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Abstract 

Infrastructure-based indoor geolocation systems utilizing a regular grid 

arrangement of sensors are being investigated for many applications in indoor wireless 

networks. One of the factors affecting the Quality of Estimation (i.e. location estimation 

accuracy) of these systems is node density. In this dissertation we study the effects of 

node density on indoor geolocation systems based on time of arrival (TOA). 

The effects of node density on the performance of various indoor 

communication networks (e.g. wireless LANs) in the presence of realistic indoor radio 

propagation models has been analyzed and reported in the literature. However, we have 

noted the lack of an equivalent analysis on the effects of node density on the 

performance of infrastructure-based indoor geolocation systems. The goal of this 

dissertation is to address this knowledge gap. 

Due to the complicated behavior of the indoor radio channel, the relationship 

between the node density and Quality of Estimation (QoE) is not straightforward. 

Specifically, QoE depends on factors such as the bandwidth used to make the TOA-

based distance measurements, the existence of undetected direct path (UDP) conditions, 

and coverage. In this dissertation, we characterize these dependencies. 

We begin by characterizing the Quality of Estimation for closest-neighbor (CN), 

least-squares (LS) and weighted LS techniques in the presence of different node 

densities and a distance measurement error (DME) model based on ray tracing (RT) that 

was recently proposed in the literature. Then, we propose a new indoor geolocation 

algorithm, Closest Neighbor with TOA Grid (CN-TOAG), characterize its performance 
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and show that it outperforms the existing techniques. We also propose an extension to 

this algorithm, known as Coverage Map Search (CMS) that allows it to be used in 

suboptimal coverage conditions (which we refer to as partial coverage conditions) that 

may prevent other TOA-based geolocation techniques from being used. We treat the 

partial coverage case by defining coverage probabilities and relating them to the 

average radius of coverage and dimensions of the indoor area. Next, we characterize the 

effects of node density on the performance of the CN-TOAG algorithm using a DME 

model based on UWB measurements, and show that node density and partial coverage 

are intimately linked together. Since this second DME model also allows for the effects 

of UDP conditions (which affect the quality of the link or QoL), we also characterize 

the effects of varying UDP conditions on the performance. Finally, we conclude the 

dissertation by presenting an analysis of fundamental performance bounds for 

infrastructure-based indoor geolocation, specifically focusing on the Cramer-Rao Lower 

Bound (CRLB). 
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Nothing in the world can take the place of Persistence. Talent will not; nothing is more 
common than unsuccessful men with talent. Genius will not; unrewarded genius is 
almost a proverb. Education will not; the world is full of educated derelicts. Persistence 
and determination alone are omnipotent. The slogan 'Press On' has solved and always 
will solve the problems of the human race. – Calvin Coolidge 
 
 
 
Victorious warriors win first and then go to war, while defeated warriors go to war first 
and then seek to win. – Sun-Tzu  
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Chapter 1 Introduction 
 

Ever since the Global Positioning System (GPS) and cellular networks were 

launched, there has been an increasing amount of interest in location estimation 

technologies ([Kap96], [Mis01], [Sha99], [Fis99], [Ott77], [Sil96], [Caf99]). The 

primary drivers have been either location estimation for emergency services (such as the 

E-911 initiative from the FCC in the US [FCC96]) or other location-based services, 

such as yellow-pages, driving directions, location-sensitive advertising and mobility 

management ([Gio95], [Rao03]). Most of the geolocation platforms have been designed 

to work in the outdoor environment; but recently there has been increasing interest in 

geolocation technologies for the indoor case as well ([Pah00], [Wal02], [Wan92], 

[War97]). In the commercial space, there are applications such as tracking children, and 

the elderly, as well as helping blind people find their way throughout indoor areas. 

Other applications may include inventory tracking in large indoor areas such as 

shopping malls and warehouses. Indoor geolocation will also have an important part to 

play in applications such as environmental monitoring [Sno03] and pervasive 

computing [Est02]. In the public safety and military space, very accurate indoor 

geolocation is needed in order to help policemen, firefighters and soldiers navigate their 

way and complete their missions inside buildings. 

Geolocation schemes using GPS and cellular signals generally do not work well 

in indoor areas, partly because of the large amount of signal attenuation caused by 
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building walls and floors [Sei92]. While the signal attenuation issue can be addressed 

through application of repeaters, this is, in general, a costly proposition.  In addition, the 

behavior of the indoor radio channel has been shown to exhibit very strong multipath 

characteristics, which have to be analyzed and taken into account, in order for accurate 

indoor geolocation to be feasible [Pah98]. Moreover, the accuracy requirements of 

indoor geolocation systems are typically a lot higher compared to the outdoor case. For 

an application such as E-911, an accuracy of 125 m 67% of the time is considered 

acceptable [FCC96], while a similar indoor application typically requires an accuracy 

level on the order of only a few meters [Say05]. Therefore, new techniques have to be 

developed for precise indoor geolocation.   

