	102	80	346
			\% within Small Sch. Awar.	20.2\%	27.2\%	29.5\%	23.1\%	100.0\%
			\% within SS	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	$.389^{\mathrm{a}}$	3	.943
	Likelihood Ratio	.388	3	.943
	Linear-by-Linear	.320		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 7.17 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 15.17 .

Symmetric Measures

School		Value	Approx. Sig.	
BMS	Nominal by Nominal	Contingency Coefficient	.039	.943
	N of Valid Cases		261	
FG	Nominal by Nominal	Contingency Coefficient	.120	.168
	N of Valid Cases		346	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Small School Awareness by Cluster Name

Cluster Name * Small Sch. Awar. * School Crosstabulation

School				Small Sch. Awar.		Total
				Yes	No	
BMS	Cluster Name		Count	0	16	16
			\% within Cluster Name	.0\%	100.0\%	100.0\%
			\% within Small Sch. Awar.	.0\%	7.3\%	6.0\%
		eagles	Count	3	7	10
			\% within Cluster Name	30.0\%	70.0\%	100.0\%
			\% within Small Sch. Awar.	6.1\%	3.2\%	3.7\%
		Sharks	Count	11	63	74
			\% within Cluster Name	14.9\%	85.1\%	100.0\%
			\% within Small Sch. Awar.	22.4\%	28.8\%	27.6\%
		thunderbolts	Count	10	79	89
			\% within Cluster Name	11.2\%	88.8\%	100.0\%
			\% within Small Sch. Awar.	20.4\%	36.1\%	33.2\%
		Thunderbolts	Count	0	6	6
			\% within Cluster Name	.0\%	100.0\%	100.0\%
			\% within Small Sch. Awar.	.0\%	2.7\%	2.2\%
		turtles	Count	25	48	73
			\% within Cluster Name	34.2\%	65.8\%	100.0\%
			\% within Small Sch. Awar.	51.0\%	21.9\%	27.2\%
	Total		Count	49	219	268
			\% within Cluster Name	18.3\%	81.7\%	100.0\%
			\% within Small Sch. Awar.	100.0\%	100.0\%	100.0\%
FG	Cluster Name	0	Count	4	3	7
			\% within Cluster Name	57.1\%	42.9\%	100.0\%
			\% within Small Sch. Awar.	4.9\%	1.0\%	1.9\%
		Avid	Count	0	1	1
			\% within Cluster Name	.0\%	100.0\%	100.0\%
			\% within Small Sch. Awar.	.0\%	. 3%	. 3%
		Eagles	Count	15	81	96
			\% within Cluster Name	15.6\%	84.4\%	100.0\%
			\% within Small Sch. Awar.	18.3\%	28.0\%	25.9\%
		Gimbu	Count	23	71	94
			\% within Cluster Name	24.5\%	75.5\%	100.0\%
			\% within Small Sch. Awar.	28.0\%	24.6\%	25.3\%
		Hot Shots	Count	10	54	64
			\% within Cluster Name	15.6\%	84.4\%	100.0\%
			\% within Small Sch. Awar.	12.2\%	18.7\%	17.3\%
		Hotshot	Count	6	14	20
			\% within Cluster Name	30.0\%	70.0\%	100.0\%
			\% within Small Sch. Awar.	7.3\%	4.8\%	5.4\%
		Techies	Count	24	65	89
			\% within Cluster Name	27.0\%	73.0\%	100.0\%
			\% within Small Sch. Awar.	29.3\%	22.5\%	24.0\%
	Total		Count	82	289	371
			\% within Cluster Name	22.1\%	77.9\%	100.0\%
			\% within Small Sch. Awar.	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	21.829^{a}	5	.001
	Likelihood Ratio	24.146	5	.000
	N of Valid Cases	268		
FG	Pearson Chi-Square	11.428^{b}	6	.076
	Likelihood Ratio	10.876	6	.092
	N of Valid Cases	371		

a. 4 cells (33.3%) have expected count less than 5 . The minimum expected count is 1.10 .
b. 4 cells (28.6%) have expected count less than 5 . The minimum expected count is .22 .

Symmetric Measures

School		Value	Approx. Sig.	
BMS	Nominal by Nominal	Contingency Coefficient	.274	.001
	N of Valid Cases		268	
FG	Nominal by Nominal	Contingency Coefficient	.173	.076
	N of Valid Cases		371	

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.

Gender Comparison of Subject Interest by School

Art
Crosstab

School				Gender		Total
				Male	Female	
BMS	Art	1	Count	41	31	72
			\% within Art	56.9\%	43.1\%	100.0\%
			\% within Gender	27.9\%	26.3\%	27.2\%
		2	Count	45	35	80
			\% within Art	56.3\%	43.8\%	100.0\%
			\% within Gender	30.6\%	29.7\%	30.2\%
		3	Count	41	31	72
			\% within Art	56.9\%	43.1\%	100.0\%
			\% within Gender	27.9\%	26.3\%	27.2\%
		4	Count	20	21	41
			\% within Art	48.8\%	51.2\%	100.0\%
			\% within Gender	13.6\%	17.8\%	15.5\%
	Total		Count	147	118	265
			\% within Art	55.5\%	44.5\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	Art	1	Count	40	16	56
			\% within Art	71.4\%	28.6\%	100.0\%
			\% within Gender	23.1\%	9.5\%	16.4\%
		2	Count	62	58	120
			\% within Art	51.7\%	48.3\%	100.0\%
			\% within Gender	35.8\%	34.5\%	35.2\%
		3	Count	48	53	101
			\% within Art	47.5\%	52.5\%	100.0\%
			\% within Gender	27.7\%	31.5\%	29.6\%
		4	Count	23	41	64
			\% within Art	35.9\%	64.1\%	100.0\%
			\% within Gender	13.3\%	24.4\%	18.8\%
	Total		Count	173	168	341
			\% within Art	50.7\%	49.3\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	$.889^{\mathrm{a}}$	3	.828
	Likelihood Ratio	.884	3	.829
	Linear-by-Linear	.430	1	.512
	Association	265		
	N of Valid Cases	15.659^{b}	3	.001
FG	Pearson Chi-Square	16.065	3	.001
	Likelihood Ratio	13.986	1	.000
	Linear-by-Linear	341		
	Association			
	N of Valid Cases			

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 18.26 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 27.59 .

Symmetric Measures

School			Asymp. Std. Error	Approx. T^{b}	Approx. Sig.	
BMS	Interval by Interval	Pearson's R	.040	.062	.655	$.513^{\mathrm{C}}$
	Ordinal by Ordinal	Spearman Correlation	.037	.062	.608	$.544^{\mathrm{C}}$
	N of Valid Cases		265			
FG	Interval by Interval	Pearson's R	.203	.052	3.814	$.000^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	.199	.052	3.743	$.000^{\text {c }}$
	N of Valid Cases		341			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Computers

