

Vernal Pool Database Project

A Major Qualifying Project
Submitted to the Faculty

Of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Niva Shrestha

April 24, 2008

1. Database

2. Vernal pool

3. Ruby on Rails

Approved: ______________________

Professor Murali Mani

 Professor Stanley Selkow

1

Abstract

Due to the rapid loss of vernal pools, and the insufficient information shared in public, a

medium to encourage participation and to enhance collaboration of the vernal pool

community has become very important. In order to create such a medium, this project

created a web application with the back-end database by using Ruby on Rails framework

and MySQL. It also utilized Ajax technology to create an interactive environment for the

users. The accomplishment of this project is great service to the vernal pool community.

The created application allows the community to contribute and to share their resources,

and lets the participants to search and to learn more about vernal pools.

 2

Acknowledgements

We would like to thank several people for being part of this project directly or indirectly.

First of all, thanks to our sponsor Dr Betsy Colburn from Harvard Forest, our advisors

Professor Murali Mani and Professor Stanly Selkow for their continuous support and

guidance throughout the project. We also wish to thank Professor Gary Pollice for

introducing Ruby on Rails and for the opportunity to work on the project as a part of the Web

ware project. We would also like to thank student Adwait Belsare for being part of the Web

ware Project. Thanks to Michael Voorhis for his help in hosting the site.

 3

Table of Contents

Abstract .. 2

Acknowledgements ... 3

Table of Figures .. 6

1.0 Introduction ... 7

2.0 Background ... 9
2.1 Harvard Forest .. 9

2.2 Vernal Pool ... 9

2.2.1 Factors Behind Pool Disappearance .. 10
2.2.2 Vernal Pool Dependent Animals and Plants .. 11
2.2.3 Involved Organizations .. 12
2.2.4 Rules and Regulation ... 12

2.3 Currently Existing Databases .. 13

2.3.1 NHESP Database ... 13
2.3.2 Upper Susquehanna Coalition Database .. 13
2.3.3 Vernal Pool Database in 1993 .. 14

3.0 Languages and Tools .. 15
3.1 Database .. 15

3.1.1 Database Software Requirements .. 15
3.1.2 Database Software Choice ... 15
3.1.3 MySQL .. 15

3.2 User Interface .. 16

3.2.1 Web Application Framework Requirements.. 16
3.2.2 Web Application Framework Choice .. 17
3.2.3 Ruby on Rails ... 17

3.4 Tools ... 20

3.4.1 Net Beans ... 20
3.4.2 Subversion .. 20
3.4.3 Sourceforge .. 20

4.0 Methodology .. 21
4.1 Process .. 22

4.1.1 Iterative Development .. 22

4.2 Design Principles .. 22

4.2.1 Software Design Principles .. 22
4.2.2 HCI Design Principles ... 23

 4

5.0 Design and Implementation ... 24
5.1 Database .. 24

5.1.1 Entity-Relationship Diagram/Schema.. 24
5.1.2 Relational Tables ... 25

5.2 Web Application ... 25

5.2.1 Application Layout .. 25
5.2.2 Controllers .. 25
5.2.3 Models .. 26
5.2.4 Views ... 26
5.2.5 MVC in Action .. 27

5.3 Highlighted Features from Data Entry .. 28

5.3.1 Filling Form ... 28
5.3.2 Bulk Upload ... 30

6.0 System in Action.. 31
6.1 Home Page .. 31

6.2 Data Entry ... 31

6.2.1 Filling Form ... 32
6.2.2 Existing Pool .. 33
6.2.3 Auto-complete .. 33
6.2.4 Query-options .. 34
6.2.5 Error Feedback ... 35

6.3 Bulk Upload .. 35

6.4 Google Map .. 36

7.0 Accomplishments .. 37

8.0 Future Work and Recommendation ... 38
8.1 Database .. 38

8.2 User Interface .. 38

8.3 Useful Topics .. 40

9.0 Conclusion ... 41

Appendix A: Final E-R Diagram .. 42

Appendix B: Schema of 1993 vernal pool database 43

Bibliography .. 44

 5

Table of Figures

Figure 1: MVC in Ruby on Rails .. 18

Figure 2: Entity-Relationship Diagram ... 24

Figure 3: Controllers ... 25

Figure 4: Models ... 26

Figure 5: View Files Sample... 26

Figure 6: MVC in Action .. 27

Figure 7: Bulk Upload Design .. 30

Figure 8: Home Page .. 31

Figure 9: Enter New Pool ... 32

Figure 10: Find Geographic Coordinates .. 32

Figure 11: Upload an Image ... 33

Figure 12: Data Entry Form .. 33

Figure 13: Auto-complete Feature .. 34

Figure 14: Query-option ... 34

Figure 15: Error Feedback .. 35

Figure 16: Bulk Upload ... 35

Figure 17: Bulk Upload Error ... 36

Figure 18: Google Map ... 36

 6

1.0 Introduction
The ecological importance of vernal pools has been mostly unrecognized until very

recently. A vernal pool is a temporary pool of fresh water formed during the spring

season from snowmelts or spring rains. Although it is short lived in nature, it plays a

vital role in the ecosystem. However, vernal pools are disappearing very quickly due to

human development. Since there is an increase in awareness of the importance of vernal

pools, in the last decade there has been a growing interest to protect this natural habitat.

There are very few resources available in the public on vernal pools as of now. There is

also a lack of knowledge on the animals and plants that are associated with the vernal

pools. There are very few databases from governments and private resources about

vernal pools and its wildlife. Either these databases do not include detailed information

about vernal pools and its wildlife, or the information is inadequate.

In the last decade, researchers have been involved in collecting data on vernal pools

through various field studies in the Northeast region, especially in New England. There

has been an increase in the number of participants, from students to researchers, who are

interested in collecting data of vernal pools. The availability of this collected information

is currently restricted to the individuals or small groups participating in the study of

vernal pools.

In order to raise more awareness of the importance of the vernal pool, there is a need for

all the participants to work together in their research. The best way to accomplish this

would be to share collected information or data from participants’ field studies.

