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Abstract 

 Patient motion, which causes artifacts in reconstructed images, can be a 

serious problem in Single Photon Emission Computed Tomography (SPECT) 

imaging. If patient motion can be detected and quantified, the reconstruction 

algorithm can compensate for the motion. A real-time multi-threaded Visual Tracking 

System (VTS) using optical cameras, which will be suitable for deployment in clinical 

trials, is under development. The VTS tracks patients using multiple video images and 

image processing techniques, calculating patient motion in three-dimensional space.  

This research aimed to develop and implement an algorithm for feature 

matching and stereo location computation using multiple cameras. Feature matching 

is done based on the epipolar geometry constraints for a pair of images and extended 

to the multiple view case with an iterative algorithm. Stereo locations of the matches 

are then computed using sum of squared distances from the projected 3D lines in 

SPECT coordinates as the error metric. This information from the VTS, when 

coupled with motion assessment from the emission data itself, can provide a robust 

compensation for patient motion as part of reconstruction.  
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Chapter 1 
 

Introduction 
 

Single photon emission computed tomography (SPECT) is a form of medical 

imaging technology that provides a three-dimensional image of a patient’s various 

biological systems.  Reconstruction of three-dimensional images that are produced 

from the SPECT process is based on the composition of numerous two-dimensional 

images, or slices.  Patient motion is an ever present potential cause of artifacts that 

can limit accuracy of diagnostic imaging [1]. The problem is especially significant for 

imaging modalities such as SPECT and PET which require the patient to remain 

motionless for protracted periods of time. Due to the serious consequences 

associated with errors in medical technology, such as misdiagnosis or delayed 

treatment of a serious illness, producing accurate images is an issue of great 

significance.  Thus, the detection and correction of patient motion in SPECT imaging 

is important.  

Compensation strategies for motion in SPECT imaging that rely exclusively 

on emission data itself are inadequate for clinical usage [1, 2]. The research, of which 

this thesis is a part, aims to devise a more robust method by using an external 

tracking system that provides additional and independent data [2]. The use of external 
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tracking devices, bringing information independent of SPECT data, is expected to be 

much more robust [2, 3]. 

 The basic principle is to determine the 3D motion of the patient during the 

SPECT acquisition using optical cameras and stereo techniques, and then to use this 

information post-acquisition to compensate for motion in the SPECT data during 

reconstruction. A visual tracking system (VTS) is under development for this 

purpose. The VTS comprises a set of optical cameras, a SPECT/VTS calibration 

phantom, a garment with reflective spheres to track chest motion and a computer for 

camera control and data acquisition in synchrony with acquisition on SPECT [3]. The 

images obtained from the optical cameras, at the rate of up to 30 frames per second, 

constitute the raw data for detecting patient motion. Once the images are obtained, 

the reflective spheres are matched in all the views using the proposed feature 

matching algorithm. The 3D locations of these sets of sphere data, when computed 

using stereopsis, make it possible to compute the visible surface, that is, the patient 

surface that is visible in at least two cameras.  When the patient moves, the images 

will change accordingly, and the surface is recomputed.  The difference between the 

newly computed surface and a previously computed surface is used as an estimate of 

patient motion.  This motion estimate may then be used for correction of the 

tomographic reconstruction by rebinning the raw gamma camera data to undo the 

motion prior to reconstruction [4]. The SPECT system operates in list mode.  In this 

mode, all detected events are stored in a long list together with an event timestamp 
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[5].  Thus, it is possible to temporally register the time stamped images with the 

detected activity. 
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Chapter 2 
 

SPECT Imaging 

This chapter presents background concerning SPECT imaging, a brief 

overview of the various components of the scanning system and applications that 

make it such a significant diagnostic imaging modality.  

 

2.1 Single Photon Emission Computed Tomography 

 

Single photon emission computed tomography (SPECT) imaging is the 

process of reconstructing three-dimensional data concerning tissues of interest in a 

patient from two-dimensional images, or slices [6].  SPECT imaging is different from 

other forms of imaging that use radiation, such as x-ray imaging, in that a 

pharmaceutical labeled with a radioactive isotope is injected into the patient.  The 

area of interest absorbs the pharmaceutical and emits gamma rays as the isotope 

decays.  As the gamma rays exit the tissue, they can be captured using a gamma 

camera, as shown in Figure 1. 
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Figure 1 - SPECT Imaging Using a Gamma Camera [6] 

 

A gamma camera is composed of five essentials parts: the collimator, detector 

crystal, photomultiplier tube array, position logistic circuit, and computer.  

Collimators are composed of lead or other materials that have strong radiation 

absorption, having holes to allow gamma rays traveling perpendicular to the detector 

crystals to pass.  The function of the collimator is to provide uniformity in the image, 

allowing a tolerance of rays traveling within a small range of angles to make contact 

with the detector crystal.  This provides a clear two dimensional projection of the 

area at the current angle of the camera head.   

The detector crystal is usually composed of thallium-activated sodium iodide 

(NaI [T1]).  Photons are released from the crystal as gamma particles that have passed 
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through the collimator come into contact with the crystal.  These photon emissions 

occur in patches that are sparse and weak, so they must be amplified.  Amplification 

is achieved using the photomultiplier tubes (PMT) attached to the crystal.  The 

average gamma camera can have between 37 to 91 tubes in its array.  The 

photomultipliers normally amplify the output of the crystals by a factor of 6 to 10 [6]. 

The amplified output from the PMT is passed to the position logistic circuits, where 

areas of activity are recorded and processed. This information is then output to a 

computing system where the data is analyzed.   

 

Figure 2 - Gamma Camera System functionality [7]. 

 

An example of a gamma camera system is shown in Figure 2, above.  The 

gamma camera heads circle the patient as they lie on the flat platform in the center of 

the apparatus.  Two-dimensional projections are obtained from the gamma camera 

heads, which are used to reconstruct three-dimensional estimates of the radionuclide 

distribution in the patient [7]. 
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2.2 Applications  

SPECT Imaging has a wide variety of uses in the present day and new studies are 

being conducted to expand its range. The major areas of application are [8] – 

• Cardiac Perfusion - Measures the amount of blood flow to the heart muscle to 

determine healthy and unhealthy regions. 

• Cardiac Volume – Determine the amount of blood pumped by the heart. 

• Lesions – Detection of any unwanted lesions in the heart, lung or lymph nodes. 

• Scans – Bone scans, Kidney/Renal Imaging, Brain Imaging 

 

2.3 Significance of the Research 

“Despite multiple advances in the technology of myocardial perfusion SPECT, patient 

motion remains a problematic source of error” [9].  In SPECT cardiac imaging, body motion 

has been determined to occur in ~25% of studies and ~5% of the time motion is 

significant enough to cause artifacts that can mislead diagnosis [10]. Generally it has 

been reported that motion of 2 or more pixels (>13mm) was sufficient to create 

minor to moderate defects in the tomographic data [11].  

Respiratory motion is present in all cardiac perfusion SPECT studies. It can 

result in a blurring of the structures of the heart producing apparent decreases in 

activity in the inferior and anterior walls that can be mistaken for perfusion defects 

[12].   
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 Upward creep is the term given to the slow upward movement of the heart in 

the chest during the course of imaging. Testing with various imaging agents and 

different stress conditions revealed that subtle changes in respiratory pattern related 

to recumbence, may also play an important role in the origin of upward cardiac creep 

[13]. 

 Separate emission and transmission imaging are frequently employed in 

SPECT and PET. Despite being warned by the technologists to expect a change in 

motion of the camera heads as the system switches from emission to transmission 

imaging, some patients relax and move with the cession of the camera head 

movement at the end of emission imaging. A number of studies have reported the 

deleterious impact of a mismatch between emission and transmission scans in cardiac 

SPECT and PET [14].  

Thus we can see that various forms of patient motion in total represent a 

major clinical problem the solution to which would significantly improve the accuracy 

of clinical imaging, as well as reduce patient care costs by decreasing the need for 

repeat imaging. The proposed visual tracking system is an innovative approach that 

has the potential for providing a generic solution that would operate in a clinical 

setting with minimum impact on current imaging protocols and cooperation from the 

patient.  
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Chapter 3 
 

Visual Tracking System 

This chapter covers a detailed overview of the VTS from a hardware 

perspective. Various components and the way they work together are discussed 

followed by a briefing of the various advantages of this system. 

