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Abstract

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder characterized

by cognitive decline and memory loss. In 2024, in the US alone, it affects approxi-

mately 1 in 9 people aged 65 and older, representing 10.9% of this population. This

amounts to 6.9 million individuals, with women (4.2 million) constituting more than

men (2.7 million). Magnetic resonance imaging (MRI) has emerged as a valuable

tool for examining brain structure and identifying potential AD biomarkers. Early

detection and accurate AD diagnosis are crucial for timely intervention and man-

agement. Moreover, monitoring disease progression and evaluating treatment effec-

tiveness heavily rely on identifying reliable biomarkers. While sex contributes to

Alzheimer’s prevalence, age remains the primary risk factor, with incidence increas-

ing significantly with each decade. However, the reasons for the variation of biomark-

ers with age remain unclear. This study performs predictive analyses by employing

machine learning techniques to identify key brain regions associated with AD using

numerical data derived from anatomical MRI scans, going beyond standard statis-

tical methods. Additionally, subgroup analyses identified key brain regions that

strongly predicted AD across three age groups: younger (69-76 years), older (77-84

years), and unified (69-84 years). Using the Random Forest Algorithm, we achieved

92.87% accuracy in detecting AD from Mild Cognitive Impairment, and Cognitive

Normals. The hippocampus, amygdala, and entorhinal cortex consistently showed

volume decreases across sexes and age groups despite varying prevalence rates be-

tween males and females. For instance, the right amygdala exhibited decreased vol-

ume in younger males (aged 69-76), while in females, this decline was observed in the

older group (aged 77-84). Both younger males and females (aged 69-76) exhibited



volume decreases in the right hippocampus, suggesting its importance in the early

stages of AD. Older males (aged 77-84) showed substantial volume decreases in the

left inferior temporal cortex. Additionally, the left middle temporal cortex showed

decreased volume in females, suggesting a potential female-specific influence, while

the right entorhinal cortex may have a male-specific impact. These age-specific sex

differences could inform clinical research and treatment strategies, aiding in identify-

ing neuroanatomical markers and therapeutic targets for future research and clinical

interventions.

Keywords : Machine Learning, Random Forest, Alzheimer’s Disease, anatomical

MRI, ADNI, neuroimaging, age group, sex, FastSurfer, FreeSurfer, Clinica, trends.
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Chapter 1

Introduction

Alzheimer’s Disease (AD) is a type of dementia that affects millions of individuals

worldwide, particularly the elderly population. It leads to a gradual loss of cog-

nitive abilities, and as the condition advances, individuals require more assistance

with daily tasks. Currently, AD remains the fifth-leading cause of death among

Americans aged 65 and older [1]. There is an urgent need for continued research

and intervention strategies to address the growing impact of AD on individuals,

families, and society.

1.1 Prevalence of AD

The prevalence of AD refers to the proportion of individuals within a specific popu-

lation affected by the condition at a given time. Recent estimates indicate a global

increase in the incidence and prevalence of AD, with a 147.95% rise in incidence and

a 160.84% increase in prevalence observed from 1990 to 2019 [2]. Crude AD preva-

lence during 2015–2020 was estimated at 760.5 per 100,000 inhabitants, indicating a

substantial burden [3]. The age-standardized rates for incidence, prevalence, death,

and disability-adjusted life years consistently rose during this period, impacting both
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CHAPTER 1. INTRODUCTION 1.2. EARLY CHALLENGES OF AD

men and women [2]. This upward trend is further emphasized by the findings of a

study focused on South Korea, reporting an overall increase in AD incidence and

prevalence from 2006 to 2015, particularly in the population aged 40 years or older

[4].

According to 2023 estimates, approximately 6.7 million Americans aged 65 and

older are living with AD [1]. This number is projected to reach 13.8 million by 2060

[5] unless remarkable medical breakthroughs to prevent, slow, or cure the disease are

made. Among MCI subjects, only 10–15% develop AD annually while others will

remain cognitively stable [6]. Additionally, a comprehensive investigation spanning

from the pre-onset phase to advanced stages revealed that up to 90% of dementia

subjects, including AD, experience Neuropsychiatric or Behavioral and Psychologi-

cal Symptoms of Dementia (BPSD) [7].

The economic burden of AD is substantial, with a meta-analysis revealing an

estimated total cost of $20,461 per patient per year. The breakdown according to

disease stages indicates costs of $14,675 for the mild stage, $19,975 for the moderate

stage, and $29,708 for the severe stage [8]. These findings collectively underscore

the growing global burden of AD, emphasizing the need for targeted interventions

and policy initiatives to address its escalating incidence and prevalence.

1.2 Early Challenges of AD

The early challenges of AD are primarily related to cognitive function. Brain changes

related to AD may begin at least 20 years before symptoms appear [9]. Individuals

experience mild memory lapses in the initial stages, such as forgetting names, ap-

pointments, or where they placed everyday items. These early cognitive difficulties

may be dismissed as normal aging or stress.

2
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As the disease progresses, challenges intensify, leading to more noticeable symp-

toms. During the intermediate stages of AD, cognitive decline becomes more ap-

parent. Individuals may struggle with everyday tasks, such as following a conversa-

tion, organizing activities, or even managing finances. Memory loss becomes more

pronounced and may extend to forgetting important events, faces, or personal his-

tory. Behavioral changes, mood swings, and difficulty with problem-solving can also

emerge.

In the advanced stages of AD, individuals face severe cognitive impairment and

a profound loss of functional abilities. Memory loss becomes profound, and in-

dividuals may not recognize close family members. Communication skills decline

predominantly, and individuals may struggle to articulate thoughts or comprehend

language. Basic self-care tasks become increasingly challenging, and individuals

often require round-the-clock care.

Throughout these stages, the progression of AD is marked by the accumulation of

abnormal protein deposits in the brain, such as beta-amyloid plaques and tau tangles

[10], [11]. These deposits disrupt communication between brain cells and lead to the

widespread death of neurons, contributing to the cognitive decline [12], [13] observed

in individuals with AD. The gradual worsening of symptoms is an indication of the

degenerative nature of the disease and the need for ongoing research to understand

its underlying mechanisms and develop effective interventions.

1.3 fMRI and sMRI

Functional Magnetic Resonance Imaging (fMRI) and Structural Magnetic Reso-

nance Imaging (sMRI) are two advanced neuroimaging techniques that play crucial

roles in understanding the intricacies of the human brain. fMRI focuses on capturing

3
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changes in blood flow and helps identify brain regions activated during specific tasks

or stimuli. In this method, neural activity is inferred based on blood oxygenation

level-dependent (BOLD) signals, providing insights into the functional aspects of

the brain. sMRI provides detailed structural information about the brain’s anatomy.

sMRI focuses on the brain’s structure, including gray and white matter∗ and cere-

brospinal fluid, allowing researchers to analyze abnormalities, measure volumes, and

study anatomical connections.

In our research, we have chosen to focus on sMRI due to its less variable data

and the less complex and subjective analysis compared to fMRI. For example, sMRI

captures structural information that, while subject to gradual changes over time,

remains relatively stable over shorter intervals, while fMRI measures brain activity

that can vary with the participant’s immediate thoughts or tasks. This stability with

sMRI allows for more reliable and consistent results in studies of neurodegenerative

conditions. Additionally, the analysis of sMRI is more straightforward, focusing on

measurable structural changes in the brain, such as volume and thickness, rather

than the complex interpretation of brain activity patterns seen in fMRI. This makes

sMRI a robust tool for examining the consistent structural changes associated with

neurological disorders. The targeted approach in sMRI, concentrating on smaller

yet prominent brain regions, provides a nuanced perspective that can contribute

to advancements in understanding various neurodegenerative conditions, including

Alzheimer’s Disease, Parkinson’s Disease, Schizophrenia, and bipolar disorder.

∗Gray matter contains neuronal cell bodies and dendrites, which enable communication among
neighboring neurons and serve as the central hub for processing information related to sensation,
perception, movement, learning, speech, and cognition [14]. Conversely, white matter consists of
axons that transmit impulses between distant brain regions and the spinal cord. Its primary func-
tion is to facilitate communication between different areas of gray matter and connect gray matter
with the rest of the body [15].
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1.4 ADNI Dataset

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [16] is a longitudinal

multicenter study aimed at developing clinical, imaging, genetic, and biochemical

biomarkers for the early detection and tracking of AD. The first phase of ADNI

(ADNI-1) commenced in October 2004 with a duration of 5 years and funding total-

ing $67 million, including contributions from the National Institute on Aging, phar-

maceutical companies, and foundations. Its primary goal was to develop biomarkers

as outcome measures for clinical trials. ADNI-1’s study included 200 elderly cog-

nitive normals (CN), 400 individuals with mild cognitive impairment (MCI), and

200 subjects with early AD. Through the analysis of brain scans, genetic profiles,

and biomarkers from blood and cerebrospinal fluid, ADNI-1 aimed to identify more

sensitive and accurate biomarkers for the early detection and tracking of AD pro-

gression. As part of the study, brain imaging measures such as structural MRI and

PET scans were utilized to assess glucose metabolism and amyloid accumulation

in the brain. This initiative supports advances in AD intervention, prevention, and

treatment by facilitating early diagnosis and tracking of disease progression with an

innovative data-access policy enabling worldwide access to its findings.

To ensure the credibility and reliability of this study, we utilized the ADNI

database. This database comprises MRI scans from individuals diagnosed with AD,

MCI, and CN conditions. We sourced raw and preprocessed samples directly from

the ADNI website for our neuroimaging software to maintain quality and compara-

bility across research endeavors. ADNI is a valuable resource that aligns with our

study’s objectives of investigating biomarkers associated with AD progression.

5
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1.5 Supervised Learning in Neuroimaging

Machine learning (ML), a subfield of artificial intelligence (AI), plays a crucial role

in neuroimaging and medical research by developing algorithms capable of learning

from data to make predictions or decisions. ML algorithms are broadly categorized

into supervised and unsupervised learning approaches.

Supervised learning involves training algorithms on labeled datasets, where each

data point is associated with a known outcome. These labeled datasets guide al-

gorithms to learn patterns and relationships, enabling them to make predictions

or classifications when presented with new, unseen data. In contrast, unsupervised

learning algorithms analyze unlabeled data to identify inherent patterns, structures,

or relationships without explicit guidance from labeled examples.

In neuroimaging, supervised learning is essential for analyzing MRI scans and

identifying biomarkers associated with AD and other neurological conditions. By

using labeled datasets where each MRI scan is annotated with its corresponding

diagnosis, supervised learning algorithms can learn to recognize patterns indicative

of disease progression or pathology.

Supervised ML offers several advantages over traditional statistical methods in

neuroimaging and medical research. For example, when studying MRI scans for

AD neuroanatomical markers, supervised ML algorithms can efficiently learn from

labeled data, such as brain structure changes linked to disease progression. Mean-

while, traditional statistical methods, such as linear regression or analysis of vari-

ance (ANOVA), may struggle to capture nonlinear relationships or complex inter-

actions between brain regions. Supervised ML techniques, such as support vector

machines or random forests, allow researchers to use diverse imaging features, such

as voxel intensities, to enhance diagnosis accuracy and better understand neuro-

6
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logical conditions, improving patient care. Moreover, supervised learning enables

researchers and clinicians to develop predictive models for early disease detection,

treatment response prediction, and patient outcome prognosis. These models use

features extracted fromMRI scans to predict disease onset, progression, or treatment

effectiveness [17].

In recent years, advancements in neuroimaging analysis have underscored the

potential of these techniques in early AD detection and clinical progression predic-

tion [18], [19]. The review by Ahmadzadeh et al. (2023) [20] consolidates data from

various modalities, including positron emission tomography (PET), structural mag-

netic resonance imaging (sMRI), functional magnetic resonance imaging (fMRI),

single photon emission computed tomography (SPECT), and electroencephalogra-

phy (EEG), commonly used for acquiring both functional and anatomical brain

data. Some researchers have explored combinations of these modalities to assemble

a more comprehensive neurological dataset, addressing both advantages and limi-

tations. However, the integration of multiple measures and modalities associated

with the transition to AD dementia presents ongoing challenges due to the brain’s

complex nature.

The current importance of machine learning in clinical practice lies in its abil-

ity to detect, measure, and compare disease-related patterns. There are three key

directions in which the field is progressing [17]. Firstly, machine learning methods

can help link observed phenotypic data from neuroimaging to underlying biolog-

ical mechanisms, bridging the gap between imaging data and molecular markers.

Secondly, embedding methods allow researchers to study brain architecture more

thoroughly, especially during disease progression and treatment response. This helps

explore the complex relationship between anatomy and function. Lastly, using finer-

scale analyses with machine learning can provide deeper insights into small varia-

7
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tions in brain structure, making distinguishing disease-related changes from normal

ones more accurate. These advancements could lead to earlier detection and more

targeted interventions for neurological conditions.

1.6 Subgroup Analyses in AD

Subgroup analyses are conducted to understand the heterogeneity of AD and iden-

tify potential neuroanatomical markers associated with the disease. In this project,

we divide the dataset into sex-specific and age-specific groups to uncover variations

in brain structure across different demographic segments. These analyses aim to

identify patterns that may predict disease presence and contribute to a more per-

sonalized understanding of AD.

Rationale for Sex and Age-Specific Predictions

1. Sex Differences: Females tend to have a higher prevalence of AD compared

to males, potentially due to hormonal differences and genetic factors [21], [22].

The lifetime risk for developing AD at age 45 is 1 in 5 for women and 1 in

10 for men [23]. As of 2024, out of the 6.9 million individuals aged 65 and

older with AD, 4.2 million are women, and 2.7 million are men [23], [24].

