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Abstract 

Helicopter sling loads are widely used for cargo delivery by the military, but are inherently 

unstable in flight, which is hazardous. This project designed the SPARTA system to stabilize 

sling loads using active control methods by redirecting airflow over the sling load using a rudder 

and pipes with control vents, to create stabilizing forces and moments. This project involved 

mathematical modeling, simulation, and wind-tunnel testing of the SPARTA system for a 1/17 

scale standard sling load cargo container. Stabilization of yaw motion and lateral sway motion of 

the sling load were investigated using the LQR control algorithm. An Arduino microcontroller 

was used to collect measurements and to actuate the control surfaces with servomotors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Certain materials are included under the fair use exemption of the U.S. Copyright Law and 

have been prepared according to the fair use guidelines and are restricted from further use." 



Active Helicopter Sling Load Stabilization MQP 

2 

 

Contents 
Acknowledgements ......................................................................................................................... 7 

Table of Authorship ........................................................................................................................ 8 

CHAPTER 1: INTRODUCTION ................................................................................................... 9 

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW ............................................... 11 

2.1 Helicopter Sling Loads ....................................................................................................... 11 

2.2 CONEX and TRICON Containers ...................................................................................... 12 

2.3 Bluff Body Aerodynamics and Stability Issues .................................................................. 14 

2.4 Previous Mathematical Models........................................................................................... 15 

2.5 Previous Active Stabilization Methods ............................................................................... 15 

CHAPTER 3: METHODOLOGY ................................................................................................ 18 

3.1 Development of the SPARTA System (Stabilization with Pipes and Rudder TRICON 

Assembly) ................................................................................................................................. 18 

3.1.1 Development of the “Pipes” Design ............................................................................ 18 

3.1.2 Development of the “Rudder” Design ......................................................................... 22 

3.2 Development of the Hardware and Actuation Scheme ....................................................... 27 

3.2.1 Hardware ...................................................................................................................... 27 

3.2.1 Actuation & Power ...................................................................................................... 30 

3.3 Mathematical Model Development..................................................................................... 32 

3.4 Control Law Development .................................................................................................. 35 

3.5 Kalman Filters ..................................................................................................................... 36 

3.6 Wind Tunnel Testing .......................................................................................................... 38 

3.7 Rapid Prototyping ............................................................................................................... 42 

3.8 Aerodynamic Analysis Verification ................................................................................... 45 

3.9 Final 1/17
th

 Scale Prototype Testing ................................................................................... 47 

CHAPTER 4: RESULTS .............................................................................................................. 48 

4.1 Initial 1/10
th

 Scale Pipes Testing ........................................................................................ 48 

4.2 Initial 1/17
th

 Scale Poster-Board TRICON Testing ............................................................ 50 

4.3 Final 1/17
th

 Scale SPARTA Prototype Testing ................................................................... 51 

4.4 MATLAB Simulation Results ............................................................................................ 51 

4.5 Kalman Filter Results ......................................................................................................... 53 



Active Helicopter Sling Load Stabilization MQP 

3 

 

4.6 IMU-SD Card Data Logging Results .................................................................................. 55 

CHAPTER 5: CONCLUSIONS ................................................................................................... 57 

Appendix A: Derivation of Moments of Angular Momentum ..................................................... 59 

Appendix B: Aerodynamic Equations from Modelling of static aerodynamics of 

helicopter underslung loads .......................................................................................................... 65 

Appendix C: Full MATLAB Numerical Simulation Code and Results ....................................... 67 

Simulation Code........................................................................................................................ 67 

Model parameters.................................................................................................................. 67 

Simulation parameters .......................................................................................................... 68 

Control parameters and LQR gain ........................................................................................ 69 

Kalman Parameters ............................................................................................................... 69 

Run simulation ...................................................................................................................... 70 

Plot results ............................................................................................................................. 72 

State Derivative Function ......................................................................................................... 75 

Main Function Code ............................................................................................................. 75 

Aerodynamic Forces ............................................................................................................. 78 

Kalman Filters ....................................................................................................................... 80 

Aerodynamic Moments ......................................................................................................... 81 

Rudder Forces and Moments ................................................................................................ 82 

Pipe Forces and Moments ..................................................................................................... 83 

Control Inputs ....................................................................................................................... 84 

Moment Transform Function .................................................................................................... 85 

Force Transform Function ........................................................................................................ 85 

Double Dot Solve Function ...................................................................................................... 85 

LQR Gain Function................................................................................................................... 88 

Kalman Filter P Derivative Function ........................................................................................ 91 

Define Filter Matricies .......................................................................................................... 91 

Calculate P_dot ..................................................................................................................... 92 

Yaw and Yaw Rate Kalman Filter Function ............................................................................. 92 

Define Constants ................................................................................................................... 92 

Define Matricies.................................................................................................................... 93 



Active Helicopter Sling Load Stabilization MQP 

4 

 

Matricies ............................................................................................................................... 94 

Roll and Sway Velocity Kalman Filter Function ...................................................................... 95 

Define Constants ................................................................................................................... 95 

Define Matricies.................................................................................................................... 95 

Matricies ............................................................................................................................... 96 

Appendix D: ARDUINO DUE Control Code .............................................................................. 97 

Code .......................................................................................................................................... 97 

Final Hardware Setup Reference ............................................................................................ 108 

Appendix E: ARDUINO DUE SD Card IMU Data-logging Code ............................................ 109 

Appendix F: Pipes And Rudder Calculations MATLAB Code .................................................. 120 

Information ............................................................................................................................. 120 

Conversion Factors and Scaling.............................................................................................. 120 

Inputs....................................................................................................................................... 120 

Pipe Equations ........................................................................................................................ 121 

Vertical Stabilizer and Rudder Equations ............................................................................... 122 

Plotting .................................................................................................................................... 122 

Works Cited ................................................................................................................................ 124 

 



Active Helicopter Sling Load Stabilization MQP 

5 

 

Table of Figures 
Figure 1: Sling Set Components  (Nyren, 2013)........................................................................... 11 

Figure 2: UH-60 Blackhawk sling-loading a Humvee ................................................................. 11 

Figure 3: UH-60 Blackhawk in Flight .......................................................................................... 12 

Figure 4: Various 8'x'6.5'x8' TRICON containers (CMCI, 2011) ................................................ 13 

Figure 5: Flow Separation vs. Incidence Angle (Greenwell, 2011) ............................................. 14 

Figure 6: Gera, Farmer Design ..................................................................................................... 16 

Figure 7 AFDD Design ................................................................................................................. 17 

Figure 8: First Pipes Design                                                     Figure 9: Second Pipes Design ... 18 

Figure 10: Third Design of the Pipes ............................................................................................ 19 

Figure 11: Correcting Sway                                                    Figure 12: Correcting Yaw ........... 20 

Figure 13: Self-Correcting Design        Figure 14: Fourth Design of the Pipes (with Rudder 

Included) ....................................................................................................................................... 21 

Figure 15: Final Design of the Pipes (with Rudder Included) ...................................................... 22 

Figure 16: Initial Design                                            Figure 17: Final Rudder Design ................ 23 

Figure 18: Rudder System ............................................................................................................ 24 

Figure 19: Principles of Rudder Yaw Correction ......................................................................... 26 

Figure 20: Rudder in Final SPARTA System Prototype .............................................................. 27 

Figure 21: Arduino DUE .............................................................................................................. 28 

Figure 22: Adafruit 9-DOF IMU .................................................................................................. 29 

Figure 23: Adafruit Micro-SD Card Breakout .............................................................................. 29 

Figure 24 : HS-5065MG Servo                  Figure 25: HS-7985MG Servo .................................. 31 

Figure 26: Depiction of the Power Scheme Implementation ........................................................ 32 

Figure 27: MATLAB Simulation Flowchart ................................................................................ 33 

Figure 28: MATLAB Simulation With Kalman Filter Flow Chart .............................................. 37 

Figure 29: Poster-board TRICON (note power cord - this was removed for subsequent tests) ... 38 

Figure 30: Inside of Poster-Board TRICON with Components.................................................... 39 

Figure 31: Detachable Sling Legs on the Second TRICON Prototype ......................................... 39 

Figure 32: Basswood and Balsawood SPARTA Pre-Prototypes .................................................. 40 

Figure 33: A Screenshot from One of the Wind Tunnel Test Videos .......................................... 41 

Figure 34: Larger Rudder .............................................................................................................. 41 

Figure 35: Half-Sized Doors and Broken Pillar ............................................................................ 42 

Figure 36: Original Servo Gear Mechanism ................................................................................. 43 

Figure 37: Directly Attached Servo Mechanism .......................................................................... 43 

Figure 38: Servo Mechanism ........................................................................................................ 44 

Figure 39: Original Rudder with Nail ........................................................................................... 44 

Figure 40: Final Rapid-Prototyped TRICON and SPARTA ........................................................ 45 

Figure 41: 1/10th Scale Pipes with Doors                                   Figure 42: 1/10th Scale Vertical 

Stabilizer and Rudder .................................................................................................................... 45 

file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083189
file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083190
file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083191


Active Helicopter Sling Load Stabilization MQP 

6 

 

Figure 43: CAD model of support stand and with pipes in the wind tunnel ................................ 46 

Figure 44: Rear Door X-Direction Force vs. Door Angle ............................................................ 48 

Figure 45: Restoring Y-Direction Force vs. Door Angle ............................................................. 49 

Figure 46: Rear Door Z-direction Moment vs. Door Angle ......................................................... 49 

Figure 47: Average Maximum Yaw Angle for Various SPARTA Iterations ............................... 50 

Figure 48: Yaw And Yaw Rate, Simulation Results Without SPARTA ...................................... 51 

Figure 49: Lateral And Longitudinal Swing Angles, Simulation Results Without SPARTA ...... 52 

Figure 50: Yaw And Yaw Rate, Simulation Results With SPARTA ........................................... 52 

Figure 51: Lateral And Longitudinal Swing Angles, Simulation Results With SPARTA ........... 53 

Figure 52: Yaw And Yaw Rate Kalman Filter Results Without Linked Control ......................... 54 

Figure 53: Roll And Sway Velocity Kalman Filter Results Without Linked Control .................. 54 

Figure 54: Kalman Yaw And Yaw Rate With Linked Control .................................................... 55 

Figure 55: Kalman Roll And Sway Velocity With Linked Control ............................................. 55 

Figure 56: Accelerometer and Gyroscope Data-Logging Results ................................................ 56 

Figure 57: Pipes Diagram ............................................................................................................. 59 

Figure 58: Angular Momentum Moment ...................................................................................... 62 

Figure 59: Rear Door Moment Arm ............................................................................................. 63 

Figure 60: Front Door Moment Arm ............................................................................................ 64 

 

 

 

 

 

 

 

 
 

file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083226
file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083227
file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083228
file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083239
file:///C:/Users/Dusty/Dropbox/Active%20Helicopter%20Sling%20Load%20MQP/Final%20Paper%20and%20Presentation/FINAL%20MQP%20REPORT.docx%23_Toc418083240


Active Helicopter Sling Load Stabilization MQP 

7 

 

Acknowledgements 

 

We would like to thank the following individuals and groups for their help and support 

throughout the entirety of this project.  

 

Project Advisors Professor Raghvendra V. Cowlagi 

   Professor David J. Olinger 

 

 

NSRDEC Sponsor Daniel Nyren  

 

M.E. Dept. Staff         Barbara Furhman 

 

E.C.E. Dept. Staff       Robert M. Boisse   



Active Helicopter Sling Load Stabilization MQP 

8 

 

Table of Authorship 

Section Author Initials 

Chapter 1: Introduction DC 

Chapter 2: Background and Literature Review  

2.1, 2.2, 2.3  DC 

2.5     RM 

2.4 JPS 

Chapter 3: Methodology  

3.1.1, 3.6, 3.7, 3.8, 3.9 DC 

3.1.2, 3.2.1, 3.2.2 RM 

3.3, 3.4, 3.5 JPS 

Chapter 4: Results  

4.1, 4.2, 4.3 DC 

4.6 RM 

4.4, 4.5 JPS 

Chapter 5: Conclusions and Analysis DC, RM, JPS 

Appendix A: Derivation of Moments of Angular Momentum DC 

Appendix B: Aerodynamic Equations JPS 

Appendix C: Full MATLAB Numerical Simulation Code JPS 

Appendix D: ARDUINO DUE Control Code RM 

Appendix E: ARDUINO DUE SD Card IMU Data-logging Code RM 

Appendix F: Pipes And Rudder Calculations MATLAB Code DC, RM 

 

  



Active Helicopter Sling Load Stabilization MQP 

9 

 

CHAPTER 1: INTRODUCTION 
 

Rapid and safe delivery of supplies is crucial to today’s military operations. Hazardous 

terrain and/or passage through dangerous enemy territory can delay the delivery of supplies and 

place the delivery vehicle at great risk of capture or destruction. Aerial delivery systems, which 

negate the issue of hazardous terrain and reduce the time spent in enemy territory, have therefore 

proven to be invaluable for such tasks. 

The helicopter sling load delivery system is “most accurate form of aerial delivery in the 

military today” due to the ability of the helicopter to bring cargo to the precise spot it is needed (Nyren, 

2013). A helicopter sling load consists of cargo attached to the underside of the helicopter 

through a series of hooks and ropes. The ropes, called sling legs, are attached to the cargo via 

chains, and to the bottom of the helicopter via an apex fitting that attaches to the helicopter’s 

cargo hook.  

Most sling loads are not aerodynamically stable, and undergo undesirable motions that 

hinder flight safety and force the helicopter to fly at lower speeds. Commonly slung-loaded 

payloads such as rectangular CONEX containers and Humvees are bluff bodies that undergo 

undesirable pitch, sway and yaw motions that put the safety of both the helicopter and cargo at 

risk. Similar to a “swinging pendulum,” a sling load can make the helicopter harder to control, 

damage the cargo that is being sling-loaded, or in the worst case, collide with the helicopter 

(Potter, Singhose, & Costello, 2011). Helicopters with sling loads therefore have to fly with a 

significantly lower speed and altitude, making them more vulnerable to enemy fire and 

increasing delivery time. Due to the increased delivery time, recipients of the cargo have to wait 

longer to receive potentially vital supplies, the helicopter must remain over potentially dangerous 

territory for a longer time, and possibly excess fuel is needed to complete the (prolonged) 

mission. 

Reduction of such undesirable pitch, sway and yaw motions through stabilization of the 

sling load will allow for an increased speed and altitude, as well as a decreased delivery time. 

Stabilization methods for sling loads can be classified into two broad categories: passive and 

active. Passive stabilization involves no controlled mechanisms: devices such as fins or tails are 

placed on the sling-loaded cargo to reduce the aerodynamic effects of the bluff body without any 

inputs. Active stabilization involves the manipulation of control surfaces or other mechanisms of 

the sling load system using control laws that are based on as the measured airspeed and angles of 

motion.. Controllable fins and rudders are examples of active stabilization systems.  

This project, sponsored by the U.S. Army Natick Soldier Research Development and 

Engineering Center (NSRDEC), involves the development of an active stabilization method for 

helicopter sling load systems. The active stabilization system developed reduces in particular the 

two most significant motions of sling-loaded cargo: sway and yaw motion. To create this system, 

the team first researched the literature to study existing passive and active stabilization 
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techniques to form a foundation for this work. The team then developed a physics-based 

mathematical model of the proposed system, and developed a numerical simulation of this model 

using the MATLAB® software package. Lastly, the team designed a control scheme and the 

control laws to guide it, and built a small-scale prototype that was tested in a wind tunnel.  
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Figure 2: UH-60 Blackhawk sling-loading a Humvee 

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 
  

This section discusses the fundamentals of helicopter sling loading, the various issues 

that sling loading causes, and past research into mathematical modelling of sling load systems. It 

also presents active stabilization techniques and ideas developed in the past that influenced the 

team’s designs. 

2.1 Helicopter Sling Loads 
 

The basic components of a typical sling load set up are the sling legs, apex fitting and 

grabhook/grablink. The apex fitting is attached to the cargo hook of the helicopter, with a spacer 

needed for the UH-60 Blackhawk. This spacer provides additional assistance to the helicopter, 

“[reducing] the shock load to the cargo hook caused by oscillating and rotating loads” (Nyren, 

2013). The sling legs, which connect to the apex fitting, are made out of double-braided nylon 

rope and are approximately twelve feet in length, with environmental effects and usage providing 

small alterations to their length. The grabhook and grab link, connecting the sling legs to the 

cargo, consist of chains and are adjustable to provide a three-to-five degree nose down 

orientation and to prevent the sling legs from touching the payload, which could result in damage 

to the sling legs. 

                                    

 

Helicopter sling load missions are undertaken in every branch of the United States 

military. The following table lists commonly-used helicopters in sling load operations, and 

several key parameters.
1
 

 

                                                 
1
 Table from (Nyren, 2013) 

Figure 1: Sling Set Components  (Nyren, 2013) 
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Name Maximum 

Airspeed 

Maximum Safe Airspeed 

(Sling-loaded) 

Max Hook 

Capacity (lbs) 

Number of 

Hooks 

UH-60 Blackhawk 193 knots 60 knots
2
 9,000 1 

CH-47 Chinook 170 knots 70-140 knots
3
 26,000 3 

UH-72 Lakota 145 knots 100 knots
4
 4,000 1 

CH-53E Super 

Stallion 

170 knots 80-95 knots
5
 32,000 3 swiveling 

Table 1: Capabilities of Sling Load Helicopters 

 

As shown in the table, helicopters with sling loads must fly at much lower maximum 

airspeeds to keep both the cargo and helicopter safe. The UH-60 Blackhawk in particular has a 

severe loss in maximum airspeed; while carrying a sling load the Blackhawk can safely attain 

just thirty-one percent of its actual maximum airspeed. 

The UH-60 Blackhawk is the target 

helicopter for this project’s active stabilization 

system. The Blackhawk is used extensively in all 

branches of the U.S. military, and only has one 

cargo hook, limiting it to single-point sling 

loading. The Chinook and Super Stallion both 

have multiple hooks, meaning that their sling 

loads are not prone to as severe motions and 

oscillations due to the self-stabilizing nature of 

multiple attachment points. Like the Blackhawk, 

the Lakota only has one hook, but can carry less 

than half the weight that the Blackhawk is able to, 

and thus will not be focused upon either. 

 

2.2 CONEX and TRICON Containers 
 

Helicopters sling load cargo including containers, vehicles and artillery, all with varying 

geometry. An active stabilization system designed to function for cargo of varying geometry, 

without touching the helicopter or sling legs, is beyond the scope of this project. Therefore, the 

active stabilization system is designed to accommodate a specific cargo geometry: a rectangular 

container. 

                                                 
2
 For 8’x8’x6.5’ CONEX (Cicolani et al., 2009) 

3
 (Army, 2009a) 

4
 ("Army UH-72 Flight Limitations (EC-145/BK 117 C-2)," 2000) 

5
 (Army, 2009b) 

Figure 3: UH-60 Blackhawk in Flight 
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Rectangular cargo containers come in a variety of sizes and are sling-loaded regularly. 

Two commonly-used sizes are the 8’ x 6’ x 6’ CONEX and the 8’ x 8’ x 20’ MILVAN
6
 

containers, both of which have experienced stability issues while in flight (Greenwell, 2011). 

The  8’ x 6’ x 6’ CONEX has been the focus of several studies into the stabilization of sling 

loads, such as Raz et al. (2011),  McCoy (1998), and Nyren (2013). The CONEX (container 

express box) is a simple rectangular steel container with corrugated sides and a flat floor and roof 

(McCoy, 1998). The corrugated sides do not significantly affect the aerodynamics of the load 

and will therefore by idealized as flat sides (Nyren, 2013). The 8’ x 6’ x 6’ CONEX is an ideal 

choice for sling load stabilization due to its widespread use, simple geometry for modelling and 

testing, and ability to carry heavy loads without altering the basic geometry (McCoy, 1998).  

The sponsor for this project, NSRDEC, suggested using a slightly different sized 

container called the TRICON. The TRICON is slightly larger than the CONEX, with dimensions 

of 8’ x 6.5’ x 8’. The container is also heavier, with a tare weight of 2,600 pounds compared to 

the CONEX’s tare weight of 1,800 pounds (CMCI, 2011; McCoy, 1998).  The TRICON is used 

“extensively” by the United States military, and features an all steel construction, 346 cubic feet 

of internal capacity and 12,000 pounds of payload capacity (CMCI, 2011).  

 

Figure 4: Various 8'x'6.5'x8' TRICON containers (CMCI, 2011) 

NSRDEC is currently conducting small-scale stabilization testing of the TRICON at the 

Massachusetts Institute of Technology’s (MIT) wind tunnel, so using a TRICON model as the 

test bed for this project’s active stabilization system would provide an easy scaling-up factor for 

MIT wind tunnel testing. Therefore, a scale model of the TRICON model was used for the 

design and testing of the active stabilization system. 

 

                                                 
6
 Dimensions are (Length x Width x Height) 
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2.3 Bluff Body Aerodynamics and Stability Issues 
 

Helicopter sling load missions encounter two primary issues: instability due to the bluff 

body nature of the cargo and extra drag that causes power restraints on the helicopter (Nyren, 

2013). According to Greenwell, three basic types of instability can occur: aerodynamic 

instability of the load, helicopter and load vertical oscillations, and sling cable flapping 

(Greenwell, 2011).
7
 Aerodynamic instability involves  highly complex motions and oscillations 

that typically begin with “a period yaw oscillation which then couples into the sling and 

helicopter response” (Greenwell, 2011). 

Aerodynamic issues occur even once the cargo reaches its destination, as crews 

sometimes have to wait until the load’s swing amplitude settles to an acceptable level before 

depositing the cargo, wasting time and efficiency (Potter et al., 2011).  

According to the in-depth study by Greenwell, “containers are rectangular bluff bodies, 

with the aerodynamic loads dominated by normal pressure forces,” with “basic forces and 

moments… split into “attached flow” and “separated flow” components” (Greenwell, 2011). The 

attached flow component “comprises the loads from the attached flow on the front face, the 

attached flow underlying the side face separation bubbles, and the fully separated base flow, and 

is independent of box geometry,” while the separated flow component comprises the separated 

flow on the two side faces, which varies from full separation to a closed separation bubble 

depending on incidence and geometry” (Greenwell, 2011). The figure below provides a 

visualization of the flow separation as a function of incidence angle. 

 

Figure 5: Flow Separation vs. Incidence Angle (Greenwell, 2011) 

 

                                                 
7
 Helicopter oscillations and sling cable flapping are beyond the scope of this project, and not as significant as the 

aerodynamic instabilities, and therefore will not focused on in this report. 
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2.4 Previous Mathematical Models 
One of the first steps was to develop a mathematical model that would simulate a 

helicopter sling load system in MATLAB. This was needed for the development of the control 

laws. The mathematical model assumes that the slung loaded cargo is a rigid box with uniform 

density that was slung below a fixed attachment point at the origin. In the model the box is 

attached to the attachment point through four sling legs attached to the box at each of the corners 

on the top side and a flow of air is run over the box. All this is represented in the MATLAB 

model through a series of equations that predict the forces and moments that act on the simulated 

slung cargo. The forces and moments from the sling legs and gravity are easily represented using 

basic physics and stress analysis equations. However the equations for the aerodynamic forces 

and moments exerted on the container are a lot more complicated. The reason why these 

equations are more complex is because of the shape of the box. A box is a bluff body, and the 

aerodynamics of bluff bodies are a lot harder to model compared to other shapes. Instead of 

trying to derive the aerodynamic equations, it was decided that a previous mathematical model 

should be used. 

At the beginning of the project several pieces of literature were provided by the project 

advisors. Among this literature was a paper by Greenwell (Greenwell, 2011) describing a 

mathematical model for the static aerodynamics of helicopter underslung loads. This paper was 

used to provide all the assumptions for aerodynamic forces and moments on the container load in 

the mathematical model. The equations are provided in Appendix B. 

In this paper there are two sections that detail 3D aerodynamics of rectangular containers. 

These sections are Section 3.0, which discusses three dimensional aerodynamics, and the 

appendix, which shows the equations for the actual mathematical model. Both these sections 

were used heavily in our project to incorporate aerodynamic forces and moments into the 

mathematical model. In section 3.0 of Greenwell’s paper the results of his models are compared 

to collected aerodynamic data from different types of rectangular containers. This demonstrates 

that the model does follow the general trend of the collected data. In the appendix Greenwell 

outlines the specific equations that he developed for his aerodynamic model of rectangular 

containers. 