Crosstab

School				Gender		Total
				Male	Female	
BMS	Computers	1	Count	15	21	36
			\% within Computers	41.7\%	58.3\%	100.0\%
			\% within Gender	10.3\%	18.1\%	13.7\%
		2	Count	35	33	68
			\% within Computers	51.5\%	48.5\%	100.0\%
			\% within Gender	24.0\%	28.4\%	26.0\%
		3	Count	49	35	84
			\% within Computers	58.3\%	41.7\%	100.0\%
			\% within Gender	33.6\%	30.2\%	32.1\%
		4	Count	47	27	74
			\% within Computers	63.5\%	36.5\%	100.0\%
			\% within Gender	32.2\%	23.3\%	28.2\%
	Total		Count	146	116	262
			\% within Computers	55.7\%	44.3\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	Computers	1	Count	14	18	32
			\% within Computers	43.8\%	56.3\%	100.0\%
			\% within Gender	7.8\%	10.5\%	9.1\%
		2	Count	47	49	96
			\% within Computers	49.0\%	51.0\%	100.0\%
			\% within Gender	26.3\%	28.7\%	27.4\%
		3	Count	64	64	128
			\% within Computers	50.0\%	50.0\%	100.0\%
			\% within Gender	35.8\%	37.4\%	36.6\%
		4	Count	54	40	94
			\% within Computers	57.4\%	42.6\%	100.0\%
			\% within Gender	30.2\%	23.4\%	26.9\%
	Total		Count	179	171	350
			\% within Computers	51.1\%	48.9\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	5.434^{a}	3	.143
	Likelihood Ratio	5.438	3	.142
	Linear-by-Linear	5.286	1	.022
	Association	262		
	N of Valid Cases	2.445^{b}	3	.485
FG	Pearson Chi-Square	2.453	3	.484
	Likelihood Ratio	2.125	1	.145
	Linear-by-Linear	350		
	Association			
	N of Valid Cases			

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 15.94 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 15.63 .

Symmetric Measures

School			Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. ${ }^{\text {b }}$	Approx. Sig.
BMS	Interval by Interval	Pearson's R	-. 142	. 061	-2.318	.021 ${ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	-. 140	. 061	-2.277	.024 ${ }^{\text {c }}$
	N of Valid Cases		262			
FG	Interval by Interval	Pearson's R	-. 078	. 053	-1.460	. $145^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	-. 078	. 053	-1.452	$.147^{\text {c }}$
	N of Valid Cases		350			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Foreign Language

Crosstab

School				Gender		Total
				Male	Female	
BMS	Foreign Language	1	Count	52	21	73
			\% within Foreign Language	71.2\%	28.8\%	100.0\%
			\% within Gender	36.4\%	18.1\%	28.2\%
		2	Count	40	25	65
			\% within Foreign Language	61.5\%	38.5\%	100.0\%
			\% within Gender	28.0\%	21.6\%	25.1\%
		3	Count	34	38	72
			\% within Foreign Language	47.2\%	52.8\%	100.0\%
			\% within Gender	23.8\%	32.8\%	27.8\%
		4	Count	17	32	49
			\% within Foreign Language	34.7\%	65.3\%	100.0\%
			\% within Gender	11.9\%	27.6\%	18.9\%
	Total		Count	143	116	259
			\% within Foreign Language	55.2\%	44.8\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	Foreign Language	1	Count	71	37	108
			\% within Foreign			
			Language	65.7\%	34.3\%	100.0\%
			\% within Gender	40.8\%	22.4\%	31.9\%
		2	Count	49	46	95
			\% within Foreign	51.6\%	48.4\%	100.0\%
			Language	51.6\%	48.4\%	100.0\%
			\% within Gender	28.2\%	27.9\%	28.0\%
		3	Count	34	56	90
				37.8\%	62.2\%	100.0\%
			Language	37.8\%	62.2\%	100.0\%
			\% within Gender	19.5\%	33.9\%	26.5\%
		4	Count	20	26	46
			\% within Foreign	43.5\%	56.5\%	100.0\%
			Language	43.5\%	56.5\%	100.0\%
			\% within Gender	11.5\%	15.8\%	13.6\%
	Total		Count	174	165	339
			\% within Foreign	51.3\%	48.7\%	100.0\%
			Language	51.3\%	48.7\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	18.830^{a}	3	.000
	Likelihood Ratio	19.154	3	.000
	Linear-by-Linear	18.649	1	.000
	Association	259		
	N of Valid Cases	16.732^{b}	3	.001
FG	Pearson Chi-Square	16.961	3	.001
	Likelihood Ratio	13.350	1	.000
	Linear-by-Linear	339		
	Association			

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 21.95 .
b. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 22.39 .

Symmetric Measures

School			Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. ${ }^{\text {b }}$	Approx. Sig.
BMS	Interval by Interval	Pearson's R	. 269	. 059	4.475	.000 ${ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	. 268	. 059	4.468	. $000{ }^{\text {c }}$
	N of Valid Cases		259			
FG	Interval by Interval	Pearson's R	. 199	. 053	3.723	. $000{ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	. 206	. 053	3.869	. $000{ }^{\text {c }}$
	N of Valid Cases		339			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Home Economics

Crosstab

School				Gender		Total
				Male	Female	
BMS	Home Ec	1	Count	60	21	81
			\% within Home Ec	74.1\%	25.9\%	100.0\%
			\% within Gender	42.6\%	19.3\%	32.4\%
		2	Count	37	30	67
			\% within Home Ec	55.2\%	44.8\%	100.0\%
			\% within Gender	26.2\%	27.5\%	26.8\%
		3	Count	28	25	53
			\% within Home Ec	52.8\%	47.2\%	100.0\%
			\% within Gender	19.9\%	22.9\%	21.2\%
		4	Count	16	33	49
			\% within Home Ec	32.7\%	67.3\%	100.0\%
			\% within Gender	11.3\%	30.3\%	19.6\%
	Total		Count	141	109	250
			\% within Home Ec	56.4\%	43.6\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	Home Ec	1	Count	38	19	57
			\% within Home Ec	66.7\%	33.3\%	100.0\%
			\% within Gender	21.8\%	11.2\%	16.6\%
		2	Count	66	39	105
			\% within Home Ec	62.9\%	37.1\%	100.0\%
			\% within Gender	37.9\%	23.1\%	30.6\%
		3	Count	45	58	103
			\% within Home Ec	43.7\%	56.3\%	100.0\%
			\% within Gender	25.9\%	34.3\%	30.0\%
		4	Count	25	53	78
			\% within Home Ec	32.1\%	67.9\%	100.0\%
			\% within Gender	14.4\%	31.4\%	22.7\%
	Total		Count	174	169	343
			\% within Home Ec	50.7\%	49.3\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	21.839^{a}	3	.000
	Likelihood Ratio	22.398	3	.000
	Linear-by-Linear	20.339	1	.000
	Association	250		
	N of Valid Cases			
	FGearson Chi-Square	24.901^{b}	3	.000
	Likelihood Ratio	25.329	3	.000
	Linear-by-Linear	23.365	1	.000
	Association	343		
	N of Valid Cases			

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 21.36 .
b. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 28.08 .