Therefore, researchers at the Harvard Forest and vernal pool community throughout the

Northeast are interested in a system, into which school groups, consultants, regulators,

naturalists, and scientists can put together and share data on vernal pools that they

observe. As mentioned earlier, due to the inadequacy of information that is currently

stored in the public domain, the new system should contain detailed information on the

vernal pools and its wildlife.

 7

To achieve this goal, the project requirements have two main components: a database

and a user interface. Along with Dr. Betsy Colburn from Harvard Forrest, we created a

database into which vernal pool community can contribute and share their data on vernal

pools. The project also implemented a web application where the community can easily

search and enter their information.

Together, the components of this system will provide the community with an interactive

environment where it can be used as a repository, a learning tool, and as a source of

information on vernal pool and its wildlife. The team also offered recommendations to

extend this system and to enable a future implementation. It will be a great addition to

the already rich vernal pool community resource and will provide the people of the

community with a means to contribute and to participate in the ongoing study of vernal

pools.

 8

2.0 Background

2.1 Harvard Forest
Harvard Forest, a program belonging to Harvard University, was established in 1907.

The center is dedicated to “research and education in forest biology and conservation”

(Major Research Topics , 2006). Based in New England, it has research facilities and a

museum. Scientists, students, and collaborators at the center explore many topics ranging

from conservation and environmental change to land-use history (Research and

Education in Ecology, Conservation and Forest Biology , 2006).

The center has two major research programs: investigation of natural ecosystems in New

England and studies of physical and biological processes relevant to climate change

(Major Research Topics , 2006). Besides these two large programs, the center has many

other research projects including study on vernal pools.

2.2 Vernal Pool
A vernal pool is a seasonal pool, typically filled with water in autumn or winter due to

rising ground water and rainfall (Vernal Pools, 2008). It only lasts for a short period

through the spring and typically dries by midsummer or the end of summer. The name,

vernal, means, “spring” in Latin. Although the pool is small and temporary, its unique

environment supports many animals and plants including some of the rare and

endangered species.

Vernal pool has become an essential and safe habitat for certain species of frogs,

salamanders, shrimp, insects, and plants. The reason behind this is that the predator of

their eggs or offspring, fish, cannot survive in vernal pools because the vernal pools

eventually dry up.

 9

These animals and plants have adopted their life style to this unique environment of the

vernal pool. Some of the animals lay their eggs and pass their early stages of life in

vernal pools, while plants and insects produce cysts and seeds. When the pool dries up

near autumn, the moist soil that was on the bottom of the pool now protects the offspring.

Once completed with their early stages of life, some of the animals move away into other

nearby environments such as woods and wetlands. Adult amphibians at this stage will go

into hibernation and wait for the next rainy season. All animals that were associated with

the vernal pool come back when it fills up with water in the next season (Vernal Pools,

2002).

Vernal pools are disappearing rapidly due to human development or natural changes.

This causes animals and plants that rely on this habitat to struggle for their survival.

There are more concerns about amphibians in general since they have adopted a pattern

of life in these pools. “Many vernal pool amphibians go back to breed in the pools

where they were born. If the pool is disturbed or destroyed by development, the

amphibians show little tendency to relocate” (Vernal Pools, 2007). This specific

behavior is one example that shows how the disappearance of vernal pool may lead to the

extinction of pool-dependent animals and plants.

The loss of vernal pools and the decline in the numbers of its dependant animals could

also affect other animals that are higher on the food chain. For example, animals such as

snakes, turtles, birds, and small mammalian predators depend on the above species for

food. Some endangered turtles such as the wood turtle and the spotted turtle rely on

eating eggs and larvae from the vernal pools to survive.

2.2.1 Factors Behind Pool Disappearance

Vernal pools can be found in a variety of places, such as small woodland depressions,

meadows, river floodplains, and large vegetated wetland complexes. There are many

factors that can affect the creation of a vernal pool. Landscape and hydrologic

characteristics are two major factors. Evan H. Grant has created a model that shows that

the probability of forming a potential vernal pool is negatively impacted by human

 10

interaction such as cropland, urban/commercial and high-density residential development

in the landscape (Grant, 2005).

The Izaak Walton League of America, an organization that is dedicated to protecting

America’s hunting, fishing, and outdoor heritage, states “more than 90% of California's

vernal pools have already been lost” (Izaak Walton League of America Fact Sheet, 2007).

Large numbers of vernal pools also have disappeared from the Northeast region, although

there are no exact statistics on how many pools were lost in total. Massachusetts

Fisheries and Wildlife shows that the Commonwealth has four thousands three hundred

and seventy two (4,372) recorded vernal pools in 2007 (Number of Certified Vernal

Pools by Town, 2007).

2.2.2 Vernal Pool Dependent Animals and Plants

Animals that live in or around vernal pools can be grouped into two categories. The ones

that depend on vernal pools to complete their life cycle are called obligate species. If

vernal pools in the area disappear, these animals may face extinction. The four obligate

species in Massachusetts are fairy shrimp, wood frogs, eastern spade foot toad, and mole

salamanders. The other category includes species that somewhat depend on vernal pools

but can also live in other water bodies, and are called facultative species.

Common Name Scientific Name

Obligate Species
Wood frog
Spotted salamander
Eastern spade foot toad
Fairy shrimp

Facultative Species
Gray tree frog
Four-toed salamander
Spotted turtle

Rana sylvatica
Ambystoma maculatum
Scaphiopus holbrooki
Anostraca Eubranchipus

Hyla versicolor
Hemidactylium scutatum
Clemmys guttata

 11

Wood turtle
Water scorpion
Dragonfly larvae
Leeches
Freshwater (fingernail) clams

Chrysemys insculpta

Nepidae
Odonata Anisoptera
Hirundinea
Pisidiidae

Table 1.1 – Examples of species relying on the vernal pool (MacCallum, 2001)

There are many species of plants that live around vernal pools. Some of them are native

only to a certain vernal pool. According to a study done by Jennifer Ramp on vernal

pools of California, there are more than 60 plant species, as well as dozens of

invertebrates, that are exclusively native to a certain vernal pool (Ramp, 2004).

