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Abstract 
Life over 20 kHz has been a debate that resides in the audio society today. The research 

presented in this paper claims and confirms the existence of data over 20 kHz. Through a 

series of experiments involving various microphone types, sampling rates and six instruments, 

a short-term Fourier transform was applied to the transient part of a single note of each 

instrument. The results are graphically shown in spectrum form alongside the wave file for 

comparison and analysis. As a result, the experiment has given fundamental evidence that may 

act as a base for many branches of its application and understanding, primarily being the effect 

of this lost data on the ears and the mind.
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Introduction 

There has been a growing amount of interest surrounding frequencies above 20 kHz and its 

influence on human perception, especially in music. Currently there is some amount of conflict 

regarding the significance of this high frequency audio, but little of the existing research is 

concerned about closely examining the transient portion of the signals, instead making the more 

steady-state aspects of musical signals the foundation of the analysis. While there may be a 

considerable amount of research into explaining if and how sampling rate will impact fidelity, there 

is not a substantial amount of investigation into how sampling rate choice could impact important 

characteristics of a transient such as its rise and decay times, peak sound pressure levels, and the 

integrity of the impulse’s phase across its frequency range. We intend to examine how the sampling 

rate and microphone bandwidth can impact the phase characteristics of the transient parts of these 

waveforms and how the resulting changes manifest themselves acoustically. 

There hasn't been significant research that analyzes music using high bandwidth equipment to 

address the phase shift due to the analog electronics in the recording chain and the anti-aliasing 

filters. Therefore, there is a push to explore the signal path and more closely analyze these waves 

focusing on the transients and the phase shift that so vividly exists in the sound. 

Terminology 

All periodic waves have three primary attributes that help describe them. The simplest of these is 

amplitude, which describes the magnitude of the wave. A higher amplitude wave has a greater 

peak-to-peak distance than a low one. Frequency is the number of oscillations per unit of time (e.g. 

one second) that a wave goes through. In the context of audio, each wave refers to the local, 

instantaneous variations of air pressure away from the ambient atmospheric pressure which 
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produce the sensation of sound when experienced by the auditory system. A higher amplitude 

sound wave means a louder sound, whereas a higher frequency wave makes a higher pitched 

sound.  A sinusoidal wave is the only waveform with a single “pure” frequency, with all other 

waveforms involving multiple frequencies, such as sawtooth, square, etc…   

The third primary attribute of waves is normally less perceivable to humans. This attribute is 

phase, the point along a waveform some fraction of a complete oscillation between the start of a 

given wave cycle and the start of the next one. There are 360 degrees of phase along a wavelength. 

Position within a cycle is usually thought of as relative to some benchmark such as “at 0° there is no 

local instantaneous pressure deviation from the ambient.” When a wave’s phase is altered by 

repositioning this benchmark by feeding it forward or lagging it behind the reference, this is known 

as a phase shift. Phase shift is frequently the result of time delay in audio systems. A frequently used 

tool for analyzing audio signals is Fourier analysis, a mathematical technique which reduces a 

complex, multi-frequency waveform into an array of sine waves which at each component 

frequency has its own amplitude and phase (shown below). 

  

FIGURE 1: (Source: wikipedia.org) 
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Any complex tone "can be described as a combination of many simple periodic waves (i.e., sine 

waves) or partials, each with its own frequency of vibration, amplitude, and phase."(Source: 

Thompson 2008).  A partial is any of the sine waves by which a complex tone is described. 