 

2.5 Previous Active Stabilization Methods 

 
A variety of active helicopter sling load stabilization methods have been studied in the 

past. These systems focus on mitigating or eliminating the most detrimental forms of sling load 

instability, yaw motion, sway motion (lateral side-to-side motion), or both. Everything from 

active systems on board the helicopter, to systems that affect the sling legs, to systems that affect 

the load has been proposed. The focus of this project is a system that affects the container. 
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Systems that are on board the helicopter or affect the sling legs are outside the scope of this 

project and will only be briefly discussed.  

There are three papers that outline methods of active helicopter sling load stabilization 

that are outside of the scope of this project. One such method is through the use of a winch 

system to control the sling legs (Asseo, 1973). This method uses control theory to design 

multiple systems which stabilize a variety of loads in different configurations. Whereas this had 

merit, one of the constraints of this design project was that the sling-legs were not to be 

interfered with; therefore such a similar design was not an option. Another proposed active 

control scheme involves introducing a control scheme into an existing helicopter control system 

along with vision-based sensor data (Bisgaard, 2010). This method is designed so that the 

helicopter would fly without inducing oscillations in the sling load system. A system involving 

the damping of oscillations in the sling legs via the use of linear actuators attached to the legs 

was also proposed {Smith, 1975). Both of these designs fall outside of the project constraints so 

similar systems were not considered. 

The two main designs that were considered when first approaching this project were a 

rotational stabilization method proposed by the Aeroflightdynamics Directorate (AFDD) of 

AMRDEC and an active fin design proposed by Gera and Farmer. Gera and farmer used a 

rotational cup design mounted on top of a CONEX container coupled with a yaw rate feedback 

controller in order to spin up a swivel-hook sling load configuration to stabilize sway motion 

(Gera, 1974). 

 

          Figure 6: Gera, Farmer Design 

The AFDD proposed controllable fins at both ends of a dual-point sling load 

configuration in order to also control sway motion (AFDD, 2011). Both these designs were 

considered during the initial design phase of this project; however one of the design constraints 
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for this particular project was a single-point fixed hook sling load. Controllable fins, a fin in the 

form of a rudder to be precise, did eventually become part of the final design.  

 

Figure 7 AFDD Design 
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CHAPTER 3: METHODOLOGY 

3.1 Development of the SPARTA System (Stabilization with Pipes and Rudder 

TRICON Assembly) 
The SPARTA System (formerly called PARAS: Pipes and Rudder Active Stabilization 

System) is a hybrid merged from two separate designs developed simultaneously during the first 

half of the project: the airflow-redirecting “pipes” design, and the airflow-deflecting “rudder” 

design. 

3.1.1 Development of the “Pipes” Design 

The “pipes” design is based on redirection of the freestream flow to produce stabilizing 

aerodynamic forces and moments. Inspired by the concept of thrust vectoring, incoming air is 

redirected in a direction of choice to provide a force or moment that counters any unwanted 

forces or moments that cause instability. 

Originally, two pipes were placed along the longitudinal axis (parallel to the freestream 

flow) on top of the TRICON, with the outlets turned ninety degrees (perpendicular to the 

freestream flow) facing outward from the center of the TRICON and aligned with its center of 

mass. The outlets were allowed to rotate about ninety degrees, mostly towards the rear, to face 

any direction desired. The inlets also rotated to always face the freestream flow; the container 

could yaw up to fifty degrees in either direction and the inlets would counter-rotate to still 

directly face the flow of oncoming air. The entire unit would be held to the container using 

straps, and one or both of the inlets could be closed if no restoring forces were needed. This 

original design is shown in Figure (8). 

 

                         Figure 8: First Pipes Design                                                     Figure 9: Second Pipes Design 
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It was determined that having the entire inlet and outlet rotate was not practical due to 

material requirements and complexity of the mechanism. Figure (9) shows a redesign of the 

system. The inlets and outlets have doors that rotate to redirect the flow in the same manner as 

the previous design. The flat plates above the doors function as a nozzle to focus the airflow into 

the inlets and out of the outlets, and also serve as an illustration of how much the inlets and 

outlets could rotate. However, at this point it was discovered that whereas the current design 

would provide restoring side forces to correct sway motion, it performed poorly at correcting 

yaw even if the outlets could rotate, because the forces were always applied in the plane of the 

center of mass of the container. The forces would need to be applied farther away from the center 

of mass to provide a moment arm long enough to produce a noticeable and effective moment. 

Also, rotating inlet doors were proven to provide no advantage to the design, as they did not 

actually provide any focusing of the freestream into the inlets. Thus, a second redesign was 

drafted. 

 

Figure 10: Third Design of the Pipes 

  

The third design of the pipes, shown in Figure (10), solves all of the previous issues: 

three exit doors along the sides of the pipes open to redirect the freestream flow to either of their 

locations. Sway is corrected by opening the middle door (aligned with the center of mass of the 

container), and restoring moments are generated by opening either the front or rear doors. The 

inlets are fixed and the air is allowed to pass through the pipes and out the back, eliminating 

much of the drag that the previous designs would induce. The exit doors were originally 

designed to open up to ninety degrees inward. 

The following two figures show top-down views of the pipes correcting both say and yaw 

motions of the container.In Figure (11), the pipes are shown correcting for sway motion to the 
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left, with the middle door opening to provide a restoring force in the opposite direction to the 

movement of the container. Figure (12) shows the design correcting for counter-clockwise yaw 

motion, with the front-left and right-rear doors opening to maximize the restoring moment (or 

torque) to the container and realign the TRICON with the freestream flow.  

 

Figure 11: Correcting Sway                                                    Figure 12: Correcting Yaw 

Calculations of the restoring forces and moments the pipes system would deliver led to two 

adjustments to this design. These calculations, included in Appendix A, led to the following 

conclusions: 

1. Due to moments of angular momentum (shown in Figure 11), the rear doors generate the 

largest restoring force for sway motion while minimizing unwanted moments 

2. Unless a door is opened ninety degrees and aligned with the center of mass, it will 

produce an unwanted moment 

3. Opening any door greater than approximately thirty degrees produces too much drag, side 

force, and moment to be effective 

4. The front doors generate the largest restoring moments while keeping the angle of the 

doors relatively small (less than thirty degrees) 

5. The middle doors are not as efficient at correcting sway as the rear doors and not as 

efficient at correcting yaw as the front doors, and are therefore unneeded 

The calculations were run using the principle that opening one of the side doors changes the 

direction of the momentum of the freestream flow through the pipe. This now angular 

momentum exits the opened door at the angle that the door is opened. This generates a moment 

of angular momentum, with the moment arm r being the perpendicular distance between the 
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center of mass of the container to the angular momentum vector. The rear doors generate the 

smallest moment of angular momentum because, due to the geometry of the pipes, the 

perpendicular distance (the moment arm r) between the center of mass of the TRICON and the 

angular momentum vector is minimized (for small angles ~thirty degrees). The front doors 

generate the largest moment of angular momentum for the opposite reason: the moment arm r is 

maximized.  

 Due to these conclusions, the middle doors were deemed useless and removed from the 

design, the rear doors were made larger to maximize the possible restoring side force while 

keeping unwanted moments small, and all doors are allowed to open up to an angle of thirty 

degrees. Since opening any doors, even the rear doors, will generate moments, the pipes are 

allowed to “self-correct” to minimize or eliminate any generated unwanted moments. As shown 

in Figure (13), opening the left rear door generates a small but noticeable counter-clockwise 

moment. The right front door then is opened to generate an equal and opposite clockwise 

moment to cancel the two out. Opening the right front door will generate a side force in the 

opposite direction as the left rear door, reducing the net effective side force that the pipes can 

generate. However, because the front door is smaller and does not need to be opened to as large 

an angle as the rear door, the negative counter-side force that the right front door generates is 

small. Figure (14) shows the modified pipes design, with the rudder (discussed in the next 

section) added on. 

 

                                    Figure 13: Self-Correcting Design        Figure 14: Fourth Design of the Pipes (with Rudder Included) 
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Later research showed that the rudder is a much more effective tool at correcting yaw 

than the pipes, and can easily counteract any unwanted moments generated by the rear doors of 

the pipes without producing any significant side forces. In effect, the pipes now solely correct 

sway motion, leaving all yaw motions to be corrected by the rudder. This led to the removal of 

the front doors of the pipes, simplifying the design and the hardware required for them, as now 

there are only two moving parts to the pipes design (the two rear doors). In final design of the 

pipes and rudder system, the pipes are also angled back to allow unimpeded flow into them when 

the TRICON rotates back and up in the flow; the final design is shown in Figure (15). 

 

Figure 15: Final Design of the Pipes (with Rudder Included) 

3.1.2 Development of the “Rudder” Design 

The rudder and vertical stabilizer concept was derived out of an idea to actively stabilize 

a helicopter sling load in a manner similar to how a plane is stabilized using active control 

surfaces such as ailerons, rudder, elevators, etc. Focus was placed on simplicity and proven 

control surfaces that would be easy to integrate. The main instabilities that prompted the 

development of this part of the stabilization system were yaw instabilities and lateral side-to-side 

(sway) instability.  

 The rudder was derived from a standalone system which was comprised of a rudder and a 

pair of elevons. The goal of this was to be able to control yaw, pitch, and sway. However, a 

helicopter sling-load system has fewer degrees of freedom than a conventional aircraft. After 

careful analysis the elevons were deemed to be unneeded and were removed from the design. 

The elevons were found unnecessary because they would be ineffective in controlling sway since 

the sling load system is “hung” and cannot conventionally “roll” like an aircraft. Pitch control 
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was also deemed as superfluous as a sling load is generally rigged to fly 3 to 5 degrees nose-

down and will natural move in the opposite direction of flight, causing it to pitch further.  

 

 

Figure 16: Initial Design                                            Figure 17: Final Rudder Design 

 

 The rudder in this system was initially a full, swept back, wing based on a symmetric 

airfoil. It was positioned towards the back of the sling load with the trailing edge meeting the 

rear edge of the load. The design featured no vertical stabilizer and the rudder was responsible 

for any and all yaw control. Once the elevons were removed the design of the system proceeded 

with only yaw stabilization in mind. This led to an almost complete redesign of the rudder 

system in order to increase its effectiveness. The size of the rudder, while very important in 

determining its effectiveness, was set to an arbitrary value for preliminary design purposes. 

 The effectiveness of the rudder also relied heavily on the horizontal distance between 

where the rudder force acted and the center of mass of the load, known as the moment arm. The 

longer the moment arm, the more moment the rudder can create. At this point the rudder was as 

far back on load as possible, while still keeping the trailing edge at the back edge of the load. In 

order to increase the length of the moment arm the rudder was redesigned without any sweep so 

that it could be positioned further back with the majority of it behind the back edge of the load. 

Only a small portion of the rudder would be in front of the back edge of the load so that it could 

be attached to the shaft that would control its position.  
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Figure 18: Rudder System 

 In order to supplement the rudder, a vertical stabilizer was also added to the design. 

While the focus of the design was active stabilization, a vertical stabilizer added an element of 

passive stability and enhanced the active rudder control in preventing adverse yawing of the 

load. The vertical stabilizer was placed in front of the rudder with a small gap in between the 

two. The vertical stabilizer was based off of the same chord length and wing span as the rudder; 

however it was swept back at 45 degrees from the leading edge. Once the preliminary design was 

completed, the system was put through a complete aerodynamic analysis in order to determine 

the forces and moments involved it generated. 

 

 The aerodynamic analysis also compared symmetric airfoil profiles to a thin flat plate 

profile in order to determine whether the vertical stabilizer and the rudder would be streamlined 

or whether they would remain thin flat plates. The NACA 0016 airfoil was used in this 

comparison since the rudder and vertical stabilizer must be modeled using a symmetric airfoil, 

one without camber, in order to generate the same forces in either direction. An analysis of the 

NACA 0016 airfoil was performed in XFLR5 for a range of Reynolds numbers that represented 

speeds up to the maximum flight speed for a sling load mission with angles of attack from 0 to 

20 degrees. A similar analysis was performed using thin flat plate airfoil theory. The resulting lift 

curves were linear, since small angle assumptions were used, and had slopes that were almost 

identical. The thin flat plate design was chosen for both the rudder and vertical stabilizer because 

of the ease of prototyping. The symmetric airfoil had a significant advantage over the thin flat 

plate in terms of drag. Being a streamlined body, the symmetric airfoil produced less drag. This 
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advantage was not found to be enough to justify the prototyping and manufacturing 

complications as a sling load is a bluff body, generating large amounts of drag by nature. The 

drag produced by the rudder and vertical stabilizer were also along the center of mass in the 

horizontal plane, meaning that it would generate no adverse torque or yaw in a neutral position. 

For thin plate/airfoil theory to hold, the rudder and vertical stabilizer were designed to have a 

maximum thickness of 10% of their respective chord lengths.  

 After design analysis was performed, an aerodynamic analysis was performed using 

MATLAB in order to quantify the forces that the vertical stabilizer and rudder would generate at 

an average cruise speed for a helicopter sling load. Once the analysis was completed, the forces 

were altered through changes made to the chord length and the wing span of the rudder and 

vertical stabilizer to create the necessary amount of force. A MATLAB simulation of the 

helicopter sling load system set approximately 400 Newtons of force as the target maximum 

force for the rudder to produce at its maximum angle of incidence.  Small angle assumptions 

were used for the purposes of analysis and simplicity. This limited the maximum angle of 

incidence, both positive and negative, to twenty degrees. The rudder was then sized to reach the 

target force with the goal of keeping the chord length longer than the wingspan in order to avoid 

encroaching on the sling legs. The vertical stabilizer was given the same dimensions as the 

rudder and produce roughly half the force as its area was reduced to half that of the rudder 

because of its 45 degree leading edge sweep angle.  

Once the dimensions and the positions of the rudder and stabilizer were set, an analysis of 

the moments created by both of the surfaces was performed in MATLAB. The analysis was 

based on a rigid body of uniform density assumption. This set the container's center of gravity at 

its geometric center. Both the stabilizer and the rudder are directly behind the center of gravity 

on the horizontal plane. The moment arm lengths were calculated based on the point where the 

force from the stabilizer or rudder acts on the load. The rudder is a straight wing (no sweep), 

therefore it can be assumed that the rudder forces act at the quarter-chord point of the rudder. 

The vertical stabilizer is a swept wing, making it necessary to calculate the mean aerodynamic 

chord. The vertical stabilizer forces were assumed to be acting at the quarter-chord point of the 

mean aerodynamic chord. The sweep on the vertical stabilizer was beneficial because it moved 

the point through which the forces were acting further away from the center of gravity of the 

container. The sweep therefore lengthens the moment are and makes the vertical stabilizer more 

effective at creating a moment about the center of gravity.  

Further analysis of the rudder revealed that it would be beneficial to mass balance the 

rudder. Mass balancing the rudder involved moving both the vertical stabilizer and the rudder 

closer to the center of gravity. This move was necessary so that a quarter of the rudder’s chord 

would be directly over the container and the rudder could be hinged at its quarter-chord point. 

Moving the hinge from the leading edge to the quarter chord point mass balanced the rudder 

which would serve to mitigate aerodynamic flutter and make the rudder a better overall control 

surface.  



Active Helicopter Sling Load Stabilization MQP 

26 

 

 

Figure 19: Principles of Rudder Yaw Correction 

A final analysis of the entire system was performed after all of the modification to verify 

the forces and moments made by the rudder and the vertical stabilizer. Once the analysis was 

complete, work began on a 1/10
th

 scale prototype to be tested in the WPI reciprocating wind 

tunnel in the fluids lab of Higgins Laboratories. A testing prototype was necessary in order to 

confirm the results of the aerodynamic analysis of the system. The testing prototype would not 

be actively controlled but it was still necessary for it to replicate a number of different rudder 

angles of incidence. In order to accomplish this, a model of the system was created with a rudder 

that had the ability to be pinned into a number of different angles of incidence. The test model 

was created in SolidWorks and rapid prototyped out of ABS plastic using a 3D printer.  
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Figure 20: Rudder in Final SPARTA System Prototype 

The vertical stabilizer was printed already attached to the model plate. The plate to which 

the test model was to be attached featured a hole through which the quarter chord pivot point of 

the rudder could be pinned through and a number of holes at various angles of attack to which 

the rear portion of the rudder could be pinned to. The test model of the rudder features an extra 

hole on it to allow it to be pinned into the proper angle of attack. 

3.2 Development of the Hardware and Actuation Scheme 

3.2.1 Hardware 

The hardware and actuation scheme behind the SPARTA system was developed 

simultaneously with the actual system. Work on the hardware and actuation portions of the 

control system began when the pipes and rudder/vertical stabilizer systems were separate. 

However, the majority of the progress happened after the rudder and pipes were combined into 

one hybrid system.  

 From the start, the goal of this system was active stabilization. In order to accomplish 

that, control and actuation hardware was necessary. The main components of the system were 

actuators to move the control surfaces and a controller to properly move the actuators based on a 

set of control laws. The first task was finding a controller for the system. This had a lot to do 

with the control laws which were not developed at that point. This was not a major issue as the 

goal was to select a performant but easy to integrate controller. From the beginning of the 
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hardware and actuation design, it was decided that a single-board microcontroller would be best 

suited for this system. Research was performed to narrow down the options in terms of 

controllers until it was decided that an Arduino microcontroller would be used. Arduino was 

chosen to supply the microcontroller because the team had some previous experience with 

Arduino controllers as well as immediate access to Arduino’s base model controller, the Arduino 

UNO.  

 Arduino proved to be a good decision because of its small sized controllers, vast libraries 

of pre-written code, and its convenient integrated development environment (IDE). The Arduino 

IDE is based on C and makes it easy to write a program for the Arduino and upload it the 

controller. Arduino offers many different controls with various features, performance 

characteristics, sizes, and weights. The final decision as to which Arduino controller would be 

used was postponed until the later stages of the system design. In the end, the decision came 

down to a number of different requirements. The size of the controller was an issue but none of 

the options that fit the system’s needs were too large in any way. The other important factor was 

performance and capacity. Since size was not an issue, it was important to use the most 

performant Arduino with the largest capacity. The Arduino DUE was selected as the 

microcontroller for the system based on its large flash memory capacity (512 kb for code), 84 

MHz clock speed, and its 32-bit core. The large flash memory capacity is very important in terms 

of coding because it allowed for the most leeway since the coding since the team did not have 

previous experience with C. The complexity of the setup and control code was also unknown and 

it was most prudent to have a controller with as much memory as possible. The 84 MHz clock 

speed also indicates a fast and powerful processor which is necessary for our control system to 

function well. The team’s limited familiarity with Arduino microcontrollers required them to do 

a lot of practice coding, testing, and etc. with the Arduino UNO. Between the IDE and the very 

well written tutorials and examples that are provided by Arduino, the team was able to become 

proficient in the use of the Arduino and the coding involved.  

 

Figure 21: Arduino DUE 

 The SPARTA system was designed to correct unwanted sway and yaw of a helicopter 

sling load. This active control system relies on readings from an Inertial Measurement Unit 

(IMU). The IMU readings are used by the control law to calculate the necessary position of the 

control surfaces in order to stabilize the load. A 9 degree of freedom IMU, made by Adafruit, 
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was chosen for this system. The IMU featured a 3-axis gyroscope with a ±250, ±500, or ±2000 

degree-per-second scale, a 3-axis compass with a ±1.3 to ±8.1 gauss magnetic field scale, and a 

3-axis accelerometer with a ±2g/±4g/±8g/±16g selectable scale. It was completely compatible 

with the 3.3 volt Arduino DUE and used an I2C two wire interface (TWI), making wiring, 

communication, and integration seamless. This IMU was designed with Arduino integration in 

mind and also featured a code library for easy access to the IMU data. Once purchased, the IMU 

was easily integrated into the hardware and actuation scheme.  

 

Figure 22: Adafruit 9-DOF IMU 

 The IMU serves two purposes, the first being to supply the Arduino and its control laws 

with acceleration and angular rates, the second being to measure the overall stability of the 

system. In order to quantitatively measure the stability of the system, it was necessary to also 

record the IMU data, real-time, on a digital medium. A micro-SD card breakout board was 

needed in order to record this data. The board that was chosen was also made by Adafruit and 

was easily integrated into the hardware scheme using the Arduino DUE’s SPI interface. This 

allowed the hardware scheme to log all of the IMU values as well as any other pertinent data. 

 

Figure 23: Adafruit Micro-SD Card Breakout 

 The IMU and micro-SD breakouts from Adafruit completed the hardware scheme and 

added minimal weight and size to the overall design. Initially, when the number of servos for the 

scheme was large, a servo driver was going to be used to take the load off of the Arduino. 

However, final development removed a number of servos to the point where it was decided that 

the servo would attach to and be directly controlled by the Arduino DUE itself. A template script 

was written in which the servos, IMU, and SD card datalogging were all set up and functioning, 

allowing for the control laws to be migrated and easily coded in and integrated onto the DUE. 
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 Once the control laws were completed, they were manually ported onto the Arduino and 

integrated into the template script. MATLAB has the capabilities to port code directly into an 

Arduino script; however it was deemed that a manual port would be better for the overall 

simplicity. MATLAB uses countless libraries and imbedded functions which could take up too 

much space and create a less than optimal script for the Arduino. With high dynamic response in 

mind, the Arduino control code [Appendix D] was written as simply as possible. In order to 

further simplify the code porting process the control laws were broken down into their simple 

algebraic forms, omitting the need for matrix math and manipulation. This cut down on the 

complexity and size of the code as a matrix math library was no longer needed for the Arduino. 

The control code was optimized for speed and size with debugging code commented out of the 

final version. The final version of the code was written to be void of any serial port 

communication and delay functions. The SD card data-logging (included as a stand-alone script 

[Appendix E] was also deemed to be too processor power, memory, and time intensive and was 

not included in the final code. The final code ended up occupying roughly 10 percent of the 

Arduino DUE’s total flash memory.  

3.2.1 Actuation & Power 

Another major aspect of the hardware and actuation scheme is the actuators. Early on, it 

was decided that linear actuators and motors of some sort would be moving whichever control 

surfaces the design needed. Once the hybrid design was created and chosen for development, it 

was apparent that the design would need one motor to control each of its control surfaces. The 

two most appropriate options were DC stepper motors and DC servo motors. Servo motors were 

chosen for the system’s actuation scheme because stepper motors lacked positional feedback. 

Servos also provided better torque, due to integrated gear trains, and faster operation speeds. The 

drawback of the servos was that they were limited to 180 degrees of motion or less. This, 

however, was not a problem for this particular application.  

The next step in the actuation scheme design was to decide whether to use digital or 

analog servos. The decision was made to use digital servos because they feature all of the same 

parts as an analog servo, but they include a microprocessor to process the pulse width modulated 

signals from the Arduino. This allows for higher frequency voltage pulses which make the servo 

respond faster, accelerate smoothly and more quickly, and provide much better, constant, holding 

power/torque. Digital servos also have a smaller dead band, usually around 2 microseconds. The 

only drawback to digital servos was the increased cost, which was not an issue for this 

application.  

Servos manufactured by HiTec were chosen for this project because of their excellent 

quality. Servo size and weight was an issue that limited the servo selection to standard sized 

servos and smaller. A range of options was researched and discussed, but in the end the smallest 

and the largest servos from the available selection were purchased for testing. These were the 

HS-5065MG, the smallest, and the HS-7985MG. Both servos run off of any 4.8 or 6 volt power 

supply and draw a maximum of 2 amperes at full power. Using a 5 volt power supply, the 5065 
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can provide up to 1.8 kg·cm of torque and has an operating speed of .14 seconds per 60 degrees 

with no load. The 7985 can provide up to 10.4 kg·cm of torque and has an operating speed of .16 

seconds per 60 degrees with no load using the same supply.  

Servo Weight [g] Length [mm] Width [mm] Height [mm] 

HS-5065MG Digital 12 24 12 24 

HS-7985MG Digital 62 40 20 37 

Table 2: Servo Specifications 

The exact number of servos needed changed as the SPARTA system was continuously 

developed and improved, but either of the two options or a combination of both is acceptable 

options for the prototype. The final SPARTA system required only three servos. Due to weight 

and size constraints it was decided that all three servos would be HS-5065MGs. Using the 

SPARTA system analysis script [Appendix F], the servos proved to provide adequate torque for 

the design.  