It is unknown whether males and females may benefit differently from age,

sex, and neuroanatomically specific treatments. These statistics highlight the

importance of exploring sex-specific predictions in AD research. Exploring

sex-specific predictions allows us to investigate potential biological, genetic,

and hormonal factors contributing to these differences.

2. Age Variability: Age is a well-established risk factor for AD, with the inci-

dence of the disease increasing with advancing age. The ”age of onset” refers

to the age at which symptoms of a condition first appear in an individual.

8
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The age of onset for AD is generally around 65 years [25]. In the US, ap-

proximately 110 out of every 100,000 adults aged 30 to 64 have young-onset

Alzheimer’s, defined as AD occurring before the age of 65. [25]. Analyzing

age-specific predictions can help determine if MCI and AD neuroanatomical

predictors vary with age. Understanding these variations can help identify

specific age groups that may be particularly vulnerable to AD onset and aid

in developing age-specific interventions.

Subgroup analyses reveal detailed patterns in the data, improving our understanding

of AD for tailored diagnosis and treatment.

1.7 Clinical Trials

1.7.1 Past Clinical Trials of Alzheimer’s Disease

AD has been the focus of extensive research efforts to understand its underlying

mechanisms and develop effective treatments. Over the decades, various hypotheses

have been proposed to explain the pathogenesis of AD, each guiding the design

of numerous clinical trials [26]. These hypotheses shaped our understanding of

the disease and influenced the development of therapeutic strategies. This section

reviews essential hypotheses that have driven past clinical trials, highlighting their

theoretical foundations and outcomes.

Cholinergic Hypothesis

The cholinergic hypothesis, proposed in 1976 [27], posits that AD results from re-

duced acetylcholine synthesis, leading to cognitive decline [28]–[30]. While extensive

trials with acetylcholinesterase inhibitors showed some initial success in improving

9
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symptoms [31]–[33], they did not halt the disease’s course. Consequently, regulatory

bodies downgraded the medical benefit rating of these treatments [34].

Amyloid Hypothesis

In 1991, the amyloid hypothesis identified amyloid-β deposition as a primary trigger

in AD pathology [35], [36]. This hypothesis led to numerous clinical trials focusing

on Aβ-targeting therapies, such as antibody vaccines and secretase inhibitors [37].

Despite promising preclinical results, these trials largely failed to translate preclinical

successes into effective patient treatments [37], [38].

Tau Propagation Hypothesis

The tau propagation hypothesis, emphasized since 2009 [39], highlights the role of

tau protein in forming neurofibrillary tangles, a hallmark of AD [40], [41]. Clinical

trials investigating tau-targeting therapies, such as tau assembly inhibitors, have

produced mixed results. While some agents showed early promise [42], [43], their

overall efficacy in halting disease progression remains uncertain.

Along with others namely the mitochondrial cascade [44], calcium homeostasis

[45], and neurovascular [46] hypotheses, these hypotheses continue to shape research

and clinical trials in pursuing effective AD treatments. Despite decades of explo-

ration and advancements in understanding AD’s mechanisms, translating these in-

sights into successful therapies that alter disease progression remains a formidable

challenge.

1.7.2 Reasons for Trial Failures

Numerous factors have contributed to the failure of clinical trials for AD treatments.

These factors can be divided into two main categories: insufficient evidence for

10



CHAPTER 1. INTRODUCTION 1.7. CLINICAL TRIALS

initiating pivotal trials and issues related to pivotal trial design [47].

Insufficient Evidence for Initiating Pivotal Trials

Phase III trials for AD often began without a solid foundation of evidence from

earlier phases. This was due to:

• Insufficient testing for clinical efficacy: Some drugs advanced to phase

III with minimal efficacy testing, often based on limited clinical studies or

epidemiological observations.

• Over-reliance on biomarker data: Changes in biomarkers (amyloid-β or

tau) were sometimes accepted as surrogate endpoints without confirmatory

cognitive or functional performance changes.

• Incorrect choice of drug dose: Proper dosages were not permanently es-

tablished in phase II trials, leading to inadequate dosing in phase III.

• Inappropriate reliance on post hoc subgroup analyses: Decisions to

advance to phase III were sometimes based on subgroup analyses of failed

trials, which produced spurious results due to smaller sample sizes and multiple

statistical comparisons [48].

Pivotal Trial Design Issues

Phase III clinical trial designs often did not follow optimal drug development prac-

tices, including:

• Poor choice of primary clinical outcome measures: Common measures

such as ADAS-Cog, developed in the 1980s, were not sensitive enough for

earlier-stage AD patients. Alternative measures such as ADCOMS [49] have

shown more sensitivity.
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• Inclusion of non-AD patients: Misdiagnosis of AD, including other demen-

tias or conditions, led to trial participants who did not have AD, complicating

the demonstration of treatment efficacy.

• Insufficient accounting for potential AD subtypes: AD is understood

to be heterogeneous, potentially encompassing several subtypes. Trials often

did not account for this variability, which could affect cognitive test results

and drug effectiveness.

• Therapeutic interventions administered too late: Amyloid-directed treat-

ments often failed because they were started after substantial plaque buildup.

Early intervention is crucial to halt neurodegenerative processes. Targeting

younger or early-stage patients might be more effective despite an increased

risk of misdiagnosis due to subtler symptoms.

1.7.3 Recent Studies, Trials, and Approved Drugs

Lecanemab (Leqembi) is a humanized IgG1 antibody targeting soluble amyloidβ

protofibrils. It received accelerated approval from the US FDA on January 6,

2023, based on phase 2 trial evidence showing amyloid removal and potential clin-

ical benefits [50], [51]. A double-blind, placebo-controlled phase 2 trial with 856

patients demonstrated substantial, dose-dependent amyloid plaque reduction with

Lecanemab treatment (10 mg/kg biweekly) over 79 weeks [52]. Currently, three

phase 3 trials are underway. These include Clarity AD (NCT03887455‡), which re-

ported favorable outcomes across primary and secondary measures, AHEAD 3–45

(NCT04468659‡), and the DIAN-TU Next Generation trial (NCT05269394‡). On

July 6, 2023, Lecanemab received traditional FDA approval based on phase 3 Clarity

‡Trial listed in clinicaltrials.gov

12



CHAPTER 1. INTRODUCTION 1.8. FUTURE OF AD

AD trial data [53].

Donanemab, developed from mouse mE8-IgG2a, targets amyloidβ (3–42) in amy-

loid plaques [54]. In the phase 2 TRAILBLAZER-ALZ study, Donanemab met its

primary endpoint by delaying cognitive decline by 32% compared to placebo, cor-

relating amyloid reduction with improved iADRS scores in ApoE4 carriers [55].

Currently, five phase 3 trials are ongoing. TRAILBLAZER-ALZ 2 (NCT04437511‡)

and TRAILBLAZER-ALZ 3 (NCT05026866‡) focus on early symptomatic AD and

prevention. Results indicate substantial cognitive improvement in low/medium tau

groups and a 60% decline reduction in early-stage AD, with common adverse effects

including amyloid-related imaging abnormalities and infusion reactions [55], [56].

Recent AD drug trials have focused on amyloid and tau mechanisms. Despite

early anti-amyloid trial failures, the positive outcomes from Lecanemab and Do-

nanemab trials [57], [58] have reignited interest in amyloid-related therapies. Re-

search now targets prodromal or preclinical stages to address unmet needs such as

neuroprotection and anti-neuroinflammation. Future trials may increasingly incor-

porate amyloid-related therapies within AD treatment approaches [59], [60].

1.8 Future of AD

As we look ahead, the future of AD raises critical questions about how we can

proactively address and prepare for this challenging condition. Research in this

field is essential as we aim to understand how lifestyle choices, early interventions,

and preventive measures influence the course of AD. There’s a growing consensus

that maintaining a healthy diet, staying physically active, and engaging in cognitive

exercises may reduce the risk of developing AD. Early detection and intervention

are essential, and ongoing research aims to find potential biomarkers and innovative
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strategies for timely diagnosis and treatment. This research is crucial for individu-

als, families, communities, and healthcare systems, emphasizing the urgent need for

collective efforts to reduce the impact of AD. Supporting and advancing research

in Alzheimer’s empowers individuals to make informed choices for their well-being,

contributing to a future where the burden of this neurodegenerative disease is light-

ened.

Our initial plan involved downloading a set of raw MRI images from ADNI. We

intended to preprocess these images using Clinica, applying filters such as Grad-

Warp, B1 Correction, N3, and Scaling. However, Heudiconv, a file converter tool

used before Clinica, did not successfully prepare the MRI scans for preprocessing.

Consequently, we discarded Clinica and downloaded a new set of ADNI’s prepro-

cessed scans instead. Moving forward, we will show our results with Clinica, extract

volumetric data from these scans, and apply machine learning algorithms to identify

the brain regions associated with Alzheimer’s disease. This report documents the

outcomes of this research endeavor.

In addition to our study, other research has explored diverse ML methodolo-

gies and datasets to advance AD diagnosis and understanding. In [61], researchers

devised an ML workflow to interpret black-box models using model-agnostic Shap-

ley values. Unlike traditional feature importance techniques, this approach provided

individual explanations for each subject and examined the intricate relationships

between features and predictions. The effectiveness of the workflow was assessed by

training XGBoost and RF models to analyze various stages of AD. The ADNI and

the Australian Imaging, Biomarker, and Lifestyle flagship study of Ageing (AIBL)

cohorts were used for model training, totaling 1700 scans. Another study proposed

a novel method for simultaneous differential diagnosis of CN, MCI, and AD by

combining volumetric measurements, cortical thickness measurements, hippocampal
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texture, and hippocampal shape from structural MRI scans [62]. This approach uses

linear discriminant analysis (LDA) classification to integrate multiple MRI biomark-

ers. The method was trained on 504 ADNI subjects and AIBL data, achieving com-

parable classification accuracy and area under the receiver operating characteristic

curve to the Computer-Aided Diagnosis of Dementia (CADDementia) challenge.

In [63], the deep learning-based FastSurfer pipeline was compared to the FreeSurfer

pipeline for extracting volumetric features from MRI scans. FastSurfer demonstrated

remarkably shorter execution times than FreeSurfer. The authors trained RF mod-

els on data from the ADNI cohort. They validated them on an independent test set

within ADNI and a subset of the AIBL dataset, comprising 1565 scans from ADNI

and 545 scans from AIBL. Results showed similar performance between models

trained on FastSurfer and FreeSurfer data. The study in [64] introduces an image-

fusion technique for integrating PET and T1-weighted MRI scans, enhancing feature

fusion for AD detection. Additionally, ensemble classification methods, including

Gradient Boosting (GB) and Support Vector Machine with Radial Basis Function

(SVM RBF) for Multi-Class classification and SVM RBF + AdaBoost + GB + RF

for Binary-Class classification, were proposed. The analysis included 600 scans from

ADNI.

The study in [65] developed an automated ML method for classifying different

stages of cognitive impairment, using cortical thickness measurements from 1167

MRI scans and achieving an overall accuracy of 75%. The authors in [66] presented

a multi-modality classification framework using RF classifiers, integrating MRI vol-

umes, FDG-PET signals, CSF biomarkers, and genetic data to achieve classification

accuracies of 89% for AD vs. HC and 75% for MCI vs. HC. In [67], the authors

presented the efficacy of RF classifiers using structural MRI measures, achieving

a sensitivity/specificity of 88.6%/92.0% in distinguishing AD from HC, with im-
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proved sensitivity/specificity for predicting MCI-to-AD conversion when including

demographic and genetic data. The study in [68] focused on predicting MCI-to-AD

conversion using an RF model trained on clinical data from 383 early MCI patients,

resulting in an accuracy of 93.6%. Finally, the authors in [69] tested RF models on

2250 MRI scans, achieving high performance (90.2%), and identified the hippocam-

pus, amygdala, and inferior lateral ventricle as major contributors to classification

accuracy.

Our study builds upon these methodologies by integrating the Random Forest

Algorithm with various cross-validation techniques to predict Alzheimer’s disease

and detect neuroanatomical markers of AD. We achieved an accuracy of 92.87%

and an F1 score of 92.84% on our dataset, demonstrating robust predictive per-

formance. These diverse approaches highlight the ongoing advancements in ML

methodologies and their application to neuroimaging data, demonstrating the po-

tential to substantially enhance AD diagnosis and understanding.

In this report, we use the ADNI dataset to obtain brain MRI scans. We then

parcellate the neuroimages into various brain regions to create a dataset for the ML

methods. The brain regions crucial in predicting AD across several subgroups are

highlighted and discussed. We have covered the following topics. Section 2 shows

the methodology. Section 3 presents the results and analysis of the study. Section

4 discusses and concludes the paper with our overall findings.
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Chapter 2

Methodology

2.1 ADNI Dataset

The dataset used in our study includes 815 structural MRI scans (281 Cognitive

Normal (CN), 332 Mild Cognitive Impairment (MCI), and 202 Alzheimer’s dis-

ease (AD)) from 344 subjects, all aged between 69 and 84 years. These samples

underwent preprocessing techniques such as Multiplanar Reconstruction (MPR),

GradWarp, B1 Correction, N3, and Scaling. We used T1-weighted Magnetization-

Prepared Rapid Gradient-Echo (MPRAGE) scans from ADNI-1, the first phase of

Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Furthermore, subjects took the Mini-Mental State Exam (MMSE) [70] and Clin-

ical Dementia Rating (CDR) [71] tests. The MMSE and CDR are typically admin-

istered around the time of imaging scans. The MMSE provides a quick evaluation

of cognitive function, covering domains such as orientation to time, orientation to

place, registration, attention and calculation, recall, language, repetition, and the

ability to follow complex commands and write a sentence. The CDR relies on in-

formant reports to stage the overall severity of dementia. These tools are essential

17



CHAPTER 2. METHODOLOGY 2.1. ADNI DATASET

for Alzheimer’s research as they offer standardized and quantifiable measures of

cognitive decline over time. We considered the scores from these assessments when

selecting subjects for our dataset. Table 2.1 provides an overview of the demographic

characteristics of the ADNI dataset used in this study.

