

Active Helicopter Sling Load Stabilization MQP

1

Abstract

Helicopter sling loads are widely used for cargo delivery by the military, but are inherently

unstable in flight, which is hazardous. This project designed the SPARTA system to stabilize

sling loads using active control methods by redirecting airflow over the sling load using a rudder

and pipes with control vents, to create stabilizing forces and moments. This project involved

mathematical modeling, simulation, and wind-tunnel testing of the SPARTA system for a 1/17

scale standard sling load cargo container. Stabilization of yaw motion and lateral sway motion of

the sling load were investigated using the LQR control algorithm. An Arduino microcontroller

was used to collect measurements and to actuate the control surfaces with servomotors.

“Certain materials are included under the fair use exemption of the U.S. Copyright Law and

have been prepared according to the fair use guidelines and are restricted from further use."

Active Helicopter Sling Load Stabilization MQP

2

Contents
Acknowledgements ... 7

Table of Authorship .. 8

CHAPTER 1: INTRODUCTION ... 9

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW ... 11

2.1 Helicopter Sling Loads ... 11

2.2 CONEX and TRICON Containers .. 12

2.3 Bluff Body Aerodynamics and Stability Issues .. 14

2.4 Previous Mathematical Models... 15

2.5 Previous Active Stabilization Methods ... 15

CHAPTER 3: METHODOLOGY .. 18

3.1 Development of the SPARTA System (Stabilization with Pipes and Rudder TRICON

Assembly) ... 18

3.1.1 Development of the “Pipes” Design .. 18

3.1.2 Development of the “Rudder” Design ... 22

3.2 Development of the Hardware and Actuation Scheme ... 27

3.2.1 Hardware .. 27

3.2.1 Actuation & Power .. 30

3.3 Mathematical Model Development... 32

3.4 Control Law Development .. 35

3.5 Kalman Filters ... 36

3.6 Wind Tunnel Testing .. 38

3.7 Rapid Prototyping ... 42

3.8 Aerodynamic Analysis Verification ... 45

3.9 Final 1/17
th

 Scale Prototype Testing ... 47

CHAPTER 4: RESULTS .. 48

4.1 Initial 1/10
th

 Scale Pipes Testing .. 48

4.2 Initial 1/17
th

 Scale Poster-Board TRICON Testing .. 50

4.3 Final 1/17
th

 Scale SPARTA Prototype Testing ... 51

4.4 MATLAB Simulation Results .. 51

4.5 Kalman Filter Results ... 53

Active Helicopter Sling Load Stabilization MQP

3

4.6 IMU-SD Card Data Logging Results .. 55

CHAPTER 5: CONCLUSIONS ... 57

Appendix A: Derivation of Moments of Angular Momentum ... 59

Appendix B: Aerodynamic Equations from Modelling of static aerodynamics of

helicopter underslung loads .. 65

Appendix C: Full MATLAB Numerical Simulation Code and Results 67

Simulation Code.. 67

Model parameters.. 67

Simulation parameters .. 68

Control parameters and LQR gain .. 69

Kalman Parameters ... 69

Run simulation .. 70

Plot results ... 72

State Derivative Function ... 75

Main Function Code ... 75

Aerodynamic Forces ... 78

Kalman Filters ... 80

Aerodynamic Moments ... 81

Rudder Forces and Moments .. 82

Pipe Forces and Moments ... 83

Control Inputs ... 84

Moment Transform Function .. 85

Force Transform Function .. 85

Double Dot Solve Function .. 85

LQR Gain Function... 88

Kalman Filter P Derivative Function .. 91

Define Filter Matricies .. 91

Calculate P_dot ... 92

Yaw and Yaw Rate Kalman Filter Function ... 92

Define Constants ... 92

Define Matricies.. 93

Active Helicopter Sling Load Stabilization MQP

4

Matricies ... 94

Roll and Sway Velocity Kalman Filter Function .. 95

Define Constants ... 95

Define Matricies.. 95

Matricies ... 96

Appendix D: ARDUINO DUE Control Code .. 97

Code .. 97

Final Hardware Setup Reference .. 108

Appendix E: ARDUINO DUE SD Card IMU Data-logging Code .. 109

Appendix F: Pipes And Rudder Calculations MATLAB Code .. 120

Information ... 120

Conversion Factors and Scaling.. 120

Inputs... 120

Pipe Equations .. 121

Vertical Stabilizer and Rudder Equations ... 122

Plotting .. 122

Works Cited .. 124

Active Helicopter Sling Load Stabilization MQP

5

Table of Figures
Figure 1: Sling Set Components (Nyren, 2013)... 11

Figure 2: UH-60 Blackhawk sling-loading a Humvee ... 11

Figure 3: UH-60 Blackhawk in Flight .. 12

Figure 4: Various 8'x'6.5'x8' TRICON containers (CMCI, 2011) .. 13

Figure 5: Flow Separation vs. Incidence Angle (Greenwell, 2011) ... 14

Figure 6: Gera, Farmer Design ... 16

Figure 7 AFDD Design ... 17

Figure 8: First Pipes Design Figure 9: Second Pipes Design ... 18

Figure 10: Third Design of the Pipes .. 19

Figure 11: Correcting Sway Figure 12: Correcting Yaw 20

Figure 13: Self-Correcting Design Figure 14: Fourth Design of the Pipes (with Rudder

Included) ... 21

Figure 15: Final Design of the Pipes (with Rudder Included) .. 22

Figure 16: Initial Design Figure 17: Final Rudder Design 23

Figure 18: Rudder System .. 24

Figure 19: Principles of Rudder Yaw Correction ... 26

Figure 20: Rudder in Final SPARTA System Prototype .. 27

Figure 21: Arduino DUE .. 28

Figure 22: Adafruit 9-DOF IMU .. 29

Figure 23: Adafruit Micro-SD Card Breakout .. 29

Figure 24 : HS-5065MG Servo Figure 25: HS-7985MG Servo 31

Figure 26: Depiction of the Power Scheme Implementation .. 32

Figure 27: MATLAB Simulation Flowchart .. 33

Figure 28: MATLAB Simulation With Kalman Filter Flow Chart .. 37

Figure 29: Poster-board TRICON (note power cord - this was removed for subsequent tests) ... 38

Figure 30: Inside of Poster-Board TRICON with Components.. 39

Figure 31: Detachable Sling Legs on the Second TRICON Prototype ... 39

Figure 32: Basswood and Balsawood SPARTA Pre-Prototypes .. 40

Figure 33: A Screenshot from One of the Wind Tunnel Test Videos .. 41

Figure 34: Larger Rudder .. 41

Figure 35: Half-Sized Doors and Broken Pillar .. 42

Figure 36: Original Servo Gear Mechanism ... 43

Figure 37: Directly Attached Servo Mechanism .. 43

Figure 38: Servo Mechanism .. 44

Figure 39: Original Rudder with Nail ... 44

Figure 40: Final Rapid-Prototyped TRICON and SPARTA .. 45

Figure 41: 1/10th Scale Pipes with Doors Figure 42: 1/10th Scale Vertical

Stabilizer and Rudder .. 45

file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083189
file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083190
file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083191

Active Helicopter Sling Load Stabilization MQP

6

Figure 43: CAD model of support stand and with pipes in the wind tunnel 46

Figure 44: Rear Door X-Direction Force vs. Door Angle .. 48

Figure 45: Restoring Y-Direction Force vs. Door Angle ... 49

Figure 46: Rear Door Z-direction Moment vs. Door Angle ... 49

Figure 47: Average Maximum Yaw Angle for Various SPARTA Iterations 50

Figure 48: Yaw And Yaw Rate, Simulation Results Without SPARTA 51

Figure 49: Lateral And Longitudinal Swing Angles, Simulation Results Without SPARTA 52

Figure 50: Yaw And Yaw Rate, Simulation Results With SPARTA ... 52

Figure 51: Lateral And Longitudinal Swing Angles, Simulation Results With SPARTA 53

Figure 52: Yaw And Yaw Rate Kalman Filter Results Without Linked Control 54

Figure 53: Roll And Sway Velocity Kalman Filter Results Without Linked Control 54

Figure 54: Kalman Yaw And Yaw Rate With Linked Control .. 55

Figure 55: Kalman Roll And Sway Velocity With Linked Control ... 55

Figure 56: Accelerometer and Gyroscope Data-Logging Results .. 56

Figure 57: Pipes Diagram ... 59

Figure 58: Angular Momentum Moment .. 62

Figure 59: Rear Door Moment Arm ... 63

Figure 60: Front Door Moment Arm .. 64

file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083226
file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083227
file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083228
file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083239
file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083240

Active Helicopter Sling Load Stabilization MQP

7

Acknowledgements

We would like to thank the following individuals and groups for their help and support

throughout the entirety of this project.

Project Advisors Professor Raghvendra V. Cowlagi

 Professor David J. Olinger

NSRDEC Sponsor Daniel Nyren

M.E. Dept. Staff Barbara Furhman

E.C.E. Dept. Staff Robert M. Boisse

Active Helicopter Sling Load Stabilization MQP

8

Table of Authorship

Section Author Initials

Chapter 1: Introduction DC

Chapter 2: Background and Literature Review

2.1, 2.2, 2.3 DC

2.5 RM

2.4 JPS

Chapter 3: Methodology

3.1.1, 3.6, 3.7, 3.8, 3.9 DC

3.1.2, 3.2.1, 3.2.2 RM

3.3, 3.4, 3.5 JPS

Chapter 4: Results

4.1, 4.2, 4.3 DC

4.6 RM

4.4, 4.5 JPS

Chapter 5: Conclusions and Analysis DC, RM, JPS

Appendix A: Derivation of Moments of Angular Momentum DC

Appendix B: Aerodynamic Equations JPS

Appendix C: Full MATLAB Numerical Simulation Code JPS

Appendix D: ARDUINO DUE Control Code RM

Appendix E: ARDUINO DUE SD Card IMU Data-logging Code RM

Appendix F: Pipes And Rudder Calculations MATLAB Code DC, RM

Active Helicopter Sling Load Stabilization MQP

9

CHAPTER 1: INTRODUCTION

Rapid and safe delivery of supplies is crucial to today’s military operations. Hazardous

terrain and/or passage through dangerous enemy territory can delay the delivery of supplies and

place the delivery vehicle at great risk of capture or destruction. Aerial delivery systems, which

negate the issue of hazardous terrain and reduce the time spent in enemy territory, have therefore

proven to be invaluable for such tasks.

The helicopter sling load delivery system is “most accurate form of aerial delivery in the

military today” due to the ability of the helicopter to bring cargo to the precise spot it is needed (Nyren,

2013). A helicopter sling load consists of cargo attached to the underside of the helicopter

through a series of hooks and ropes. The ropes, called sling legs, are attached to the cargo via

chains, and to the bottom of the helicopter via an apex fitting that attaches to the helicopter’s

cargo hook.

Most sling loads are not aerodynamically stable, and undergo undesirable motions that

hinder flight safety and force the helicopter to fly at lower speeds. Commonly slung-loaded

payloads such as rectangular CONEX containers and Humvees are bluff bodies that undergo

undesirable pitch, sway and yaw motions that put the safety of both the helicopter and cargo at

risk. Similar to a “swinging pendulum,” a sling load can make the helicopter harder to control,

damage the cargo that is being sling-loaded, or in the worst case, collide with the helicopter

(Potter, Singhose, & Costello, 2011). Helicopters with sling loads therefore have to fly with a

significantly lower speed and altitude, making them more vulnerable to enemy fire and

increasing delivery time. Due to the increased delivery time, recipients of the cargo have to wait

longer to receive potentially vital supplies, the helicopter must remain over potentially dangerous

territory for a longer time, and possibly excess fuel is needed to complete the (prolonged)

mission.

Reduction of such undesirable pitch, sway and yaw motions through stabilization of the

sling load will allow for an increased speed and altitude, as well as a decreased delivery time.

Stabilization methods for sling loads can be classified into two broad categories: passive and

active. Passive stabilization involves no controlled mechanisms: devices such as fins or tails are

placed on the sling-loaded cargo to reduce the aerodynamic effects of the bluff body without any

inputs. Active stabilization involves the manipulation of control surfaces or other mechanisms of

the sling load system using control laws that are based on as the measured airspeed and angles of

motion.. Controllable fins and rudders are examples of active stabilization systems.

This project, sponsored by the U.S. Army Natick Soldier Research Development and

Engineering Center (NSRDEC), involves the development of an active stabilization method for

helicopter sling load systems. The active stabilization system developed reduces in particular the

two most significant motions of sling-loaded cargo: sway and yaw motion. To create this system,

the team first researched the literature to study existing passive and active stabilization

Active Helicopter Sling Load Stabilization MQP

10

techniques to form a foundation for this work. The team then developed a physics-based

mathematical model of the proposed system, and developed a numerical simulation of this model

using the MATLAB® software package. Lastly, the team designed a control scheme and the

control laws to guide it, and built a small-scale prototype that was tested in a wind tunnel.

Active Helicopter Sling Load Stabilization MQP

11

Figure 2: UH-60 Blackhawk sling-loading a Humvee

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

This section discusses the fundamentals of helicopter sling loading, the various issues

that sling loading causes, and past research into mathematical modelling of sling load systems. It

also presents active stabilization techniques and ideas developed in the past that influenced the

team’s designs.

2.1 Helicopter Sling Loads

The basic components of a typical sling load set up are the sling legs, apex fitting and

grabhook/grablink. The apex fitting is attached to the cargo hook of the helicopter, with a spacer

needed for the UH-60 Blackhawk. This spacer provides additional assistance to the helicopter,

“[reducing] the shock load to the cargo hook caused by oscillating and rotating loads” (Nyren,

2013). The sling legs, which connect to the apex fitting, are made out of double-braided nylon

rope and are approximately twelve feet in length, with environmental effects and usage providing

small alterations to their length. The grabhook and grab link, connecting the sling legs to the

cargo, consist of chains and are adjustable to provide a three-to-five degree nose down

orientation and to prevent the sling legs from touching the payload, which could result in damage

to the sling legs.

Helicopter sling load missions are undertaken in every branch of the United States

military. The following table lists commonly-used helicopters in sling load operations, and

several key parameters.
1

1
 Table from (Nyren, 2013)

Figure 1: Sling Set Components (Nyren, 2013)

Active Helicopter Sling Load Stabilization MQP

12

Name Maximum

Airspeed

Maximum Safe Airspeed

(Sling-loaded)

Max Hook

Capacity (lbs)

Number of

Hooks

UH-60 Blackhawk 193 knots 60 knots
2
 9,000 1

CH-47 Chinook 170 knots 70-140 knots
3
 26,000 3

UH-72 Lakota 145 knots 100 knots
4
 4,000 1

CH-53E Super

Stallion

170 knots 80-95 knots
5
 32,000 3 swiveling

Table 1: Capabilities of Sling Load Helicopters

As shown in the table, helicopters with sling loads must fly at much lower maximum

airspeeds to keep both the cargo and helicopter safe. The UH-60 Blackhawk in particular has a

severe loss in maximum airspeed; while carrying a sling load the Blackhawk can safely attain

just thirty-one percent of its actual maximum airspeed.

The UH-60 Blackhawk is the target

helicopter for this project’s active stabilization

system. The Blackhawk is used extensively in all

branches of the U.S. military, and only has one

cargo hook, limiting it to single-point sling

loading. The Chinook and Super Stallion both

have multiple hooks, meaning that their sling

loads are not prone to as severe motions and

oscillations due to the self-stabilizing nature of

multiple attachment points. Like the Blackhawk,

the Lakota only has one hook, but can carry less

than half the weight that the Blackhawk is able to,

and thus will not be focused upon either.

2.2 CONEX and TRICON Containers

Helicopters sling load cargo including containers, vehicles and artillery, all with varying

geometry. An active stabilization system designed to function for cargo of varying geometry,

without touching the helicopter or sling legs, is beyond the scope of this project. Therefore, the

active stabilization system is designed to accommodate a specific cargo geometry: a rectangular

container.

2
 For 8’x8’x6.5’ CONEX (Cicolani et al., 2009)

3
 (Army, 2009a)

4
 ("Army UH-72 Flight Limitations (EC-145/BK 117 C-2)," 2000)

5
 (Army, 2009b)

Figure 3: UH-60 Blackhawk in Flight

Active Helicopter Sling Load Stabilization MQP

13

Rectangular cargo containers come in a variety of sizes and are sling-loaded regularly.

Two commonly-used sizes are the 8’ x 6’ x 6’ CONEX and the 8’ x 8’ x 20’ MILVAN
6

containers, both of which have experienced stability issues while in flight (Greenwell, 2011).

The 8’ x 6’ x 6’ CONEX has been the focus of several studies into the stabilization of sling

loads, such as Raz et al. (2011), McCoy (1998), and Nyren (2013). The CONEX (container

express box) is a simple rectangular steel container with corrugated sides and a flat floor and roof

(McCoy, 1998). The corrugated sides do not significantly affect the aerodynamics of the load

and will therefore by idealized as flat sides (Nyren, 2013). The 8’ x 6’ x 6’ CONEX is an ideal

choice for sling load stabilization due to its widespread use, simple geometry for modelling and

testing, and ability to carry heavy loads without altering the basic geometry (McCoy, 1998).

The sponsor for this project, NSRDEC, suggested using a slightly different sized

container called the TRICON. The TRICON is slightly larger than the CONEX, with dimensions

of 8’ x 6.5’ x 8’. The container is also heavier, with a tare weight of 2,600 pounds compared to

the CONEX’s tare weight of 1,800 pounds (CMCI, 2011; McCoy, 1998). The TRICON is used

“extensively” by the United States military, and features an all steel construction, 346 cubic feet

of internal capacity and 12,000 pounds of payload capacity (CMCI, 2011).

Figure 4: Various 8'x'6.5'x8' TRICON containers (CMCI, 2011)

NSRDEC is currently conducting small-scale stabilization testing of the TRICON at the

Massachusetts Institute of Technology’s (MIT) wind tunnel, so using a TRICON model as the

test bed for this project’s active stabilization system would provide an easy scaling-up factor for

MIT wind tunnel testing. Therefore, a scale model of the TRICON model was used for the

design and testing of the active stabilization system.

6
 Dimensions are (Length x Width x Height)

Active Helicopter Sling Load Stabilization MQP

14

2.3 Bluff Body Aerodynamics and Stability Issues

Helicopter sling load missions encounter two primary issues: instability due to the bluff

body nature of the cargo and extra drag that causes power restraints on the helicopter (Nyren,

2013). According to Greenwell, three basic types of instability can occur: aerodynamic

instability of the load, helicopter and load vertical oscillations, and sling cable flapping

(Greenwell, 2011).
7
 Aerodynamic instability involves highly complex motions and oscillations

that typically begin with “a period yaw oscillation which then couples into the sling and

helicopter response” (Greenwell, 2011).

Aerodynamic issues occur even once the cargo reaches its destination, as crews

sometimes have to wait until the load’s swing amplitude settles to an acceptable level before

depositing the cargo, wasting time and efficiency (Potter et al., 2011).

According to the in-depth study by Greenwell, “containers are rectangular bluff bodies,

with the aerodynamic loads dominated by normal pressure forces,” with “basic forces and

moments… split into “attached flow” and “separated flow” components” (Greenwell, 2011). The

attached flow component “comprises the loads from the attached flow on the front face, the

attached flow underlying the side face separation bubbles, and the fully separated base flow, and

is independent of box geometry,” while the separated flow component comprises the separated

flow on the two side faces, which varies from full separation to a closed separation bubble

depending on incidence and geometry” (Greenwell, 2011). The figure below provides a

visualization of the flow separation as a function of incidence angle.

Figure 5: Flow Separation vs. Incidence Angle (Greenwell, 2011)

7
 Helicopter oscillations and sling cable flapping are beyond the scope of this project, and not as significant as the

aerodynamic instabilities, and therefore will not focused on in this report.

Active Helicopter Sling Load Stabilization MQP

15

2.4 Previous Mathematical Models
One of the first steps was to develop a mathematical model that would simulate a

helicopter sling load system in MATLAB. This was needed for the development of the control

laws. The mathematical model assumes that the slung loaded cargo is a rigid box with uniform

density that was slung below a fixed attachment point at the origin. In the model the box is

attached to the attachment point through four sling legs attached to the box at each of the corners

on the top side and a flow of air is run over the box. All this is represented in the MATLAB

model through a series of equations that predict the forces and moments that act on the simulated

slung cargo. The forces and moments from the sling legs and gravity are easily represented using

basic physics and stress analysis equations. However the equations for the aerodynamic forces

and moments exerted on the container are a lot more complicated. The reason why these

equations are more complex is because of the shape of the box. A box is a bluff body, and the

aerodynamics of bluff bodies are a lot harder to model compared to other shapes. Instead of

trying to derive the aerodynamic equations, it was decided that a previous mathematical model

should be used.

At the beginning of the project several pieces of literature were provided by the project

advisors. Among this literature was a paper by Greenwell (Greenwell, 2011) describing a

mathematical model for the static aerodynamics of helicopter underslung loads. This paper was

used to provide all the assumptions for aerodynamic forces and moments on the container load in

the mathematical model. The equations are provided in Appendix B.

In this paper there are two sections that detail 3D aerodynamics of rectangular containers.

These sections are Section 3.0, which discusses three dimensional aerodynamics, and the

appendix, which shows the equations for the actual mathematical model. Both these sections

were used heavily in our project to incorporate aerodynamic forces and moments into the

mathematical model. In section 3.0 of Greenwell’s paper the results of his models are compared

to collected aerodynamic data from different types of rectangular containers. This demonstrates

that the model does follow the general trend of the collected data. In the appendix Greenwell

outlines the specific equations that he developed for his aerodynamic model of rectangular

containers.

2.5 Previous Active Stabilization Methods

A variety of active helicopter sling load stabilization methods have been studied in the

past. These systems focus on mitigating or eliminating the most detrimental forms of sling load

instability, yaw motion, sway motion (lateral side-to-side motion), or both. Everything from

active systems on board the helicopter, to systems that affect the sling legs, to systems that affect

the load has been proposed. The focus of this project is a system that affects the container.

Active Helicopter Sling Load Stabilization MQP

16

Systems that are on board the helicopter or affect the sling legs are outside the scope of this

project and will only be briefly discussed.

There are three papers that outline methods of active helicopter sling load stabilization

that are outside of the scope of this project. One such method is through the use of a winch

system to control the sling legs (Asseo, 1973). This method uses control theory to design

multiple systems which stabilize a variety of loads in different configurations. Whereas this had

merit, one of the constraints of this design project was that the sling-legs were not to be

interfered with; therefore such a similar design was not an option. Another proposed active

control scheme involves introducing a control scheme into an existing helicopter control system

along with vision-based sensor data (Bisgaard, 2010). This method is designed so that the

helicopter would fly without inducing oscillations in the sling load system. A system involving

the damping of oscillations in the sling legs via the use of linear actuators attached to the legs

was also proposed {Smith, 1975). Both of these designs fall outside of the project constraints so

similar systems were not considered.

The two main designs that were considered when first approaching this project were a

rotational stabilization method proposed by the Aeroflightdynamics Directorate (AFDD) of

AMRDEC and an active fin design proposed by Gera and Farmer. Gera and farmer used a

rotational cup design mounted on top of a CONEX container coupled with a yaw rate feedback

controller in order to spin up a swivel-hook sling load configuration to stabilize sway motion

(Gera, 1974).

 Figure 6: Gera, Farmer Design

The AFDD proposed controllable fins at both ends of a dual-point sling load

configuration in order to also control sway motion (AFDD, 2011). Both these designs were

considered during the initial design phase of this project; however one of the design constraints

Active Helicopter Sling Load Stabilization MQP

17

for this particular project was a single-point fixed hook sling load. Controllable fins, a fin in the

form of a rudder to be precise, did eventually become part of the final design.