1.1 Motivation for the Dissertation 

The system scenario for infrastructure-based indoor geolocation is analogous to 

the grid-based deployment of large-scale wireless LANs [Hil01] as shown in Figure 

1.1a. For the wireless LAN scenario, we have a number of access points (APs) arranged 

in a regular grid fashion throughout an indoor area. Grid-based deployments are 

common in practice, since they provide good coverage in indoor areas [Unb02] and also 

fit well with the layout of most types of buildings where indoor wireless networks are 

likely to be deployed. For the indoor geolocation scenario, we have a number of 

reference points (RPs) arranged in a grid pattern to locate a user, as shown in Figure 

1.1b. RPs are radio transceivers that can measure the location metrics, i.e. those 

characteristics of the received signal useful for the location estimation process. This 

grid-based deployment is in contrast to the so-called ad-hoc configuration where the 
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nodes can be deployed in any manner; such a configuration is more common for sensor 

networks and is shown in Figure 1.1c [Aky02]. The indoor geolocation problem for the 

ad-hoc configuration is outside the scope of this dissertation; however, this has also 

been investigated in the literature ([Als06a], [Als06b]). 

           

                  (a)                                       (b)              (c) 

Figure 1.1 (a) Grid-based deployment of wireless LANs (after [Hil01]) (b) Infrastructure-based 
indoor geolocation scenario (c) Ad-hoc geolocation scenario  

 

With this brief overview on geolocation systems in general and infrastructure-

based indoor geolocation in particular, we now pose the following questions. How good 

is the location estimate that such a system produces? In other words, what is the Quality 

of Estimation (QoE) for such a system? There are several ways of answering these 

questions, depending on the specific application. For example, in some applications 

such as high-value inventory tracking, only the accuracy of the location estimate would 

be considered important. In these cases, the QoE would be defined as the accuracy of 

the estimate.  In contrast, some mission-critical military or public-safety applications 

involve tracking moving people or objects in a real-time manner for monitoring or 

surveillance purposes. In such cases, the accuracy of the location estimate, as well as 

the speed with which a location estimate is obtained would both be considered 
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important. In this case, the definition of QoE would have to take both of these factors 

into account. In this dissertation, we are principally concerned with the first definition 

of QoE, i.e. we focus on the characterization of QoE where the user or object to be 

located is stationary. Therefore, our definition of QoE is the accuracy of the location 

estimate. The problem of location tracking is outside the scope of this dissertation; 

however, the interested reader is referred to [Bro98] and [Hel99] for more details in this 

area.     

The relationship between node density (formally defined as the number of nodes 

per unit area) and performance (e.g. throughput) for different wireless LAN 

technologies for telecommunications has been investigated by Unbehaun in his PhD 

dissertation [Unb02] and also in the article by Unbehaun and Kamenetsky [Unb03]. 

These studies have been based on radio propagation predictions and revealed that grid-

based deployments of access points (APs) in indoor areas can often provide satisfactory 

coverage in indoor areas for communication applications. However, while there has 

been some research activity on the relationship between node density and Quality of 

Estimation for ad-hoc multihop sensor localization ([Pat03], [Shi05], [Pat05], [Sav05]), 

no such analysis for an infrastructure-based indoor geolocation system using Time of 

Arrival (TOA) currently exists. This was the first motivating factor for this dissertation. 

Due to the complicated behavior of the indoor radio channel, the relationship 

between node density and QoE is not a simple one to analyze. In fact, until recently, 

there were no models available in the literature to relate the channel behavior to the 

errors induced into the TOA measurements, known as distance measurement error 
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(DME) or ranging error. Without such models, it is not possible to explain the causes of 

large errors in indoor geolocation, which is a function of the actual distance and 

bandwidth. This issue has recently been addressed in the PhD dissertation by Alavi 

[Ala06a], who observed via measurements that the indoor channel exhibits bipolar 

behavior, i.e. it statistically changes state to one where a lot of errors are added to the 

measurements. This bipolar behavior also depends on the quality of the link (QoL) 

between the RP and the user. Besides this, the way node density affects the QoE does, 

to a certain extent, depend on the algorithms used. Thus, the second motivating factor 

for this dissertation was to leverage these recently proposed models to undertake the 

performance analysis and to explore the relationship between node density and QoE for 

different types of geolocation algorithms using channel models to reflect this bipolar 

channel behavior.    

Radio coverage within an indoor area can affect the node density and thus QoE. 

Specifically, for a TOA-based system, there may be coverage deficiencies to the point 

where the required minimum number of distance measurements for the geolocation 

process (three, in order to locate the user uniquely in two-dimensional space) cannot be 

obtained. In this dissertation, we refer to such coverage conditions as partial coverage 

conditions. The existence of partial coverage conditions means that some of the existing 

TOA-based location estimation techniques cannot be used. Therefore, new techniques 

need to be explored for TOA-based geolocation in partial coverage environments, and 

their performance in the presence of realistic channel models needs to be analyzed.  
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These issues are not adequately addressed in the literature, and provided the third and 

last motivating factor for this dissertation.   

1.2 Contributions of the Dissertation 
 

The main contribution of this dissertation is to provide a systematic analysis of 

the relationships amongst node density, channel behavior, geolocation algorithms and 

QoE statistics for infrastructure-based indoor geolocation using Time of Arrival (TOA). 

In support of this main contribution, we make the following specific contributions to the 

literature: 

1. We explore the behavior of existing geolocation algorithms (LS, RWGH, and CN) 

in the presence of recently proposed statistical models for distance measurement 

error proposed in [Ala03] and different node densities. This contribution has been 

published in [Kan04a].  