Symmetric Measures

School			Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
BMS	Interval by Interval	Pearson's R	. 286	. 059	4.697	.000 ${ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	. 286	. 059	4.695	. $000{ }^{\text {c }}$
	N of Valid Cases		250			
FG	Interval by Interval	Pearson's R	. 261	. 051	5.000	.000 ${ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	. 264	. 051	5.061	. $000{ }^{\text {c }}$
	N of Valid Cases		343			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Language Arts

Crosstab

School				Gender		Total
				Male	Female	
BMS	LA	1	Count	43	25	68
			\% within LA	63.2\%	36.8\%	100.0\%
			\% within Gender	29.5\%	21.6\%	26.0\%
		2	Count	54	39	93
			\% within LA	58.1\%	41.9\%	100.0\%
			\% within Gender	37.0\%	33.6\%	35.5\%
		3	Count	42	34	76
			\% within LA	55.3\%	44.7\%	100.0\%
			\% within Gender	28.8\%	29.3\%	29.0\%
		4	Count	7	18	25
			\% within LA	28.0\%	72.0\%	100.0\%
			\% within Gender	4.8\%	15.5\%	9.5\%
	Total		Count	146	116	262
			\% within LA	55.7\%	44.3\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	LA	1	Count	28	21	49
			\% within LA	57.1\%	42.9\%	100.0\%
			\% within Gender	15.9\%	12.4\%	14.2\%
		2	Count	72	46	118
			\% within LA	61.0\%	39.0\%	100.0\%
			\% within Gender	40.9\%	27.1\%	34.1\%
		3	Count	58	60	118
			\% within LA	49.2\%	50.8\%	100.0\%
			\% within Gender	33.0\%	35.3\%	34.1\%
		4	Count	18	43	61
			\% within LA	29.5\%	70.5\%	100.0\%
			\% within Gender	10.2\%	25.3\%	17.6\%
	Total		Count	176	170	346
			\% within LA	50.9\%	49.1\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	9.556^{a}	3	.023
	Likelihood Ratio	9.663	3	.022
	Linear-by-Linear	6.520	1	.011
	Association	262		
	N of Valid Cases	16.910^{b}	3	.001
FG	Pearson Chi-Square	17.263	3	.001
	Likelihood Ratio	12.674	1	.000
	Linear-by-Linear	346		
	Association			

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 11.07 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 24.08 .

Symmetric Measures

School			Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. ${ }^{\text {b }}$	Approx. Sig.
BMS	Interval by Interval	Pearson's R	. 158	. 061	2.581	.010 ${ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	. 146	. 061	2.386	. $018{ }^{\text {c }}$
	N of Valid Cases		262			
FG	Interval by Interval	Pearson's R	. 192	. 052	3.622	.000 ${ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	. 194	. 052	3.665	. $000{ }^{\text {c }}$
	N of Valid Cases		346			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Mathematics

Crosstab

School				Gender		Total
				Male	Female	
BMS	Math	1	Count	41	32	73
			\% within Math	56.2\%	43.8\%	100.0\%
			\% within Gender	27.9\%	26.7\%	27.3\%
		2	Count	32	32	64
			\% within Math	50.0\%	50.0\%	100.0\%
			\% within Gender	21.8\%	26.7\%	24.0\%
		3	Count	46	35	81
			\% within Math	56.8\%	43.2\%	100.0\%
			\% within Gender	31.3\%	29.2\%	30.3\%
		4	Count	28	21	49
			\% within Math	57.1\%	42.9\%	100.0\%
			\% within Gender	19.0\%	17.5\%	18.4\%
	Total		Count	147	120	267
			\% within Math	55.1\%	44.9\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	Math	1	Count	18	34	52
			\% within Math	34.6\%	65.4\%	100.0\%
			\% within Gender	10.1\%	19.9\%	14.9\%
		2	Count	31	39	70
			\% within Math	44.3\%	55.7\%	100.0\%
			\% within Gender	17.4\%	22.8\%	20.1\%
		3	Count	61	52	113
			\% within Math	54.0\%	46.0\%	100.0\%
			\% within Gender	34.3\%	30.4\%	32.4\%
		4	Count	68	46	114
			\% within Math	59.6\%	40.4\%	100.0\%
			\% within Gender	38.2\%	26.9\%	32.7\%
	Total		Count	178	171	349
			\% within Math	51.0\%	49.0\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	$.882^{\mathrm{a}}$	3	.830
	Likelihood Ratio	.879	3	.830
	Linear-by-Linear	.091	1	.763
	Association	267		
	N of Valid Cases	10.664^{b}	3	.014
FG	Pearson Chi-Square	10.770	3	.013
	Likelihood Ratio	10.440	1	.001
	Linear-by-Linear	349		
	Association			
	N of Valid Cases			

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 22.02 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 25.48 .

Symmetric Measures

School			Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. ${ }^{\text {b }}$	Approx. Sig.
BMS	Interval by Interval	Pearson's R	-. 019	. 061	-. 301	. $763^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	-. 019	. 061	-. 308	. $758{ }^{\text {c }}$
	N of Valid Cases		267			
FG	Interval by Interval	Pearson's R	-. 173	. 052	-3.276	. $001{ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	-. 169	. 052	-3.194	. $002{ }^{\text {c }}$
	N of Valid Cases		349			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Music
Crosstab

School				Gender		Total
				Male	Female	
BMS	Music	1	Count	32	23	55
			\% within Music	58.2\%	41.8\%	100.0\%
			\% within Gender	22.5\%	19.7\%	21.2\%
		2	Count	32	27	59
			\% within Music	54.2\%	45.8\%	100.0\%
			\% within Gender	22.5\%	23.1\%	22.8\%
		3	Count	36	23	59
			\% within Music	61.0\%	39.0\%	100.0\%
			\% within Gender	25.4\%	19.7\%	22.8\%
		4	Count	42	44	86
			\% within Music	48.8\%	51.2\%	100.0\%
			\% within Gender	29.6\%	37.6\%	33.2\%
	Total		Count	142	117	259
			\% within Music	54.8\%	45.2\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	Music	1	Count	49	40	89
			\% within Music	55.1\%	44.9\%	100.0\%
			\% within Gender	27.8\%	23.7\%	25.8\%
		2	Count	65	42	107
			\% within Music	60.7\%	39.3\%	100.0\%
			\% within Gender	36.9\%	24.9\%	31.0\%
		3	Count	36	44	80
			\% within Music	45.0\%	55.0\%	100.0\%
			\% within Gender	20.5\%	26.0\%	23.2\%
		4	Count	26	43	69
			\% within Music	37.7\%	62.3\%	100.0\%
			\% within Gender	14.8\%	25.4\%	20.0\%
	Total		Count	176	169	345
			\% within Music	51.0\%	49.0\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	2.417^{a}	3	.491
	Likelihood Ratio	2.421	3	.490
	Linear-by-Linear	.858	1	.354
	Association	259		
	N of Valid Cases	10.705^{b}	3	.013
FG	Pearson Chi-Square	10.786	3	.013
	Likelihood Ratio	7.228	1	.007
	Linear-by-Linear	345		
	Association			
	N of Valid Cases			

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 24.85 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 33.80 .

Symmetric Measures

School				Asymp. Std. Error	Approx. T^{b}	Approx. Sig.
BMS	Interval by Interval	Pearson's R	.058	.062	.926	$.355^{\mathrm{C}}$
	Ordinal by Ordinal	Spearman Correlation	.061	.062	.980	$.328^{\mathrm{c}}$
	N of Valid Cases		259			
FG	Interval by Interval	Pearson's R	.145	.053	2.713	$.007^{\mathrm{C}}$
	Ordinal by Ordinal	Spearman Correlation	.142	.053	2.648	$.008^{\mathrm{c}}$
	N of Valid Cases		345			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Physical Education