Table 2.1: ADNI demographic characteristics
N Sex (F:M) Age (years) MMSE CDR Modality Image Description

CN 281 171:110 73.7-81.0 29-30 0 T1 MPR; GradWarp; B1 Correction; N3; Scaled
MCI 332 104:228 71.6-83.0 25.4-29 0.5 T1 MPR; GradWarp; B1 Correction; N3; Scaled
AD 202 108:94 69.4-83.6 16.0-25.0 0.5-1.0 T1 MPR; GradWarp; B1 Correction; N3; Scaled

815 383:432 69.4-83.6 T1 MPR; GradWarp; B1 Correction; N3; Scaled

We categorized the dataset into distinct subgroups based on sex and age. These

subgroups encompassed male and female subjects across two age ranges: 69 to 76

years and 77 to 84. Specifically, the subgroups included:

1. Both male and female subjects aged 69 to 84

2. Male-only subjects aged 69 to 84

3. Female-only subjects aged 69 to 84

4. Both male and female subjects aged 69 to 76

5. Male-only subjects aged 69 to 76

6. Female-only subjects aged 69 to 76

7. Both male and female subjects aged 77 to 84

8. Male-only subjects aged 77 to 84

9. Female-only subjects aged 77 to 84

The distribution of diagnoses and the number of samples within each of these

subgroups are illustrated in Table 2.2.
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Table 2.2: Distribution of ADNI Participants by Age, Sex, and Diagnosis
Age Group
(in years)

N

Group
Both sexes

(M+F)
Males
(M)

Females
(F)

Ages 69-84

CN 281 110 171
MCI 332 228 104
AD 202 94 108

815 432 383

Ages 69-76

CN 117 51 66
MCI 151 112 39
AD 106 39 67

374 202 172

Ages 77-84

CN 164 59 105
MCI 181 116 65
AD 96 55 41

441 230 211

2.2 Preprocessing

Preprocessing is crucial because it addresses challenges in MRI data, like variations

in image quality, artifacts, and anatomical differences between subjects. Through

standardization and data cleaning, preprocessing optimizes the input for deep learn-

ing and ML algorithms, making model training more accurate and reliable. This

step ensures that algorithms concentrate on relevant image patterns and features,

improving the model’s ability to generalize and make meaningful predictions. In

turn, this enhances the overall performance of neuroimaging analyses.

2.2.1 Clinica

Preprocessing in neuroimaging aims to enhance the quality and suitability of the

images, addressing various issues that may arise during acquisition. Common prepro-

cessing steps include normalization, where the intensities of the images are standard-

ized to a consistent scale, and spatial normalization, aligning images to a standard

anatomical template. Additionally, noise reduction, removal of artifacts, and correc-
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tion of image distortions are essential aspects of preprocessing. A few tools required

for preprocessing include:

1. Clinica [72] powers neuroimaging research with advanced pipelines, automat-

ing data preprocessing and analysis for streamlined workflows.

2. Clinica leverages the BIDS (Brain Imaging Data Structure) [73] standard, en-

suring seamless brain imaging and behavioral data processing. BIDS’s stan-

dardized organization simplifies data handling and improves collaboration by

enabling researchers to share and utilize datasets efficiently.

3. Heudiconv [74] is a flexible DICOM converter for organizing brain imaging

data into structured directory layouts. It allows flexible directory layouts and

naming schemes through customizable heuristics implementations, and it only

converts the necessary DICOMs and ignores everything else in a directory. It

is a fast converter using dcm2niix [75] under the hood.

The initial dataset was downloaded from the ADNI server in DICOM format.

This dataset was then converted into the BIDS format (see Figure 2.1) to ensure

compatibility with the Clinica software. DICOM files were converted to Nifti files

within the BIDS architecture. This conversion standardized the data structure,

facilitating efficient analysis.

The preprocessing on Clinica began with processing the BIDS-compliant Nifti

files to address noise and unwanted factors. A BIDS-compliant directory structure

was created to house the converted Nifti files, ensuring proper organization and

accessibility of the data. HeudiConv, a tool for DICOM-to-BIDS conversion, was

used to populate the BIDS directory with Nifti files. This tool automatically [76]

extracted relevant information from DICOM headers and used dcm2niix for efficient

conversion. Other potential methods for this conversion included BIDScoin [77],
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Bidsify [78], Bidskit [79], Data2Bids [80], Dcm2bids [81], niix2bids [82], dac2bids

[83]. Specific configuration options were provided to HeudiConv to ensure accurate

conversion and adherence to BIDS standards, such as specifying the output format

(e.g., Nifti-1) and naming conventions for the generated files.

The preprocessing steps involved four specific tasks:

1. GradWarp: Corrected gradient warping artifacts in the data.

2. B1 Correction: Normalized intensity variations caused by radiofrequency

inhomogeneities.

3. N3 Bias Field Correction: Removed non-uniform background intensity

variations.

4. Scaling: Adjusted the data to a standard intensity range for improved anal-

ysis and visualization.

Finally, the preprocessed data was available in Nifti format within the BIDS

structure. This processed data was free from noise and other artifacts, providing a

more reliable basis for subsequent analysis.

Preprocessing software packages were used to prepare data for further ML anal-

ysis. These packages streamline tasks such as data cleaning, transformation, and

feature extraction, ensuring the dataset is appropriately formatted for training ML

models. Below, we explore two widely used preprocessing software packages for

this study, highlighting their functionalities and applications in creating ML-ready

datasets.
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Figure 2.1: Illustration of the conversion to BIDS architecture. Each subject’s direc-
tory begins with ’sub-’, followed by the type of MRI scan and its corresponding .nii
files. The ’anat’ folder contains the anatomical (sMRI) scans, ’func’ stores the func-
tional (fMRI) scans, and ’dwi’ holds diffusion-weighted imaging files, which measure
the random Brownian motion of water molecules within a tissue voxel [84]. Source:
https://bids.neuroimaging.io/.

2.2.2 FreeSurfer

FreeSurfer is an open-source neuroimaging data analysis package [85] that offers

comprehensive processing capabilities, including skull-stripping, bias field correc-

tion, and cortical surface reconstruction.

We chose FreeSurfer for its robust Brain MRI analysis capabilities in our study

on AD, MCI, and CN groups. Key functionalities such as:

• Detailed Segmentation: Differentiating gray matter, white matter, and CSF

provided insights into potential neuroanatomical variations.

• Cortical Thickness Analysis : Enabled measurement and comparison of corti-

cal thickness across groups, potentially revealing patterns linked to AD/MCI

progression.
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• Volume Measurements : Allowed assessment of potential volume differences in

brain regions affected by AD, aiding prediction efforts.

We employed FreeSurfer’s recon-all command to thoroughly analyze a brain

MRI scan from a CN subject. This command performs a comprehensive analysis

that simultaneously calculates all brain regions’ volumes, thickness, and surface area.

FreeSurfer’s recon-all command is designed to process these three types of data

together, and it does not allow for the individual processing of just volumes, thick-

ness, or surface area data in isolation. The analysis was performed on two separate

machines: a personal laptop and a lab machine. We successfully obtained detailed

segmentation, brain region volumes, and cortical thickness.

2.2.3 FastSurfer

FastSurfer is a rapid and precise neuroimaging pipeline based on deep learning

[86]. It is a swift and fully compatible alternative to FreeSurfer for volumetric and

surface-based thickness analyses.

The FastSurfer pipeline comprises two primary components: segmentation and

surface reconstruction. The segmentation sub-pipeline (seg) utilizes advanced deep

learning networks to swiftly and accurately segment and calculate volumes for the

entire Brain and specific substructures. Meanwhile, the surface sub-pipeline (recon-

surf) reconstructs cortical surfaces, assigns cortical labels, and conducts traditional

point-wise and ROI thickness analyses.

FastSurfer requires high-quality MRI images as input similar to those expected

by FreeSurfer for optimal performance. In our study, we used FastSurfer’s --seg only

and --surf only commands to respectively analyze brain volume and thickness

from a single MRI scan of a CN subject. This analysis was performed on the personal

machine and the lab machine. However, when using the --surf only command,
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we encountered difficulty parcellating the cerebellum on both machines. Since the

literature indicates that the cerebellum is unaffected by AD [87], we decided to ex-

clude it from our analysis using the --no cereb flag and continued our research.

Table 2.3 provides a comprehensive comparison between FreeSurfer and FastSurfer

pipelines.

Table 2.4 shows the specifications of the machines and their processing times for

Table 2.3: Comparison of FreeSurfer and FastSurfer
Feature FreeSurfer FastSurfer
Type Traditional neuroimaging analysis

pipeline
Deep learning-based neuroimaging
pipeline

Accuracy Well-established, high accuracy High accuracy, comparable to
FreeSurfer

Speed Relatively slow, computationally ex-
pensive

Significantly faster than FreeSurfer

Applications Research studies, clinical applica-
tions

Research studies (faster analysis),
screening applications

one scan using FreeSurfer and FastSurfer pipelines. Both analyses yielded promis-

ing results. However, both machines’ high overall processing time for the FreeSurfer

pipeline led us to discontinue using it for further studies. The processing time

with the fastest settings for volumetric analysis using FastSurfer was 1 minute per

scan, while thickness analysis took approximately 24 minutes. These processing

times prominently outpaced FreeSurfer’s 3-hour processing time per scan. Thus, we

opted to continue our research using FastSurfer. To decide between volumetric and

surface-based thickness analysis, we focused on the processing time required by the

--seg only and --surf only commands for segmenting the entire dataset, as seen

in Table 2.5. We initiated our study with volumetric analysis as it required less

processing time for the 815 scans.

In this study, we focused on measuring volume changes in both cortical and

subcortical brain regions. This approach was chosen to maintain consistency in our

analyses. All regions, i.e., cortical and subcortical areas, were analyzed for volume
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Table 2.4: Comparison of FreeSurfer and FastSurfer Analyses on Different Machines

Machine
Operating
System

Hardware Processing Time (per scan)

FreeSurfer FastSurfer
Personal
Machine

Ubuntu 22.04
(VMware
Workstation
17 Player)

Laptop with
32GB RAM and
4GB graphics
card

Volumetric &
thickness analy-
sis ≈ 12 hours

Volumetric
analysis ≈ 30
minutes

Thickness
analysis ≈ 3
hours

Lab
Machine

Ubuntu 22.04 Computer with
64GB RAM,
and NVIDIA
GeForce RTX
2080 SUPER
Graphics Pro-
cessor, with
8GB graphics
memory

Volumetric &
thickness analy-
sis ≈ 3 hours

Volumetric
analysis ≈ 1
minute

Thickness
analysis ≈ 24
minutes

Table 2.5: Processing Time for Volumetric and Thickness Analysis
Analysis Type Processing Time (for 815 scans)

Volumetric Analysis (--seg only) ≈ 13.5 hours
Thickness Analysis (--surf only) ≈ 13+ days

changes to identify structural differences associated with age, sex, and AD.

2.3 Class Imbalance

Class imbalance refers to the scenario where the distribution of classes in the dataset

is uneven, with one class considerably outnumbering the others. In ML tasks, class

imbalance can pose challenges as models favor the majority class, leading to poor

performance in minority classes. Various techniques are available to address these

challenges during data preprocessing and model training, such as using oversampling

or undersampling methods to balance the class distribution.
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In this study, we employ the Synthetic Minority Over-sampling Technique (SMOTE)

from the imblearn library to oversample the minority class [88]. SMOTE generates

synthetic samples from the minority class by interpolating new instances between

existing minority class samples. This technique helps to alleviate class imbalance

by creating more balanced datasets for training machine learning models, thereby

improving their performance, especially in predicting minority class instances. Al-

ternative methods, such as ADASYN [89], can be utilized; however, we opted not

to employ ADASYN in this study as the evidence demonstrates that SMOTE out-

performs ADASYN in various scenarios [90].

Class imbalance occurs after preprocessing the dataset with normalization tech-

niques and splitting it into training and testing sets. When training random forest

classifiers, we apply the SMOTE oversampling technique to the training data to ensure

a balanced class distribution. The impact of class imbalance on model performance

affects the analysis of top contributing features and performance metrics. By ad-

dressing the class imbalance, we aim to improve the robustness of the RF classifiers

for predicting AD. Notably, the accuracy obtained without using SMOTE was in

the range 86-88%, but it improved to the range 90-93% with SMOTE.

2.4 Classification Model: Random Forest

Random Forest (RF) is a popular ensemble learning algorithm widely used for clas-

sification and regression tasks in machine learning [91]. It operates by constructing

multiple decision trees during training. Each tree is trained on a bootstrapped

dataset sample, and a random subset of features is considered for splitting at each

tree node. The final prediction is then made by aggregating the predictions of

all individual trees in the ensemble. RF can thus output the mode of the classes
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(classification) and the individual trees’ mean prediction (regression). RF can also

generate a list of ranked features by measuring the importance of each feature in

reducing impurity or error within the forest’s trees. This ranking is based on how

much each feature contributes to the model’s overall accuracy. In this study, we

have implemented the Random Forest algorithm using the scikit-learn library in

Python. The flowchart depicted in Figure 2.2 provides an example of how RF pre-

dicts Alzheimer’s Disease.