 

As mentioned in the introduction, the VTS is made up of optical cameras, a 

calibration phantom, a stretchy garment with reflective markers that are to be tracked 

and a computer for data acquisition and synchronization purposes. When the patient 

is lying down on the SPECT imaging table, six optical network cameras are 

positioned to look at him/her from both the head and foot side of the gantry [15]. 

These cameras are fixed in their locations in the clinic to prevent any disturbance in 

the positions due to external factors. 

 

The illustration in Figure 3 visualizes the clinical deployment of the VTS in 

real world circumstances [16]. 
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Figure 3 – Clinical deployment of VTS [16]. 

 

3.1 Gamma Camera 

The Gamma (SPECT) Camera being used throughout this project is the 

Philips IRIX™ Exclusive Triple-detector Camera, belonging to the Dept. of Nuclear 

Medicine at University of Massachusetts Medical School. 

 

3.2 Optical Camera 

The optical cameras used are AXIS 2130 PTZ Network Cameras capable of 

transmitting sequential JPEG images over a network.  This is an all-in-one integrated 

networked pan/tilt/zoom camera that allows users to remotely control the functions 

live over a local area network or the Internet. For mounting on the wall, the AXIS 

2130R Wall Bracket was used. It transmits up to 30 frames per second, with a 

maximum resolution of 704x480 pixels. The Compression used it MJPEG and each 
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camera has a built-in web server that serves a video image stream on command. 

Figure 4 shows one of the Axis Network Cameras shown sitting on top of the hi-

speed switch to which all cameras are attached when in use. On top of the camera is a 

light source using an LED. 

 

.   

Figure 4 - Philips IRIX Gamma Camera [17] and AXIS Network Camera [15]. 

 

The figure also shows the device for mounting the light source on the camera 

so that the light moves in synchrony with the camera when it is moved by pan or tilt 

[15]. In the clinic, these cameras aim at the patient’s chest, thereby viewing the 

stretchy garment worn. This garment has 16 reflective spheres attached to it, which 

glow in a dark ambience when the light on top of each camera falls on it. The 

purpose of this is to provide features for matching in different views, thereby getting 

a depth estimate for each frameset. 

 

3.3 Stretchy Garment with Reflective Spheres 

Sixteen highly retro-reflective spheres are clipped on a garment made of black 

stretchable fabric. This garment is placed around the chest and the spheres 3D 
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motion is tracked by stereo techniques. Figure 5 shows one version of the design that 

was used in experiments. Inserts in the picture show the mounting pin with and 

without sphere attached.  Presently a different pattern of spheres is designed so as to 

reduce the number of blobs that are being blocked. The new pattern reduces the co-

linearity of their orientations and symmetry in the heights. A snapshot of torso 

phantom with this design can be seen in the center block of Figure 5. Note that the 

spheres on the garment are never radioactive.  

  

3.4 Calibration Phantom 

The 3D motion of the spheres is tracked using standard stereo computation 

techniques. A calibration is required beforehand to determine the transformation 

matrix used to compute the 3D locations of the markers in SPECT coordinates from 

their 2D image counterparts [18]. A calibration phantom as shown in Figure 5 was 

designed for this purpose. 

 

   

Figure 5 – Left - One version of Stretchy Garment design with Reflective Spheres, 

Center – Asymmetrical version of the Garment, Right - Calibration Phantom [15]. 



 

 21 

Seven reflective spheres are placed on top of rods of various heights and 

whose upper end is a well that can receive a drop of radioactivity. During the 

calibration step, the phantom is placed in the field of view of the gamma camera. 

Snapshots are taken with the optical cameras and a SPECT acquisition is performed. 

Precaution is taken that all the seven spheres are visible in all camera views [16]. The 

significance of the number seven is discussed below in the Calibration section. The 

Software is run on the images acquired and the calibration matrix is computed. After 

calibration, the phantom is removed and the patient is installed on the bed, wearing 

the garment presented in figure 5. The optical cameras track the chest motion during 

the acquisition and a post-acquisition program converts the motion into the 3D 

SPECT coordinates system using the calibration.  

 

 

Figure 6 – Calibration Phantom on the SPECT table with and without lights on [15]. 

 

Figure 6 represents images acquired from a stereo pair of cameras. The top 

row is pictures of our calibration phantom lying on the bed of SPECT system with 

room lights on. The second row shows the visibility of the spheres of the calibration 

phantom with room lights off. 
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3.5 Clinical Setup 

In figure 7 below, the first row shows stereo images acquired with room lights 

on a normal subject lying in imaging position on the bed of the SPECT system with a 

garment made up of four rows of four spheres each. The last row shows the same 

images as above, except the room lights have been turned off. Notice that the spheres 

are easily visible regardless of room lighting. 

 

Figure 7 – Patient lying down on the SPECT table with and without lights on [15]. 

 

The cameras are connected to a laptop via a 1-gigabyte switch. A LabView 

program (National Instruments Co. Austin, TX) is used to -  

1)  Control camera individual pan, tilt and zoom  

2)  Synchronize the video acquisition with the gamma-camera acquisition  

3)  Store the 6 video streams as multiple-JPEG (M-JPEG) files 

 

Figure 8 shows a snapshot of the GUI of the VTS system.  Additional options 

include the ability to perform calibration, set FTP settings to acquire the required 

SPECT file from the network, default work settings and advanced manipulation 
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among other functionalities. The JPEG images acquired have a size of 352 x 240 

pixels, which is sufficient to track the centroid of the spheres with 1-mm accuracy. 

 

 

Figure 8 – GUI of the VTS system looking at the calibration phantom in 6 views [15]. 

  

3.6 Advantages of the System 

Detecting patient motion during SPECT data acquisition using optical cameras has 

the following advantages: 

• Allows higher resolution image reconstruction by reducing motion blur artifacts 

• Does not depend on emission data 

• Does not contact the patient, making it easy to deploy in a clinical setting 
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Using multiple cameras is expected to perform better than a two camera system by: 

• Giving a longer field of view of the patient 

• Reducing the occurrence of missing markers 

• Reducing the ambiguity of stereo matching 

• Improving the accuracy of 3D location determination 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 



 

 25 

 
 
Chapter 4 
 

Software Architecture 

 This chapter details the basic software architectural premise of the VTS 

system. The system has a series of network cameras connected by an IP network to a 

computer system running the VTS Software. High performance is achieved by 

acquiring and processing images in parallel [4].  Each camera is associated with a 

thread of control within the VTS.  As images are acquired, they are stored in buffers 

until needed. Another thread is responsible for requesting images from a specific 

time, and processing those images as a stereo set.  2D blob detection is also done 

here to isolate the centroids of the markers. Likewise the capability of doing 3D blob 

detection to find the SPECT radioactive marker positions is also present so that it 

could be used during calibration. 

 

 XML is used as the standard for data transfer among all the modules in the 

system. This was incorporated keeping in mind that XML has various advantages 

over other formats when working on a .NET platform.  Figure 9 shows the software 

architectural design of the system. 
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Figure 9 – Software Architecture Design on the VTS System [4]. 

 

4.1 Image Acquisition Threads 

The software receives a video stream from each camera in each Image 

Acquisition Thread.   The thread establishes a network connection to each camera, 

receives a Motion-JPEG (MJPEG) stream, and then parses and timestamps each 

JPEG video frame received from the camera.  The JPEG images are then saved into 

buffers in the form of Motion Track Objects (MTOs) [4]. Each MTO has several 

properties and methods, one being the compressed JPEG data itself.  Thus, video 

images can be acquired asynchronously. 

 

4.2 Buffers 

Each buffer consists of a FIFO containing MTOs.  There is one buffer for 

each camera image stream.  Images are buffered and later used by the Image and 

Stereo Processing Thread.  The purpose of the buffer is to allow the frame grouping 
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function to select a set of frames with similar timestamps. When the Image and 

Stereo Processing Thread requests an image set, the buffers supply the frames whose 

timestamps are closest together. 

 

4.3 Image & Stereo Processing Thread 

The Image Processing Thread is responsible for grouping a set of frames (one 

from each camera), using image processing methods to perform conversion to a 

monochrome image with thresholding and detect two dimensional marker 

coordinates, finally matching the marker coordinates to produce a list of three-

dimensional marker coordinates. The last two stages of blob matching and stereo 

processing are of concern to this thesis. 

 

Figure 10 – Image and Stereo Processing Thread Components [4]. 