 

 

Figure 24 : HS-5065MG Servo                  Figure 25: HS-7985MG Servo 

 Initially the prototype was to be battery powered. However, weight restrictions and 

possible hardware issues showcased the need for external power. An external power scheme was 

developed using two separate external AC to DC power supplies: a 10 Amp 5 VDC and a 1 Amp 

9 VDC supply. The 5 VDC supply was chosen for the servo motors because it was easily 

available and could handle up to five servos at full power. The 9 VDC supply was chosen for the 

Arduino as it was readily available and most commonly used to power Arduinos of the DUE’s 

size and specifications. The DUE, however, can be powered by any input voltage from 7 to 12 

VDC according to manufacturer specifications. In order to power the system without interfering 

with the container or sling legs, the positive and negative components of each power source were 

split up and 4 wires, 2 (positive and negative) for each power supply, were loosely strung around 

the sling legs so as to power the system without interfering with the sling legs.  
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Figure 26: Depiction of the Power Scheme Implementation 

3.3 Mathematical Model Development 
The development of the mathematical model was an important first step in the project. 

The model is needed to develop and test our control laws. The model represents the dynamics of 

a slung loaded rectangular cargo container with a constant wind passing over it, slung beneath a 

fixed point through four sling legs attached to the corners of the top of the container. The model 

assumes that the container is rigid and of uniform density. It was decided that the easiest way to 

numerically simulate this model was to use the program MATLAB. The code for this numerical 

simulation can be seen in Appendix C. 

 

In the numerical simulation the position orientation and movement of the simulated 

container is represented in a series of states. The values for each of the states are solved for over 

a provided time using the MATLAB function ode45. The ode45 function does this by using a 

function called the state-derivative function. The state derivative function calculates the state 

derivatives using a system of equations that determine the forces and moments acting on the 

container based on the current state and the control inputs. The control inputs are calculated at 

each point in time by the control laws, which use the current state values to determine the 

necessary change in the control inputs to achieve the desired stabilization. The ode45 function 

numerically integrates these derivatives over a timespan to determine the value of each state at 

each point in time. This process is shown below. 
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Figure 27: MATLAB Simulation Flowchart 

The creation of the state derivative function is the central part of the numerical 

simulation. Over the course of this project there were two different versions of this function 

created. The first function represents the sling load system in a series of twelve states. These 

states are the X, Y, Z position and the X, Y, Z velocity of the container, as well as the yaw, pitch, 

roll Euler angles and the angular velocity of those angles. The second function represents the 

sling load system with only six states. These states are the yaw, pitch, roll Euler angles and the 

angular velocity of those angles. The main difference between these two functions is how the 

forces and moments from the sling legs are represented. 

 

The first model calculates the forces and moments from the sling legs by assuming the 

sling legs have an un-stretched length and that they have a known modulus of elasticity. The 

attachment point of each sling leg is known in the body reference frame (the four top corners of 

the container). They are each represented in the code by a position vector originating from the 

center of the container and ending at each of the attachment points. This position vector is then 

converted to coordinates in the inertial reference frame by multiplying it by a 321 rotational 

cosine matrix whose values are determined from the three Euler angles of the container which 

represent the orientation with respect to the inertial reference frame. One the position vector of 

each of the attachment points with respect to the center of the container is known in the inertial 

reference frame the distance between the attachment points on the container to the single fixed 

attachment point is easily calculated by summing the containers current position (X, Y, and Z 

values) and the attachment point positions. This distance is then used to calculate the forces from 

each sling leg by assuming the sling leg is elastic with known modulus of elasticity. Once the 

force vectors from each sling leg are known the moments acting on the container in the body 

reference frame are calculated by taking the cross product of the moment arm (the attachment 

point vectors) and the forces vectors at the respective attachment point. These forces and 
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moments are then summed with the other forces and moments in the body frame to calculate the 

state derivatives. 

 

 The second state derivative function assumes the sling legs are rigid, and because of this 

the Cartesian position and velocity of the container is directly related to the orientation and rates 

of rotation. Because of this, a traditional system of equations cannot be used to calculate the state 

so the Euler-Lagrange equation is used to determine the state derivatives. The Euler-Lagrange 

equation relates the kinetic and potential energy of the system to the forces and moments acting 

on the system for each state. The Euler-Lagrange equation is shown below where 𝐾 is the kinetic 

energy and 𝑉 is the potential energy. 

𝐿(𝑞, �̇�) = 𝐾(𝑞, �̇�) − 𝑉(𝑞) 

𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑖
−

𝜕𝐿

𝜕𝑞𝑖
= ∑𝐹𝑖 + ∑𝑀𝑖 

Equation 1: Euler-Lagrange 

The solution to this equation for each state produces a value for that state derivative. Since the 

system already takes into account the sling legs the forces and moments that are summed in these 

equations do not include the forces and moments from the sling legs. 

 

 Both these functions were created however the second function is used to calculate all 

results seen in the results section and the full model can be seen in the appendix. The next 

portion of the state derivative function is to determine the forces and moments from the 

aerodynamic effects, and the SPARTA system.  

 

The calculation of the aerodynamic effects exert on the container is a very complicated 

step considering that the container is a rectangular box which is a bluff body. For these effects 

we decided to use equations from a model previously developed by a D.I. Greenwell at City 

University in London England and published in the journal article Modelling of static 

aerodynamics of helicopter underslung loads. These equations can be seen in detail in the 

appendix. This model is specifically designed to provide the aerodynamic forces and moments 

on a container based on the velocity vector of airflow over a static rectangular container. In our 

case we are modeling a dynamic container however since our goal is to stabilize it and keep it 

from moving we believe that the model can be used and trusted especially when it is stabilized. 

 

The final step in the state derivative function is determining the forces and moments from 

the control scheme developed by this project (SPARTA system). Part of the design process of the 

SPARTA system was to determine what forces and moments the design would exert on the 

container based on how the pipe doors and rudder would move. These equations which can be 

seen in the appendix, are also used in the model to calculate the forces and moments exerted on 

the container from the SPARTA system. 
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3.4 Control Law Development 
The creation of the control laws is an important part of this project. The control laws take 

a series of inputs and then calculate changes to the systems control inputs. In the case of this 

project and design the control inputs are the angles to which the pipe doors and rudder are moved 

to. This in turn changes the forces and moments that are exerted on the container in order to 

stabilize it. For this project the inputs to the control laws are three states, the containers side to 

side sway velocity, the containers yaw angle, and the containers yaw angular velocity. The full 

MATLAB code for our control laws can be seen in the appendix inside the full MATLAB 

numerical simulation code. 

 

It was decided that the control process of Linearization of the system should be used to 

create the control laws. This involves representing the system in two different matrices and A 

matrix and a B matrix. Matrix A is the Jacobean of the state derivatives with respect to the states 

and matrix B is the Jacobean of the state derivatives with respect to the control inputs. These 

matrices were calculated by taking the derivative of the equations for the state derivatives 

developed in the mathematical model with respect to each of the different states for the A matrix 

and with respect to each of the control inputs for the B matrix. 

 

The next step in the control laws is to select a point to linearize the system about. This 

means that the values for every other variable besides the inputs would correspond to a specific 

orientation and position that the container would reside in. This allows the control laws to 

estimate how a change in the control inputs would affect the system. The next and key part of the 

control laws is the calculation of the gain constant K. K is the constant that relates the difference 

in the desired inputs of the controller, which is the difference between the current state and the 

desired state, to the calculated change in the control inputs. For this project, the calculation of K 

was calculated using a linear quadratic regulator or LQR. LQR is an algorithm used in optimal 

control theory. It is a way to determine the optimal state control feedback based on the desired 

state and the system dynamics. The resulting equation is the form of the control laws used in this 

project. 

(𝐶ℎ𝑎𝑛𝑔𝑒 𝐼𝑛 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐼𝑛𝑝𝑢𝑡𝑠) = 𝐾 ∗ (𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝐴𝑛𝑑 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒) 
Equation 2: Control Laws General Form 

For our project the gain matrix K is calculated using MATLAB’s lqr function. This 

function has four inputs, the A and B matrix that were calculated earlier and an R and Q matrix. 

The R and Q matrices are values for determining how much each of the control inputs want to be 

used. The R matrix places a penalty on using different control inputs while the Q matrix 

encourages the use of them. In the case of this project we needed to limit the use of our rudder 

and increase the use of our pipe doors so we changed our R matrix value for the rudder to 10 

instead of 1 to decrease the use, and we changed the Q matrix values for the pipe doors to 3.5 

instead of 1 to increase their use. This resulted in our current control law equation shown below. 
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[

Δ𝜃𝑟𝑢𝑑𝑑𝑒𝑟

Δ𝜃𝑙𝑒𝑓𝑡

Δ𝜃𝑟𝑖𝑔ℎ𝑡

] = [
−4.055 −0.692 −0.590
0.664 0.201 −0.096

−0.664 −0.201 0.096
] ∗ [
Δ𝜓

Δ𝑅
Δ�̇�

] 

𝜃 = 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐴𝑛𝑔𝑙𝑒𝑠 

𝜓 = 𝑌𝑎𝑤 𝐴𝑛𝑔𝑙𝑒 

𝑅 = 𝑌𝑎𝑤 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑅𝑎𝑡𝑒 

�̇� = 𝑆𝑤𝑎𝑦 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

Equation 3: Control Laws 

3.5 Kalman Filters 
Along with the development of the control laws, the mathematical model was also used 

to develop Kalman filters for the IMU. Kalman filters are filters that compare the current 

measurement to the current measurement estimate in order to determine the change in the current 

measurement estimate. Kalman filters were developed for this project for the purpose of 

calculating a more accurate input to the control laws instead of just using the noisy 

measurements from the IMU. 

 The mathematics behind Kalman filters are shown below in the following general 

expression. 

�̂̇� = 𝐴 ∗ �̂� + 𝐵 ∗ 𝑈 + 𝐾 ∗ (𝑍 − 𝐻 ∗ �̂�) 

Equation 4: Kalman Filter General Form 

For the purpose of our project two filters were created, one for the yaw angle and yaw angle rate, 

and the other for the sway (side to side) velocity and roll angle. The developed equations for the 

two filters are shown below. 

[
�̂̇�

�̂̇�
] =

[
 
 
 
 
𝜕�̇�

𝜕𝜓

𝜕�̇�

𝜕𝑅

𝜕�̇�

𝜕𝜓

𝜕�̇�

𝜕𝑅]
 
 
 
 

∗ [
�̂�

�̂�
] +

[
 
 
 
 

𝜕�̇�

𝜕𝑈𝑟𝑢𝑑

𝜕�̇�

𝜕𝑈𝑟𝑖𝑔ℎ𝑡

𝜕�̇�

𝜕𝑈𝑙𝑒𝑓𝑡

𝜕�̇�

𝜕𝑈𝑟𝑢𝑑

𝜕�̇�

𝜕𝑈𝑟𝑖𝑔ℎ𝑡

𝜕�̇�

𝜕𝑈𝑙𝑒𝑓𝑡]
 
 
 
 

∗ [

𝑈𝑟𝑢𝑑

𝑈𝑟𝑖𝑔ℎ𝑡

𝑈𝑙𝑒𝑓𝑡

] + 𝐾 ∗ ([
𝜓𝑖𝑚𝑢

𝑅𝑖𝑚𝑢
] − [

1 0
0 1

] ∗ [
�̂�

�̂�
]) 

Equation 5: Yaw and Yaw Rate Kalman Filter 

[�̂̇�

�̇̂�
] = [0

1

𝐿
0 0

] ∗ [�̂�
𝑣
] + [

0
1
] ∗ [𝐴𝑦𝑖𝑚𝑢] + 𝐾 ∗ ([

𝜙𝑖𝑚𝑢

𝑃𝑖𝑚𝑢
] − [

1 0

0
1

𝐿

] ∗ [�̂�
𝑣
]) 

Equation 6: Roll Angle and Sway Velocity Kalman Filter 

In these equations the subscript “𝑖𝑚𝑢” denotes a measurement from the inertial measurement 

unit, and L is the distance from the top of the inertial measurement unit to the sling leg 

attachment point on the helicopter or the wind tunnel. 
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 The next part in developing the Kalman filters was determining the Kalman gain K. The 

Kalman gain K is solved for over time using the following equation where the matrix P is a 

function of time and R is the measurement error covariance matrix. 

𝐾 = 𝑃(𝑡) ∗ 𝐻𝑇 ∗ 𝑅−1 

Equation 7: Kalman Gain 

The since the matrix H and R are already known for each filter the only matrix that needs to be 

solved for is the state estimate covariance matrix (P) as a function of time. For this project the 

ordinary differential equation shown below is used to solve P(t) (Murray, 2010). 

�̇� = 𝐴 ∗ 𝑃 + 𝑃 ∗ 𝐴𝑇 − 𝑃 ∗ 𝐻𝑇 ∗ 𝑅−1 ∗ 𝐻 ∗ 𝑃 

𝑃(0) = [
1 0
0 1

] 

Equation 8: State Estimate Covariance Matrix 

With these filters designed they were added to the mathematical model to test their effectiveness. 

 Since the purpose of Kalman filters is to eliminate noise from a measurement 

modifications to the model were made to add a simulated noise profile. The modified model also 

linked the estimated Kalman values to the control laws to more accurately simulate how the 

SPARTA system would work. These modifications are illustrated in the flow chart below and the 

Kalman filter code that is part of the model can be seen in Appendix C. 

 

Figure 28: MATLAB Simulation With Kalman Filter Flow Chart 
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3.6 Wind Tunnel Testing 
The team waited to rapid prototype the design until the majority of the aerodynamic 

analysis, Arduino programming, and control law creation was complete. In the meantime, two 

initial prototype TRICON containers were constructed, scaled to the exact dimensions of the 

eventual rapid prototyped version, and tested in the wind tunnel. The initial prototype TRICON 

containers were crafted using 0.25” poster-board, with the sling legs created from the same 

materials as Nyren’s previous project: 2mm braided nylon rope, with 22-18 gauge O-rings 

connected to a simulated clevis, and 16-14 gauge O-rings connected to paper clips (simulating 

metal chains), which were attached to the TRICON. The setup can be seen in Figure 29. 

 

Figure 29: Poster-board TRICON (note power cord - this was removed for subsequent tests) 

During these early tests, many of the hardware components, including the Arduino and 

IMU, were included within the container to both weigh the poster-board down (since it is much 

lighter than ABS plastic), and to test the functionality of the electronics. The usual setup for 

these tests can be seen in Figure 30. The force transducer was tested as well; the results appeared 

promising and the team concluded that the transducer was working properly. 
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Figure 30: Inside of Poster-Board TRICON with Components 

After some testing to see the behavior of the scaled-down TRICON in the wind tunnel, a 

second poster-board TRICON container was then created with detachable sling legs (using 

jewelry ring clasps), in order to test various wire configurations. It was determined from the tests 

with the first, non-detachable sling leg poster-board TRICON that having one thick power wire 

running up one sling leg severely altered the dynamics of the box. Thus, the wire would be split 

into four smaller wires, wrapped carefully around all four sling legs. The new poster-board 

TRICON is shown in Figure 31. 

 

Figure 31: Detachable Sling Legs on the Second TRICON Prototype 

Before submitting the final SPARTA prototype for rapid prototyping, the team 

constructed the SPARTA design using basswood and balsawood.  These pre-prototypes served to 

test how the design would affect the stability of the TRICON, and whether any passive stability 



Active Helicopter Sling Load Stabilization MQP 

40 

 

was achieved. Two different designs were created; one without doors (to simulate the doors 

being closed), and one with the doors fixed at 10°, the newly-determined equilibrium position, 

since the control laws did not allow the team to optimize around 0° without greatly complicating 

the mathematics. The two designs are shown in Figure 32. All of the control surfaces (the doors 

and rudder) were fixed in place, so that the rudder essentially acted as an additional, larger 

vertical stabilizer. 

  

Figure 32: Basswood and Balsawood SPARTA Pre-Prototypes 

 The team ran into difficulties weighing down these pre-prototypes to the weight of the 

rapid-prototyped container. Early results from the weighted-down container with the pre-

prototype SPARTA system showed signs of some passive stabilization; however, the team later 

determined that the poorly-packed weights within the container had shifted and “pinned” one 

corner of the container in place during testing. Subsequent tests with the weight taped down and 

center properly generated less satisfying results. There was little passive stabilization; the 

TRICON’s average maximum yaw angle only reduced from 115° to 98°, and the SPARTA pre-

prototype actually amplified sway instability, causing the TRICON to sway violently whenever 

the yaw was reduced, striking the side of the wind tunnel during one test. All of the tests were 

filmed for later analysis; a screenshot of one of these videos is shown in Figure 33. 
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Figure 33: A Screenshot from One of the Wind Tunnel Test Videos 

 Due to the lack of suitable yaw correction by the pre-prototype SPARTA designs, the 

team decided to double the length of the rudder to increase the vertical stabilizer area. This new 

rudder is shown in Figure 34. 

 

Figure 34: Larger Rudder 

 Subsequent wind tunnel tests with the larger rudder yielded the same results as the 

original rudder; little yaw stability was achieved, and sway was increased over the standalone 

TRICON. The team determined that the SPARTA design provides little to no passive 

stabilization and will therefore only rely on highly-precise actuation to provide active 

stabilization. While the results were not promising, the team noted that the actual active-control 

SPARTA would begin to correct the TRICON’s movements starting in a freestream velocity of 0 

m/s, where movements are much smaller. The SPARTA design would begin to correct 
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instabilities while they were very small, and thus the container would be prevented from 

reaching the magnitude of the large-scale instabilities seen in the preliminary wind tunnel tests. 

3.7 Rapid Prototyping 
 The rapid prototyped TRICON container and SPARTA system was delivered to the team 

with a number of issues. None of the lids properly sat on top of container, one of the rear support 

pillars was broken before delivery, the pins for the rudder and doors were too thick and too 

fragile to use, and the doors were printed at half their proper height. Some of these issues can be 

seen in Figure 35. While the doors were reprinted quickly at their proper height, the team had to 

modify the design of SPARTA slightly. The intact pillar was removed from the other pipe; the 

doors themselves would act as support pillars for the back of the pipes.  

 

Figure 35: Half-Sized Doors and Broken Pillar 

Additionally, a new pin system was developed using 2.5” x 8D nails from a local 

hardware store (for the doors), and a 0.125” aluminum rod for the rudder. The 8D nails fit snugly 

into the pin holes of the doors without any glue, while the rod is glued to the bottom of the 

rudder. The nails are mounted upside down, so that servo arms can be attached to their heads.  

Originally, the servos were to be mounted upside down with gears attached to them, 

which would mesh with identical gears glued to the nails/rod, and rotate the doors and rudder, as 

outlined in Figure 36. However, the team learned in early D-Term that gears for the B1 spline 

size that these servos have are not manufactured. Therefore, an alternative servo mechanism was 

developed. 
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Figure 36: Original Servo Gear Mechanism 

 The second servo mechanism idea involved directly attaching the servos to the nails/rod 

using epoxy. The servos would be mounted upright and held in place by a lightweight support 

structure built from the same poster-board as the TRICON container mockups. However, this 

idea was scrapped after the team could not get the servos and support structure to fit within the 

container, and once the team realized that holes would need to be cut out of the rear of the 

TRICON to fit the protruding wires. One of these support structures is seen in Figure 37.  

 

Figure 37: Directly Attached Servo Mechanism 

In the third and final servo mechanism idea, the servos are again mounted upside down, 

superglued to the underside of the lid, this time with servo arms attached. Paper clips act as push 

rods connecting the servo arm on the servos to the servo arm glued to the nails and the servo arm 
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glued to the rod. When the servo turns its servo arm, it slides the paper clip up or down, which 

rotates the servo arm attached to the nail/rod, which turns the door or rudder. The servo arms are 

attached the nails/rod with JB Weld for a most permanent and strong bond. This final servo 

mechanism is shown in Figure 38. 

 

Figure 38: Servo Mechanism 

After several failed attempts to attach the nail securely to the bottom edge of the rudder 

with superglue, Gorilla Glue, and general-purpose epoxy, the team cut a tab out in the rudder for 

the nail, and used an epoxy specifically for ABS plastic. This attachment method, seen in Figure 

39, finally provided a strong bond between the nail and rudder.  

 

Figure 39: Original Rudder with Nail 
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 The final TRICON and SPARTA prototype is shown in Figure 40. Note that the sling 

legs from the previous poster-board designs have been reused for this design for consistency. 

 

Figure 40: Final Rapid-Prototyped TRICON and SPARTA 

 

3.8 Aerodynamic Analysis Verification 
 In order to test the accuracy of the aerodynamic analysis explained earlier, 1/10

th
 scale 

versions of the pipes, vertical stabilizer and rudder were rapid prototyped, shown in Figures 41 

and 42. However, the rudder model was manufactured with incorrect hole positions, and thus 

could not be used. The pipe model was mounted on a support structure attached to the force 

transducer, which measured the forces and moments generated by changing the angle of the rear 

door.  

  

Figure 41: 1/10th Scale Pipes with Doors                                   Figure 42: 1/10th Scale Vertical Stabilizer and Rudder 
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 The support stand was machined in the WPI machine shop from aluminum purchased 

from MSC Industrial Supply Company. The stand screws directly into the force transducer and 

attaches to the 3D printed pipes using duct tape to reduce weight. Due to the difficulty of 

welding aluminum, particularly of the thicknesses of the support structure, JB Weld was again 

used for its strength and reliability.  

 For the wind tunnel tests, only the rear door was tested at various angles due to the front 

door having been scrapped by this point in the design. The door was held in place using the same 

8D nail used in the 1/17
th

 scale prototype, acting as a pin. The team encountered several issues 

during testing, including difficultly ensuring the force transducer was exactly aligned with the 

freestream flow, and difficultly in firmly affixing the support structure to the force transducer. 

The latter issue was determined to be caused by the upper plate of the support structure being 

slightly thinner than designed (about 1/10” thick versus the designed 1/8”). This caused the 

support structure and pipes to wobble slightly as the team adjusted the door angle during each 

test, which affected the reliability of the data. 

 An initial reading with the door closed was taken as a baseline offset. This offset was 

subtracted from the forces and moments measured at each door angles to produce the change in 

forces and moments versus door angle, yielding only the forces and moments caused directly by 

the door.  

 

Figure 43: CAD model of support stand and with pipes in the wind tunnel 
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3.9 Final 1/17th Scale Prototype Testing 
 Once the pushrod style servo mechanism was crafted, the team connected the servos to 

the Arduino and began to troubleshoot the hardware. During this troubleshooting, the doors 

occasionally made contact with the inside center wall of the pipes as the orientation of the servos 

was worked out. The power of the servos became a liability as they were found to shear the top 

layer of ABS plastic off the container (where they were glued to) when the doors contacted the 

center wall of the pipes and prevented the servo arm from turning further, resulting in the team 

having to re-glue one of the door servos. Additionally, the other door servo failed midway 

through troubleshooting and no longer operated. The rudder servo did not encounter these issues 

and performed well; however due to the noise in the IMU data the team found the rudder to 

rapidly twitch in place during testing. This twitching was deemed minor as the rudder performed 

as expected. 

 The team discovered that the arm connected to the rod (and thus the rudder) protruded 

out too far when the rudder turned to the left, and would thus contact the inside rear wall of the 

container. Plans were made to cut a small hole in the rear of the container to allow the servo arm 

to extend further and allow the rudder to turn the full amount. However, following the loss of 

one of the door servos and the limited time remaining in the project to order a new one, the team 

cancelled the final testing of the prototype in the wind tunnel. 
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CHAPTER 4: RESULTS 

4.1 Initial 1/10th Scale Pipes Testing 

Three experimental values were recorded during the testing of the 1/10
th

 scale pipes and 

compared with their theoretical values: the force due to the doors in the x-direction (in the 

direction of the freestream flow), the restoring force in the y-direction that corrects for sway, and 

the moment in the z-direction generated by the opening of the door. The rear door was pinned in 

five-degree increments from 0° to 45°. The results for the x-direction force are shown in Figure 

44. 

The solid black line in the theoretical values for the force, with the dashed black line 

being the same equation with drag calculations also included. The red points are the actual data 

points taken by the force transducer, and the red line is a least-squares fit of those points, to 

compensate for the significant noise in the measurements. Each of the least-squares fit curves for 

the three graphs had their y-axis intercept set to 0 Newtons. The least-squares fit of the x-

direction force was found to match the theoretical x-direction force with drag included (the 

dashed black line) fairly closely, albeit diverging with a slightly greater magnitude for door 

angles past 35°. Since the doors do not reach these door angles in the final control laws, this was 

ignored.  

Some of the data points in this graph as well as the following two showed a positive force 

when the forces should have been zero or negative due to the orientation of the force transducer. 