Figure 2.2: An example flowchart of Random Forest classifier.

We extend the use of the ML algorithm in [92] to predict AD. The primary

objective is to identify the brain regions driving AD from MRI scans. Here’s how

the RF algorithm is implemented:
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1. Number of Trees (Estimators):

• The RF classifier is configured with varying numbers of trees, also known

as estimators, representing the number of decision trees to be constructed.

In the hyperparameter tuning process, the number of estimators is ex-

plored across different values, such as 100, 200, and 300, to determine the

optimal setting. The optimal number of trees is typically selected based

on cross-validation performance metrics, such as accuracy or area under

the ROC curve (AUC), where the model achieves the highest performance

without overfitting the training data.

• Increasing the estimators in RF generally leads to better performance up

to a certain point. More trees can help capture complex relationships in

the data and reduce overfitting.

• However, using too many trees may increase computational complexity

and training time.

2. Maximum Depth of Trees:

• The maximum depth of each tree in the forest influences the complexity

and generalization capability of the model.

• During hyperparameter tuning, different values for the maximum depth,

including None, 10, 20, and 30, were explored to identify the optimal

setting.

• This parameter controls the level of detail in the model. Deeper trees can

capture more intricate patterns in the data but may increase the risk of

overfitting.

• It’s important to note that increasing the maximum depth beyond a
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certain threshold can lead to overfitting, where the model memorizes

noise in the training data rather than learning generalizable patterns.

3. Minimum Samples Split and Minimum Samples Leaf:

• Different combinations of hyperparameters related to node splitting are

explored, including the minimum number of samples required to split an

internal node (min samples split) and the minimum number of sam-

ples required to be a leaf node (min samples leaf). This exploration

aims to optimize the decision tree construction process and enhance the

classifier’s performance.

• Increasing the values of min samples split and min samples leaf can

help regularize the model and prevent overfitting by ensuring that each

node contains a sufficient amount of data for splitting or becoming a leaf.

• However, setting excessively high values for these hyperparameters may

result in underfitting, where the model fails to capture important patterns

in the data due to overly strict splitting criteria.

4. Model Training:

• After identifying the best hyperparameters through hyperparameter tun-

ing, the RF classifier is trained with this optimized configuration. This

process produces a finely tuned model qualified for making accurate pre-

dictions.

• It is important to monitor the model’s performance on separate validation

or test data sets. This step ensures that the model’s effectiveness extends

beyond the training data and can generalize well to new, unseen data

instances.
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2.5 RF-Based Neuroanatomical Marker Analysis

One of the critical advantages of RF is its ability to identify the most informative

features for classification tasks. This study explores how RF determines the top

contributing features and assesses their importance.

2.5.1 Understanding Gini Impurity

In the context of decision trees, Gini impurity measures how often a randomly

chosen element from the set would be incorrectly labeled if it was randomly labeled

according to the distribution of labels in the set. It is determined by subtracting the

sum of the squares of the probabilities of each class from one. The Gini impurity

for a node t in a decision tree is calculated as follows:

Gini(t) = 1−
C∑
i=1

p(i|t)2

Where, C is the number of classes, and

p(i|t) is the probability of class i at node t.

In technical terms, The Gini impurity measures the probability of misclassifying

a randomly chosen sample’s label, weighted by the probability of selecting that label

in the node. A Gini impurity of 0 indicates perfect purity (all samples belong to the

same class), while a Gini impurity of 1 indicates maximum impurity (samples are

evenly distributed across all classes).

2.5.2 Feature Importance

In RF, the importance of a feature is determined by measuring the weighted aver-

age of the decrease in Gini impurity resulting from splitting on that feature across
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all trees in the ensemble. Impurity, often calculated using Gini impurity or en-

tropy, quantifies the uncertainty in class labels at a given node. The decrease in

impurity resulting from splitting on a particular feature is a measure of its impor-

tance. Features with higher decreases in impurity are considered more important

for classification. The importance of a feature Xi is calculated as:

Importance(Xi) =

∑
t∈Trees Gini(t)× Number of Samples in Node Split on Xi∑

t∈Trees Number of Samples in Node Split on Xi

Where:

Trees is the set of all decision trees in the Random Forest, and

Gini(t) is the Gini impurity of the node split on feature Xi in tree t.

After training the RF model, we extract the feature importance scores provided

by the model. These scores represent the relative importance of each feature in

contributing to the classification task. We then rank the features based on their

importance scores to identify the top contributing features for predicting AD.

2.6 Model Validation

In this section, we discuss the validation techniques employed to assess the perfor-

mance of the RF models for predicting AD.

2.6.1 K-Fold Cross-Validation

K-fold cross-validation divides the dataset into k equal-sized folds, where each fold

acts as a validation set while the remaining k − 1 folds are used for training. This

process is repeated k times, with each fold serving as the validation set precisely

once. We evaluate the model’s performance by averaging the results across all folds.
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In this study, we put k = 5, splitting the dataset into five folds for cross-validation.

The trend observed in K-Fold Cross-Validation is that the model’s performance

metrics, such as accuracy, precision, recall, and F1-score, tend to stabilize as the

number of folds increases. A higher number of folds generally leads to a more reliable

estimate of the model’s performance.

2.6.2 Stratified K-Fold Cross-Validation

Stratified K-Fold Cross-Validation preserves the class distribution in each fold, en-

suring that each fold is representative of the overall dataset’s class distribution.

This technique benefits imbalanced datasets, where one class may be considerably

smaller than the others. We set k = 5 for Stratified K-Fold Cross-Validation in this

study.

Stratified K-Fold Cross-Validation exhibits a similar trend to K-Fold Cross-

Validation, with the added advantage of ensuring that each fold maintains the class

balance observed in the entire dataset.

2.6.3 Leave-One-Out Cross-Validation

Leave-one-out cross-validation (LOOCV) is a technique where a single sample is

used as the validation set, and the rest of the samples are used for training [93].

This process is repeated for each sample in the dataset, resulting in n folds where

n is the number of samples. In this study, we employed LOOCV to evaluate the

performance of our models.

In Leave-One-Out Cross-Validation (LOOCV), we observe a trend where the

model’s performance metrics, such as accuracy, precision, recall, and F1-score, tend

to stabilize as the size of the dataset increases. With LOOCV, the model is repeat-

edly trained and evaluated on nearly identical datasets, resulting in a comprehensive
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assessment of its performance.

2.6.4 Implementation

In our implementation, we use the cross val predict function from the

sklearn.model selection module to perform K-Fold, Stratified K-Fold, and

Leave-one-out cross-validation. This function efficiently handles the splitting of

the dataset and evaluation of the model across multiple folds.

2.7 Performance Metrics

Performance metrics are essential tools for evaluating the effectiveness and efficiency

of machine learning models [94]. These metrics provide insights into how well the

model performs in terms of accuracy, precision, recall, F1-score, and other relevant

measures. The following are the various performance metrics used in this study to

evaluate the RF classifier’s effectiveness in predicting AD:

1. Accuracy:

• Accuracy measures the proportion of correctly classified instances out of

the total instances in the dataset. It is calculated as the ratio of the

number of correct predictions to the total number of predictions.

• It performs well when classes are balanced, and no considerable class

imbalance exists. However, accuracy can be misleading in imbalanced

datasets where the majority class dominates.

2. Precision:

• Precision quantifies the model’s ability to correctly identify positive in-

stances (true positives) out of all instances classified as positive. It is
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calculated as the ratio of true positives to the sum of true positives and

false positives.

• Precision may be high when the model is conservative in predicting posi-

tive instances but may suffer when the model misses some true positives,

resulting in a low recall.

3. Recall:

• Recall, also known as sensitivity, measures the model’s ability to iden-

tify positive instances out of all actual positive instances correctly. It is

calculated as the ratio of true positives to the sum of true positives and

false negatives.

• High recall may lead to more false positives, which can be problematic

when false alarms have severe consequences, such as medical diagnoses

or fraud detection.

4. F1-score:

• The F1-score represents the harmonic mean of precision and recall, offer-

ing a balanced assessment between the two metrics. It proves especially

valuable when both precision and recall are important, particularly in

scenarios of an imbalance between classes. By providing a unified met-

ric, it effectively balances the consideration of false positives and false

negatives.

These performance metrics are computed and reported using functions such

as accuracy score, precision score, recall score, and f1 score from the

sklearn.metrics module.
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In summary, our methodology involved using the ADNI dataset for MRI scans,

attempting to preprocess the scans using Clinica, and conducting volumetric analysis

using FastSurfer. We initially categorized the dataset into male and female cohorts

to investigate sex-specific disparities in AD progression. We then divided these

cohorts into two age groups to examine age-specific differences. We employed an

RF Classifier, SMOTE, and three validation techniques to pinpoint the brain regions

influencing AD. Performance metrics were assessed, and the next chapter presents

the obtained results.
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Chapter 3

Results

3.1 Clinica outputs

Figure 3.1 shows two scans of the same patient before and after preprocessing with

Clinica software. The workflow began with converting the raw DICOM MRI scans

from the ADNI dataset to BIDS format. Next, the HeudiConv tool converted these

DICOM files to Nifti format. Following these conversions, Clinica was used to apply

filters such as GradWarp, B1 Correction, N3 Bias Field Correction, and Scaling to

the Nifti brain scans. The resulting output is depicted in Figure 3.1(b). Moreover,

standard practices like skull stripping and cropping could be employed to focus on

critical structures during neuroimaging analysis.

The use of HeudiConv resulted in substantial data loss during the conversion

process, with only about 30 out of 350 files successfully converted to Nifti format.

This conversion success rate could potentially be improved with further expertise in

the tool. However, due to the poor results from Heudiconv, we downloaded prepro-

cessed images directly from the ADNI dataset. This approach ensured better data

integrity and allowed for more reliable subsequent analyses.
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(a) (b)

Figure 3.1: Defaced sMRI scans (a) Original (b) Preprocessed.

3.2 FastSurfer outputs

The FastSurfer’s --seg-only pipeline took preprocessed MRI scans from ADNI, in

Nifti (.nii) file format, as input and gave MRI images parcellated into 100 brain

regions. These regions consisted of 31 cortical areas per hemisphere, 33 subcortical

regions, and five areas of the corpus callosum, as defined by the Desikan-Killiany-

Tourville (DKT) Atlas, which is the standard atlas∗ utilized by FastSurfer. Addi-

tionally, FastSurfer provided volumetric information for each region in a text file for

every scan.

Out of the 100 brain regions obtained, we excluded those with zero volumes,

resulting in 95 brain regions being considered. A list of these 95 brain regions

is given in the Supplementary section in Chapter 5. Figure 3.2 visualizes a CN

subject’s brain parcellation as seen in Freeview neuroimaging software.

∗An atlas serves as a comprehensive reference for understanding the spatial organization of
the brain and its structural connectivity [95]. It facilitates the precise localization of specific brain
regions and the analysis of their functional activities and enables comparisons with standardized
datasets. By integrating various perspectives of the brain and employing registration techniques,
atlases offer a systematic framework for studying brain anatomy and function, thereby enhancing
our understanding of its complex architecture.
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Figure 3.2: Brain parcellation in Freeview.

Using the DKT atlas alongside the --seg-only pipeline, only 100 brain re-

gions were identified. Alternatively, employing the --surf-only pipeline would

have yielded a more extensive set comprising 172 brain regions. This expanded set

would have included additional regions such as white matter regions, both hemi-

spheres’ cortex banks, cortex frontal pole, and cortex temporal pole. However, due

to prioritizing computational efficiency, we opted to focus solely on the 100 brain

regions generated by the --seg-only pipeline. Processing 815 scans took 1.5 hours

on day 1 and 12 hours on day 2.

FreeSurfer’s aseg2stats.table command was used to convert the above sub-

cortical stats file into a tabular format. In this table, each line represents a subject,

and each column corresponds to a segmentation, with the volume of each segmenta-

tion measured in cubic millimeters (mm³). The first row contains the segmentation
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names, and the first column lists the subject names. Demographic information of

each scan was then appended to this table.

3.3 Feature Engineering

After acquiring our dataset with patient demographics, we employed feature engi-

neering to optimize our data preprocessing strategy. Feature engineering techniques,

such as normalization, are crucial as they directly impact the model’s ability to learn

and make accurate predictions. Despite normalization not being commonly prac-

ticed in neuroimaging studies involving human subjects, as seen from the literature,

we sought guidance from Dr. Marcelo Febo, an expert in functional magnetic reso-

nance imaging.

Dr. Febo advised against traditional normalization methods, suggesting that

while normalization could address differences in brain volumes, it wasn’t impera-

tive. Instead, he recommended considering intracranial volumes as covariates in

our study design. Without estimated total intracranial volumes provided by Fast-

Surfer, we devised a novel approach. We normalized each brain region volume of

a subject by the sum of all 95 regional brain volumes. This custom normalization

technique ensured that each feature fell within a consistent range between 0 and 1,

as illustrated in Equation (3.1):

Normalization =
Volume of a Brain Region

Sum of Every Brain Region of That Subject
(3.1)

This custom normalization led to a slight improvement in data quality, reflected

in our model’s performance. Using RF with this custom normalization strategy, we

achieved an accuracy of 0.883, compared to 0.877 without normalization.

Moreover, traditional normalization techniques, such as MinMaxScaler() from
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the sklearn.preprocessing module, were explored. This showed similar accu-

racy to our custom normalization, indicating comparable effectiveness in reducing

confounding effects. We then pursued custom normalization further in our analysis.