Crosstab

School				Gender		Total
				Male	Female	
BMS	PE	1	Count	9	20	29
			\% within PE	31.0\%	69.0\%	100.0\%
			\% within Gender	6.1\%	16.5\%	10.8\%
		2	Count	15	30	45
			\% within PE	33.3\%	66.7\%	100.0\%
			\% within Gender	10.2\%	24.8\%	16.8\%
		3	Count	24	31	55
			\% within PE	43.6\%	56.4\%	100.0\%
			\% within Gender	16.3\%	25.6\%	20.5\%
		4	Count	99	40	139
			\% within PE	71.2\%	28.8\%	100.0\%
			\% within Gender	67.3\%	33.1\%	51.9\%
	Total		Count	147	121	268
			\% within PE	54.9\%	45.1\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	PE	1	Count	4	27	31
			\% within PE	12.9\%	87.1\%	100.0\%
			\% within Gender	2.2\%	15.9\%	8.9\%
		2	Count	12	38	50
			\% within PE	24.0\%	76.0\%	100.0\%
			\% within Gender	6.7\%	22.4\%	14.3\%
		3	Count	22	41	63
			\% within PE	34.9\%	65.1\%	100.0\%
			\% within Gender	12.2\%	24.1\%	18.0\%
		4	Count	142	64	206
			\% within PE	68.9\%	31.1\%	100.0\%
			\% within Gender	78.9\%	37.6\%	58.9\%
	Total		Count	180	170	350
			\% within PE	51.4\%	48.6\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	$32.894^{\text {a }}$	3	. 000
	Likelihood Ratio	33.598	3	. 000
	Linear-by-Linear Association	29.159	1	. 000
	N of Valid Cases	268		
FG	Pearson Chi-Square	$65.617^{\text {b }}$	3	. 000
	Likelihood Ratio	69.158	3	. 000
	Linear-by-Linear Association	61.048	1	. 000
	N of Valid Cases	350		

a. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 13.09 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 15.06 .

Symmetric Measures

School			Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
BMS	Interval by Interval	Pearson's R	-. 330	. 057	-5.711	.000 ${ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	-. 347	. 057	-6.034	. $000{ }^{\text {c }}$
	N of Valid Cases		268			
FG	Interval by Interval	Pearson's R	-. 418	. 044	-8.589	. $000{ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	-. 433	. 046	-8.954	. $000{ }^{\text {c }}$
	N of Valid Cases		350			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Science

Crosstab

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	1.587^{a}	3	.662
	Likelihood Ratio	1.580	3	.664
	Linear-by-Linear	.972		1

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 16.63 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 20.58 .

Symmetric Measures

School			Asymp. Std. Error	Approx. T^{b}	Approx. Sig.	
BMS	Interval by Interval	Pearson's R	-.060	.061	-.986	$.325^{\mathrm{C}}$
	Ordinal by Ordinal	Spearman Correlation	-.054	.061	-.880	$.380^{\mathrm{c}}$
	N of Valid Cases		267			
FG	Interval by Interval	Pearson's R	-.055	.053	-1.028	$.305^{\mathrm{C}}$
	Ordinal by Ordinal	Spearman Correlation	-.044	.054	-.819	$.414^{\mathrm{c}}$
	N of Valid Cases		349			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Social Studies

Crosstab

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	2.042^{a}	3	.564
	Likelihood Ratio	2.043	3	.564
	Linear-by-Linear	.070	1	.792
	Association	266		
	N of Valid Cases	3.906^{b}	3	.272
FG	Pearson Chi-Square	3.919	3	.270
	Likelihood Ratio	.303	1	.582
	Linear-by-Linear	348		
	Association			
	N of Valid Cases			

a. 0 cells (. 0%) have expected count less than 5 . The minimum expected count is 16.38 .
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 33.41 .

Symmetric Measures

School				Asymp. Std. Error	Approx. T^{b}	Approx. Sig.
BMS	Interval by Interval	Pearson's R	.016	.061	.264	$.792^{\mathrm{C}}$
	Ordinal by Ordinal	Spearman Correlation	.010	.061	.161	$.872^{\mathrm{C}}$
	N of Valid Cases		266			
FG	Interval by Interval	Pearson's R	-.030	.054	-.550	$.583^{\mathrm{C}}$
	Ordinal by Ordinal	Spearman Correlation	-.033	.054	-.613	$.540^{\mathrm{C}}$
	N of Valid Cases		348			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Gender Comparison of Student Self Rating by School

Rating * Gender * School Crosstabulation

School				Gender		Total
				Male	Female	
BMS	Rating	Poor	Count	1	0	1
			\% within Rating	100.0\%	.0\%	100.0\%
			\% within Gender	.7\%	.0\%	.4\%
		Low	Count	7	7	14
			\% within Rating	50.0\%	50.0\%	100.0\%
			\% within Gender	4.8\%	5.7\%	5.2\%
		Average	Count	50	35	85
			\% within Rating	58.8\%	41.2\%	100.0\%
			\% within Gender	34.0\%	28.5\%	31.5\%
		Good	Count	67	59	126
			\% within Rating	53.2\%	46.8\%	100.0\%
			\% within Gender	45.6\%	48.0\%	46.7\%
		Excellent	Count	22	22	44
			\% within Rating	50.0\%	50.0\%	100.0\%
			\% within Gender	15.0\%	17.9\%	16.3\%
	Total		Count	147	123	270
			\% within Rating	54.4\%	45.6\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	Rating	Poor	Count	1	0	1
			\% within Rating	100.0\%	.0\%	100.0\%
			\% within Gender	.5\%	.0\%	. 3%
		Low	Count	2	1	3
			\% within Rating	66.7\%	33.3\%	100.0\%
			\% within Gender	1.1\%	.6\%	.8\%
		Average	Count	63	55	118
			\% within Rating	53.4\%	46.6\%	100.0\%
			\% within Gender	33.2\%	30.7\%	32.0\%
		Good	Count	95	86	181
			\% within Rating	52.5\%	47.5\%	100.0\%
			\% within Gender	50.0\%	48.0\%	49.1\%
		Excellent	Count	29	37	66
			\% within Rating	43.9\%	56.1\%	100.0\%
			\% within Gender	15.3\%	20.7\%	17.9\%
	Total		Count	190	179	369
			\% within Rating	51.5\%	48.5\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Rating * Gender * School	639	93.7%	43	6.3%	682	100.0%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	2.038^{a}	4	.729
	Likelihood Ratio	2.419	4	.659
	Linear-by-Linear	.773	1	.379
	Association	270		
	N of Valid Cases	2.968^{b}	4	.563
FG	Pearson Chi-Square	3.361	4	.499
	Likelihood Ratio	1.884	1	.170
	Linear-by-Linear	369		
	Association			
	N of Valid Cases			

a. 2 cells (20.0\%) have expected count less than 5 . The minimum expected count is 46 .
b. 4 cells (40.0%) have expected count less than 5 . The minimum expected count is 49 .