2. We propose a new indoor geolocation algorithm, known as CN-TOAG, and 

compare its performance with the LS and RWGH algorithms. The findings of this 

study have been published in [Kan04b], and [Kan04c]. We propose an extension to 

the CN-TOAG algorithm, known as CMS, to cover the partial coverage case; this 

contribution has been published in [Kan07]. We also present a statistical analysis of 

the partial coverage case.  

3. We analyze the QoE for LS and CN-TOAG algorithms in the presence of different 

node densities. This contribution has been published in [Kan06a].  

4. We study the statistical behavior of the QoE in relation to the QoL; this contribution 

has been published in [Kan06b], and [Kan08a].  
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5. Finally, we present an analysis of the fundamental QoE bounds for infrastructure-

based indoor geolocation in indoor channels with bipolar behavior, using the 

Cramer Rao-Lower Bound (CRLB) [Kan08b].  

Figure 1.2 summarizes the contributions of this dissertation. 

 

 Figure 1.2 Summary of the contributions 
 

1.3 Outline of the Dissertation 

The rest of this dissertation is organized as follows. In chapter 2, we provide an 

overview of the performance evaluation methodology and summarize the DME models 

that have been used for this research. In chapter 3, we present the results of a 

comparative performance evaluation of existing geolocation algorithms in the presence 

of the recently proposed DME models and different node densities. In chapter 4, we 

present the CN-TOAG and CMS algorithms, and assess their performance. Chapter 5 

presents a statistical analysis of the partial coverage situation. An analysis of the 

performance of CN-TOAG and LS algorithms in the presence of different node 

densities and statistical behavior of the QoE with respect to QoL is discussed in chapter 

6. An analysis of the fundamental QoE bounds is presented in Chapter 7. Chapter 8 
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provides a summary of the main results of the dissertation and suggests avenues for 

future research.  
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Chapter 2 Performance Evaluation 
Methodology 

 
The indoor environment has certain particular characteristics that affect the 

Quality of Estimation for TOA-based indoor geolocation. We begin by reviewing these 

characteristics at a high level. We then describe the scenario for performance evaluation 

in detail. We end this chapter by a brief review of the existing literature on models to 

describe the statistics of the errors introduced by the channel into TOA-based distance 

measurements. 

2.1 Indoor Environment 

As mentioned in chapter 1, the indoor radio channel exhibits very strong 

multipath characteristics. It also exhibits bipolar behavior, in the sense that the channel 

can sometimes can change state and introduce substantial errors into TOA-based 

distance measurements [Ala06a]. In this case, the channel is considered to have two 

states, depending on whether the TOA of the direct path (DP) between transmitter and 

receiver is strong enough to be detected or not. In the first case, the DP is strong enough 

in power to be detected; we refer to this as the Detected Direct Path (DDP) case. In this 

case, the primary source of the errors is multipath. In the second case, the DP cannot be 

detected at all; we refer to this as Undetected Direct Path (UDP) case. Figure 2.1 below 

shows example channel profiles for the DDP and UDP cases. 
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(a) (b) 

Figure 2.1 Channel profiles for: (a) DDP, (b) UDP [Kan08b] 
 

2.2 Scenario for Performance Evaluation  

The system scenario for infrastructure-based indoor geolocation resembles the 

deployment of most indoor wireless networks, such as WLANs, with radio transceivers, 

generally known as access points (APs) distributed in a grid fashion throughout an 

indoor area. This can be seen in Figure 2.2a. The analog of an AP in the indoor 

geolocation case is a reference point (RP), as shown in Figure 2.2b.  

 

 



 11

                  

(a)         (b) 
Figure 2.2 (a) Infrastructure-based indoor communication network (after [Hil01]) (b) 

infrastructure-based indoor geolocation 
 

In this dissertation, we investigate how the performance of an infrastructure-

based indoor geolocation system using TOA varies as a function of node density. In 

order to help put this issue in perspective, we refer to Figure 2.2.  For the sake of 

simplicity, we assume that the RPs all have an average coverage radius of R meters, and 

are spaced D meters apart. The idea here is to understand how node density, i.e. the 

number of RPs per unit area that can be contacted by a user, impacts the QoE 

achievable from this system. Quantifying the effect of node density on the QoE for a 

TOA-based indoor geolocation system carries special significance, since most TOA-

based location estimation algorithms either will not work properly or will not work at 

all if there are fewer than three distance measurements available.  

From an indoor geolocation perspective, node density can be defined as the 

number of RPs that can be contacted by a user per unit area. This definition has a close 

relationship with radio coverage. But what exactly does coverage mean and how does it 

relate to performance analysis for indoor geolocation? In order to answer these 
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questions, it is helpful to first explore some of the existing body of literature on indoor 

propagation research and review the existing definitions of radio coverage. 

For the indoor environment, two methods of defining coverage are widely used. 