Disappearance of one vernal pool may lead to the extinction of these unique plants.

2.2.3 Involved Organizations

The decrease in the number of vernal pools and its dependant wildlife has become a

genuine interest and a concern for environmentalists, scientists and the government.

Many states now have laws to certify and protect vernal pools. There are many

organizations that are making efforts to educate people and enforce the laws on vernal

pools. Some of these organizations include the U.S Environmental Protection Agency

(EPA), the Natural Heritage and Endangered Species Program (NHESP) and the Vernal

Pool Association.

2.2.4 Rules and Regulation

Besides these organizations, many states now are collecting data on these pools and have

adopted laws to protect these temporary but important habitats. For example, in 1997,

Massachusetts passed the Wetlands Protection Act to protect wetlands, including vernal

pools.

To protect a vernal pool under this law, Massachusetts’s citizens should first provide the

following documentation:

1) The Observation Form completed and signed,

 12

2) Maps that precisely locate the vernal pool, and

3) Evidence for the existence of the vernal pool and indicator species

 (MacCallum, 2001)

After these documentations are verified, the law will protect the pool. Massachusetts

Government will fine any activity that endangers or destroys the vernal pool. “There

have been two violations against vernal pools between January 2007 and August 2007.

Not only were the violators fined but also their activities were made known to the general

public” (Public Participation & News, 2007).

2.3 Currently Existing Databases
There are a few existing vernal pool databases that belong to the government agencies

and private organizations. Although every database has its own objectives, these

databases all lack interactive community involvement compared to our database.

2.3.1 NHESP Database

Massachusetts Division of Fisheries and Wildlife has established a Natural Heritage &

Endangered Species (NHESP) Program that is mainly responsible for the conservation

and protection of animal and plant species in Massachusetts. One of the primary

functions of the NHESP is to give certification of vernal pools based on specific

documentation on the pool (Natural Heritage and Endangered Species Program 2008).

Once a vernal pool has been certified, it will be added to the NHESP database. The

NHESP has certified a total of 4,372 vernal pools in Massachusetts as of April 2007

(Number of Certified Vernal Pools By Town, 2007). It provides a feature to view the

pools in a table and a map sorted by different towns of Massachusetts. However, other

informations on these pools are not available to the public.

2.3.2 Upper Susquehanna Coalition Database

Upper Susquehanna Coalition, a private organization, has an integrated data management

system. It collects and maintains all wetland data, including data on vernal pools. This

 13

information includes geographic data and the types of animals found. However, this

database is also used only for internal purposes.

2.3.3 Vernal Pool Database in 1993

In 1993, two students from WPI created a vernal pool database for Massachusetts

Audubon Society as a part of their IQP Project. This database was created using dBase

IV software, a popular software during the 1980s. However, it is a hybrid relational and

navigational database that is rarely used today.

In comparison with the above-mentioned databases, this database has more detailed

information on the pool and animals and plants that rely on the pool. However, similar to

above mentioned databases, this was also used for an internal purpose for Massachusetts

Audubon Society.

 14

3.0 Languages and Tools

Choosing appropriate tools is very important for any software project. The project team

looked into different database software, programming languages, web technologies, web

application framework and other tools. The team decided to use the following tools listed

below.

3.1 Database

3.1.1 Database Software Requirements

The team created a list of important factors required for choosing the right database

software. These factors included pricing, multiple user access, advanced search

capabilities, compatibility, portability and ease of learning.

3.1.2 Database Software Choice

After researching current available and time tested database software, our project team

chose Oracle and MySQL. Based on the important factors mentioned above, Oracle and

MySQL were systematically compared. Oracle and MySQL are both very successful

RDBMS software and they both implement SQL. We knew that the price of the software

was one of the first priorities for our sponsor agency. Since Oracle is more expensive

and MySQL is free, the project team came to the conclusion that MySQL would be the

best database software for our project.

3.1.3 MySQL

MySQL is an efficient and widely known open source database system that implements

SQL. Its consistent fast performance, high reliability and ease of use are the reasons

why individual web developers and many of the world's largest and fastest-growing

organizations including industry leaders such as Yahoo, Google, Nokia, and YouTube

use it and depend on it (Why MySQL, 2008). One of the popular open source web

architectures, LAMP (Linux, Apache, MySQL, PHP / Perl / Python) also uses MySQL.

MySQL runs on many commonly used operating systems such as Linux, AIX, HP-UX,

 15

Windows and Netware. It supports foreign keys, joins, views, triggers, and stored

procedures. It has data types ranging from numeric, string, date, time and binary and it

has API for many programming languages such as C, C++, Python, Perl, TCL etc.

3.2 User Interface
As discussed earlier, we needed to provide database access in the public domain.

Therefore creating a web application became our best choice.

3.2.1 Web Application Framework Requirements

The current generation of web technology is dynamic and interactive. The collaboration

between users and an interactive environment for the users are the main requirements for

our project. We looked into the current web technology described below that allows an

effective interactive web application.

3.2.1.1 AJAX

Asynchronous JavaScript and XML (AJAX)’s goal provides web-based applications with

responsiveness closer to that of desktop application. It uses a simple idea but the result is

a great enhancement for the Web experience. In a traditional model, the client browser

creates a HTTP request to the server by clicking on the link or button, or submitting a

form. The client then waits until it receives a response or a new document from the

server. The new document will be displayed on the entire browser (Sebesta, 2007). This

traditional model can be disruptive and time consuming when the client requests

complicated documents. In addition, for interactive web pages, uploading new

documents for very simple actions might be performance intensive.

In an Ajax web application, the communication from the browser to the server is

asynchronous, so the browser does not need to wait for the server to respond. The user

can continue to interact with the page while the server finds and transmits the requested

document and the browser renders the new document (Sebesta, 2007).

 16

These fundamental differences from the traditional request cycle enable Ajax applications

to be significantly more responsive. The web applications become closer in performance

to desktop applications and at the same time have all the benefits of being hosted

(Raymond, 2006).