Removing these positive points drastically altered the least-squares fit curve and in some cases 

created an impossible positive slope. Thus, the positive readings were left in and attributed to the 

overall noise in the measurements. However, one outlier was removed from each graph; in the x-

direction force graph, the data point at 25° was removed due to having a relatively extremely 

positive value that contrasted significantly with the other measured values.  The final least-

squares fit curve for the x-direction force is given below. 

𝐹𝑥𝑒𝑥𝑝
= −0.0006𝜙2 + 0.0122𝜙 

𝜙 is the door angle, measured in degrees. The 𝑅2 correlation coefficient was 0.788, 

which the team was satisfied with given the noise of the measurements. 

Figure 44: Rear Door X-Direction Force vs. Door Angle 



Active Helicopter Sling Load Stabilization MQP 

49 

 

The restoring y-direction force graph is shown in Figure 45. The least-squares curve fit 

was found to match the theoretical results quite well, with again a slight divergence forming after 

the door angle exceeded 35°.   

An outlier at 40° was removed before the least-squares fit was taken. The least-squares fit 

equation for the y-direction is shown below. 

𝐹𝑦𝑒𝑥𝑝
= −0.0003𝜙2 + 0.0016𝜙 

Despite the least-squares fit matching the experimental values, the 𝑅2 correlation 

coefficient was found to be much lower than the in the x-direction, with a value of 0.275. This 

was again determined to be due to the noise in the measurements.  

The z-direction moment values were the most difficult to analyze, with the theoretical 

values hovering just below 0 Newton-meters. The resulting graph and least-squares fit equation 

is shown below. 

𝑀𝑧𝑒𝑥𝑝
= 0.0004𝜙2 − 0.0007𝜙 

The 𝑅2 correlation coefficient for the Z-direction moment was 0.61, an improvement 

upon the y-direction force 𝑅2 value. Due to the noise in the measurements, accuracy concerns 

due to the team being unable to exactly align the force transducer, and issues with the support 

stand, all while measuring relatively tiny forces and moments, the team concluded that results 

were promising, and further testing would be necessary to fully verify the experimental 

calculations. 

Figure 45: Restoring Y-Direction Force vs. Door Angle 

Figure 46: Rear Door Z-direction Moment vs. Door Angle 
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4.2 Initial 1/17th Scale Poster-Board TRICON Testing 
 The poster-board TRICON container was fitted with three iterations of a basswood and 

balsa SPARTA system: one with the doors closed (flush with the sides of the pipes), one with 

both doors open 10°, and one with the doors closed and a rudder with a double chord length. 

Each was tested in the wind tunnel at 12.7 m/s (scaled down from a 60 knot full scale speed) 

several times to determine if the SPARTA system exerted any innate passive stabilization upon 

the container. 

The figure below is a screenshot taken from videos of the iterations in the wind tunnel. 

The average maximum yaw angle is displayed for the TRICON without the SPARTA system, 

one with the doors closed, and one with the doors open 10 degrees.  

 

Figure 47: Average Maximum Yaw Angle for Various SPARTA Iterations 

 The team found that the SPARTA system did produce a small reduction in average 

maximum yaw amplitude, reducing it from 115° to 98° with the doors open 10°. However, the 

team was hoping for much more significant yaw magnitude direction, and a reduction in yaw 

rate, which remained relatively unchanged through each iteration. The double chord length 

rudder produced similar unpromising results. Additionally, the team found that when the 

SPARTA system occasionally stabilized the container and eliminated yaw (usually only for a 

second or two), the container would suddenly dramatically increase in sway motion. In one 

instance of prolonged negligible yaw, the container began to sway so violently it bumped the 

side of the wind tunnel. This behavior was consistent with the team’s previous research; when 

one mode of instability is corrected, the other intensifies. 
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 The team also tested the setup at various flow speeds; however, no reliable and 

significant passive stabilization was found. Thus, the team concluded that the SPARTA system 

was a purely active stabilization system, with little to no innate passive stabilization. 

4.3 Final 1/17th Scale SPARTA Prototype Testing 
 The final 1/17

th
 scale SPARTA prototype testing, controlled by the Arduino using 

measurements from the IMU gyroscope, and magnetometer, and actuated using the three servos, 

was cut short due to hardware issues. During the initial setup of the hardware, one of the door 

servos ceased to operate, and the other door servo ripped the top layer of ABS plastic off its 

attachment point twice. The rudder and doors were found to work properly, moving 

appropriately as the IMU was rotated, albeit with jitter due to the noisy IMU measurements. Due 

to the hardware issues and limited time remaining in the project, the team was unable to 

complete the final prototype testing of the SPARTA system. However, as the servos did all 

briefly function, and the rudder and doors behaved as expected with the IMU, the team viewed 

the initial setup testing as a proof of concept, with further testing required in a future project. 

4.4 MATLAB Simulation Results 
 The numerical simulation was used to estimate how effective our prototype SPARTA 

system could be at stabilizing a TRICON or CONEX container in our wind tunnel. While the 

model is not a substitute for real world testing it is effective at estimating the performance. The 

final results of the testing were done to simulate the 17
th

 scale testing in the wind tunnel with 

speeds of 12.5 m/s which is the scaled down airspeed. There is also an initial disturbance of a 15 

degree initial yaw angle and 20 lateral swing angle.  

 Without the SPARTA system the simulation produces the following results. 

 

Figure 48: Yaw And Yaw Rate, Simulation Results Without SPARTA 
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Figure 49: Lateral And Longitudinal Swing Angles, Simulation Results Without SPARTA 

These results show what we are expecting, random yawing motion of spinning up and down, and 

lateral swing amplitude of approximately 30 degrees. Now with the SPARTA system the model 

produces the following results. 

 

Figure 50: Yaw And Yaw Rate, Simulation Results With SPARTA 
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Figure 51: Lateral And Longitudinal Swing Angles, Simulation Results With SPARTA 

These results show an almost perfect stabilization of the sling load over time. These 

results are promising however it is important to keep in mind that the simulation is in an ideal 

environment and with a relatively small initial disturbance. The model shows similar 

stabilization effects with initial yaw angle disturbances up to approximately 35 degrees. After 

that the system is not able to stabilize the container since it is less and less effective at imparting 

forces and moments on the container the further away from a zero degree yaw angle it is. 

4.5 Kalman Filter Results 
 The simulation with the Kalman filters inserted was also tested both with the filters 

providing inputs to the controls and without. The testing shows that when the Kalman filters are 

not linked to the controls both filters appear to be working. This is shown in the plots below 

which are the differences between the actual and Kalman estimated states as a function of time. 
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Figure 52: Yaw And Yaw Rate Kalman Filter Results Without Linked Control 

 

Figure 53: Roll And Sway Velocity Kalman Filter Results Without Linked Control 

Both filters do effectively converge to zero when the controls are not linked to the Kalman 

estimates however when they are linked neither filter effectively estimates the actual value of the 

measured states. The results from the linked Kalman filter simulation are shown below. 
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Figure 54: Kalman Yaw And Yaw Rate With Linked Control 

 

Figure 55: Kalman Roll And Sway Velocity With Linked Control 

This shows that the Kalman filters do need further development before real world testing should 

be tried. 

4.6 IMU-SD Card Data Logging Results 
 

 The IMU-SD Card data-logging function was tested and used during a wind tunnel 

testing session. This was done to test the effectiveness of the code and the setup. The results 
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properly convey the movement of the container during the testing and also showcase the noise 

that the IMU records as it is taking measurements. Only the accelerometer (3-axes) and the 

gyroscope (3-axes) were used in this testing.  

 

Figure 56: Accelerometer and Gyroscope Data-Logging Results  
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CHAPTER 5: CONCLUSIONS  
 

In this project, the SPARTA system for active stabilization of helicopter sling loads was 

developed. Using IMU data, two pipes with doors were designed to correct sway, while a rudder 

and vertical stabilizer correct yaw. This design was tested in MATLAB via a numerical 

simulation, based on a mathematical model of a sling load system that was also developed. A 

1/10
th

 scale version of one side of the pipes was rapid-prototyped and tested in a wind tunnel 

using a force transducer to verify that the forces and moments generated by the door opening 

matched the theoretical calculations. Additionally, a 1/17
th

 version of the TRICON container and 

a non-moving SPARTA system were constructed from poster-board and basswood/balsa to test 

for any passive stabilization. 

A 1/17
th

 scale prototype of the SPARTA system (with TRICON container) was created 

for testing. An actuation and control scheme for the 1/17
th

 scale rapid-prototyped SPARTA 

system was developed using an Arduino, IMU, and three servomotors. The Arduino was 

programmed to use the control laws developed for the numerical simulation as well as the IMU 

data to actuate the SPARTA system and reduce instabilities. Wind tunnel testing of the overall 

system was not performed due to time constraints.. 

The SPARTA system was shown to be highly effective at stabilizing the sling load in the 

numerical simulation. This observation does however depend on the accuracy of the 

mathematical model used for numerical simulation of the system. The hardware and actuation 

scheme worked well for the final prototype, with the Arduino DUE able to perform using both 

the IMU data-logging script and the control law script. The poster-board and basswood/balsa 

SPARTA tests revealed no passive stabilization, and were a good check of the baseline behavior 

predicted by the numerical simulation. However, the 1/17
th

 scale of the prototype, constrained by 

the size of the wind tunnel, was found to be too small to properly test the SPARTA system. Even 

with the smallest servos available, the system added significant weight to the container, and the 

limited volume within the container presented issues when creating a mechanism to turn the 

doors and rudder via the servomotors. Additionally, the power of the servos proved to be a 

liability, shearing off the top layer of ABS plastic a door contacted the inside wall of the pipes, 

and damaging another servo in the same manner.  

Future work in the mathematical model, numerical simulation, hardware setup, and 

practical testing is recommended. The theoretical calculations behind the mathematical model 

and SPARTA system were based on several simplifying assumptions that could be eliminated 

through the use of computational fluid dynamics (CFD). Further experimental validation of the 

mathematical model needs to be performed, as the model only takes into account steady level 

flight and does not model changes in altitude or changes in speed. The SPARTA system would 

also need a different IMU setup to compare the orientation and motion of the sling load to the 

orientation and motion to the helicopter. An onboard power supply would also need to be 
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developed since the current SPARTA prototype draws power externally and it is not possible for 

the helicopter to supply power. Larger scale testing would allow for a better hardware and 

actuation scheme using better components without such stringent size and weight requirements. 

With a larger scale prototype and more coding knowledge, a more powerful microcontroller such 

as a Raspberry Pi could have increased performance and allowed for a more complex control 

code, including the use of a Kalman filter. A more powerful microcontroller with larger built-in 

memory would allow the SD card breakout to be used without compromising a system that 

requires such high dynamic response, and a more precise and accurate IMU could be used to 

obtain better readings, thus making the control system function more effectively.  
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Appendix A: Derivation of Moments of Angular Momentum 
 

𝐴𝑖  Intake area of door  

𝐴𝑒 Exit area of door 

𝐶𝐷 Drag coefficient of door (flat plate) 

𝑐𝑚 Center of mass 

𝐷 Drag force 

𝐸𝐴, 𝐸𝐵 Exit area of pipes 

𝐹𝑥, 𝐹𝑦 , 𝐹𝑧 Forces in Cartesian coordinates 

𝐼𝐴, 𝐼𝐵 Inlet area of pipes 

𝑀1𝐴
, 𝑀3𝐴

 Moment of doors 1𝐴, 3𝐴 

𝑚 Mass of TRICON container 

�̇�𝑖 Mass flow rate of intake area 𝐴𝑖  

�̇�𝑒 Mass flow rate of exit area 𝐴𝑒 

𝜌 Density of air 

𝑟 Moment arm (perpendicular to center of mass) 

𝜙 Door angle with respect to 𝑥 axis 

𝑉𝑖 Velocity of air at door intake 

𝑉𝑒 Velocity of air at door exit 

𝑉∞ Freestream flow velocity 

 

 

 

 

 

 

 

 

 

 

 

 

𝑦 

𝑥 

𝑧 points upward 

CV 

Figure 57: Pipes Diagram  
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Force is equal to the change in momentum over time 

𝐹 =
𝑑𝑝

𝑑𝑡
=  

𝑑(𝑚𝑉)

𝑑𝑡
 

For a fluid, Equation (1) is written using mass flow rate �̇�, the change in mass over time 

𝐹 = 𝑑(�̇�𝑉)  

Where 

�̇�1 = 𝜌1𝑉1𝐴1 

For intake area 𝐴𝑖. With an intake area 𝐴𝑖 and exit area 𝐴𝑒, Equation (2)  becomes 

𝐹 = �̇�𝑒𝑉𝑒 − �̇�𝑖𝑉𝑖  

As shown in Figure 57, for the specified control volume, there is no mass flow intake in the y-

component (neglect small area above door). Effective velocity in the 𝑥-component will change 

(increase) as door angle increases (𝑉𝑖𝑐𝑜𝑠(𝜙) is the velocity in the 𝑥-component due to the door 

opening) 

𝐹𝑥 = �̇�𝑖(𝑉𝑖 − Vicos(𝜙)) 

𝐹𝑦 = �̇�𝑒𝑉𝑒 

Conservation of mass dictates that the mass flow rate of the intake must equal the mass flow rate 

of the exit, therefore 

�̇�𝑖 = �̇�𝑒 

Expanding using the definition of mass flow rate shown in Equation (3) 

𝜌𝑖𝑉𝑖𝐴𝑖 = 𝜌𝑒𝑉𝑒𝐴𝑒 

Intake and exit densities are equal due to no compressibility effects for air at low speeds 

𝜌𝑉𝑖𝐴𝑖 = 𝜌𝑉𝑒𝐴𝑒 

Assuming that intake velocity 𝑉𝑖 is equal to freestream velocity 𝑉∞ 

𝜌𝑉∞𝐴𝑖 = 𝜌𝑉𝑒𝐴𝑒 

Relating 𝐴𝑖  𝑡𝑜 𝐴𝑒 using basic geometry (neglect small horizontal area above door) 

𝜌𝑉∞(sin(𝜙) 𝐴𝑒) = 𝜌𝑉𝑒𝐴𝑒 

(1) 

(2) 

(3) 

(4) 

 (5) 
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Cancelling out like terms 

𝑉∞ sin(𝜙) = 𝑉𝑒 

Using Equation (3) for �̇�𝑒 

�̇�𝑒 = 𝜌𝑉𝑒𝐴𝑒 

Plugging in Equation (6)  

�̇�𝑒 = 𝜌(𝑉∞ sin(𝜙))𝐴𝑒 

Plugging Equation (6) and Equation (7) into Equation (5) 

𝐹𝑦 = (𝜌(𝑉∞ sin(𝜙))𝐴𝑒)(𝑉∞ sin(𝜙)) 

Combining like terms  

𝑭𝒚 = 𝝆𝑽∞
𝟐 𝒔𝒊𝒏𝟐(𝝓)𝑨𝒆 

Equation (8) quantifies the restoring force 𝐹𝑦 that is used for sway motion correction. For extra 

force 𝐹𝑥, Equation (4) states 

𝐹𝑥 = �̇�𝑖(𝑉𝑖 − Vicos(𝜙)) 

Expanding using Equation (3) for �̇�𝑖 

𝐹𝑥 = 𝜌𝑉𝑖𝐴𝑖(𝑉𝑖 − Vicos(𝜙)) 

 

Combining like terms and substituting 𝑉𝑖 = 𝑉∞ 

𝑭𝒙 = 𝝆𝑽∞
𝟐 𝑨𝒊(𝟏 − 𝐜𝐨𝐬(𝝓)) 

Equation (9) quantifies the extra force 𝐹𝑥 that results from turning the flow. This simplified 

equation holds reasonably well for small door angles (𝜙 ≤ 20°). For larger angles, drag due to 

the door (which is approximated as a flat plate) must be taken into account. 

Drag 𝐷 for a door is equal to 

𝐷 =
1

2
𝜌𝑉∞

2𝐶𝐷𝐴𝑖 

Where, for 0° ≤ 𝜙 ≤ 90° 8  

𝐶𝐷 = 2 sin(𝜙) 

                                                 
8
 http://mekside.com/wings-redux/ 

(6) 

(7) 

(8) 

(9) 

(10) 
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Therefore, Equation (10) becomes 

𝐷 = 𝜌𝑉∞
2 sin(𝜙)𝐴𝑖 

Adding this to Equation (9) 

𝑭𝒙+𝒅𝒓𝒂𝒈 = 𝝆𝑽∞
𝟐 𝑨𝒊(𝟏 − 𝐜𝐨𝐬(𝝓)) − 𝑫 

Or 

𝐹𝑥+𝑑𝑟𝑎𝑔 = 𝜌𝑉∞
2𝐴𝑖(1 − sin(𝜙) − cos(𝜙)) 

For the process of simplification and clarity, Equation (9) will be used for 𝐹𝑥 for deriving the 

moment equations.  

Angular momentum 𝐿 was found in a different way than was previously taught, using forces 

𝐹𝑥, 𝐹𝑦 and the Pythagorean Theorem 

𝐿 =  √𝐹𝑥
2 + 𝐹𝑦

2 

The cross product of Equation (12) and a moment arm 𝑟 was used to generate a moment of 

angular momentum 𝑀 

𝑀 = 𝑟 𝑋 𝐿 

Where 𝑟 is the perpendicular distance 

between the center of mass of the TRICON 

and the angular momentum vector, shown in 

Figure 58. 

 

 

 

 

 

 

 

(11) 

(12) 

Figure 58: Angular Momentum Moment 
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The moment arm equations are described and derived in Figures 59 and 60 below. 

 

Figure 59: Rear Door Moment Arm 
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Figure 60: Front Door Moment Arm 
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Appendix B: Aerodynamic Equations from Modelling of static 

aerodynamics of helicopter underslung loads 
 

Nomenclature: 
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Equations: 
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Appendix C: Full MATLAB Numerical Simulation Code and Results 

Simulation Code 

clear variables; close all; clc; 

Model parameters 

params_model.scale = 17; 

 

%----- Height of sling load cm below hook 

params_model.sling_height_cmass = -5 / params_model.scale; 

 

%----- Sling-loaded cargo 

params_model.load.mass = 2000 / (params_model.scale^3);     % kg 

params_model.load.width = 1.9812 / params_model.scale;     

 % m 

params_model.load.length= 2.4384 / params_model.scale;     

 % m 

params_model.load.height= 2.4384 / params_model.scale;     

 % m 

 

params_model.load.area_x= params_model.load.height*params_model.load.width; 

params_model.load.area_y= params_model.load.length*params_model.load.height; 

params_model.load.area_z= params_model.load.length*params_model.load.width; 

 

params_model.load.w_by_l= params_model.load.width/params_model.load.length; 

 

params_model.load.Ixx = (1/12)*params_model.load.mass*... 

 (params_model.load.width^2 + params_model.load.height^2); 

params_model.load.Iyy = (1/12)*params_model.load.mass*... 

 (params_model.load.height^2 + params_model.load.length^2); 

params_model.load.Izz = (1/12)*params_model.load.mass*... 

 (params_model.load.length^2 + params_model.load.width^2); 

 

%----- Pipes 

params_model.pipes.height = 0.4 / params_model.scale;     

 % m 

params_model.pipes.width = 0.8 / params_model.scale;     

 % m 

params_model.pipes.length = params_model.load.length; 

params_model.pipes.area  = params_model.pipes.height*params_model.pipes.width; 

 

params_model.pipes.door.length = 0.8 / params_model.scale;    

 % m 

params_model.pipes.door.area = params_model.pipes.door.length*params_model.pipes.height; 

params_model.pipes.door.loc = (1.143/params_model.scale) - params_model.pipes.door.length; 

 

%----- Rudder 

params_model.rudder.height = 0.6 / params_model.scale;     

 % m; 
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params_model.rudder.length = 1 / params_model.scale;     

 % m; 

params_model.rudder.area = params_model.rudder.height*params_model.rudder.length; 

params_model.rudder.CL0  = 2*pi; 

params_model.rudder.CD0  = 1.28; 

params_model.rudder.loc  = params_model.load.length / 2; 

 

%----- Vertical stabilizer 

params_model.vstab.height = params_model.rudder.height; 

params_model.vstab.length = 0.5 / params_model.scale;     

 % m; 

params_model.vstab.area  = 0.5*params_model.vstab.height*params_model.vstab.length; 

params_model.vstab.loc  = params_model.load.length / 2; 

 

%----- Sling legs 

params_model.legs.youngs = 0.64*10^9;        

 % Young's modulus, N/m^2 

params_model.legs.cs_area = pi*(0.06/(2*params_model.scale))^2;   % m^2 

params_model.legs.length0 = 5.3 / params_model.scale;     

 % Unstretched length, m 

params_model.legs.stiffness = params_model.legs.youngs*params_model.legs.cs_area / 

params_model.legs.length0; 

 

params_model.legs.C_wind_up = -0;         

 % Coefficient of wind-up restoring torque, N.m/rad 

 

params_model.legs.loc_e  = 0.5*[... 

 params_model.load.length, -params_model.load.width, -params_model.load.height; 

 -params_model.load.length, -params_model.load.width, -params_model.load.height; 

 -params_model.load.length, params_model.load.width, -params_model.load.height; 

 params_model.load.length, params_model.load.width, -params_model.load.height]'; 

Simulation parameters 

params_simulation.tf                    = 0.5*60;     % simulation duration, s 

params_simulation.use_rudder            = true; 

params_simulation.use_pipes             = true; 

params_simulation.use_control           = true; 

params_simulation.use_ekf               = false; 

params_simulation.use_legs              = false; 

params_simulation.use_kalman            = true; 

params_simulation.use_kalmancontrols = false; 

 

params_simulation.solver_options= odeset('RelTol', 1e-4, 'AbsTol', 1e-4); 

 

params_simulation.V_freestream = 12.5;             % freestream velocity, m/s 

params_simulation.rho_atm  = 1.225;   % atmospheric denisty, kg/m^3 

params_simulation.g    = 9.81;    % m/s 

 

params_simulation.deg2rad  = pi/180; 

 

params_simulation.initial_state_system  = 
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[35*params_simulation.deg2rad;0;20*params_simulation.deg2rad;0;0;0;15*params_simulation.deg2rad;0

;20*params_simulation.deg2rad;0]; 

% params_simulation.initial_state_system(2) = params_model.load.width/10; 

% params_simulation.initial_state_system(3) = params_model.sling_height_cmass; 

% params_simulation.initial_state_system(5) = -0.1 / params_model.scale; 

 

params_simulation.initial_state = params_simulation.initial_state_system; 

 

 

 

params_model.legs.tension0 = 0.25*params_model.load.mass*params_simulation.g*... 

 norm([(params_model.sling_height_cmass - params_model.load.height/2); ... 

 params_model.load.length/2; params_model.load.width/2 ]) / ... 

 (params_model.sling_height_cmass - params_model.load.height/2); 

Control parameters and LQR gain 

params_control.psi0   = 0; 

params_control.r0   = 0; 

params_control.yd0   = 0; 

params_control.rudder0  = 0; 

params_control.door_left0 = 15*params_simulation.deg2rad; 

params_control.door_right0 = 15*params_simulation.deg2rad; 

params_control.theta0  = -22*params_simulation.deg2rad; 

params_control.phi0   = 0; 

params_control.V0   = params_simulation.V_freestream; 

params_control.lqr          = calc_lqr_gain(params_model, params_control,params_simulation); 

 

params_control.sat.rudder_min  = -45*params_simulation.deg2rad; 

params_control.sat.rudder_max  = 45*params_simulation.deg2rad; 

params_control.sat.door_left_min = 0; 

params_control.sat.door_left_max = 30*params_simulation.deg2rad; 

params_control.sat.door_right_min = 0; 

params_control.sat.door_right_max = 30*params_simulation.deg2rad; 

Kalman Parameters 

params_kalman.error = randn(1,params_simulation.tf*100); 

params_kalman.std_accel = 1; 

params_kalman.std_mag = 1*params_simulation.deg2rad; 

params_kalman.std_gyro = 1*params_simulation.deg2rad; 

params_kalman.L = (-1*params_model.sling_height_cmass); 

 

params_kalman.phi_v.A = KalmanFilter_v_phi_cc( 'A', params_kalman); 

params_kalman.phi_v.B = KalmanFilter_v_phi_cc( 'B', params_kalman); 

params_kalman.phi_v.H = KalmanFilter_v_phi_cc( 'H', params_kalman); 

params_kalman.phi_v.Q = KalmanFilter_v_phi_cc( 'Q', params_kalman); 

params_kalman.phi_v.R = KalmanFilter_v_phi_cc( 'R', params_kalman); 

params_kalman.phi_v.F = [0,0;0,1]; 

% params_kalman.phi_v.K = KalmanFilter_v_phi_cc( 'K', params_kalman); 
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params_kalman.psi_r.A = KalmanFilter_Yaw_R_cc( 'A', params_kalman, params_control, params_model, 

params_simulation); 

params_kalman.psi_r.B = KalmanFilter_Yaw_R_cc( 'B', params_kalman, params_control, params_model, 

params_simulation); 

params_kalman.psi_r.H = KalmanFilter_Yaw_R_cc( 'H', params_kalman, params_control, params_model, 

params_simulation); 

params_kalman.psi_r.Q = KalmanFilter_Yaw_R_cc( 'Q', params_kalman, params_control, params_model, 

params_simulation); 

params_kalman.psi_r.R = KalmanFilter_Yaw_R_cc( 'R', params_kalman, params_control, params_model, 

params_simulation); 

params_kalman.psi_r.F = 0; 

% params_kalman.psi_r.K = KalmanFilter_Yaw_R_cc( 'K', params_kalman, params_control, 

params_model, params_simulation); 

 

 

%----- Calculate P for both filters as a function of time 

P_initial = eye(2); 

 

[t_psi_r, P_psi_r] = ode45(@(t,P)ODE_KALMAN_P(t, P, params_kalman.psi_r),... 