The first definition mainly concentrates on the distance-power relationship in an indoor 

area ([Pah98], [How90], [How92], [She96], [Mat98], [Lie98]). Specifically, for a fixed 

transmitter power, the received power, rP , is generally assumed to vary with distance, d, 

according to the relationship [How90] 

 ( ) K
rP d Ad −=  (2.1) 

where A is a constant set by the transmitted power and the measurement system gain, 

and K is the propagation path-loss exponent. For free space K = 2, and for some office 

buildings, it can be between 2 or 3, and even higher in some cases. Based on this 

definition, the area of coverage for a wireless transmitter is determined purely on the 

basis of signal strength, i.e. when the path-loss value reaches a certain maximum 

value, maxPL , the signal is attenuated so much that it is below the receiver sensitivity 

threshold and can no longer be detected. The value of d that corresponds to maxPL then 

determines the (ideally) circular region of coverage.  

The second definition of radio coverage takes a wider view. Specifically, in this 

case, radio coverage area for a wireless transmitter is that area over which 

communication is feasible according to some criterion such as a minimum carrier-to-

noise ratio or receiver sensitivity, as outlined by Panjwani et al. [Pan96]. Dardari and 

Tralli defined coverage in a similar way, in terms of outage probabilities [Dar99]. This 

definition is a step beyond the first one, in that it considers not just the raw signal 
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strength, but also other parameters that determine the quality of the radio link (or QoL) 

in the definition of radio coverage. We illustrate this concept with a simple example. 

Consider the simplified situation depicted in Figure 2.3 below where we have a number 

of IEEE 802.11 WLAN APs (shown as black dots in the figure) covering a section of an 

office building. In this example, the APs are assumed to be very close to one another, 

and so will cause a substantial amount of interference both to one another as well as to 

users trying to access the network. A very high amount of interference is experienced, 

particularly by users who are in the area marked with ‘X’ in Figure 2.3. Now suppose 

that we have an application that requires a minimum of 2 Mbps throughput from this 

system. Due to the automatic rate selection algorithms implemented on most APs 

(which will adjust the transmission rate as a result of interference [Har04]), the users in 

area ‘X’ may never be able to experience this level of throughput, and as a result, the 

coverage area for that specific application may be reduced. This example highlights the 

fact that QoL as well as the raw signal strength will have a role to play in determining 

coverage. 

 

Figure 2.3 Illustrating the concept of coverage in the presence of adverse link conditions 
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For our discussion of node density and its effects on QoE, both definitions of 

coverage are applicable to a certain extent. Since we are concerned with TOA-based 

indoor geolocation, we know that we will need a minimum of three distance 

measurements to be able to estimate location of the user uniquely in 2-D space (for our 

analysis in this dissertation, we assume that the synchronization mismatch between the 

RPs and the user is negligible). For this aspect of the problem, we are concerned with 

the number of RPs that the user can see at any specific point in an indoor area, so we 

need to keep the first definition in mind. However, we also have to keep in mind the 

effects of multipath and UDP conditions, so we need to consider the QoL as well, when 

we consider the effects of node density. This implies we also need to keep in mind the 

second definition of coverage. 

In order to set the stage for an analytical discussion of coverage and its effects 

on performance, we first define the coverage factor, α : 

  R
D

α =  (2.2) 

 
where R is the average radius of coverage, and D is the separation distance between the 

RPs in meters. We will also use the node density, ρ (which we shall also refer to as RP 

density in the future chapters), to describe performance, which is defined as: 

 N
A

ρ =  (2.3) 
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Figure 2.4 Full vs. partial coverage in indoor geolocation 
 

It is worth noting that the concepts of the coverage factor and node density are 

interrelated. For the scenario of Figure 2.4, since the size of the area, 2A D= , we can 

write (2.3)  using (2.2) as: 

 
2

2
N
R
αρ =  (2.4) 

 
Therefore, any results obtained for the QoE (e.g. the Mean-Square-Error, or MSE for 

the location estimate) obtained in terms of ρ  can be written in terms of α using (2.4). 

From the definition ofα , it is clear that all four RPs can be observed at all 

points (i.e. a range measurement can be obtained from all four RPs) if 2α ≥ . We 

term this scenario full coverage. If, on the other hand, 2α < , then not all RPs can be 

observed at all points, and we term this scenario partial coverage. We will refer to the 
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definitions of full and partial coverage often when we discuss the relationship between 

node density and performance in chapters 5-7. Figure 2.4 shows the difference between 

full coverage and partial coverage scenarios. 

2.3 Quality of Estimation (QoE)  

We have broadly described QoE in chapter 1 as a performance metric which 

indicates how good an estimate the geolocation system produces. As mentioned in 

chapter 1, our definition of QoE is the accuracy of the estimate, i.e. it is related to the 

location estimation error. By this definition a low location estimation error will give rise 

to a high QoE. QoE is influenced by node density, but when we formulate this 

relationship, we have to consider channel behavior as well. This becomes even more 

important as we consider the unavoidable occurrence of UDP conditions in indoor 

environments. In the context of TOA-based indoor geolocation, channel behavior 

determines the Quality of Link (QoL) between an RP and the user which, in turn, 

determines the QoE. For the purposes of this dissertation, we classify QoL on the basis 

of whether the DP is detectable or not.  In the next section, we will discuss the 

relationship between QoL and QoE. This is followed by a discussion of the relationship 

between node density and QoE.  

2.3.1 Relationship between Quality of Link (QoL) and QoE  
 

In Figure 2.5, we show an infrastructure-based indoor geolocation system 

composed of four RPs in four corners of a square room with dimensions 1D m by 1D  m. 