3.2.2 Web Application Framework Choice

The WPI web server only supports Perl CGI and HTML. The project team used these

languages to create the entire web application for the first few weeks. Then, Professor

Gary Pollice introduced “Ruby on Rails” in a Web ware class. He gave a demo on using

this framework to create a web application. We were impressed by the framework’s

adaptation of MVC architecture, ease of use, along with many other features described

below. The framework also uses JavaScript framework “Prototype” to support Ajax and

JavaScript model of the document. Therefore, we decided to choose Ruby on Rails as a

tool for creating our web application.

3.2.3 Ruby on Rails

Ruby on Rails, commonly known as Rails, is a web development framework that uses

MVC architecture to create web applications with database access. David Heinemeier

Hansson developed rails in early the 2000s and it was released in July 2004. (Sebesta,

2007)

Rails is implemented using Ruby, an object oriented scripting language released in 1995.

Despite some performance issues with Ruby, we decided to use Rails because of its

support for JavaScript, AJAX and the following features listed below.

3.2.3.1 Model View Controller (MVC)
 MVC is a software architecture that organizes the application into three parts according

to their responsibilities: data, presentation, and control logic (Fitzgerald, 2007). Model is

the data logic; it represents the application’s data. It is also responsible for

communicating with the back end database. View is the application’s presentation logic;

 17

it deals with the user interface by generating HTML, JavaScript code etc. Controller is

the control logic; it decides the actions for the user’s input and orchestrates interaction

between the model and the view (Raymond, 2006).

Figure 1: MVC in Ruby on Rails

Rails has multiple models, views and controllers. The router takes a browser request and

parses the URL to redirect an incoming request to the corresponding controller and its

actions. The controller may retrieve or update the data of the model and renders the

corresponding view. The view get send to the browser for display.

The ActiveRecord module of Rails handles the responsibilities of a model. The

ActionPack library has two components, ActionView and ActionController that manage

view and controller parts of MVC (Lenz, 2007).

3.2.3.2 Convention over Configuration
Many frameworks require configuration files or code for mapping between URLs and

methods, and between model attributes and database columns, etc. The motto of Ruby on

Rails “convention over configuration” is that whenever possible, an explicit configuration

is replaced by sensible defaults (Raymond, 2006).

For example, Rails uses a simple convention for URL routing: the names of a controller

(a class name), action (a method name) and primary key (ID). These are used in a

 18

consistent manner in URL. However, it is possible to override the convention.

(Fitzgerald, 2007)

3.2.3.3 Object Relational Mapping
A significant characteristic of Rails is its object relational mapping (ORM) approach to

connect object-oriented software with a relational database. Using ORM, Rails maps

database tables to a class, row to class object, and column to object fields (Sebesta, 2007).

For example, if the database contains a table called “animals”, it will be mapped to a

class called “Animals”. In the “animals” table, objects of “Animals” class will represent

each row and fields of this object will represent each column.

3.2.3.4 Useful Features
Automatic Conversion

The model objects are converted easily from code in HTML document and vice versa.

Automated Test Suites

Rails has three environments: development, production, and test. The test environment

offers an easy solution to create test suite to verify the integrity of data model and the

correctness of the web pages (Hartl & Prochazka, 2007).

Plug-in

A Rails plug-in is either an extension or a modification of the core framework. There is a

large Rails community that is involved in creating plug-ins to add continuously new

features in Rails.

Some of the plug-in we used for this project are:

• Auto Complete – A “Magical” Ajax goodies that can display the choices for

specific field for the user by querying the database.

• Ym4R GM - This plug-in helps using the Google Maps API from Rails

applications.

 19

3.4 Tools
3.4.1 Net Beans

Net Beans is a free, open source Integrated Development environment written in Java. It

is mainly used for writing, compiling, testing, and debugging desktop and web

applications. It supports full-featured text editor, syntax highlighting, error checking,

visual design tools, Ant support, and version control system support. Net Beans also

provides support for different programming languages including Ruby and Rails

(NetBeans).

3.4.2 Subversion

Subversion, also known as SVN, is a version control system. Its main function is to

maintain current and historical versions of source codes. SVN is well known in the open

source community and is used in many projects.

3.4.3 Sourceforge

Sourceforge is a great tool for teams to develop the software efficiently. It provides a

way to communicate between the team, repository of the documents, releasing code build

etc. It also has support for two version control system: SVN and CVS.

.

 20

4.0 Methodology

To begin the process of creating a system for the vernal pool community, we had two

primary objectives to explore: a database and a user interface. We had a weekly meeting

with our advisors and our sponsor to fully understand their vision of this system. These

meetings were focused on examining the purpose of the project, gathering requirements

for the project, and evaluating the completed features of the system.

The meetings revolved around the following questions:

• What type of information a vernal pool community collects?

• What data will be useful to store as a resource?

• How can we facilitate the wide and diverse community?

The project first focused on understanding the useful resources for the vernal pool

community. We also studied the schema of the database on vernal pools from 1993. We

then designed and created a new database. This database continued to evolve throughout

our project span.

The next focus of the project was creating an interactive environment for the community.

The requirements were carefully analyzed and converted to user stories. A user story

has an associated priority set by the sponsor and a time estimation to complete the

implementation. User stories that are related were put in a same category. Due to the

limited amount of time, the team chose a category with the highest priority set by the

sponsor. A prototype was created for the user interface and other design decisions were

made.

Implemented user stories were reviewed and evaluated during weekly meetings. New

requirements, ideas, enhancements, or usability concerns were continuously added to the

user stories. The database evolved continuously due to minor changes that were made for

improvements or enhancements. Although there was no formal testing, each feature was

tested by interacting with the system and checking for validations. At the end of the

project, the site was hosted temporarily for usability testing and collecting surveys from

 21

the vernal pool community. Because of the time constraint, we did not receive all the

surveys on time for this report.

4.1 Process
For any software projects, it is crucial to choose a software development process to

ensure the delivery of quality end product. The process of creating a software application

requires multiple stages: analysis, design, implementation, and test. There are few

different approaches on this topic and we choose the iterative development.