Gender Comparison of Small School Awareness by School

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
Small Sch. Awar. * Gender * School	609	89.3\%	73	10.7\%	682	100.0\%
App. Proc. * Gender * School	126	18.5\%	556	81.5\%	682	100.0\%
Interest * Gender * School	124	18.2\%	558	81.8\%	682	100.0\%
Parent Intend * Gender * School	120	17.6\%	562	82.4\%	682	100.0\%
How Informed * Gender * School	105	15.4\%	577	84.6\%	682	100.0\%
Willing to Select * Gender * School	121	17.7\%	561	82.3\%	682	100.0\%
Whats Difficult * Gender * School	98	14.4\%	584	85.6\%	682	100.0\%

Crosstab

School				Gender		Total
				Male	Female	
BMS	Small Sch. Awar.	Yes	Count	22	23	45
			\% within Small Sch. Awar.	48.9\%	51.1\%	100.0\%
			\% within Gender	15.3\%	20.5\%	17.6\%
		No	Count	122	89	211
			\% within Small Sch. Awar.	57.8\%	42.2\%	100.0\%
			\% within Gender	84.7\%	79.5\%	82.4\%
	Total		Count	144	112	256
			\% within Small Sch. Awar.	56.3\%	43.8\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	Small Sch. Awar.	Yes	Count	40	38	78
			\% within Small Sch. Awar.	51.3\%	48.7\%	100.0\%
			\% within Gender	22.5\%	21.7\%	22.1\%
		No	Count	138	137	275
			\% within Small Sch. Awar.	50.2\%	49.8\%	100.0\%
			\% within Gender	77.5\%	78.3\%	77.9\%
	Total		Count	178	175	353
			\% within Small Sch. Awar.	50.4\%	49.6\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
BMS	Pearson Chi-Square	$1.20{ }^{\text {b }}$	1	. 273		
	Continuity Correction ${ }^{\text {² }}$. 867	1	. 352		
	Likelihood Ratio	1.194	1	. 274		
	Fisher's Exact Test				. 321	. 176
	Linear-by-Linear Association	1.197	1	. 274		
	N of Valid Cases	256				
FG	Pearson Chi-Square	.029 ${ }^{\text {c }}$	1	. 864		
	Continuity Correction ${ }^{\text {a }}$. 002	1	. 966		
	Likelihood Ratio	. 029	1	. 864		
	Fisher's Exact Test				. 898	. 483
	Linear-by-Linear Association	. 029	1	. 864		
	N of Valid Cases	353				

a. Computed only for a 2×2 table
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 19.69.
c. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 38.67.

Symmetric Measures

School			Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
BMS	Interval by Interval	Pearson's R	-. 069	. 063	-1.095	. $275{ }^{\text {c }}$
	Ordinal by Ordinal N of Valid Cases	Spearman Correlation	$\begin{array}{r} -.069 \\ 256 \end{array}$. 063	-1.095	.275 ${ }^{\text {c }}$
FG	Interval by Interval	Pearson's R	. 009	. 053	. 171	.864 ${ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	. 009	. 053	. 171	.864 ${ }^{\text {c }}$
	N of Valid Cases		353			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Crosstab

School				Gender		Total
				Male	Female	
BMS	App. Proc.	Yes	Count	17	23	40
			\% within App. Proc.	42.5\%	57.5\%	100.0\%
			\% within Gender	81.0\%	88.5\%	85.1\%
		No	Count	4	3	7
			\% within App. Proc.	57.1\%	42.9\%	100.0\%
			\% within Gender	19.0\%	11.5\%	14.9\%
	Total		Count	21	26	47
			\% within App. Proc.	44.7\%	55.3\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	App. Proc.	Yes	Count	35	29	64
			\% within App. Proc.	54.7\%	45.3\%	100.0\%
			\% within Gender	83.3\%	78.4\%	81.0\%
		No	Count	7	8	15
			\% within App. Proc.	46.7\%	53.3\%	100.0\%
			\% within Gender	16.7\%	21.6\%	19.0\%
	Total		Count	42	37	79
			\% within App. Proc.	53.2\%	46.8\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
BMS	Pearson Chi-Square	. $517{ }^{\text {b }}$	1	. 472		
	Continuity Correction ${ }^{\text { }}$. 094	1	. 759		
	Likelihood Ratio	. 514	1	. 473		
	Fisher's Exact Test				. 684	. 377
	Linear-by-Linear Association	. 506	1	. 477		
	N of Valid Cases	47				
FG	Pearson Chi-Square	. $314^{\text {c }}$	1	. 575		
	Continuity Correction ${ }^{\text { }}$. 074	1	. 785		
	Likelihood Ratio	. 313	1	. 576		
	Fisher's Exact Test				. 775	. 391
	Linear-by-Linear Association	. 310	1	. 578		
	N of Valid Cases	79				

a. Computed only for a 2×2 table
b. 2 cells (50.0%) have expected count less than 5 . The minimum expected count is 3.13 .
c. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 7.03 .

Symmetric Measures

School			Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
BMS	Interval by Interval	Pearson's R	-. 105	. 146	-. 707	. $483{ }^{\text {c }}$
	Ordinal by Ordinal N of Valid Cases	Spearman Correlation	$\begin{array}{r} -.105 \\ 47 \end{array}$. 146	-. 707	. $483{ }^{\text {c }}$
FG	Interval by Interval	Pearson's R	. 063	. 113	. 554	. $581{ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	$\begin{array}{r} .063 \\ 70 \end{array}$. 113	. 554	. $581{ }^{\text {c }}$

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Crosstab

School				Gender		Total
				Male	Female	
BMS	Interest	Yes	Count	13	20	33
			\% within Interest	39.4\%	60.6\%	100.0\%
			\% within Gender	68.4\%	76.9\%	73.3\%
		No	Count	6	6	12
			\% within Interest	50.0\%	50.0\%	100.0\%
			\% within Gender	31.6\%	23.1\%	26.7\%
	Total		Count	19	26	45
			\% within Interest	42.2\%	57.8\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	Interest	Yes	Count	35	27	62
			\% within Interest	56.5\%	43.5\%	100.0\%
			\% within Gender	81.4\%	75.0\%	78.5\%
		No	Count	8	9	17
			\% within Interest	47.1\%	52.9\%	100.0\%
			\% within Gender	18.6\%	25.0\%	21.5\%
	Total		Count	43	36	79
			\% within Interest	54.4\%	45.6\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
BMS	Pearson Chi-Square	. $406{ }^{\text {b }}$	1	. 524	- 734	. 381
	Continuity Correction ${ }^{\text {a }}$. 087	1	. 767		
	Likelihood Ratio	. 403	1	. 526		
	Fisher's Exact Test		1			
	Linear-by-Linear Association	. 397		. 529		
	N of Valid Cases	45				
FG	Pearson Chi-Square	. $475^{\text {c }}$	1	. 491	. 586	. 338
	Continuity Correction ${ }^{\text {a }}$. 171	1	. 679		
	Likelihood Ratio	. 473	1	. 492		
	Fisher's Exact Test		1	. 494		
	Linear-by-Linear Association	. 469				
	N of Valid Cases	79				

a. Computed only for a 2×2 table
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 5.07 .
c. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 7.75 .

Symmetric Measures

School			Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. ${ }^{\text {b }}$	Approx. Sig.
BMS	Interval by Interval	Pearson's R	-. 095	. 150	-. 626	.535 ${ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	-. 095	. 150	-. 626	. $535{ }^{\text {c }}$
	N of Valid Cases		45			
FG	Interval by Interval	Pearson's R	. 078	. 113	. 682	. $497{ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	. 078	. 113	. 682	. $497{ }^{\text {c }}$
	N of Valid Cases		79			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Crosstab

School				Gender		Total
				Male	Female	
BMS	Parent Intend	Yes	Count	10	20	30
			\% within Parent Intend	33.3\%	66.7\%	100.0\%
			\% within Gender	52.6\%	87.0\%	71.4\%
		No	Count	9	3	12
			\% within Parent Intend	75.0\%	25.0\%	100.0\%
			\% within Gender	47.4\%	13.0\%	28.6\%
	Total		Count	19	23	42
			\% within Parent Intend	45.2\%	54.8\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	Parent Intend	Yes	Count	22	24	46
			\% within Parent Intend	47.8\%	52.2\%	100.0\%
			\% within Gender	53.7\%	64.9\%	59.0\%
		No	Count	19	13	32
			\% within Parent Intend	59.4\%	40.6\%	100.0\%
			\% within Gender	46.3\%	35.1\%	41.0\%
	Total		Count	41	37	78
			\% within Parent Intend	52.6\%	47.4\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
BMS	Pearson Chi-Square	$6.007{ }^{\text {b }}$	1	. 014		
	Continuity Correction ${ }^{\text { }}$	4.443	1	. 035		
	Likelihood Ratio	6.156	1	. 013		
	Fisher's Exact Test				. 020	. 017
	Linear-by-Linear Association	5.864	1	. 015		
	N of Valid Cases	42				
FG	Pearson Chi-Square	$1.009^{\text {c }}$	1	. 315		
	Continuity Correction ${ }^{\text { }}$. 599	1	. 439		
	Likelihood Ratio	1.013	1	. 314		
	Fisher's Exact Test				. 362	. 220
	Linear-by-Linear Association	. 997	1	. 318		
	N of Valid Cases	78				

a. Computed only for a 2×2 table
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 5.43 .
c. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 15.18 .