4.3.1 Group Frames  

This module is responsible for producing a set of frames—one frame from 

each camera—to be used for stereo processing.  A master camera is selected.  A 

master frame is then selected from that camera’s buffer by going back several frames 

previous to the current time.  The timestamp from the master frame is determined, 
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and the module finds the frames from the remaining cameras closest in time to the 

master frame.  The ability to ‘go back in time’ allows the module to essentially ‘look 

into the future’ to determine which frames are closest in time.   

 

4.3.2 Image Processing 

The Image Processing functions uncompress the incoming JPEG images, 

detect markers, crop the image, and save images to disk if requested. Results of this 

function consist of an array of two-dimensional marker coordinates written to XML 

files that are used in the remainder of the stereo processing functions. 

 

• Uncompress JPEG - Images are received from the buffer as compressed JPEG 

images.  JPEG images are decompressed into 24-bit RGB bitmaps for processing.  

 

• Binarize Images - The images are binarized using a threshold value (default value 

is around 250, since we are dealing with grayscale images) to separate the markers 

from the background.  

  

• Marker Detection - Segmentation is performed on the Images to locate the 

centroids of the markers. This module has both 2D and 3D routines, to be used 

during calibration. 

 

• Image Cropping - These Images are then cropped to show only the markers.  This 

function crops the image to the upper-right and the lower-left marker 

coordinates, with a degree of padding added to make sure entire markers are 
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preserved for use by later functions.  Patient privacy concerns have prompted this 

in the event that images are saved back to disk or are transmitted in such a 

manner that patient privacy may be compromised. 

The last two functions of the Image and Stereo Processing thread, namely 

blob matching and stereo processing constitute the essence of this thesis. 

 

4.3.2.1 Blob Matching 

 
The frame set with the detected blobs is passed on to the matching routine. 

Taking a camera as the base (by default the first IP camera) a set of possible matches 

for each marker in the corresponding frame of the second camera is created as a 

linked list. Then projecting these views into another view and using certain epipolar 

geometry constraints (detailed in the chapter on feature matching), the best match 

between all views is identified and written into another final match data structure. 

This is proposed to be used as the basis for matching the markers in the following 

frames, so as to reduce the overhead of performing the same process again and again 

when there may not be much motion between frames. 

 
4.3.2.2 Stereo Processing 

 

The final match data structure is passed onto this module for each frameset. 

Using the calibration results (written into XML files, one per camera) and matches 

between markers passed on, it computes the three dimensional real space locations of 

the markers. Here the results are in SPECT coordinates since it is taken as the 
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reference coordinate system. The computed 3D values are then passed on to the 

Reconstruction/Correction module where the compensation for motion is done. 
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Chapter 5 
 

Calibration 

 The optical cameras are placed subject to certain physical clinical position 

constraints at some distance from each other and from the spheres. The PTZ (Pan, 

Tilt, and Zoom) features can also be set arbitrarily in order to get the best pictures of 

the field of view. This requires the stereo system to be calibrated with respect to the 

SPECT coordinates so that a motion detected by the VTS can be expressed in the 

SPECT coordinate system.   

 

5.1 Theory 

There are three main fields of reference concerning camera calibration: the 

camera reference frame, the image reference frame, and the real world reference 

frame [19].  Camera calibration is necessary to allow for the proper computation of 

the position of observed objects in the real world when using two or more optical 

cameras.  In order to achieve this, the intrinsic and extrinsic parameters of the camera 

system must be known. A brief description of the math involved is given below. 

Trucco and Verri [19] define the intrinsic parameters of a camera as, 
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The focal length, 

The effective pixel size in the horizontal and vertical directions,  

The image center coordinates, and  

The radial distortion coefficient, .  

These parameters are needed to characterize the optical, geometric, and digital 

characteristics of the camera.  The extrinsic parameters of a camera specify the 

transformation between the camera and world reference frames.  These parameters 

define the extrinsic parameters of a camera as, 

A translation vector,        , and 

A rotation matrix. 

The translation vector    is a three-dimensional translation vector that 

describes the relative positions of the origins of the camera and world reference 

frames.  The rotation matrix      brings the corresponding axes of the two reference 

frames together. Each reference frame has its own respective coordinate system, and 

representing the position of a point in one frame in another reference frame is 

achieved through a series of rotations and translations on a point.  Table 1 presents 

the representation of a point in each reference frame’s coordinate system.  

 

World pw (xw, yw, zw) 

Camera pc (xc, yc, zc) 

Image pi (xi, yi, zi), zi = f 

 

Table 1 - Point Representation in World, Camera, and Image Reference Frames 
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A point pw in the world reference frame is represented by the point pc in the camera 

reference frame through the following: 

pc =         pw +  

 

Likewise, xc, a point in the camera reference frame is represented by the point xw in 

the world reference frame using the equation: 

pw =       -1 (pc -       ) 

 

A point pc = (xc, yc, zc) in the camera reference frame is represented by the point pi = 

(xi, yi) in the image reference frame by: 

 

xi =  

 

yi =  

 

Figure 11 - World, Camera, and Image Reference Frames [19]. 
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These relationships between points in different reference frames allow for 

easy representation of a point in one reference frame in another.  The relationship 

between the three reference frames is summarized in figure 11. 

 
5.2 Implementation 
 

In order to compute the Camera Parameters, the Calibration Phantom 

described earlier in Chapter 3 is used. Seven reflective spheres are placed on top of 

rods of various heights and whose upper end is a well that can receive a drop of 

radioactivity. The arrangement is non-coplanar and asymmetric, guaranteeing a 

unique solution for the calibration equations [18]. Figure 12 shows the various stages. 

 

 

Figure 12 – Calibration Processing Flow [18]. 

 

Similar to the VTS operation, the Optical and Gamma Images are obtained and the 

centroids are determined, forming Image Point and World Point lists. The world to 

image transformation equations are written forming 2 equations with 12 unknowns.  
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World point xw = (xw,yw,zw) projects to xi=(xi,yi) where 

 

 

 

 

Rewrite to be linear in mij as 

 

 

 

Each world / image point pair gives 

 

 

 

N point pairs yield 2N equations, so we need ≥ 6 point pairs to compute mij. Thus we 

need at least 7 point pairs in order to solve this.  

 

Now we solve Am=0 where  
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Singular Value Decomposition (SVD) is used to solve this, to find m from A’s null 

space and all the parameters can be reconstructed from the matrix m. More about 

SVD can be found in Appendix A. 

 

 

Figure 13 - Sample Output with residual error=9.05 [18]. 

 

5.3 Quality Control 

 Because Calibration is a crucial step, the assessment of its validity should be 

part of daily quality control. However, performing a full VTS/SPECT calibration 

before each clinical acquisition would be a time-consuming task since it involves 

acquisition by both the SPECT system and optical cameras of a phantom made up of 

reflective spheres with activity at their centers. Though the attached optical cameras 

wouldn’t change location relative to SPECT, it is observed that the PTZ values can 

drift with time or on reboot.  

In order to deal with this, a method was devised where flat reflective disks are 

stuck onto the wall behind the gantry of the gamma camera, so that they are seen by 
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the optical cameras when there is no patient present [20]. Whenever the cameras are 

rebooted / drifted, a correction matrix is calculated for each camera using images of 

markers on the wall before and after the motion. This transformation, when applied 

on the new patient images, corrects the changes without the need for a new SPECT 

acquisition. 

 

Figure 14 – Coordinate Systems for VTS and SPECT. The lines (Ci,Xi) and (Cj,Xj) 

intersect at Xw [20]. 

 

The center of the SPECT coordinate system is taken as one corner of the 

stack of reconstructed slices as shown in figure 14. The Z axis is perpendicular to the 

slices and the X and Y axes are in the plane of the slices. The output of the 

calibration is a (4,3) matrix Mi accounting for the relationship between the 

coordinates Xi=(xi,yi,1)t in the optical images of the ith camera and the coordinates 

Xw=(xw,yw,zw,1)t in the SPECT system of the same point such that  MiXw=Xi . 

The determination of the 12 coefficients of Mi requires at least 6 points 

detectable by both the VTS (providing the Xis) and the SPECT system (providing the 
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Xws). For that reason, the calibration phantom consisting of 7 optically visible 

spheres whose center can contain a drop of radioactivity is used [20]. In order to 

check for a possible PTZ change since the last calibration, retro-reflective markers 

attached to the walls are employed and their locations in optical images acquired 

before each clinical acquisition to their locations in images acquired during the last 

VTS/SPECT calibration are compared. Let’s call X’i=(x’i,y’i,1) the new location for 

any point Xi after camera motion. A (3,3) matrix Pi accounting for the PTZ changes 

is determined such that: Xi=PiX’i. Combining the equations, we obtain  

MiXw=PiX’i, and if Pi is invertible,  (Pi)-1MiXw=X’i. 