4.1.1 Iterative Development

An iterative development is an important process for developing software. It approaches

all four stages: analysis, design, implementation, and test in multiple iterations. The team

followed this principle very closely. Sourceforge was very helpful in organizing, estimating,

assigning, and tracking the task through iteration.

4.2 Design Principles
Once the majority of the requirements for the project were gathered in the beginning, the

team looked into a set of design principles established by professionals over many years.

These principles were used as a valuable guidance for our software projects.

4.2.1 Software Design Principles

The team created user stories as a part of gathering requirements. We also created use

cases in order to get a better understanding of the interaction between the user and the

system.

A user story is a requirement defined from a customer’s perspective as things that the

system needs to do(User Stories, 1999). It can be very helpful to estimate the cost, time,

and effort that need to be invested. As mentioned earlier, the requirements gathered from

the weekly meetings were converted to user stories. For implementation, they were

chosen based on the priority and time constraints.

 22

 A use case is a sequence of actions that provide something of measurable value to an

actor. An actor is a person, organization, or external system that plays a role in one or

more interactions with your system (UML 2 Use Case Diagrams, 2006). Use cases were

created to observe how different members of the vernal pool community might interact

with different features of the system.

4.2.2 HCI Design Principles
HCI principles are especially useful guidelines for creating a simple but highly effective

user interface. Some of the principles we considered include consistency, error

prevention, error handling, and good user feedback.

Consistency is one of the well-known design principles for user interface and it can be

expressed through many different forms such as sequence of actions, layout, color, font,

menus, etc. The team kept the user interface as consistent as possible through use of

colors of a similar family, aesthetic look and feel, sequence of actions etc.

Ideally, users should be prevented from entering any invalid information. If the user

makes any mistakes, they should be provided with a clear and informative instruction on

how to recover from this error (Dix, Finlay, Abowd, & Beale, 2004). Therefore, the user

interface has implemented easy selection options such as radio buttons and drop down

menus with default choices. There is also an auto-complete feature that provides hints

for the users on specific fields. Users are also provided with sample queries that can

grab information from the database and display for selection.

In addition, good response and appropriate feedback are very important. For every data

entry, the interface provides appropriate feedback if the user action is successful or if the

user made any errors. The error messages help the users handle or prevent this mistake.

 23

5.0 Design and Implementation

5.1 Database
The schema of the vernal pool database created by the WPI IQP team in 1993 was used

as a reference to learn important attributes for a vernal pool. The previous database was

not a relational database but a hybrid navigational database. Therefore, requirements for

our new relational database schema were different.

For convenience, Microsoft Excel was used to get feedback from our sponsor.

Appropriate changes were made to the file. After careful consideration of the type of

data, entities, and constraints, an E-R diagram was designed.

5.1.1 Entity-Relationship Diagram/Schema

An E-R diagram is a very useful visual diagram to convey a conceptual data model. Each

square is a table. Each diamond describes a relationship between tables. The numbers on

either side of the diagram signifies the quantitative relationship between tables. This

diagram also had undergone continuous modification and improvement through each

weekly meeting. For details, please refer to Appendix A.

Figure 2: Entity-Relationship Diagram

 24

5.1.2 Relational Tables

Once the E-R diagram was finalized, it was then converted to relational tables. There

were altogether 10 data tables and 15 relational tables. The database was created using

MySQL.

5.2 Web Application
As mentioned earlier, the team focused on the category with the highest priority: Data

Entry.

5.2.1 Application Layout
Our web application is organized in the MVC pattern, provided by Ruby on Rails. MVC

architecture organizes the application logic into three parts: data, presentation, and

control (Fitzgerald, 2007). Two components of ActionPack library, ActionView and

ActionController correspond to the view and controller parts of MVC. ActiveRecord

module of Rails is the model of MVC.

5.2.2 Controllers

A controller is the control logic of MVC. In Rails, it is a ruby class extending from the

ActiveController::Base class. It is responsible for handling user’s request, creating,

updating or retrieving data in the model and rendering the corresponding view. The

figure below is a summary of major controller classes used.

Figure 3: Controllers

 25

5.2.3 Models

Models are the data logic of MVC. Rails uses object relational mapping (ORM)

approach to map relational database to Ruby objects. Using ORM, Rails maps database

tables to a class, row to class object, and column to object fields (Sebesta, 2007).

First, we need to connect to our database by modifying the ‘database.yml’ configuration

file. Then, model classes are created to map each tables of our database. A model class

is a Ruby class that extends from the ActiveRecord::Base class of ActiveRecord module.

The Figure below is a summary of mapping of models and tables.

Figure 4: Models

5.2.4 Views

A view is a file with “.rhtml” extension; it consists of HTML code with the possibility of

embedded Ruby code to generate dynamic web pages. Each method of a controller class

may have a corresponding view file. By convention, a method name maps to the name of

the view file.

Figure 5: View Files Sample

 26

 5.2.5 MVC in Action
Rails provides a clean URL with a general pattern shown below.

http://mywebsite.com/<controller>/<action>/<id>

In this pattern, <controller> is the name of Controller class and actions are its methods.

By convention, a view file is associated with each action from the controllers. This

pattern is due to the configuration file “routes.rb” to map the URL to specific controllers

and actions. It is also customizable to a few other forms.

s and actions are its methods.

By convention, a view file is associated with each action from the controllers. This

pattern is due to the configuration file “routes.rb” to map the URL to specific controllers

and actions. It is also customizable to a few other forms.

When a user makes a request, the Router will parse the URL according to the

configuration file. The Router will find the specific controller. The controller makes any

necessary updates on the model and renders the corresponding view. The view then

returns to the browser for display. The figure below describes this process.

When a user makes a request, the Router will parse the URL according to the

configuration file. The Router will find the specific controller. The controller makes any

necessary updates on the model and renders the corresponding view. The view then

returns to the browser for display. The figure below describes this process.