All four RPs make TOA-based distance measurements to the user via the four radio 
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links to the user. Suppose that the DP is detectable on all four radio links as illustrated 

in Figure 2.5a. In this case, the QoL on all four links is said to be DDP. In this case, the 

DME is entirely due to multipath. Provided that the bandwidth is high enough, the TOA 

of the DP can be measured quite precisely, which leads to low DME [Ala06a] and 

therefore low location estimation error. As a result, we have high QoE.  

Now, consider the case illustrated in Figure 2.5b, where a large metallic object is 

moved in the path between RP-3 and the user. In this case, the DP is blocked on that 

radio link; therefore, the QoL on that link now becomes UDP, and we will have large 

DME on the measurement performed by that RP. The QoL on the other three links 

remains as DDP. Because we now have one distance measurement with a lot of error, 

the user’s location is estimated with lower accuracy; this gives rise to low QoE. 

However, even if one or more distance measurements contains a lot of error, it is still 

possible to obtain accurate location estimates if the location estimation algorithm has 

adequate intelligence, as we will see in chapter 3.  We will discuss the statistical 

variation of the QoE as a function of QoL in greater detail in chapter 6. 

 
Figure 2.5 Illustrating the link between QoE and Quality of Link (QoL) 
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2.3.2 Relationship between node density and QoE  
 

Now, we are ready to discuss how node density can affect the QoE for TOA-

based indoor geolocation systems. Referring to Figure 2.6, we see that as we increase 

the size of the area, the node density (as defined by the parameter ρ in(2.3)) will 

decrease. Suppose that the DP is detectable on all four links, i.e. any errors in the 

distance measurements are due to multipath effects only. As we will discuss in section 

2.4, the overall distance measurement error (DME) will now increase, since the 

multipath-based DME has been shown to increase with the actual distance [Ala06a].     

As a result, location estimation error is high, and the QoE is low as shown in Figure 

2.6b. Furthermore, we note from [Ala06a] that the probability of occurrence of UDP 

conditions increases with actual distance. In reference to the system scenario of Figure 

2.6b, this means that, depending on the actual distance, some of the links could change 

state and become UDP instead of DDP. This is why it is so critical that channel 

behavior be considered when quantifying the effects of node density on the performance 

of infrastructure-based indoor geolocation systems using TOA.   

 

Figure 2.6 Node density and its effects on QoE 
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2.4 Distance Measurement Error (DME) 

The presence of heavy multipath conditions in the indoor environment means 

that the TOA of the DP cannot be accurately measured. As a result, the measured 

distance between the transmitter and receiver is different from the actual distance, 

thereby resulting in distance measurement error (DME). The DME is generally given 

as: 

 d̂ dε = −  (2.5) 
 
where d̂  is the estimated distance and d is the true distance. The sources of DME are 

basically two-fold: systematic (such as those related to synchronization mismatch 

between a transmitter and receiver), and channel-related (such as those due to 

Obstructed LOS channel conditions). In this dissertation, we assume that the systematic 

errors are negligible and that the dominant source of errors is the channel. Because of 

the statistical variation of the indoor channel, ε  is a random variable. As a side note, 

the terms “distance measurement” and “distance measurement error” are also referred to 

as “ranging” and “ranging error” respectively in the literature and we will use these two 

terms interchangeably for the rest of this dissertation. 

In this dissertation, we use the statistical DME models outlined in the next two 

subsections for the performance evaluation. The main motivation for this is that the 

indoor propagation models designed for telecommunication applications, such as the 

Saleh-Valenzuela (S-V) model ([Sal87]) and its extensions ([Mol03], [Spe00], [Mol06]) 

focus on modeling the root-mean-square (RMS) delay spread as well as the distance-
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power relationship for communication applications. As such, they are not suitable for 

performance analysis of TOA-based indoor geolocation systems, where the important 

channel parameter is the TOA of the DP. It has already been shown in the literature 

([Ala06a], [Pah05]) that these models cannot explain the causes of large DME values in 

the indoor environment, mainly because they do not account for the existence of UDP 

conditions.  

2.4.1 RT-based DME Model 
 

The first of these models is based on ray tracing (RT) simulations [Ala03]. This 

model partitions channel behavior into line of sight (LOS) and obstructed line of sight 

(OLOS). The overall model is 

 ,
ˆ (1 )i a id d γ= +  (2.6) 

where ˆ
id  is the observed distance measurement between the sensor and the i-th RP, 

,a id is the actual distance and γ  is a random variable that defines the statistical 

distribution of the DME. It has been shown that ([Ala03]) for the LOS case, the 

distribution of γ  is Gaussian with zero mean and a variance that depends on the 

bandwidth used, i.e. Lwγ γ= (where the subscript w denotes dependence on the 

bandwidth w) and the PDF of Lwγ  is 

 ( )
2

21
2

Lw

Lw
Lw

Lw

f e
γ
σγ

πσ

−

=  (2.7) 

For the OLOS case, the distribution of γ  is a linear combination of Gaussian 

and exponential distributions ([Ala03]), i.e. Owγ γ=  where the PDF of Owγ  is 
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2.4.2 DME Model based on UWB Measurements  
The second model has been obtained through empirical measurements in the 