Figure 7 AFDD Design

Active Helicopter Sling Load Stabilization MQP

18

CHAPTER 3: METHODOLOGY

3.1 Development of the SPARTA System (Stabilization with Pipes and Rudder

TRICON Assembly)
The SPARTA System (formerly called PARAS: Pipes and Rudder Active Stabilization

System) is a hybrid merged from two separate designs developed simultaneously during the first

half of the project: the airflow-redirecting “pipes” design, and the airflow-deflecting “rudder”

design.

3.1.1 Development of the “Pipes” Design

The “pipes” design is based on redirection of the freestream flow to produce stabilizing

aerodynamic forces and moments. Inspired by the concept of thrust vectoring, incoming air is

redirected in a direction of choice to provide a force or moment that counters any unwanted

forces or moments that cause instability.

Originally, two pipes were placed along the longitudinal axis (parallel to the freestream

flow) on top of the TRICON, with the outlets turned ninety degrees (perpendicular to the

freestream flow) facing outward from the center of the TRICON and aligned with its center of

mass. The outlets were allowed to rotate about ninety degrees, mostly towards the rear, to face

any direction desired. The inlets also rotated to always face the freestream flow; the container

could yaw up to fifty degrees in either direction and the inlets would counter-rotate to still

directly face the flow of oncoming air. The entire unit would be held to the container using

straps, and one or both of the inlets could be closed if no restoring forces were needed. This

original design is shown in Figure (8).

 Figure 8: First Pipes Design Figure 9: Second Pipes Design

Active Helicopter Sling Load Stabilization MQP

19

It was determined that having the entire inlet and outlet rotate was not practical due to

material requirements and complexity of the mechanism. Figure (9) shows a redesign of the

system. The inlets and outlets have doors that rotate to redirect the flow in the same manner as

the previous design. The flat plates above the doors function as a nozzle to focus the airflow into

the inlets and out of the outlets, and also serve as an illustration of how much the inlets and

outlets could rotate. However, at this point it was discovered that whereas the current design

would provide restoring side forces to correct sway motion, it performed poorly at correcting

yaw even if the outlets could rotate, because the forces were always applied in the plane of the

center of mass of the container. The forces would need to be applied farther away from the center

of mass to provide a moment arm long enough to produce a noticeable and effective moment.

Also, rotating inlet doors were proven to provide no advantage to the design, as they did not

actually provide any focusing of the freestream into the inlets. Thus, a second redesign was

drafted.

Figure 10: Third Design of the Pipes

The third design of the pipes, shown in Figure (10), solves all of the previous issues:

three exit doors along the sides of the pipes open to redirect the freestream flow to either of their

locations. Sway is corrected by opening the middle door (aligned with the center of mass of the

container), and restoring moments are generated by opening either the front or rear doors. The

inlets are fixed and the air is allowed to pass through the pipes and out the back, eliminating

much of the drag that the previous designs would induce. The exit doors were originally

designed to open up to ninety degrees inward.

The following two figures show top-down views of the pipes correcting both say and yaw

motions of the container.In Figure (11), the pipes are shown correcting for sway motion to the

Active Helicopter Sling Load Stabilization MQP

20

left, with the middle door opening to provide a restoring force in the opposite direction to the

movement of the container. Figure (12) shows the design correcting for counter-clockwise yaw

motion, with the front-left and right-rear doors opening to maximize the restoring moment (or

torque) to the container and realign the TRICON with the freestream flow.

Figure 11: Correcting Sway Figure 12: Correcting Yaw

Calculations of the restoring forces and moments the pipes system would deliver led to two

adjustments to this design. These calculations, included in Appendix A, led to the following

conclusions:

1. Due to moments of angular momentum (shown in Figure 11), the rear doors generate the

largest restoring force for sway motion while minimizing unwanted moments

2. Unless a door is opened ninety degrees and aligned with the center of mass, it will

produce an unwanted moment

3. Opening any door greater than approximately thirty degrees produces too much drag, side

force, and moment to be effective

4. The front doors generate the largest restoring moments while keeping the angle of the

doors relatively small (less than thirty degrees)

5. The middle doors are not as efficient at correcting sway as the rear doors and not as

efficient at correcting yaw as the front doors, and are therefore unneeded

The calculations were run using the principle that opening one of the side doors changes the

direction of the momentum of the freestream flow through the pipe. This now angular

momentum exits the opened door at the angle that the door is opened. This generates a moment

of angular momentum, with the moment arm r being the perpendicular distance between the

Active Helicopter Sling Load Stabilization MQP

21

center of mass of the container to the angular momentum vector. The rear doors generate the

smallest moment of angular momentum because, due to the geometry of the pipes, the

perpendicular distance (the moment arm r) between the center of mass of the TRICON and the

angular momentum vector is minimized (for small angles ~thirty degrees). The front doors

generate the largest moment of angular momentum for the opposite reason: the moment arm r is

maximized.

 Due to these conclusions, the middle doors were deemed useless and removed from the

design, the rear doors were made larger to maximize the possible restoring side force while

keeping unwanted moments small, and all doors are allowed to open up to an angle of thirty

degrees. Since opening any doors, even the rear doors, will generate moments, the pipes are

allowed to “self-correct” to minimize or eliminate any generated unwanted moments. As shown

in Figure (13), opening the left rear door generates a small but noticeable counter-clockwise

moment. The right front door then is opened to generate an equal and opposite clockwise

moment to cancel the two out. Opening the right front door will generate a side force in the

opposite direction as the left rear door, reducing the net effective side force that the pipes can

generate. However, because the front door is smaller and does not need to be opened to as large

an angle as the rear door, the negative counter-side force that the right front door generates is

small. Figure (14) shows the modified pipes design, with the rudder (discussed in the next

section) added on.

 Figure 13: Self-Correcting Design Figure 14: Fourth Design of the Pipes (with Rudder Included)

Active Helicopter Sling Load Stabilization MQP

22

Later research showed that the rudder is a much more effective tool at correcting yaw

than the pipes, and can easily counteract any unwanted moments generated by the rear doors of

the pipes without producing any significant side forces. In effect, the pipes now solely correct

sway motion, leaving all yaw motions to be corrected by the rudder. This led to the removal of

the front doors of the pipes, simplifying the design and the hardware required for them, as now

there are only two moving parts to the pipes design (the two rear doors). In final design of the

pipes and rudder system, the pipes are also angled back to allow unimpeded flow into them when

the TRICON rotates back and up in the flow; the final design is shown in Figure (15).

Figure 15: Final Design of the Pipes (with Rudder Included)

3.1.2 Development of the “Rudder” Design

The rudder and vertical stabilizer concept was derived out of an idea to actively stabilize

a helicopter sling load in a manner similar to how a plane is stabilized using active control

surfaces such as ailerons, rudder, elevators, etc. Focus was placed on simplicity and proven

control surfaces that would be easy to integrate. The main instabilities that prompted the

development of this part of the stabilization system were yaw instabilities and lateral side-to-side

(sway) instability.

 The rudder was derived from a standalone system which was comprised of a rudder and a

pair of elevons. The goal of this was to be able to control yaw, pitch, and sway. However, a

helicopter sling-load system has fewer degrees of freedom than a conventional aircraft. After

careful analysis the elevons were deemed to be unneeded and were removed from the design.

The elevons were found unnecessary because they would be ineffective in controlling sway since

the sling load system is “hung” and cannot conventionally “roll” like an aircraft. Pitch control

Active Helicopter Sling Load Stabilization MQP

23

was also deemed as superfluous as a sling load is generally rigged to fly 3 to 5 degrees nose-

down and will natural move in the opposite direction of flight, causing it to pitch further.

Figure 16: Initial Design Figure 17: Final Rudder Design

 The rudder in this system was initially a full, swept back, wing based on a symmetric

airfoil. It was positioned towards the back of the sling load with the trailing edge meeting the

rear edge of the load. The design featured no vertical stabilizer and the rudder was responsible

for any and all yaw control. Once the elevons were removed the design of the system proceeded

with only yaw stabilization in mind. This led to an almost complete redesign of the rudder

system in order to increase its effectiveness. The size of the rudder, while very important in

determining its effectiveness, was set to an arbitrary value for preliminary design purposes.

 The effectiveness of the rudder also relied heavily on the horizontal distance between

where the rudder force acted and the center of mass of the load, known as the moment arm. The

longer the moment arm, the more moment the rudder can create. At this point the rudder was as

far back on load as possible, while still keeping the trailing edge at the back edge of the load. In

order to increase the length of the moment arm the rudder was redesigned without any sweep so

that it could be positioned further back with the majority of it behind the back edge of the load.

Only a small portion of the rudder would be in front of the back edge of the load so that it could

be attached to the shaft that would control its position.

Active Helicopter Sling Load Stabilization MQP

24

Figure 18: Rudder System

 In order to supplement the rudder, a vertical stabilizer was also added to the design.

While the focus of the design was active stabilization, a vertical stabilizer added an element of

passive stability and enhanced the active rudder control in preventing adverse yawing of the

load. The vertical stabilizer was placed in front of the rudder with a small gap in between the

two. The vertical stabilizer was based off of the same chord length and wing span as the rudder;

however it was swept back at 45 degrees from the leading edge. Once the preliminary design was

completed, the system was put through a complete aerodynamic analysis in order to determine

the forces and moments involved it generated.

 The aerodynamic analysis also compared symmetric airfoil profiles to a thin flat plate

profile in order to determine whether the vertical stabilizer and the rudder would be streamlined

or whether they would remain thin flat plates. The NACA 0016 airfoil was used in this

comparison since the rudder and vertical stabilizer must be modeled using a symmetric airfoil,

one without camber, in order to generate the same forces in either direction. An analysis of the

NACA 0016 airfoil was performed in XFLR5 for a range of Reynolds numbers that represented

speeds up to the maximum flight speed for a sling load mission with angles of attack from 0 to

20 degrees. A similar analysis was performed using thin flat plate airfoil theory. The resulting lift

curves were linear, since small angle assumptions were used, and had slopes that were almost

identical. The thin flat plate design was chosen for both the rudder and vertical stabilizer because

of the ease of prototyping. The symmetric airfoil had a significant advantage over the thin flat

plate in terms of drag. Being a streamlined body, the symmetric airfoil produced less drag. This

Active Helicopter Sling Load Stabilization MQP

25

advantage was not found to be enough to justify the prototyping and manufacturing

complications as a sling load is a bluff body, generating large amounts of drag by nature. The

drag produced by the rudder and vertical stabilizer were also along the center of mass in the

horizontal plane, meaning that it would generate no adverse torque or yaw in a neutral position.

For thin plate/airfoil theory to hold, the rudder and vertical stabilizer were designed to have a

maximum thickness of 10% of their respective chord lengths.

 After design analysis was performed, an aerodynamic analysis was performed using

MATLAB in order to quantify the forces that the vertical stabilizer and rudder would generate at

an average cruise speed for a helicopter sling load. Once the analysis was completed, the forces

were altered through changes made to the chord length and the wing span of the rudder and

vertical stabilizer to create the necessary amount of force. A MATLAB simulation of the

helicopter sling load system set approximately 400 Newtons of force as the target maximum

force for the rudder to produce at its maximum angle of incidence. Small angle assumptions

were used for the purposes of analysis and simplicity. This limited the maximum angle of

incidence, both positive and negative, to twenty degrees. The rudder was then sized to reach the

target force with the goal of keeping the chord length longer than the wingspan in order to avoid

encroaching on the sling legs. The vertical stabilizer was given the same dimensions as the

rudder and produce roughly half the force as its area was reduced to half that of the rudder

because of its 45 degree leading edge sweep angle.

Once the dimensions and the positions of the rudder and stabilizer were set, an analysis of

the moments created by both of the surfaces was performed in MATLAB. The analysis was

based on a rigid body of uniform density assumption. This set the container's center of gravity at

its geometric center. Both the stabilizer and the rudder are directly behind the center of gravity

on the horizontal plane. The moment arm lengths were calculated based on the point where the

force from the stabilizer or rudder acts on the load. The rudder is a straight wing (no sweep),

therefore it can be assumed that the rudder forces act at the quarter-chord point of the rudder.

The vertical stabilizer is a swept wing, making it necessary to calculate the mean aerodynamic

chord. The vertical stabilizer forces were assumed to be acting at the quarter-chord point of the

mean aerodynamic chord. The sweep on the vertical stabilizer was beneficial because it moved

the point through which the forces were acting further away from the center of gravity of the

container. The sweep therefore lengthens the moment are and makes the vertical stabilizer more

effective at creating a moment about the center of gravity.

Further analysis of the rudder revealed that it would be beneficial to mass balance the

rudder. Mass balancing the rudder involved moving both the vertical stabilizer and the rudder

closer to the center of gravity. This move was necessary so that a quarter of the rudder’s chord

would be directly over the container and the rudder could be hinged at its quarter-chord point.

Moving the hinge from the leading edge to the quarter chord point mass balanced the rudder

which would serve to mitigate aerodynamic flutter and make the rudder a better overall control

surface.

Active Helicopter Sling Load Stabilization MQP

26

Figure 19: Principles of Rudder Yaw Correction

A final analysis of the entire system was performed after all of the modification to verify

the forces and moments made by the rudder and the vertical stabilizer. Once the analysis was

complete, work began on a 1/10
th

 scale prototype to be tested in the WPI reciprocating wind

tunnel in the fluids lab of Higgins Laboratories. A testing prototype was necessary in order to

confirm the results of the aerodynamic analysis of the system. The testing prototype would not

be actively controlled but it was still necessary for it to replicate a number of different rudder

angles of incidence. In order to accomplish this, a model of the system was created with a rudder

that had the ability to be pinned into a number of different angles of incidence. The test model

was created in SolidWorks and rapid prototyped out of ABS plastic using a 3D printer.

Active Helicopter Sling Load Stabilization MQP

27

Figure 20: Rudder in Final SPARTA System Prototype

The vertical stabilizer was printed already attached to the model plate. The plate to which

the test model was to be attached featured a hole through which the quarter chord pivot point of

the rudder could be pinned through and a number of holes at various angles of attack to which

the rear portion of the rudder could be pinned to. The test model of the rudder features an extra

hole on it to allow it to be pinned into the proper angle of attack.

3.2 Development of the Hardware and Actuation Scheme

3.2.1 Hardware

The hardware and actuation scheme behind the SPARTA system was developed

simultaneously with the actual system. Work on the hardware and actuation portions of the

control system began when the pipes and rudder/vertical stabilizer systems were separate.

However, the majority of the progress happened after the rudder and pipes were combined into

one hybrid system.

 From the start, the goal of this system was active stabilization. In order to accomplish

that, control and actuation hardware was necessary. The main components of the system were

actuators to move the control surfaces and a controller to properly move the actuators based on a

set of control laws. The first task was finding a controller for the system. This had a lot to do

with the control laws which were not developed at that point. This was not a major issue as the

goal was to select a performant but easy to integrate controller. From the beginning of the

Active Helicopter Sling Load Stabilization MQP

28

hardware and actuation design, it was decided that a single-board microcontroller would be best

suited for this system. Research was performed to narrow down the options in terms of

controllers until it was decided that an Arduino microcontroller would be used. Arduino was

chosen to supply the microcontroller because the team had some previous experience with

Arduino controllers as well as immediate access to Arduino’s base model controller, the Arduino

UNO.

 Arduino proved to be a good decision because of its small sized controllers, vast libraries

of pre-written code, and its convenient integrated development environment (IDE). The Arduino

IDE is based on C and makes it easy to write a program for the Arduino and upload it the

controller. Arduino offers many different controls with various features, performance

characteristics, sizes, and weights. The final decision as to which Arduino controller would be

used was postponed until the later stages of the system design. In the end, the decision came

down to a number of different requirements. The size of the controller was an issue but none of

the options that fit the system’s needs were too large in any way. The other important factor was

performance and capacity. Since size was not an issue, it was important to use the most

performant Arduino with the largest capacity. The Arduino DUE was selected as the

microcontroller for the system based on its large flash memory capacity (512 kb for code), 84

MHz clock speed, and its 32-bit core. The large flash memory capacity is very important in terms

of coding because it allowed for the most leeway since the coding since the team did not have

previous experience with C. The complexity of the setup and control code was also unknown and

it was most prudent to have a controller with as much memory as possible. The 84 MHz clock

speed also indicates a fast and powerful processor which is necessary for our control system to

function well. The team’s limited familiarity with Arduino microcontrollers required them to do

a lot of practice coding, testing, and etc. with the Arduino UNO. Between the IDE and the very

well written tutorials and examples that are provided by Arduino, the team was able to become

proficient in the use of the Arduino and the coding involved.

Figure 21: Arduino DUE

 The SPARTA system was designed to correct unwanted sway and yaw of a helicopter

sling load. This active control system relies on readings from an Inertial Measurement Unit

(IMU). The IMU readings are used by the control law to calculate the necessary position of the

control surfaces in order to stabilize the load. A 9 degree of freedom IMU, made by Adafruit,

Active Helicopter Sling Load Stabilization MQP

29

was chosen for this system. The IMU featured a 3-axis gyroscope with a ±250, ±500, or ±2000

degree-per-second scale, a 3-axis compass with a ±1.3 to ±8.1 gauss magnetic field scale, and a

3-axis accelerometer with a ±2g/±4g/±8g/±16g selectable scale. It was completely compatible

with the 3.3 volt Arduino DUE and used an I2C two wire interface (TWI), making wiring,

communication, and integration seamless. This IMU was designed with Arduino integration in

mind and also featured a code library for easy access to the IMU data. Once purchased, the IMU

was easily integrated into the hardware and actuation scheme.

Figure 22: Adafruit 9-DOF IMU

 The IMU serves two purposes, the first being to supply the Arduino and its control laws

with acceleration and angular rates, the second being to measure the overall stability of the

system. In order to quantitatively measure the stability of the system, it was necessary to also

record the IMU data, real-time, on a digital medium. A micro-SD card breakout board was

needed in order to record this data. The board that was chosen was also made by Adafruit and

was easily integrated into the hardware scheme using the Arduino DUE’s SPI interface. This

allowed the hardware scheme to log all of the IMU values as well as any other pertinent data.

Figure 23: Adafruit Micro-SD Card Breakout

 The IMU and micro-SD breakouts from Adafruit completed the hardware scheme and

added minimal weight and size to the overall design. Initially, when the number of servos for the

scheme was large, a servo driver was going to be used to take the load off of the Arduino.

However, final development removed a number of servos to the point where it was decided that

the servo would attach to and be directly controlled by the Arduino DUE itself. A template script

was written in which the servos, IMU, and SD card datalogging were all set up and functioning,

allowing for the control laws to be migrated and easily coded in and integrated onto the DUE.

Active Helicopter Sling Load Stabilization MQP

30

 Once the control laws were completed, they were manually ported onto the Arduino and

integrated into the template script. MATLAB has the capabilities to port code directly into an

Arduino script; however it was deemed that a manual port would be better for the overall

simplicity. MATLAB uses countless libraries and imbedded functions which could take up too

much space and create a less than optimal script for the Arduino. With high dynamic response in

mind, the Arduino control code [Appendix D] was written as simply as possible. In order to

further simplify the code porting process the control laws were broken down into their simple

algebraic forms, omitting the need for matrix math and manipulation. This cut down on the

complexity and size of the code as a matrix math library was no longer needed for the Arduino.

The control code was optimized for speed and size with debugging code commented out of the

final version. The final version of the code was written to be void of any serial port

communication and delay functions. The SD card data-logging (included as a stand-alone script

[Appendix E] was also deemed to be too processor power, memory, and time intensive and was

not included in the final code. The final code ended up occupying roughly 10 percent of the

Arduino DUE’s total flash memory.

3.2.1 Actuation & Power

Another major aspect of the hardware and actuation scheme is the actuators. Early on, it

was decided that linear actuators and motors of some sort would be moving whichever control

surfaces the design needed. Once the hybrid design was created and chosen for development, it

was apparent that the design would need one motor to control each of its control surfaces. The

two most appropriate options were DC stepper motors and DC servo motors. Servo motors were

chosen for the system’s actuation scheme because stepper motors lacked positional feedback.

Servos also provided better torque, due to integrated gear trains, and faster operation speeds. The

drawback of the servos was that they were limited to 180 degrees of motion or less. This,

however, was not a problem for this particular application.

The next step in the actuation scheme design was to decide whether to use digital or

analog servos. The decision was made to use digital servos because they feature all of the same

parts as an analog servo, but they include a microprocessor to process the pulse width modulated

signals from the Arduino. This allows for higher frequency voltage pulses which make the servo

respond faster, accelerate smoothly and more quickly, and provide much better, constant, holding

power/torque. Digital servos also have a smaller dead band, usually around 2 microseconds. The

only drawback to digital servos was the increased cost, which was not an issue for this

application.

Servos manufactured by HiTec were chosen for this project because of their excellent

quality. Servo size and weight was an issue that limited the servo selection to standard sized

servos and smaller. A range of options was researched and discussed, but in the end the smallest

and the largest servos from the available selection were purchased for testing. These were the

HS-5065MG, the smallest, and the HS-7985MG. Both servos run off of any 4.8 or 6 volt power

supply and draw a maximum of 2 amperes at full power. Using a 5 volt power supply, the 5065

Active Helicopter Sling Load Stabilization MQP

31

can provide up to 1.8 kg·cm of torque and has an operating speed of .14 seconds per 60 degrees

with no load. The 7985 can provide up to 10.4 kg·cm of torque and has an operating speed of .16

seconds per 60 degrees with no load using the same supply.

Servo Weight [g] Length [mm] Width [mm] Height [mm]

HS-5065MG Digital 12 24 12 24

HS-7985MG Digital 62 40 20 37

Table 2: Servo Specifications

The exact number of servos needed changed as the SPARTA system was continuously

developed and improved, but either of the two options or a combination of both is acceptable

options for the prototype. The final SPARTA system required only three servos. Due to weight

and size constraints it was decided that all three servos would be HS-5065MGs. Using the

SPARTA system analysis script [Appendix F], the servos proved to provide adequate torque for

the design.

Figure 24 : HS-5065MG Servo Figure 25: HS-7985MG Servo

 Initially the prototype was to be battery powered. However, weight restrictions and

possible hardware issues showcased the need for external power. An external power scheme was

developed using two separate external AC to DC power supplies: a 10 Amp 5 VDC and a 1 Amp

9 VDC supply. The 5 VDC supply was chosen for the servo motors because it was easily

available and could handle up to five servos at full power. The 9 VDC supply was chosen for the

Arduino as it was readily available and most commonly used to power Arduinos of the DUE’s

size and specifications. The DUE, however, can be powered by any input voltage from 7 to 12

VDC according to manufacturer specifications. In order to power the system without interfering

with the container or sling legs, the positive and negative components of each power source were

split up and 4 wires, 2 (positive and negative) for each power supply, were loosely strung around

the sling legs so as to power the system without interfering with the sling legs.

Active Helicopter Sling Load Stabilization MQP

32

Figure 26: Depiction of the Power Scheme Implementation

3.3 Mathematical Model Development
The development of the mathematical model was an important first step in the project.

The model is needed to develop and test our control laws. The model represents the dynamics of

a slung loaded rectangular cargo container with a constant wind passing over it, slung beneath a

fixed point through four sling legs attached to the corners of the top of the container. The model

assumes that the container is rigid and of uniform density. It was decided that the easiest way to

numerically simulate this model was to use the program MATLAB. The code for this numerical

simulation can be seen in Appendix C.

In the numerical simulation the position orientation and movement of the simulated

container is represented in a series of states. The values for each of the states are solved for over

a provided time using the MATLAB function ode45. The ode45 function does this by using a

function called the state-derivative function. The state derivative function calculates the state

derivatives using a system of equations that determine the forces and moments acting on the

container based on the current state and the control inputs. The control inputs are calculated at

each point in time by the control laws, which use the current state values to determine the

necessary change in the control inputs to achieve the desired stabilization. The ode45 function

numerically integrates these derivatives over a timespan to determine the value of each state at

each point in time. This process is shown below.