Figure 6: MVC in Action Figure 6: MVC in Action

1. For e.g. URL: http://vernalpool/pool/search/11. For e.g. URL: http://vernalpool/pool/search/1
2. Router find “pool” controller
3. “pool” controller updates or retrieves appropriate models
4. “pool” controller renders “search” view
5. “search” returns to the browser for display

 27

http://vernalpool/pool/search/1

5.3 Highlighted Features from Data Entry
Data Entry on vernal pools is organized into five different categories or forms: pool,

physical attributes, chemical attributes, animals, and plants. The pool consists of data

that may not vary over time such as location, geographic co-ordinates etc. The other four

categories are more time-dependant components.

For entering data, the user has two options: filling form and bulk upload. The first option

is more interactive and is useful when there is limited information available. This

requires the user to fill in a few forms in sequential order. The second option is more

desirable if the user has already stored the information in files. This section summarizes

a few highlighted features of the application.

5.3.1 Filling Form

To avoid entering multiple entries on the same pool, the decision was made to first allow

the user to search for the pool by location. If the specific pool was not found, the user

can enter a new pool.

Once the pool is selected from the search results or the new pool is successfully

submitted, the user can now enter other information about the pool that varies over time.

This information is divided into 4 forms: Physical attributes, chemical attributes,

observed animals, and observed plants. Each form has a few required fields that are

marked by (*) and must have valid data in order to submit the form successfully. Fields

with measurable data uses the metric system and these units are visible in the form. The

user is responsible for converting data into the metric unit.

The user has an option of filling all four or some of the four forms according to their

available data. Some of the highlighted features of these forms are listed below.

5.3.1.1 Auto-complete
Users sometimes describe the same animals and plants by various common names. This

feature shows users similar common names added by other users as a guide. An auto

 28

complete feature is available as a Rails plugin; it handles the appearance of the floating

div, the keyboard navigation, action from the mouse or Tab or complete keyboard input

from the user (Hoy, 2008). These hints are the results from querying the database and the

fast response is the result of Ajax technology.

5.3.1.2 Query-options
Different species of animals and plants can be given the same common name. Therefore,

one common name may be associated with multiple scientific name pairs. To help users,

we implemented two query-options using Rails RJS template that uses Ajax technology.

One option helps the user to find many scientific name pairs from a given common name.

In case the scientific name pair does not exist in the database or it is not a desirable

choice, the user can then add the new name.

Similarly, the other option helps the user to find the scientific classification from a

selected scientific name. For any scientific name, there is a unique scientific

classification. Since the user login feature and edit feature are yet to be implemented, we

had to make an assumption that the existing classification is unique, valid and not

editable.

5.3.1.3 Upload Image
A photographic image of a pool can be uploaded into the server. The first design

decision was to save the image as a binary file into the database. This may overload the

database tables. Therefore, later we decided to save image files into the server’s

directory and the database only keeps the name pointer of the file.

5.3.1.4 Google Map
We used Rails plugin YM4r GM to manipulate a Google map to display locations of

pools indicated by markers. Application also provides an option for user to find the

geographic co-ordinates of the pool from the map.

 29

5.3.2 Bulk Upload

Researchers and scientists have been involved in collecting data on vernal pools for many

years. These data already exist in their personal files. Bulk upload feature allows users

to upload their files instead of filling out the form. However, this feature is in an early

stage. The following are the conditions and assumptions made at this time:

Figure 3: Bulk Upload Design

First, user must download all the standard format files and convert their existing files to

follow this format. Similar to a filling a form option, there are five different possible

files: pool, physical attributes, chemical attributes, animals, and plants.

The pool file may contain information for one or many pools. Adding files on multiple

pools has some restrictions. All other four files of pool attributes must have an additional

“poolname” column that corresponds to the “name” column in the multiple pool files. If

this mapping is not correct, then it will be considered an error.

An error in any of these files will prevent any data from being saved in the database. The

row of data with the error and the error details will be displayed. User must correct these

errors in order to submit data successfully.

 30

6.0 System in Action
This section highlights main features of the web application by a series of screen-shots of

the website.

6.1 Home Page
The home page has four navigation options: home, search, entry, and help. Since data

entry was the main focus of this project, unimplemented features are added as a

placeholder for the future.

Two maps on the bottom of the page feature geographic coordinate search and pool

display for the given location.

Figure 4: Home Page

6.2 Data Entry
The entry tab in the navigation bar will give the users two options for data entry : filling

form and upload file. For both options, there are few required fields that must be valid

for successful submission.

 31

6.2.1 Filling Form

First, the user must search the pool of his/her interest by location to avoid adding multiple

entries on the same pool. If the pool does not exist in the database, it can be added. If the

pool exists and it is selected, the user can add other information about this pool.

6.2.1.1 New Pool

Figure 5: Enter New Pool

6.2.1.2 Google Map

Geographic coordinates of a pool are optional fields, since this information is not easily

available. However, this data is highly desirable. Using a Google Map API, the

application provides an option for the user to find the coordinates of the pool.

Figure 6: Find Geographic Coordinates

 32

6.2.1.3 Upload Image

Once the form submission is successful, the user has a choice of adding an image of the

pool.

Figure 7: Upload an Image

6.2.2 Existing Pool

For the selected pool, the user can add 4 categories: physical attributes, chemical

attributes, animals, and plants. Submitting a form will navigate the user in a sequential

order. The user also has an option to choose a specific form through the tab.

Figure 8: Data Entry Form

6.2.3 Auto-complete

An auto complete feature provides the user with hint of similar input added by other users.

For example in the figure 11 below, as the user types “w”, a query to search for a pattern

/*w*/ is sent to the database. This interaction is fast and the results are displayed quickly.

 33

The hints also change in response to the user’s keyboard input. The user has the option

of either choosing from the hints or completing his or her input.

Figure 9: Auto-complete Feature

6.2.4 Query-options

Two other options implemented using Ajax can be helpful to users.

A user can query scientific names of animals and plants by giving a common name.

Either the user can select from results in the selection box, or the user can enter a new

name. Similarly, using a scientific name, the user can query for the scientific

classification. There is an assumption that the existing classification is unique, valid and

not editable.

Figure 10: Query-option

 34

6.2.5 Error Feedback

If there are any mistakes in a user’s input, the application will provide feedback. The

user must correct these errors for a successful submission.