A harmonic (or a harmonic partial) is any of a set of partials that are whole number multiples of a 

common fundamental frequency.(Source: Pierce 2001) This set includes the fundamental, which is 

a whole number multiple of itself (1 times itself). The musical pitch of a note is usually perceived as 

the lowest partial present (the fundamental frequency), which may be the one created 

by vibration over the full length of the string or air column, or a higher harmonic chosen by the 

player. The musical timbre of a steady tone from such an instrument is determined by the relative 

strengths of each harmonic. (Source:Wiki) 

 

The harmonic series is an arithmetic series (1×f, 2×f, 3×f, 4×f, 5×f, ...). In terms of frequency 

(measured in cycles per second, or hertz (Hz) where f is the fundamental frequency), the difference 

between consecutive harmonics is therefore constant and equal to the fundamental. But because 

our ears respond to sound nonlinearly, we perceive higher harmonics as "closer together" than 

lower ones. On the other hand, the octave series is a geometric progression (2×f, 4×f, 8×f, 16×f, ...), 

and we hear these distances as "the same" in the sense of musical interval. In terms of what we 

hear, each octave in the harmonic series is divided into increasingly "smaller" and more numerous 

intervals.(Wiki) A musical representation of the harmonic series is shown below. 

http://en.wikipedia.org/wiki/Sine_waves
http://en.wikipedia.org/wiki/Sine_waves
http://en.wikipedia.org/wiki/Fundamental_frequency
http://en.wikipedia.org/wiki/Harmonic_series_(music)#cite_note-1
http://en.wikipedia.org/wiki/Pitch_(music)
http://en.wikipedia.org/wiki/Harmonic_series_(music)#Partial
http://en.wikipedia.org/wiki/Vibration
http://en.wikipedia.org/wiki/Timbre
http://en.wikipedia.org/wiki/Arithmetic_series
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Octave
http://en.wikipedia.org/wiki/Geometric_progression
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Figure 2: (Source: wikipedia.org) 

Bandwidth is the difference between the upper and lower frequencies in a contiguous set of 

frequencies. Similarly, frequency response is the measure of a system’s output spectrum in 

response to an input signal, typically characterized by output magnitude or phase. This information 

is sometimes shown as a graph, and frequency response curves are often used to indicate the 

accuracy of audio systems and components, with a “flat” response being one where all desired input 

signals are reproduced without attenuation or emphasis of a particular frequency band. 

The range of frequencies that can be heard by humans is known as the hearing range. It is often said 

that the audible range of frequencies of humans is 20 Hz to 20 kHz. There is some variation 

pertaining to sensitivity by age and gender, with children under 8 able to hear as high as 22 kHz 

and the elderly only sensitive to about 12-17 kHz, and women typically being more sensitive to 

higher frequencies than similar-aged men. The “20 kHz debate” is the difference in opinion as to 

whether sound above approximately 20 kHz is perceptible or meaningful when storing or playing 

back audio information. The word ‘ultrasonic’ describes the cyclical pressure variations that are 

beyond the upper limit of human hearing range. In air, ultrasonic frequencies begin around 20 kHz 
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and continue up through about 1 megahertz, at which point the wavelength size approaches that of 

the size of its constituent molecules. 

The reduction of a continuous signal to a discrete signal is called sampling. In FIGURE 3, the green line 

represents the source continuous signal, where the blue dots represent the sampled discrete signal. 

Sampling rate can be defined as the number of samples per some unit of time taken from a 

continuous signal to make the resulting discrete signal. 

 

FIGURE 3. Source: wikipedia.org 

If you take a look at FIGURE 5 you can see the resulting sampled signal from the original analog signal 

FIGURE 4 where T in FIGURE 5 is one interval of time.  

 

      FIGURE 4              FIGURE 5 
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The Nyquist frequency is half the sampling frequency of a discrete signal processing system, 

sometimes referred to as the folding frequency.  The Nyquist frequency is not the same as the 

Nyquist rate. It is important to understand that this frequency is a property of a discrete-time 

system, not of a signal. The Nyquist rate, however, is a property of a continuous-time signal and not 

of the system responsible for recording (sampling) it. (Source: 1)  

The segments with near vertical rise, relatively high magnitudes, and fast decays shown in FIGURE 

6are known as transients. These are very short duration signals that represent a portion of musical 

sound much higher in amplitude and more broadband in nature than the harmonic content of that 

sound. 