Active Helicopter Sling Load Stabilization MQP

33

Figure 27: MATLAB Simulation Flowchart

The creation of the state derivative function is the central part of the numerical

simulation. Over the course of this project there were two different versions of this function

created. The first function represents the sling load system in a series of twelve states. These

states are the X, Y, Z position and the X, Y, Z velocity of the container, as well as the yaw, pitch,

roll Euler angles and the angular velocity of those angles. The second function represents the

sling load system with only six states. These states are the yaw, pitch, roll Euler angles and the

angular velocity of those angles. The main difference between these two functions is how the

forces and moments from the sling legs are represented.

The first model calculates the forces and moments from the sling legs by assuming the

sling legs have an un-stretched length and that they have a known modulus of elasticity. The

attachment point of each sling leg is known in the body reference frame (the four top corners of

the container). They are each represented in the code by a position vector originating from the

center of the container and ending at each of the attachment points. This position vector is then

converted to coordinates in the inertial reference frame by multiplying it by a 321 rotational

cosine matrix whose values are determined from the three Euler angles of the container which

represent the orientation with respect to the inertial reference frame. One the position vector of

each of the attachment points with respect to the center of the container is known in the inertial

reference frame the distance between the attachment points on the container to the single fixed

attachment point is easily calculated by summing the containers current position (X, Y, and Z

values) and the attachment point positions. This distance is then used to calculate the forces from

each sling leg by assuming the sling leg is elastic with known modulus of elasticity. Once the

force vectors from each sling leg are known the moments acting on the container in the body

reference frame are calculated by taking the cross product of the moment arm (the attachment

point vectors) and the forces vectors at the respective attachment point. These forces and

Active Helicopter Sling Load Stabilization MQP

34

moments are then summed with the other forces and moments in the body frame to calculate the

state derivatives.

 The second state derivative function assumes the sling legs are rigid, and because of this

the Cartesian position and velocity of the container is directly related to the orientation and rates

of rotation. Because of this, a traditional system of equations cannot be used to calculate the state

so the Euler-Lagrange equation is used to determine the state derivatives. The Euler-Lagrange

equation relates the kinetic and potential energy of the system to the forces and moments acting

on the system for each state. The Euler-Lagrange equation is shown below where 𝐾 is the kinetic

energy and 𝑉 is the potential energy.

𝐿(𝑞, �̇�) = 𝐾(𝑞, �̇�) − 𝑉(𝑞)

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑖
−

𝜕𝐿

𝜕𝑞𝑖
= ∑𝐹𝑖 + ∑𝑀𝑖

Equation 1: Euler-Lagrange

The solution to this equation for each state produces a value for that state derivative. Since the

system already takes into account the sling legs the forces and moments that are summed in these

equations do not include the forces and moments from the sling legs.

 Both these functions were created however the second function is used to calculate all

results seen in the results section and the full model can be seen in the appendix. The next

portion of the state derivative function is to determine the forces and moments from the

aerodynamic effects, and the SPARTA system.

The calculation of the aerodynamic effects exert on the container is a very complicated

step considering that the container is a rectangular box which is a bluff body. For these effects

we decided to use equations from a model previously developed by a D.I. Greenwell at City

University in London England and published in the journal article Modelling of static

aerodynamics of helicopter underslung loads. These equations can be seen in detail in the

appendix. This model is specifically designed to provide the aerodynamic forces and moments

on a container based on the velocity vector of airflow over a static rectangular container. In our

case we are modeling a dynamic container however since our goal is to stabilize it and keep it

from moving we believe that the model can be used and trusted especially when it is stabilized.

The final step in the state derivative function is determining the forces and moments from

the control scheme developed by this project (SPARTA system). Part of the design process of the

SPARTA system was to determine what forces and moments the design would exert on the

container based on how the pipe doors and rudder would move. These equations which can be

seen in the appendix, are also used in the model to calculate the forces and moments exerted on

the container from the SPARTA system.

Active Helicopter Sling Load Stabilization MQP

35

3.4 Control Law Development
The creation of the control laws is an important part of this project. The control laws take

a series of inputs and then calculate changes to the systems control inputs. In the case of this

project and design the control inputs are the angles to which the pipe doors and rudder are moved

to. This in turn changes the forces and moments that are exerted on the container in order to

stabilize it. For this project the inputs to the control laws are three states, the containers side to

side sway velocity, the containers yaw angle, and the containers yaw angular velocity. The full

MATLAB code for our control laws can be seen in the appendix inside the full MATLAB

numerical simulation code.

It was decided that the control process of Linearization of the system should be used to

create the control laws. This involves representing the system in two different matrices and A

matrix and a B matrix. Matrix A is the Jacobean of the state derivatives with respect to the states

and matrix B is the Jacobean of the state derivatives with respect to the control inputs. These

matrices were calculated by taking the derivative of the equations for the state derivatives

developed in the mathematical model with respect to each of the different states for the A matrix

and with respect to each of the control inputs for the B matrix.

The next step in the control laws is to select a point to linearize the system about. This

means that the values for every other variable besides the inputs would correspond to a specific

orientation and position that the container would reside in. This allows the control laws to

estimate how a change in the control inputs would affect the system. The next and key part of the

control laws is the calculation of the gain constant K. K is the constant that relates the difference

in the desired inputs of the controller, which is the difference between the current state and the

desired state, to the calculated change in the control inputs. For this project, the calculation of K

was calculated using a linear quadratic regulator or LQR. LQR is an algorithm used in optimal

control theory. It is a way to determine the optimal state control feedback based on the desired

state and the system dynamics. The resulting equation is the form of the control laws used in this

project.

(𝐶ℎ𝑎𝑛𝑔𝑒 𝐼𝑛 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐼𝑛𝑝𝑢𝑡𝑠) = 𝐾 ∗ (𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝐴𝑛𝑑 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒)
Equation 2: Control Laws General Form

For our project the gain matrix K is calculated using MATLAB’s lqr function. This

function has four inputs, the A and B matrix that were calculated earlier and an R and Q matrix.

The R and Q matrices are values for determining how much each of the control inputs want to be

used. The R matrix places a penalty on using different control inputs while the Q matrix

encourages the use of them. In the case of this project we needed to limit the use of our rudder

and increase the use of our pipe doors so we changed our R matrix value for the rudder to 10

instead of 1 to decrease the use, and we changed the Q matrix values for the pipe doors to 3.5

instead of 1 to increase their use. This resulted in our current control law equation shown below.

Active Helicopter Sling Load Stabilization MQP

36

[

Δ𝜃𝑟𝑢𝑑𝑑𝑒𝑟

Δ𝜃𝑙𝑒𝑓𝑡

Δ𝜃𝑟𝑖𝑔ℎ𝑡

] = [
−4.055 −0.692 −0.590
0.664 0.201 −0.096

−0.664 −0.201 0.096
] ∗ [
Δ𝜓

Δ𝑅
Δ�̇�

]

𝜃 = 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐴𝑛𝑔𝑙𝑒𝑠

𝜓 = 𝑌𝑎𝑤 𝐴𝑛𝑔𝑙𝑒

𝑅 = 𝑌𝑎𝑤 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑅𝑎𝑡𝑒

�̇� = 𝑆𝑤𝑎𝑦 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦

Equation 3: Control Laws

3.5 Kalman Filters
Along with the development of the control laws, the mathematical model was also used

to develop Kalman filters for the IMU. Kalman filters are filters that compare the current

measurement to the current measurement estimate in order to determine the change in the current

measurement estimate. Kalman filters were developed for this project for the purpose of

calculating a more accurate input to the control laws instead of just using the noisy

measurements from the IMU.

 The mathematics behind Kalman filters are shown below in the following general

expression.

�̂̇� = 𝐴 ∗ �̂� + 𝐵 ∗ 𝑈 + 𝐾 ∗ (𝑍 − 𝐻 ∗ �̂�)

Equation 4: Kalman Filter General Form

For the purpose of our project two filters were created, one for the yaw angle and yaw angle rate,

and the other for the sway (side to side) velocity and roll angle. The developed equations for the

two filters are shown below.

[
�̂̇�

�̂̇�
] =

[

𝜕�̇�

𝜕𝜓

𝜕�̇�

𝜕𝑅

𝜕�̇�

𝜕𝜓

𝜕�̇�

𝜕𝑅]

∗ [
�̂�

�̂�
] +

[

𝜕�̇�

𝜕𝑈𝑟𝑢𝑑

𝜕�̇�

𝜕𝑈𝑟𝑖𝑔ℎ𝑡

𝜕�̇�

𝜕𝑈𝑙𝑒𝑓𝑡

𝜕�̇�

𝜕𝑈𝑟𝑢𝑑

𝜕�̇�

𝜕𝑈𝑟𝑖𝑔ℎ𝑡

𝜕�̇�

𝜕𝑈𝑙𝑒𝑓𝑡]

∗ [

𝑈𝑟𝑢𝑑

𝑈𝑟𝑖𝑔ℎ𝑡

𝑈𝑙𝑒𝑓𝑡

] + 𝐾 ∗ ([
𝜓𝑖𝑚𝑢

𝑅𝑖𝑚𝑢
] − [

1 0
0 1

] ∗ [
�̂�

�̂�
])

Equation 5: Yaw and Yaw Rate Kalman Filter

[�̂̇�

�̇̂�
] = [0

1

𝐿
0 0

] ∗ [�̂�
𝑣
] + [

0
1
] ∗ [𝐴𝑦𝑖𝑚𝑢] + 𝐾 ∗ ([

𝜙𝑖𝑚𝑢

𝑃𝑖𝑚𝑢
] − [

1 0

0
1

𝐿

] ∗ [�̂�
𝑣
])

Equation 6: Roll Angle and Sway Velocity Kalman Filter

In these equations the subscript “𝑖𝑚𝑢” denotes a measurement from the inertial measurement

unit, and L is the distance from the top of the inertial measurement unit to the sling leg

attachment point on the helicopter or the wind tunnel.

Active Helicopter Sling Load Stabilization MQP

37

 The next part in developing the Kalman filters was determining the Kalman gain K. The

Kalman gain K is solved for over time using the following equation where the matrix P is a

function of time and R is the measurement error covariance matrix.

𝐾 = 𝑃(𝑡) ∗ 𝐻𝑇 ∗ 𝑅−1

Equation 7: Kalman Gain

The since the matrix H and R are already known for each filter the only matrix that needs to be

solved for is the state estimate covariance matrix (P) as a function of time. For this project the

ordinary differential equation shown below is used to solve P(t) (Murray, 2010).

�̇� = 𝐴 ∗ 𝑃 + 𝑃 ∗ 𝐴𝑇 − 𝑃 ∗ 𝐻𝑇 ∗ 𝑅−1 ∗ 𝐻 ∗ 𝑃

𝑃(0) = [
1 0
0 1

]

Equation 8: State Estimate Covariance Matrix

With these filters designed they were added to the mathematical model to test their effectiveness.

 Since the purpose of Kalman filters is to eliminate noise from a measurement

modifications to the model were made to add a simulated noise profile. The modified model also

linked the estimated Kalman values to the control laws to more accurately simulate how the

SPARTA system would work. These modifications are illustrated in the flow chart below and the

Kalman filter code that is part of the model can be seen in Appendix C.

Figure 28: MATLAB Simulation With Kalman Filter Flow Chart

Active Helicopter Sling Load Stabilization MQP

38

3.6 Wind Tunnel Testing
The team waited to rapid prototype the design until the majority of the aerodynamic

analysis, Arduino programming, and control law creation was complete. In the meantime, two

initial prototype TRICON containers were constructed, scaled to the exact dimensions of the

eventual rapid prototyped version, and tested in the wind tunnel. The initial prototype TRICON

containers were crafted using 0.25” poster-board, with the sling legs created from the same

materials as Nyren’s previous project: 2mm braided nylon rope, with 22-18 gauge O-rings

connected to a simulated clevis, and 16-14 gauge O-rings connected to paper clips (simulating

metal chains), which were attached to the TRICON. The setup can be seen in Figure 29.

Figure 29: Poster-board TRICON (note power cord - this was removed for subsequent tests)

During these early tests, many of the hardware components, including the Arduino and

IMU, were included within the container to both weigh the poster-board down (since it is much

lighter than ABS plastic), and to test the functionality of the electronics. The usual setup for

these tests can be seen in Figure 30. The force transducer was tested as well; the results appeared

promising and the team concluded that the transducer was working properly.

Active Helicopter Sling Load Stabilization MQP

39

Figure 30: Inside of Poster-Board TRICON with Components

After some testing to see the behavior of the scaled-down TRICON in the wind tunnel, a

second poster-board TRICON container was then created with detachable sling legs (using

jewelry ring clasps), in order to test various wire configurations. It was determined from the tests

with the first, non-detachable sling leg poster-board TRICON that having one thick power wire

running up one sling leg severely altered the dynamics of the box. Thus, the wire would be split

into four smaller wires, wrapped carefully around all four sling legs. The new poster-board

TRICON is shown in Figure 31.

Figure 31: Detachable Sling Legs on the Second TRICON Prototype

Before submitting the final SPARTA prototype for rapid prototyping, the team

constructed the SPARTA design using basswood and balsawood. These pre-prototypes served to

test how the design would affect the stability of the TRICON, and whether any passive stability

Active Helicopter Sling Load Stabilization MQP

40

was achieved. Two different designs were created; one without doors (to simulate the doors

being closed), and one with the doors fixed at 10°, the newly-determined equilibrium position,

since the control laws did not allow the team to optimize around 0° without greatly complicating

the mathematics. The two designs are shown in Figure 32. All of the control surfaces (the doors

and rudder) were fixed in place, so that the rudder essentially acted as an additional, larger

vertical stabilizer.

Figure 32: Basswood and Balsawood SPARTA Pre-Prototypes

 The team ran into difficulties weighing down these pre-prototypes to the weight of the

rapid-prototyped container. Early results from the weighted-down container with the pre-

prototype SPARTA system showed signs of some passive stabilization; however, the team later

determined that the poorly-packed weights within the container had shifted and “pinned” one

corner of the container in place during testing. Subsequent tests with the weight taped down and

center properly generated less satisfying results. There was little passive stabilization; the

TRICON’s average maximum yaw angle only reduced from 115° to 98°, and the SPARTA pre-

prototype actually amplified sway instability, causing the TRICON to sway violently whenever

the yaw was reduced, striking the side of the wind tunnel during one test. All of the tests were

filmed for later analysis; a screenshot of one of these videos is shown in Figure 33.

Active Helicopter Sling Load Stabilization MQP

41

Figure 33: A Screenshot from One of the Wind Tunnel Test Videos

 Due to the lack of suitable yaw correction by the pre-prototype SPARTA designs, the

team decided to double the length of the rudder to increase the vertical stabilizer area. This new

rudder is shown in Figure 34.

Figure 34: Larger Rudder

 Subsequent wind tunnel tests with the larger rudder yielded the same results as the

original rudder; little yaw stability was achieved, and sway was increased over the standalone

TRICON. The team determined that the SPARTA design provides little to no passive

stabilization and will therefore only rely on highly-precise actuation to provide active

stabilization. While the results were not promising, the team noted that the actual active-control

SPARTA would begin to correct the TRICON’s movements starting in a freestream velocity of 0

m/s, where movements are much smaller. The SPARTA design would begin to correct

Active Helicopter Sling Load Stabilization MQP

42

instabilities while they were very small, and thus the container would be prevented from

reaching the magnitude of the large-scale instabilities seen in the preliminary wind tunnel tests.

3.7 Rapid Prototyping
 The rapid prototyped TRICON container and SPARTA system was delivered to the team

with a number of issues. None of the lids properly sat on top of container, one of the rear support

pillars was broken before delivery, the pins for the rudder and doors were too thick and too

fragile to use, and the doors were printed at half their proper height. Some of these issues can be

seen in Figure 35. While the doors were reprinted quickly at their proper height, the team had to

modify the design of SPARTA slightly. The intact pillar was removed from the other pipe; the

doors themselves would act as support pillars for the back of the pipes.

Figure 35: Half-Sized Doors and Broken Pillar

Additionally, a new pin system was developed using 2.5” x 8D nails from a local

hardware store (for the doors), and a 0.125” aluminum rod for the rudder. The 8D nails fit snugly

into the pin holes of the doors without any glue, while the rod is glued to the bottom of the

rudder. The nails are mounted upside down, so that servo arms can be attached to their heads.

Originally, the servos were to be mounted upside down with gears attached to them,

which would mesh with identical gears glued to the nails/rod, and rotate the doors and rudder, as

outlined in Figure 36. However, the team learned in early D-Term that gears for the B1 spline

size that these servos have are not manufactured. Therefore, an alternative servo mechanism was

developed.

Active Helicopter Sling Load Stabilization MQP

43

Figure 36: Original Servo Gear Mechanism

 The second servo mechanism idea involved directly attaching the servos to the nails/rod

using epoxy. The servos would be mounted upright and held in place by a lightweight support

structure built from the same poster-board as the TRICON container mockups. However, this

idea was scrapped after the team could not get the servos and support structure to fit within the

container, and once the team realized that holes would need to be cut out of the rear of the

TRICON to fit the protruding wires. One of these support structures is seen in Figure 37.

Figure 37: Directly Attached Servo Mechanism

In the third and final servo mechanism idea, the servos are again mounted upside down,

superglued to the underside of the lid, this time with servo arms attached. Paper clips act as push

rods connecting the servo arm on the servos to the servo arm glued to the nails and the servo arm

Active Helicopter Sling Load Stabilization MQP

44

glued to the rod. When the servo turns its servo arm, it slides the paper clip up or down, which

rotates the servo arm attached to the nail/rod, which turns the door or rudder. The servo arms are

attached the nails/rod with JB Weld for a most permanent and strong bond. This final servo

mechanism is shown in Figure 38.

Figure 38: Servo Mechanism

After several failed attempts to attach the nail securely to the bottom edge of the rudder

with superglue, Gorilla Glue, and general-purpose epoxy, the team cut a tab out in the rudder for

the nail, and used an epoxy specifically for ABS plastic. This attachment method, seen in Figure

39, finally provided a strong bond between the nail and rudder.

Figure 39: Original Rudder with Nail

Active Helicopter Sling Load Stabilization MQP

45

 The final TRICON and SPARTA prototype is shown in Figure 40. Note that the sling

legs from the previous poster-board designs have been reused for this design for consistency.

Figure 40: Final Rapid-Prototyped TRICON and SPARTA

3.8 Aerodynamic Analysis Verification
 In order to test the accuracy of the aerodynamic analysis explained earlier, 1/10

th
 scale

versions of the pipes, vertical stabilizer and rudder were rapid prototyped, shown in Figures 41

and 42. However, the rudder model was manufactured with incorrect hole positions, and thus

could not be used. The pipe model was mounted on a support structure attached to the force

transducer, which measured the forces and moments generated by changing the angle of the rear

door.

Figure 41: 1/10th Scale Pipes with Doors Figure 42: 1/10th Scale Vertical Stabilizer and Rudder

Active Helicopter Sling Load Stabilization MQP

46

 The support stand was machined in the WPI machine shop from aluminum purchased

from MSC Industrial Supply Company. The stand screws directly into the force transducer and

attaches to the 3D printed pipes using duct tape to reduce weight. Due to the difficulty of

welding aluminum, particularly of the thicknesses of the support structure, JB Weld was again

used for its strength and reliability.

 For the wind tunnel tests, only the rear door was tested at various angles due to the front

door having been scrapped by this point in the design. The door was held in place using the same

8D nail used in the 1/17
th

 scale prototype, acting as a pin. The team encountered several issues

during testing, including difficultly ensuring the force transducer was exactly aligned with the

freestream flow, and difficultly in firmly affixing the support structure to the force transducer.

The latter issue was determined to be caused by the upper plate of the support structure being

slightly thinner than designed (about 1/10” thick versus the designed 1/8”). This caused the

support structure and pipes to wobble slightly as the team adjusted the door angle during each

test, which affected the reliability of the data.

 An initial reading with the door closed was taken as a baseline offset. This offset was

subtracted from the forces and moments measured at each door angles to produce the change in

forces and moments versus door angle, yielding only the forces and moments caused directly by

the door.

Figure 43: CAD model of support stand and with pipes in the wind tunnel

Active Helicopter Sling Load Stabilization MQP

47

3.9 Final 1/17th Scale Prototype Testing
 Once the pushrod style servo mechanism was crafted, the team connected the servos to

the Arduino and began to troubleshoot the hardware. During this troubleshooting, the doors

occasionally made contact with the inside center wall of the pipes as the orientation of the servos

was worked out. The power of the servos became a liability as they were found to shear the top

layer of ABS plastic off the container (where they were glued to) when the doors contacted the

center wall of the pipes and prevented the servo arm from turning further, resulting in the team

having to re-glue one of the door servos. Additionally, the other door servo failed midway

through troubleshooting and no longer operated. The rudder servo did not encounter these issues

and performed well; however due to the noise in the IMU data the team found the rudder to

rapidly twitch in place during testing. This twitching was deemed minor as the rudder performed

as expected.

 The team discovered that the arm connected to the rod (and thus the rudder) protruded

out too far when the rudder turned to the left, and would thus contact the inside rear wall of the

container. Plans were made to cut a small hole in the rear of the container to allow the servo arm

to extend further and allow the rudder to turn the full amount. However, following the loss of

one of the door servos and the limited time remaining in the project to order a new one, the team

cancelled the final testing of the prototype in the wind tunnel.

Active Helicopter Sling Load Stabilization MQP

48

CHAPTER 4: RESULTS

4.1 Initial 1/10th Scale Pipes Testing

Three experimental values were recorded during the testing of the 1/10
th

 scale pipes and

compared with their theoretical values: the force due to the doors in the x-direction (in the

direction of the freestream flow), the restoring force in the y-direction that corrects for sway, and

the moment in the z-direction generated by the opening of the door. The rear door was pinned in

five-degree increments from 0° to 45°. The results for the x-direction force are shown in Figure

44.

The solid black line in the theoretical values for the force, with the dashed black line

being the same equation with drag calculations also included. The red points are the actual data

points taken by the force transducer, and the red line is a least-squares fit of those points, to

compensate for the significant noise in the measurements. Each of the least-squares fit curves for

the three graphs had their y-axis intercept set to 0 Newtons. The least-squares fit of the x-

direction force was found to match the theoretical x-direction force with drag included (the

dashed black line) fairly closely, albeit diverging with a slightly greater magnitude for door

angles past 35°. Since the doors do not reach these door angles in the final control laws, this was

ignored.

Some of the data points in this graph as well as the following two showed a positive force

when the forces should have been zero or negative due to the orientation of the force transducer.

Removing these positive points drastically altered the least-squares fit curve and in some cases

created an impossible positive slope. Thus, the positive readings were left in and attributed to the

overall noise in the measurements. However, one outlier was removed from each graph; in the x-

direction force graph, the data point at 25° was removed due to having a relatively extremely

positive value that contrasted significantly with the other measured values. The final least-

squares fit curve for the x-direction force is given below.

𝐹𝑥𝑒𝑥𝑝
= −0.0006𝜙2 + 0.0122𝜙

𝜙 is the door angle, measured in degrees. The 𝑅2 correlation coefficient was 0.788,

which the team was satisfied with given the noise of the measurements.

Figure 44: Rear Door X-Direction Force vs. Door Angle

Active Helicopter Sling Load Stabilization MQP

49

The restoring y-direction force graph is shown in Figure 45. The least-squares curve fit

was found to match the theoretical results quite well, with again a slight divergence forming after

the door angle exceeded 35°.

An outlier at 40° was removed before the least-squares fit was taken. The least-squares fit

equation for the y-direction is shown below.