Thus to compensate for camera motion the calibration matrix Mi is simply replaced 

by (Pi)-1Mi. Figure 15 shows the results obtained. 

 

Figure 15 - A. Phantom before camera motion. PTZ parameters are saved. B. 

Phantom after camera was moved, rebooted and reoriented using saved PTZ 

parameters. C=A+B. Notice imperfect overlay. D=A+(B corrected). Overlay is 

almost perfect. [20] 
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Chapter 6 
 

Implementation 

This section details the software implementation details of the thesis. As a part 

of the VTS system, the design and protocols used are same as that of VTS as 

explained below. Initial forms of the system were written in Java and then ported into 

C++.  

The Java work was done using Eclipse 3.0 [21] as the base. The Visual C++ 

coding is done using Microsoft Visual Studio.NET 2003. The code is packaged as 

dynamic link libraries (DLL) that can be ported into other applications. All the 

transfer and save operations on any form of data, including the VTS configuration 

data, is fixed to an XML file format. The Graphical User Interface is programmed 

using LabVIEW. All the work is done on the Windows OS. The Marker Matching 

portion needed the use of certain Computer Vision tools which were obtained from 

the Intel Open Source Computer Vision Library (Intel OpenCV 3.1). An overview of 

OpenCV and its components follows. 
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6.1 OpenCV 

The Open Source Computer Vision Library (OpenCV), created and maintained by 

Intel, is a free, open source collection of computer vision routines geared mainly 

towards human-computer interaction, robotics, security, and other vision applications 

where the lighting and context of use cannot be controlled [22]. OpenCV provides a 

solid vision infrastructure and thereby allows work at a higher level rather than having 

to worry about the basics. It has BSD type license to promote free commercial and 

research use.  

OpenCV support for vision is extensive. It supports routines for input, 

display, and storage of movies and single images [23]. The various functions 

supported are given below. 

♦ Image processing 

• Convolution 

• Thresholding 

• Morphological operations 

• Flood fills 

• Histograms 

• Smoothing 

• Pyramidal sub-sampling 

• Full suite of image algebra and arithmetic 

♦ Geometry 

• Delaunay triangulation 

• Calibration 

• Fundamental and essential matrices computation 
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• Image alignment 

• Stereo depth calculation 

♦ Feature detection  

• Corner detectors 

• Canny edge operators 

• Blob finders 

• Scale invariant features 

♦ Shape descriptors 

• Hu moments 

• Contour processing 

• Fourier descriptors 

• Convex hulls 

• Connected components  

♦ Motion 

• Optical flow 

• Background learning and differencing 

• Motion templates 

• Motion gradients 

♦ Learning-based vision 

• Feature histogram comparison 

• Image statistics 

• Template-based correlation 

• Decision trees 

• Statistical boosting on up to convolution neural networks.  

 

This library is actually a composition of 4 different partitions [24]. 

CV – Consists all the Computer Vision Algorithms 
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CVAUX – Beta Algorithms and useful gems 

CXCORE – Linear Algebra and Matrix support 

HIGHGUI – Media and Window handling 

The Windows version comes with an installer while the Linux version needs to be 

unzipped and installed manually. The library can be downloaded from 

http://sourceforge.net/projects/opencvlibrary/ [25]. Version 3.1 was used with this 

project. To make it run in tandem with Visual Studio we need to indicate where the 

include files and the lib files are located. More on installing OpenCV on Windows 

and the functions used in this thesis are presented in the Appendix B. 
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Chapter 7 
 

Feature Matching 

When all 6 cameras take snapshots of the stretchy garment at one instance of 

time, we have 6 images to deal with. All of them go through software processing 

undergoing bitmap conversion, thresholding, blob detection stages and an XML file 

with the locations is written. Now we should be able to identify sets of each marker 

through all 6 views. This process requires a robust feature matching algorithm. This 

section discusses the geometrical conditions when tackling such a problem and 

further details of how this was implemented. 

Image matching is considered a very crucial and at the same time, one of the 

hardest problems in stereo imaging [26].  Stereo images allow for the interpretation of 

an object, area, or scene from two distinct viewpoints.  The different viewpoints 

allow for depth when matching points from corresponding images.  The ideal 

matching situation would be to match each and every pixel in each image.  However, 

this is infeasible, due to the fact that in this case, the intensity of a single pixel can be 

quite ambiguous to allow for matching with confidence.  To resolve this, collections 

of pixels are matched; images are matched as corresponding areas and features [27].  
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In our case, we match features in the form of circular markers with a radius of around 

5 pixels in the default zoom setting of the camera. 

 

 

Figure 16 – Example Stereo Pair Images of the Torso Phantom 

 

Considering the case of the stereo pair indicated in Figure 16, we need to 

match the glowing markers in both the images. This looks like a 2 Dimensional 

search space problem, where we need to isolate each feature in the left image and 

search for a very close match throughout the right image. But this has its set of 

limitations – the search space for each marker is the entire image making real time 

processing difficult and the markers are perfect circles of about the same size, so 

there will be multiple matches. By manipulating the geometry of the stereo system, 

we can reduce this to a one dimensional search problem (along a line) [8]. The Epipolar 

Geometry constraint states that given a feature point Pl in the left image, the 

corresponding feature point Pr in the right image must lie on the corresponding 

epipolar line [19]. The section below talks in detail about this.  
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7.1 Epipolar Geometry 

Given a pair of stereo cameras, any point P in 3D space defines a plane πP 

that goes through the point P and the two centers of projection of the two cameras 

[19]. This plane is called the Epipolar Plane.  The lines where πP intersects the image 

planes of the stereo cameras are considered to be the conjugated epipolar lines. The 

image in one camera of the other camera’s projection center is called an Epipole.  

Thus, the geometry of a stereo system is described as Epipolar Geometry. 

Vectors from the left and right image planes can describe a point P in 3D 

space.  The vectors PL = [XL, YL, ZL]T and PR = [XR, YR, ZR]T refer to the same 3D 

point P from the left and right image planes, respectively.  Furthermore, the vectors 

pL = [xL, yL, zL]T and pR = [xR, yR, zR]T refer to the point P in the respective image 

planes from the left and right projection centers, OL and OR.  

 

Figure 17 - Epipolar Geometry of a Stereo System [19]. 
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The relation between points PL and PR is given by the equation  

PR = R (PL – T), 

where R is a rotation matrix and T is a translation vector, given by (OL – OR), in 3D 

space.  The relation between the points pL and PL is given by the equation 

P
Z

f
p L

L

L

L
=

 

 

where fL is the focal length of the left camera and ZL is the z-component of the 

vector PL.  A similar equation also applies to the right camera.  The equation of the 

epipolar plane, πP, is given by  

(RTPR)TT ×  PL = 0. 

 

An Essential Matrix E which maps points and epipolar lines in camera coordinates is 

derived.  This E is given by the equation 

E = RS, where  
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and pRTEpL = 0. 

If we want to process in pixel coordinates, a fundamental matrix F is used which 

maps the points and epipolar lines, but in Pixel Coordinates. The fundamental matrix 

is given by the equation 

0=pp L
F

R

T

. 
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7.2 Trinocular Geometry 

Extending the concept of epipolar geometry into three views, the Trinocular 

Geometry is described. The relation between corresponding points X1, X2, X3 in 

three views of the same scene is defined by a geometric object called a Trifocal 

Tensor [27]. This allows transfer of corresponding objects (points or lines) among the 

views. Given a point X1 in the first view, the corresponding point in the second view 

must be searched for along an epipolar line l21 that is determined by the trifocal 

tensor. Moreover, if two matching points X1, X3 are given, the third match X2 is the 

intersection of the epipolar lines l21 and l23. The trifocal tensor can be estimated from 

six or more corresponding points in three views.  

 

Figure 18 – Three View Geometry [28] 

 

This thesis did not delve into the computation of the trifocal tensor but 

instead performed three view matching based on the principle behind it. Hence the 

mathematical derivation of the tensor is not presented. Further reference on this can 

be found at [29 - 31]. 
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7.3 Multi-view Matching 

 In stereo processing, a short baseline means that the estimated distance will be 

less precise due to narrow triangulation. For more precise distance estimation, a 

longer baseline is desired. With a longer baseline, however, a larger disparity range 

must be searched to find a match. As a result, matching is more difficult, and there is 

a greater possibility of a false match. Another equally important problem is that there 

might be more markers hidden in the image. Using multiple cameras, giving more 

than one stereo pair, tackles this problem. The principle that the proper match lies 

where the epipolar lines from two other views intersect is extended to more than 

three cameras.  