 

FIGURE 6. Experimental data 

 

The zero-degree phase shift environment is an environment where the signal from an acoustic 

source (e.g. musical instrument or voice) exhibits no phase shift between that source and the 

listener's ear drum.  This excludes any phase shift due to the listening environment (e.g. room 

reverberation). On the other hand, a non-zero degree phase shift environment is an environment 

where man-made devices (such as microphones, audio amps, A/D and D/A converters, 
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compressors, etc) introduce phase shift of the acoustic signal (potentially more prevalent at certain 

frequencies than others) between the source and the listener's ear drum.  

Background Information 

Nyquist began looking into negative-feedback amplifiers and how to determine when they become 

stable. His findings resulted in the development of the Nyquist Stability 

Theorem(Source:Wikipedia), which during World War II helped control artillery that used 

electromechanical feedback systems. Nyquist determined that the number of independent pulses 

that could be put through a telegraph channel per unit time is limited to twice the bandwidth of the 

channel. his rule essentially states  what is more commonly known as the Nyquist-Shannon 

sampling theorem. Nyquist’s work shows up prominently when working with feedback loops in 

what is known as the “Nyquist plot”(Source:Wikipedia) which relates the magnitude of a frequency 

response with its phase. His work is important in research concerning auditory perception because 

of his insight into the relationship of the potential frequency and phase of signals in bandlimited 

channels. 

As the capabilities of technology continue to advance, the ability to record acoustical signals is 

advancing along with it. The first digital recordings were crude, short melodies played by massive 

supercomputers, but increases in all aspects of the digital technology domain have helped digital 

audio become a high fidelity medium. One of the most attractive aspects of digital audio is that 

when processing a digital signal, one can implement any audio effect that one understands the 

mathematics behind, without having to build a discrete circuit. All operations on the sound are 

arithmetical calculations on the detected voltage values, instead of having the voltages pass through 

hardwired analog audio circuitry. The process of detecting sound, converting it into a discrete 
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stream of bits, storing them in one form or another, and playing them back is desirable for many 

reasons when computationally feasible.  

Timeline of the development of digital audio technology 

1951 – The first digital recordings are played, by the CSIRAC in Australia and then the Ferranti 

Mark 1 in the UK, only a few weeks apart. 

1959 – The integrated circuit (IC) or microchip is developed, revolutionizing the world of 

electronics and unlocking the processing power needed for viable digital audio to become a 

reality. 

1962 – The first PCM system is developed at Bell Labs. This concept is still very relevant in the way 

digital music is stored today. 

1967 – Richard C. Heyser devises the “TDS” (Time Delay Spectrometry) acoustical measurement 

scheme, which paves the way for the revolutionary “TEF” (Time Energy Frequency) 

technology. 

1969 – Dr. Thomas Stockham begins to experiment with digital tape recording after experimenting 

on the TX-0 mainframe at MIT Lincoln Laboratory. 

1971 – Denon demonstrates 18-bit PCM stereo recording using a helical-scan video recorder 

1975 – Digital tape recording begins to take hold in professional studios 

1976 – Dr. Stockham, now having founded Soundstream, makes a pioneering 16-bit digital 

recording at a 37 kHz sample rate of the Santa Fe Opera. 

1978 – The first EIAJ standard for the use of 14-bit PCM adaptors with VCR decks is embodied in 

Sony's PCM-1 consumer VCR adaptor. 

1980 – Many manufactures begin introducing multi-track digital recorders. 

The first edition of the Compact Digital Audio Disc (CD) technical specification is released by 
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Philips and Sony. CD recordings are stored at audio bit depth of 16 at a sample rate of 44.1 

kHz. The yields an audio signal with 96 dB of dynamic range and digital bit rate of 1.35 

megabits per second. 

1981 – IBM introduces a 16-bit personal computer, the PC 5150. The Personal Computer 

architecture’s flexible modular design and open technical standard help the architecture to 

become incredibly popular. 

1982 – Sony releases the first CD player, the Model CDP-101. They also release the PCM-F1, the first 

14- and 16-bit digital adaptor for VCRs. Intended for the consumer market; it is eagerly 

snapped up by professionals, sparking the digital revolution in recording equipment. 