𝐹𝑦𝑒𝑥𝑝
= −0.0003𝜙2 + 0.0016𝜙

Despite the least-squares fit matching the experimental values, the 𝑅2 correlation

coefficient was found to be much lower than the in the x-direction, with a value of 0.275. This

was again determined to be due to the noise in the measurements.

The z-direction moment values were the most difficult to analyze, with the theoretical

values hovering just below 0 Newton-meters. The resulting graph and least-squares fit equation

is shown below.

𝑀𝑧𝑒𝑥𝑝
= 0.0004𝜙2 − 0.0007𝜙

The 𝑅2 correlation coefficient for the Z-direction moment was 0.61, an improvement

upon the y-direction force 𝑅2 value. Due to the noise in the measurements, accuracy concerns

due to the team being unable to exactly align the force transducer, and issues with the support

stand, all while measuring relatively tiny forces and moments, the team concluded that results

were promising, and further testing would be necessary to fully verify the experimental

calculations.

Figure 45: Restoring Y-Direction Force vs. Door Angle

Figure 46: Rear Door Z-direction Moment vs. Door Angle

Active Helicopter Sling Load Stabilization MQP

50

4.2 Initial 1/17th Scale Poster-Board TRICON Testing
 The poster-board TRICON container was fitted with three iterations of a basswood and

balsa SPARTA system: one with the doors closed (flush with the sides of the pipes), one with

both doors open 10°, and one with the doors closed and a rudder with a double chord length.

Each was tested in the wind tunnel at 12.7 m/s (scaled down from a 60 knot full scale speed)

several times to determine if the SPARTA system exerted any innate passive stabilization upon

the container.

The figure below is a screenshot taken from videos of the iterations in the wind tunnel.

The average maximum yaw angle is displayed for the TRICON without the SPARTA system,

one with the doors closed, and one with the doors open 10 degrees.

Figure 47: Average Maximum Yaw Angle for Various SPARTA Iterations

 The team found that the SPARTA system did produce a small reduction in average

maximum yaw amplitude, reducing it from 115° to 98° with the doors open 10°. However, the

team was hoping for much more significant yaw magnitude direction, and a reduction in yaw

rate, which remained relatively unchanged through each iteration. The double chord length

rudder produced similar unpromising results. Additionally, the team found that when the

SPARTA system occasionally stabilized the container and eliminated yaw (usually only for a

second or two), the container would suddenly dramatically increase in sway motion. In one

instance of prolonged negligible yaw, the container began to sway so violently it bumped the

side of the wind tunnel. This behavior was consistent with the team’s previous research; when

one mode of instability is corrected, the other intensifies.

Active Helicopter Sling Load Stabilization MQP

51

 The team also tested the setup at various flow speeds; however, no reliable and

significant passive stabilization was found. Thus, the team concluded that the SPARTA system

was a purely active stabilization system, with little to no innate passive stabilization.

4.3 Final 1/17th Scale SPARTA Prototype Testing
 The final 1/17

th
 scale SPARTA prototype testing, controlled by the Arduino using

measurements from the IMU gyroscope, and magnetometer, and actuated using the three servos,

was cut short due to hardware issues. During the initial setup of the hardware, one of the door

servos ceased to operate, and the other door servo ripped the top layer of ABS plastic off its

attachment point twice. The rudder and doors were found to work properly, moving

appropriately as the IMU was rotated, albeit with jitter due to the noisy IMU measurements. Due

to the hardware issues and limited time remaining in the project, the team was unable to

complete the final prototype testing of the SPARTA system. However, as the servos did all

briefly function, and the rudder and doors behaved as expected with the IMU, the team viewed

the initial setup testing as a proof of concept, with further testing required in a future project.

4.4 MATLAB Simulation Results
 The numerical simulation was used to estimate how effective our prototype SPARTA

system could be at stabilizing a TRICON or CONEX container in our wind tunnel. While the

model is not a substitute for real world testing it is effective at estimating the performance. The

final results of the testing were done to simulate the 17
th

 scale testing in the wind tunnel with

speeds of 12.5 m/s which is the scaled down airspeed. There is also an initial disturbance of a 15

degree initial yaw angle and 20 lateral swing angle.

 Without the SPARTA system the simulation produces the following results.

Figure 48: Yaw And Yaw Rate, Simulation Results Without SPARTA

Active Helicopter Sling Load Stabilization MQP

52

Figure 49: Lateral And Longitudinal Swing Angles, Simulation Results Without SPARTA

These results show what we are expecting, random yawing motion of spinning up and down, and

lateral swing amplitude of approximately 30 degrees. Now with the SPARTA system the model

produces the following results.

Figure 50: Yaw And Yaw Rate, Simulation Results With SPARTA

Active Helicopter Sling Load Stabilization MQP

53

Figure 51: Lateral And Longitudinal Swing Angles, Simulation Results With SPARTA

These results show an almost perfect stabilization of the sling load over time. These

results are promising however it is important to keep in mind that the simulation is in an ideal

environment and with a relatively small initial disturbance. The model shows similar

stabilization effects with initial yaw angle disturbances up to approximately 35 degrees. After

that the system is not able to stabilize the container since it is less and less effective at imparting

forces and moments on the container the further away from a zero degree yaw angle it is.

4.5 Kalman Filter Results
 The simulation with the Kalman filters inserted was also tested both with the filters

providing inputs to the controls and without. The testing shows that when the Kalman filters are

not linked to the controls both filters appear to be working. This is shown in the plots below

which are the differences between the actual and Kalman estimated states as a function of time.

Active Helicopter Sling Load Stabilization MQP

54

Figure 52: Yaw And Yaw Rate Kalman Filter Results Without Linked Control

Figure 53: Roll And Sway Velocity Kalman Filter Results Without Linked Control

Both filters do effectively converge to zero when the controls are not linked to the Kalman

estimates however when they are linked neither filter effectively estimates the actual value of the

measured states. The results from the linked Kalman filter simulation are shown below.

Active Helicopter Sling Load Stabilization MQP

55

Figure 54: Kalman Yaw And Yaw Rate With Linked Control

Figure 55: Kalman Roll And Sway Velocity With Linked Control

This shows that the Kalman filters do need further development before real world testing should

be tried.

4.6 IMU-SD Card Data Logging Results

 The IMU-SD Card data-logging function was tested and used during a wind tunnel

testing session. This was done to test the effectiveness of the code and the setup. The results

Active Helicopter Sling Load Stabilization MQP

56

properly convey the movement of the container during the testing and also showcase the noise

that the IMU records as it is taking measurements. Only the accelerometer (3-axes) and the

gyroscope (3-axes) were used in this testing.

Figure 56: Accelerometer and Gyroscope Data-Logging Results

Active Helicopter Sling Load Stabilization MQP

57

CHAPTER 5: CONCLUSIONS

In this project, the SPARTA system for active stabilization of helicopter sling loads was

developed. Using IMU data, two pipes with doors were designed to correct sway, while a rudder

and vertical stabilizer correct yaw. This design was tested in MATLAB via a numerical

simulation, based on a mathematical model of a sling load system that was also developed. A

1/10
th

 scale version of one side of the pipes was rapid-prototyped and tested in a wind tunnel

using a force transducer to verify that the forces and moments generated by the door opening

matched the theoretical calculations. Additionally, a 1/17
th

 version of the TRICON container and

a non-moving SPARTA system were constructed from poster-board and basswood/balsa to test

for any passive stabilization.

A 1/17
th

 scale prototype of the SPARTA system (with TRICON container) was created

for testing. An actuation and control scheme for the 1/17
th

 scale rapid-prototyped SPARTA

system was developed using an Arduino, IMU, and three servomotors. The Arduino was

programmed to use the control laws developed for the numerical simulation as well as the IMU

data to actuate the SPARTA system and reduce instabilities. Wind tunnel testing of the overall

system was not performed due to time constraints..

The SPARTA system was shown to be highly effective at stabilizing the sling load in the

numerical simulation. This observation does however depend on the accuracy of the

mathematical model used for numerical simulation of the system. The hardware and actuation

scheme worked well for the final prototype, with the Arduino DUE able to perform using both

the IMU data-logging script and the control law script. The poster-board and basswood/balsa

SPARTA tests revealed no passive stabilization, and were a good check of the baseline behavior

predicted by the numerical simulation. However, the 1/17
th

 scale of the prototype, constrained by

the size of the wind tunnel, was found to be too small to properly test the SPARTA system. Even

with the smallest servos available, the system added significant weight to the container, and the

limited volume within the container presented issues when creating a mechanism to turn the

doors and rudder via the servomotors. Additionally, the power of the servos proved to be a

liability, shearing off the top layer of ABS plastic a door contacted the inside wall of the pipes,

and damaging another servo in the same manner.

Future work in the mathematical model, numerical simulation, hardware setup, and

practical testing is recommended. The theoretical calculations behind the mathematical model

and SPARTA system were based on several simplifying assumptions that could be eliminated

through the use of computational fluid dynamics (CFD). Further experimental validation of the

mathematical model needs to be performed, as the model only takes into account steady level

flight and does not model changes in altitude or changes in speed. The SPARTA system would

also need a different IMU setup to compare the orientation and motion of the sling load to the

orientation and motion to the helicopter. An onboard power supply would also need to be

Active Helicopter Sling Load Stabilization MQP

58

developed since the current SPARTA prototype draws power externally and it is not possible for

the helicopter to supply power. Larger scale testing would allow for a better hardware and

actuation scheme using better components without such stringent size and weight requirements.

With a larger scale prototype and more coding knowledge, a more powerful microcontroller such

as a Raspberry Pi could have increased performance and allowed for a more complex control

code, including the use of a Kalman filter. A more powerful microcontroller with larger built-in

memory would allow the SD card breakout to be used without compromising a system that

requires such high dynamic response, and a more precise and accurate IMU could be used to

obtain better readings, thus making the control system function more effectively.

Active Helicopter Sling Load Stabilization MQP

59

Appendix A: Derivation of Moments of Angular Momentum

𝐴𝑖 Intake area of door

𝐴𝑒 Exit area of door

𝐶𝐷 Drag coefficient of door (flat plate)

𝑐𝑚 Center of mass

𝐷 Drag force

𝐸𝐴, 𝐸𝐵 Exit area of pipes

𝐹𝑥, 𝐹𝑦 , 𝐹𝑧 Forces in Cartesian coordinates

𝐼𝐴, 𝐼𝐵 Inlet area of pipes

𝑀1𝐴
, 𝑀3𝐴

 Moment of doors 1𝐴, 3𝐴

𝑚 Mass of TRICON container

�̇�𝑖 Mass flow rate of intake area 𝐴𝑖

�̇�𝑒 Mass flow rate of exit area 𝐴𝑒

𝜌 Density of air

𝑟 Moment arm (perpendicular to center of mass)

𝜙 Door angle with respect to 𝑥 axis

𝑉𝑖 Velocity of air at door intake

𝑉𝑒 Velocity of air at door exit

𝑉∞ Freestream flow velocity

𝑦

𝑥

𝑧 points upward

CV

Figure 57: Pipes Diagram

Active Helicopter Sling Load Stabilization MQP

60

Force is equal to the change in momentum over time

𝐹 =
𝑑𝑝

𝑑𝑡
=

𝑑(𝑚𝑉)

𝑑𝑡

For a fluid, Equation (1) is written using mass flow rate �̇�, the change in mass over time

𝐹 = 𝑑(�̇�𝑉)

Where

�̇�1 = 𝜌1𝑉1𝐴1

For intake area 𝐴𝑖. With an intake area 𝐴𝑖 and exit area 𝐴𝑒, Equation (2) becomes

𝐹 = �̇�𝑒𝑉𝑒 − �̇�𝑖𝑉𝑖

As shown in Figure 57, for the specified control volume, there is no mass flow intake in the y-

component (neglect small area above door). Effective velocity in the 𝑥-component will change

(increase) as door angle increases (𝑉𝑖𝑐𝑜𝑠(𝜙) is the velocity in the 𝑥-component due to the door

opening)

𝐹𝑥 = �̇�𝑖(𝑉𝑖 − Vicos(𝜙))

𝐹𝑦 = �̇�𝑒𝑉𝑒

Conservation of mass dictates that the mass flow rate of the intake must equal the mass flow rate

of the exit, therefore

�̇�𝑖 = �̇�𝑒

Expanding using the definition of mass flow rate shown in Equation (3)

𝜌𝑖𝑉𝑖𝐴𝑖 = 𝜌𝑒𝑉𝑒𝐴𝑒

Intake and exit densities are equal due to no compressibility effects for air at low speeds

𝜌𝑉𝑖𝐴𝑖 = 𝜌𝑉𝑒𝐴𝑒

Assuming that intake velocity 𝑉𝑖 is equal to freestream velocity 𝑉∞

𝜌𝑉∞𝐴𝑖 = 𝜌𝑉𝑒𝐴𝑒

Relating 𝐴𝑖 𝑡𝑜 𝐴𝑒 using basic geometry (neglect small horizontal area above door)

𝜌𝑉∞(sin(𝜙) 𝐴𝑒) = 𝜌𝑉𝑒𝐴𝑒

(1)

(2)

(3)

(4)

 (5)

Active Helicopter Sling Load Stabilization MQP

61

Cancelling out like terms

𝑉∞ sin(𝜙) = 𝑉𝑒

Using Equation (3) for �̇�𝑒

�̇�𝑒 = 𝜌𝑉𝑒𝐴𝑒

Plugging in Equation (6)

�̇�𝑒 = 𝜌(𝑉∞ sin(𝜙))𝐴𝑒

Plugging Equation (6) and Equation (7) into Equation (5)

𝐹𝑦 = (𝜌(𝑉∞ sin(𝜙))𝐴𝑒)(𝑉∞ sin(𝜙))

Combining like terms

𝑭𝒚 = 𝝆𝑽∞
𝟐 𝒔𝒊𝒏𝟐(𝝓)𝑨𝒆

Equation (8) quantifies the restoring force 𝐹𝑦 that is used for sway motion correction. For extra

force 𝐹𝑥, Equation (4) states

𝐹𝑥 = �̇�𝑖(𝑉𝑖 − Vicos(𝜙))

Expanding using Equation (3) for �̇�𝑖

𝐹𝑥 = 𝜌𝑉𝑖𝐴𝑖(𝑉𝑖 − Vicos(𝜙))

Combining like terms and substituting 𝑉𝑖 = 𝑉∞

𝑭𝒙 = 𝝆𝑽∞
𝟐 𝑨𝒊(𝟏 − 𝐜𝐨𝐬(𝝓))

Equation (9) quantifies the extra force 𝐹𝑥 that results from turning the flow. This simplified

equation holds reasonably well for small door angles (𝜙 ≤ 20°). For larger angles, drag due to

the door (which is approximated as a flat plate) must be taken into account.

Drag 𝐷 for a door is equal to

𝐷 =
1

2
𝜌𝑉∞

2𝐶𝐷𝐴𝑖

Where, for 0° ≤ 𝜙 ≤ 90° 8

𝐶𝐷 = 2 sin(𝜙)

8
 http://mekside.com/wings-redux/

(6)

(7)

(8)

(9)

(10)

Active Helicopter Sling Load Stabilization MQP

62

Therefore, Equation (10) becomes

𝐷 = 𝜌𝑉∞
2 sin(𝜙)𝐴𝑖

Adding this to Equation (9)

𝑭𝒙+𝒅𝒓𝒂𝒈 = 𝝆𝑽∞
𝟐 𝑨𝒊(𝟏 − 𝐜𝐨𝐬(𝝓)) − 𝑫

Or

𝐹𝑥+𝑑𝑟𝑎𝑔 = 𝜌𝑉∞
2𝐴𝑖(1 − sin(𝜙) − cos(𝜙))

For the process of simplification and clarity, Equation (9) will be used for 𝐹𝑥 for deriving the

moment equations.

Angular momentum 𝐿 was found in a different way than was previously taught, using forces

𝐹𝑥, 𝐹𝑦 and the Pythagorean Theorem

𝐿 = √𝐹𝑥
2 + 𝐹𝑦

2

The cross product of Equation (12) and a moment arm 𝑟 was used to generate a moment of

angular momentum 𝑀

𝑀 = 𝑟 𝑋 𝐿

Where 𝑟 is the perpendicular distance

between the center of mass of the TRICON

and the angular momentum vector, shown in

Figure 58.

(11)

(12)

Figure 58: Angular Momentum Moment

Active Helicopter Sling Load Stabilization MQP

63

The moment arm equations are described and derived in Figures 59 and 60 below.

Figure 59: Rear Door Moment Arm

Active Helicopter Sling Load Stabilization MQP

64

Figure 60: Front Door Moment Arm

Active Helicopter Sling Load Stabilization MQP

65

Appendix B: Aerodynamic Equations from Modelling of static

aerodynamics of helicopter underslung loads

Nomenclature:

Active Helicopter Sling Load Stabilization MQP

66

Equations:

Active Helicopter Sling Load Stabilization MQP

67

Appendix C: Full MATLAB Numerical Simulation Code and Results

Simulation Code

clear variables; close all; clc;

Model parameters

params_model.scale = 17;

%----- Height of sling load cm below hook

params_model.sling_height_cmass = -5 / params_model.scale;

%----- Sling-loaded cargo

params_model.load.mass = 2000 / (params_model.scale^3); % kg

params_model.load.width = 1.9812 / params_model.scale;

 % m

params_model.load.length= 2.4384 / params_model.scale;

 % m

params_model.load.height= 2.4384 / params_model.scale;

 % m

params_model.load.area_x= params_model.load.height*params_model.load.width;

params_model.load.area_y= params_model.load.length*params_model.load.height;

params_model.load.area_z= params_model.load.length*params_model.load.width;

params_model.load.w_by_l= params_model.load.width/params_model.load.length;

params_model.load.Ixx = (1/12)*params_model.load.mass*...

 (params_model.load.width^2 + params_model.load.height^2);

params_model.load.Iyy = (1/12)*params_model.load.mass*...

 (params_model.load.height^2 + params_model.load.length^2);

params_model.load.Izz = (1/12)*params_model.load.mass*...

 (params_model.load.length^2 + params_model.load.width^2);

%----- Pipes

params_model.pipes.height = 0.4 / params_model.scale;

 % m

params_model.pipes.width = 0.8 / params_model.scale;

 % m

params_model.pipes.length = params_model.load.length;

params_model.pipes.area = params_model.pipes.height*params_model.pipes.width;

params_model.pipes.door.length = 0.8 / params_model.scale;

 % m

params_model.pipes.door.area = params_model.pipes.door.length*params_model.pipes.height;

params_model.pipes.door.loc = (1.143/params_model.scale) - params_model.pipes.door.length;

%----- Rudder

params_model.rudder.height = 0.6 / params_model.scale;

 % m;

Active Helicopter Sling Load Stabilization MQP

68

params_model.rudder.length = 1 / params_model.scale;

 % m;

params_model.rudder.area = params_model.rudder.height*params_model.rudder.length;

params_model.rudder.CL0 = 2*pi;

params_model.rudder.CD0 = 1.28;

params_model.rudder.loc = params_model.load.length / 2;

%----- Vertical stabilizer

params_model.vstab.height = params_model.rudder.height;

params_model.vstab.length = 0.5 / params_model.scale;

 % m;

params_model.vstab.area = 0.5*params_model.vstab.height*params_model.vstab.length;

params_model.vstab.loc = params_model.load.length / 2;

%----- Sling legs

params_model.legs.youngs = 0.64*10^9;

 % Young's modulus, N/m^2

params_model.legs.cs_area = pi*(0.06/(2*params_model.scale))^2; % m^2

params_model.legs.length0 = 5.3 / params_model.scale;

 % Unstretched length, m

params_model.legs.stiffness = params_model.legs.youngs*params_model.legs.cs_area /

params_model.legs.length0;

params_model.legs.C_wind_up = -0;

 % Coefficient of wind-up restoring torque, N.m/rad

params_model.legs.loc_e = 0.5*[...

 params_model.load.length, -params_model.load.width, -params_model.load.height;

 -params_model.load.length, -params_model.load.width, -params_model.load.height;

 -params_model.load.length, params_model.load.width, -params_model.load.height;

 params_model.load.length, params_model.load.width, -params_model.load.height]';

Simulation parameters

params_simulation.tf = 0.5*60; % simulation duration, s

params_simulation.use_rudder = true;

params_simulation.use_pipes = true;

params_simulation.use_control = true;

params_simulation.use_ekf = false;

params_simulation.use_legs = false;

params_simulation.use_kalman = true;

params_simulation.use_kalmancontrols = false;

params_simulation.solver_options= odeset('RelTol', 1e-4, 'AbsTol', 1e-4);

params_simulation.V_freestream = 12.5; % freestream velocity, m/s

params_simulation.rho_atm = 1.225; % atmospheric denisty, kg/m^3

params_simulation.g = 9.81; % m/s

params_simulation.deg2rad = pi/180;

params_simulation.initial_state_system =

Active Helicopter Sling Load Stabilization MQP

69

[35*params_simulation.deg2rad;0;20*params_simulation.deg2rad;0;0;0;15*params_simulation.deg2rad;0

;20*params_simulation.deg2rad;0];

% params_simulation.initial_state_system(2) = params_model.load.width/10;

% params_simulation.initial_state_system(3) = params_model.sling_height_cmass;

% params_simulation.initial_state_system(5) = -0.1 / params_model.scale;

params_simulation.initial_state = params_simulation.initial_state_system;

params_model.legs.tension0 = 0.25*params_model.load.mass*params_simulation.g*...

 norm([(params_model.sling_height_cmass - params_model.load.height/2); ...

 params_model.load.length/2; params_model.load.width/2]) / ...

 (params_model.sling_height_cmass - params_model.load.height/2);

Control parameters and LQR gain

params_control.psi0 = 0;

params_control.r0 = 0;

params_control.yd0 = 0;

params_control.rudder0 = 0;

params_control.door_left0 = 15*params_simulation.deg2rad;

params_control.door_right0 = 15*params_simulation.deg2rad;

params_control.theta0 = -22*params_simulation.deg2rad;

params_control.phi0 = 0;

params_control.V0 = params_simulation.V_freestream;

params_control.lqr = calc_lqr_gain(params_model, params_control,params_simulation);

params_control.sat.rudder_min = -45*params_simulation.deg2rad;

params_control.sat.rudder_max = 45*params_simulation.deg2rad;

params_control.sat.door_left_min = 0;

params_control.sat.door_left_max = 30*params_simulation.deg2rad;

params_control.sat.door_right_min = 0;

params_control.sat.door_right_max = 30*params_simulation.deg2rad;

Kalman Parameters

params_kalman.error = randn(1,params_simulation.tf*100);

params_kalman.std_accel = 1;

params_kalman.std_mag = 1*params_simulation.deg2rad;

params_kalman.std_gyro = 1*params_simulation.deg2rad;

params_kalman.L = (-1*params_model.sling_height_cmass);

params_kalman.phi_v.A = KalmanFilter_v_phi_cc('A', params_kalman);

params_kalman.phi_v.B = KalmanFilter_v_phi_cc('B', params_kalman);

params_kalman.phi_v.H = KalmanFilter_v_phi_cc('H', params_kalman);

params_kalman.phi_v.Q = KalmanFilter_v_phi_cc('Q', params_kalman);

params_kalman.phi_v.R = KalmanFilter_v_phi_cc('R', params_kalman);

params_kalman.phi_v.F = [0,0;0,1];

% params_kalman.phi_v.K = KalmanFilter_v_phi_cc('K', params_kalman);

Active Helicopter Sling Load Stabilization MQP

70

params_kalman.psi_r.A = KalmanFilter_Yaw_R_cc('A', params_kalman, params_control, params_model,

params_simulation);

params_kalman.psi_r.B = KalmanFilter_Yaw_R_cc('B', params_kalman, params_control, params_model,

params_simulation);

params_kalman.psi_r.H = KalmanFilter_Yaw_R_cc('H', params_kalman, params_control, params_model,

params_simulation);

params_kalman.psi_r.Q = KalmanFilter_Yaw_R_cc('Q', params_kalman, params_control, params_model,

params_simulation);

params_kalman.psi_r.R = KalmanFilter_Yaw_R_cc('R', params_kalman, params_control, params_model,

params_simulation);

params_kalman.psi_r.F = 0;

% params_kalman.psi_r.K = KalmanFilter_Yaw_R_cc('K', params_kalman, params_control,

params_model, params_simulation);

%----- Calculate P for both filters as a function of time

P_initial = eye(2);

[t_psi_r, P_psi_r] = ode45(@(t,P)ODE_KALMAN_P(t, P, params_kalman.psi_r),...