The algorithm projects all the possible matches found between views 1 and 2 

onto view 3, and if there is the presence of any uncertainty at this point, the possible 

match sets between 1-2-3 are projected onto view 4. The set which has its 

intersection point coincide perfectly with a feature present in 4 is the right match. 

There exists a remote chance for ambiguity when using three views because of linear 

alignment of features in the images, but it is not possible when using more than three 

views. Thus this guarantees the best match in all ways. 

  

7.4 Error Metrics 

 This section discusses the two possible error metrics that were considered for 

this problem. Initially the theoretical metric of finding the closest feature to the 
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intersection of epipolar lines was implemented. Later because of certain shortcomings 

that cropped up, calculating the sum of perpendicular distances from epipolar lines 

was used. 

 

  

 

 

 

 

 

 

 

Figure 19 – Case of epipolar line overlaps (marked in red). Top – three views at a 

particular instant, Left – Epipolar projections 1 to 3 & 2 to 3, Right – Intersection of 

Epipolar lines, the overlapping lines make it hard to find the right match. Bottom –

Geometry of error computation 
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Figure 19 shows a general case of epipolar projection from two views onto the third 

view. As seen in the lower right portion, there is a possibility that epipolar lines 

overlap (as shown marked, the red lines are actually two epipolar lines). This is due to 

the co-linear camera centers and possible symmetric arrangement of markers on the 

garment. Also due to the orientation of the cameras with respect to the SPECT table, 

the epipolar lines from two views projected onto the third view can sometimes have 

very small angle between them, making slight changes give high error values. Since 

this is not totally avoidable due to physical constraints on where the cameras can be 

placed in the clinic, there is a need to find a metric which doesn’t get influenced by 

them. 

 

7.4.1 Intersection Metric 

For the case presented above, intersection was used as a metric to evaluate the 

robustness. This did not quite work well for the datasets. In case of lines with small 

angle between them, error as small as one pixel in drawing the line results in inverse 

of sine of the angle variation from the correct location (Figure 19 – Bottom). Also 

overlaps gave nearly same error values, thereby making it hard to distinguish the right 

match from the false possibilities. 

 

7.4.2 Perpendicular Distances Metric 

In order to reduce the sensitivity to the camera orientations, we choose sum of 

perpendicular distance to act as the metric. This guarantees that the error limits to the 



 

 51 

minimum distance from the point, which is the right error. Overlaps still gave nearly 

the same errors, but since we are dealing with low deltas, it’s possible to distinguish 

them. The logic is that overlaps always differ by a certain small value. This does not 

make much impact when dealing with high errors but is significant in the case of low 

errors. Thus the code supports sum of perpendicular distances from the epipolar 

lines as an alternate error metric. The centroid location which has the least value for 

this is considered the best match. Details follow in the algorithm description. 

  

7.5 Algorithm 

 This algorithm gives a method for feature matching between three or more 

views. We assume that all the views show all the markers in the initial set of frames. 

This means that there are equal numbers of features detected in all the cameras for 

the case where basic matching is performed. Table 2 gives the algorithm for 4 view 

geometry. A pair of camera is selected randomly (views 1 and 2 are used as default, 

but this can be changed by user selection if needed). Epipolar lines are projected 

from view 1 onto view 2. For every marker in view 1 a listing of all the markers close 

to its corresponding epipolar line in view 2 is made. Depending on the alignment of 

the cameras, some of these listings may have more than one marker (This is because 

the centroid locations are within 1-2 pixel accuracy and co-linear camera center 

positioning makes epipolar lines overlap for linearly oriented markers). 

 Thus the advantages of having the multi cameras looking at the patient can be 

exploited here. The methodology below is discussed for a single marker. A third view 
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is considered. The marker in view 1 and each of the markers that were identified to 

be possible matches in view 2 are projected onto this. For each set, we find a feature 

with minimum perpendicular distance from these lines. Using a weighted function 

between errors in two and three views, the least value combination is recorded. This 

is repeated for all possible sets from 1 and 2. Theoretically only one of the set should 

match with the correct location of a feature, while other sets are expected to have 

high distances.  

 This gives us the right combination for one marker and an iterative process on 

this method; inculcating the already identified match as prior knowledge, all the 

matches are found for the set of 3 images. If the rare case of more than one possible 

set occurs for 3 views, it is projected onto the fourth image and only one set will 

match with a feature. This is then followed by the iterative identification for all the 

rest of markers. The extension to additional images is straightforward. The next 

section discusses issues relating to efficiency of this procedure and the results. 
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♦ Begin 

♦ Pick any two camera views C1 and C2 

♦ For every feature detected in C1, Fi =  F1(C1) to Fn(C1) 

� Project the epipolar line L12(Fi) onto C2 

� For every feature in camera C2, Fj =  F1(C2) to Fn(C2)  

� ∆1 = Perpendicular distance from Fj  to L12(Fi) 

� If this lies within a threshold limit, 

• Add to the list of possible matches for Fi 

� End If 

� End For loop 

� If list of matches for Fi has more than one value 

� For each possible match P 

• Project P and Fi onto C3 and find epipolar lines L13(Fi) and 

L23(P) 

• For features Fk= F1(C3) to Fn(C3) 

♦ ∆2 = Perpendicular distance of Fk from L13(Fi) and L23(P) 

♦ ∆3 = weighted value between ∆1 and ∆2 

• End For loop 

• Fm is identified which has min ∆3 for set Fi,P 

� End For loop // performed for all possible P values 

� If unique solution found  //only one set has very less delta 

• Propagating back, the best match between C1,C2,C3 is found 

• Projecting them onto C4, find feature closest to intersection 

� Else //more than one possible match sets found between C1,C2,C3 

• For each possible match set Fi, P, Fm  

♦ Repeat same steps as done for case with three views 

♦ The feature with minimum value for delta is the best match 

♦ Propagating back, the best match between all cameras is 

found 

• End For loop // Performed for all markers in C1 

� End If //Matches found in all cameras 

♦ End For loop 

♦ End 
 

Table 2 – Algorithm to perform feature matching using 4 views 
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7.4 Results  

All the results presented were run on trinocular stereo setting. Due to the fact 

that running even the simplest of the tests needs access to the IRIX Gamma Camera 

in the clinical setting and administration of radioactivity, a large number of data sets 

were not available. Existing two camera datasets were not of use for our purpose. 

Three camera datasets where all markers were not visible initially were eliminated too. 

The program was run on two complete sets of data, each of which had three camera 

views.  

One of them is presented below. First we demonstrate shortcomings of the 

two camera method, and then proceed onto how an extra view makes the detection 

of matches more robust. A Calibration phantom with 7 spheres is used initially to 

find the fundamental Matrix. Images are then taken from the VTS using the Torso 

Phantom as the subject. The Stretchy garment had 9 markers placed on it. Figure 20 

shows the calibration images and the torso phantom images used per camera 

 

 

Figure 20 – Upper row shows calibration phantom and bottom row shows torso  

phantom from three different camera views at the same instant of time. 



 

 55 

The Fundamental Matrices obtained from it are given below in Figure 21. Note that 

F is not decomposed into various components, since we could get the epipolar lines 

using the OpenCV library rather than manual coding. Table 3 lists the features.  

 

Figure 21 – The Fundamental Matrices obtained 

 

Location List 1 (x  y) List 2 (x  y) List 3 (x  y) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

86.00 34.00 

159.00 22.00 

225.00 21.00 

88.00 49.00 

158.00 32.00 

225.00 31.00 

86.00 67.00 

156.00 44.00 

222.00 40.00 

85.00 44.00 

157.00 30.00 

222.00 29.00 

90.00 58.00 

158.00 41.00 

224.00 38.00 

90.00 76.00 

159.00 52.00 

223.00 47.00 

79.00 38.00 

152.00 23.00 

217.00 19.00 

86.00 53.00 

154.00 33.00 

221.00 29.00 

88.00 71.00 

157.00 44.00 

223.00 38.00 

 

Table 3 – Centroid locations of features detected from torso images. 
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The feature centroids were extracted into list1, list2 and list3. For demonstration 

purposes, they are put in the right order such that 0th location in the list 1 should 

match 0th location in list 2 and 3, so on. Running this on the first two cameras, the 

resultant list of possible matches is obtained. Note that the ambiguous cases have 

similar error values, thus needing another view to select between them. 