1984 – The Apple Corporation markets the Macintosh computer. 

1986 – The first digital recording consoles begin to appear. 

1987 – Digidesign markets “Sound Tools,” a Macintosh-based digital workstation using Digital 

Audio Tape as its source and storage medium. 

1988 – Apple, alongside Electronic Arts, develops the Audio Interchange File Format (AIFF), one of 

the first standards for storing audio bitstreams on PCs. 

1991 – Alesis unveils the ADAT, the first “affordable” digital multitrack recorder, capable of 

recording 8 tracks of 16-bit audio. 

1992 – The premiere of Dolby Digital which featured sample rates of up to 48 kHz and 5.1 channel 

audio. This technology begins to enter the home by 1995. 

1993 – Improving storage capabilities of personal computer hardware, such as internal hard drives 

and the Iomega Zip drive render digital tape—and the analog alternative—obsolete. 

1994 – Yamaha unveils the ProMix 01, the first “affordable” digital multitrack console. 

1996 – Experimental digital recordings are made at 24 bits and 96 kHz, such as those by the Nagra 

D from the Kudelski Group. 
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1997 – DVD videodiscs and players are introduced. An audio version with 6-channel surround 

sound is expected to eventually supplant the CD as the chosen playback medium in the 

home. 

1998 – MPEG Audio Layer 3 (MP3) is developed, allowing the compression of CD-quality sound by a 

factor of 812. 

1999 – Audio DVD Standard 1.0 agreed upon by manufacturers. 

 

Today devices supporting audio playback at 192 kHz sample rates at 24-bit depth are computer 

commodities, and recording interfaces which support capture at that rate are becoming more 

prevalent as well. Digital storage to hold recorded music is cheaper than ever, and the processing 

power needed for high sample rate/high bit-depth recording and playback continues to plummet.  

Auditory Perception 

The hearing mechanisms of the human ear are remarkably complex. Our incomplete understanding 

of how the auditory system works gives rise to the growing amount of skepticism by some that 

sounds above 20 kHz are irrelevant.  

The (in)ability of our auditory organs to perceive sounds above 20 kHz is not a fate sealed by 

inherent flaws in their design. The same basic auditory structures are found in almost all mammals, 

with dogs able to hear at around 60 kHz and bats to 100 kHz, and these are only a few prominent 

examples. Thus it is unlikely that the upper limits of our hearing are restricted by our body’s use of 

the specialized hair cells, stereocilia, found on the basilar membrane. Ultrasonic emissions can exist 

at frequencies up to about 1 megahertz in air, where the limiting factor becomes the size of oxygen 

molecules. When the wavelength of the density change becomes approximately equal to or shorter 
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than the size of the molecule itself, that wave can no longer be propagated, because the molecule is 

not itself compressible (Moulton 2000).  

 “At very high frequencies, the inertia of the ear drum limits our ability to detect sounds. The change 

in pressure away from average pressure and back happens for such a short period of time that the 

ear drum does not have time to move in response.” David Moulton 

 

FIGURE 7: DIAGRAM OF THE EAR (SOURCE:HANS WORDPRESS) 

There are researchers who immediately contest the influence of frequencies above 20kHz and 

those who believe these high frequencies are important to accurate auditory perception. 

One of the strongest arguments for the influence of high frequency content was presented by 

Tsutomu Oohashi and claims that sound reproduced above 26 kHz “induces activation of alpha-EEG 

(electroencephalogram) rhythms that persist in the absence of high frequency stimulation and can 

affect perception of sound quality” (Oohashi et al., 2000).  
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Oohashi attempts to provide evidence that sounds containing high-frequency components (HFC) 

above 20 kHz significantly affect the activity listeners’ brains using “noninvasive psychological 

measurements of brain responses.” Though the subjects could not recognize the HFC when 

presented alone, their brain activity altered significantly when presented with music containing the 

HFC simultaneously with their corresponding low frequency components (LFC) compared to just 

those low frequency components alone.  