UWB regime [Ala05]. Specifically, it has been shown that both multipath-based DME 

and UDP-based DME follow a Gaussian distribution, with mean and variance that 

depends on the bandwidth. The overall model can be expressed as follows: 

 , ,
ˆ ( , ) log(1 ) ( , )w w UDP w UDP wd d G m d G mσ ζ σ= + + + ⋅  (2.9)  

where ( , )w wG m σ  and , ,( , )UDP w UDP wG m σ  are the Gaussian RVs that refer to multipath 

and UDP-based DME, respectively. The subscript w in both cases denotes the 

bandwidth dependence. An important point to be noted from (2.9) is the logarithmic 

dependence of the DDP-based DME on the actual distance. The parameter ζ is a binary 

RV that denotes the presence or absence of UDP conditions, with a probability density 

function (PDF) given as: 

 ( ) ( ) ( ) ( ), ,1 1UDP w UDP wf P Pζ δ ζ δ ζ= − + −  (2.10)  
 

where ,UDP wP denotes the probability of occurrence of UDP-based DME. 
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Chapter 3 Performance of Existing Algorithms 
 
In this chapter, we present a comparative study of existing algorithms under the RT-

based DME model discussed in the last chapter. Specifically, we concentrate on the 

Closest-Neighbor (CN), Least-Squares (LS) and Weighted LS (WLS) methods. After 

describing the algorithms used, we present the results of our evaluations. The material 

in this chapter was first reported in [Kan04a]. 

3.1 Existing Algorithms for Indoor Applications 
 

As mentioned in chapter 1, geolocation problem in general has been well-studied 

and there is a large amount of literature on this subject. Most of the recent literature 

focused on the geolocation problem in terrestrial cellular networks, mainly inspired by 

cellular service providers’ need to comply with regulatory initiatives such as E-911 in 

the US, and E-112 in Europe. In addition, the propagation environment that was used for 

these studies was mainly outdoor settings, such as urban, suburban, rural etc. The issue 

of designing algorithms specifically for the indoor geolocation application has only 

recently begun to receive attention ([Jen01], [Pro03]).  

Existing geolocation algorithms can be grouped under two main headings: 

geometric algorithms ([Caf98], [Tho01], [Aso01], [Jeo00], [Vil99], [Gou91], [Cha94], 

[Wan03], [McG03], [Con02], [Den04]) and pattern-recognition algorithms ([Roo02], 

[Che00], [Bah00], [Jan03], [Ner04], [Ner06], [Bat02]). Geometric algorithms use the 

measured location metrics to formulate a geometric relationship between the location of 

the reference points (RPs) and the user location. This relationship generally results in a 



 23

series of nonlinear equations, which can be solved using a variety of analytical and 

numerical techniques. An example of a geometric technique that is especially relevant to 

our discussion in this dissertation is one based on TOA, which is illustrated on Figure 3.1. 

In TOA-based geolocation systems, the one-way propagation delay between a 

transmitter and receiver is used to come up with an estimate of the distance between 

them. Geometrically, this implies that a TOA measurement at every RP determines a 

circle (in 2-D space) centered at that RP on which the user must lie. Assuming no error 

in the distance measurements, the intersection point of the circles would give the location 

of the user (see Figure 3.1a). Note that a minimum of three distance measurements are 

needed in order to locate the user uniquely in 2-D space. Of course, in a real system, the 

TOA measurements have some error, so the three circles will not intersect at the same 

point; this gives rise to a region of uncertainty for the user location (see Figure 3.1b). 

Another important note with respect to the geometric techniques is that the performance 

tends to be sensitive to the geometric relationship between the user and the RPs. For 

instance, if the RPs and the user are all lined up in a straight line then it is possible that 

the positioning mean-square error (MSE) will be very large; for these cases, it may be 

important to have adequate intelligence in the location estimation algorithm [Qi05]. 
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Figure 3.1 Geometric relationships for TOA-based geolocation: (a) ideal non-multipath case, (b) 

multipath case (region of uncertainty is shaded) 

In pattern recognition techniques, the area over which a user is to be located 

would first need to be characterized so that a unique value of the location metric is 

associated with every possible location. As mentioned in chapter 2, this could, for 

example, be done with RSS as a location metric. The characterization could be done 

through exhaustive measurements in the area of interest ([Bah00], [Jan03]); however, 

this is generally a costly proposition, especially in the indoor setting, where the site-

specific nature of the indoor radio channel and changing layout of an indoor area (for 

example, addition of new furniture) could quickly render a characterization database 

meaningless. The alternative is to do the characterization through the use of channel 

modeling techniques as discussed in the PhD dissertation by Hatami [Hat06]. 

Historically, performance characterization of geolocation systems in the indoor 

environment has been complicated by the fact that there were no models available for 

distance measurement errors (DMEs). This issue has recently been addressed as 

discussed in the last chapter [Ala06a]. Therefore, the first focus of this research was to 
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characterize the Quality of Estimation (QoE) various existing geolocation algorithms 

under these models. 

After careful consideration, three algorithms were selected as representative 

samples for this study, namely Closest-Neighbor (CN), Least-Squares (LS) [Dav68] and 

Residual Weighting (RWGH), which is a form of weighted LS (WLS) algorithm 

[Che99]. CN was selected because of its use in early-generation indoor geolocation 

systems (such as the system from PinPoint [Wer98]). LS was selected due to its use in 

popular geolocation systems such as GPS, and RWGH was selected because of its ability 

to combat OLOS conditions common in cellular systems.  