 [0 params_simulation.tf], P_initial, params_simulation.solver_options);

[t_phi_v, P_phi_v] = ode45(@(t,P)ODE_KALMAN_P(t, P, params_kalman.phi_v),...

 [0 params_simulation.tf], P_initial, params_simulation.solver_options);

params_kalman.phi_v.P = P_phi_v;

params_kalman.phi_v.t_P = t_phi_v;

params_kalman.psi_r.P = P_psi_r;

params_kalman.psi_r.t_P = t_psi_r;

Run simulation

[t_sim, xi_sim] = ode45(@(t,xi)ode_active_sling(t, xi, ...

 params_simulation, params_model, params_control, params_kalman), [0

params_simulation.tf], ...

 params_simulation.initial_state, params_simulation.solver_options);

%----- Results in readable form

e321_psi_sim= xi_sim(:, 1);

psi_dot_sim = xi_sim(:, 4);

H321_e_inv = zeros(3,3*numel(t_sim));

R321_eh = zeros(3,3*numel(t_sim));

for m = 1:numel(t_sim)

 H321_e_inv(1:3,3*m-2:3*m) = (1/cos(xi_sim(m,2)))*[...

 0, sin(xi_sim(m,3)),

 cos(xi_sim(m,3));...

 0, cos(xi_sim(m,3))*cos(xi_sim(m,2)), -

sin(xi_sim(m,3))*cos(xi_sim(m,2));...

 cos(xi_sim(m,2)), sin(xi_sim(m,3))*sin(xi_sim(m,2)),

 cos(xi_sim(m,3))*sin(xi_sim(m,2))];

Active Helicopter Sling Load Stabilization MQP

71

 R321_eh(1:3,3*m-2:3*m) = [...

 cos(xi_sim(m,1))*cos(xi_sim(m,2)), cos(xi_sim(m,2))*sin(xi_sim(m,1)), -

sin(xi_sim(m,2));...

 %

 cos(xi_sim(m,1))*sin(xi_sim(m,3))*sin(xi_sim(m,2)) - cos(xi_sim(m,3))*sin(xi_sim(m,1)),...

 cos(xi_sim(m,3))*cos(xi_sim(m,1)) +

sin(xi_sim(m,3))*sin(xi_sim(m,1))*sin(xi_sim(m,2)),...

 cos(xi_sim(m,2))*sin(xi_sim(m,3));...

 %

 sin(xi_sim(m,3))*sin(xi_sim(m,1)) + cos(xi_sim(m,3))*cos(xi_sim(m,1))*sin(xi_sim(m,2)),...

 cos(xi_sim(m,3))*sin(xi_sim(m,1))*sin(xi_sim(m,2)) -

cos(xi_sim(m,1))*sin(xi_sim(m,3)),...

 cos(xi_sim(m,3))*cos(xi_sim(m,2))];

end

PQR_sim = zeros(3,numel(t_sim));

for m = 1:numel(t_sim)

PQR_sim(1:3,m) = H321_e_inv(1:3,3*m-2:3*m)'*xi_sim(m,4:6)';

end

xyz_h_dot_sim = zeros(3,numel(t_sim));

xyz_e_dot_sim = zeros(3,numel(t_sim));

for m = 1:numel(t_sim)

 xyz_h_dot_sim(1,m) =

params_model.sling_height_cmass*((cos(xi_sim(m,3))*xi_sim(m,6))*sin(xi_sim(m,1))+sin(xi_sim(m,3))

*(cos(xi_sim(m,1))*xi_sim(m,4))...

 +(-sin(xi_sim(m,3))*xi_sim(m,6))*sin(xi_sim(m,2))*cos(xi_sim(m,1))...

 +cos(xi_sim(m,3))*(cos(xi_sim(m,2))*xi_sim(m,5))*cos(xi_sim(m,1))...

 +cos(xi_sim(m,3))*sin(xi_sim(m,2))*(-sin(xi_sim(m,1))*xi_sim(m,4)));

 xyz_h_dot_sim(2,m) = params_model.sling_height_cmass*(-

((cos(xi_sim(m,3))*xi_sim(m,6))*cos(xi_sim(m,1))+sin(xi_sim(m,3))*(-

sin(xi_sim(m,1))*xi_sim(m,4)))...

 +(-sin(xi_sim(m,3))*xi_sim(m,6))*sin(xi_sim(m,2))*sin(xi_sim(m,1))...

 +cos(xi_sim(m,3))*(cos(xi_sim(m,2))*xi_sim(m,5))*sin(xi_sim(m,1))...

 +cos(xi_sim(m,3))*sin(xi_sim(m,2))*(cos(xi_sim(m,1))*xi_sim(m,4)));

 xyz_h_dot_sim(3,m) = params_model.sling_height_cmass*((-

sin(xi_sim(m,3))*xi_sim(m,6))*cos(xi_sim(m,2))+cos(xi_sim(m,3))*(-sin(xi_sim(m,2))*xi_sim(m,5)));

 xyz_e_dot_sim(1:3,m) = R321_eh(1:3,3*m-2:3*m)*xyz_h_dot_sim(1:3,m);

end

xyz_h_sim = zeros(3,numel(t_sim));

for m = 1:numel(t_sim)

 xyz_h_sim(1,m) =

params_model.sling_height_cmass*(sin(xi_sim(m,3))*sin(xi_sim(m,1))+cos(xi_sim(m,3))*sin(xi_sim(m,

2))*cos(xi_sim(m,1)));

 xyz_h_sim(2,m) = params_model.sling_height_cmass*(-

sin(xi_sim(m,3))*cos(xi_sim(m,1))+cos(xi_sim(m,3))*sin(xi_sim(m,2))*sin(xi_sim(m,1)));

Active Helicopter Sling Load Stabilization MQP

72

 xyz_h_sim(3,m) = params_model.sling_height_cmass*(cos(xi_sim(m,3))*cos(xi_sim(m,2)));

end

Plot results

%----- Plot 3D Motion

figure;

plot3(xyz_h_sim(1, :), xyz_h_sim(2, :), xyz_h_sim(3, :), 'k');

grid on; title('Position'); xlabel('X (m)'); ylabel('Y (m)'); zlabel('Z (m)');

%----- Plot Yaw and Yaw Rate

figure;

subplot(211); plot(t_sim, e321_psi_sim/params_simulation.deg2rad);

grid on; title('Yaw Angle'); xlabel('Time (S)'); ylabel('Angle (Deg)');

subplot(212); plot(t_sim, psi_dot_sim/params_simulation.deg2rad);

grid on; title('Yaw Rate'); xlabel('Time (S)'); ylabel('Anglular Velocity (Deg/sec)');

%----- Plot Orientation Angles from Helicopter

swing_angles = zeros(2, numel(t_sim));

for m = 1:numel(t_sim)

 swing_angles(1, m) = atan2(xyz_h_sim(2,m), -xyz_h_sim(3,m));

 swing_angles(2, m) = atan2(xyz_h_sim(1,m), -xyz_h_sim(3,m));

end

figure;

subplot(211); plot(t_sim, swing_angles(1,:)/params_simulation.deg2rad);

grid on; title('Lateral Swing Angle'); xlabel('Time (S)'); ylabel('Angle (Deg)');

axis([0,params_simulation.tf,-40,40]);

subplot(212); plot(t_sim, swing_angles(2,:)/params_simulation.deg2rad);

grid on; title('Longitudinal Swing Angle'); xlabel('Time (S)'); ylabel('Angle (Deg)');

%----- Plot Difference in Kalman Filter States

if params_simulation.use_kalman

figure

subplot(211); plot(t_sim, (xi_sim(:,7)-e321_psi_sim)/params_simulation.deg2rad); grid on;

title('Difference in Kalman Yaw Angle'); xlabel('Time (S)'); ylabel('Angle (Deg)');

subplot(212); plot(t_sim, (xi_sim(:,8)-PQR_sim(3,:)')/params_simulation.deg2rad); grid on;

title('Difference in Kalman Yaw Rate'); xlabel('Time (S)'); ylabel('Anglular Velocity

(Deg/sec)');

figure

subplot(211); plot(t_sim, (xi_sim(:,9)-xi_sim(:,3))/params_simulation.deg2rad); grid on;

title('Difference in Kalman Roll Angle'); xlabel('Time (S)'); ylabel('Angle (Deg)');

subplot(212); plot(t_sim, (xi_sim(:,10)-xyz_e_dot_sim(2,:)')); grid on; title('Difference in

Kalman Y Velocity'); xlabel('Time (S)'); ylabel('Velocity (m/sec)');

else

end

Active Helicopter Sling Load Stabilization MQP

73

Active Helicopter Sling Load Stabilization MQP

74

Active Helicopter Sling Load Stabilization MQP

75

Published with MATLAB® R2013b

State Derivative Function

function xi_dot = ode_active_sling(t, xi, params_simulation, params_model, params_control,

params_kalman)

Main Function Code

%{

State variable description

 xi(1:3) - angular position of c.m. of load

 xi(4:6) - angular velocity of c.m. of load

 xi(7:10) - kalman estimates of states

 Helicopter-fixed coordinates have subscript 'h'

 Load-fixed coordinates have subscript 'e'

%}

%----- Progress Counter (I know it slows it down, but I like it)

Percent_Complete = 100*(t/params_simulation.tf);

http://www.mathworks.com/products/matlab

Active Helicopter Sling Load Stabilization MQP

76

%----- States in readable form

e321_psi = xi(1);

e321_theta = xi(2);

e321_phi = xi(3);

e321_psi_dot = xi(4);

e321_theta_dot = xi(5);

e321_phi_dot = xi(6);

kalman_psi_est = xi(7);

kalman_r_est = xi(8);

kalman_phi_est = xi(9);

kalman_v_est = xi(10);

%----- Establish Position and Velocity in Cartesian Coordinates

H0 = params_model.sling_height_cmass;

X_h = H0*(sin(e321_phi)*sin(e321_psi)+cos(e321_phi)*sin(e321_theta)*cos(e321_psi));

Y_h = H0*(-sin(e321_phi)*cos(e321_psi)+cos(e321_phi)*sin(e321_theta)*sin(e321_psi));

Z_h = H0*(cos(e321_phi)*cos(e321_theta));

X_h_dot =

H0*((cos(e321_phi)*e321_phi_dot)*sin(e321_psi)+sin(e321_phi)*(cos(e321_psi)*e321_psi_dot)...

 +(-sin(e321_phi)*e321_phi_dot)*sin(e321_theta)*cos(e321_psi)...

 +cos(e321_phi)*(cos(e321_theta)*e321_theta_dot)*cos(e321_psi)...

 +cos(e321_phi)*sin(e321_theta)*(-sin(e321_psi)*e321_psi_dot));

Y_h_dot = H0*(-((cos(e321_phi)*e321_phi_dot)*cos(e321_psi)+sin(e321_phi)*(-

sin(e321_psi)*e321_psi_dot))...

 +(-sin(e321_phi)*e321_phi_dot)*sin(e321_theta)*sin(e321_psi)...

 +cos(e321_phi)*(cos(e321_theta)*e321_theta_dot)*sin(e321_psi)...

 +cos(e321_phi)*sin(e321_theta)*(cos(e321_psi)*e321_psi_dot));

Z_h_dot = H0*((-sin(e321_phi)*e321_phi_dot)*cos(e321_theta)+cos(e321_phi)*(-

sin(e321_theta)*e321_theta_dot));

%----- Rotation matrices and such

R321_eh = [...

 cos(e321_psi)*cos(e321_theta), cos(e321_theta)*sin(e321_psi), -

sin(e321_theta);...

 %

 cos(e321_psi)*sin(e321_phi)*sin(e321_theta) - cos(e321_phi)*sin(e321_psi),...

 cos(e321_phi)*cos(e321_psi) + sin(e321_phi)*sin(e321_psi)*sin(e321_theta),...

 cos(e321_theta)*sin(e321_phi);...

 %

 sin(e321_phi)*sin(e321_psi) + cos(e321_phi)*cos(e321_psi)*sin(e321_theta),...

 cos(e321_phi)*sin(e321_psi)*sin(e321_theta) - cos(e321_psi)*sin(e321_phi),...

 cos(e321_phi)*cos(e321_theta)];

H321_e_inv = (1/cos(e321_theta))*[...

 0, sin(e321_phi),

 cos(e321_phi);...

 0, cos(e321_phi)*cos(e321_theta), -

Active Helicopter Sling Load Stabilization MQP

77

sin(e321_phi)*cos(e321_theta);...

 cos(e321_theta), sin(e321_phi)*sin(e321_theta),

 cos(e321_phi)*sin(e321_theta)];

%----- Define omga_he_e and XYZ Dots in Body Frame

omga_he_e = inv(H321_e_inv)*xi(4:6);

xyz_e_dot = R321_eh*[X_h_dot;Y_h_dot;Z_h_dot];

P_phidot = omga_he_e(1);

Q_thetadot = omga_he_e(2);

R_psidot = omga_he_e(3);

X_e_dot = xyz_e_dot(1);

Y_e_dot = xyz_e_dot(2);

Z_e_dot = xyz_e_dot(3);

%----- Relative velocity and airspeed

V_e_air = R321_eh*([-params_simulation.V_freestream;0;0] -[X_h_dot;Y_h_dot;Z_h_dot]);

 % velocity of the air flowing over the container in body frame

airspeed= norm(V_e_air);

 % velocity magnitude

aoa_x = atan2(V_e_air(3), V_e_air(2));

aoa_z = atan2(V_e_air(2), -V_e_air(1));

%----- Control inputs

control_inputs =

control_law(e321_psi,R_psidot,Y_e_dot,kalman_psi_est,kalman_r_est,kalman_v_est,params_simulation)

;

%----- Forces and torques from control surfaces and sling legs

% [accel_tension_e, torque_tension_e] = acceltorque_tension_e();

[accel_rudder_vstab_e, torque_rudder_vstab_e] = acceltorque_rudder_vstab_e();

[accel_pipes_e, torque_pipes_e] = acceltorque_pipes_e();

%----- Collect all accelerations

accel_external_e = accel_aero_e() + ...

 accel_rudder_vstab_e + accel_pipes_e;

%----- Collect all moments

% torque_tension_e

% torque_aero_e()

% torque_rudder_vstab_e

% torque_pipes_e

torque_windup_e = [0;0;e321_psi*params_model.legs.C_wind_up];

torque_external_e = torque_aero_e() + ...

 torque_rudder_vstab_e + torque_pipes_e + torque_windup_e;

torque_gyroscopic_e = [...

 (params_model.load.Iyy - params_model.load.Izz)*omga_he_e(2)*omga_he_e(3); ...

Active Helicopter Sling Load Stabilization MQP

78

 (params_model.load.Izz - params_model.load.Ixx)*omga_he_e(3)*omga_he_e(1); ...

 (params_model.load.Ixx - params_model.load.Iyy)*omga_he_e(1)*omga_he_e(2)];

%----- Kalman Filter Derivatives

kalman_state_dot = kalman_est_function();

%----- Euler Lagrange

force_external_e = params_model.load.mass*accel_external_e;

force_external_e_psi_theta_phi =

force_transform(force_external_e,e321_psi,e321_theta,e321_phi,H0);

force_external_h_psi_theta_phi = inv(R321_eh)*force_external_e_psi_theta_phi;

torque_external_e_psi_theta_phi =

moment_transform(torque_external_e+torque_gyroscopic_e,e321_psi,e321_theta,e321_phi,H0);

torque_external_h_psi_theta_phi = inv(R321_eh)*torque_external_e_psi_theta_phi;

%----- Collect all state derivatives

xi_dot = zeros(6, 1);

% xi_dot(1:3) = xi(4:6);

% xi_dot(4:6) = R321_eh' * accel_external_e - [0; 0; params_simulation.g];

xi_dot(1:3) = xi(4:6);

xi_dot(4:6) = doubledot_solve(xi, force_external_h_psi_theta_phi,

torque_external_h_psi_theta_phi, params_model, params_simulation);

xi_dot(7:10) = kalman_state_dot;

% (torque_external_e + torque_gyroscopic_e) ./ ...

% [params_model.load.Ixx; params_model.load.Iyy; params_model.load.Izz];

 %==

Error using ode_active_sling (line 14)

Not enough input arguments.

Aerodynamic Forces

 function accel_e = accel_aero_e()

 aoa_x = atan2(V_e_air(3), V_e_air(2));

 % angle of attack

 aoa_y = atan2(V_e_air(3), V_e_air(1));

 % angle of attack

 aoa_z = atan2(V_e_air(2), V_e_air(1));

 % angle of attack

 Rx = abs(V_e_air(1) / airspeed);

 Ry = abs(V_e_air(2) / airspeed);

 Rz = abs(V_e_air(3) / airspeed);

 %----- Force in body Y direction

 if Ry < 0.82;

 C_ybasedip = 0;

 else

Active Helicopter Sling Load Stabilization MQP

79

 C_ybasedip = 1.94*(Ry-0.82);

 end

 if Ry <= 0.18

 C_ybubble0 = 2.5*Ry;

 elseif Ry < 0.82

 C_ybubble0 = 0.45-0.703*(Ry-0.18);

 else

 C_ybubble0 = 0;

 end

 C_ybubble = C_ybubble0*abs(cos(aoa_y)^3);

 C_y = -1.4*(Ry) + C_ybubble + C_ybasedip;

 % side force coefficient

 %----- Force in body Z direction

 if Rz < 0.82;

 C_zbasedip = 0;

 else

 C_zbasedip = 1.94*(Rz-0.82);

 end

 if Rz <= 0.18

 C_zbubble0 = 2.5*Rz;

 elseif Rz < 0.82

 C_zbubble0 = 0.45-0.703*(Rz-0.18);

 else

 C_zbubble0 = 0;

 end

 C_zbubble = C_zbubble0*abs(cos(aoa_z)^3);

 C_z = -1.4*(Rz)+C_zbubble+C_zbasedip;

 % side force coefficient

 %----- Force in X direction

 if Rx < 0.82;

 C_xbasedip = 0;

 else

 C_xbasedip = 1.94*(Rx-0.82);

 end

 if Rx <= 0.18

 C_xbubble0 = 2.5*Rx;

 elseif Rx < 0.82

 C_xbubble0 = 0.45-0.703*(Rx-0.18);

 else

 C_xbubble0 = 0;

 end

 C_xbubble = C_xbubble0*abs(cos(aoa_x)^3);

 C_x = -1.4*(Rx)+C_xbubble+C_xbasedip;

 % side force coefficient

 accel_e = 0.5*params_simulation.rho_atm*(airspeed^2)*[...

 sign(V_e_air(1))*abs(C_x*params_model.load.area_x); ...

 sign(V_e_air(2))*abs(C_y*params_model.load.area_y); ...

Active Helicopter Sling Load Stabilization MQP

80

 sign(V_e_air(3))*abs(C_z*params_model.load.area_z)] / ...

 params_model.load.mass;

 end

Kalman Filters

 function kalman_est_dot = kalman_est_function()

 if ~params_simulation.use_kalman

 kalman_est_dot(1,1) = 0;

 kalman_est_dot(2,1) = 0;

 kalman_est_dot(3,1) = 0;

 kalman_est_dot(4,1) = 0;

 return

 end

 % Standard Deviation

 std_accel = params_kalman.std_accel;

 std_mag = params_kalman.std_mag;

 std_gyro = params_kalman.std_gyro;

 % Error Counter

 if t == 0

 error_number = 1;

 else

 error_number = ceil(numel(params_kalman.error)*t/params_simulation.tf);

 end

 % P value counter

 t_phi_v = params_kalman.phi_v.t_P;

 P_phi_v_number = find(abs(t_phi_v-t) == min(abs(t_phi_v-t)));

 t_psi_r = params_kalman.psi_r.t_P;

 P_psi_r_number = find(abs(t_psi_r-t) == min(abs(t_psi_r-t)));

 % Psi and R

 A_k_psi_r = params_kalman.psi_r.A;

 B_k_psi_r = params_kalman.psi_r.B;

 H_k_psi_r = params_kalman.psi_r.H;

 Q_k_psi_r = params_kalman.psi_r.Q;

 R_k_psi_r = params_kalman.psi_r.R;

 P_k_psi_r_row = params_kalman.psi_r.P(P_psi_r_number,1:4);

 P_k_psi_r(1,1:2) = P_k_psi_r_row(1,1:2);

 P_k_psi_r(2,1:2) = P_k_psi_r_row(1,3:4);

 K_k_psi_r = P_k_psi_r*H_k_psi_r'*inv(R_k_psi_r); %params_kalman.psi_r.K;

Active Helicopter Sling Load Stabilization MQP

81

 Z_k_psi_r(1,1) = e321_psi+std_mag*params_kalman.error(error_number);

 Z_k_psi_r(2,1) = R_psidot+std_gyro*params_kalman.error(error_number);

 U_k_psi_r =

[control_inputs.total.rudder;control_inputs.total.door_left;control_inputs.total.door_right];

 X_hat_psi_r = [xi(7);xi(8)];

 kalman_est_dot(1:2,1) = A_k_psi_r*X_hat_psi_r+B_k_psi_r*U_k_psi_r+K_k_psi_r*(Z_k_psi_r-

H_k_psi_r*X_hat_psi_r);

 % Phi and V

 A_k_phi_v = params_kalman.phi_v.A;

 B_k_phi_v = params_kalman.phi_v.B;

 H_k_phi_v = params_kalman.phi_v.H;

 Q_k_phi_v = params_kalman.phi_v.Q;

 R_k_phi_v = params_kalman.phi_v.R;

 P_k_phi_v_row = params_kalman.phi_v.P(P_phi_v_number,1:4);

 P_k_phi_v(1,1:2) = P_k_phi_v_row(1,1:2);

 P_k_phi_v(2,1:2) = P_k_phi_v_row(1,3:4);

 K_k_phi_v = P_k_phi_v*H_k_phi_v'*inv(R_k_phi_v); %params_kalman.phi_v.K;

 Z_k_phi_v(1,1) = e321_phi+std_mag*params_kalman.error(error_number);

 Z_k_phi_v(2,1) = P_phidot+std_gyro*params_kalman.error(error_number);

 U_k_phi_v = accel_external_e(2,1)+std_accel*params_kalman.error(error_number);

 X_hat_phi_v = [xi(9);xi(10)];

 kalman_est_dot(3:4,1) = A_k_phi_v*X_hat_phi_v+B_k_phi_v*U_k_phi_v+K_k_phi_v*(Z_k_phi_v-

H_k_phi_v*X_hat_phi_v);

 end

 %==

Aerodynamic Moments

 function torque_e = torque_aero_e()

 beta_side = asin(V_e_air(2)/airspeed);

 %side slip angle side (Yaw)

 beta_front = asin(V_e_air(1)/airspeed);

 % side slip angle front (Yaw - 90deg)

 phi_star = atan2(V_e_air(3), V_e_air(2));

 % front face crossflow angle (Roll)

 theta_star = atan2(V_e_air(3), V_e_air(1));

 % side face crossflow angle (Pitch)

 Rvy = abs(V_e_air(2)/airspeed);

 Ruy = abs(V_e_air(1)/airspeed);

Active Helicopter Sling Load Stabilization MQP

82

 if Rvy <= 0.28

 C_ymbubbleside = sign(V_e_air(2))*0.25*Rvy;

 elseif Rvy < 0.6

 C_ymbubbleside = 0.07 - 0.219*(sign(V_e_air(1))*Rvy-0.28);

 else

 C_ymbubbleside = 0;

 end

 if Ruy <= 0.2

 C_ymbubblefront = sign(V_e_air(1))*0.9*Ruy;

 elseif Ruy < 0.7

 C_ymbubblefront = -0.18 + 0.219*(sign(V_e_air(1))*Ruy - 0.2);

 else

 C_ymbubblefront = 0;

 end

 C_ymatt = (-0.09*(1 - params_model.load.w_by_l^2)* ...

 sin(2*beta_side) + 0.04*params_model.load.w_by_l*...

 sin(4*beta_side))*cos(theta_star) + ...