    [0 params_simulation.tf], P_initial, params_simulation.solver_options); 

 

[t_phi_v, P_phi_v] = ode45(@(t,P)ODE_KALMAN_P(t, P, params_kalman.phi_v),... 

    [0 params_simulation.tf], P_initial, params_simulation.solver_options); 

 

params_kalman.phi_v.P = P_phi_v; 

params_kalman.phi_v.t_P = t_phi_v; 

 

params_kalman.psi_r.P = P_psi_r; 

params_kalman.psi_r.t_P = t_psi_r; 

Run simulation 

[t_sim, xi_sim] = ode45(@(t,xi)ode_active_sling(t, xi, ... 

 params_simulation, params_model, params_control, params_kalman), [0 

params_simulation.tf], ... 

 params_simulation.initial_state, params_simulation.solver_options); 

 

%----- Results in readable form 

e321_psi_sim= xi_sim(:, 1); 

psi_dot_sim  = xi_sim(:, 4); 

 

H321_e_inv = zeros(3,3*numel(t_sim)); 

R321_eh = zeros(3,3*numel(t_sim)); 

 

for m = 1:numel(t_sim) 

    H321_e_inv(1:3,3*m-2:3*m) = (1/cos(xi_sim(m,2)))*[... 

 0,     sin(xi_sim(m,3)),    

 cos(xi_sim(m,3));... 

 0,     cos(xi_sim(m,3))*cos(xi_sim(m,2)), -

sin(xi_sim(m,3))*cos(xi_sim(m,2));... 

 cos(xi_sim(m,2)), sin(xi_sim(m,3))*sin(xi_sim(m,2)),

 cos(xi_sim(m,3))*sin(xi_sim(m,2))]; 
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    R321_eh(1:3,3*m-2:3*m) = [... 

 cos(xi_sim(m,1))*cos(xi_sim(m,2)), cos(xi_sim(m,2))*sin(xi_sim(m,1)), -

sin(xi_sim(m,2));... 

 % 

    cos(xi_sim(m,1))*sin(xi_sim(m,3))*sin(xi_sim(m,2)) - cos(xi_sim(m,3))*sin(xi_sim(m,1)),... 

 cos(xi_sim(m,3))*cos(xi_sim(m,1)) + 

sin(xi_sim(m,3))*sin(xi_sim(m,1))*sin(xi_sim(m,2)),... 

 cos(xi_sim(m,2))*sin(xi_sim(m,3));... 

 % 

    sin(xi_sim(m,3))*sin(xi_sim(m,1)) + cos(xi_sim(m,3))*cos(xi_sim(m,1))*sin(xi_sim(m,2)),... 

 cos(xi_sim(m,3))*sin(xi_sim(m,1))*sin(xi_sim(m,2)) - 

cos(xi_sim(m,1))*sin(xi_sim(m,3)),... 

 cos(xi_sim(m,3))*cos(xi_sim(m,2))]; 

end 

 

PQR_sim = zeros(3,numel(t_sim)); 

for m = 1:numel(t_sim) 

PQR_sim(1:3,m) = H321_e_inv(1:3,3*m-2:3*m)'*xi_sim(m,4:6)'; 

end 

 

xyz_h_dot_sim = zeros(3,numel(t_sim)); 

xyz_e_dot_sim = zeros(3,numel(t_sim)); 

for m = 1:numel(t_sim) 

    xyz_h_dot_sim(1,m) = 

params_model.sling_height_cmass*((cos(xi_sim(m,3))*xi_sim(m,6))*sin(xi_sim(m,1))+sin(xi_sim(m,3))

*(cos(xi_sim(m,1))*xi_sim(m,4))... 

    +(-sin(xi_sim(m,3))*xi_sim(m,6))*sin(xi_sim(m,2))*cos(xi_sim(m,1))... 

    +cos(xi_sim(m,3))*(cos(xi_sim(m,2))*xi_sim(m,5))*cos(xi_sim(m,1))... 

    +cos(xi_sim(m,3))*sin(xi_sim(m,2))*(-sin(xi_sim(m,1))*xi_sim(m,4))); 

 

    xyz_h_dot_sim(2,m) = params_model.sling_height_cmass*(-

((cos(xi_sim(m,3))*xi_sim(m,6))*cos(xi_sim(m,1))+sin(xi_sim(m,3))*(-

sin(xi_sim(m,1))*xi_sim(m,4)))... 

    +(-sin(xi_sim(m,3))*xi_sim(m,6))*sin(xi_sim(m,2))*sin(xi_sim(m,1))... 

    +cos(xi_sim(m,3))*(cos(xi_sim(m,2))*xi_sim(m,5))*sin(xi_sim(m,1))... 

    +cos(xi_sim(m,3))*sin(xi_sim(m,2))*(cos(xi_sim(m,1))*xi_sim(m,4))); 

 

    xyz_h_dot_sim(3,m) = params_model.sling_height_cmass*((-

sin(xi_sim(m,3))*xi_sim(m,6))*cos(xi_sim(m,2))+cos(xi_sim(m,3))*(-sin(xi_sim(m,2))*xi_sim(m,5))); 

 

    xyz_e_dot_sim(1:3,m) = R321_eh(1:3,3*m-2:3*m)*xyz_h_dot_sim(1:3,m); 

 

end 

 

xyz_h_sim = zeros(3,numel(t_sim)); 

for m = 1:numel(t_sim) 

    xyz_h_sim(1,m) = 

params_model.sling_height_cmass*(sin(xi_sim(m,3))*sin(xi_sim(m,1))+cos(xi_sim(m,3))*sin(xi_sim(m,

2))*cos(xi_sim(m,1))); 

    xyz_h_sim(2,m) = params_model.sling_height_cmass*(-

sin(xi_sim(m,3))*cos(xi_sim(m,1))+cos(xi_sim(m,3))*sin(xi_sim(m,2))*sin(xi_sim(m,1))); 
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    xyz_h_sim(3,m) = params_model.sling_height_cmass*(cos(xi_sim(m,3))*cos(xi_sim(m,2))); 

end 

Plot results 

%----- Plot 3D Motion 

figure; 

plot3(xyz_h_sim(1, :), xyz_h_sim(2, :), xyz_h_sim(3, :), 'k'); 

grid on; title('Position'); xlabel('X (m)'); ylabel('Y (m)'); zlabel('Z (m)'); 

 

 

%----- Plot Yaw and Yaw Rate 

figure; 

subplot(211); plot(t_sim, e321_psi_sim/params_simulation.deg2rad); 

grid on; title('Yaw Angle'); xlabel('Time (S)'); ylabel('Angle (Deg)'); 

 

subplot(212); plot(t_sim, psi_dot_sim/params_simulation.deg2rad); 

grid on; title('Yaw Rate'); xlabel('Time (S)'); ylabel('Anglular Velocity (Deg/sec)'); 

 

%----- Plot Orientation Angles from Helicopter 

swing_angles = zeros(2, numel(t_sim)); 

for m = 1:numel(t_sim) 

 swing_angles(1, m) = atan2(xyz_h_sim(2,m), -xyz_h_sim(3,m)); 

 swing_angles(2, m) = atan2(xyz_h_sim(1,m), -xyz_h_sim(3,m)); 

end 

 

figure; 

subplot(211); plot(t_sim, swing_angles(1,:)/params_simulation.deg2rad); 

grid on; title('Lateral Swing Angle'); xlabel('Time (S)'); ylabel('Angle (Deg)'); 

axis([0,params_simulation.tf,-40,40]); 

 

subplot(212); plot(t_sim, swing_angles(2,:)/params_simulation.deg2rad); 

grid on; title('Longitudinal Swing Angle'); xlabel('Time (S)'); ylabel('Angle (Deg)'); 

 

%----- Plot Difference in Kalman Filter States 

 

if params_simulation.use_kalman 

figure 

subplot(211); plot(t_sim, (xi_sim(:,7)-e321_psi_sim)/params_simulation.deg2rad); grid on; 

title('Difference in Kalman Yaw Angle'); xlabel('Time (S)'); ylabel('Angle (Deg)'); 

subplot(212); plot(t_sim, (xi_sim(:,8)-PQR_sim(3,:)')/params_simulation.deg2rad); grid on; 

title('Difference in Kalman Yaw Rate'); xlabel('Time (S)'); ylabel('Anglular Velocity 

(Deg/sec)'); 

 

figure 

subplot(211); plot(t_sim, (xi_sim(:,9)-xi_sim(:,3))/params_simulation.deg2rad); grid on; 

title('Difference in Kalman Roll Angle'); xlabel('Time (S)'); ylabel('Angle (Deg)'); 

subplot(212); plot(t_sim, (xi_sim(:,10)-xyz_e_dot_sim(2,:)')); grid on; title('Difference in 

Kalman Y Velocity'); xlabel('Time (S)'); ylabel('Velocity (m/sec)'); 

 

else 

end 
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Published with MATLAB® R2013b 

 

State Derivative Function 

function xi_dot = ode_active_sling(t, xi, params_simulation, params_model, params_control, 

params_kalman) 

Main Function Code 

%{ 

State variable description 

-------------------------- 

 xi(1:3)  - angular position of c.m. of load 

 xi(4:6)  - angular velocity of c.m. of load 

 xi(7:10) - kalman estimates of states 

 

 Helicopter-fixed coordinates have subscript 'h' 

 Load-fixed coordinates have subscript 'e' 

%} 

%----- Progress Counter (I know it slows it down, but I like it) 

Percent_Complete = 100*(t/params_simulation.tf); 

 

http://www.mathworks.com/products/matlab
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%----- States in readable form 

 

e321_psi            = xi(1); 

e321_theta          = xi(2); 

e321_phi            = xi(3); 

e321_psi_dot        = xi(4); 

e321_theta_dot      = xi(5); 

e321_phi_dot        = xi(6); 

kalman_psi_est      = xi(7); 

kalman_r_est        = xi(8); 

kalman_phi_est      = xi(9); 

kalman_v_est        = xi(10); 

 

%----- Establish Position and Velocity in Cartesian Coordinates 

 

H0 = params_model.sling_height_cmass; 

 

X_h = H0*(sin(e321_phi)*sin(e321_psi)+cos(e321_phi)*sin(e321_theta)*cos(e321_psi)); 

Y_h = H0*(-sin(e321_phi)*cos(e321_psi)+cos(e321_phi)*sin(e321_theta)*sin(e321_psi)); 

Z_h = H0*(cos(e321_phi)*cos(e321_theta)); 

 

X_h_dot = 

H0*((cos(e321_phi)*e321_phi_dot)*sin(e321_psi)+sin(e321_phi)*(cos(e321_psi)*e321_psi_dot)... 

    +(-sin(e321_phi)*e321_phi_dot)*sin(e321_theta)*cos(e321_psi)... 

    +cos(e321_phi)*(cos(e321_theta)*e321_theta_dot)*cos(e321_psi)... 

    +cos(e321_phi)*sin(e321_theta)*(-sin(e321_psi)*e321_psi_dot)); 

 

Y_h_dot = H0*(-((cos(e321_phi)*e321_phi_dot)*cos(e321_psi)+sin(e321_phi)*(-

sin(e321_psi)*e321_psi_dot))... 

    +(-sin(e321_phi)*e321_phi_dot)*sin(e321_theta)*sin(e321_psi)... 

    +cos(e321_phi)*(cos(e321_theta)*e321_theta_dot)*sin(e321_psi)... 

    +cos(e321_phi)*sin(e321_theta)*(cos(e321_psi)*e321_psi_dot)); 

 

Z_h_dot = H0*((-sin(e321_phi)*e321_phi_dot)*cos(e321_theta)+cos(e321_phi)*(-

sin(e321_theta)*e321_theta_dot)); 

 

%----- Rotation matrices and such 

R321_eh = [... 

 cos(e321_psi)*cos(e321_theta), cos(e321_theta)*sin(e321_psi), -

sin(e321_theta);... 

 % 

    cos(e321_psi)*sin(e321_phi)*sin(e321_theta) - cos(e321_phi)*sin(e321_psi),... 

 cos(e321_phi)*cos(e321_psi) + sin(e321_phi)*sin(e321_psi)*sin(e321_theta),... 

 cos(e321_theta)*sin(e321_phi);... 

 % 

    sin(e321_phi)*sin(e321_psi) + cos(e321_phi)*cos(e321_psi)*sin(e321_theta),... 

 cos(e321_phi)*sin(e321_psi)*sin(e321_theta) - cos(e321_psi)*sin(e321_phi),... 

 cos(e321_phi)*cos(e321_theta)]; 

 

H321_e_inv = (1/cos(e321_theta))*[... 

 0,     sin(e321_phi),    

 cos(e321_phi);... 

 0,     cos(e321_phi)*cos(e321_theta), -
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sin(e321_phi)*cos(e321_theta);... 

 cos(e321_theta), sin(e321_phi)*sin(e321_theta),

 cos(e321_phi)*sin(e321_theta)]; 

 

 

%----- Define omga_he_e and XYZ Dots in Body Frame 

 

omga_he_e     = inv(H321_e_inv)*xi(4:6); 

xyz_e_dot = R321_eh*[X_h_dot;Y_h_dot;Z_h_dot]; 

 

P_phidot = omga_he_e(1); 

Q_thetadot = omga_he_e(2); 

R_psidot = omga_he_e(3); 

 

X_e_dot = xyz_e_dot(1); 

Y_e_dot = xyz_e_dot(2); 

Z_e_dot = xyz_e_dot(3); 

 

%----- Relative velocity and airspeed 

V_e_air = R321_eh*([-params_simulation.V_freestream;0;0] -[X_h_dot;Y_h_dot;Z_h_dot]);  

 % velocity of the air flowing over the container in body frame 

airspeed= norm(V_e_air);          

   % velocity magnitude 

aoa_x = atan2(V_e_air(3), V_e_air(2)); 

aoa_z   = atan2(V_e_air(2), -V_e_air(1)); 

 

%----- Control inputs 

control_inputs = 

control_law(e321_psi,R_psidot,Y_e_dot,kalman_psi_est,kalman_r_est,kalman_v_est,params_simulation)

; 

 

 

%----- Forces and torques from control surfaces and sling legs 

% [accel_tension_e, torque_tension_e]    = acceltorque_tension_e(); 

[accel_rudder_vstab_e, torque_rudder_vstab_e] = acceltorque_rudder_vstab_e(); 

[accel_pipes_e, torque_pipes_e]     = acceltorque_pipes_e(); 

 

%----- Collect all accelerations 

accel_external_e = accel_aero_e() + ... 

  accel_rudder_vstab_e + accel_pipes_e; 

 

%----- Collect all moments 

% torque_tension_e 

% torque_aero_e() 

% torque_rudder_vstab_e 

% torque_pipes_e 

 

torque_windup_e = [0;0;e321_psi*params_model.legs.C_wind_up]; 

 

torque_external_e = torque_aero_e() + ... 

 torque_rudder_vstab_e + torque_pipes_e + torque_windup_e; 

torque_gyroscopic_e = [... 

 (params_model.load.Iyy - params_model.load.Izz)*omga_he_e(2)*omga_he_e(3); ... 
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 (params_model.load.Izz - params_model.load.Ixx)*omga_he_e(3)*omga_he_e(1); ... 

 (params_model.load.Ixx - params_model.load.Iyy)*omga_he_e(1)*omga_he_e(2)]; 

 

%----- Kalman Filter Derivatives 

kalman_state_dot = kalman_est_function(); 

 

%----- Euler Lagrange 

force_external_e = params_model.load.mass*accel_external_e; 

force_external_e_psi_theta_phi = 

force_transform(force_external_e,e321_psi,e321_theta,e321_phi,H0); 

force_external_h_psi_theta_phi = inv(R321_eh)*force_external_e_psi_theta_phi; 

 

torque_external_e_psi_theta_phi = 

moment_transform(torque_external_e+torque_gyroscopic_e,e321_psi,e321_theta,e321_phi,H0); 

torque_external_h_psi_theta_phi = inv(R321_eh)*torque_external_e_psi_theta_phi; 

 

%----- Collect all state derivatives 

xi_dot   = zeros(6, 1); 

% xi_dot(1:3)  = xi(4:6); 

% xi_dot(4:6)  = R321_eh' * accel_external_e - [0; 0; params_simulation.g]; 

xi_dot(1:3)  = xi(4:6); 

xi_dot(4:6)     = doubledot_solve(xi, force_external_h_psi_theta_phi, 

torque_external_h_psi_theta_phi, params_model, params_simulation); 

xi_dot(7:10)    = kalman_state_dot; 

 

% (torque_external_e + torque_gyroscopic_e) ./ ... 

%  [params_model.load.Ixx; params_model.load.Iyy; params_model.load.Izz]; 

 

 

 %====================================================================== 

Error using ode_active_sling (line 14) 

Not enough input arguments. 

Aerodynamic Forces 

    function accel_e = accel_aero_e() 

 

  aoa_x = atan2(V_e_air(3), V_e_air(2));      

 % angle of attack 

  aoa_y = atan2(V_e_air(3), V_e_air(1));      

 % angle of attack 

  aoa_z = atan2(V_e_air(2), V_e_air(1));      

 % angle of attack 

  Rx  = abs(V_e_air(1) / airspeed); 

  Ry  = abs(V_e_air(2) / airspeed); 

  Rz  = abs(V_e_air(3) / airspeed); 

 

  %----- Force in body Y direction 

  if Ry < 0.82; 

   C_ybasedip = 0; 

  else 
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   C_ybasedip = 1.94*(Ry-0.82); 

  end 

 

  if Ry <= 0.18 

   C_ybubble0 = 2.5*Ry; 

  elseif Ry < 0.82 

   C_ybubble0 = 0.45-0.703*(Ry-0.18); 

  else 

   C_ybubble0 = 0; 

  end 

  C_ybubble = C_ybubble0*abs(cos(aoa_y)^3); 

  C_y   = -1.4*(Ry) + C_ybubble + C_ybasedip;    

 % side force coefficient 

 

  %----- Force in body Z direction 

  if Rz < 0.82; 

   C_zbasedip = 0; 

  else 

   C_zbasedip = 1.94*(Rz-0.82); 

  end 

 

  if Rz <= 0.18 

   C_zbubble0 = 2.5*Rz; 

  elseif Rz < 0.82 

   C_zbubble0 = 0.45-0.703*(Rz-0.18); 

  else 

   C_zbubble0 = 0; 

  end 

  C_zbubble = C_zbubble0*abs(cos(aoa_z)^3); 

  C_z   = -1.4*(Rz)+C_zbubble+C_zbasedip;    

  % side force coefficient 

 

  %----- Force in X direction 

  if Rx < 0.82; 

   C_xbasedip = 0; 

  else 

   C_xbasedip = 1.94*(Rx-0.82); 

  end 

 

  if Rx <= 0.18 

   C_xbubble0 = 2.5*Rx; 

  elseif Rx < 0.82 

   C_xbubble0 = 0.45-0.703*(Rx-0.18); 

  else 

   C_xbubble0 = 0; 

  end 

  C_xbubble = C_xbubble0*abs(cos(aoa_x)^3); 

  C_x   = -1.4*(Rx)+C_xbubble+C_xbasedip;    

  % side force coefficient 

 

  accel_e = 0.5*params_simulation.rho_atm*(airspeed^2)*[... 

   sign(V_e_air(1))*abs(C_x*params_model.load.area_x); ... 

   sign(V_e_air(2))*abs(C_y*params_model.load.area_y); ... 



Active Helicopter Sling Load Stabilization MQP 

80 

 

   sign(V_e_air(3))*abs(C_z*params_model.load.area_z)] / ... 

   params_model.load.mass; 

 end 

Kalman Filters 

    function kalman_est_dot = kalman_est_function() 

        if ~params_simulation.use_kalman 

            kalman_est_dot(1,1) = 0; 

            kalman_est_dot(2,1) = 0; 

            kalman_est_dot(3,1) = 0; 

            kalman_est_dot(4,1) = 0; 

            return 

        end 

 

        % Standard Deviation 

 

        std_accel = params_kalman.std_accel; 

        std_mag = params_kalman.std_mag; 

        std_gyro = params_kalman.std_gyro; 

 

        % Error Counter 

        if t == 0 

            error_number = 1; 

        else 

            error_number = ceil(numel(params_kalman.error)*t/params_simulation.tf); 

        end 

 

        % P value counter 

 

        t_phi_v = params_kalman.phi_v.t_P; 

 

        P_phi_v_number = find( abs(t_phi_v-t) == min( abs(t_phi_v-t) ) ); 

 

        t_psi_r = params_kalman.psi_r.t_P; 

 

        P_psi_r_number = find( abs(t_psi_r-t) == min( abs(t_psi_r-t) ) ); 

 

        % Psi and R 

 

        A_k_psi_r = params_kalman.psi_r.A; 

        B_k_psi_r = params_kalman.psi_r.B; 

        H_k_psi_r = params_kalman.psi_r.H; 

        Q_k_psi_r = params_kalman.psi_r.Q; 

        R_k_psi_r = params_kalman.psi_r.R; 

 

        P_k_psi_r_row = params_kalman.psi_r.P(P_psi_r_number,1:4); 

        P_k_psi_r(1,1:2) = P_k_psi_r_row(1,1:2); 

        P_k_psi_r(2,1:2) = P_k_psi_r_row(1,3:4); 

 

        K_k_psi_r = P_k_psi_r*H_k_psi_r'*inv(R_k_psi_r); %params_kalman.psi_r.K; 
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        Z_k_psi_r(1,1) = e321_psi+std_mag*params_kalman.error(error_number); 

        Z_k_psi_r(2,1) = R_psidot+std_gyro*params_kalman.error(error_number); 

 

        U_k_psi_r = 

[control_inputs.total.rudder;control_inputs.total.door_left;control_inputs.total.door_right]; 

 

        X_hat_psi_r = [xi(7);xi(8)]; 

 

        kalman_est_dot(1:2,1) = A_k_psi_r*X_hat_psi_r+B_k_psi_r*U_k_psi_r+K_k_psi_r*(Z_k_psi_r-

H_k_psi_r*X_hat_psi_r); 

 

        % Phi and V 

        A_k_phi_v = params_kalman.phi_v.A; 

        B_k_phi_v = params_kalman.phi_v.B; 

        H_k_phi_v = params_kalman.phi_v.H; 

        Q_k_phi_v = params_kalman.phi_v.Q; 

        R_k_phi_v = params_kalman.phi_v.R; 

 

        P_k_phi_v_row = params_kalman.phi_v.P(P_phi_v_number,1:4); 

        P_k_phi_v(1,1:2) = P_k_phi_v_row(1,1:2); 

        P_k_phi_v(2,1:2) = P_k_phi_v_row(1,3:4); 

 

        K_k_phi_v = P_k_phi_v*H_k_phi_v'*inv(R_k_phi_v); %params_kalman.phi_v.K; 

 

        Z_k_phi_v(1,1) = e321_phi+std_mag*params_kalman.error(error_number); 

        Z_k_phi_v(2,1) = P_phidot+std_gyro*params_kalman.error(error_number); 

 

        U_k_phi_v = accel_external_e(2,1)+std_accel*params_kalman.error(error_number); 

 

        X_hat_phi_v = [xi(9);xi(10)]; 

 

        kalman_est_dot(3:4,1) = A_k_phi_v*X_hat_phi_v+B_k_phi_v*U_k_phi_v+K_k_phi_v*(Z_k_phi_v-

H_k_phi_v*X_hat_phi_v); 

 

    end 

 

 %====================================================================== 

Aerodynamic Moments 

    function torque_e = torque_aero_e() 

 

  beta_side = asin(V_e_air(2)/airspeed);      

 %side slip angle side (Yaw) 

  beta_front = asin(V_e_air(1)/airspeed);      

 % side slip angle front (Yaw - 90deg) 

  phi_star = atan2(V_e_air(3), V_e_air(2));     

 % front face crossflow angle (Roll) 

  theta_star = atan2(V_e_air(3), V_e_air(1));     

 % side face crossflow angle (Pitch) 

  Rvy   = abs(V_e_air(2)/airspeed); 

  Ruy   = abs(V_e_air(1)/airspeed); 
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  if Rvy <= 0.28 

   C_ymbubbleside = sign(V_e_air(2))*0.25*Rvy; 

  elseif Rvy < 0.6 

   C_ymbubbleside = 0.07 - 0.219*(sign(V_e_air(1))*Rvy-0.28); 

  else 

   C_ymbubbleside = 0; 

  end 

 

  if Ruy <= 0.2 

   C_ymbubblefront = sign(V_e_air(1))*0.9*Ruy; 

  elseif Ruy < 0.7 

   C_ymbubblefront = -0.18 + 0.219*(sign(V_e_air(1))*Ruy - 0.2); 

  else 

   C_ymbubblefront = 0; 

  end 

 

  C_ymatt  = (-0.09*(1 - params_model.load.w_by_l^2)* ... 

   sin(2*beta_side) + 0.04*params_model.load.w_by_l*... 

   sin(4*beta_side))*cos(theta_star) + ... 