Symmetric Measures

School			Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
School	Interval by Interval	Pearson's R	-. 378	. 141	-2.584	.014 ${ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	-. 378	. 141	-2.584	. $014{ }^{\text {c }}$
	N of Valid Cases		42			
FG	Interval by Interval	Pearson's R	-. 114	. 112	-. 998	. $321{ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	-. 114	. 112	-. 998	$.321{ }^{\text {c }}$
	N of Valid Cases		78			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Crosstab

School				Gender		Total
				Male	Female	
BMS	How Informed	Guidance	Count	1	2	3
			\% within How Informed	33.3\%	66.7\%	100.0\%
			\% within Gender	5.3\%	11.1\%	8.1\%
		Teacher	Count	2	1	3
			\% within How Informed	66.7\%	33.3\%	100.0\%
			\% within Gender	10.5\%	5.6\%	8.1\%
		Friends	Count	7	4	11
			\% within How Informed	63.6\%	36.4\%	100.0\%
			\% within Gender	36.8\%	22.2\%	29.7\%
		Parents	Count	8	7	15
			\% within How Informed	53.3\%	46.7\%	100.0\%
			\% within Gender	42.1\%	38.9\%	40.5\%
		Other	Count	1	4	5
			\% within How Informed	20.0\%	80.0\%	100.0\%
			\% within Gender	5.3\%	22.2\%	13.5\%
	Total		Count	19	18	37
			\% within How Informed	51.4\%	48.6\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	How Informed	Guidance	Count	2	2	4
			\% within How Informed	50.0\%	50.0\%	100.0\%
			\% within Gender	5.6\%	6.3\%	5.9\%
		Teacher	Count	13	6	19
			\% within How Informed	68.4\%	31.6\%	100.0\%
			\% within Gender	36.1\%	18.8\%	27.9\%
		Friends	Count	5	7	12
			\% within How Informed	41.7\%	58.3\%	100.0\%
			\% within Gender	13.9\%	21.9\%	17.6\%
		Parents	Count	7	10	17
			\% within How Informed	41.2\%	58.8\%	100.0\%
			\% within Gender	19.4\%	31.3\%	25.0\%
		Other	Count	9	7	16
			\% within How Informed	56.3\%	43.8\%	100.0\%
			\% within Gender	25.0\%	21.9\%	23.5\%
	Total		Count	36	32	68
			\% within How Informed	52.9\%	47.1\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	3.327^{a}	4	.505
	Likelihood Ratio	3.475	4	.482
	Linear-by-Linear	.444	1	.505
	Association	37		
	N of Valid Cases	3.468^{b}	4	.483
FG	Pearson Chi-Square	3.523	4	.474
	Likelihood Ratio	.483	1	.487
	Linear-by-Linear	68		
	Association			
	N of Valid Cases			

a. 6 cells (60.0%) have expected count less than 5 . The minimum expected count is 1.46 .
b. 2 cells (20.0\%) have expected count less than 5 . The minimum expected count is 1.88 .

Symmetric Measures

School			Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
BMS	Interval by Interval	Pearson's R	. 111	. 166	. 661	.513 ${ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	$\text { . } 160$. 164	. 958	. $345^{\text {c }}$
FG	Interval by Interval	Pearson's R	. 085	. 120	. 692	. $491{ }^{\text {c }}$
	Ordinal by Ordinal N of Valid Cases	Spearman Correlation	$\begin{array}{r} .085 \\ 68 \end{array}$. 121	. 693	. $491{ }^{\text {c }}$

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Crosstab

School				Gender		Total
				Male	Female	
BMS	Willing to Select	Yes	Count	13	17	30
			\% within Willing to Select	43.3\%	56.7\%	100.0\%
			\% within Gender	65.0\%	77.3\%	71.4\%
		No	Count	7	5	12
			\% within Willing to Select	58.3\%	41.7\%	100.0\%
			\% within Gender	35.0\%	22.7\%	28.6\%
	Total		Count	20	22	42
			\% within Willing to Select	47.6\%	52.4\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	Willing to Select	Yes	Count	32	23	55
			\% within Willing to Select	58.2\%	41.8\%	100.0\%
			\% within Gender	72.7\%	65.7\%	69.6\%
		No	Count	12	12	24
			\% within Willing to Select	50.0\%	50.0\%	100.0\%
			\% within Gender	27.3\%	34.3\%	30.4\%
	Total		Count	44	35	79
			\% within Willing to Select	55.7\%	44.3\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)	Exact Sig. (2-sided)	Exact Sig. (1-sided)
BMS	Pearson Chi-Square	$.773^{\text {b }}$	1	. 379		
	Continuity Correction ${ }^{\text {a }}$. 289	1	. 591		
	Likelihood Ratio	. 775	1	. 379		
	Fisher's Exact Test				. 499	. 296
	Linear-by-Linear Association	. 755	1	. 385		
	N of Valid Cases	42				
FG	Pearson Chi-Square	. $453{ }^{\text {c }}$	1	. 501		
	Continuity Correction ${ }^{\text {a }}$. 182	1	. 669		
	Likelihood Ratio	. 452	1	. 501		
	Fisher's Exact Test				. 623	. 334
	Linear-by-Linear Association	. 448	1	. 503		
	N of Valid Cases	79				

a. Computed only for a 2×2 table
b. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 5.71 .
c. 0 cells $(.0 \%)$ have expected count less than 5 . The minimum expected count is 10.63.