           As figure 22 shows, for feature 0, the resultant matches 0 and 7 both have 

almost identical error values. Likewise for feature 8, the wrong match of 5 has less 

error (0.9) compared to the right match 8 (4.03). The epipolar line projection for 

feature 8 of camera 1 onto camera 2 is illustrated in Figure 23 with highlighted error 

area. While the green line should be a perfect match to the green blob, it is closer to 

the red blob. This illustrates the potential difficulties of matching using only 2 views. 

 

Figure 22 – Results of 2 camera matching with error values printed beside the feature. 
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Figure 23 – Epipolar line projection showing possible wrong match 

Bringing the third view in, and computing the error for all the combinations from the 

previous stage, the results are obtained. 

              

Figure 24 – Elimination process of the possibilities 
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As seen in Figure 24, the test cases of feature 0 and 8 are solved. In the case of 

feature 0, the error in the correct match is far smaller than the other possibilities. 

When propagating the matches, feature 5 is already matched, so the presence of it as 

an option for 8 doesn’t exist, thus giving the right value. Features 3 and 6 are 

correctly matched in the two view case itself. Using this knowledge and removing all 

the already matched feature points from the remaining lists, we attain the right result.  

 

Figure 25 – Top - Final Evaluation Results, Left - Intersecting epipolar lines for 

feature 0, Right - Visualization of all markers of 1 and 2 projected onto 3 

 

7.5 Robustness 

            The robustness of the algorithm is measured by the accuracy in matching. 

Given the initial constraint that all the markers are visible in all the cameras, the 
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algorithm illustrates perfect results for the test cases. Any remaining ambiguity can be 

resolved using the fourth view, though results involving it are not presented here. 

The average error values range from around 0.05 to 7 pixel2. This is considered 

sufficient since this value doesn’t affect the stereo computation in any way and acts as 

just a metric for choosing a proper set. The average difference in error between the 

best case and the next best case is around 4 – 13 pixel2 per pair of cameras, resulting 

in good confidence in the procedure. 

 

7.6 Special Cases  

            The presence of Partial or Missing markers is the biggest special case 

encountered. Markers can be blocked partially or completely by another depending 

on the way they are arranged and seen. Also markers can go out of the Field of View 

of at least one camera. The matching algorithm doesn’t give correct results when the 

total number of markers found in each camera is not the same. In order to tackle this, 

an initial constraint is imposed so that all the markers are visible in the first frame 

through all images. Once each marker has all of its remaining counterparts present in 

the list, matching can proceed. There after, a method to isolate the possible 

movement zone of it can be implemented, so that even when a blob becomes 

partially visible, we can monitor its origin and thereby match it. More on this radius 

tracking is described in chapter 9, Future Work. 
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Chapter 8 
 

Stereo Computation 

Once all the marker matches have been identified in all cameras, for a 

particular frame, the most probable object position for it is determined by minimizing 

the sum of square errors using the maximum likelihood method [32]. The minimum 

error condition is calculated using a nonlinear optimization method. This way, we are 

taking the anisotropic errors into account without the need for a linear approximation 

[32]. This effectively produces the actual physical location of markers on the patient 

with respect to the real world coordinate system. 

8.1 Algorithm 

Since we know the camera Intrinsic and Extrinsic parameters, a procedure 

called reconstruction by triangulation can be applied. Rays are projected back into 

space from the left and right image points; they do not necessarily intersect due to 

errors induced by noise. So, the point where the distance between the two rays is a 

minimum is the estimation to the point P in space.  This will be the midpoint of the 

perpendicular line that can be drawn joining these two rays. When there are more 
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than 2 views, the number of rays increases, and the point with minimum distance 

from all of them is estimated. The algorithm is given below in Table 4. Figure 26 

shows general stereo computation model. 

                   

Figure 26 – Stereo Computation with Triangulation [39] 

♦ Begin 

♦ For each marker Mi = M1 to Mk 

� For each camera view j =  1 to n 

� Project the world lines Lj = (Xj, dj) and define Pj on Lj as Xj + sjdj 

� Assuming a point Pi as the 3D location of this marker, find sj such that 

it minimizes the distance between Lj and Pi 

� Insert sj into all the Lj equations to get P’i, point on Lj closest to Pi 

� Minimize the SSD of the distance from hypothetical Pi to all the lines Lj 

� An optimal value for Pi coordinates is obtained 

� End For loop 

♦ End For loop 

♦ End 

Table 4 – Algorithm for Stereo Computation using Multiple Views 
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Going into the mathematical details, considering the procedure for one marker with n 

view locations in the image plane, call the 3D point to be estimated as P.        

Each ray is projected as  Lj = (Xj, dj) and the point P is defined as P = Xj + sjdj 

where dj represents the unit direction vector, Xj represents the start of the line, j 

indicates the view, such that Xj ⊥  dj. 

For each projected line, find s such that it minimizes the distance between Lj and P. 
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Since X ⊥  d, the dot product becomes zero. Solving for s, it thus becomes 
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Since now the value of s is known, substituting this is in the above equations define 

P’j as the point on Lj closest to P. 
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Now minimizing the distance between P and P’j on Lj with respect to P, 
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In order to minimize this expression, differentiating with respect to P, 
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0)(*2 =−∑
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Solving for P, 
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The error metric used here is thus the sum of squared differences of distance of 

world lines projected back from the location P. 

 

8.2 Results 

 This section shows the results from the application of the stereo algorithm on 

two and three views of the phantom. The data used here is the calibration data, so 

that we can compare it against the actual world points which we already know. 

Projecting the image points matched in the views, we should be able to get world 

points which are in coordination with the SPECT blobs detected.  

The image point and world point datasets are given below in Table 5. Using 

the left and right camera data, and running through the algorithm explained above, 

the results obtained are in Table 6. These values have very good correspondence to 

the expected world point values. Due to the lack of third camera data, one of the data 

sets was replicated and ran through the algorithm as a test case when using three 

cameras. The results are shown in Table 7. 
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Left Camera - 

397.5393          216.3102 

288.7942           37.1857 

238.0532          299.6868 

220.0982          397.6539 

342.9025          352.7877 

379.1498          300.2672 

493.6267           87.2075  

Right Camera – 

245.2291          231.0073 

109.5918           91.9847 

251.3399          378.2990 

372.0693          438.3803 

382.9129          335.0588 

339.4298          287.7620 

332.4588           43.6162 

World Points – 

62.9475            84.1305             93.1065 

85.7475            26.1863             78.8210 

80.9624            80.8171             36.8197 

65.2208            82.7305              9.7733 

48.6138            85.9099             37.2383 

50.5062            86.1225             57.9189 

30.6109            35.3974             84.5358 

 

 

Table 5 – Image and World Point Data Sets for Stereo 

 

62.7863 83.7852 92.7078 

85.5566 26.1372 78.9858 

80.6661 80.2685 36.2584 

64.8774 82.3670  9.2953 

48.7491 85.2790 36.4256 

50.1795 85.4736 57.5204 

30.5257 35.2494 84.6647 

 

Table 6 – Stereo Computation results for 2 camera views 
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62.7870   83.7536   92.7307   

85.5536  26.0632    79.0181  

80.6693    80.2319    36.2958    

64.8836   82.3286    9.3471  

48.7506  85.2639  36.4420   

50.1805  85.4574  57.5353    

30.5255  35.2453 84.6666  

 

Table 7 – Stereo Computation results for 3 camera views 

 

It can be seen that these values lie within a maximum of +/- 1 mm accuracy. Since 

we are dealing with 3D locations and these values are used for reconstructing the 

SPECT slice data, this should be close to perfect and the accuracy achieved is almost 

ideal since 1 mm translates into around 1/4th of a pixel. The average RMS accuracy 

comes up to 0.3415 cm.  
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Chapter 9 
 

Future Work 

The present implementation of VTS for feature matching and stereo 

computation has been shown to be robust within a few limitations. The immediate 

future work to be done would be elimination of these limitations. Matching has the 

working premise that all the markers are viewable in all cameras for the first frame. 

This should be modified so that there is a frame tracking module which traverses all 

the incoming frames and starts processing only when all the markers are visible. 