Following data normalization, we organized the dataset into subgroups based on

sex and age for further analysis. These subgroups encompassed both male and female

subjects, male-only subjects, female-only subjects, both male and female subjects

aged 69 to 76, male-only subjects aged 69 to 76, female-only subjects aged 69 to 76,

both male and female subjects aged 77 to 84, male-only subjects aged 77 to 84, and

female-only subjects aged 77 to 84. We applied the SMOTE technique to address any

imbalances in class distribution. Additionally, we explored various hyperparameter

search techniques, including Randomized Search and BayesSearchCV, which yielded

similar accuracies. Given the slight edge in performance, we opted for the Pa-

rameterGrid approach. We then fine-tuned the Random Forest parameters through

hyperparameter tuning and validated them using K-fold, stratified K-fold, and leave-

one-out cross-validation methods. Finally, we identified the most influential features

across all subgroups.

3.4 Subgroup Analyses

3.4.1 Statistical Analysis of Brain Regions

Several brain regions were analyzed for statistical comparisons. Figure 3.3 shows the

average volumes of the left and right hippocampus, amygdala, and entorhinal cortex

in CN, MCI, and AD patients. The statistical differences among the three groups

were assessed using a two-sample Z-test for each pair of brain regions. Significant

differences (p < 0.01) were found across CN vs. MCI, MCI vs. AD, and CN vs. AD

comparisons. The Z-test was chosen to demonstrate significant differences in brain
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region volumes, which were influenced by the consistently low p-values, emphasizing

the reliability of our statistical outcomes.

Figure 3.3: Average volumes of left and right hippocampus, amygdala, and entorhi-
nal cortex in CN, MCI, and AD subjects, illustrating atrophy across cognitive states.
Statistical significance is marked with * (p < 0.01).

Figure 3.4 presents the average volumes of four critical brain regions—Left-Inf-

Lat-Vent (LILV), left inferior parietal cortex, left inferior temporal cortex, and left

middle temporal cortex—across cognitive states in both sexes aged 69-84. Signifi-

cant differences (p < 0.01) were observed in all comparisons except for CN to MCI

in the left inferior parietal and left inferior temporal cortices, where no significant

differences were found. These results highlight the impact of widespread brain atro-

phy in AD, with certain areas showing early volume changes and others exhibiting

more pronounced differences as the disease progresses.
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Figure 3.4: Average volumes of Left Inferior Lateral Ventricle, left inferior parietal
cortex, left inferior temporal cortex, and left middle temporal cortex in CN, MCI,
and AD subjects, illustrating the trend of ventricular enlargement and cortical at-
rophy across cognitive states. Statistical significance is marked with * (p < 0.01).

Understanding the Benjamini-Hochberg Correction

After conducting statistical tests to compare brain region volumes between groups

(CN, MCI, and AD), we need to consider the possibility of false positives, especially

when doing multiple tests. The Benjamini-Hochberg (BH) correction helps address

this concern by adjusting the significance level for each comparison [96].

Before applying the BH correction, we obtained p-values from the tests. These

p-values indicate the likelihood of observing the results by chance. However, they

don’t account for the increased risk of false positives with multiple comparisons.
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After applying the BH correction, the p-values are adjusted to better control the

false discovery rate. Comparing the p-values before and after the correction gives us

a clearer picture of the true significance of the differences observed in brain region

volumes among the groups.

Comparison of P-Values

Brain Region CN vs MCI CN vs AD MCI vs AD MCI vs CN AD vs CN AD vs MCI
Left-Hippocampus 5.43e-22 1.24e-92 5.43e-22 1.05e-30 1.24e-92 1.05e-30
Right-Hippocampus 6.82e-17 1.05e-68 6.82e-17 1.91e-23 1.05e-68 1.91e-23

Left-Amygdala 1.85e-13 6.97e-70 1.85e-13 9.47e-26 6.97e-70 9.47e-26
Right-Amygdala 6.16e-09 2.65e-47 6.16e-09 1.66e-19 2.65e-47 1.66e-19
ctx-lh-entorhinal 3.92e-12 3.76e-56 3.92e-12 1.41e-18 3.76e-56 1.41e-18
ctx-rh-entorhinal 3.44e-09 2.77e-69 3.44e-09 3.39e-29 2.77e-69 3.39e-29
Left-Inf-Lat-Vent 5.09e-20 1.91e-27 6.84e-07 5.09e-20 1.91e-27 6.84e-07

ctx-lh-inferiorparietal 0.136 1.73e-15 1.60e-09 0.136 1.73e-15 1.60e-09
ctx-lh-inferiortemporal 0.0793 7.32e-30 1.74e-20 0.0793 7.32e-30 1.74e-20
ctx-lh-middletemporal 2.96e-04 8.68e-24 8.28e-12 2.96e-04 8.68e-24 8.28e-12

Table 3.1: P-values before Benjamini-Hochberg correction

After Benjamini-Hochberg Correction:

Brain Region CN vs MCI CN vs AD MCI vs AD MCI vs CN AD vs CN AD vs MCI
Left-Hippocampus 8.89e-22 2.24e-91 8.89e-22 2.69e-30 2.24e-91 2.69e-30
Right-Hippocampus 8.77e-17 4.71e-68 8.77e-17 3.44e-23 4.71e-68 3.44e-23

Left-Amygdala 2.22e-13 6.27e-69 2.22e-13 1.89e-25 6.27e-69 1.89e-25
Right-Amygdala 6.16e-09 7.95e-47 6.16e-09 2.50e-19 7.95e-47 2.50e-19
ctx-lh-entorhinal 4.41e-12 1.36e-55 4.41e-12 1.95e-18 1.36e-55 1.95e-18
ctx-rh-entorhinal 3.64e-09 1.66e-68 3.64e-09 7.63e-29 1.66e-68 7.63e-29
Left-Inf-Lat-Vent 9.54e-20 5.72e-27 9.54e-20 7.60e-07 5.72e-27 7.60e-07

ctx-lh-inferiorparietal 0.136 2.60e-15 0.136 1.99e-09 2.60e-15 1.99e-09
ctx-lh-inferiortemporal 0.0821 2.75e-29 0.0821 3.48e-20 2.75e-29 3.48e-20
ctx-lh-middletemporal 3.17e-04 2.17e-23 3.17e-04 1.08e-11 2.17e-23 1.08e-11

Table 3.2: P-values after Benjamini-Hochberg correction

Table 3.1 shows the p-values obtained before applying the Benjamini-Hochberg

correction, while Table 3.2 displays the p-values after the correction. These tables

allow for comparing the significance levels before and after adjusting for multiple

comparisons, providing insights into the robustness of the statistical findings. The

corrected p-values from the BH correction provide a more reliable indication of the

true significance of differences in brain region volumes among the groups. This ad-

justment helps ensure that our conclusions are based on robust statistical evidence,
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enhancing the validity of our findings.

3.4.2 Performance Metrics

Tables 3.3, 3.4, and 3.5 display the aggregated performance metrics achieved through

K-fold, stratified K-fold, and leave-one-out cross-validation techniques across the

nine subgroups. The performance of all three validation methods is comparable,

with accuracy consistently in the low 90s. Leave-one-out cross-validation, however,

demonstrates slightly superior performance. The total execution time is presented,

with leave-one-out validation taking the longest, at 23.73 minutes. In contrast, the

other two methods complete much faster, in just 1 minute each.

Table 3.3: Comparison of Aggregated Performance Metrics using K-fold Cross-
Validation

Groups Unified Sex (M+F) Males (M) Females (F)

Unified age group
Ages 69-84

Metric Value
Accuracy 0.9086
Precision 0.9084
Recall 0.9086
F1-score 0.9080

Training accuracy 1.0

Metric Value
Accuracy 0.9415
Precision 0.9414
Recall 0.9415
F1-score 0.9413

Training accuracy 1.0

Metric Value
Accuracy 0.9357
Precision 0.9358
Recall 0.9357
F1-score 0.9355

Training accuracy 1.0

Younger age group
Ages 69-76

Metric Value
Accuracy 0.9051
Precision 0.9052
Recall 0.9051
F1-score 0.9041

Training accuracy 1.0

Metric Value
Accuracy 0.9315
Precision 0.9313
Recall 0.9315
F1-score 0.9312

Training accuracy 1.0

Metric Value
Accuracy 0.9403
Precision 0.9403
Recall 0.9403
F1-score 0.9403

Training accuracy 1.0

Older age group
Ages 77-84

Metric Value
Accuracy 0.9098
Precision 0.9095
Recall 0.9098
F1-score 0.9095

Training accuracy 1.0

Metric Value
Accuracy 0.9282
Precision 0.9284
Recall 0.9282
F1-score 0.9281

Training accuracy 1.0

Metric Value
Accuracy 0.9365
Precision 0.9366
Recall 0.9365
F1-score 0.9360

Training accuracy 1.0

Total execution time for K-fold: 1.31 minutes (78.76 seconds)

3.4.3 RF-Based Neuroanatomical Marker Analysis

The tables 3.6, 3.7, and 3.8 present the top six brain regions implicated in Alzheimer’s

Disease progression across nine subgroups, identified through K-fold, stratified K-

fold, and leave-one-out cross-validation techniques. These tables reveal consistent
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Table 3.4: Comparison of Aggregated Performance Metrics using Stratified K-fold
Cross-Validation

Groups Unified Sex (M+F) Males (M) Females (F)

Unified age group
Ages 69-84

Metric Value
Accuracy 0.9187
Precision 0.9190
Recall 0.9187
F1-score 0.9178

Training accuracy 1.0

Metric Value
Accuracy 0.9503
Precision 0.9502
Recall 0.9503
F1-score 0.9502

Training accuracy 1.0

Metric Value
Accuracy 0.9357
Precision 0.9359
Recall 0.9357
F1-score 0.9355

Training accuracy 1.0

Younger age group
Ages 69-76

Metric Value
Accuracy 0.8962
Precision 0.8962
Recall 0.8962
F1-score 0.8957

Training accuracy 1.0

Metric Value
Accuracy 0.9583
Precision 0.9583
Recall 0.9583
F1-score 0.9582

Training accuracy 1.0

Metric Value
Accuracy 0.9353
Precision 0.9355
Recall 0.9353
F1-score 0.9351

Training accuracy 1.0

Older age group
Ages 77-84

Metric Value
Accuracy 0.9116
Precision 0.9123
Recall 0.9116
F1-score 0.9107

Training accuracy 1.0

Metric Value
Accuracy 0.9224
Precision 0.9222
Recall 0.9224
F1-score 0.9222

Training accuracy 1.0

Metric Value
Accuracy 0.9365
Precision 0.9363
Recall 0.9365
F1-score 0.9363

Training accuracy 1.0

Total execution time for Stratified K-fold: 1.34 minutes (80.67 seconds)

Table 3.5: Comparison of Aggregated Performance Metrics using Leave-One-Out
Cross-Validation

Groups Unified Sex (M+F) Males (M) Females (F)

Unified age group
Ages 69-84

Metric Value
Accuracy 0.9287
Precision 0.9284
Recall 0.9287
F1-score 0.9284

Training accuracy 1.0

Metric Value
Accuracy 0.9547
Precision 0.9547
Recall 0.9547
F1-score 0.9546

Training accuracy 1.0

Metric Value
Accuracy 0.9435
Precision 0.9435
Recall 0.9435
F1-score 0.9434

Training accuracy 1.0

Younger age group
Ages 69-76

Metric Value
Accuracy 0.9205
Precision 0.9212
Recall 0.9205
F1-score 0.9200

Training accuracy 1.0

Metric Value
Accuracy 0.9435
Precision 0.9435
Recall 0.9435
F1-score 0.9430

Training accuracy 1.0

Metric Value
Accuracy 0.9303
Precision 0.9307
Recall 0.9303
F1-score 0.9304

Training accuracy 1.0

Older age group
Ages 77-84

Metric Value
Accuracy 0.9263
Precision 0.9272
Recall 0.9263
F1-score 0.9257

Training accuracy 1.0

Metric Value
Accuracy 0.9397
Precision 0.9396
Recall 0.9397
F1-score 0.9396

Training accuracy 1.0

Metric Value
Accuracy 0.9460
Precision 0.9477
Recall 0.9460
F1-score 0.9455

Training accuracy 1.0

Total execution time for Leave-One-Out: 23.73 minutes
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brain regions recurring as top contributors across the subgroups.