Figure 11: Error Feedback

6.3 Bulk Upload
A bulk upload feature allows users to upload their files for one or multiple pools instead

of filling in the form. The CSV files must follow provided standard format. An error in

the files will prevent any data from being saved to the database.

Figure 12: Bulk Upload

 35

Figure 13: Bulk Upload Error

6.4 Google Map
User can view the pool location on a Google Map for a given address. Small red markers

on the map indicate the location of these pools. User will see the name and geographic

co-ordinates of the pools by clicking on the red markers.

Figure 14: Google Map

 36

7.0 Accomplishments

At the end of our project, we reevaluated our original goals. Overall, each objective was met.

However, due to the limited period, our implementation is not a complete system. This

section provides a summary on our completed work.

New Database - A vernal pool database was created using MySQL. There are 10

data tables and 15 relational tables, altogether 25 tables. It is capable of tracking the

date and the contributing source (person) for each entry.

Basic Search - Pools can be searched by location.

Data Entry – Data entry is the main focus of this project. It has two options, form

filling and bulk upload. However, bulk upload is still in its early stage.

Google Map Mash-up – User can find the geographic coordinates on a Google map

as well as view the location of the pools indicated by the markers on the map.

Testing – Although no formal testing were established, simple testing was done by

interacting with the application on a regular basis. The project was also made

available for vernal pool community for usability testing.

 37

8.0 Future Work and Recommendation

Due to time limitation, the project is yet to be complete for deployment. The project only

focused on highly prioritized requirement from the sponsor. Remaining features,

enhancements, and improvement on certain problems are some of the few possibilities for

the future implementation to make this project a reality. This section provides

recommendations and guidelines for future completion of the project.

8.1 Database
The database has evolved throughout our project. At the beginning, we had many

procedures, functions, and a few triggers for easy search, insertion, and validation. As

we advanced our project to Ruby on Rails, its object relational mapping and model

validation made these procedures, functions and triggers unnecessary. Therefore, they

were removed.

In retrospect, triggers and functions should be added to the database to make it fully

capable of error checking and validating data on its own. Therefore, the database can

exist alone without other framework layers. The database will be more efficient and

easily accessible and reusable by other framework and projects and

8.2 User Interface
Below is the summary of user stories that were not completed during this project and is

recommended for the future completion.

Registration and Login – The application should provide a registration process and a

login mechanism for the registered users. Users should have at least three possible

hierarchy and access levels: admin, regular, and guest. An unregistered user will be

considered a guest.

 38

Search – Search feature should expand from the basic search to a full-fledged

advanced search. The results from the search should be downloadable into common

format files.

Data Editing – After the registration and login process is complete, the contributed

users should be able to edit their own entries. An appropriate policy for an editing

option should be designed. One option is similar to the nature of Wikipedia, where

the application does not make any claims on the validity of the data, but the user is

responsible for making valid inputs. A proper disclaimer should be provided for this

option.

Data Validation – The current project validation is done on the server side. A simple

validation process should also be added on the client side.

Enhancements

Subscription - Users can subscribe to receive automatic notification about new

entries relating to certain animal and plant species of their interest. The

subscriber should be notified if any new entry is made for that species.

Reverse Entry from the Map – The application should provide an option for

user to input the pool information through a Google map.

KML – An enhancement in the Google map, KML should be added so that the

pool summary could be displayed in the map.

Bulk Upload – Since this feature is in an early stage, not all the ideas mentioned

above are in the completed stage. Later, this feature should also support different

formats besides CSV. The data validation should be done more rigorously to

check for invalid or malicious input.

 39

Test – Take advantage of test environment and automated test suite provided by

Ruby on Rails. The vernal pool community should also take part on more

usability tests in the future.

8.3 Useful Topics
These are some of the very important topics the team had wished to investigate

thoroughly but could not due to time constraints. These topics should be considered fully

in the future in order to make this project efficient.

Security – The web application needs to be secure and protected from a range of

security issues. A few common security issues include SQL injection and Cross-site

Scripting Attack (XSS) etc. SQL injection is one of the most common methods of

attacking web applications with back-end database. The results could be extreme,

from exposure to total destruction of the data. Therefore, filtering user input for any

potentially malicious input is very important. In addition, redisplaying user’s

submitted content on an HTML page could lead to another type of vulnerability: XSS

attack. A goal of the XSS attack is to get the victims’ private information by running

malicious code when they interact with a trusted site (Orsini, 2007).

Performance and Scalability Because Ruby is an interpreted language, it is slow.

However, the team should look into solutions to overcome these issues to make it

possible to handle high volume of clients in the future.

 40

9.0 Conclusion
This project provided a system that aids the interaction and resource sharing for vernal

pool community to our sponsor, Dr Betsy Colburn from Harvard Forest. The system

includes the web application with the back-end database. The system should make the

resource easily accessible for the community with an interactive learning environment.

The system will provide the community with a medium to contribute their resource, and

an interactive environment for the community. It will serve as a learning tool for the

general public, historians, genealogists, and other academics. The completion of this

project will be a great addition to the already rich resource of vernal pool community.

 41

42

Appendix A: Final E-R Diagram

 43 43

Appendix B: Schema of 1993 vernal pool database

44

Bibliography
Dix, A., Finlay, J., Abowd, G. D., & Beale, R. (2004). Human-Computer Interaction.
Pearson Education Limited.

Fitzgerald, M. (2007). Learning Ruby. O'Reilly Media Inc.

Grant, E. H. (2005). Correlated of Vernal Pool occurrence in the Massachusetts, USA
Landscape. Wetlands , 25 (2), 48 - 87.

Hartl, M., & Prochazka, A. (2007). RailsSpace. Addison-Wesley Professional.

Hoy, A. (2008). Ajaxariffic Autocomplete with Scriptaculous. Retrieved February 10,
2008, from Slash7: http://www.slash7.com/articles/2005/8/13/ajaxariffic-autocomplete-
with-scriptaculous

Introduction to CSS. (2008). Retrieved March 5, 2008, from W3 Schools:
http://www.w3schools.com/Css/css_intro.asp

Izaak Walton League of America Fact Sheet. (2007, January 10). Retrieved September 12,
2007, from Izaak Walton League of America:
http://www.iwla.org/publications/watersheds/Types_of_Wetlands_Fact_Sheet.pdf

Lenz, P. (2007). Build your own Ruby on Rails web applications. SitePoint .