Further work on computing the centroid of partial blobs would be useful to eliminate 

the initial ‘all markers fully visible’ constraint. A procedure to identify the centroid of 

the partial blobs depending on their shape and curvature is to be identified and 

implemented. Performing feature matching on each frame grabbed at a frame rate up 

to 30 FPS utilizes a lot of resources and makes real-time processing difficult. Thus we 

should store the initial positions and matches extracted from the first frameset and 

perform tracking around a limited search space. This space will be identified by using 

extensive sample data for different possible motions. Considering the velocity of 

motion per frame, the feasible motion for various non rigid movements such as 
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sneezing, coughing and turning should be taken from sample patients and an estimate 

prepared identifying the maximum possible range of marker motion. Once the radius 

is identified, we will have a domain to search for each marker in the next frame 

without running the algorithm on all the features again. A possible question is how 

much motion can be allowed for reconstruction to be robust. If the patient moves 

above this threshold, then there will be a need for a total new acquisition. From the 

sample data, the upper limit on the patient motion, above which there needs to be a 

reacquisition needs to be identified. 
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Chapter 10 
 

Conclusion 

This thesis successfully implemented algorithms for feature matching and stereo 

location computation for multi-view geometry. It fits into the Visual Tracking System 

to accurately compute 3 dimensional locations of markers on patients. The matching 

algorithm gives correct feature matches along multiple views (tested with four views) 

within certain initial assumptions. Stereo computation generates the coordinates in 

the SPECT world, by using the matches identified for each marker along all the views 

with an accuracy of +/- 1 mm. This gives a surface estimate which is recomputed 

when the patient moves. The difference estimate is used for correction of the 

tomographic reconstruction by rebinning the raw gamma camera data to undo the 

motion prior to reconstruction. 
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Appendix A 

Singular Value Decomposition (SVD) is a very powerful set of techniques dealing 

with sets of equations or matrices that are either singular or numerically very close to 

singular. A matrix is called singular if it does not have an inverse, that is, if and only if 

its determinant is zero. SVD allows one to diagnose the problems in a given matrix 

and provides numerical answer as well. This section explains how SVD would help in 

optimization and the actual mathematics behind it [35]. 

For any given matrix A є R m×n there exists a decomposition 

A = UDV T    such that 

U is an m × n matrix with orthogonal columns 

D is a n × n diagonal matrix with non-negative entries 

V T is an n × n orthogonal matrix 

 

The diagonal values of D are called Singular Values of A 

The column vectors of U are the Left Singular Vectors of A 

The column vectors of V are the Right Singular Vectors of A. 
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The SVD can be performed such that the diagonal values of D are descending i.e.  

 

The diagonal values of D are the square roots of the Eigenvalues of ATA and AAT 

(Thus there is non-negativity of the elements of D). A number is called an eigenvalue 

of a matrix if there exists a nonzero vector such that the matrix times the vector is 

equal to the same vector multiplied by the eigenvalue [36]. This vector is then called 

the Eigenvector associated with the eigenvalue. If, 

 A x = λ x 

 For some scalar λ, then  λ is called an eigenvalue of A, and x is said to be an 

eigenvector of A corresponding to λ. 

It holds for the left singular vectors ui: A
TAui = di

2ui 

And for right singular vectors vi: AA
T vi = di

2vi 

That is, the left singular vectors ui are eigenvectors of ATA and the right singular 

vectors vi are eigenvectors of AAT. 

SVD can explicitly construct orthonormal bases for the null-space and the range of a 

matrix. Columns of U corresponding to non-zero elements of D span the range and 

Columns of V corresponding to zero elements of D span the null-space. 

SVD can be used for linear optimization by using the following property - 

Let vn be the right singular vector corresponding to dn (the smallest element of D) 

The product Ax with ||x||2 = 1 has the minimal value for  x = vn . 
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The minimizing property of the last right singular vector vn can be used to solve the 

following minimization task –  

Given the linear function f = Ax, f: Rn -> Rm to be minimized with the constraint 

that the solution x is not trivial (x != 0), it can be shown that the solution is the right 

singular vector x = vn corresponding to the smallest singular value dn. 

The proof is not given here, but further references can be found at [37]. 

 

EXAMPLE SVD COMPUTATION 

To understand how to solve for SVD, let’s take the example of a matrix [38]. 
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In this example the matrix is a 4x2 matrix. As previously stated, the eigenvectors of 

AAT make up the columns of U  
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Now that we have a n x n matrix we can determine the eigenvalues of the matrix W. 

Since W x = λ x then   (W- λI) x = 0 
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For a unique set of eigenvalues, determinant of the matrix (W-λI) must be equal to 

zero.  Thus from the solution of the characteristic equation, |W-λI|=0. 

Solving this and substituting, we obtain the following equations: 

19.883 x1 + 14 x2 = 0 

14 x1 + 9.883 x2 = 0 

x3  = 0 

x4 = 0 

Upon simplifying the first two equations we obtain a ratio which relates the value of 

x1 to x2.   The values of x1 and x2 are chosen such that the elements of the D are the 

square roots of the eigenvalues.    

 

Thus a solution satisfying the above equation is, 

 x1 = -0.58 and x2 = 0.82 and x3 = x4 = 0 (this is the second column of the U)  

Substituting the other eigenvalue we obtain: 

-9.883 x1 + 14 x2 = 0 

14 x1 - 19.883 x2 = 0 

x3  = 0 

x4 = 0 

 

A solution that satisfies this set of equations is, 

 x1 = 0.82 and x2 = -0.58 and x3 = x4 = 0 (this is the first column of the U).  

Combining these we obtain: 
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Similarly ATA makes up the columns of V so we can do a similar analysis to find the 

value of V. 
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and similarly we obtain the expression: 
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Finally as mentioned previously the S is the square root of the eigenvalues from AAT 

or ATA.  and can be obtained directly giving us: 
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Note that:  σ1 > σ2 > σ3 > …  
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Appendix B 

Installation procedure of Intel OpenCV library and the Syntax for important 

function calls used in the code for this thesis are presented. 

 

Installing OpenCV 

Installing OpenCV on Windows is pretty straight forward. Download executable 

installation from SourceForge [25] and run it. It installs OpenCV, registers 

DirectShow filters and does other post-installation procedures. After that you may 

start using OpenCV [33]. Also, it is possible to build core OpenCV binaries manually 

from source distribution for Linux (though, executable installation includes sources 

as well). Download and unpack the OpenCV-*.tar.gz package somewhere, e.g. 

C:\MySoft\      (the root folder is referred further as <opencv_root>).  

Add <opencv_root>\bin to the system path. Under Windows 9x/ME it is done by 

mofifying autoexec.bat. Under NT/2000/XP it can be done by instantly at       

MyComputer--right button click-->Properties->Advanced->Environment Variables. 

Highgui requires graphic libraries by default, so remove HAVE_JPEG, HAVE_TIFF 



 

 76 

and HAVE_PNG from preprocessor definitions and libjpeg.lib, libtiff.lib,      

libpng.lib and zlib.lib from linker command line. The resultant Highgui will be able to 

read & write most of jpeg's, bmp's, uncompressed tiff's, pxm's and sun raster images; 

capture video from AVI or camera via VFW  and write AVIs via VFW. 

To build OpenCV from sources, you need to have some C/C++ compiler. Microsoft 

Visual C++ 6.0 or higher is a preferred variant, because most of the demos are 

written for it, using MFC.  

If you are going to build DirectShow filters, acquire and setup DirectX SDK as 

described in <opencv_root>\docs\faq.htm. 

 If you are going to build MIL-enabled version highgui, setup MIL include and library 

paths in Developer Studio. 

 If you are going to build MATLAB wrappers, you need to have MATLAB C/C++ 

interface libraries and setup Developer Studio properly.  

If you are going to build TCL\TK demo applications (including with the source 

package only), you will need TCL\TK and BWidgets. The easiest way to obtain both 

is to download and install ActiveTcl from http://www.activestate.com. 

Open <opencv_root>\_dsw\opencv.dsw. 

Choose from menu Build->Batch Build->Build. Because the produced binaries 

should be compatible with Visual C++, you can then use the DLLs with VisualC++ -
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build applications etc. Some applications need HighguiD.lib and cvD.lib, the debug 

versions of the library.  To solve this, under the Project menu, select Settings. Then 

select the Link tab and change the library to use to cv.lib and highgui.lib. Or else, 

build debug versions -- Under the build menu select "Set Active Configuration", click 

on "Debug" and the build all to build a debug version of cv.lib named cvd.lib. Repeat 

this for highgui. Another method would be to rename cv.lib and highgui.lib to cvd.lib 

and highguid.lib. This wouldn’t enable debugging though. 