Table 3.6: Comparison of Top Contributing Features using K-fold Cross-Validation
Groups Unified Sex (M+F) Males (M) Females (F)

Unified age group
Ages 69-84

Feature Importance
Left-Hippocampus 0.0592
Left-Amygdala 0.0406
Right-Amygdala 0.0341
ctx-rh-entorhinal 0.0299

Right-Hippocampus 0.0296
ctx-lh-inferiortemporal 0.0251

Feature Importance
Left-Hippocampus 0.04999
Left-Amygdala 0.0381
ctx-rh-entorhinal 0.0355

ctx-lh-inferiorparietal 0.0333
Right-Hippocampus 0.0323
ctx-lh-middletemporal 0.0289

Feature Importance
Left-Hippocampus 0.0694
Left-Amygdala 0.0470

Right-Hippocampus 0.0352
ctx-lh-entorhinal 0.0334

ctx-lh-inferiortemporal 0.0266
ctx-lh-middletemporal 0.0261

Younger age group
Ages 69-76

Feature Importance
Left-Hippocampus 0.0565
Right-Hippocampus 0.0356

Left-Amygdala 0.0339
ctx-lh-entorhinal 0.0298
ctx-rh-entorhinal 0.0277

ctx-rh-middletemporal 0.0274

Feature Importance
Right-Hippocampus 0.0603
Left-Hippocampus 0.0443
Right-Amygdala 0.0423
ctx-rh-entorhinal 0.0379
Left-Amygdala 0.0302

ctx-lh-inferiorparietal 0.0215

Feature Importance
Left-Hippocampus 0.0674
Left-Amygdala 0.0434

ctx-lh-parahippocampal 0.0333
ctx-lh-middletemporal 0.0319

ctx-lh-entorhinal 0.0315
ctx-lh-inferiortemporal 0.0292

Older age group
Ages 77-84

Feature Importance
Left-Hippocampus 0.0585
ctx-rh-entorhinal 0.0395
Left-Amygdala 0.0378
ctx-lh-entorhinal 0.0373

ctx-lh-inferiortemporal 0.0336
Right-Hippocampus 0.0243

Feature Importance
Left-Hippocampus 0.0458
Left-Inf-Lat-Vent 0.0357

ctx-lh-inferiortemporal 0.0323
ctx-lh-entorhinal 0.0320
ctx-rh-entorhinal 0.0316
Left-Amygdala 0.0308

Feature Importance
Left-Hippocampus 0.0796
Left-Amygdala 0.0409

ctx-lh-middletemporal 0.0398
Right-Amygdala 0.0389
ctx-lh-entorhinal 0.0344

Right-Hippocampus 0.0311

Table 3.7: Comparison of Top Contributing Features using Stratified K-fold Cross-
Validation

Groups Unified Sex (M+F) Males (M) Females (F)

Unified age group
Ages 69-84

Feature Importance
Left-Hippocampus 0.0629
Left-Amygdala 0.0374
ctx-rh-entorhinal 0.0300

Right-Hippocampus 0.0277
Right-Amygdala 0.0254

ctx-lh-inferiortemporal 0.0239

Feature Importance
Left-Hippocampus 0.0618
ctx-rh-entorhinal 0.0347
Left-Amygdala 0.0293
Right-Amygdala 0.0286

ctx-lh-inferiorparietal 0.0272
Right-Hippocampus 0.0263

Feature Importance
Left-Hippocampus 0.0708
ctx-lh-entorhinal 0.0375
Left-Amygdala 0.0373

Right-Hippocampus 0.0337
ctx-lh-inferiortemporal 0.0275

Right-Amygdala 0.0248

Younger age group
Ages 69-76

Feature Importance
Left-Hippocampus 0.0565
Left-Amygdala 0.0454

Right-Hippocampus 0.0413
ctx-rh-entorhinal 0.0340
Right-Amygdala 0.0302

ctx-rh-middletemporal 0.0289

Feature Importance
Right-Hippocampus 0.0488
Left-Hippocampus 0.0434
ctx-rh-entorhinal 0.0422
Right-Amygdala 0.0339

ctx-rh-supramarginal 0.0261
Left-Amygdala 0.0247

Feature Importance
Left-Hippocampus 0.0580

ctx-lh-middletemporal 0.0502
Left-Amygdala 0.0387

Right-Hippocampus 0.0359
ctx-lh-inferiortemporal 0.0306
ctx-rh-middletemporal 0.0301

Older age group
Ages 77-84

Feature Importance
Left-Hippocampus 0.0593
ctx-rh-entorhinal 0.0432

ctx-lh-middletemporal 0.0357
Left-Amygdala 0.0333
ctx-lh-entorhinal 0.0330

ctx-lh-inferiortemporal 0.0304

Feature Importance
Left-Hippocampus 0.0411
Left-Inf-Lat-Vent 0.0350
ctx-rh-entorhinal 0.0291

ctx-lh-inferiortemporal 0.0286
ctx-lh-entorhinal 0.0281

ctx-lh-supramarginal 0.0263

Feature Importance
Left-Hippocampus 0.0932
Left-Amygdala 0.0451
Right-Amygdala 0.0417
ctx-rh-entorhinal 0.0345

ctx-lh-middletemporal 0.0311
Right-Hippocampus 0.0304

Total execution time for Stratified K-fold: 1.34 minutes (80.67 seconds)

To evaluate the consistency of identifying these top contributors, we analyzed

the overlap of features in the same subgroup across all three tables. Out of the

54 features examined, derived from the top 6 contributing features within each

of the nine subgroups, 39 were consistently present across all three tables. This

indicates a high consistency score of 72.22% among the features analyzed. This
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Table 3.8: Comparison of Top Contributing Features using Leave-One-Out Cross-
Validation

Groups Unified Sex (M+F) Males (M) Females (F)

Unified age group
Ages 69-84

Feature Importance
Left-Hippocampus 0.0618
Left-Amygdala 0.0390

Right-Hippocampus 0.0296
ctx-rh-entorhinal 0.0287
Right-Amygdala 0.0279
ctx-lh-entorhinal 0.0270

Feature Importance
Left-Hippocampus 0.05797
ctx-rh-entorhinal 0.04058
Right-Amygdala 0.03326
Left-Amygdala 0.03161

ctx-lh-inferiorparietal 0.03147
ctx-lh-middletemporal 0.02730

Feature Importance
Left-Hippocampus 0.0693
Right-Hippocampus 0.0384

Left-Amygdala 0.0380
ctx-lh-entorhinal 0.0329
ctx-rh-entorhinal 0.0255

ctx-lh-middletemporal 0.0247

Younger age group
Ages 69-76

Feature Importance
Left-Hippocampus 0.0604
Left-Amygdala 0.0370

Right-Hippocampus 0.0340
ctx-rh-entorhinal 0.0292
ctx-lh-entorhinal 0.0273
Right-Amygdala 0.0250

Feature Importance
Right-Hippocampus 0.0482
Left-Hippocampus 0.0421
ctx-rh-entorhinal 0.0418
Right-Amygdala 0.0361
Left-Amygdala 0.0278

ctx-lh-middletemporal 0.0240

Feature Importance
Left-Hippocampus 0.0560
Left-Amygdala 0.0419

ctx-lh-middletemporal 0.0412
ctx-lh-entorhinal 0.0331

Right-Hippocampus 0.0306
ctx-rh-middletemporal 0.0294

Older age group
Ages 77-84

Feature Importance
Left-Hippocampus 0.0673
ctx-rh-entorhinal 0.0449
ctx-lh-entorhinal 0.0342

ctx-lh-inferiortemporal 0.0331
Left-Amygdala 0.0308

ctx-lh-middletemporal 0.0294

Feature Importance
Left-Hippocampus 0.0385
Left-Inf-Lat-Vent 0.0337

ctx-lh-inferiortemporal 0.0336
ctx-rh-entorhinal 0.0330
Left-Amygdala 0.0301
ctx-lh-entorhinal 0.0246

Feature Importance
Left-Hippocampus 0.0888
Right-Amygdala 0.0435
Left-Amygdala 0.0382
ctx-rh-entorhinal 0.0364

ctx-lh-middletemporal 0.0301
ctx-lh-entorhinal 0.0300

Total execution time for Leave-One-Out: 23.73 minutes

consistency underscores the dataset’s influence on determining the top contributing

features rather than the specific validation techniques, enhancing confidence in the

predictive models. Table 3.9 presents the 39 features that consistently emerged

as the top contributors across all subgroups and different validation techniques.

Refer to the Supplementary section in Chapter (5) for detailed information on the

performance metrics and top contributing features obtained through various cross-

validation techniques for all subgroups.

Analyzing Table 3.9, we observe consistent involvement of specific brain regions

across different age groups and sex. For instance, the left hippocampus consistently

decreases in volume in both males and females across all age groups. Addition-

ally, younger males (aged 69-76) and older females (aged 77-84) exhibit substantial

volume reductions in the right amygdala. The younger (69-76) age group shows

substantial volume decreases in the right hippocampus, highlighting its importance

in the early stages of AD across the sexes. Furthermore, older males (aged 77-84)

exhibit notable volume reductions in the left inferior temporal cortex region. These

findings emphasize variations in brain region predictors based on age and sex.
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Table 3.9: Consistent Top Contributing Features using K-fold, Stratified K-fold,
and Leave-One-Out Cross-Validation

Groups Unified Sex (M+F) Males (M) Females (F)

Unified age group
Ages 69-84

Left-Hippocampus
Left-Amygdala
Right-Amygdala
ctx-rh-entorhinal

Right-Hippocampus

Left-Hippocampus
Left-Amygdala
ctx-rh-entorhinal

ctx-lh-inferiorparietal

Left-Hippocampus
Left-Amygdala

Right-Hippocampus
ctx-lh-entorhinal

Younger age group
Ages 69-76

Left-Hippocampus
Right-Hippocampus

Left-Amygdala
ctx-rh-entorhinal

Right-Hippocampus
Left-Hippocampus
Right-Amygdala
ctx-rh-entorhinal
Left-Amygdala

Left-Hippocampus
Left-Amygdala

ctx-lh-middletemporal

Older age group
Ages 77-84

Left-Hippocampus
ctx-rh-entorhinal
Left-Amygdala
ctx-lh-entorhinal

ctx-lh-inferiortemporal

Left-Hippocampus
Left-Inf-Lat-Vent

ctx-lh-inferiortemporal
ctx-lh-entorhinal
ctx-rh-entorhinal

Left-Hippocampus
Left-Amygdala

ctx-lh-middletemporal
Right-Amygdala

3.4.4 Neuroanatomical Trends in AD

In studying Table 3.9, the neuroanatomical trends in AD indicate consistent volume

reductions across all brain regions, except for the lateral ventricle, which enlarges.

These trends highlight sex-specific, age-related, and regional influences on AD.

Sex-Specific Trends:

• Similarities observed in both males and females:

– The left hippocampus and left amygdala are key predictors in the Unified

age group (69-84).

• Differences observed across:

– Unified age group (69-84):

◦ The ctx-lh-entorhinal (left entorhinal cortex) is a prominent predic-

tor in females, while the ctx-lh-inferiorparietal (left inferior parietal

cortex) is a prominent predictor in males.
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– Younger age group (69-76):

◦ The ctx-rh-entorhinal (right entorhinal cortex) is a prominent pre-

dictor in males.

– Older age group (77-84):

◦ The ctx-lh-inferiortemporal (left inferior temporal cortex) is a lead-

ing predictor in males, while the ctx-lh-middletemporal (left middle

temporal cortex) exhibits a higher ranking in females.

Age-Related Trends:

• Similarities Observed in both younger (69-76) and older (77-84) age

groups:

– The left hippocampus, left amygdala, and right entorhinal cortex are

prominent predictors in the Unified Sex group (M+F).

– The right entorhinal cortex is a prominent predictor in males, while the

left middle temporal cortex shows prominence in females.

• Differences Observed across:

– Unified Sex group (M+F):

◦ The left inferior temporal cortex is a key predictor in the older age

group (77-84).

– Males only:

◦ The left entorhinal cortex is a prominent predictor in the older age

group (77-84).

◦ The right amygdala and right hippocampus are key predictors in the

younger age group (69-76).
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– Females only:

◦ The right amygdala is a prominent predictor in the older age group

(77-84).

Distinctive Regional Trends:

• Across both sexes and age groups (69-76 and 77-84), the left hippocampus

and left amygdala consistently show higher rankings, implying their substan-

tial role as key contributors to AD.

• The left middle temporal cortex is a prominent predictor among females across

both younger (69-76) and older (77-84) age groups, suggesting a potential fe-

male-specific influence.

• Influence of the right entorhinal cortex is observed predominantly in males

across both younger (69-76) and older (77-84) age groups, suggesting a poten-

tial male-specific influence.

• The right amygdala and right hippocampus are prominent predictors in younger

males (aged 69-76) but not in the older male group (aged 77-84). Conversely,

the right amygdala exhibits the opposite trend in females, being relevant in

the older female group (aged 77-84) but not in the younger female group (aged

69-76). This observation suggests a potential interaction between age and sex

affecting the right amygdala region.

• Influence of the left inferior temporal cortex and Left-Inf-Lat-Vent is male-

specific in the older age group (77-84).

• The left entorhinal cortex is a prominent predictor in females and is also ob-

served in older males (77-84).
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The left inferior lateral ventricle (LILV) is a cerebrospinal fluid-filled cavity cru-

cial for maintaining brain homeostasis and providing cushioning for brain structures.

Enlargement of the LILV can indicate brain atrophy or neurodegenerative diseases

as surrounding brain tissue shrinks, creating more space within the ventricles. This

enlargement across cognitive states is evident in our results in Figure 3.4.

In Figure 3.4, the LILV shows a marked increase in volume from CN to AD,

indicating ventricular enlargement with disease progression. The cortical regions

(left inferior parietal cortex, left inferior temporal cortex, and left middle temporal

cortex) demonstrate a decreasing volume trend from CN to AD, highlighting cortical

atrophy as cognitive impairment advances. This trend is similar to the consistent

volume decrease observed in the left and right hippocampus, amygdala, and entorhi-

nal cortex from CN to MCI and AD, as seen in Figure 3.3. The left inferior parietal

cortex and left inferior temporal cortex show a moderate volume decrease from CN

to MCI and a more substantial reduction from MCI to AD, while the left middle

temporal cortex exhibits a consistent decrease across all groups. This cortical vol-

ume reduction indicates neurodegenerative processes affecting these areas, known

for their roles in spatial awareness, visual perception, language comprehension, and

memory integration.

3.4.5 Insights from Visual Representations

Comprehensive Overview

Occurrences denote how frequently certain brain regions are observed in the analy-

ses. Figure 3.5 provides a holistic view of brain region occurrences across subgroups

and validation techniques. The results presented in Tables 3.6, 3.7, and 3.8 are

visually depicted in a bar plot (Figure 3.5). This plot provides a holistic view of

brain region occurrences across subgroups and validation techniques.
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Figure 3.5: All occurrences of brain regions that drive AD across 9 subgroups using
a combination of three validation techniques.