3.1.1 Closest-Neighbor (CN) Algorithm 
 

Consider a group of reference points (RPs), arranged in a regular grid to locate a 

user, such as the one shown in Figure 3.2. In such a scenario, each RP is located at D 

meters away from its adjacent RPs. In order to locate the user, each RP would perform a 

distance measurement to that user. Let di be the distance measurement performed by RP 

i, which is located at Ri = [xi, yi]T. The CN algorithm estimates the location of the user, 

Rest, as the location of the RP that is located closest to that user. In other words, Rest is 

that value of Ri for which the corresponding distance measurement, di, is the minimum in 

the set. For example, in Figure 3.2, the location of the user would be determined as the 

location of RP-4. 
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Figure 3.2 Basic configuration for an infrastructure-based indoor geolocation system 
 

3.1.2 Least-Squares (LS) Algorithm 
 

The LS algorithm is fundamentally focused on minimizing the value of the 

objective function, f(x), usually formulated as: 

 ( )
2

2 2

1
( ) ( ) ( )i i

N

i
i

f x x y y d
=

= − + − −∑x  (3.1) 

 

where ( ), Tx y=x is the user location to be determined, and N is the number of reference 

points. The square-root term is readily recognized as the distance between a point (x, y) 

in the Cartesian coordinate system, and a reference point located at (xi, yi). The 

difference in the parentheses is commonly called the residual of the estimate. Of course, 

at the true location of the user, each of terms within the summation would be identically 

zero, such that f(x) = 0. However, in practice, the set of distance measurements, di (1 ≤ i 

≤ N), contains some errors due to OLOS channel behavior and systematic errors (see 

section 2.4), such that the summation in equation (3.1) will never be identically zero. For 
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the purposes of this discussion, we assume that the systematic errors in the distance 

measurements are negligible, and that the dominant source of errors is the channel. 

OLOS channel conditions generally result in the strongest signal being received with 

longer delay, with the resulting in a higher value for the distance measurement. Under 

such circumstances, a solution (x, y) can be found, which minimizes the value of f(x) in a 

least-squares sense. For this paper, we used a least-squares algorithm developed by 

Davidon [Dav68] to minimize f(x), which we discuss below.  

The Davidon algorithm is a computationally efficient least-squares algorithm that 

is based on the Newton-Raphson method, and belongs in the general category of quasi-

Newton methods ([Fle87], [Opp04]). The Davidon algorithm searches for the point 

minimizing (3.1) (generally denoted as the vector, x) in an iterative manner, as defined 

by the equation: 

 1 ( )k k k k+ = −x x H g x  (3.2) 
 

where Hk represents an approximation to the inverse of the Hessian of f(x), G(x), whose 

elements are defined as: 

 ( )1 2

1 2

2
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∂
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∂ ∂

 (3.3) 

 
and g(x) is the gradient of f(x), defined as: 

 ( ) ( )f= ∇g x x  (3.4) 
 

As can be seen from (3.4), G(x) is a matrix of second derivatives. It can be shown 

that G(x) is both symmetric, and positive-definite. However, computing the Hessian and 



 28

its inverse at every iteration point (as the Newton-Raphson method generally requires) 

can be computationally prohibitive. Therefore, the Davidon algorithm tries to construct 

an approximation to it. Of course, in doing this, one would have to ensure that the 

approximation, Hk, stays both symmetric and positive-definite between successive 

iterations. To accomplish this, Hk is updated according to the equation: 

 1
1 Tk

k k k k
k

λ
ρ+
−

= +H H r r  (3.5) 

where: 

 1( )k k k+=r H g x  (3.6) 
and 

 ( ) ( )1 1 1( ) ( ) ( )
k

T T
k k k k kρ + + += =g x H g x r g x  (3.7) 

 

where kλ is a parameter specially chosen to ensure that 1k+H  stays positive definite given 

that kH is. This point will be discussed in greater detail a little later in this section. 

Equation (3.7) is readily recognized as a quadratic form. Therefore, as long as kH  is 

positive-definite, 
k

ρ will be greater than zero, and will be zero only if g(x) is zero. As 

such, (3.7) is often used as an explicit stopping criterion for the algorithm. Of course, in 

practice, 
k

ρ will never be identically zero, but can be compared with some small 

tolerance value, ε, so that computations stop when 
k

ρ ≤ ε. 

All this leaves us with the task of setting kλ , which is somewhat more complex. 

As can be inferred from (3.5), this quantity is of central importance in ensuring that the 
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Hk matrices remain positive-definite throughout successive iterations. It can be shown 

that [Dav68]: 

 
1

k
k

k

γλ
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 (3.8) 

 
where: 
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≡ −
r g x  (3.9) 

 

Choosing kλ  in accordance with (3.8) and (3.9) generally ensures that kH   

remains positive-definite from one iteration to the next, unless kγ = -1. Because of this 

possibility, the Davidon algorithm provides a slightly different way of mapping 

kγ values to kλ   values. Specifically, two numbers, α  andβ , are defined. The values of 

these can be picked at will. Then, the Davidon algorithm defines the following 

transformation from kγ values to kλ   values: 
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3.1.3 Residual Weighting (RWGH) Algorithm 
 

The RWGH algorithm has been investigated in the PhD dissertation by Chen 

[Che99] as a way of mitigating the effects of errors in distance measurements brought 
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about by OLOS channel conditions. Although originally formulated in the context of 

geolocation in terrestrial cellular systems, this algorithm was included in this study to 

evaluate its performance in an indoor setting, and can be basically viewed as a form of 

weighted least-squares algorithm. 