Inoder to test the OpenCV Binaries, 

Run samples at <opencv_root>\samples\c.   (Note: some of the demos need AVI or 

Camera, e.g. motempl.c) or run algorithmic tests: <opencv_root>\bin\cvtest.exe. It 

will produce cvtest.sum and cvtest.lst. cvtest.sum should contain all OK's. 

 

Syntax 

OpenCV library calls for computation of Fundamental Matrix, Epipolar lines 

are among the foremost of the functions used. Other simple calls utilized include 

input/output of images, matrices, visualization etc. The syntax and functioning of the 

major components follows [34]. 

 

BASIC STRUCTURES 

CvPoint2D32f  - 2D point with floating-point coordinates 
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    typedef struct CvPoint2D32f 
    { 
        float x; /* x-coordinate, usually zero-based */ 
        float y; /* y-coordinate, usually zero-based */ 
    } 
    CvPoint2D32f; 
 
CvMat - Multi-channel matrix 

    typedef struct CvMat 
    { 
        int type; /* CvMat signature , element type and flags */ 
        int step; /* full row length in bytes */ 
        int* refcount; /* underlying data reference counter */ 
        union { …. } /* data type selector */ 
} CvMat; 
 
 
IplImage – IPL (Intel Image Processing Library)  image header 
     
     typedef struct _IplImage 
    { 
        int  nSize;         /* sizeof(IplImage) */ 
        int  ID;            /* version (=0)*/ 
        int  nChannels;      /* Most of OpenCV functions support 1,2,3or 4 */ 
        int  alphaChannel;   /* ignored by OpenCV */ 
        int  depth;   /* pixel depth in bits */ 
        char colorModel[4]; /* ignored by OpenCV */ 
        char channelSeq[4];  /* ditto */ 
        int  dataOrder;      /* 0 - interleaved color channels, 1 - separate color 

channels. cvCreateImage can only create interleaved */ 
        int  origin;         /* 0 - top-left origin, 1 - bottom-left */ 
        int  align;          /* Alignment of image rows (4 or 8) */ 
        int  width;          /* image width in pixels */ 
        int  height;         /* image height in pixels */ 
        struct _IplROI *roi;  /* image ROI */ 
        struct _IplImage *maskROI;  /* must be NULL in OpenCV */ 
        void  *imageId;       /* ditto */ 
        struct _IplTileInfo *tileInfo;  /* ditto */ 
        int  imageSize;       /* image data size in bytes 
                               (=image->height*image->widthStep */ 
        char *imageData;    /* pointer to aligned image data */ 
        int  widthStep;     /* size of aligned image row in bytes */ 
        int  BorderMode[4];   /* border completion mode, ignored */ 
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        int  BorderConst[4];   /* ditto */ 
        char *imageDataOrigin;  /* pointer to a very origin of image data*/ 
    } 
    IplImage; 
 
 
cvSize 

pixel-accurate size of a rectangle 

    typedef struct CvSize 
    { 
        int width; /* width of the rectangle */ 
        int height; /* height of the rectangle */ 
    } 
    CvSize; 
 

PROCESSING FUNCTIONS 

cvCreateMat 

Creates new matrix 
 
CvMat* cvCreateMat( int rows, int cols, int type ); 
 
rows - Number of rows in the matrix.  
cols - Number of columns in the matrix.  
type  - Type of the matrix elements.  
 

cvSetReal2D 

Change the particular array element 
 
void cvSetReal2D( CvArr* arr, int idx0, int idx1, double new_value ); 
 
arr - Input array.  
idx0 - The first zero-based component of the element index  
idx1 - The second zero-based component of the element index  
new_value - The assigned value  
 

cvmSet 
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Return the particular element of single-channel floating-point matrix 
 
void cvmSet( CvMat* mat, int row, int col, double value ); 
 
mat - The matrix.  
row - The zero-based index of row.  
col - The zero-based index of column.  
Value - The new value of the matrix element  
 

cvmGet 

Return the particular element of single-channel floating-point matrix 
 
double cvmGet( const CvMat* mat, int row, int col ); 
 
mat - Input matrix.  
row - The zero-based index of row.  
col  - The zero-based index of column.  
 

cvCrossProduct 

Calculates cross product of two 3D vectors 
 
void cvCrossProduct( const CvArr* A, const CvArr* B, CvArr* C ); 
 
A - The first source vector.  
B - The second source vector.  
C - The destination vector.  
 

cvFindFundamentalMat 

Calculates fundamental matrix from corresponding points in two images 
 
int cvFindFundamentalMat( CvMat* points1, CvMat* points2, CvMat* fundMatr, int    
method, double param1, double param2, CvMat* status=0); 
 
points1 - Array of the first image points of 2xN/Nx2 or 3xN/Nx3 size (N is number 
of points). The point coordinates should be floating-point . 
points2 - Array of the second image points of the same size and format as points1  
fundMatr - The output fundamental matrix or matrices. Size 3x3 or 9x3 (7-point 
method can returns up to 3 matrices).  
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method - Method for computing fundamental matrix  
CV_FM_7POINT - for 7-point algorithm. Number of points == 7  
CV_FM_8POINT - for 8-point algorithm. Number of points >= 8  
CV_FM_RANSAC - for RANSAC algorithm. Number of points >= 8  
CV_FM_LMEDS - for LMedS algorithm. Number of points >= 8  
param1 - The parameter is used for RANSAC or LMedS methods only. It is the 
maximum distance from point to epipolar line, beyound which the point is 
considered bad and is not considered in further calculations. Usually it is set to 0.5 or 
1.0.  
param2 - The parameter is used for RANSAC or LMedS methods only. It denotes 
the desirable level of confidense the matrix is the correct (up to some precision). It 
can be set to 0.99 for example.  
status - Array of N elements, every element of which is set to 1 if the point was not 
rejected during the computation, 0 otherwise. The array is computed only in 
RANSAC and LMedS methods. For other methods it is set to all 1's.  
 
 
cvComputeCorrespondEpilines 

For every input point on one of image computes the corresponding epiline on the 
other image. 
 
void cvComputeCorrespondEpilines( const CvMat* points, int pointImageID, 
CvMat* fundMatr, CvMat* corrLines); 
 
points - The input points: 2xN or 3xN array (N number of points)  
pointImageID - Image ID there are points are located, 1 or 2  
fundMatr - Fundamental matrix  
corrLines - Computed epilines, 3xN array  
 

VISUALIZATION FUNCTIONS 

cvNamedWindow 

Creates a window (image placeholder) 
 
int cvNamedWindow( const char* name, unsigned long flags ); 
 
name - Name of the window which is used as window identifier and appears in the 
window caption.  
flags - Defines window properties. Currently the only supported property is ability to 
automatically change the window size to fit the image being hold by the window. Use 
CV_WINDOW_AUTOSIZE for enabling the automatical resizing or 0 otherwise.  
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cvLine 

Draws simple or thick line segment 
 
void cvLine( CvArr* img, CvPoint pt1, CvPoint pt2, double color, int thickness=1, 
int connectivity=8 ); 
 
img - The image.  
pt1 - First point of the line segment.  
pt2 - Second point of the line segment.  
color - Line color (RGB) or brightness (grayscale image).  
thickness - Line thickness.  
connectivity - Line connectivity, 8 (by default) or 4. It is possible to pass 0 for 8. 
 

cvCircle 

Draws simple, thick or filled circle 
 
void cvCircle( CvArr* img, CvPoint center, int radius, double color, int thickness=1 ); 
 
img - Image where the line is drawn.  
center - Center of the circle.  
radius - Radius of the circle.  
color - Circle color (RGB) or brightness (grayscale image).  
thickness - Thickness of the circle outline if positive, otherwise indicates that a filled 
circle has to be drawn.  
 

cvShowImage 

Shows an Image 

void cvShowImage( const char* name, const CvArr* image ); 

name - Name of the window to attach the image to.  
Image - Image to be shown. 
 
 
 cvLoadImage  
 
 Loads an image from file 
 
IplImage* cvLoadImage( const char* filename, int iscolor CV_DEFAULT(1)); 
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filename - Name of file to be loaded.  
iscolor - If >0, the loaded image will always have 3 channels;  
if 0, the loaded image will always have 1 channel;  
if <0, the loaded image will be loaded as is (number of channels depends on the file).  
 
 
cvWaitKey 
 
Waits for pressed key 
 
int cvWaitKey(int delay CV_DEFAULT(0)); 
 
delay - Delay in milliseconds.  
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