Lenhardt et al. (Source:Lenhardt) report that “bone-conducted ultrasonic hearing has been found 

capable of supporting frequency discrimination and speach detection in normal, older hearing-

impaired, and profoundly deaf human subjects” in a paper published in Science. This research 

concerned neural connections between the “saccule” (“an otolithic organ responsible for 

transduction of sound after destruction of the cochlea, and that responds to acceleration and 

gravity”(Source: Boyk:caltech) and the cochlea. Similarly an experiment done by Kimio Hamasaki et 

al. found that the duration of the stimulus (how long the sounds were listened to; in other words, a 

short split-second burst versus a longer musical passage) might affect discrimination between 

sound perception with and without high frequency components (Hamasaki 2004). Though they 

were not able to find significant evidence through [for?] this paper, Nishiguchi and Hamasaki 

conjectured that if the extension of the frequency range by high sampling formats affects the 

perception of sound, it seemed to be caused by reproduction of very high frequency components 

(Hamasaki 2005). 

There has also been research attempting to explain some of these “audible differences” at high and 

low frequencies. Mike Story suggests that some of the audible differences may be related to 

defocusing caused by anti-alias filtering, and that the ear is sensitive to energy as well as spectrum 

(Story 1997).   
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Preparatory 

Several factors can cause signal distortion such as phase shift. Microphones have physical limits, 

and even then additional factors such as the geometry of the coil, gap, and magnet, as well as the 

physical properties of its other parts, all play a role in reducing the fidelity of the source signal. 

Other factors frustrate researcher’s ability to pin down exact performance parameters of audio 

equipment and the human auditory system.  

Theory 

Starting from a mathematical aspect, if we take a complex signal such as a musical note from a 440 

trumpet in concert A pitch. The content is going to be made up of two elements of the signal, the 

initial attack of the transient and the steady state part. The steady state part will have the 440 part 

of the signal and ensuing harmonics that give the listener the characteristics of a trumpet. 

Transients have the highest amplitude and highest frequency content. By the definition of a 

transient, they go from lock background sound level amp to peak sound pressure level in what 

could be tens of microseconds. 

Zero-degree phase shift environment 

A zero-degree phase shift environment keeps the transient intact, meaning it is not “distorted” by 

phase changes caused by man-made devices excluding the listening environment itself. It 

represents in a “natural setting,” a source of music (from instrument or voice) and the receiver 

which is a person’s ear (eardrum). This zero-degree phase shift environment is where there is 

nothing that alters the phase characteristics (anything man-made) in any manner, whether it be 
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phase response, frequency response, or amplitude response between the source of the music and 

the receiver, even a hearing aid is man-made “interference.” The zero-degree phase shift 

environment does include the listening environment, as even though we say zero-degree, we 

include the environmental acoustics. So any man-made device that alters phase, amplitude, or 

frequency between source and receiver would be known as a non-zero-degree phase shift 

environment. 

This leads into the recording of music. Any acoustic music signals have to be recorded using man 

made devices that will necessarily be in that recording chain, such as microphones, microphone 

electronics, associated electronics for power supply, perhaps an anti-aliasing filter, and A/D 

converters. These pieces of the signal chain will modify the phase and or frequency/amplitude 

content of the signal. Therefore they are elements of this non-zero-degree phase shift environment.  

In fact, every recording station is by definition a non-zero-degree phase shift environment, because 

of the man-made devices in between source acoustic signals and the eventual perception of these 

signals by the eardrum of a listener.  