Symmetric Measures

School				Asymp. Std. Error	Approx. T^{b}	Approx. Sig.
BMS	Interval by Interval	Pearson's R	-.136	.153	-.866	$.392^{\mathrm{C}}$
	Ordinal by Ordinal	Spearman Correlation	-.136	.153	-.866	$.392^{\mathrm{c}}$
	N of Valid Cases					
FG	Interval by Interval	Pearson's R	.076	.113	.667	$.507^{\mathrm{c}}$
	Ordinal by Ordinal	Spearman Correlation	.076	.113	.667	$.507^{\mathrm{c}}$
	N of Valid Cases		79			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Crosstab

School				Gender		Total
				Male	Female	
BMS	Whats Difficult	Friends	Count	6	6	12
			\% within Whats Difficult	50.0\%	50.0\%	100.0\%
			\% within Gender	33.3\%	35.3\%	34.3\%
		Academics	Count	0	3	3
			\% within Whats Difficult	.0\%	100.0\%	100.0\%
			\% within Gender	.0\%	17.6\%	8.6\%
		Parents	Count	3	0	3
			\% within Whats Difficult	100.0\%	.0\%	100.0\%
			\% within Gender	16.7\%	.0\%	8.6\%
		Confusion	Count	5	3	8
			\% within Whats Difficult	62.5\%	37.5\%	100.0\%
			\% within Gender	27.8\%	17.6\%	22.9\%
		Athletics	Count	2	1	3
			\% within Whats Difficult	66.7\%	33.3\%	100.0\%
			\% within Gender	11.1\%	5.9\%	8.6\%
		Other	Count	2	4	6
			\% within Whats Difficult	33.3\%	66.7\%	100.0\%
			\% within Gender	11.1\%	23.5\%	17.1\%
	Total		Count	18	17	35
			\% within Whats Difficult	51.4\%	48.6\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	Whats Difficult	Friends	Count	10	6	16
			\% within Whats Difficult	62.5\%	37.5\%	100.0\%
			\% within Gender	27.8\%	22.2\%	25.4\%
		Academics	Count	8	5	13
			\% within Whats Difficult	61.5\%	38.5\%	100.0\%
			\% within Gender	22.2\%	18.5\%	20.6\%
		Parents	Count	4	9	13
			\% within Whats Difficult	30.8\%	69.2\%	100.0\%
			\% within Gender	11.1\%	33.3\%	20.6\%
		Confusion	Count	6	1	7
			\% within Whats Difficult	85.7\%	14.3\%	100.0\%
			\% within Gender	16.7\%	3.7\%	11.1\%
		Athletics	Count	4	1	5
			\% within Whats Difficult	80.0\%	20.0\%	100.0\%
			\% within Gender	11.1\%	3.7\%	7.9\%
		Other	Count	4	5	9
			\% within Whats Difficult	44.4\%	55.6\%	100.0\%
			\% within Gender	11.1\%	18.5\%	14.3\%
	Total		Count	36	27	63
			\% within Whats Difficult	57.1\%	42.9\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	7.478^{a}	5	.187
	Likelihood Ratio	9.814	5	.081
	Linear-by-Linear	.006		1

a. 10 cells (83.3\%) have expected count less than 5 . The minimum expected count is 1.46 .
b. 5 cells (41.7%) have expected count less than 5 . The minimum expected count is 2.14 .

Symmetric Measures

School			Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. ${ }^{\text {b }}$	Approx. Sig.
BMS	Interval by Interval	Pearson's R	-. 013	. 170	-. 075	. $941^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	. 003	. 172	. 017	. $987{ }^{\text {c }}$
	N of Valid Cases		35			
FG	Interval by Interval	Pearson's R	. 027	. 126	. 209	.835 ${ }^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	. 034	. 126	. 267	. $790{ }^{\text {c }}$
	N of Valid Cases		63			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Gender Comparison of Post High School Plans by School

School				Gender		Total
				Male	Female	
BMS	Post	Start Work	Count	16	9	25
	HS		\% within Post HS Plans	64.0\%	36.0\%	100.0\%
	Plans		\% within Gender	10.8\%	7.4\%	9.3\%
		Start Family	Count	84	69	153
			\% within Post HS Plans	54.9\%	45.1\%	100.0\%
			\% within Gender	56.8\%	56.6\%	56.7\%
		College	Count	2	2	4
			\% within Post HS Plans	50.0\%	50.0\%	100.0\%
			\% within Gender	1.4\%	1.6\%	1.5\%
		Not Sure	Count	32	25	57
			\% within Post HS Plans	56.1\%	43.9\%	100.0\%
			\% within Gender	21.6\%	20.5\%	21.1\%
		Travel	Count	13	15	28
			\% within Post HS Plans	46.4\%	53.6\%	100.0\%
			\% within Gender	8.8\%	12.3\%	10.4\%
		Other	Count	1	2	3
			\% within Post HS Plans	33.3\%	66.7\%	100.0\%
			\% within Gender	.7\%	1.6\%	1.1\%
	Total		Count	148	122	270
			\% within Post HS Plans	54.8\%	45.2\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	Post	Start Work	Count	23	11	34
	HS		\% within Post HS Plans	67.6\%	32.4\%	100.0\%
	Plans		\% within Gender	12.5\%	6.3\%	9.5\%
		Start Family	Count	2	1	3
			\% within Post HS Plans	66.7\%	33.3\%	100.0\%
			\% within Gender	1.1\%	.6\%	.8\%
		College	Count	122	119	241
			\% within Post HS Plans	50.6\%	49.4\%	100.0\%
			\% within Gender	66.3\%	68.4\%	67.3\%
		Not Sure	Count	33	40	73
			\% within Post HS Plans	45.2\%	54.8\%	100.0\%
			\% within Gender	17.9\%	23.0\%	20.4\%
		Travel	Count	1	1	2
			\% within Post HS Plans	50.0\%	50.0\%	100.0\%
			\% within Gender	.5\%	.6\%	.6\%
		Other	Count	3	2	5
			\% within Post HS Plans	60.0\%	40.0\%	100.0\%
			\% within Gender	1.6\%	1.1\%	1.4\%
	Total		Count	184	174	358
			\% within Post HS Plans	51.4\%	48.6\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	2.284^{a}	5	.809
	Likelihood Ratio	2.296	5	.807
	Linear-by-Linear	1.064	1	.302
	Association	270		
	N of Valid Cases	5.202^{b}	5	.392
FG	Pearson Chi-Square	5.299	5	.380
	Likelihood Ratio	3.312	1	.069
	Linear-by-Linear	358		
	Association			
	N of Valid Cases			

a. 4 cells (33.3%) have expected count less than 5 . The minimum expected count is 1.36 .
b. 6 cells (50.0%) have expected count less than 5 . The minimum expected count is .97 .

Symmetric Measures

School				Asymp. Std. Error $^{\mathrm{a}}$	Approx. T^{b}	Approx. Sig.
BMS	Interval by Interval	Pearson's R	.063	.061	1.032	$.303^{\mathrm{C}}$
	Ordinal by Ordinal	Spearman Correlation	.064	.061	1.047	$.296^{\mathrm{c}}$
	N of Valid Cases		270			
FG	Interval by Interval	Pearson's R	.096	.052	1.826	$.069^{\mathrm{C}}$
	Ordinal by Ordinal	Spearman Correlation	.095	.052	1.810	$.071^{\mathrm{c}}$
	N of Valid Cases		358			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Gender Comparison of High School Plans by School