 (0.075*(params_model.load.w_by_l^2)*sin(2*beta_front))*cos(phi_star);

 deltaC_ym = C_ymbubbleside*cos(theta_star)^2 + ...

 C_ymbubblefront*cos(phi_star)^2;

 C_ym = C_ymatt + deltaC_ym;

 % yawing moment coefficient

 torque_e = [0; 0; C_ym*0.5*params_simulation.rho_atm*(airspeed^2)*...

 params_model.load.area_y*params_model.load.length];

 end

 %==

Rudder Forces and Moments

 function [accel_e, torque_e] = acceltorque_rudder_vstab_e()

 if ~params_simulation.use_rudder

 accel_e = zeros(3, 1);

 torque_e= zeros(3, 1);

 return

 end

 aoa = atan2(V_e_air(2), -V_e_air(1));

 V_rud = norm(V_e_air(1:2));

 CL_rud = params_model.rudder.CL0*sin(aoa + control_inputs.total.rudder);

 CL_vs = params_model.rudder.CL0*sin(aoa);

 CD_rud = params_model.rudder.CD0*sin(e321_psi + control_inputs.total.rudder);

 CD_vs = params_model.rudder.CD0*sin(e321_psi);

 q_rud = 0.5*params_simulation.rho_atm*(V_rud^2);

Active Helicopter Sling Load Stabilization MQP

83

 accel_e = q_rud*[...

 -CD_rud*params_model.rudder.area - CD_vs*params_model.vstab.area; ...

 CL_rud*params_model.rudder.area + CL_vs*params_model.vstab.area; ...

 0] / params_model.load.mass;

 torque_e= -q_rud*[0; 0; ...

 (CL_rud*params_model.rudder.area*params_model.rudder.loc + ...

 CL_vs*params_model.vstab.area*params_model.vstab.loc)];

 end

 %==

Pipe Forces and Moments

 function [accel_e, torque_e] = acceltorque_pipes_e()

 if ~params_simulation.use_pipes

 accel_e = zeros(3, 1);

 torque_e= zeros(3, 1);

 return

 end

 q_pip = params_simulation.rho_atm*(V_e_air(1)^2)*params_model.pipes.area;

 %----- Left door (Sperry's Door 2a)

 Fy_left = -q_pip*(sin(control_inputs.total.door_left))^2;

 Fx_left = -q_pip*sin(control_inputs.total.door_left)*(1 -

cos(control_inputs.total.door_left));

 M_2a = norm([Fx_left; Fy_left])*...

 (params_model.pipes.width - (params_model.pipes.door.length/2 + ...

 params_model.pipes.door.loc) / ...

 (tan(pi/2 - control_inputs.total.door_left)))* ...

 sin(pi/2 - control_inputs.total.door_left);

 %----- Right door (Sperry's Door 2b)

 Fy_right= q_pip*(sin(control_inputs.total.door_right))^2;

 Fx_right= -q_pip*sin(control_inputs.total.door_right)*(1 -

cos(control_inputs.total.door_right));

 M_2b = -norm([Fx_right; Fy_right])*...

 (params_model.pipes.width - (params_model.pipes.door.length/2 + ...

 params_model.pipes.door.loc) / ...

 (tan(pi/2 - control_inputs.total.door_right)))*...

 sin(pi/2 - control_inputs.total.door_right);

 accel_e = [Fx_left + Fx_right; Fy_left + Fy_right; 0] / params_model.load.mass;

 torque_e= [0; 0; M_2a + M_2b];

 end

 %==

Active Helicopter Sling Load Stabilization MQP

84

Control Inputs

 function control_inputs =

control_law(e321_psi,R_psidot,Y_e_dot,kalman_psi_est,kalman_r_est,kalman_v_est,params_simulation)

 if ~params_simulation.use_control

 control_inputs.delta.rudder = 0;

 control_inputs.delta.door_left = 0;

 control_inputs.delta.door_right = 0;

 control_inputs.total.rudder = params_control.rudder0;

 control_inputs.total.door_left = params_control.door_left0;

 control_inputs.total.door_right = params_control.door_right0;

 return

 end

 if ~params_simulation.use_kalmancontrols

 psi_est = e321_psi;

 R_est = R_psidot;

 V_est = Y_e_dot;

 else

 psi_est = kalman_psi_est;

 R_est = kalman_r_est;

 V_est = kalman_v_est;

 end

 delta_zta = [psi_est - params_control.psi0; ...

 R_est - params_control.r0; ...

 V_est - params_control.yd0];

 delta_u = params_control.lqr*delta_zta;

 control_inputs.delta.rudder = delta_u(1);

 control_inputs.delta.door_left = delta_u(2);

 control_inputs.delta.door_right = delta_u(3);

 control_inputs.total.rudder = min((max(...

 (control_inputs.delta.rudder + params_control.rudder0), ...

 params_control.sat.rudder_min)), params_control.sat.rudder_max);

 control_inputs.total.door_left = min((max(...

 (control_inputs.delta.door_left + params_control.door_left0), ...

 params_control.sat.door_left_min)), params_control.sat.door_left_max);

 control_inputs.total.door_right = min((max(...

 (control_inputs.delta.door_right + params_control.door_right0), ...

 params_control.sat.door_right_min)), params_control.sat.door_right_max);

 end

end

Published with MATLAB® R2013b

http://www.mathworks.com/products/matlab

Active Helicopter Sling Load Stabilization MQP

85

Moment Transform Function

function moment_psi_theta_phi = moment_transform(M,psi,theta,phi,h0)

Mt = h0*[-sin(theta),sin(phi)*cos(theta),cos(phi)*cos(theta);...

 0,cos(phi),-sin(phi);...

 1,0,0];

moment_psi_theta_phi = Mt*M;

end

Error using moment_transform (line 3)

Not enough input arguments.

Published with MATLAB® R2014b

Force Transform Function

function force_psi_theta_phi = force_transform(F,psi,theta,phi,h0)

Ft = h0*[sin(phi)*cos(psi)-

cos(phi)*sin(theta)*sin(psi),sin(phi)*sin(psi)+cos(phi)*sin(theta)*cos(psi),0;...

 cos(phi)*cos(theta)*cos(psi),cos(phi)*cos(theta)*sin(psi),-cos(phi)*sin(theta);...

 cos(phi)*sin(psi)-sin(phi)*sin(theta)*cos(psi),-cos(phi)*cos(psi)-

sin(phi)*sin(theta)*sin(psi),sin(phi)*cos(theta)];

force_psi_theta_phi = Ft*F;

end

Error using force_transform (line 3)

Not enough input arguments.

Published with MATLAB® R2014b

Double Dot Solve Function

function doubledot = doubledot_solve(xi, Fe_psi_theta_phi, Me_psi_theta_phi, params_model,

params_simulation)

psi = xi(1);

theta = xi(2);

phi = xi(3);

psi_dot = xi(4);

theta_dot = xi(5);

phi_dot = xi(6);

m = params_model.load.mass;

Ixx = params_model.load.Ixx;

Iyy = params_model.load.Iyy;

Izz = params_model.load.Izz;

http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab

Active Helicopter Sling Load Stabilization MQP

86

H0 = params_model.sling_height_cmass;

g = params_simulation.g;

A = [(m*(4*H0^2*(sin(phi)*sin(psi) +

cos(phi)*cos(psi)*sin(theta))^2 + 2*H0^2*(cos(psi)*sin(phi) - cos(phi)*sin(psi)*sin(theta))^2))/2

+ Ixx*sin(theta)^2 + Izz*cos(phi)^2*cos(theta)^2 + Iyy*cos(theta)^2*sin(phi)^2,

(m*(4*H0^2*cos(phi)*cos(theta)*sin(psi)*(sin(phi)*sin(psi) + cos(phi)*cos(psi)*sin(theta)) +

2*H0^2*cos(phi)*cos(psi)*cos(theta)*(cos(psi)*sin(phi) - cos(phi)*sin(psi)*sin(theta))))/2 +

Iyy*cos(phi)*cos(theta)*sin(phi) - Izz*cos(phi)*cos(theta)*sin(phi), -

(m*(4*H0^2*(cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta))*(sin(phi)*sin(psi) +

cos(phi)*cos(psi)*sin(theta)) - 2*H0^2*(cos(phi)*sin(psi) -

cos(psi)*sin(phi)*sin(theta))*(cos(psi)*sin(phi) - cos(phi)*sin(psi)*sin(theta))))/2 -

Ixx*sin(theta);...

 (m*(4*H0^2*cos(phi)*cos(theta)*sin(psi)*(sin(phi)*sin(psi) + cos(phi)*cos(psi)*sin(theta))

+ 2*H0^2*cos(phi)*cos(psi)*cos(theta)*(cos(psi)*sin(phi) - cos(phi)*sin(psi)*sin(theta))))/2 +

Iyy*cos(phi)*cos(theta)*sin(phi) - Izz*cos(phi)*cos(theta)*sin(phi),

(m*(2*H0^2*cos(phi)^2*cos(psi)^2*cos(theta)^2 + 4*H0^2*cos(phi)^2*cos(theta)^2*sin(psi)^2))/2 +

Iyy*cos(phi)^2 + Izz*sin(phi)^2, -

(m*(4*H0^2*cos(phi)*cos(theta)*sin(psi)*(cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta)) -

2*H0^2*cos(phi)*cos(psi)*cos(theta)*(cos(phi)*sin(psi) - cos(psi)*sin(phi)*sin(theta))))/2;...

 - (m*(4*H0^2*(cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta))*(sin(phi)*sin(psi) +

cos(phi)*cos(psi)*sin(theta)) - 2*H0^2*(cos(phi)*sin(psi) -

cos(psi)*sin(phi)*sin(theta))*(cos(psi)*sin(phi) - cos(phi)*sin(psi)*sin(theta))))/2 -

Ixx*sin(theta), -

(m*(4*H0^2*cos(phi)*cos(theta)*sin(psi)*(cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta)) -

2*H0^2*cos(phi)*cos(psi)*cos(theta)*(cos(phi)*sin(psi) - cos(psi)*sin(phi)*sin(theta))))/2,

Ixx + (m*(4*H0^2*(cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta))^2 + 2*H0^2*(cos(phi)*sin(psi)

- cos(psi)*sin(phi)*sin(theta))^2))/2];

D = [Izz*phi_dot*theta_dot*cos(theta) - Iyy*phi_dot*theta_dot*cos(theta) -

Ixx*phi_dot*theta_dot*cos(theta) + H0^2*m*phi_dot^2*sin(2*psi) + H0^2*m*psi_dot^2*sin(2*psi) +

Ixx*psi_dot*theta_dot*sin(2*theta) - Iyy*psi_dot*theta_dot*sin(2*theta) -

Iyy*theta_dot^2*cos(phi)*sin(phi)*sin(theta) + Izz*theta_dot^2*cos(phi)*sin(phi)*sin(theta) -

4*H0^2*m*phi_dot*theta_dot*cos(theta) + 2*H0^2*m*phi_dot*psi_dot*sin(2*phi) +

2*Iyy*phi_dot*theta_dot*cos(phi)^2*cos(theta) - 2*Izz*phi_dot*theta_dot*cos(phi)^2*cos(theta) -

4*H0^2*m*phi_dot^2*cos(phi)^2*cos(psi)*sin(psi) - 4*H0^2*m*psi_dot^2*cos(phi)^2*cos(psi)*sin(psi)

- H0^2*m*theta_dot^2*cos(phi)^2*cos(psi)*sin(psi) -

H0^2*m*phi_dot^2*cos(psi)*cos(theta)^2*sin(psi) +

5*H0^2*m*phi_dot*theta_dot*cos(phi)^2*cos(theta) +

2*H0^2*m*phi_dot*theta_dot*cos(psi)^2*cos(theta) +

2*Iyy*phi_dot*psi_dot*cos(phi)*cos(theta)^2*sin(phi) -

2*Izz*phi_dot*psi_dot*cos(phi)*cos(theta)^2*sin(phi) +

2*Iyy*psi_dot*theta_dot*cos(phi)^2*cos(theta)*sin(theta) -

2*Izz*psi_dot*theta_dot*cos(phi)^2*cos(theta)*sin(theta) -

2*H0^2*m*phi_dot^2*cos(phi)*sin(phi)*sin(theta) - 2*H0^2*m*psi_dot^2*cos(phi)*sin(phi)*sin(theta)

- 2*H0^2*m*theta_dot^2*cos(phi)*sin(phi)*sin(theta) +

4*H0^2*m*phi_dot^2*cos(phi)*cos(psi)^2*sin(phi)*sin(theta) +

4*H0^2*m*psi_dot^2*cos(phi)*cos(psi)^2*sin(phi)*sin(theta) +

H0^2*m*theta_dot^2*cos(phi)*cos(psi)^2*sin(phi)*sin(theta) -

8*H0^2*m*phi_dot*psi_dot*cos(phi)*cos(psi)^2*sin(phi) +

H0^2*m*phi_dot*psi_dot*cos(phi)*cos(theta)^2*sin(phi) +

H0^2*m*psi_dot*theta_dot*cos(phi)^2*cos(theta)*sin(theta) +

Active Helicopter Sling Load Stabilization MQP

87

2*H0^2*m*phi_dot^2*cos(phi)^2*cos(psi)*cos(theta)^2*sin(psi) +

2*H0^2*m*psi_dot^2*cos(phi)^2*cos(psi)*cos(theta)^2*sin(psi) +

2*H0^2*m*theta_dot^2*cos(phi)^2*cos(psi)*cos(theta)^2*sin(psi) -

4*H0^2*m*phi_dot*theta_dot*cos(phi)^2*cos(psi)^2*cos(theta) -

4*H0^2*m*phi_dot*psi_dot*cos(psi)*sin(psi)*sin(theta) +

8*H0^2*m*phi_dot*psi_dot*cos(phi)^2*cos(psi)*sin(psi)*sin(theta) +

4*H0^2*m*phi_dot*psi_dot*cos(phi)*cos(psi)^2*cos(theta)^2*sin(phi) +

4*H0^2*m*psi_dot*theta_dot*cos(phi)^2*cos(psi)^2*cos(theta)*sin(theta) +

4*H0^2*m*psi_dot*theta_dot*cos(phi)*cos(psi)*cos(theta)*sin(phi)*sin(psi) -

4*H0^2*m*phi_dot*theta_dot*cos(phi)*cos(psi)*cos(theta)*sin(phi)*sin(psi)*sin(theta);...

 Izz*phi_dot*psi_dot*cos(theta) - Iyy*phi_dot*psi_dot*cos(theta) +

H0^2*m*phi_dot^2*sin(2*theta) - Iyy*phi_dot*theta_dot*sin(2*phi) +

Izz*phi_dot*theta_dot*sin(2*phi) - 2*H0^2*m*phi_dot*psi_dot*cos(theta) +

2*Iyy*phi_dot*psi_dot*cos(phi)^2*cos(theta) - 2*Izz*phi_dot*psi_dot*cos(phi)^2*cos(theta) +

H0^2*m*phi_dot*theta_dot*sin(2*phi) - Iyy*psi_dot*theta_dot*cos(phi)*sin(phi)*sin(theta) +

Izz*psi_dot*theta_dot*cos(phi)*sin(phi)*sin(theta) -

4*H0^2*m*phi_dot^2*cos(phi)^2*cos(theta)*sin(theta) -

H0^2*m*psi_dot^2*cos(phi)^2*cos(theta)*sin(theta) -

H0^2*m*phi_dot^2*cos(psi)^2*cos(theta)*sin(theta) -

4*H0^2*m*theta_dot^2*cos(phi)^2*cos(theta)*sin(theta) +

5*H0^2*m*phi_dot*psi_dot*cos(phi)^2*cos(theta) + H0^2*m*phi_dot*psi_dot*cos(psi)^2*cos(theta) -

H0^2*m*phi_dot*theta_dot*cos(phi)*cos(psi)^2*sin(phi) -

H0^2*m*psi_dot*theta_dot*cos(phi)^2*cos(psi)*sin(psi) -

8*H0^2*m*phi_dot*theta_dot*cos(phi)*cos(theta)^2*sin(phi) +

2*H0^2*m*phi_dot^2*cos(phi)^2*cos(psi)^2*cos(theta)*sin(theta) +

2*H0^2*m*psi_dot^2*cos(phi)^2*cos(psi)^2*cos(theta)*sin(theta) +

2*H0^2*m*theta_dot^2*cos(phi)^2*cos(psi)^2*cos(theta)*sin(theta) -

4*H0^2*m*phi_dot*psi_dot*cos(phi)^2*cos(psi)^2*cos(theta) -

2*H0^2*m*psi_dot*theta_dot*cos(phi)*sin(phi)*sin(theta) +

H0^2*m*psi_dot*theta_dot*cos(phi)*cos(psi)^2*sin(phi)*sin(theta) +

H0^2*m*phi_dot*theta_dot*cos(phi)^2*cos(psi)*sin(psi)*sin(theta) +

4*H0^2*m*phi_dot*theta_dot*cos(phi)*cos(psi)^2*cos(theta)^2*sin(phi) +

4*H0^2*m*psi_dot*theta_dot*cos(phi)^2*cos(psi)*cos(theta)^2*sin(psi) +

2*H0^2*m*phi_dot^2*cos(phi)*cos(psi)*cos(theta)*sin(phi)*sin(psi) +

2*H0^2*m*psi_dot^2*cos(phi)*cos(psi)*cos(theta)*sin(phi)*sin(psi) -

4*H0^2*m*phi_dot*psi_dot*cos(phi)*cos(psi)*cos(theta)*sin(phi)*sin(psi)*sin(theta);...

 - (m*(2*H0^2*(phi_dot*cos(phi)*sin(psi) + psi_dot*cos(psi)*sin(phi) +

theta_dot*cos(phi)*cos(psi)*cos(theta) - phi_dot*cos(psi)*sin(phi)*sin(theta) -

psi_dot*cos(phi)*sin(psi)*sin(theta))*(phi_dot*sin(phi)*sin(psi) - psi_dot*cos(phi)*cos(psi) +

phi_dot*cos(phi)*cos(psi)*sin(theta) + theta_dot*cos(psi)*cos(theta)*sin(phi) -

psi_dot*sin(phi)*sin(psi)*sin(theta)) + 4*H0^2*(psi_dot*sin(phi)*sin(psi) -

phi_dot*cos(phi)*cos(psi) + psi_dot*cos(phi)*cos(psi)*sin(theta) +

theta_dot*cos(phi)*cos(theta)*sin(psi) -

phi_dot*sin(phi)*sin(psi)*sin(theta))*(phi_dot*cos(phi)*sin(psi)*sin(theta) -

psi_dot*cos(phi)*sin(psi) - phi_dot*cos(psi)*sin(phi) + psi_dot*cos(psi)*sin(phi)*sin(theta) +

theta_dot*cos(theta)*sin(phi)*sin(psi)) + 2*H0^2*(cos(phi)*sin(psi) -

cos(psi)*sin(phi)*sin(theta))*(phi_dot^2*sin(phi)*sin(psi) + psi_dot^2*sin(phi)*sin(psi) +

phi_dot^2*cos(phi)*cos(psi)*sin(theta) + psi_dot^2*cos(phi)*cos(psi)*sin(theta) +

theta_dot^2*cos(phi)*cos(psi)*sin(theta) - 2*phi_dot*psi_dot*cos(phi)*cos(psi) +

2*phi_dot*theta_dot*cos(psi)*cos(theta)*sin(phi) +

2*psi_dot*theta_dot*cos(phi)*cos(theta)*sin(psi) -

2*phi_dot*psi_dot*sin(phi)*sin(psi)*sin(theta)) - 4*H0^2*(cos(phi)*cos(psi) +

sin(phi)*sin(psi)*sin(theta))*(phi_dot^2*cos(phi)*sin(psi)*sin(theta) -

Active Helicopter Sling Load Stabilization MQP

88

psi_dot^2*cos(psi)*sin(phi) - phi_dot^2*cos(psi)*sin(phi) +

psi_dot^2*cos(phi)*sin(psi)*sin(theta) + theta_dot^2*cos(phi)*sin(psi)*sin(theta) -

2*phi_dot*psi_dot*cos(phi)*sin(psi) - 2*psi_dot*theta_dot*cos(phi)*cos(psi)*cos(theta) +

2*phi_dot*psi_dot*cos(psi)*sin(phi)*sin(theta) +

2*phi_dot*theta_dot*cos(theta)*sin(phi)*sin(psi))))/2 - Ixx*psi_dot*theta_dot*cos(theta)];

E = [H0^2*m*(phi_dot*cos(phi)*sin(psi) + psi_dot*cos(psi)*sin(phi) +

theta_dot*cos(phi)*cos(psi)*cos(theta) - phi_dot*cos(psi)*sin(phi)*sin(theta) -

psi_dot*cos(phi)*sin(psi)*sin(theta))*(psi_dot*sin(phi)*sin(psi) - phi_dot*cos(phi)*cos(psi) +

psi_dot*cos(phi)*cos(psi)*sin(theta) + theta_dot*cos(phi)*cos(theta)*sin(psi) -

phi_dot*sin(phi)*sin(psi)*sin(theta));...

 H0*g*m*cos(phi)*sin(theta) - Ixx*psi_dot*cos(theta)*(phi_dot - psi_dot*sin(theta)) -

(m*(2*H0^2*(phi_dot*cos(psi)*cos(theta)*sin(phi) + psi_dot*cos(phi)*cos(theta)*sin(psi) +

theta_dot*cos(phi)*cos(psi)*sin(theta))*(phi_dot*cos(phi)*sin(psi) + psi_dot*cos(psi)*sin(phi) +

theta_dot*cos(phi)*cos(psi)*cos(theta) - phi_dot*cos(psi)*sin(phi)*sin(theta) -

psi_dot*cos(phi)*sin(psi)*sin(theta)) + 4*H0^2*(phi_dot*cos(theta)*sin(phi)*sin(psi) -

psi_dot*cos(phi)*cos(psi)*cos(theta) +

theta_dot*cos(phi)*sin(psi)*sin(theta))*(psi_dot*sin(phi)*sin(psi) - phi_dot*cos(phi)*cos(psi) +

psi_dot*cos(phi)*cos(psi)*sin(theta) + theta_dot*cos(phi)*cos(theta)*sin(psi) -

phi_dot*sin(phi)*sin(psi)*sin(theta))))/2 + Izz*psi_dot*cos(phi)*sin(theta)*(theta_dot*sin(phi) -

psi_dot*cos(phi)*cos(theta)) - Iyy*psi_dot*sin(phi)*sin(theta)*(theta_dot*cos(phi) +

psi_dot*cos(theta)*sin(phi));...