Detailed Occurrences plots

Figure 3.6 offers specific insights into the occurrence of brain regions across all

subgroups and within individual validation techniques.
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(a)

(b)

(c)

Figure 3.6: Most common high-ranking brain regions that contribute to AD found
across 9 subgroups using different validation techniques (a) K-Fold (b) Stratified
K-Fold (c) Leave-One-Out.
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Freeview Visualization of Unique Brain Regions

Figure 3.7 utilizes FreeSurfer’s Freeview tool to depict distinct brain regions iden-

tified in Figure 3.5 visually, offering insights into their precise anatomical locations

within the brain.

Figure 3.7: Visualization of unique brain regions that undergo substantial structural
changes in Alzheimer’s Disease across subgroups and validation techniques using
FreeSurfer’s Freeview.

Prominence of Highest Ranking Brain Regions

Focusing on the top six brain regions (Figure 3.8), we observe that the left hippocam-

pus prominently features across all subgroups and validation techniques. Overall,

the hippocampus, amygdala, and entorhinal cortex emerge as prominent predic-

tors with decreased volume as Alzheimer’s Disease progresses. These regions are

visualized on Freesurfer in Figure 3.9.
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Figure 3.8: Top 6 occurrences of brain regions.

Figure 3.9: Visualization of top 6 brain regions - the hippocampus, amygdala, and
entorhinal cortex on Freeview.
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Chapter 4

Discussion

The primary objective of this project is to accurately predict CN, MCI, and AD

diagnoses using neuroanatomical data from structural MRI scans in sex- and age-

specific groups. Using the Random Forest (RF) algorithm and three cross-validation

(CV) techniques, we achieved accuracies of 0.9086 for K-fold CV, 0.9187 for Strati-

fied K-fold CV, and 0.9287 for LOOCV. Regressions were used to identify key brain

regions undergoing structural changes in AD. Our analysis revealed that the hip-

pocampus, amygdala, and entorhinal cortex consistently exhibited decreased volume

in AD across various demographic groups. Sex-specific and age-specific patterns of

brain region changes were observed, aiding in developing personalized diagnostic

and therapeutic approaches. These insights can also inform tailored therapies or

preventive strategies that consider the unique anatomical characteristics of different

demographic groups. This ultimately enhances treatment effectiveness and improves

patient outcomes.
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4.1 Potential neuroanatomical markers of MCI

and AD

We aimed to identify structurally affected brain regions in individuals aged 69-84

to capture the impact of the disease across this age range. Instead of focusing on

disease progression with longitudinal scans using only CN and AD data, we included

cross-sectional scans of CN, AD, and MCI patients to detect any structural changes.

This approach allowed us to identify brain regions where changes appear or disap-

pear from CN to MCI and from MCI to AD, providing a more comprehensive view.

The six highest-ranked features, i.e., the left and right hippocampus, amygdala, and

entorhinal cortex, represent the top three brain regions relevant to AD. We will now

explore their roles in the disease.

4.1.1 Role of hippocampus and amygdala

Our analysis revealed consistent structural characteristics in the left hippocampus

and left amygdala across both sexes and age groups (69-76 and 77-84), indicating

their prominent role in AD. The right hippocampus and right amygdala were key

predictors in younger males (69-76), but their relevance diminished in the older male

group (77-84). Conversely, the right amygdala showed relevance in older females (77-

84) but not in younger females (69-76), suggesting age and sex interactions in its

involvement in AD pathogenesis.

The hippocampus

The hippocampus is essential for learning and memory, with its sub-regions con-

tributing to the formation of episodic memory [97], [98]. In the initial stages of AD,

rapid tissue loss occurs in the hippocampus, leading to functional disconnection
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from other brain regions [99]. This damage disrupts the hippocampus’s ability to

function correctly, leading to memory loss and cognitive decline, which are hallmark

symptoms of AD. Additionally, the hippocampus is involved in various cognitive

functions beyond memory, such as emotional regulation and spatial orientation, and

its dysfunction contributes to the broader cognitive impairment observed in AD.

The amygdala

The amygdala, integral to the limbic system, is linked to emotional disorders like

autism, anxiety disorders, and AD, particularly in the context of fear. In the early

stages of AD, both the amygdala and hippocampus change, leading to personality

changes and emotional abnormalities like anxiety, mania, and irritability [100]. Be-

cause of early amygdala damage, mild stages of AD often exhibit neuropsychiatric

symptoms. Eventually, about 80% of AD patients experience symptoms like hal-

lucinations, delusions, paranoia, anxiety, agitation, and mood disturbances as the

disease progresses [101], [102].

4.1.2 Role of entorhinal cortex

Our analysis revealed compelling trends in the entorhinal cortex concerning sex and

age. While the right entorhinal cortex consistently showed volume reduction across

both younger (age 69-76) and older (age 77-84) males, it did not exhibit this pattern

in younger females (age 69-76). This suggests a male-specific influence in the right

entorhinal cortex. In contrast, the left entorhinal cortex showed volume reduction in

females across the unified age group (69-84). This trend was only observed for males

in the older age group (77-84), indicating a potential age-specific pattern. These

findings suggest complex interactions between sex and age in the entorhinal cortex’s

involvement in AD.
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The entorhinal cortex serves as an initial focal point for the deposition of plaques

and tangles in AD [103]. Plaques are abnormal clusters of beta-amyloid protein frag-

ments that accumulate between nerve cells in the brain, while tau tangles are twisted

tau protein fibers that form inside the brain cells. AD is characterized by these dis-

tinctive brain abnormalities — amyloid-β plaques and tau protein neurofibrillary

tangles — which actively influence the neurodegenerative process [104]. During the

early stages of AD, there is a buildup of tau protein within the entorhinal cortex,

which propagates to the hippocampus [105]. Autopsy-based anatomical and histo-

logical investigations of Alzheimer’s-afflicted brains have shown a progressive pattern

of neurodegeneration, commencing in the second layer of the entorhinal cortex and

gradually advancing to encompass the hippocampus, temporal cortex, frontoparietal

cortex, and subcortical nuclei. The entorhinal cortex in individuals with AD expe-

riences impaired function in processing sensory information and transmitting it for

memory consolidation [106], [107]. This impairment results in substantial memory

decline and difficulties with spatial navigation.

Our results contribute to the existing literature by providing detailed insights

into the neurodegenerative patterns of AD. The observed volume reductions in the

hippocampus, amygdala, and entorhinal cortex highlight their significance in AD,

consistent with previous studies identifying these areas as critical for memory and

emotional regulation. The sex- and age-specific trends in our findings demonstrate

how AD affects different demographics, revealing variations in neurodegeneration

based on sex and age. By identifying these key predictors, our study enhances the

understanding of AD pathology.
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4.2 Sex and Age Subgroup Analyses

Sex-based differences are prominent in the prevalence and progression of AD symp-

toms. In 2024, almost two-thirds of Americans with Alzheimer’s are women; of the

6.9 million people aged 65 and older with Alzheimer’s dementia, 4.2 million are

women, and 2.7 million are men [23], [24]. Additionally, the lifetime risk for AD at

age 45 is approximately 20% for women and 10% for men [23]. Males exhibit slower

structural loss but faster age-related brain volume decline than females, a pattern

that aligns with the distinct regional influences identified in AD across sexes and age

groups. For instance, the male-specific prominence of the right entorhinal and the

female-specific influence of the left middle temporal suggest potential neuroanatom-

ical factors contributing to these sex-based differences.

Men, with their larger head size and cerebral brain volume compared to women,

approximately 10% larger [108], may be less vulnerable to AD-related pathological

factors, experiencing slower structural loss [109]. Yet, they also tend to undergo

faster age-related brain volume decline compared to women [110]. Women are more

likely to receive a clinical diagnosis of AD at similar levels of pathology than men

[111]. Upon AD diagnosis, men often display reduced atrophy in various brain

regions [112]. Women generally show a higher proportion of gray matter in vari-

ous brain regions, whereas men tend to have a higher percentage of white matter

[113]. These differences are often attributed to sex chromosomes and sex hormones,

although the precise mechanism by which sex hormones affect brain structures re-

mains unclear [109], [114].

As of 2024, in the United States, the percentage of people with Alzheimer’s de-

mentia increases with age: 5.0% of people aged 65 to 74, 13.2% of people aged 75 to

84, and 33.4% of people aged 85 and older are affected [23], [24]. In fact, data reveals
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that annually, 4 out of 1,000 individuals aged 65 to 74, 32 out of 1,000 aged 75 to 84,

and 76 out of 1,000 aged 85 and older develop AD [115]. Additionally, an estimated

8% to 11% of Americans aged 65 and older, totaling approximately 5 to 7 million

individuals, may experience MCI due to AD [116]. Thus, the chance of developing

AD increases with age. This aligns with our study’s identification of age-specific

neuroanatomical contributors, such as the male-specific involvement of the left en-

torhinal in the older age group (77-84). Most AD cases are diagnosed after the age of

65, with the prevalence becoming particularly concerning beyond this point, as the

number of affected individuals doubles every five years. Among those aged 65-84,

roughly one in thirteen has AD, while the number jumps to one in three for those

over 85 [117]. Early-onset AD, affecting individuals under 65, is much less frequent,

representing less than 10% of all cases [118]. The presence of the apolipoprotein

E (APOE-ε4) allele, a variant of the apolipoprotein E gene, substantially increases

the risk of AD in women compared to men [119], [120]. Women in their sixties who

carry one or two copies of this gene variant are more likely to develop AD than their

male counterparts [121].

4.3 Medications for AD

AD is incurable, but medications can provide relief by managing symptoms or po-

tentially slowing disease progression. AD progressively damages and destroys nerve

cells in the brain, leading to memory loss, reasoning impairment, and other cognitive

declines. The objective is to decelerate this cognitive decline, enhancing the qual-

ity of life for individuals with Alzheimer’s. Here’s an overview of the two primary

categories of drugs [122]:
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4.3.1 Symptomatic Medications

These medications are designed to alleviate symptoms such as memory loss and

confusion. However, it’s important to note that these medicines are not approved

or recommended for treating MCI.

1. Cholinesterase Inhibitors: These drugs prevent the breakdown of acetyl-

choline, a vital neurotransmitter involved in memory and learning.

• Donepezil (Aricept®): Approved for all stages of AD.

• Rivastigmine (Exelon®): Effective in managing mild to moderate AD

symptoms.

• Galantamine (Razadyne®): Approved for use in mild to moderate

AD cases.

While generally well-tolerated, these medications may lead to side effects such

as nausea, diarrhea, loss of bladder control, muscle cramps, muscle twitching,

and weight loss. Taking the medication at night may also result in vivid

dreams [123].

2. Glutamate Regulators: These medications regulate glutamate, another

neurotransmitter, to protect nerve cells from excessive activity that can harm

them in AD patients.

• Memantine (Namenda®): The only FDA-approved drug in this cat-

egory for moderate to severe AD. It may slow cognitive decline and offer

some nerve cell protection. Like cholinesterase inhibitors, Memantine is

not a cure; side effects like dizziness, headache, confusion, hallucinations,

agitation, and constipation can occur.
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Our analysis reveals a strong association between AD and specific brain re-

gions involved in memory, emotion, and spatial orientation. The effectiveness of

these symptomatic medications may vary depending on which areas are affected in

each patient. For example, cholinesterase inhibitors that boost acetylcholine levels,

which affect cortical memory function [124], might benefit patients with substan-

tial hippocampal involvement, given the hippocampus’s role in memory [125], [126].

Similarly, glutamate regulators like Memantine could be more beneficial for patients

with damage in the entorhinal cortex [127], where excessive neural activity can

worsen cognitive decline. Understanding these specific brain region predictors can

help healthcare professionals tailor treatments to maximize benefits and manage

side effects better.

4.3.2 Disease-Modifying Drugs (Under Investigation)

These newer drugs aim to modify the underlying disease process of AD. They can

potentially slow disease progression:

1. Anti-amyloid Treatments: These medications aim to reduce the accumu-

lation of beta-amyloid plaques, a characteristic protein abnormality in AD.

• Lecanemab (Leqembi®): This drug is an example of anti-amyloid

treatment, working to remove beta-amyloid from the brain. It is ap-

proved by the FDA as an intravenous infusion for individuals in the early

stages of AD with confirmed elevated brain amyloid levels. Beta-amyloid

accumulates early in the entorhinal cortex and hippocampus, leading to

cognitive deficits and synaptic dysfunction [128]. Therefore, Lecanemab

targets these critical regions. However, Lecanemab is not a cure, and its

long-term effects and safety are still being investigated.
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Safety concerns were prominent in clinical trials [129], with 12.6% of par-

ticipants developing brain edema and 17.3% experiencing brain hemor-

rhage. Some adverse events were severe enough to lead to discontinuation

of the trial, and there were reports of deaths potentially associated with

the drug, particularly when taken alongside anticoagulants or thromboly-

sis [130]. In the BAN2401-G000-201 trial [131], a 10-mg/kg biweekly dose

of Lecanemab showed a 64% probability of outperforming placebo by 25%

on the Alzheimer’s Disease Composite Score (ADCOMS) at 12 months,

which did not meet the 80% threshold for the primary endpoint. However,

at 18 months, Lecanemab demonstrated substantial reductions in brain

amyloid and clinical decline across multiple endpoints, like ADCOMS,

ADAS-Cog14, and CDR-SB, with supportive changes in cerebrospinal

fluid biomarkers and a 9.9% incidence of amyloid-related imaging abnor-

malities (ARIA). A systematic review and meta-analysis [132] involving

3,108 AD patients further supported these findings, showing statistically

significant benefits in stabilizing or slowing cognitive decline as measured

by CDR-SB, ADCOMS, and ADAS-cog scores, although the treatment

increased the risk of ARIA.