MacCallum, W. F. (2001, January 1). Commonwealth of Massachusetts . Retrieved
September 5, 2007, from Guidelines for the Certification of Vernal Pool Habitat:
http://www.mass.gov/dfwele/dfw/nhesp_temp/vernal_pools/pdf/vpcert.pdf

Major Research Topics . (2006). Retrieved November 25, 2007, from Harvard Forrest:
http://harvardforest.fas.harvard.edu/research.html

Natural Heritage and Endangered Species Program. (2008, January 24). Retrieved April
12, 2008, from Mass Wildlife: http://www.mass.gov/dfwele/dfw/nhesp/nhesp.htm

NetBeans. (n.d.). Retrieved February 20, 2008, from NetBeans IDE 6.1 Information:
http://www.netbeans.org/index.html

Number of Certified Vernal Pools By Town. (2007, May 2). Retrieved Sepetember 21,
2007, from Massachusetts Division of Fisheries & Wildlife:
http://www.mass.gov/dfwele/dfw/nhesp_temp/vernal_pools/vernal_pool_data.htm

Orsini, R. (2007). Rails Cookbook. O'Reilly Media, Inc.

Public Participation & News. (2007, September 12). Retrieved September 12, 2007, from
Mass DEP: http://www.mass.gov/dep/public/press/enforce.htm

 45

Ramp, J. M. (2004, January 1). Abstract Detail of Pollination and seed set of the
endangered vernal pool annual Lasthenia conjugens (Asteraceae). Retrieved September
10, 2007, from Botany 2004:
http://www.2004.botanyconference.org/engine/search/index.php?func=detail&aid=657

Raymond, S. (2006). AJAX on Rails. O'Reilly Media Inc.

Research and Education in Ecology, Conservation and Forest Biology . (2006).
Retrieved November 20, 2007, from Harvard Forrest: http://harvardforest.fas.harvard.edu

Sebesta, R. W. (2007). Programming the World Wide Web. Addison-Wesley.

UML 2 Use Case Diagrams. (2006, April 3). Retrieved January 4, 2008, from Agile
Modeling: http://www.agilemodeling.com/artifacts/useCaseDiagram.htm

User Stories. (1999). Retrieved 15 2008, January, from Extreme Programming:
http://www.extremeprogramming.org/rules/userstories.html

Vernal Pools. (2007, September 10). Retrieved September 29, 2007, from Woodstock
Conservation Commission: http://www.woodstockconservation.org/vernalpools.htm

Vernal Pools. (2002, January 17). Retrieved September 28, 2007, from California
Wetlands Information System: http://ceres.ca.gov/wetlands/whats_new/vernal_sjq.html

Vernal Pools. (2008, March 12). Retrieved April 10, 2008, from Mass Wildlife:
http://www.mass.gov/dfwele/dfw/nhesp/vernal_pools/vernal_pools.htm

Why MySQL. (2008). Retrieved March 12, 2008, from MySQL:
http://www.mysql.com/why-mysql/

	Abstract
	Acknowledgements
	Table of Figures
	1.0 Introduction
	2.0 Background
	2.1 Harvard Forest
	2.2 Vernal Pool
	2.2.1 Factors Behind Pool Disappearance
	2.2.2 Vernal Pool Dependent Animals and Plants
	2.2.3 Involved Organizations
	2.2.4 Rules and Regulation

	2.3 Currently Existing Databases
	2.3.1 NHESP Database
	2.3.2 Upper Susquehanna Coalition Database
	2.3.3 Vernal Pool Database in 1993

	3.0 Languages and Tools
	3.1 Database
	3.1.1 Database Software Requirements
	3.1.2 Database Software Choice
	3.1.3 MySQL

	3.2 User Interface
	3.2.1 Web Application Framework Requirements
	3.2.2 Web Application Framework Choice
	3.2.3 Ruby on Rails
	3.2.3.1 Model View Controller (MVC)
	3.2.3.2 Convention over Configuration
	3.2.3.3 Object Relational Mapping
	3.2.3.4 Useful Features

	3.4 Tools
	3.4.1 Net Beans
	3.4.2 Subversion
	3.4.3 Sourceforge

	4.0 Methodology
	4.1 Process
	4.1.1 Iterative Development

	4.2 Design Principles
	4.2.1 Software Design Principles
	4.2.2 HCI Design Principles

	5.0 Design and Implementation
	5.1 Database
	5.1.1 Entity-Relationship Diagram/Schema
	5.1.2 Relational Tables

	5.2 Web Application
	5.2.1 Application Layout
	5.2.2 Controllers
	5.2.3 Models
	5.2.4 Views
	 5.2.5 MVC in Action

	5.3 Highlighted Features from Data Entry
	5.3.1 Filling Form
	5.3.1.1 Auto-complete
	5.3.1.2 Query-options
	5.3.1.3 Upload Image
	5.3.1.4 Google Map

	5.3.2 Bulk Upload

	6.0 System in Action
	6.1 Home Page
	6.2 Data Entry
	6.2.1 Filling Form
	6.2.1.1 New Pool
	6.2.1.2 Google Map
	6.2.1.3 Upload Image

	6.2.2 Existing Pool
	6.2.3 Auto-complete
	6.2.4 Query-options
	6.2.5 Error Feedback

	6.3 Bulk Upload
	6.4 Google Map

	7.0 Accomplishments
	8.0 Future Work and Recommendation
	8.1 Database
	8.2 User Interface
	Bulk Upload – Since this feature is in an early stage, not all the ideas mentioned above are in the completed stage. Later, this feature should also support different formats besides CSV. The data validation should be done more rigorously to check for invalid or malicious input.

	8.3 Useful Topics

	9.0 Conclusion
	Appendix A: Final E-R Diagram
	Appendix B: Schema of 1993 vernal pool database
	Bibliography