School				Gender		Total
				Male	Female	
BMS	HSPlan	Parents	Count	11	7	18
			\% within HSPlan	61.1\%	38.9\%	100.0\%
			\% within Gender	7.4\%	5.7\%	6.6\%
		Friends	Count	2	3	5
			\% within HSPlan	40.0\%	60.0\%	100.0\%
			\% within Gender	1.3\%	2.5\%	1.8\%
		Vocational	Count	47	26	73
			\% within HSPlan	64.4\%	35.6\%	100.0\%
			\% within Gender	31.5\%	21.3\%	26.9\%
		Default	Count	38	52	90
			\% within HSPlan	42.2\%	57.8\%	100.0\%
			\% within Gender	25.5\%	42.6\%	33.2\%
		Different HS	Count	11	7	18
			\% within HSPlan	61.1\%	38.9\%	100.0\%
			\% within Gender	7.4\%	5.7\%	6.6\%
		Private	Count	7	5	12
			\% within HSPlan	58.3\%	41.7\%	100.0\%
			\% within Gender	4.7\%	4.1\%	4.4\%
		No Idea	Count	33	22	55
			\% within HSPlan	60.0\%	40.0\%	100.0\%
			\% within Gender	22.1\%	18.0\%	20.3\%
	Total		Count	149	122	271
			\% within HSPlan	55.0\%	45.0\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%
FG	HSPlan	Parents	Count	24	15	39
			\% within HSPlan	61.5\%	38.5\%	100.0\%
			\% within Gender	12.6\%	8.4\%	10.6\%
		Friends	Count	9	14	23
			\% within HSPlan	39.1\%	60.9\%	100.0\%
			\% within Gender	4.7\%	7.9\%	6.2\%
		Vocational	Count	51	33	84
			\% within HSPlan	60.7\%	39.3\%	100.0\%
			\% within Gender	26.7\%	18.5\%	22.8\%
		Default	Count	45	59	104
			\% within HSPlan	43.3\%	56.7\%	100.0\%
			\% within Gender	23.6\%	33.1\%	28.2\%
		Different HS	Count	8	10	18
			\% within HSPlan	44.4\%	55.6\%	100.0\%
			\% within Gender	4.2\%	5.6\%	4.9\%
		Private	Count	17	7	24
			\% within HSPlan	70.8\%	29.2\%	100.0\%
			\% within Gender	8.9\%	3.9\%	6.5\%
		No Idea	Count	37	40	77
			\% within HSPlan	48.1\%	51.9\%	100.0\%
			\% within Gender	19.4\%	22.5\%	20.9\%
	Total		Count	191	178	369
			\% within HSPlan	51.8\%	48.2\%	100.0\%
			\% within Gender	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	10.141^{a}	6	.119
	Likelihood Ratio	10.163	6	.118
	Linear-by-Linear	.012	1	.914
	Association	271		
	N of Valid Cases	12.970^{b}	6	.044
FG	Pearson Chi-Square	13.147	6	.041
	Likelihood Ratio	.580	1	.446
	Linear-by-Linear	369		
	Association			
	N of Valid Cases			

a. 2 cells (14.3\%) have expected count less than 5 . The minimum expected count is 2.25 .
b. 0 cells (.0\%) have expected count less than 5 . The minimum expected count is 8.68 .

Symmetric Measures

School			Asymp. Std. Error	Approx. T^{b}	Approx. Sig.	
BMS	Interval by Interval	Pearson's R	-.007	.060	-.107	$.915^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	.024	.061	.393	$.694^{\text {c }}$
	N of Valid Cases		271			
FG	Interval by Interval	Pearson's R	.040	.052	.761	$.447^{\text {c }}$
	Ordinal by Ordinal	Spearman Correlation	.054	.052	1.042	$.298^{\text {c }}$
	N of Valid Cases		369			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Ethnicity Comparison of Post High School Plans by School

School				Ethnicity					Total
				Asian	Black	Hispanic	White	Other	
BMS	Post HS Plans	Work	Count	0	4	12	9	0	25
			\% within Post HS Plans	.0\%	16.0\%	48.0\%	36.0\%	.0\%	100.0\%
			\% within Ethnicity	.0\%	12.5\%	12.2\%	7.3\%	.0\%	9.2\%
		Start Family	Count	1	7	14	31	2	55
			\% within Post HS Plans	1.8\%	12.7\%	25.5\%	56.4\%	3.6\%	100.0\%
			\% within Ethnicity	10.0\%	21.9\%	14.3\%	25.2\%	20.0\%	20.1\%
		College	Count	7	19	55	69	8	158
			\% within Post HS Plans	4.4\%	12.0\%	34.8\%	43.7\%	5.1\%	100.0\%
			\% within Ethnicity	70.0\%	59.4\%	56.1\%	56.1\%	80.0\%	57.9\%
		Not Sure	Count	2	1	13	12	0	28
			\% within Post HS Plans	7.1\%	3.6\%	46.4\%	42.9\%	.0\%	100.0\%
			\% within Ethnicity	20.0\%	3.1\%	13.3\%	9.8\%	.0\%	10.3\%
		Travel	Count	0	1	2	1	0	4
			\% within Post HS Plans	.0\%	25.0\%	50.0\%	25.0\%	.0\%	100.0\%
			\% within Ethnicity	.0\%	3.1\%	2.0\%	.8\%	.0\%	1.5\%
		Other	Count	0	0	2	1	0	3
			\% within Post HS Plans	.0\%	.0\%	66.7\%	33.3\%	.0\%	100.0\%
			\% within Ethnicity	.0\%	.0\%	2.0\%	.8\%	.0\%	1.1\%
	Total		Count	10	32	98	123	10	273
			\% within Post HS Plans	3.7\%	11.7\%	35.9\%	45.1\%	3.7\%	100.0\%
			\% within Ethnicity	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%
FG	PostHSPlans	Work	Count	2	2	13	15	3	35
			\% within Post HS Plans	5.7\%	5.7\%	37.1\%	42.9\%	8.6\%	100.0\%
			\% within Ethnicity	11.1\%	6.9\%	14.1\%	7.7\%	9.7\%	9.6\%
		Start Family	Count	0	0	1	1	0	2
			\% within Post HS Plans	.0\%	.0\%	50.0\%	50.0\%	.0\%	100.0\%
			\% within Ethnicity	.0\%	.0\%	1.1\%	.5\%	.0\%	.5\%
		College	Count	13	19	57	142	16	247
			\% within Post HS Plans	5.3\%	7.7\%	23.1\%	57.5\%	6.5\%	100.0\%
			\% within Ethnicity	72.2\%	65.5\%	62.0\%	73.2\%	51.6\%	67.9\%
		Not Sure	Count	3	6	20	34	9	72
			\% within Post HS Plans	4.2\%	8.3\%	27.8\%	47.2\%	12.5\%	100.0\%
			\% within Ethnicity	16.7\%	20.7\%	21.7\%	17.5\%	29.0\%	19.8\%
		Travel	Count	0	0	0	1	1	2
			\% within Post HS Plans	.0\%	.0\%	.0\%	50.0\%	50.0\%	100.0\%
			\% within Ethnicity	.0\%	.0\%	.0\%	.5\%	3.2\%	.5\%
		Other	Count	0	2	1	1	2	6
			\% within Post HS Plans	.0\%	33.3\%	16.7\%	16.7\%	33.3\%	100.0\%
			\% within Ethnicity	.0\%	6.9\%	1.1\%	.5\%	6.5\%	1.6\%
	Total		Count	18	29	92	194	31	364
			\% within Post HS Plans	4.9\%	8.0\%	25.3\%	53.3\%	8.5\%	100.0\%
			\% within Ethnicity	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%

Chi-Square Tests

School		Value	df	Asymp. Sig. (2-sided)
BMS	Pearson Chi-Square	16.080^{a}	20	.712
	Likelihood Ratio	19.849	20	.467
	Linear-by-Linear	.225	1	.635
	Association	273		
	N of Valid Cases	24.510^{b}	20	.221
FG	Pearson Chi-Square	20.068	20	.454
	Likelihood Ratio	.643	1	.423
	Linear-by-Linear	364		
	Association			
	N of Valid Cases			

a. 18 cells (60.0\%) have expected count less than 5 . The minimum expected count is .11 .
b. 19 cells (63.3\%) have expected count less than 5 . The minimum expected count is . 10 .