Therefore first we must ascertain the actual characteristics of the musical instruments, in their 

natural state. In this case our zero-degree phase shift environment will be a point in space where 

the recording microphone is placed. In case of recording, the microphone is positioned about one 

inch from the instrument. What this study is looking to achieve is first to characterize the transient 

characteristics of the musical signals in the zero-degree phase shift environment. We achieve this 

using a quarter-inch lab microphone with flat frequency response +1 dB up/down at 100 kHz, the 

microphone power pre-amp and microphone power supply  are “ruler flat” to within tenths of a dB 

out to 200 kHz. A high end Orpheus ADD converter hardware was used at its 192 kHz sampling 

rate. This study involved five musical instruments that were recorded using this equipment: a 

violin, a trumpet, female vocals, a guitar and conga. 



Page | 19 

 

The other element to study is using those data acquisitions as our benchmark, or reference point. 

The files captured with this data acquisition system we represent as being the “best available.” 

Using this as our reference, we make the claim that this particular data acquisition system—which 

is also doubling as a recording system—will have the least amount of phase shift within audio 

range. This research was done to analyze how the musical transients from these recordings of these 

five instruments are different. Studying characteristics such as temporal rise and decay, peak levels, 

frequency content, and phase, as well as how it relates to the standard (the Orpheus reference). We 

will also examine software with which we can mathematically modify characteristics of phase, 

frequency content, and amplitude of the reference recordings. The method through which the 

transients were captured can help us make the 192 kHz recording have the same characteristics as 

the other recordings. If significant evidence is found, we can say that we know that since the higher 

frequency range microphone at a higher frequency rate is capturing more data, and is thus more 

accurately capturing the physical sound wave being produced by the instrument.  

This ties into whether or not an instrument produces sound over 20 kHz, if there is actual energy 

being produced, then this energy will be propagating, and there is chance that a human might 

respond. Evidence can be shown by putting in various phase shift to the frequencies. There hasn’t 

been enough attention to the fact that, if we mathematically manipulate phase, frequency, and 

relative amplitude then reference recordings can look like other recordings. We know exactly how 

these modified transients with less information came to be, and what characteristics they are 

lacking, both mathematically and aesthetically. 

Therefore, there is speculation of evidence of “effect” on listener’s ears when listening to a 192 kHz 

file versus a 44.1 kHz file. If there were a double-blind listening test with the two samples and a 

sample of at least a thousand people, significant evidence may be found. By the formula below by 

Gary Klass, the sample size can be determined. 
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Figure 8: Sampling Error Formula (Source:Klass) 

A sample size of 1600 would produce 2.5% error rate, thus at least a thousand people would yield 

significant evidence. There have been similar tests done in the past, and if there is no data found, the 

next step would be to utilize EEG tests to see if there is any extraneous activity in the brain showing 

evidence of a difference between the two recordings.  

Short-term Fourier Transform (STSF) 

The short-time Fourier transform (STFT), is a related transform used to determine the sinusoidal 

frequency and phase content of local sections of a signal as it changes over time. A key factor is the 

analysis done to-date is that the amplitude axis is displaying the sound levels on a linear scale and 

to a log (decibel) scale.  This will severely mask amplitudes that can be 1/100 of a peak value but a 

ratio of 1:100 is -40 dB and acoustic signals 40 dB below a peak level are quite audible.  There is a 

need for data analysis on a log, and not linear, amplitude scale.  The analysis of transient portions of 

the recorded signals is possible using shareware audio editing programs like Audacity.  Also, the 

FFT spectrum analysis provided by Audacity will display data on a log (dB) scale so this will enable 

visibility on  what energy exists (if any) above 20 kHz on the transient portions of the wav files. 
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Figure 9: Masking Curves (Source:MPEG Audio) 



Page | 22 

 

Experimental Data 
The setup used during the recording sessions is shown below. 