   (0.075*(params_model.load.w_by_l^2)*sin(2*beta_front))*cos(phi_star); 

  deltaC_ym = C_ymbubbleside*cos(theta_star)^2 + ... 

   C_ymbubblefront*cos(phi_star)^2; 

  C_ym  = C_ymatt + deltaC_ym;       

  % yawing moment coefficient 

 

  torque_e = [0; 0; C_ym*0.5*params_simulation.rho_atm*(airspeed^2)*... 

   params_model.load.area_y*params_model.load.length]; 

 end 

 

 %====================================================================== 

Rudder Forces and Moments 

    function [accel_e, torque_e] = acceltorque_rudder_vstab_e() 

  if ~params_simulation.use_rudder 

   accel_e = zeros(3, 1); 

   torque_e= zeros(3, 1); 

   return 

  end 

 

  aoa  = atan2(V_e_air(2), -V_e_air(1)); 

  V_rud = norm(V_e_air(1:2)); 

 

 

  CL_rud = params_model.rudder.CL0*sin(aoa + control_inputs.total.rudder); 

  CL_vs = params_model.rudder.CL0*sin(aoa); 

 

  CD_rud = params_model.rudder.CD0*sin(e321_psi + control_inputs.total.rudder); 

  CD_vs = params_model.rudder.CD0*sin(e321_psi); 

 

  q_rud = 0.5*params_simulation.rho_atm*(V_rud^2); 
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  accel_e = q_rud*[... 

   -CD_rud*params_model.rudder.area - CD_vs*params_model.vstab.area; ... 

   CL_rud*params_model.rudder.area + CL_vs*params_model.vstab.area; ... 

   0] / params_model.load.mass; 

 

  torque_e= -q_rud*[0; 0; ... 

   (CL_rud*params_model.rudder.area*params_model.rudder.loc + ... 

   CL_vs*params_model.vstab.area*params_model.vstab.loc)]; 

 end 

 

 %====================================================================== 

Pipe Forces and Moments 

    function [accel_e, torque_e] = acceltorque_pipes_e() 

  if ~params_simulation.use_pipes 

   accel_e = zeros(3, 1); 

   torque_e= zeros(3, 1); 

   return 

  end 

 

  q_pip = params_simulation.rho_atm*(V_e_air(1)^2)*params_model.pipes.area; 

 

  %----- Left door (Sperry's Door 2a) 

  Fy_left = -q_pip*(sin(control_inputs.total.door_left))^2; 

  Fx_left = -q_pip*sin(control_inputs.total.door_left)*(1 - 

cos(control_inputs.total.door_left)); 

  M_2a = norm([Fx_left; Fy_left])*... 

   (params_model.pipes.width - (params_model.pipes.door.length/2 + ... 

   params_model.pipes.door.loc) / ... 

   (tan(pi/2 - control_inputs.total.door_left)))* ... 

   sin(pi/2 - control_inputs.total.door_left); 

 

  %----- Right door (Sperry's Door 2b) 

  Fy_right= q_pip*(sin(control_inputs.total.door_right))^2; 

  Fx_right= -q_pip*sin(control_inputs.total.door_right)*(1 - 

cos(control_inputs.total.door_right)); 

  M_2b = -norm([Fx_right; Fy_right])*... 

   (params_model.pipes.width - (params_model.pipes.door.length/2 + ... 

   params_model.pipes.door.loc) / ... 

   (tan(pi/2 - control_inputs.total.door_right)))*... 

   sin(pi/2 - control_inputs.total.door_right); 

 

  accel_e = [Fx_left + Fx_right; Fy_left + Fy_right; 0] / params_model.load.mass; 

  torque_e= [0; 0; M_2a + M_2b]; 

 end 

 

 %====================================================================== 
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Control Inputs 

    function control_inputs = 

control_law(e321_psi,R_psidot,Y_e_dot,kalman_psi_est,kalman_r_est,kalman_v_est,params_simulation) 

  if ~params_simulation.use_control 

   control_inputs.delta.rudder  = 0; 

   control_inputs.delta.door_left = 0; 

   control_inputs.delta.door_right = 0; 

            control_inputs.total.rudder     = params_control.rudder0; 

            control_inputs.total.door_left  = params_control.door_left0; 

            control_inputs.total.door_right = params_control.door_right0; 

            return 

        end 

 

        if ~params_simulation.use_kalmancontrols 

            psi_est = e321_psi; 

            R_est = R_psidot; 

            V_est = Y_e_dot; 

        else 

            psi_est = kalman_psi_est; 

            R_est = kalman_r_est; 

            V_est = kalman_v_est; 

        end 

 

 

  delta_zta = [psi_est - params_control.psi0; ... 

                       R_est - params_control.r0; ... 

                       V_est - params_control.yd0]; 

 

  delta_u  = params_control.lqr*delta_zta; 

 

  control_inputs.delta.rudder  = delta_u(1); 

  control_inputs.delta.door_left = delta_u(2); 

  control_inputs.delta.door_right = delta_u(3); 

 

  control_inputs.total.rudder  = min( (max( ... 

   (control_inputs.delta.rudder + params_control.rudder0), ... 

   params_control.sat.rudder_min )), params_control.sat.rudder_max); 

 

  control_inputs.total.door_left = min( (max( ... 

   (control_inputs.delta.door_left + params_control.door_left0), ... 

   params_control.sat.door_left_min )), params_control.sat.door_left_max); 

 

  control_inputs.total.door_right = min( (max( ... 

   (control_inputs.delta.door_right + params_control.door_right0), ... 

   params_control.sat.door_right_min )), params_control.sat.door_right_max); 

 

 end 

end 

Published with MATLAB® R2013b 

http://www.mathworks.com/products/matlab
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Moment Transform Function 

function moment_psi_theta_phi = moment_transform(M,psi,theta,phi,h0) 

 

Mt = h0*[-sin(theta),sin(phi)*cos(theta),cos(phi)*cos(theta);... 

    0,cos(phi),-sin(phi);... 

    1,0,0]; 

 

moment_psi_theta_phi = Mt*M; 

end 

Error using moment_transform (line 3) 

Not enough input arguments. 

Published with MATLAB® R2014b 

Force Transform Function 

function force_psi_theta_phi = force_transform(F,psi,theta,phi,h0) 

 

Ft = h0*[sin(phi)*cos(psi)-

cos(phi)*sin(theta)*sin(psi),sin(phi)*sin(psi)+cos(phi)*sin(theta)*cos(psi),0;... 

    cos(phi)*cos(theta)*cos(psi),cos(phi)*cos(theta)*sin(psi),-cos(phi)*sin(theta);... 

    cos(phi)*sin(psi)-sin(phi)*sin(theta)*cos(psi),-cos(phi)*cos(psi)-

sin(phi)*sin(theta)*sin(psi),sin(phi)*cos(theta)]; 

 

force_psi_theta_phi = Ft*F; 

end 

Error using force_transform (line 3) 

Not enough input arguments. 

Published with MATLAB® R2014b 

Double Dot Solve Function 

function doubledot = doubledot_solve(xi, Fe_psi_theta_phi, Me_psi_theta_phi, params_model, 

params_simulation) 

 

psi            = xi(1); 

theta          = xi(2); 

phi            = xi(3); 

psi_dot        = xi(4); 

theta_dot      = xi(5); 

phi_dot        = xi(6); 

 

m               = params_model.load.mass; 

Ixx             = params_model.load.Ixx; 

Iyy             = params_model.load.Iyy; 

Izz             = params_model.load.Izz; 

 

http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab
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H0              = params_model.sling_height_cmass; 

 

g               = params_simulation.g; 

 

A = [                                              (m*(4*H0^2*(sin(phi)*sin(psi) + 

cos(phi)*cos(psi)*sin(theta))^2 + 2*H0^2*(cos(psi)*sin(phi) - cos(phi)*sin(psi)*sin(theta))^2))/2 

+ Ixx*sin(theta)^2 + Izz*cos(phi)^2*cos(theta)^2 + Iyy*cos(theta)^2*sin(phi)^2, 

(m*(4*H0^2*cos(phi)*cos(theta)*sin(psi)*(sin(phi)*sin(psi) + cos(phi)*cos(psi)*sin(theta)) + 

2*H0^2*cos(phi)*cos(psi)*cos(theta)*(cos(psi)*sin(phi) - cos(phi)*sin(psi)*sin(theta))))/2 + 

Iyy*cos(phi)*cos(theta)*sin(phi) - Izz*cos(phi)*cos(theta)*sin(phi), - 

(m*(4*H0^2*(cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta))*(sin(phi)*sin(psi) + 

cos(phi)*cos(psi)*sin(theta)) - 2*H0^2*(cos(phi)*sin(psi) - 

cos(psi)*sin(phi)*sin(theta))*(cos(psi)*sin(phi) - cos(phi)*sin(psi)*sin(theta))))/2 - 

Ixx*sin(theta);... 

      (m*(4*H0^2*cos(phi)*cos(theta)*sin(psi)*(sin(phi)*sin(psi) + cos(phi)*cos(psi)*sin(theta)) 

+ 2*H0^2*cos(phi)*cos(psi)*cos(theta)*(cos(psi)*sin(phi) - cos(phi)*sin(psi)*sin(theta))))/2 + 

Iyy*cos(phi)*cos(theta)*sin(phi) - Izz*cos(phi)*cos(theta)*sin(phi),                                                                                                                               

(m*(2*H0^2*cos(phi)^2*cos(psi)^2*cos(theta)^2 + 4*H0^2*cos(phi)^2*cos(theta)^2*sin(psi)^2))/2 + 

Iyy*cos(phi)^2 + Izz*sin(phi)^2,                                                               -

(m*(4*H0^2*cos(phi)*cos(theta)*sin(psi)*(cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta)) - 

2*H0^2*cos(phi)*cos(psi)*cos(theta)*(cos(phi)*sin(psi) - cos(psi)*sin(phi)*sin(theta))))/2;... 

             - (m*(4*H0^2*(cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta))*(sin(phi)*sin(psi) + 

cos(phi)*cos(psi)*sin(theta)) - 2*H0^2*(cos(phi)*sin(psi) - 

cos(psi)*sin(phi)*sin(theta))*(cos(psi)*sin(phi) - cos(phi)*sin(psi)*sin(theta))))/2 - 

Ixx*sin(theta),                                                                      -

(m*(4*H0^2*cos(phi)*cos(theta)*sin(psi)*(cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta)) - 

2*H0^2*cos(phi)*cos(psi)*cos(theta)*(cos(phi)*sin(psi) - cos(psi)*sin(phi)*sin(theta))))/2,                                                                                                                

Ixx + (m*(4*H0^2*(cos(phi)*cos(psi) + sin(phi)*sin(psi)*sin(theta))^2 + 2*H0^2*(cos(phi)*sin(psi) 

- cos(psi)*sin(phi)*sin(theta))^2))/2]; 

 

D = [Izz*phi_dot*theta_dot*cos(theta) - Iyy*phi_dot*theta_dot*cos(theta) - 

Ixx*phi_dot*theta_dot*cos(theta) + H0^2*m*phi_dot^2*sin(2*psi) + H0^2*m*psi_dot^2*sin(2*psi) + 

Ixx*psi_dot*theta_dot*sin(2*theta) - Iyy*psi_dot*theta_dot*sin(2*theta) - 

Iyy*theta_dot^2*cos(phi)*sin(phi)*sin(theta) + Izz*theta_dot^2*cos(phi)*sin(phi)*sin(theta) - 

4*H0^2*m*phi_dot*theta_dot*cos(theta) + 2*H0^2*m*phi_dot*psi_dot*sin(2*phi) + 

2*Iyy*phi_dot*theta_dot*cos(phi)^2*cos(theta) - 2*Izz*phi_dot*theta_dot*cos(phi)^2*cos(theta) - 

4*H0^2*m*phi_dot^2*cos(phi)^2*cos(psi)*sin(psi) - 4*H0^2*m*psi_dot^2*cos(phi)^2*cos(psi)*sin(psi) 

- H0^2*m*theta_dot^2*cos(phi)^2*cos(psi)*sin(psi) - 

H0^2*m*phi_dot^2*cos(psi)*cos(theta)^2*sin(psi) + 

5*H0^2*m*phi_dot*theta_dot*cos(phi)^2*cos(theta) + 

2*H0^2*m*phi_dot*theta_dot*cos(psi)^2*cos(theta) + 

2*Iyy*phi_dot*psi_dot*cos(phi)*cos(theta)^2*sin(phi) - 

2*Izz*phi_dot*psi_dot*cos(phi)*cos(theta)^2*sin(phi) + 

2*Iyy*psi_dot*theta_dot*cos(phi)^2*cos(theta)*sin(theta) - 

2*Izz*psi_dot*theta_dot*cos(phi)^2*cos(theta)*sin(theta) - 

2*H0^2*m*phi_dot^2*cos(phi)*sin(phi)*sin(theta) - 2*H0^2*m*psi_dot^2*cos(phi)*sin(phi)*sin(theta) 

- 2*H0^2*m*theta_dot^2*cos(phi)*sin(phi)*sin(theta) + 

4*H0^2*m*phi_dot^2*cos(phi)*cos(psi)^2*sin(phi)*sin(theta) + 

4*H0^2*m*psi_dot^2*cos(phi)*cos(psi)^2*sin(phi)*sin(theta) + 

H0^2*m*theta_dot^2*cos(phi)*cos(psi)^2*sin(phi)*sin(theta) - 

8*H0^2*m*phi_dot*psi_dot*cos(phi)*cos(psi)^2*sin(phi) + 

H0^2*m*phi_dot*psi_dot*cos(phi)*cos(theta)^2*sin(phi) + 

H0^2*m*psi_dot*theta_dot*cos(phi)^2*cos(theta)*sin(theta) + 
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2*H0^2*m*phi_dot^2*cos(phi)^2*cos(psi)*cos(theta)^2*sin(psi) + 

2*H0^2*m*psi_dot^2*cos(phi)^2*cos(psi)*cos(theta)^2*sin(psi) + 

2*H0^2*m*theta_dot^2*cos(phi)^2*cos(psi)*cos(theta)^2*sin(psi) - 

4*H0^2*m*phi_dot*theta_dot*cos(phi)^2*cos(psi)^2*cos(theta) - 

4*H0^2*m*phi_dot*psi_dot*cos(psi)*sin(psi)*sin(theta) + 

8*H0^2*m*phi_dot*psi_dot*cos(phi)^2*cos(psi)*sin(psi)*sin(theta) + 

4*H0^2*m*phi_dot*psi_dot*cos(phi)*cos(psi)^2*cos(theta)^2*sin(phi) + 

4*H0^2*m*psi_dot*theta_dot*cos(phi)^2*cos(psi)^2*cos(theta)*sin(theta) + 

4*H0^2*m*psi_dot*theta_dot*cos(phi)*cos(psi)*cos(theta)*sin(phi)*sin(psi) - 

4*H0^2*m*phi_dot*theta_dot*cos(phi)*cos(psi)*cos(theta)*sin(phi)*sin(psi)*sin(theta);... 

     Izz*phi_dot*psi_dot*cos(theta) - Iyy*phi_dot*psi_dot*cos(theta) + 

H0^2*m*phi_dot^2*sin(2*theta) - Iyy*phi_dot*theta_dot*sin(2*phi) + 

Izz*phi_dot*theta_dot*sin(2*phi) - 2*H0^2*m*phi_dot*psi_dot*cos(theta) + 

2*Iyy*phi_dot*psi_dot*cos(phi)^2*cos(theta) - 2*Izz*phi_dot*psi_dot*cos(phi)^2*cos(theta) + 

H0^2*m*phi_dot*theta_dot*sin(2*phi) - Iyy*psi_dot*theta_dot*cos(phi)*sin(phi)*sin(theta) + 

Izz*psi_dot*theta_dot*cos(phi)*sin(phi)*sin(theta) - 

4*H0^2*m*phi_dot^2*cos(phi)^2*cos(theta)*sin(theta) - 

H0^2*m*psi_dot^2*cos(phi)^2*cos(theta)*sin(theta) - 

H0^2*m*phi_dot^2*cos(psi)^2*cos(theta)*sin(theta) - 

4*H0^2*m*theta_dot^2*cos(phi)^2*cos(theta)*sin(theta) + 

5*H0^2*m*phi_dot*psi_dot*cos(phi)^2*cos(theta) + H0^2*m*phi_dot*psi_dot*cos(psi)^2*cos(theta) - 

H0^2*m*phi_dot*theta_dot*cos(phi)*cos(psi)^2*sin(phi) - 

H0^2*m*psi_dot*theta_dot*cos(phi)^2*cos(psi)*sin(psi) - 

8*H0^2*m*phi_dot*theta_dot*cos(phi)*cos(theta)^2*sin(phi) + 

2*H0^2*m*phi_dot^2*cos(phi)^2*cos(psi)^2*cos(theta)*sin(theta) + 

2*H0^2*m*psi_dot^2*cos(phi)^2*cos(psi)^2*cos(theta)*sin(theta) + 

2*H0^2*m*theta_dot^2*cos(phi)^2*cos(psi)^2*cos(theta)*sin(theta) - 

4*H0^2*m*phi_dot*psi_dot*cos(phi)^2*cos(psi)^2*cos(theta) - 

2*H0^2*m*psi_dot*theta_dot*cos(phi)*sin(phi)*sin(theta) + 

H0^2*m*psi_dot*theta_dot*cos(phi)*cos(psi)^2*sin(phi)*sin(theta) + 

H0^2*m*phi_dot*theta_dot*cos(phi)^2*cos(psi)*sin(psi)*sin(theta) + 

4*H0^2*m*phi_dot*theta_dot*cos(phi)*cos(psi)^2*cos(theta)^2*sin(phi) + 

4*H0^2*m*psi_dot*theta_dot*cos(phi)^2*cos(psi)*cos(theta)^2*sin(psi) + 

2*H0^2*m*phi_dot^2*cos(phi)*cos(psi)*cos(theta)*sin(phi)*sin(psi) + 

2*H0^2*m*psi_dot^2*cos(phi)*cos(psi)*cos(theta)*sin(phi)*sin(psi) - 

4*H0^2*m*phi_dot*psi_dot*cos(phi)*cos(psi)*cos(theta)*sin(phi)*sin(psi)*sin(theta);... 

     - (m*(2*H0^2*(phi_dot*cos(phi)*sin(psi) + psi_dot*cos(psi)*sin(phi) + 

theta_dot*cos(phi)*cos(psi)*cos(theta) - phi_dot*cos(psi)*sin(phi)*sin(theta) - 

psi_dot*cos(phi)*sin(psi)*sin(theta))*(phi_dot*sin(phi)*sin(psi) - psi_dot*cos(phi)*cos(psi) + 

phi_dot*cos(phi)*cos(psi)*sin(theta) + theta_dot*cos(psi)*cos(theta)*sin(phi) - 

psi_dot*sin(phi)*sin(psi)*sin(theta)) + 4*H0^2*(psi_dot*sin(phi)*sin(psi) - 

phi_dot*cos(phi)*cos(psi) + psi_dot*cos(phi)*cos(psi)*sin(theta) + 

theta_dot*cos(phi)*cos(theta)*sin(psi) - 

phi_dot*sin(phi)*sin(psi)*sin(theta))*(phi_dot*cos(phi)*sin(psi)*sin(theta) - 

psi_dot*cos(phi)*sin(psi) - phi_dot*cos(psi)*sin(phi) + psi_dot*cos(psi)*sin(phi)*sin(theta) + 

theta_dot*cos(theta)*sin(phi)*sin(psi)) + 2*H0^2*(cos(phi)*sin(psi) - 

cos(psi)*sin(phi)*sin(theta))*(phi_dot^2*sin(phi)*sin(psi) + psi_dot^2*sin(phi)*sin(psi) + 

phi_dot^2*cos(phi)*cos(psi)*sin(theta) + psi_dot^2*cos(phi)*cos(psi)*sin(theta) + 

theta_dot^2*cos(phi)*cos(psi)*sin(theta) - 2*phi_dot*psi_dot*cos(phi)*cos(psi) + 

2*phi_dot*theta_dot*cos(psi)*cos(theta)*sin(phi) + 

2*psi_dot*theta_dot*cos(phi)*cos(theta)*sin(psi) - 

2*phi_dot*psi_dot*sin(phi)*sin(psi)*sin(theta)) - 4*H0^2*(cos(phi)*cos(psi) + 

sin(phi)*sin(psi)*sin(theta))*(phi_dot^2*cos(phi)*sin(psi)*sin(theta) - 
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psi_dot^2*cos(psi)*sin(phi) - phi_dot^2*cos(psi)*sin(phi) + 

psi_dot^2*cos(phi)*sin(psi)*sin(theta) + theta_dot^2*cos(phi)*sin(psi)*sin(theta) - 

2*phi_dot*psi_dot*cos(phi)*sin(psi) - 2*psi_dot*theta_dot*cos(phi)*cos(psi)*cos(theta) + 

2*phi_dot*psi_dot*cos(psi)*sin(phi)*sin(theta) + 

2*phi_dot*theta_dot*cos(theta)*sin(phi)*sin(psi))))/2 - Ixx*psi_dot*theta_dot*cos(theta)]; 

 

E = [H0^2*m*(phi_dot*cos(phi)*sin(psi) + psi_dot*cos(psi)*sin(phi) + 

theta_dot*cos(phi)*cos(psi)*cos(theta) - phi_dot*cos(psi)*sin(phi)*sin(theta) - 

psi_dot*cos(phi)*sin(psi)*sin(theta))*(psi_dot*sin(phi)*sin(psi) - phi_dot*cos(phi)*cos(psi) + 

psi_dot*cos(phi)*cos(psi)*sin(theta) + theta_dot*cos(phi)*cos(theta)*sin(psi) - 

phi_dot*sin(phi)*sin(psi)*sin(theta));... 

     H0*g*m*cos(phi)*sin(theta) - Ixx*psi_dot*cos(theta)*(phi_dot - psi_dot*sin(theta)) - 

(m*(2*H0^2*(phi_dot*cos(psi)*cos(theta)*sin(phi) + psi_dot*cos(phi)*cos(theta)*sin(psi) + 

theta_dot*cos(phi)*cos(psi)*sin(theta))*(phi_dot*cos(phi)*sin(psi) + psi_dot*cos(psi)*sin(phi) + 

theta_dot*cos(phi)*cos(psi)*cos(theta) - phi_dot*cos(psi)*sin(phi)*sin(theta) - 

psi_dot*cos(phi)*sin(psi)*sin(theta)) + 4*H0^2*(phi_dot*cos(theta)*sin(phi)*sin(psi) - 

psi_dot*cos(phi)*cos(psi)*cos(theta) + 

theta_dot*cos(phi)*sin(psi)*sin(theta))*(psi_dot*sin(phi)*sin(psi) - phi_dot*cos(phi)*cos(psi) + 

psi_dot*cos(phi)*cos(psi)*sin(theta) + theta_dot*cos(phi)*cos(theta)*sin(psi) - 

phi_dot*sin(phi)*sin(psi)*sin(theta))))/2 + Izz*psi_dot*cos(phi)*sin(theta)*(theta_dot*sin(phi) - 

psi_dot*cos(phi)*cos(theta)) - Iyy*psi_dot*sin(phi)*sin(theta)*(theta_dot*cos(phi) + 

psi_dot*cos(theta)*sin(phi));... 