 Izz*(theta_dot*cos(phi) + psi_dot*cos(theta)*sin(phi))*(theta_dot*sin(phi) -

psi_dot*cos(phi)*cos(theta)) - Iyy*(theta_dot*cos(phi) +

psi_dot*cos(theta)*sin(phi))*(theta_dot*sin(phi) - psi_dot*cos(phi)*cos(theta)) -

(m*(2*H0^2*(phi_dot*cos(phi)*sin(psi) + psi_dot*cos(psi)*sin(phi) +

theta_dot*cos(phi)*cos(psi)*cos(theta) - phi_dot*cos(psi)*sin(phi)*sin(theta) -

psi_dot*cos(phi)*sin(psi)*sin(theta))*(phi_dot*sin(phi)*sin(psi) - psi_dot*cos(phi)*cos(psi) +

phi_dot*cos(phi)*cos(psi)*sin(theta) + theta_dot*cos(psi)*cos(theta)*sin(phi) -

psi_dot*sin(phi)*sin(psi)*sin(theta)) + 4*H0^2*(psi_dot*sin(phi)*sin(psi) -

phi_dot*cos(phi)*cos(psi) + psi_dot*cos(phi)*cos(psi)*sin(theta) +

theta_dot*cos(phi)*cos(theta)*sin(psi) -

phi_dot*sin(phi)*sin(psi)*sin(theta))*(phi_dot*cos(phi)*sin(psi)*sin(theta) -

psi_dot*cos(phi)*sin(psi) - phi_dot*cos(psi)*sin(phi) + psi_dot*cos(psi)*sin(phi)*sin(theta) +

theta_dot*cos(theta)*sin(phi)*sin(psi))))/2 + H0*g*m*cos(theta)*sin(phi)];

doubledot = inv(A)*(Fe_psi_theta_phi + Me_psi_theta_phi + E - D);

end

Error using doubledot_solve (line 3)

Not enough input arguments.

Published with MATLAB® R2014b

LQR Gain Function

function K_lqr = calc_lqr_gain(params_model, params_control, params_simulation)

%----- Control Parameters

psi = params_control.psi0;

R = params_control.r0;

Ydot = params_control.yd0;

http://www.mathworks.com/products/matlab

Active Helicopter Sling Load Stabilization MQP

89

Urud = params_control.rudder0;

phi2a = params_control.door_left0;

phi2b = params_control.door_right0;

theta = params_control.theta0;

phi = params_control.phi0;

V = params_control.V0;

%----- Sling-loaded cargo Parameters

mass = params_model.load.mass;

Wcc = params_model.load.width;

Lcc = params_model.load.length;

Hcc = params_model.load.height;

Ax = params_model.load.area_x;

Ay = params_model.load.area_y;

Az = params_model.load.area_z;

W_L = params_model.load.w_by_l;

Ixx = params_model.load.Ixx;

Iyy = params_model.load.Iyy;

Izz = params_model.load.Izz;

rho = params_simulation.rho_atm;

wuc = params_model.legs.C_wind_up;

%----- Pipe Parameters

pipe_height = params_model.pipes.height;

pipe_width = params_model.pipes.width;

pipe_length = params_model.pipes.length;

pipe_area = params_model.pipes.area;

door_widthr = params_model.pipes.door.length;

A_backdoor = params_model.pipes.door.area;

Spacer = params_model.pipes.door.loc;

%----- Rudder Parameters

H_rud = params_model.rudder.height;

L_rud = params_model.rudder.length;

A_rud = params_model.rudder.area;

Cl_0 = params_model.rudder.CL0;

Cd_0 = params_model.rudder.CD0;

R_rud = params_model.rudder.loc;

%----- Vertical stabilizer Parameters

H_vs = params_model.vstab.height;

L_vs = params_model.vstab.length;

A_vs = params_model.vstab.area;

R_vs = params_model.vstab.loc;

%----- A matrix

A_11 = 0;

Active Helicopter Sling Load Stabilization MQP

90

 % partial derivative of psidot with respect to psi

A_12 = 1;

 % partial derivative of psidot with respect to R

A_13 = 0;

 % partial derivative of psidot with respect to Ydot

A_21 = (1/Izz)*[...

 ((0.5*rho*V^2*Ay*Lcc)*[(-0.18*(1-(Wcc/Lcc)^2)*cos(2*psi)+0.16*(Wcc/Lcc)*cos(4*psi))*...

 cos(theta)+(0.15*((Wcc/Lcc)^2)*cos(2*(psi-pi/2)))*cos(phi)] + ...

 [(0.25*cos(psi))*cos(theta)^2])-(0.5*rho*V^2)*(Cl_0*A_rud*R_rud+Cl_0*A_vs*R_vs)+wuc];

%partial derivative of Rdot with respect to psi

A_22 = 0; %partial derivative of Rdot with respect to R

A_23 = 0; %partial derivative of Rdot with respect to Ydot

A_31 = (1/mass)*[(0.5*rho*Ay*(V^2))*(-

1.4*cos(psi)+2.5*cos(psi)*abs(cos(theta)^3))+(0.5*rho*V^2)*(Cl_0*A_rud+Cl_0*A_vs)]; %partial

derivative of Ydoubledot with respect to psi

A_32 = 0; %partial derivative of Ydoubledot with respect to R

A_33 = 0; %partial derivative of Ydoubledot with respect to Ydot

A = [A_11,A_12,A_13;...

 A_21,A_22,A_23;...

 A_31,A_32,A_33];

 %----- B Matrix

% 3 States psi, R, and Ydot. 5 Inputs Urud_0, U1a_0, U1b_0, U2a_0, U2b_0

A2 = rho*(V^2)*A_backdoor;

B2 = pipe_width;

C2 = pi/2;

D2 = (door_widthr/2+Spacer);

B_11 = 0; %partial derivitive of psidot with respect to Urud

B_12 = 0; %partial derivitive of psidot with respect to U2a

B_13 = 0; %partial derivitive of psidot with respect to U2b

B_21 = (1/Izz)*[-0.5*rho*(V^2)*A_rud*Cl_0*R_rud]; %partial derivitive of Rdot with respect to

Urud

if sqrt(sin(phi2a)^2+cos(phi2a)^2-2*cos(phi2a)+1) == 0

 B_22 = 0;

else

 B_22 = (1/Izz)*[(A2*sin(phi2a)^2*(B2*sin(C2-phi2a)-D2*cos(C2-

phi2a)))/sqrt(sin(phi2a)^2+cos(phi2a)^2-

2*cos(phi2a)+1)+A2*sin(phi2a)*sqrt(sin(phi2a)^2+cos(phi2a)^2-2*cos(phi2a)+1)*(-B2*cos(C2-phi2a)-

D2*sin(C2-phi2a))+A2*cos(phi2a)*sqrt(sin(phi2a)^2+cos(phi2a)^2-2*cos(phi2a)+1)*(B2*sin(C2-phi2a)-

D2*cos(C2-phi2a))]; %partial derivitive of Rdot with respect to U2a

end

if sqrt(sin(phi2b)^2+cos(phi2b)^2-2*cos(phi2b)+1) == 0

 B_23 = 0;

else

 B_23 = -(1/Izz)*[(A2*sin(phi2b)^2*(B2*sin(C2-phi2b)-D2*cos(C2-

phi2b)))/sqrt(sin(phi2b)^2+cos(phi2b)^2-

Active Helicopter Sling Load Stabilization MQP

91

2*cos(phi2b)+1)+A2*sin(phi2b)*sqrt(sin(phi2b)^2+cos(phi2b)^2-2*cos(phi2b)+1)*(-B2*cos(C2-phi2b)-

D2*sin(C2-phi2b))+A2*cos(phi2b)*sqrt(sin(phi2b)^2+cos(phi2b)^2-2*cos(phi2b)+1)*(B2*sin(C2-phi2b)-

D2*cos(C2-phi2b))]; %partial derivitive of Rdot with respect to U2b

end

B_31 = (1/mass)*[0.5*rho*(V^2)*A_rud*2*pi]; %partial derivitive of Ydoubledot with respect to

Urud

B_32 = -(1/mass)*[A2*2*sin(phi2a)*cos(phi2a)]; %partial derivitive of Ydoubledot with respect to

U2a

B_33 = (1/mass)*[A2*2*sin(phi2b)*cos(phi2b)]; %partial derivitive of Ydoubledot with respect to

U2b

B = [B_11,B_12,B_13;...

 B_21,B_22,B_23;...

 B_31,B_32,B_33];

%----- Solve for input alterations

Q = [1,0,0;...

 0,3.5,0;...

 0,0,3.5];

R = [10,0,0;...

 0,1,0;...

 0,0,1];

N = 0;

%----- Calculate LQR Gain K

K_lqr = lqr(A,B,Q,R,N);

Error using calc_lqr_gain (line 3)

Not enough input arguments.

Published with MATLAB® R2014b

Kalman Filter P Derivative Function

function P_dot = ODE_KALMAN_P(t, P, params_kalman_FILTER)

%Calculation of P as a function of time for ODE45

Define Filter Matricies

P_matrix = [P(1),P(2);P(3),P(4)];

A = params_kalman_FILTER.A;

B = params_kalman_FILTER.B;

C = params_kalman_FILTER.H;

R_w = params_kalman_FILTER.Q;

R_v = params_kalman_FILTER.R;

http://www.mathworks.com/products/matlab

Active Helicopter Sling Load Stabilization MQP

92

F = params_kalman_FILTER.F;

L = P_matrix*C'*inv(R_v);

Error using ODE_KALMAN_P (line 6)

Not enough input arguments.

Calculate P_dot

P_dot_matrix = A*P_matrix+P_matrix*A'-P_matrix*C'*inv(R_v)*C*P_matrix+F*R_w*F';

P_dot(1:2,1) = P_dot_matrix(1,1:2)';

P_dot(3:4,1) = P_dot_matrix(2,1:2)';

end

Published with MATLAB® R2014b

Yaw and Yaw Rate Kalman Filter Function

function Matrix = KalmanFilter_Yaw_R_cc(Desired_Matrix, params_kalman, params_control,

params_model, params_simulation)

%Kalman Filter For Active Control Helicopter Sling Load

Define Constants

mass = params_model.load.mass; % mass of the conex container (kg)

Wcc = params_model.load.width; % Width of the conex container (m)

Lcc = params_model.load.length; % Length of the conex container (m)

Hcc = params_model.load.height; % Height of the conex container (m)

V = params_simulation.V_freestream; % Velocity of the air flowing over the container in the -X

direction

rho = params_simulation.rho_atm; % Density of air (kg/m^3)

A_rud = params_model.rudder.area;

A_vs = params_model.vstab.area;

Cl_0 = params_model.rudder.CL0;

R_rud = params_model.rudder.loc;

R_vs = params_model.vstab.loc;

pipe_width = params_model.pipes.width;

door_widthr = params_model.pipes.door.length;

A_backdoor = params_model.pipes.door.area;

Spacer = params_model.pipes.door.loc;

psi = params_control.psi0;

theta = params_control.theta0;

phi = params_control.phi0;

http://www.mathworks.com/products/matlab

Active Helicopter Sling Load Stabilization MQP

93

Urud = params_control.rudder0;

phi2a = params_control.door_left0;

phi2b = params_control.door_right0;

Ay = Lcc * Hcc;

Ax = Hcc * Wcc;

Az = Wcc * Lcc;

Ixx = (1/12)*mass*(Wcc^2+Hcc^2);

Iyy = (1/12)*mass*(Hcc^2+Lcc^2);

Izz = (1/12)*mass*(Lcc^2+Wcc^2);

std_accel = params_kalman.std_accel;

std_mag = params_kalman.std_mag;

std_gyro = params_kalman.std_gyro;

FC = 0.5*rho*V^2; %Force Constant

Error using KalmanFilter_Yaw_R_cc (line 5)

Not enough input arguments.

Define Matricies

A Matrix

A_11 = 0; %partial derivitive of psidot with respect to psi

A_12 = 1; %partial derivitive of psidot with respect to R

%partial derivitive of Rdot with respect to psi

A_21 = (-1/Izz)*[((0.5*rho*V^2*Ay*Lcc)*[(-0.18*(1-(Wcc/Lcc)^2)*cos(2*psi)...

 +0.16*(Wcc/Lcc)*cos(4*psi))*cos(theta)+(0.15*((Wcc/Lcc)^2)*...

 cos(2*(psi-pi/2)))*cos(phi)]+[(0.25*cos(psi))*cos(theta)^2])-...

 (0.5*rho*V^2)*(Cl_0*A_rud*R_rud+Cl_0*A_vs*R_vs)]; %+wuc];

A_22 = 0; %partial derivitive of Rdot with respect to R

A = [A_11,A_12;...

 A_21,A_22];

% B Matrix

A2 = rho*(V^2)*A_backdoor;

B2 = pipe_width;

C2 = pi/2;

D2 = (door_widthr/2+Spacer);

B_11 = 0; %partial derivitive of psidot with respect to Urud

B_12 = 0; %partial derivitive of psidot with respect to U2a

B_13 = 0; %partial derivitive of psidot with respect to U2b

%partial derivitive of Rdot with respect to Urud

Active Helicopter Sling Load Stabilization MQP

94

B_21 = (1/Izz)*[-0.5*rho*(V^2)*A_rud*2*pi*R_rud];

%partial derivitive of Rdot with respect to U2a

B_22 = (1/Izz)*[(A2*sin(phi2a)^2*(B2*sin(C2-phi2a)-D2*cos(C2-phi2a)))/...

 sqrt(sin(phi2a)^2+cos(phi2a)^2-2*cos(phi2a)+1)+A2*sin(phi2a)*...

 sqrt(sin(phi2a)^2+cos(phi2a)^2-2*cos(phi2a)+1)*(-B2*cos(C2-phi2a)-...

 D2*sin(C2-phi2a))+A2*cos(phi2a)*sqrt(sin(phi2a)^2+cos(phi2a)^2-...

 2*cos(phi2a)+1)*(B2*sin(C2-phi2a)-D2*cos(C2-phi2a))];

%partial derivitive of Rdot with respect to U2b

B_23 = -(1/Izz)*[(A2*sin(phi2b)^2*(B2*sin(C2-phi2b)-D2*cos(C2-phi2b)))/...

 sqrt(sin(phi2b)^2+cos(phi2b)^2-2*cos(phi2b)+1)+A2*sin(phi2b)*...

 sqrt(sin(phi2b)^2+cos(phi2b)^2-2*cos(phi2b)+1)*(-B2*cos(C2-phi2b)-...

 D2*sin(C2-phi2b))+A2*cos(phi2b)*sqrt(sin(phi2b)^2+cos(phi2b)^2-...

 2*cos(phi2b)+1)*(B2*sin(C2-phi2b)-D2*cos(C2-phi2b))];

B = [B_11,B_12,B_13;...

 B_21,B_22,B_23];

% H Matrix

H = [1,0;...

 0,1];

% Q Matrix

Q = [0,0;...

 0,0];

% R Matrix

R = [std_mag,0;...

 0,std_gyro];

% % P Matrix

%

% A_re = A';

% B_re = H'*inv(R)*H;

% C_re = Q;

% P = are(A_re,B_re,C_re);

% K Mtarix (gain)

% K = P*H'*inv(R);

Matricies

if strcmp(Desired_Matrix, 'A')

 Matrix = A;

elseif strcmp(Desired_Matrix, 'B')

 Matrix = B;

elseif strcmp(Desired_Matrix, 'H')

Active Helicopter Sling Load Stabilization MQP

95

 Matrix = H;

elseif strcmp(Desired_Matrix, 'Q')

 Matrix = Q;

elseif strcmp(Desired_Matrix, 'R')

 Matrix = R;

else

 Matrix = 0;

end

end

Published with MATLAB® R2014b

Roll and Sway Velocity Kalman Filter Function

function Matrix = KalmanFilter_v_phi_cc(Desired_Matrix, params_kalman)

%Kalman Filter For Active Control Helicopter Sling Load

Define Constants

L = params_kalman.L;

std_accel = params_kalman.std_accel;

std_mag = params_kalman.std_mag;

std_gyro = params_kalman.std_gyro;

Error using KalmanFilter_v_phi_cc (line 6)

Not enough input arguments.

Define Matricies

% A Matrix

A_11 = 0; %partial derivitive of phidot with respect to phi

A_12 = 1/L; %partial derivitive of phidot with respect to v

A_21 = 0; %partial derivitive of vdot with respect to phi

A_22 = 0; %partial derivitive of vdot with respect to v

A = [A_11,A_12;...

 A_21,A_22];

% B Matrix

B_11 = 0; %partial derivitive of phidot with respect to A

B_21 = 1; %partial derivitive of vdot with respect to A

http://www.mathworks.com/products/matlab

Active Helicopter Sling Load Stabilization MQP

96

B = [B_11;...

 B_21];

% H Matrix

H = [1,0;...

 0,1/L];

% Q Matrix

Q = [0,0;...

 0,std_accel^2];

% R Matrix

R = [std_mag,0;...

 0,std_gyro];

% % P Matrix

%

% A_re = A';

% B_re = H'*inv(R)*H;

% C_re = Q;

% P = are(A_re,B_re,C_re);

% K Mtarix (gain)

% K = P*H'*inv(R);

Matricies

if strcmp(Desired_Matrix, 'A')

 Matrix = A;

elseif strcmp(Desired_Matrix, 'B')

 Matrix = B;

elseif strcmp(Desired_Matrix, 'H')

 Matrix = H;

elseif strcmp(Desired_Matrix, 'Q')

 Matrix = Q;

elseif strcmp(Desired_Matrix, 'R')

 Matrix = R;

else

 Matrix = 0;

end

end

Published with MATLAB® R2014b

http://www.mathworks.com/products/matlab

Active Helicopter Sling Load Stabilization MQP

97

Appendix D: ARDUINO DUE Control Code

Code

// WPI ACTIVE HELICOPTER SLING LOAD MQP

// ACTIVE CONTROL SCHEME FOR SPARTA SYSTEM

// MADE FOR ARDUINO DUE

// ===

=======================================

// I2C Library

#include <Wire.h>

// Sensor Library

#include <Adafruit_Sensor.h>

// Accelerometer & Magnetometer

#include <Adafruit_LSM303_U.h>

// Gyroscope

#include <Adafruit_L3GD20_U.h>

// IMU API

#include <Adafruit_9DOF.h>

// Servo Library

#include <Servo.h>

// Create Servo Objects

Servo leftcontrol; // Left Door Servo

Servo rightcontrol; // Right Door Servo

Servo ruddercontrol; // Rudder Servo

Active Helicopter Sling Load Stabilization MQP

98

// Assign a unique ID to the sensors

Adafruit_LSM303_Accel_Unified accel = Adafruit_LSM303_Accel_Unified(30301);

Adafruit_LSM303_Mag_Unified mag = Adafruit_LSM303_Mag_Unified(30302);

Adafruit_L3GD20_Unified gyro = Adafruit_L3GD20_Unified(20);

Adafruit_9DOF dof = Adafruit_9DOF();

// ===

======================================

// DECLARE AND/OR DEFINE VARIABLES

// Initial State Setup

int psi0 = 0;

int r0 = 0;

int vdot0 = 0;

// Left Door Initial Setup

double k21 = 0.014214081337476;

double k22 = 0.030863696983994;

double k23 = -0.047156356256757;

int posleftc0 = 15; // Initial Position

// Right Door Initial Setup

Active Helicopter Sling Load Stabilization MQP

99

double k31 = -0.014214081337476;

double k32 = -0.030863696983994;

double k33 = 0.047156356256757;

int posrightc0 = 15; // Initial Position

// Rudder Initial Setup

double k11 = -5.937456420108622;

double k12 = -1.113428092780142;

double k13 = -0.997773800081550;

int posrudderc0 = 0; // Initial Position

// Servo Position Offsets based on current setup

int posrudderchard = 60; // Rudder

int posleftchard = 180; // Left Door

int posrightchard = 0; // Right Door

// Max Actuation positions with respect to servo position offsets

int maxrudder1 = posrudderchard + 40; // Rudder Direction 1

int maxrudder2 = posrudderchard - 40; // Rudder Direction 2

int maxleftd = posleftchard - 30; // Left Door

int maxrightd = posrightchard + 30; // Right Door

Active Helicopter Sling Load Stabilization MQP

100

// IMU Value Varibles (Necessary for debugging and or viewing in serial monitor)

//// create acceleration (x, y, z) variables

//double accelx;

//double accely;

//double accelz;

//

//// create angular rate (x, y, z) variables

//double gyrox;

//double gyroy;

//double gyroz;

//

//// create magnetic field (x, y, z) variables

//double magx;

//double magy;

//double magz;

int posleftc, posrightc, posrudderc; // Declare control law position variables for Rudder, Left and

Right doors

double yaw_est, x_ang_v, z_ang_v; // decalre yaw, x-axis angular velocity, and y-axis angular

velocity variables (used in control laws)

double heading; // Declare heading variable

double initorientation; // Decalre initial orientation variable

double H = 0.476; // Parameter for control laws

Active Helicopter Sling Load Stabilization MQP

101

int finalposrudder, finalposleftc, finalposrightc; // Declare Final Position variables for Rudder,

Left and Right doors

// Create Data String for Printing to Serial Monitor (Used for viewing real-

time values and debugging)

// String dataString;

// ===

======================================

// Initial Setup (Only Run Once)

void setup() {

 // Open Serial Monitor Communication at an 115200 baud rate (Only necessary for reading

real-time values or debugging)

 // Serial.begin(115200);

 // =====================

 // ACCEL

 // Enable auto-ranging

 accel.enableAutoRange(true);

 if (!accel.begin())

 {

 // There was a problem detecting the ADXL345 ... check your connections

 // Serial.println(F("Ooops, no LSM303 detected ... Check your wiring!"));

 while (1);

Active Helicopter Sling Load Stabilization MQP

102

 }

 // ACCEL END

 // MAG

 // Enable auto-ranging

 mag.enableAutoRange(true);

 if (!mag.begin())

 {

 // There was a problem detecting the LSM303 ... check your connections

 // Serial.println("Ooops, no LSM303 detected ... Check your wiring!");

 while (1);

 }

 // MAG END

 // GYRO

 // Enable auto-ranging

 gyro.enableAutoRange(true);

 if (!gyro.begin())

 {

 // There was a problem detecting the L3GD20 ... check your connections

 // Serial.print("Ooops, no L3GD20 detected ... Check your wiring or I2C ADDR!");

 while (1);

 }

 // GYRO END

 // =====================

Active Helicopter Sling Load Stabilization MQP

103

 // Attatch Servos to Arduino

 leftcontrol.attach(5); // Arduino I/O 5 with PWM

 rightcontrol.attach(6); // Arduino I/O 6 with PWM

 ruddercontrol.attach(7); // Arduino I/O 7 with PWM

 // ==========================

 // Send servos to their initial positions

 ruddercontrol.write(posrudderc0);

 rightcontrol.write(posrightc0);

 leftcontrol.write(posleftc0);

 // Get a new sensor event

 sensors_event_t event;

 // read mag and accel

 sensors_event_t accel_event;

 sensors_event_t mag_event;

 sensors_vec_t orientation;

 // Update events

 accel.getEvent(&accel_event);

 mag.getEvent(&mag_event);

 // Sets reference "zero" heading point based on current tilt compesated heading

Active Helicopter Sling Load Stabilization MQP

104

 if (dof.magTiltCompensation(SENSOR_AXIS_Z, &mag_event, &accel_event))

 {

 if (dof.magGetOrientation(SENSOR_AXIS_Z, &mag_event, &orientation))

 {

 initorientation = orientation.heading; // Define Initial Orientation

 }

 }

}

// ===

=======================================

// Control Loop (Run Continously after initial setup)

void loop() {

 // Get a new sensor event

 sensors_event_t event;

 // read mag and accel

 sensors_event_t accel_event;

 sensors_event_t mag_event;

 sensors_vec_t orientation;

 // read sensors and append data to the string:

 gyro.getEvent(&event);

 // assign angular rate (x, z) variables

Active Helicopter Sling Load Stabilization MQP

105

 z_ang_v = event.gyro.z ;

 x_ang_v = event.gyro.x ;

 // append angular rates to datastring

 // dataString += String(gyrox);

 // dataString += ", rad/s (x), ";

 // dataString += String(gyroz);

 // dataString += ", rad/s (z), ";

 // Update events

 accel.getEvent(&accel_event);

 mag.getEvent(&mag_event);

 // Use tilt compesated heading in order to calculate yaw angle

 if (dof.magTiltCompensation(SENSOR_AXIS_Z, &mag_event, &accel_event))

 {

 if (dof.magGetOrientation(SENSOR_AXIS_Z, &mag_event, &orientation))

 {

 heading = orientation.heading; // Define Heading

 yaw_est = (heading - initorientation); // Calculate Yaw

 }

 }

 // dataString += "Heading, ";

 // dataString += String(heading);

 // dataString += ", Yaw, ";

 // dataString += String(yaw_est);

Active Helicopter Sling Load Stabilization MQP

106

 // *** CONTROL LAWS***

 posleftc = posleftc0 + yaw_est * k21 + z_ang_v * k22 + H * x_ang_v * k23;

 posrightc = posrightc0 + yaw_est * k31 + z_ang_v * k32 + H * x_ang_v * k33;

 posrudderc = posrudderc0 + yaw_est * k11 + z_ang_v * k12 + H * x_ang_v * k13;

 // Calculate position of servos based on control law values and servo positioning offsets

 finalposrudder = posrudderchard + posrudderc;

 finalposleftc = posleftchard - posleftc;

 finalposrightc = posrightchard + posrightc;

 // Prevents rudder from actuating more than 40 degrees in either direction

 // ELSE: The rudder is commanded to go to calculated positon

 if (finalposrudder > maxrudder1 || finalposrudder < maxrudder2)

 {

 // Do Nothing

 }

 else

 {

 ruddercontrol.write(finalposrudder); // Send sevo to calculated position

 }

 // Prevents left door from actuating more than 30 degrees

 // ELSE: The left door is commanded to go to calculated positon

 if (finalposleftc < maxleftd)

 {

Active Helicopter Sling Load Stabilization MQP

107

 // Do Nothing

 }

 else

 {

 leftcontrol.write(finalposleftc); // Send sevo to calculated position

 }

 // Prevents right door from actuating more than 30 degrees

 // ELSE: The right door is commanded to go to calculated positon

 if (finalposrightc > maxrightd)

 {

 // Do Nothing

 }

 else

 {

 rightcontrol.write(finalposrightc); // Send sevo to calculated position

 }

 // dataString += ", C.L. Rudder Pos, ";

 // dataString += String(posrudderc);

 // dataString += ", Rudder Pos, ";

 // dataString += String(finalposrudder);

 // dataString += ", Left Door Pos, ";

 // dataString += String(finalposleftc);

 // dataString += ", RightDoor Pos, ";

 // dataString += String(finalposrightc);

Active Helicopter Sling Load Stabilization MQP

108

 // Print DataString to Serial Monitor

 // Serial.println(dataString);

 // Insert Delay of control loop, if necessary

 // delay(100);

}

Final Hardware Setup Reference

The Left Door Servo data wire is hooked up to I/O 5 (PWM)

The Right Door Servo data wire is hooked up to I/O 6 (PWM)

The Rudder Servo data wire is hooked up to I/O 7 (PWM)

The IMU is hooked up using the TWI (Two Wire Interface) and a 5V input from the Arduino

The SD card is not used in the final prototype setup. However, it is connected using the SPI

communication interface on the Arduino and I/O 10.