Potential side effects of taking Lecanemab may include brain swelling

or bleeding, and tests such as PET scans or spinal taps are required

before initiating treatment [133]. Due to the risk of brain swelling or

bleeding (known as ARIA), patients receiving Lecanemab require regular

MRI scans for monitoring. These scans are recommended before the fifth,

seventh, and fourteenth infusions and after one year of treatment. Rarely,

these adverse effects may lead to symptoms such as headache, confusion,

dizziness, changes in vision, nausea, and difficulty walking.
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• Kisunla (donanemab-azbt): On July 2, 2024, the FDA approved

Kisunla, another anti-amyloid treatment for AD. It is administered as an

intravenous infusion every four weeks and is intended for patients with

MCI or mild dementia. Clinical trials demonstrated that Kisunla signifi-

cantly reduced clinical decline on various AD scales compared to placebo,

including the Integrated Alzheimer’s Disease Rating Scale (iADRS) and

the Clinical Dementia Rating Scale – Sum of Boxes (CDR-SB). However,

there are risks associated with Kisunla, such as ARIA and infusion-related

reactions. The FDA granted Kisunla Fast Track, Priority Review, and

Breakthrough Therapy designations [134].

2. Other Potential Drugs: Ongoing research explores medications targeting

various aspects of AD pathology, including tau protein accumulation and neu-

roinflammation.

Aducanumab, once approved for the treatment of early-stage AD, was later with-

drawn from the market due to concerns about its effectiveness [135]. Similarly,

Lecanemab, which the FDA approved, has not shown substantial efficacy in halting

the progression of the disease or reversing any associated damage [136].

Transcranial magnetic stimulation (TMS) and transcranial direct current stim-

ulation (tDCS) are emerging as promising non-pharmacological interventions for

AD. While previous clinical trials have primarily focused on evaluating their effects

on global cognition, the authors in [137] explore the specific cognitive function of

memory, which AD profoundly impacts. Using multilevel random effect models, the

authors assessed the efficacy and safety of both TMS and tDCS in memory deficits

among AD patients. The findings indicate that depending on the targeted brain

regions, both interventions positively affected memory symptoms in AD patients.
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Specifically, rTMS over frontal regions and tDCS over temporal regions demon-

strated improvements in memory abilities. rTMS exhibited a statistical tendency

towards enhancing memory in the long term, while the prolonged effects of tDCS

could not be fully assessed due to limited data. The analysis also highlighted the

safety of both techniques in the AD population, with minimal reports of serious

adverse events. This review suggested the potential of TMS and tDCS as viable

therapeutic options for addressing memory deficits in AD patients.

Important Considerations: Our research highlights the varied neuroanatomical

patterns in AD across different sex and age groups. The effectiveness of medications

in slowing cognitive decline may differ among individuals based on their specific

brain characteristics. For instance, regions like the hippocampus, amygdala, and

entorhinal cortex are top contributors to AD and may respond uniquely to treat-

ments. Recognizing these differences can help doctors tailor treatments to each per-

son, maximizing benefits and reducing side effects. Therefore, seeking personalized

advice from healthcare professionals is crucial to managing AD symptoms effectively.

Maintaining a healthy lifestyle, including regular exercise, a balanced diet, cognitive

stimulation, and good sleep hygiene, can substantially slow AD progression.

4.4 Challenges Faced

4.4.1 Dataset to BIDS Hierarchy Transformation

One major challenge we faced involved transforming the dataset into a BIDS hierar-

chy. We tested seven conversion tools and sought assistance from our lab’s alumni,

Justin and Ryan, who were experienced in this research area. Unfortunately, their

guidance proved insufficient, and our breakthrough came from mastering the Heudi-

Conv tool, which proved instrumental.
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4.4.2 Building the Machine Learning Dataset

We encountered several challenges while setting up and using FastSurfer for our

study:

1. Missing Dependencies: Initially, we faced errors related to missing modules

like yacs and numpy. This was resolved by reinstalling FastSurfer within a

dedicated Miniconda environment, ensuring all necessary dependencies were

present.

2. Cerebellum Parcellation Error: We encountered an internal software error

related to cerebellar parcellation. As this functionality wasn’t critical for our

research goals, we excluded the cerebellum from analysis using the --no cereb

flag in FastSurfer.

3. IndexError: While iteratively analyzing MRI scans from multiple subjects,

we encountered an error (IndexError) for a specific scan. Upon inspection,

this scan exhibited poor contrast, darkness, and missing brain regions (e.g.,

tissues), as seen in Figure 4.1. Due to these issues, FastSurfer could not process

the scan. We addressed this by altogether removing the problematic scan from

our dataset.

4. Data Constraints: Current anatomical findings are limited due to a lack of

data on gray and white matter and functional data. This limited availability

of data posed challenges to our research. Expanding our dataset could have

further empowered our ML algorithm, potentially enhancing its accuracy in

identifying AD neuroanatomical markers.
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(a) (b)

Figure 4.1: Comparison of a discarded scan with a high-quality scan. (a) Defaced
scan with missing brain regions. (b) High-quality scan.

4.5 Future Work

Building upon our research, future work can be directed toward several promising

paths:

• Exploring atlases for Voxel-Based Morphometry [138],[139] and FSLeyes soft-

ware [140] for brain volumetric extraction. Our initial experiments with FSLeyes

yielded valuable insights in hippocampal volume extraction [141], [142] (see

Figure 4.2). However, compared with FreeSurfer, we found the latter to be a

more powerful tool suitable for our project’s requirements.

• Exploring the link between anxiety and AD. We considered studying the link

between anxiety and AD, but the literature review revealed no available anx-

iety-Alzheimer’s comorbid dataset due to data security measures in hospitals,

limiting our access. Establishing early intervention strategies targeting anxiety

could potentially delay the onset of AD. However, limited access to compre-
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hensive comorbid datasets may restrict statistically significant conclusions.

• Exploring alternative hyperparameter optimization techniques like Random-

ized Search and BayesSearchCV to enhance the tool’s accuracy potentially.

This could enhance model performance by identifying optimal parameters

more efficiently than grid search, though it might increase computational cost

and complexity.

• Studying the use of Adasyn or Recursive Feature Elimination (RFE) to stream-

line models by eliminating unnecessary features, offering an alternative to

SMOTE. This could lead to simpler, faster models with improved general-

ization, though there is a risk of inadvertently removing important variables,

potentially reducing model accuracy.

• Integrating deep learning methods with the Random Forest classifier may lead

to a more precise tool for identifying the brain regions influencing AD. This

could substantially enhance the precision of the tool, though increased model

complexity could make interpretation harder and require more computational

resources.

• Developing a clinical tool capable of analyzing a patient’s MRI scan to iden-

tify specific regions in their brain associated with AD progression. This tool

could aid clinicians in diagnosing AD earlier and more accurately, but nav-

igating clinical validation and regulatory approval processes may be lengthy

and challenging.

• Conducting a comprehensive comparison between Math and ML algorithms to

determine a better AD predictor. This could improve the robustness and reli-

ability of AD diagnosis tools, though the comparison study might be resource-
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intensive and require extensive data for validation.

• Exploring the integration of fNIRS alongside MRI for enhanced early detection

of MCI and AD, offering a cost-effective and comprehensive picture of brain

health. This multimodal approach can track real-time brain activity during

cognitive tasks and validate findings with structural data from MRI. Longi-

tudinal studies using these tools will help identify early markers of cognitive

decline and inform personalized intervention strategies. However, challenges

such as standardizing fNIRS protocols across diverse populations and optimiz-

ing data integration with MRI remain critical for broader clinical applicability.

• Considering publication of promising results by preparing and submitting a

manuscript to a prestigious conference for broader dissemination. This could

enhance the visibility of our research, fostering collaboration and further ad-

vancements in the field.

(a)

(b)

Figure 4.2: Segmentation of brain tissues using FSLeyes. The white matter, gray
matter, and cerebrospinal fluid are delineated. The volume of gray matter obtained
in the brain was 2,529,463 mm3. The atlas used here is the Harvard-Oxford cortical
and subcortical structural atlas [143].
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Other Subgroups in Alzheimer’s Research

In addition to sex and age, other subgroups that can be explored to gain insights

into the study of AD include:

1. Genetic Variants: Investigating the impact of specific genetic mutations or

polymorphisms on AD risk and progression.

2. Ethnicity and Race: Examining differences in disease prevalence and out-

comes among diverse racial and ethnic populations.

3. Socioeconomic Status: Exploring the influence of socioeconomic factors

such as education, income, and access to healthcare on AD incidence and

severity.

4. Comorbidity Profiles: Studying how other medical conditions or comor-

bidities may interact with AD pathology and affect disease outcomes.

In summary, images from the ADNI database were processed using Clinica,

FreeSurfer, and FastSurfer software. The Random Forest Algorithm with K-fold,

Stratified K-fold, and Leave-One-Out cross-validation techniques was employed to

predict AD, MCI, and CN, achieving an average accuracy of 92.87% in detecting AD.

Subgroup analyses were conducted to explore age and sex differences associated with

AD. We learned that the hippocampus, amygdala, and entorhinal cortex are promi-

nent predictors of Alzheimer’s across both younger (69-76) and older (77-84) age

groups. Additionally, specific brain regions demonstrate distinct volume decreases

in males and females, such as the left middle temporal cortex in females and the right

entorhinal cortex in males. We also reviewed symptomatic and disease-modifying

drugs for AD. These findings highlight the critical role of specific brain regions in

AD and underscore the potential for early detection and targeted interventions to

address neurodegenerative changes.
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Supplementary Material

S1 - List of Brain Regions

95 brain regions of FastSurfer’s ’segmentation-only’ pipeline were used for training

the AD classifier.

Cortical volumes: ctx-lh-caudalanteriorcingulate, ctx-lh-caudalmiddlefrontal,

ctx-lh-cuneus, ctx-lh-entorhinal, ctx-lh-fusiform, ctx-lh-inferiorparietal,

ctx-lh-inferiortemporal, ctx-lh-isthmuscingulate, ctx-lh-lateraloccipital,

ctx-lh-lateralorbitofrontal, ctx-lh-lingual, ctx-lh-medialorbitofrontal, ctx-

lh-middletemporal, ctx-lh-parahippocampal, ctx-lh-paracentral, ctx-lh-

parsopercularis, ctx-lh-parsorbitalis, ctx-lh-parstriangularis, ctx-lh-pericalcarine,

ctx-lh-postcentral, ctx-lh-posteriorcingulate, ctx-lh-precentral, ctx-lh-precuneus,

ctx-lh-rostralanteriorcingulate, ctx-lh-rostralmiddlefrontal, ctx-lh-superiorfrontal,

ctx-lh-superiorparietal, ctx-lh-superiortemporal, ctx-lh-supramarginal, ctx-

lh-transversetemporal, ctx-lh-insula, ctx-rh-caudalanteriorcingulate, ctx-

rh-caudalmiddlefrontal, ctx-rh-cuneus, ctx-rh-entorhinal, ctx-rh-fusiform,

ctx-rh-inferiorparietal, ctx-rh-inferiortemporal, ctx-rh-isthmuscingulate,

ctx-rh-lateraloccipital, ctx-rh-lateralorbitofrontal, ctx-rh-lingual, ctx-rh-
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medialorbitofrontal, ctx-rh-middletemporal, ctx-rh-parahippocampal, ctx-rh-

paracentral, ctx-rh-parsopercularis, ctx-rh-parsorbitalis, ctx-rh-parstriangularis,

ctx-rh-pericalcarine, ctx-rh-postcentral, ctx-rh-posteriorcingulate, ctx-rh-precentral,

ctx-rh-precuneus, ctx-rh-rostralanteriorcingulate, ctx-rh-rostralmiddlefrontal,

ctx-rh-superiorfrontal, ctx-rh-superiorparietal, ctx-rh-superiortemporal, ctx-rh-

supramarginal, ctx-rh-transversetemporal, ctx-rh-insula.

Subcortical gray matter volumes: Left-Cerebellum-Cortex, Left-

Thalamus, Left-Caudate, Left-Putamen, Left-Pallidum, Brain-Stem, Left-

Hippocampus, Left-Amygdala, Left-Accumbens-area, Left-VentralDC, Right-

Cerebellum-Cortex, Right-Thalamus, Right-Caudate, Right-Putamen, Right-

Pallidum, Right-Hippocampus, Right-Amygdala, Right-Accumbens-area, Right-

VentralDC.

Ventricular system volumes: Left-Lateral-Ventricle, Left-Inf-Lat-Vent, 3rd-

Ventricle, 4th-Ventricle, CSF, Left-choroid-plexus, Right-Lateral-Ventricle, Right-

Inf-Lat-Vent, Right-choroid-plexus.

Subcortical white matter volumes: Left-Cerebral-White-Matter, Left-

Cerebellum-White-Matter, Right-Cerebral-White-Matter, Right-Cerebellum-

White-Matter, WM-hypointensities.

S2 - Performance metrics and Top Contributing Features of nine sub-

groups

Tables 3.6, 5.2, and 5.3 display the performance metrics and top contributing fea-

tures obtained through K-fold, stratified K-fold, and leave-one-out cross-validation

techniques.
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CHAPTER 5. SUPPLEMENTARY MATERIAL
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