     Izz*(theta_dot*cos(phi) + psi_dot*cos(theta)*sin(phi))*(theta_dot*sin(phi) - 

psi_dot*cos(phi)*cos(theta)) - Iyy*(theta_dot*cos(phi) + 

psi_dot*cos(theta)*sin(phi))*(theta_dot*sin(phi) - psi_dot*cos(phi)*cos(theta)) - 

(m*(2*H0^2*(phi_dot*cos(phi)*sin(psi) + psi_dot*cos(psi)*sin(phi) + 

theta_dot*cos(phi)*cos(psi)*cos(theta) - phi_dot*cos(psi)*sin(phi)*sin(theta) - 

psi_dot*cos(phi)*sin(psi)*sin(theta))*(phi_dot*sin(phi)*sin(psi) - psi_dot*cos(phi)*cos(psi) + 

phi_dot*cos(phi)*cos(psi)*sin(theta) + theta_dot*cos(psi)*cos(theta)*sin(phi) - 

psi_dot*sin(phi)*sin(psi)*sin(theta)) + 4*H0^2*(psi_dot*sin(phi)*sin(psi) - 

phi_dot*cos(phi)*cos(psi) + psi_dot*cos(phi)*cos(psi)*sin(theta) + 

theta_dot*cos(phi)*cos(theta)*sin(psi) - 

phi_dot*sin(phi)*sin(psi)*sin(theta))*(phi_dot*cos(phi)*sin(psi)*sin(theta) - 

psi_dot*cos(phi)*sin(psi) - phi_dot*cos(psi)*sin(phi) + psi_dot*cos(psi)*sin(phi)*sin(theta) + 

theta_dot*cos(theta)*sin(phi)*sin(psi))))/2 + H0*g*m*cos(theta)*sin(phi)]; 

 

 

doubledot = inv(A)*(Fe_psi_theta_phi + Me_psi_theta_phi + E - D); 

end 

Error using doubledot_solve (line 3) 

Not enough input arguments. 

Published with MATLAB® R2014b 

LQR Gain Function 

function K_lqr = calc_lqr_gain(params_model, params_control, params_simulation) 

%----- Control Parameters 

psi         = params_control.psi0; 

R           = params_control.r0; 

Ydot        = params_control.yd0; 

http://www.mathworks.com/products/matlab
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Urud        = params_control.rudder0; 

phi2a       = params_control.door_left0; 

phi2b       = params_control.door_right0; 

theta       = params_control.theta0; 

phi         = params_control.phi0; 

V           = params_control.V0; 

 

 

%----- Sling-loaded cargo Parameters 

mass        = params_model.load.mass; 

Wcc         = params_model.load.width; 

Lcc         = params_model.load.length; 

Hcc         = params_model.load.height; 

 

Ax          = params_model.load.area_x; 

Ay          = params_model.load.area_y; 

Az          = params_model.load.area_z; 

 

W_L         = params_model.load.w_by_l; 

 

Ixx         = params_model.load.Ixx; 

Iyy         = params_model.load.Iyy; 

Izz         = params_model.load.Izz; 

 

rho         = params_simulation.rho_atm; 

wuc         = params_model.legs.C_wind_up; 

 

%----- Pipe Parameters 

pipe_height                 = params_model.pipes.height; 

pipe_width                  = params_model.pipes.width; 

pipe_length                 = params_model.pipes.length; 

pipe_area                   = params_model.pipes.area; 

 

door_widthr                 = params_model.pipes.door.length; 

A_backdoor                  = params_model.pipes.door.area; 

Spacer                      = params_model.pipes.door.loc; 

 

%----- Rudder Parameters 

H_rud                       = params_model.rudder.height; 

L_rud                       = params_model.rudder.length; 

A_rud                       = params_model.rudder.area; 

Cl_0                        = params_model.rudder.CL0; 

Cd_0                        = params_model.rudder.CD0; 

R_rud                       = params_model.rudder.loc; 

 

%----- Vertical stabilizer Parameters 

H_vs = params_model.vstab.height; 

L_vs = params_model.vstab.length; 

A_vs = params_model.vstab.area; 

R_vs = params_model.vstab.loc; 

 

%----- A matrix 

A_11 = 0;            
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     % partial derivative of psidot with respect to psi 

A_12 = 1;            

     % partial derivative of psidot with respect to R 

A_13 = 0;            

     % partial derivative of psidot with respect to Ydot 

 

A_21 = (1/Izz)*[... 

 ((0.5*rho*V^2*Ay*Lcc)*[(-0.18*(1-(Wcc/Lcc)^2)*cos(2*psi)+0.16*(Wcc/Lcc)*cos(4*psi))*... 

 cos(theta)+(0.15*((Wcc/Lcc)^2)*cos(2*(psi-pi/2)))*cos(phi)] + ... 

 [(0.25*cos(psi))*cos(theta)^2])-(0.5*rho*V^2)*(Cl_0*A_rud*R_rud+Cl_0*A_vs*R_vs)+wuc]; 

%partial derivative of Rdot with respect to psi 

A_22 = 0; %partial derivative of Rdot with respect to R 

A_23 = 0; %partial derivative of Rdot with respect to Ydot 

 

A_31 = (1/mass)*[(0.5*rho*Ay*(V^2))*(-

1.4*cos(psi)+2.5*cos(psi)*abs(cos(theta)^3))+(0.5*rho*V^2)*(Cl_0*A_rud+Cl_0*A_vs)]; %partial 

derivative of Ydoubledot with respect to psi 

A_32 = 0; %partial derivative of Ydoubledot with respect to R 

A_33 = 0; %partial derivative of Ydoubledot with respect to Ydot 

 

A = [A_11,A_12,A_13;... 

     A_21,A_22,A_23;... 

     A_31,A_32,A_33]; 

 

 %----- B Matrix 

% 3 States psi, R, and Ydot. 5 Inputs Urud_0, U1a_0, U1b_0, U2a_0, U2b_0 

A2 = rho*(V^2)*A_backdoor; 

B2 = pipe_width; 

C2 = pi/2; 

D2 = (door_widthr/2+Spacer); 

 

B_11 = 0; %partial derivitive of psidot with respect to Urud 

B_12 = 0; %partial derivitive of psidot with respect to U2a 

B_13 = 0; %partial derivitive of psidot with respect to U2b 

 

B_21 = (1/Izz)*[-0.5*rho*(V^2)*A_rud*Cl_0*R_rud]; %partial derivitive of Rdot with respect to 

Urud 

 

if sqrt(sin(phi2a)^2+cos(phi2a)^2-2*cos(phi2a)+1) == 0 

    B_22 = 0; 

else 

    B_22 = (1/Izz)*[(A2*sin(phi2a)^2*(B2*sin(C2-phi2a)-D2*cos(C2-

phi2a)))/sqrt(sin(phi2a)^2+cos(phi2a)^2-

2*cos(phi2a)+1)+A2*sin(phi2a)*sqrt(sin(phi2a)^2+cos(phi2a)^2-2*cos(phi2a)+1)*(-B2*cos(C2-phi2a)-

D2*sin(C2-phi2a))+A2*cos(phi2a)*sqrt(sin(phi2a)^2+cos(phi2a)^2-2*cos(phi2a)+1)*(B2*sin(C2-phi2a)-

D2*cos(C2-phi2a))]; %partial derivitive of Rdot with respect to U2a 

end 

 

if sqrt(sin(phi2b)^2+cos(phi2b)^2-2*cos(phi2b)+1) == 0 

    B_23 = 0; 

else 

    B_23 = -(1/Izz)*[(A2*sin(phi2b)^2*(B2*sin(C2-phi2b)-D2*cos(C2-

phi2b)))/sqrt(sin(phi2b)^2+cos(phi2b)^2-
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2*cos(phi2b)+1)+A2*sin(phi2b)*sqrt(sin(phi2b)^2+cos(phi2b)^2-2*cos(phi2b)+1)*(-B2*cos(C2-phi2b)-

D2*sin(C2-phi2b))+A2*cos(phi2b)*sqrt(sin(phi2b)^2+cos(phi2b)^2-2*cos(phi2b)+1)*(B2*sin(C2-phi2b)-

D2*cos(C2-phi2b))]; %partial derivitive of Rdot with respect to U2b 

end 

 

B_31 = (1/mass)*[0.5*rho*(V^2)*A_rud*2*pi]; %partial derivitive of Ydoubledot with respect to 

Urud 

B_32 = -(1/mass)*[A2*2*sin(phi2a)*cos(phi2a)]; %partial derivitive of Ydoubledot with respect to 

U2a 

B_33 = (1/mass)*[A2*2*sin(phi2b)*cos(phi2b)]; %partial derivitive of Ydoubledot with respect to 

U2b 

 

B = [B_11,B_12,B_13;... 

     B_21,B_22,B_23;... 

      B_31,B_32,B_33]; 

 

%----- Solve for input alterations 

 

Q = [1,0,0;... 

    0,3.5,0;... 

    0,0,3.5]; 

 

R = [10,0,0;... 

    0,1,0;... 

    0,0,1]; 

 

N = 0; 

 

%----- Calculate LQR Gain K 

K_lqr = lqr(A,B,Q,R,N); 

Error using calc_lqr_gain (line 3) 

Not enough input arguments. 

Published with MATLAB® R2014b 

Kalman Filter P Derivative Function 

function P_dot = ODE_KALMAN_P(t, P, params_kalman_FILTER) 

%Calculation of P as a function of time for ODE45 

Define Filter Matricies 

P_matrix = [P(1),P(2);P(3),P(4)]; 

A = params_kalman_FILTER.A; 

B = params_kalman_FILTER.B; 

C = params_kalman_FILTER.H; 

R_w = params_kalman_FILTER.Q; 

R_v = params_kalman_FILTER.R; 

http://www.mathworks.com/products/matlab
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F = params_kalman_FILTER.F; 

L = P_matrix*C'*inv(R_v); 

Error using ODE_KALMAN_P (line 6) 

Not enough input arguments. 

Calculate P_dot 

P_dot_matrix = A*P_matrix+P_matrix*A'-P_matrix*C'*inv(R_v)*C*P_matrix+F*R_w*F'; 

 

P_dot(1:2,1) = P_dot_matrix(1,1:2)'; 

P_dot(3:4,1) = P_dot_matrix(2,1:2)'; 

end 

Published with MATLAB® R2014b 

Yaw and Yaw Rate Kalman Filter Function 

function Matrix  = KalmanFilter_Yaw_R_cc( Desired_Matrix, params_kalman, params_control, 

params_model, params_simulation) 

%Kalman Filter For Active Control Helicopter Sling Load 

Define Constants 

mass = params_model.load.mass; % mass of the conex container (kg) 

Wcc = params_model.load.width; % Width of the conex container (m) 

Lcc = params_model.load.length; % Length of the conex container (m) 

Hcc = params_model.load.height; % Height of the conex container (m) 

 

V = params_simulation.V_freestream; % Velocity of the air flowing over the container in the -X 

direction 

rho = params_simulation.rho_atm; % Density of air (kg/m^3) 

 

A_rud   = params_model.rudder.area; 

A_vs    = params_model.vstab.area; 

Cl_0    = params_model.rudder.CL0; 

R_rud   = params_model.rudder.loc; 

R_vs    = params_model.vstab.loc; 

 

pipe_width  = params_model.pipes.width; 

door_widthr  = params_model.pipes.door.length; 

A_backdoor  = params_model.pipes.door.area; 

Spacer = params_model.pipes.door.loc; 

 

psi = params_control.psi0; 

theta = params_control.theta0; 

phi = params_control.phi0; 

 

http://www.mathworks.com/products/matlab
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Urud = params_control.rudder0; 

phi2a = params_control.door_left0; 

phi2b = params_control.door_right0; 

 

Ay = Lcc * Hcc; 

Ax = Hcc * Wcc; 

Az = Wcc * Lcc; 

 

Ixx = (1/12)*mass*(Wcc^2+Hcc^2); 

Iyy = (1/12)*mass*(Hcc^2+Lcc^2); 

Izz = (1/12)*mass*(Lcc^2+Wcc^2); 

 

std_accel = params_kalman.std_accel; 

std_mag = params_kalman.std_mag; 

std_gyro = params_kalman.std_gyro; 

 

FC = 0.5*rho*V^2; %Force Constant 

Error using KalmanFilter_Yaw_R_cc (line 5) 

Not enough input arguments. 

Define Matricies 

A Matrix 

A_11 = 0; %partial derivitive of psidot with respect to psi 

 

A_12 = 1; %partial derivitive of psidot with respect to R 

 

%partial derivitive of Rdot with respect to psi 

A_21 = (-1/Izz)*[((0.5*rho*V^2*Ay*Lcc)*[(-0.18*(1-(Wcc/Lcc)^2)*cos(2*psi)... 

    +0.16*(Wcc/Lcc)*cos(4*psi))*cos(theta)+(0.15*((Wcc/Lcc)^2)*... 

    cos(2*(psi-pi/2)))*cos(phi)]+[(0.25*cos(psi))*cos(theta)^2])-... 

    (0.5*rho*V^2)*(Cl_0*A_rud*R_rud+Cl_0*A_vs*R_vs)]; %+wuc]; 

 

A_22 = 0; %partial derivitive of Rdot with respect to R 

 

A = [A_11,A_12;... 

     A_21,A_22]; 

 

% B Matrix 

 

A2 = rho*(V^2)*A_backdoor; 

B2 = pipe_width; 

C2 = pi/2; 

D2 = (door_widthr/2+Spacer); 

 

B_11 = 0; %partial derivitive of psidot with respect to Urud 

B_12 = 0; %partial derivitive of psidot with respect to U2a 

B_13 = 0; %partial derivitive of psidot with respect to U2b 

 

%partial derivitive of Rdot with respect to Urud 
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B_21 = (1/Izz)*[-0.5*rho*(V^2)*A_rud*2*pi*R_rud]; 

 

%partial derivitive of Rdot with respect to U2a 

B_22 = (1/Izz)*[(A2*sin(phi2a)^2*(B2*sin(C2-phi2a)-D2*cos(C2-phi2a)))/... 

    sqrt(sin(phi2a)^2+cos(phi2a)^2-2*cos(phi2a)+1)+A2*sin(phi2a)*... 

    sqrt(sin(phi2a)^2+cos(phi2a)^2-2*cos(phi2a)+1)*(-B2*cos(C2-phi2a)-... 

    D2*sin(C2-phi2a))+A2*cos(phi2a)*sqrt(sin(phi2a)^2+cos(phi2a)^2-... 

    2*cos(phi2a)+1)*(B2*sin(C2-phi2a)-D2*cos(C2-phi2a))]; 

 

%partial derivitive of Rdot with respect to U2b 

B_23 = -(1/Izz)*[(A2*sin(phi2b)^2*(B2*sin(C2-phi2b)-D2*cos(C2-phi2b)))/... 

    sqrt(sin(phi2b)^2+cos(phi2b)^2-2*cos(phi2b)+1)+A2*sin(phi2b)*... 

    sqrt(sin(phi2b)^2+cos(phi2b)^2-2*cos(phi2b)+1)*(-B2*cos(C2-phi2b)-... 

    D2*sin(C2-phi2b))+A2*cos(phi2b)*sqrt(sin(phi2b)^2+cos(phi2b)^2-... 

    2*cos(phi2b)+1)*(B2*sin(C2-phi2b)-D2*cos(C2-phi2b))]; 

 

 

B = [B_11,B_12,B_13;... 

     B_21,B_22,B_23]; 

 

% H Matrix 

 

H = [1,0;... 

    0,1]; 

 

% Q Matrix 

 

Q = [0,0;... 

    0,0]; 

 

% R Matrix 

 

R = [std_mag,0;... 

    0,std_gyro]; 

 

% % P Matrix 

% 

% A_re = A'; 

% B_re = H'*inv(R)*H; 

% C_re = Q; 

% P = are(A_re,B_re,C_re); 

 

% K Mtarix (gain) 

 

% K = P*H'*inv(R); 

Matricies 

if strcmp(Desired_Matrix, 'A') 

    Matrix = A; 

elseif strcmp(Desired_Matrix, 'B') 

    Matrix = B; 

elseif strcmp(Desired_Matrix, 'H') 
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    Matrix = H; 

elseif strcmp(Desired_Matrix, 'Q') 

    Matrix = Q; 

elseif strcmp(Desired_Matrix, 'R') 

    Matrix = R; 

else 

    Matrix = 0; 

end 

end 

Published with MATLAB® R2014b 

Roll and Sway Velocity Kalman Filter Function 

function Matrix  = KalmanFilter_v_phi_cc(Desired_Matrix, params_kalman) 

%Kalman Filter For Active Control Helicopter Sling Load 

Define Constants 

L = params_kalman.L; 

std_accel = params_kalman.std_accel; 

std_mag = params_kalman.std_mag; 

std_gyro = params_kalman.std_gyro; 

Error using KalmanFilter_v_phi_cc (line 6) 

Not enough input arguments. 

Define Matricies 

% A Matrix 

 

A_11 = 0; %partial derivitive of phidot with respect to phi 

 

A_12 = 1/L; %partial derivitive of phidot with respect to v 

 

A_21 = 0; %partial derivitive of vdot with respect to phi 

 

A_22 = 0; %partial derivitive of vdot with respect to v 

 

A = [A_11,A_12;... 

     A_21,A_22]; 

 

% B Matrix 

 

B_11 = 0; %partial derivitive of phidot with respect to A 

 

 

B_21 = 1; %partial derivitive of vdot with respect to A 
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B = [B_11;... 

     B_21]; 

 

% H Matrix 

 

H = [1,0;... 

    0,1/L]; 

 

% Q Matrix 

 

Q = [0,0;... 

    0,std_accel^2]; 

 

% R Matrix 

 

R = [std_mag,0;... 

    0,std_gyro]; 

 

% % P Matrix 

% 

% A_re = A'; 

% B_re = H'*inv(R)*H; 

% C_re = Q; 

% P = are(A_re,B_re,C_re); 

 

% K Mtarix (gain) 

 

% K = P*H'*inv(R); 

Matricies 

if strcmp(Desired_Matrix, 'A') 

    Matrix = A; 

elseif strcmp(Desired_Matrix, 'B') 

    Matrix = B; 

elseif strcmp(Desired_Matrix, 'H') 

    Matrix = H; 

elseif strcmp(Desired_Matrix, 'Q') 

    Matrix = Q; 

elseif strcmp(Desired_Matrix, 'R') 

    Matrix = R; 

else 

    Matrix = 0; 

end 

end 

Published with MATLAB® R2014b 
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Appendix D: ARDUINO DUE Control Code 

 

Code 

 
// WPI ACTIVE HELICOPTER SLING LOAD MQP 

// ACTIVE CONTROL SCHEME FOR SPARTA SYSTEM 

// MADE FOR ARDUINO DUE 

 

// ===================================================================

======================================= 

 

// I2C Library 

#include <Wire.h> 

// Sensor Library 

#include <Adafruit_Sensor.h> 

// Accelerometer & Magnetometer 

#include <Adafruit_LSM303_U.h> 

// Gyroscope 

#include <Adafruit_L3GD20_U.h> 

// IMU API 

#include <Adafruit_9DOF.h> 

// Servo Library 

#include <Servo.h> 

 

// Create Servo Objects 

Servo leftcontrol; // Left Door Servo 

Servo rightcontrol; // Right Door Servo 

Servo ruddercontrol; // Rudder Servo 
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// Assign a unique ID to the sensors 

Adafruit_LSM303_Accel_Unified accel = Adafruit_LSM303_Accel_Unified(30301); 

Adafruit_LSM303_Mag_Unified   mag   = Adafruit_LSM303_Mag_Unified(30302); 

Adafruit_L3GD20_Unified       gyro  = Adafruit_L3GD20_Unified(20); 

Adafruit_9DOF                 dof   = Adafruit_9DOF(); 

 

// ===================================================================

====================================== 

// DECLARE AND/OR DEFINE VARIABLES 

 

// Initial State Setup 

 

int psi0 = 0; 

int r0 = 0; 

int vdot0 = 0; 

 

// Left Door Initial Setup 

 

double k21 =  0.014214081337476; 

double k22 = 0.030863696983994; 

double k23 = -0.047156356256757; 

 

int posleftc0 = 15; // Initial Position 

 

 

// Right Door Initial Setup 
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double k31 = -0.014214081337476; 

double k32 = -0.030863696983994; 

double k33 = 0.047156356256757; 

 

int posrightc0 = 15; // Initial Position 

 

 

//  Rudder Initial Setup 

 

double k11 = -5.937456420108622; 

double k12 = -1.113428092780142; 

double k13 = -0.997773800081550; 

 

int posrudderc0 = 0; // Initial Position 

 

 

// Servo Position Offsets based on current setup 

int posrudderchard = 60; // Rudder 

int posleftchard = 180; // Left Door 

int posrightchard = 0; // Right Door 

 

// Max Actuation positions with respect to servo position offsets 

int maxrudder1 = posrudderchard + 40; // Rudder Direction 1 

int maxrudder2 = posrudderchard - 40; // Rudder Direction 2 

int maxleftd = posleftchard - 30; // Left Door 

int maxrightd = posrightchard + 30; // Right Door 

 



Active Helicopter Sling Load Stabilization MQP 

100 

 

// IMU Value Varibles (Necessary for debugging and or viewing in serial monitor) 

//// create acceleration (x, y, z) variables 

//double accelx; 

//double accely; 

//double accelz; 

// 

//// create angular rate (x, y, z) variables 

//double gyrox; 

//double gyroy; 

//double gyroz; 

// 

//// create magnetic field (x, y, z) variables 

//double magx; 

//double magy; 

//double magz; 

 

 

int posleftc, posrightc, posrudderc; // Declare control law position variables for Rudder, Left and 

Right doors 

 

double yaw_est, x_ang_v, z_ang_v; // decalre yaw, x-axis angular velocity, and y-axis angular 

velocity variables (used in control laws) 

 

double heading; // Declare heading variable 

 

double initorientation; // Decalre initial orientation variable 

 

double H = 0.476; // Parameter for control laws 
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int finalposrudder, finalposleftc, finalposrightc; // Declare Final Position variables for Rudder, 

Left and Right doors 

 

// Create Data String for Printing to Serial Monitor (Used for viewing real-

time values and debugging) 

// String dataString; 

 

// ===================================================================

====================================== 

// Initial Setup (Only Run Once) 

void setup() { 

 

  // Open Serial Monitor Communication at an 115200 baud rate (Only necessary for reading 

real-time values or debugging) 

  // Serial.begin(115200); 

 

 

  // ===================== 

 

  // ACCEL 

  // Enable auto-ranging 

  accel.enableAutoRange(true); 

 

  if (!accel.begin()) 

  { 

    // There was a problem detecting the ADXL345 ... check your connections 

    // Serial.println(F("Ooops, no LSM303 detected ... Check your wiring!")); 

    while (1); 
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  } 

  // ACCEL END 

 

  // MAG 

  // Enable auto-ranging 

  mag.enableAutoRange(true); 

 

  if (!mag.begin()) 

  { 

    // There was a problem detecting the LSM303 ... check your connections 

    // Serial.println("Ooops, no LSM303 detected ... Check your wiring!"); 

    while (1); 

  } 

  // MAG END 

 

  // GYRO 

  // Enable auto-ranging 

  gyro.enableAutoRange(true); 

 

  if (!gyro.begin()) 

  { 

    // There was a problem detecting the L3GD20 ... check your connections 

    // Serial.print("Ooops, no L3GD20 detected ... Check your wiring or I2C ADDR!"); 

    while (1); 

  } 

  // GYRO END 

  // ===================== 
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  // Attatch Servos to Arduino 

  leftcontrol.attach(5); // Arduino I/O 5 with PWM 

  rightcontrol.attach(6); // Arduino I/O 6 with PWM 

  ruddercontrol.attach(7); // Arduino I/O 7 with PWM 

 

 

  // ========================== 

 

  // Send servos to their initial positions 

  ruddercontrol.write(posrudderc0); 

  rightcontrol.write(posrightc0); 

  leftcontrol.write(posleftc0); 

 