Active Helicopter Sling Load Stabilization MQP

109

Appendix E: ARDUINO DUE SD Card IMU Data-logging Code
[code]

// WPI ACTIVE HELICOPTER SLING LOAD MQP

// SD CARD IMU DATALOGGING

// MADE FOR ARDUINO DUE

// Measures Inertial Acceleration (m/s
2
) in 3 Axes (x,y,z), Angular Rates (rad/s) in 3 Axes, and

Magnetic Field (µT) in 3 Axes, and time since start. Calculates heading angle, roll angle, and

pitch angle. Records all data to a ‘datalog.txt’ file on any SD card.

// ===

=======================================

// I2C Library

#include <Wire.h>

// Sensor Library

#include <Adafruit_Sensor.h>

// Accelerometer & Magnetometer

#include <Adafruit_LSM303_U.h>

// Gyroscope

#include <Adafruit_L3GD20_U.h>

// IMU API

#include <Adafruit_9DOF.h>

// SPI Library

#include <SPI.h>

// SD Card Library

#include <SD.h>

// SD Card Setup

// On the Ethernet Shield, CS is pin 4. Note that even if it's not

// used as the CS pin, the hardware CS pin (10 on most Arduino boards,

Active Helicopter Sling Load Stabilization MQP

110

// 53 on the Mega) must be left as an output or the SD library

// functions will not work.

const int chipSelect = 10;

// SD Card Setup END

// Assign a unique ID to the sensors

Adafruit_LSM303_Accel_Unified accel = Adafruit_LSM303_Accel_Unified(30301);

Adafruit_LSM303_Mag_Unified mag = Adafruit_LSM303_Mag_Unified(30302);

Adafruit_L3GD20_Unified gyro = Adafruit_L3GD20_Unified(20);

Adafruit_9DOF dof = Adafruit_9DOF();

// ===

======================================

void displaySensorDetails(void)

{

 sensor_t sensor;

 accel.getSensor(&sensor);

 Serial.println(F("----------- ACCELEROMETER ----------"));

 Serial.print (F("Sensor: ")); Serial.println(sensor.name);

 Serial.print (F("Driver Ver: ")); Serial.println(sensor.version);

 Serial.print (F("Unique ID: ")); Serial.println(sensor.sensor_id);

 Serial.print (F("Max Value: ")); Serial.print(sensor.max_value); Serial.println(F(" m/s^2"));

 Serial.print (F("Min Value: ")); Serial.print(sensor.min_value); Serial.println(F(" m/s^2"));

 Serial.print (F("Resolution: ")); Serial.print(sensor.resolution); Serial.println(F(" m/s^2"));

 Serial.println(F("------------------------------------"));

 Serial.println(F(""));

Active Helicopter Sling Load Stabilization MQP

111

 gyro.getSensor(&sensor);

 Serial.println(F("------------- GYROSCOPE -----------"));

 Serial.print (F("Sensor: ")); Serial.println(sensor.name);

 Serial.print (F("Driver Ver: ")); Serial.println(sensor.version);

 Serial.print (F("Unique ID: ")); Serial.println(sensor.sensor_id);

 Serial.print (F("Max Value: ")); Serial.print(sensor.max_value); Serial.println(F(" rad/s"));

 Serial.print (F("Min Value: ")); Serial.print(sensor.min_value); Serial.println(F(" rad/s"));

 Serial.print (F("Resolution: ")); Serial.print(sensor.resolution); Serial.println(F(" rad/s"));

 Serial.println(F("------------------------------------"));

 Serial.println(F(""));

 mag.getSensor(&sensor);

 Serial.println(F("----------- MAGNETOMETER -----------"));

 Serial.print (F("Sensor: ")); Serial.println(sensor.name);

 Serial.print (F("Driver Ver: ")); Serial.println(sensor.version);

 Serial.print (F("Unique ID: ")); Serial.println(sensor.sensor_id);

 Serial.print (F("Max Value: ")); Serial.print(sensor.max_value); Serial.println(F(" uT"));

 Serial.print (F("Min Value: ")); Serial.print(sensor.min_value); Serial.println(F(" uT"));

 Serial.print (F("Resolution: ")); Serial.print(sensor.resolution); Serial.println(F(" uT"));

 Serial.println(F("------------------------------------"));

 Serial.println(F(""));

 delay(500);

}

// ===

=======================================

Active Helicopter Sling Load Stabilization MQP

112

void setup() {

 Serial.begin(115200);

 Serial.println(F("AHSL")); Serial.println("");

 // SD Card Setup

 Serial.print("Initializing SD card...");

 // make sure that the default chip select pin is set to

 // output, even if you don't use it:

 pinMode(10, OUTPUT);

 // see if the card is present and can be initialized:

 if (!SD.begin(chipSelect)) {

 Serial.println("Card failed, or not present");

 // don't do anything more:

 return;

 }

 Serial.println("card initialized.");

 // SD Card Setup END

 // Initialise the sensors

 // ACCEL

 // Enable auto-ranging

 accel.enableAutoRange(true);

Active Helicopter Sling Load Stabilization MQP

113

 if (!accel.begin())

 {

 // There was a problem detecting the ADXL345 ... check your connections

 Serial.println(F("Ooops, no LSM303 detected ... Check your wiring!"));

 while (1);

 }

 // ACCEL END

 // MAG

 // Enable auto-ranging

 mag.enableAutoRange(true);

 if (!mag.begin())

 {

 // There was a problem detecting the LSM303 ... check your connections

 Serial.println("Ooops, no LSM303 detected ... Check your wiring!");

 while (1);

 }

 // MAG END

 // GYRO

 // Enable auto-ranging

 gyro.enableAutoRange(true);

 if (!gyro.begin())

 {

Active Helicopter Sling Load Stabilization MQP

114

 // There was a problem detecting the L3GD20 ... check your connections

 Serial.print("Ooops, no L3GD20 detected ... Check your wiring or I2C ADDR!");

 while (1);

 }

 // GYRO END

 // Display some basic information on this sensor

 displaySensorDetails();

}

// ===

=======================================

void loop() {

 // Get a new sensor event

 sensors_event_t event;

 // make a string for assembling the data to log:

 String dataString = "";

 // Setup Timestamp

 double currentMillis = millis();

 double timestamp = currentMillis / 1000;

 // read sensors and append data to the string:

Active Helicopter Sling Load Stabilization MQP

115

 accel.getEvent(&event);

 // create acceleration (x, y, z) variables

 double accelx = event.acceleration.x ;

 double accely = event.acceleration.y ;

 double accelz = event.acceleration.z ;

 // append accelerations to datastring

 dataString += String(accelx);

 dataString += ", m/s^2 (x), ";

 dataString += String(accely);

 dataString += ", m/s^2 (y), ";

 dataString += String(accelz);

 dataString += ", m/s^2 (z), ";

 // read sensors and append data to the string:

 gyro.getEvent(&event);

 // create angular rate (x, y, z) variables

 double gyrox = event.gyro.x ;

 double gyroy = event.gyro.y ;

 double gyroz = event.gyro.z ;

 // append angular rates to datastring

 dataString += String(gyrox);

 dataString += ", rad/s (x), ";

 dataString += String(gyroy);

 dataString += ", rad/s (y), ";

Active Helicopter Sling Load Stabilization MQP

116

 dataString += String(gyroz);

 dataString += ", rad/s (z), ";

 // read sensors and append data to the string:

 mag.getEvent(&event);

 // create magnetic field (x, y, z) variables

 double magx = event.magnetic.x ;

 double magy = event.magnetic.y ;

 double magz = event.magnetic.z ;

 // append magnetic field values to datastring

 dataString += String(magx) ;

 dataString += ", uT (x), " ;

 dataString += String(magy) ;

 dataString += ", uT (y), " ;

 dataString += String(magz) ;

 dataString += ", uT (z), " ;

 // read mag and accel

 sensors_event_t accel_event;

 sensors_event_t mag_event;

 sensors_vec_t orientation;

 // // append attitude and heading variables to datastring

 // /* Calculate pitch and roll from the raw accelerometer data */

 // accel.getEvent(&accel_event);

 // mag.getEvent(&mag_event);

Active Helicopter Sling Load Stabilization MQP

117

 //

 //

 // MAG HEADING WITH ACCEL (INCLINO) PITCH COMPENSATION

 // read mag and accel data

 accel.getEvent(&accel_event);

 mag.getEvent(&mag_event);

 //// create tilt compensated heading

 //double truehead;

 // tilt compensation

 if (dof.magTiltCompensation(SENSOR_AXIS_Z, &mag_event, &accel_event))

 {

 // Do something with the compensated data in mag_event!

 if (dof.fusionGetOrientation(&accel_event, &mag_event, &orientation))

 {

 dataString += String(orientation.roll) ;

 dataString += ", roll angle, " ;

 dataString += String(orientation.pitch) ;

 dataString += ", pitch angle, " ;

 dataString += String(orientation.heading) ;

 dataString += ", heading angle, " ;

 }

 }

Active Helicopter Sling Load Stabilization MQP

118

 // append measurement second timestand to datastring

 dataString += String(timestamp);

 dataString += " , seconds";

 //// Delay .015 seconds

 //delay(15);

 // open the file. note that only one file can be open at a time,

 // so you have to close this one before opening another.

 File dataFile = SD.open("datalog.txt", FILE_WRITE);

 // if the file is available, write to it:

 if (dataFile) {

 dataFile.println(dataString);

 dataFile.close();

 // print to the serial port too:

 Serial.println(dataString);

 }

 // if the file isn't open, pop up an error:

 else {

 Serial.println("error opening datalog.txt");

 }

 delay (500);

}

Active Helicopter Sling Load Stabilization MQP

119

[/code]

Active Helicopter Sling Load Stabilization MQP

120

Appendix F: Pipes And Rudder Calculations MATLAB Code

Information

%This program was created for the Active Sling Load Stabilization MQP at

%Worcester Polytechnic Institute. With inputs of freestream velocity,

%dimensions, and door angles, it calculates the theoretical forces and

%moments caused by the "Pipes" design.

close all; clear all; clc

Conversion Factors and Scaling

s = 1;

; %scaling factor

convert = 0; %switch for conversion

if convert == 1

 n2lbf = 0.224808943871; %conversion factor from Newtons to Pound-force

 m2in = 39.3701; %convert m to in

 nm2lbfin = 0.005710147162769201; %conversion factor from Newton-meters to Pound-force-inches

else

 n2lbf = 1;

 m2in = 1;

 nm2lbfin = 1;

end

Inputs

%Pipe Constants

rho = 1.225; %density of air

if s==1

 V = 30.87; %freestream velocity

else

 V = 12.7;

end

door_height = 0.402/s; %height of door

door_widthf = 0.800/s; %width of front door

door_widthr = 1.000/s; %width of rear door

phi = 0:0.01:50; %door angle from vertical (clockwise from 12)

%Vertical Stabilizer Constants

aoa = 0:0.01:45; %angle of attack of VS and rudder in degrees

aoar = aoa*(pi/180); %... in radians

vs_root_chord = .7/s; %vertical stabilizer root chord

vs_tip_chord = 0/s; %vertical stabilizer tip chord

vs_span = .6/s; %vertical stabilizer span

%Rudder Constants

rd_chord =.5/s; %rudder chord

Active Helicopter Sling Load Stabilization MQP

121

rd_span =.6/s; %rudder span

% Container Dimensions

L = 2.4384/s; %length of TRICON (m)

W = 1.9812/s; %width of TRICON (m)

H = 2.4384/s; %height of TRICON (m)

Pipe Equations

%Geometry

pipe_width = (0.787-0.04)/s; %width of pipes

Spacef = (1.143/s)-door_widthf; %space between front doors and cm

Spacer = (1.143/s)-door_widthr; %space between rear doors and cm

A_ef = door_height*door_widthf; %area of front door

A_er = door_height*door_widthr; %area of rear door

C_d = 2*sin((pi/180)*phi).*sin((pi/180)*phi); %drag coeff vs. door angle from

http://mekside.com/wings-redux/

A_if = A_ef.*(sin((pi/180)*phi)); %capture area of front door

A_ir = A_er.*(sin((pi/180)*phi)); %capture area of rear door

%Force Equations

Df = n2lbf*0.5*rho*(V^2)*C_d.*A_if; %drag force due to

seperated flow (front door)

Dr = n2lbf*0.5*rho*(V^2)*C_d.*A_ir; %drag force due to

seperated flow (rear door)

F_yf = n2lbf*rho*(V^2)*(sin((pi/180)*phi)).*sin((pi/180)*phi)*A_ef; %restoring (y) force

(FRONT)

F_xf = -n2lbf*rho*(V^2).*A_if.*(1-cos((pi/180)*phi)); %attached flow (x) force

for small angles of attack (<20 degrees) (FRONT)

F_xxf = -n2lbf*rho*(V^2).*A_if.*(1-cos((pi/180)*phi))-Df; %attached flow (x) force

for all angles (drag included - estimate)(FRONT)

F_yr = n2lbf*rho*(V^2)*(sin((pi/180)*phi)).*sin((pi/180)*phi)*A_er; %restoring (y) force

(REAR)

F_xr = -n2lbf*rho*(V^2).*A_ir.*(1-cos((pi/180)*phi)); %attached flow (x) force

for small angles of attack (<20 degrees)(REAR)

F_xxr = -n2lbf*rho*(V^2).*A_ir.*(1-cos((pi/180)*phi))-Dr; %attached flow (x) force

for all angles (drag included - estimate)(REAR)

%Moment Arm Equations

BTWr = (door_widthr/2+Spacer)./(tan((pi/180).*(90-phi))); %intermediate calculation of Big

Triangle Width (rear door)

HYPf = sqrt((pipe_width.^2)+((door_widthf/2+Spacef).^2)); %intermediate calculation of

Hypotenuse of Big Triangle (front door)

psi = acosd(pipe_width/HYPf); %intermediate calculation of

extra angle psi (front door)

HYPr = pipe_width-BTWr; %intermediate calculation of

Hypotenuse of Smaller Triangle (rear door)

theta = 180-(90-phi)-psi; %intermediate calculation of

extra angle theta (front door)

r_f = HYPf.*sin((pi/180)*theta); %moment arm of FRONT door

angular momentum

r_r = HYPr.*sin((pi/180)*(90-phi)); %moment arm of REAR door angular

Active Helicopter Sling Load Stabilization MQP

122

momentum

%Left Side Moments

M_1_a = nm2lbfin*sqrt(F_xf.^2+F_yf.^2).*(m2in*r_f); %door 1A moment of angular momentum

M_3_a = nm2lbfin*sqrt(F_xr.^2+F_yr.^2).*(m2in*r_r); %door 3A moment of angular momentum

M_1_ad = nm2lbfin*sqrt(F_xxf.^2+F_yf.^2).*(m2in*r_f); %door 1A moment of angular momentum

(attached + seperated flow)

M_3_ad = nm2lbfin*sqrt(F_xxr.^2+F_yr.^2).*(m2in*r_r); %door 3A moment of angular momentum

(attached + seperated flow)

%Right Side Moments

M_1_b = -nm2lbfin*sqrt(F_xf.^2+F_yf.^2).*(m2in*r_f); %door 1B moment of angular momentum

M_3_b = -nm2lbfin*sqrt(F_xr.^2+F_yr.^2).*(m2in*r_r); %door 3B moment of angular momentum

M_1_bd = -nm2lbfin*sqrt(F_xxf.^2+F_yf.^2).*(m2in*r_f); %door 1B moment of angular momentum

M_3_bd = -nm2lbfin*sqrt(F_xxr.^2+F_yr.^2).*(m2in*r_r); %door 3B moment of angular momentum

Vertical Stabilizer and Rudder Equations

A = vs_root_chord; %same as vs_root_chord

B = vs_tip_chord; %same as vs_tip_chord

a_vs = 0.5*vs_span*vs_root_chord; %area of vertical stabilizer

a_rd = rd_chord*rd_span; %area of rudder

MAC = A-(2*(A-B)*(0.5*A+B) / (3*(A+B))); %mean aerodynamic chord

QMAC = MAC*0.25; %quarter-chord mean aerodynamic chord

Cd = 1.28*sin(aoar); %drag coefficient

Cl = 2*pi*aoar; %lift coefficient

%Drag & Lift Forces

Drag_vs = 0.5*rho*(V^2)*a_vs*Cd; %drag force from vertical stabilizer

Drag_rd = 0.5*rho*(V^2)*a_rd*Cd; %drag force from rudder

Lift_vs = 0.5*rho*(V^2)*a_vs*Cl; %lift force from vertical stabilizer

Lift_rd = 0.5*rho*(V^2)*a_rd*Cl; %lift force from rudder

%Moment Arms

r_rd = (0.5*L); %moment arm of rudder

r_vs = (0.5*L)-(0.25*rd_chord)-(0.75*MAC); %moment arm of vertical stabilizer

%Moments

Moment_vs = r_vs*Lift_vs; %moment caused by vertical stabilizer

Moment_rd = r_rd*Lift_rd; %moment caused by rudder

Plotting

%Note: x points downwards, y points to the left, z points upwards

figure

subplot(2,2,1)

plot(phi,-F_yr,phi,F_xr,phi,F_xxr,':',phi,0,':') %F_y reaction force points to the right (-)

title('Left Rear Door Forces as a Function of Door Angle \phi');

xlabel('\phi (deg)');

if convert == 1

Active Helicopter Sling Load Stabilization MQP

123

 ylabel('Force (lbf)');

else

 ylabel('Force (N)');

end

legend('F_y','F_a_t_t_a_c_h_e_d','F_a_t_t_a_c_h_e_d_+_s_e_p_e_r_a_t_e_d','Location','southwest');

subplot(2,2,3)

plot(phi,M_1_a,phi,M_3_a,phi,M_1_ad,':',phi,M_3_ad,':')

title('Left Side Pipe Moments as a Function of Door Angle \phi');

xlabel('\phi (deg)');

if convert ==1

 ylabel('Moment (lbf*in)');

else

 ylabel('Moment (N*m)');

end

legend('M_1_a','M_3_a','Location','northwest');

subplot(2,2,2)

plot(aoa,Lift_vs,aoa,Drag_vs,aoa,Lift_rd,aoa,Drag_rd)

title('Vertical Stabilizer and Rudder Forces')

xlabel({'Angle of Incidence (Deg)'});

ylabel({'Force (N)'});

legend('VS Lift','VS Drag','Rudder Lift','Rudder Drag','Location','northwest');

xlim([0,45]);

subplot(2,2,4)

plot(aoa,Moment_vs,aoa,Moment_rd)

title('Vertical Stabilizer and Rudder Moments')

xlabel({'Angle of Incidence (Degrees)'});

ylabel({'Moment (N*m)'});

legend('VS','Rudder','Location','northwest');

xlim([0,45]);

Active Helicopter Sling Load Stabilization MQP

124

Published with MATLAB® R2014b

Works Cited
Army, D. o. t. (2009a). Multiservice Helicopter Sling Load: Dual-Point Load Rigging

Procedures: Department of the Army.

Army, D. o. t. (2009b). Multiservice Helicopter Sling Load: Single-Point Load Rigging

Procedures: Department of the Army.

Army UH-72 Flight Limitations (EC-145/BK 117 C-2). (2000).

Cicolani, L., Cone, A., Theron, J., Robinson, D., Lusardi, J., Tischler, M., . . . Raz, R. (2009).

Flight Test and Simulation of a Cargo Container Slung Load in Forward Flight Journal of

the American Helicopter Society, 54.

CMCI. (2011). Tricons. Retrieved October 14, 2014, 2014, from

http://www.cmci.com/Tricons.aspx

Greenwell, D. I. (2011). Modelling of static aerodynamics of helicopter underslung loads. The

Aeronautical Journal, 115(1166).

McCoy, A. (1998). Flight Testing and Real-Time System Identification Analysis of a UH-60A

Black Hawk Helicopter With an Instrumented External Sling Load Ames Research

Center.

Nyren, D. (2013). Innovated Concepts for Passively Increasing the Stability of Helicopter Sling

Load Payloads: Worcester Polytechnic Institute.

http://www.mathworks.com/products/matlab
http://www.cmci.com/Tricons.aspx

Active Helicopter Sling Load Stabilization MQP

125

Potter, J., Singhose, W., & Costello, M. (2011). Reducing Swing of Model Helicopter Sling Load

Using Input Shaping. Paper presented at the 9th IEEE International Conference on

Control and Automation (ICCA), Santiago, Chile.

Murray, R. M. (2010). Optimization-Based Control: California Institute of Technology