 

Figure 10: Recording Studio Setup (Source: Jon Anderson) 

Recording Type: Evidence of information over 

20kHz?(With STSF Transform) 

Conga 192 kHz GRAS ½ “ Yes 

Conga 192 kHz GRAS ¼ “ Yes 

Conga 192 kHz SHURE Yes 

Guitar 192 kHz GRAS ½ “ Yes 
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Guitar 192 kHz GRAS ¼ “ Yes 

Guitar 192 kHz SHURE Yes 

Trumpet 192 kHz GRAS ½ “ Yes 

Trumpet 192 kHz GRAS ¼ “ Yes 

Trumpet 192 kHz SHURE Yes 

Violin 192 kHz GRAS ½ “ Yes 

Violin 192 kHz GRAS ¼ “ Visible but not significant 

Violin 192 kHz SHURE Yes 

Vocals 192 kHz GRAS ½ “ Yes 

Vocals 192 kHz GRAS ¼ “ Yes 

Vocals 192 kHz SHURE Yes 

 

Figure 11: 192 kHz files over 20 kHz info 

The data below was generated by extracting a small portion of the wave file and importing into a 

software used for analysis and presentation of scientific data called FlexPro by Weisang GmbH. 

Once imported, each file was treated to a Time-Frequency Analysis by method of the short-term 

Fourier Transform. The general parameters for the transform are shown in the following image, 

though the db range varies between image. This was done in order to convey the best 

representation of the experimental findings. 
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Figure 12: FlexPro STSF Settings 

 

The experimental data below draws a parallel between a wave file and the STSF of the wave file.  

These tests were done using all 6 microphones and data regarding the 192 kHz files are displayed 

below.  To recall, the goal of the tests were to discover and analyze information that existed over 

the 20 kHz bound and attempt to define its purpose. Naturally the 44.1 kHz files will not contain the 

same information, therefore the recordings were done as such to make a comparison to show that 

there is a difference with the information that is left out and that this information is valuable to us. 

Unfortunately, the tests did not provide consistent evidence regarding this theory, yet did not leave 

us completely stranded either. The tests merely granted direction to pursue more testing in this 
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field to help define more clearly the purpose and benefit of preserving the higher frequencies that 

may be found in these files. 

 

 

 

 

Figure 13: Conga 192 kHz GRAS ½ “ Max dB: 60 
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Figure 14: Conga 192 kHz GRAS ¼ “Max dB: 60 

 

Figure 15: Conga 192 kHz SHURE Max dB: 60 
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Figure 16: Guitar 192 kHz GRAS ½ “Max dB: 60 

 

Figure 17: Guitar 192 kHz GRAS ¼ “Max dB: 60 
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Figure 18: Guitar 192 kHz SHURE Max dB: 60 

 

Figure 19: Trumpet 192 kHz GRAS ½ “Max dB: 60 
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Figure 20: Trumpet 192 kHz GRAS ¼ “Max dB: 60 

 

Figure 21: Trumpet 192 kHz SHURE Max dB: 60 
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Figure 22: Violin 192 kHz GRAS ½ “Max dB: 60 

 

Figure 23: Violin 192 kHz GRAS ¼ “Max dB: 47 
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Figure 24: Violin 192 kHz SHURE Max dB: 60 

 

Figure 25: Vocals 192 kHz GRAS ½ “Max dB: 65 
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Figure 26: Vocals 192 kHz GRAS ¼ “Max dB: 60 
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Figure 27: Vocals 192 kHz SHURE Max dB: 60 

Analysis and Discussion 
Without listening tests it can only be shown that the different captures do in fact contain different 

information, with some being more faithful reproductions than others. Also, a tentative assumption 

is that the 192 kHz GRAS ¼” microphone is our best reference. Is there a perceivable sound 

difference between captures, ever?  As stated before, each of the instruments above have three 

different images that are related to the three different microphones that recorded them. For each of 

the three 192 kHz samples above, the exact same part of the wave file was taken. As seen above, 

there are differences in the types of microphones used.  

Here below is a comparison of the wave files recorded by the different microphones at different 

sampling rates. 
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Figure 28: Guitar 192 kHz ½”(top) ¼” (mid) SHURE(bot) microphones 
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Conclusion 
The results above put to rest the question of the existence of data over 20 kHz when recorded at a 

sampling rate of 192 kHz. From the data acquired, it is safe to claim that this experiment will stand 

as a foundation for future experiments further investigating the effects of the data that exists above 

20 kHz.  
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