  // Get a new sensor event 

  sensors_event_t event; 

 

  // read mag and accel 

  sensors_event_t accel_event; 

  sensors_event_t mag_event; 

  sensors_vec_t   orientation; 

 

  // Update events 

  accel.getEvent(&accel_event); 

  mag.getEvent(&mag_event); 

 

  // Sets reference "zero" heading point based on current tilt compesated heading 
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  if (dof.magTiltCompensation(SENSOR_AXIS_Z, &mag_event, &accel_event)) 

  { 

    if (dof.magGetOrientation(SENSOR_AXIS_Z, &mag_event, &orientation)) 

    { 

      initorientation = orientation.heading; // Define Initial Orientation 

    } 

  } 

 

 

} 

 

// ===================================================================

======================================= 

// Control Loop (Run Continously after initial setup) 

void loop() { 

 

  // Get a new sensor event 

  sensors_event_t event; 

 

  // read mag and accel 

  sensors_event_t accel_event; 

  sensors_event_t mag_event; 

  sensors_vec_t   orientation; 

 

  // read sensors and append data to the string: 

  gyro.getEvent(&event); 

 

  // assign angular rate (x, z) variables 
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  z_ang_v = event.gyro.z ; 

  x_ang_v = event.gyro.x ; 

 

  // append angular rates to datastring 

  //    dataString += String(gyrox); 

  //    dataString += ", rad/s (x), "; 

  //    dataString += String(gyroz); 

  //    dataString += ", rad/s (z), "; 

 

  // Update events 

  accel.getEvent(&accel_event); 

  mag.getEvent(&mag_event); 

 

  // Use tilt compesated heading in order to calculate yaw angle 

  if (dof.magTiltCompensation(SENSOR_AXIS_Z, &mag_event, &accel_event)) 

  { 

    if (dof.magGetOrientation(SENSOR_AXIS_Z, &mag_event, &orientation)) 

    { 

      heading = orientation.heading; // Define Heading 

      yaw_est = (heading - initorientation); // Calculate Yaw 

    } 

  } 

 

  //  dataString += "Heading, "; 

  //  dataString += String(heading); 

  //  dataString += ", Yaw, "; 

  //  dataString += String(yaw_est); 
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  // *** CONTROL LAWS*** 

  posleftc = posleftc0 + yaw_est * k21 + z_ang_v * k22 + H * x_ang_v * k23; 

  posrightc = posrightc0 + yaw_est * k31 + z_ang_v * k32 + H * x_ang_v * k33; 

  posrudderc = posrudderc0 + yaw_est * k11 + z_ang_v * k12 + H * x_ang_v * k13; 

 

  // Calculate position of servos based on control law values and servo positioning offsets 

  finalposrudder = posrudderchard + posrudderc; 

  finalposleftc = posleftchard - posleftc; 

  finalposrightc = posrightchard + posrightc; 

 

 

  // Prevents rudder from actuating more than 40 degrees in either direction 

  // ELSE: The rudder is commanded to go to calculated positon 

  if ( finalposrudder > maxrudder1 || finalposrudder < maxrudder2 ) 

  { 

    // Do Nothing 

  } 

  else 

  { 

    ruddercontrol.write(finalposrudder); // Send sevo to calculated position 

  } 

 

  // Prevents left door from actuating more than 30 degrees 

  // ELSE: The left door is commanded to go to calculated positon 

  if (finalposleftc < maxleftd) 

  { 
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    // Do Nothing 

  } 

  else 

  { 

    leftcontrol.write(finalposleftc); // Send sevo to calculated position 

  } 

 

  // Prevents right door from actuating more than 30 degrees 

  // ELSE: The right door is commanded to go to calculated positon 

  if (finalposrightc > maxrightd) 

  { 

    // Do Nothing 

  } 

  else 

  { 

    rightcontrol.write(finalposrightc); // Send sevo to calculated position 

  } 

 

 

  //  dataString += ", C.L. Rudder Pos, "; 

  //  dataString += String(posrudderc); 

  //  dataString += ", Rudder Pos, "; 

  //  dataString += String(finalposrudder); 

  //  dataString += ", Left Door Pos, "; 

  //  dataString += String(finalposleftc); 

  //  dataString += ", RightDoor Pos, "; 

  //  dataString += String(finalposrightc); 
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  // Print DataString to Serial Monitor 

  //  Serial.println(dataString); 

 

  // Insert Delay of control loop, if necessary 

  // delay(100); 

 

} 

 

Final Hardware Setup Reference  

 

 
The Left Door Servo data wire is hooked up to I/O 5 (PWM) 

The Right Door Servo data wire is hooked up to I/O 6 (PWM) 

The Rudder Servo data wire is hooked up to I/O 7 (PWM) 

The IMU is hooked up using the TWI (Two Wire Interface) and a 5V input from the Arduino 

The SD card is not used in the final prototype setup. However, it is connected using the SPI 

communication interface on the Arduino and I/O 10.   
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Appendix E: ARDUINO DUE SD Card IMU Data-logging Code 
[code] 

// WPI ACTIVE HELICOPTER SLING LOAD MQP 

// SD CARD IMU DATALOGGING 

// MADE FOR ARDUINO DUE 

// Measures Inertial Acceleration (m/s
2
) in 3 Axes (x,y,z), Angular Rates (rad/s) in 3 Axes, and 

Magnetic Field (µT) in 3 Axes, and time since start. Calculates heading angle, roll angle, and 

pitch angle. Records all data to a ‘datalog.txt’ file on any SD card. 

// ===================================================================

======================================= 

 

// I2C Library 

#include <Wire.h> 

// Sensor Library 

#include <Adafruit_Sensor.h> 

// Accelerometer & Magnetometer 

#include <Adafruit_LSM303_U.h> 

// Gyroscope 

#include <Adafruit_L3GD20_U.h> 

// IMU API 

#include <Adafruit_9DOF.h> 

// SPI Library 

#include <SPI.h> 

// SD Card Library 

#include <SD.h> 

 

// SD Card Setup 

// On the Ethernet Shield, CS is pin 4. Note that even if it's not 

// used as the CS pin, the hardware CS pin (10 on most Arduino boards, 
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// 53 on the Mega) must be left as an output or the SD library 

// functions will not work. 

const int chipSelect = 10; 

// SD Card Setup END 

 

// Assign a unique ID to the sensors 

Adafruit_LSM303_Accel_Unified accel = Adafruit_LSM303_Accel_Unified(30301); 

Adafruit_LSM303_Mag_Unified   mag   = Adafruit_LSM303_Mag_Unified(30302); 

Adafruit_L3GD20_Unified       gyro  = Adafruit_L3GD20_Unified(20); 

Adafruit_9DOF                dof   = Adafruit_9DOF(); 

 

// ===================================================================

====================================== 

 

void displaySensorDetails(void) 

{ 

  sensor_t sensor; 

 

  accel.getSensor(&sensor); 

  Serial.println(F("----------- ACCELEROMETER ----------")); 

  Serial.print  (F("Sensor:       ")); Serial.println(sensor.name); 

  Serial.print  (F("Driver Ver:   ")); Serial.println(sensor.version); 

  Serial.print  (F("Unique ID:    ")); Serial.println(sensor.sensor_id); 

  Serial.print  (F("Max Value:    ")); Serial.print(sensor.max_value); Serial.println(F(" m/s^2")); 

  Serial.print  (F("Min Value:    ")); Serial.print(sensor.min_value); Serial.println(F(" m/s^2")); 

  Serial.print  (F("Resolution:   ")); Serial.print(sensor.resolution); Serial.println(F(" m/s^2")); 

  Serial.println(F("------------------------------------")); 

  Serial.println(F("")); 
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  gyro.getSensor(&sensor); 

  Serial.println(F("------------- GYROSCOPE -----------")); 

  Serial.print  (F("Sensor:       ")); Serial.println(sensor.name); 

  Serial.print  (F("Driver Ver:   ")); Serial.println(sensor.version); 

  Serial.print  (F("Unique ID:    ")); Serial.println(sensor.sensor_id); 

  Serial.print  (F("Max Value:    ")); Serial.print(sensor.max_value); Serial.println(F(" rad/s")); 

  Serial.print  (F("Min Value:    ")); Serial.print(sensor.min_value); Serial.println(F(" rad/s")); 

  Serial.print  (F("Resolution:   ")); Serial.print(sensor.resolution); Serial.println(F(" rad/s")); 

  Serial.println(F("------------------------------------")); 

  Serial.println(F("")); 

 

  mag.getSensor(&sensor); 

  Serial.println(F("----------- MAGNETOMETER -----------")); 

  Serial.print  (F("Sensor:       ")); Serial.println(sensor.name); 

  Serial.print  (F("Driver Ver:   ")); Serial.println(sensor.version); 

  Serial.print  (F("Unique ID:    ")); Serial.println(sensor.sensor_id); 

  Serial.print  (F("Max Value:    ")); Serial.print(sensor.max_value); Serial.println(F(" uT")); 

  Serial.print  (F("Min Value:    ")); Serial.print(sensor.min_value); Serial.println(F(" uT")); 

  Serial.print  (F("Resolution:   ")); Serial.print(sensor.resolution); Serial.println(F(" uT")); 

  Serial.println(F("------------------------------------")); 

  Serial.println(F("")); 

 

  delay(500); 

} 

 

// ===================================================================

======================================= 
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void setup() { 

 

  Serial.begin(115200); 

  Serial.println(F("AHSL")); Serial.println(""); 

 

  // SD Card Setup 

  Serial.print("Initializing SD card..."); 

  // make sure that the default chip select pin is set to 

  // output, even if you don't use it: 

  pinMode(10, OUTPUT); 

 

  // see if the card is present and can be initialized: 

  if (!SD.begin(chipSelect)) { 

    Serial.println("Card failed, or not present"); 

    // don't do anything more: 

    return; 

  } 

  Serial.println("card initialized."); 

  // SD Card Setup END 

 

 

  // Initialise the sensors 

 

  // ACCEL 

  // Enable auto-ranging 

  accel.enableAutoRange(true); 
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  if (!accel.begin()) 

  { 

    // There was a problem detecting the ADXL345 ... check your connections 

    Serial.println(F("Ooops, no LSM303 detected ... Check your wiring!")); 

    while (1); 

  } 

  // ACCEL END 

 

  // MAG 

  // Enable auto-ranging 

  mag.enableAutoRange(true); 

 

  if (!mag.begin()) 

  { 

    // There was a problem detecting the LSM303 ... check your connections 

    Serial.println("Ooops, no LSM303 detected ... Check your wiring!"); 

    while (1); 

  } 

  // MAG END 

 

  // GYRO 

  // Enable auto-ranging 

  gyro.enableAutoRange(true); 

 

  if (!gyro.begin()) 

  { 
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    // There was a problem detecting the L3GD20 ... check your connections 

    Serial.print("Ooops, no L3GD20 detected ... Check your wiring or I2C ADDR!"); 

    while (1); 

  } 

  // GYRO END 

 

  // Display some basic information on this sensor 

  displaySensorDetails(); 

 

 

} 

 

// ===================================================================

======================================= 

 

void loop() { 

 

  // Get a new sensor event 

  sensors_event_t event; 

 

  // make a string for assembling the data to log: 

  String dataString = ""; 

 

  // Setup Timestamp 

  double currentMillis = millis(); 

  double timestamp = currentMillis / 1000; 

 

  // read sensors and append data to the string: 
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  accel.getEvent(&event); 

  // create acceleration (x, y, z) variables 

  double accelx = event.acceleration.x ; 

  double accely = event.acceleration.y ; 

  double accelz = event.acceleration.z ; 

 

 

  // append accelerations to datastring 

  dataString += String(accelx); 

  dataString += ", m/s^2 (x), "; 

  dataString += String(accely); 

  dataString += ", m/s^2 (y), "; 

  dataString += String(accelz); 

  dataString += ", m/s^2 (z), "; 

 

  // read sensors and append data to the string: 

  gyro.getEvent(&event); 

  // create angular rate (x, y, z) variables 

  double gyrox = event.gyro.x ; 

  double gyroy = event.gyro.y ; 

  double gyroz = event.gyro.z ; 

 

  // append angular rates to datastring 

  dataString += String(gyrox); 

  dataString += ", rad/s (x), "; 

  dataString += String(gyroy); 

  dataString += ", rad/s (y), "; 
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  dataString += String(gyroz); 

  dataString += ", rad/s (z), "; 

 

  // read sensors and append data to the string: 

  mag.getEvent(&event); 

  // create magnetic field (x, y, z) variables 

  double magx = event.magnetic.x ; 

  double magy = event.magnetic.y ; 

  double magz = event.magnetic.z ; 

 

  // append magnetic field values to datastring 

  dataString += String(magx) ; 

  dataString += ", uT (x), " ; 

  dataString += String(magy) ; 

  dataString += ", uT (y), " ; 

  dataString += String(magz) ; 

  dataString += ", uT (z), " ; 

 

  // read mag and accel 

  sensors_event_t accel_event; 

  sensors_event_t mag_event; 

  sensors_vec_t   orientation; 

 

  //    // append attitude and heading variables to datastring 

  //    /* Calculate pitch and roll from the raw accelerometer data */ 

  //  accel.getEvent(&accel_event); 

  //  mag.getEvent(&mag_event); 
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  // 

  // 

 

  // MAG HEADING WITH ACCEL (INCLINO) PITCH COMPENSATION 

  // read mag and accel data 

  accel.getEvent(&accel_event); 

  mag.getEvent(&mag_event); 

 

  //// create tilt compensated heading 

  //double truehead; 

 

  // tilt compensation 

  if (dof.magTiltCompensation(SENSOR_AXIS_Z, &mag_event, &accel_event)) 

  { 

    // Do something with the compensated data in mag_event! 

    if (dof.fusionGetOrientation(&accel_event, &mag_event, &orientation)) 

    { 

      dataString += String(orientation.roll) ; 

      dataString += ", roll angle, " ; 

      dataString += String(orientation.pitch) ; 

      dataString += ", pitch angle, " ; 

      dataString += String(orientation.heading) ; 

      dataString += ", heading angle, " ; 

    } 

  } 
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  // append measurement second timestand to datastring 

  dataString += String(timestamp); 

  dataString += " , seconds"; 

 

 

  //// Delay .015 seconds 

  //delay(15); 

 

  // open the file. note that only one file can be open at a time, 

  // so you have to close this one before opening another. 

  File dataFile = SD.open("datalog.txt", FILE_WRITE); 

 

 

  // if the file is available, write to it: 

  if (dataFile) { 

    dataFile.println(dataString); 

    dataFile.close(); 

    // print to the serial port too: 

    Serial.println(dataString); 

  } 

  // if the file isn't open, pop up an error: 

  else { 

    Serial.println("error opening datalog.txt"); 

  } 

  delay (500); 

} 
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[/code] 
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Appendix F: Pipes And Rudder Calculations MATLAB Code 

Information 

%This program was created for the Active Sling Load Stabilization MQP at 

%Worcester Polytechnic Institute. With inputs of freestream velocity, 

%dimensions, and door angles, it calculates the theoretical forces and 

%moments caused by the "Pipes" design. 

 

close all; clear all; clc 

Conversion Factors and Scaling 

s = 1; 

;                               %scaling factor 

 

convert = 0;                          %switch for conversion 

if convert == 1 

    n2lbf    = 0.224808943871;        %conversion factor from Newtons to Pound-force 

    m2in     = 39.3701;               %convert m to in 

    nm2lbfin = 0.005710147162769201;  %conversion factor from Newton-meters to Pound-force-inches 

else 

    n2lbf    = 1; 

    m2in     = 1; 

    nm2lbfin = 1; 

end 

Inputs 

%Pipe Constants 

rho         = 1.225;                         %density of air 

if s==1 

    V       = 30.87;                         %freestream velocity 

else 

    V       = 12.7; 

end 

door_height = 0.402/s;                       %height of door 

door_widthf = 0.800/s;                       %width of front door 

door_widthr = 1.000/s;                       %width of rear door 

phi         = 0:0.01:50;                     %door angle from vertical (clockwise from 12) 

 

%Vertical Stabilizer Constants 

aoa           = 0:0.01:45;       %angle of attack of VS and rudder in degrees 

aoar          = aoa*(pi/180);    %... in radians 

vs_root_chord = .7/s;            %vertical stabilizer root chord 

vs_tip_chord  = 0/s;             %vertical stabilizer tip chord 

vs_span       = .6/s;            %vertical stabilizer span 

 

%Rudder Constants 

rd_chord =.5/s;                  %rudder chord 
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rd_span  =.6/s;                  %rudder span 

 

% Container Dimensions 

L = 2.4384/s; %length of TRICON (m) 

W = 1.9812/s; %width of TRICON (m) 

H = 2.4384/s; %height of TRICON (m) 

Pipe Equations 

%Geometry 

pipe_width  = (0.787-0.04)/s;                             %width of pipes 

Spacef      = (1.143/s)-door_widthf;                      %space between front doors and cm 

Spacer      = (1.143/s)-door_widthr;                      %space between rear doors and cm 

A_ef        = door_height*door_widthf;                    %area of front door 

A_er        = door_height*door_widthr;                    %area of rear door 

C_d         = 2*sin((pi/180)*phi).*sin((pi/180)*phi);     %drag coeff vs. door angle from 

http://mekside.com/wings-redux/ 

A_if        = A_ef.*(sin((pi/180)*phi));                  %capture area of front door 

A_ir        = A_er.*(sin((pi/180)*phi));                  %capture area of rear door 

 

%Force Equations 

Df     = n2lbf*0.5*rho*(V^2)*C_d.*A_if;                                  %drag force due to 

seperated flow (front door) 

Dr     = n2lbf*0.5*rho*(V^2)*C_d.*A_ir;                                  %drag force due to 

seperated flow (rear door) 

F_yf   = n2lbf*rho*(V^2)*(sin((pi/180)*phi)).*sin((pi/180)*phi)*A_ef;    %restoring (y) force 

(FRONT) 

F_xf   = -n2lbf*rho*(V^2).*A_if.*(1-cos((pi/180)*phi));                  %attached flow (x) force 

for small angles of attack (<20 degrees) (FRONT) 

F_xxf  = -n2lbf*rho*(V^2).*A_if.*(1-cos((pi/180)*phi))-Df;               %attached flow (x) force 

for all angles (drag included - estimate)(FRONT) 

F_yr   = n2lbf*rho*(V^2)*(sin((pi/180)*phi)).*sin((pi/180)*phi)*A_er;    %restoring (y) force 

(REAR) 

F_xr   = -n2lbf*rho*(V^2).*A_ir.*(1-cos((pi/180)*phi));                  %attached flow (x) force 

for small angles of attack (<20 degrees)(REAR) 

F_xxr  = -n2lbf*rho*(V^2).*A_ir.*(1-cos((pi/180)*phi))-Dr;               %attached flow (x) force 

for all angles (drag included - estimate)(REAR) 

 

%Moment Arm Equations 

BTWr   = (door_widthr/2+Spacer)./(tan((pi/180).*(90-phi)));      %intermediate calculation of Big 

Triangle Width (rear door) 

HYPf   = sqrt((pipe_width.^2)+((door_widthf/2+Spacef).^2));      %intermediate calculation of 

Hypotenuse of Big Triangle (front door) 

psi    = acosd(pipe_width/HYPf);                                 %intermediate calculation of 

extra angle psi (front door) 

HYPr   = pipe_width-BTWr;                                        %intermediate calculation of 

Hypotenuse of Smaller Triangle (rear door) 

theta  = 180-(90-phi)-psi;                                       %intermediate calculation of 

extra angle theta (front door) 

r_f    = HYPf.*sin((pi/180)*theta);                              %moment arm of FRONT door 

angular momentum 

r_r    = HYPr.*sin((pi/180)*(90-phi));                           %moment arm of REAR door angular 
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momentum 

 

%Left Side Moments 

M_1_a    =  nm2lbfin*sqrt(F_xf.^2+F_yf.^2).*(m2in*r_f);      %door 1A moment of angular momentum 

M_3_a    =  nm2lbfin*sqrt(F_xr.^2+F_yr.^2).*(m2in*r_r);      %door 3A moment of angular momentum 

M_1_ad   =  nm2lbfin*sqrt(F_xxf.^2+F_yf.^2).*(m2in*r_f);     %door 1A moment of angular momentum 

(attached + seperated flow) 

M_3_ad   =  nm2lbfin*sqrt(F_xxr.^2+F_yr.^2).*(m2in*r_r);     %door 3A moment of angular momentum 

(attached + seperated flow) 

 

%Right Side Moments 

M_1_b    =  -nm2lbfin*sqrt(F_xf.^2+F_yf.^2).*(m2in*r_f);     %door 1B moment of angular momentum 

M_3_b    =  -nm2lbfin*sqrt(F_xr.^2+F_yr.^2).*(m2in*r_r);     %door 3B moment of angular momentum 

M_1_bd   =  -nm2lbfin*sqrt(F_xxf.^2+F_yf.^2).*(m2in*r_f);    %door 1B moment of angular momentum 

M_3_bd   =  -nm2lbfin*sqrt(F_xxr.^2+F_yr.^2).*(m2in*r_r);    %door 3B moment of angular momentum 

Vertical Stabilizer and Rudder Equations 

A      = vs_root_chord;                       %same as vs_root_chord 

B      = vs_tip_chord;                        %same as vs_tip_chord 

a_vs   = 0.5*vs_span*vs_root_chord;           %area of vertical stabilizer 

a_rd   = rd_chord*rd_span;                    %area of rudder 

MAC    = A-(2*(A-B)*(0.5*A+B) / (3*(A+B)));   %mean aerodynamic chord 

QMAC   = MAC*0.25;                            %quarter-chord mean aerodynamic chord 

Cd     = 1.28*sin(aoar);                      %drag coefficient 

Cl     = 2*pi*aoar;                           %lift coefficient 

 

%Drag & Lift Forces 

Drag_vs = 0.5*rho*(V^2)*a_vs*Cd;              %drag force from vertical stabilizer 

Drag_rd = 0.5*rho*(V^2)*a_rd*Cd;              %drag force from rudder 

Lift_vs = 0.5*rho*(V^2)*a_vs*Cl;              %lift force from vertical stabilizer 

Lift_rd = 0.5*rho*(V^2)*a_rd*Cl;              %lift force from rudder 

 

%Moment Arms 

r_rd    = (0.5*L);                            %moment arm of rudder 

r_vs    = (0.5*L)-(0.25*rd_chord)-(0.75*MAC); %moment arm of vertical stabilizer 

 

%Moments 

Moment_vs = r_vs*Lift_vs;   %moment caused by vertical stabilizer 

Moment_rd = r_rd*Lift_rd;   %moment caused by rudder 

Plotting 

%Note: x points downwards, y points to the left, z points upwards 

 

figure 

subplot(2,2,1) 

plot(phi,-F_yr,phi,F_xr,phi,F_xxr,':',phi,0,':')      %F_y reaction force points to the right (-) 

title('Left Rear Door Forces as a Function of Door Angle \phi'); 

xlabel('\phi (deg)'); 

if convert == 1 
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    ylabel('Force (lbf)'); 

else 

    ylabel('Force (N)'); 

end 

legend('F_y','F_a_t_t_a_c_h_e_d','F_a_t_t_a_c_h_e_d_+_s_e_p_e_r_a_t_e_d','Location','southwest'); 

 

subplot(2,2,3) 

plot(phi,M_1_a,phi,M_3_a,phi,M_1_ad,':',phi,M_3_ad,':') 

title('Left Side Pipe Moments as a Function of Door Angle \phi'); 

xlabel('\phi (deg)'); 

if convert ==1 

   ylabel('Moment (lbf*in)'); 

else 

   ylabel('Moment (N*m)'); 

end 

legend('M_1_a','M_3_a','Location','northwest'); 

 

subplot(2,2,2) 

plot(aoa,Lift_vs,aoa,Drag_vs,aoa,Lift_rd,aoa,Drag_rd) 

title('Vertical Stabilizer and Rudder Forces') 

xlabel({'Angle of Incidence (Deg)'}); 

ylabel({'Force (N)'}); 

legend('VS Lift','VS Drag','Rudder Lift','Rudder Drag','Location','northwest'); 

xlim([0,45]); 

 

subplot(2,2,4) 

plot(aoa,Moment_vs,aoa,Moment_rd) 

title('Vertical Stabilizer and Rudder Moments') 

xlabel({'Angle of Incidence (Degrees)'}); 

ylabel({'Moment (N*m)'}); 

legend('VS','Rudder','Location','northwest'); 

xlim([0,45]); 
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Published with MATLAB® R2014b 
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