The fundamental concept behind this algorithm is as follows: since OLOS 

channel conditions introduce errors that are strictly positive, distance measurements 

corrupted by OLOS errors would give rise to location estimates with higher residuals 

than would be the case with no OLOS errors. Therefore, if the number of distance 

measurements is greater than the minimum required (which, for a TOA-based system, is 

three), then the distance measurements can be grouped in various ways and intermediate 

LS estimates derived from those sub-groups. Some of these intermediate estimates 

would have lower residuals than others. The final estimate of the location can then be 

formed as a linear combination of these intermediate estimates, with each intermediate 

estimate weighted by the inverse of its associated residual. This means that, in the 

computation of the final estimate, those intermediate estimates with lower residuals 

would be assigned more weight. In this manner, the overall accuracy of the location 

estimate can be improved. It is worth noting, however, that with this technique, all the 

measurements have an influence on the solution, including those that have more error 

than others due to OLOS conditions. This could actually degrade the location estimation 

performance. For these cases, other solutions, such as the LMedS algorithm have been 

recently proposed [Cas06]. 
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Specifically, given M (M > 3) distance measurements, the algorithm calls for the 

formation of N different distance measurement combinations, where 
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with each combination being represented by an index set {Sk | k = 1,2,…..N}. An 

intermediate LS estimate is then computed for each set of measurements. Note that the 

sets Sk will not necessarily all be of the same size. Therefore, the residuals in the 

intermediate LS estimates may depend on the size of the set. In order to remove this 

dependence, a normalized residual is computed for every intermediate estimate, xk', as: 
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The final estimate, x' , can then be computed as: 
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3.2 Comparative Performance Evaluation 

The performance of the three algorithms described in sections 3.1.1-3.1.3  is 

evaluated through simulations. The regular grid arrangement of four reference points 

(RPs) is assumed, as shown in Figure 3.2. A total of 2000 random user locations are 

simulated. Each of the RPs performs a distance measurement to that user. DME to that 

user is then simulated, using the RT-based DME model described in the previous 

chapter, using DME model parameters given in [Ala03]. Three different channel 
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scenarios are simulated: LOS, OLOS, and mixed LOS/OLOS. The mixed LOS/OLOS 

scenario is simulated using a binomial random variable, such that the channel is likely 

to be LOS with probability p, and OLOS with probability 1-p. The results are presented 

for the case of p = 0.3. System bandwidths in the range of 50 – 1000 MHz are 

considered for the distance error models [Ala03]. The performance metric is the average 

estimation error, Eav , defined as: 

 { }| |av est actE E= −R R  (3.14) 
where Ract, and Rest are the actual and estimated locations of a user. 

The first set of results in Figure 3.3 and Figure 3.4 show a comparison of the LS 

and RWGH algorithms for LOS, OLOS and mixed LOS/OLOS scenarios respectively 

over a 15m x 15m area. Out of these results, we can make two key observations. The 

first one is that in the LOS channel, there is not a lot of difference between the QoE 

exhibited by the LS and RWGH algorithms, whereas in the OLOS and mixed 

LOS/OLOS channels, RWGH is clearly seen to exhibit better performance. This 

behavior is consistent with the structure of the RWGH algorithm, since in the LOS case, 

most of the intermediate estimates are likely to have equal residuals, and so using 

RWGH over the LOS channel is not likely to provide a significant benefit. For the 

OLOS and mixed LOS/OLOS channels, however, some of the intermediate estimates 

used in RWGH have much higher residuals, and those intermediate estimates will then 

be assigned a lower weight, thereby enhancing the performance of the algorithm over 

such channels.  
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(a) (b) 
 
Figure 3.3 LS/RWGH QoE comparison for: (a) LOS channel, (b) OLOS channel 

 

Figure 3.4 LS/RWGH comparison: mixed LOS/OLOS channel 
 

The next set of results compares the performance of the CN algorithm over the 

LOS, OLOS and mixed LOS/OLOS channels. As can be clearly observed from Figure 

3.5, this algorithm exhibits very high average estimation error (i.e. low QoE). A 

comparison of these results to those in Figure 3.3 through Figure 3.5 reveals that the CN 
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algorithm exhibits an estimation error approximately 2.5-8 times worse than the error 

performance provided by LS and RWGH algorithms, depending on the channel scenario 

and the bandwidth used.  The crude nature of the CN algorithm is the principal reason 

for this behavior, since the algorithm simply estimates the location of the user as the 

location of the RP that made the minimum distance measurement to the user. While this 

may be acceptable for some indoor wireless networks (such as wireless LANs), it is 

clear that a very dense network of reference points may be needed, as we shall see next. 

 

Figure 3.5 QoE comparison for the CN algorithm over the three channel scenarios 
 

In the next set of results, we present a QoE comparison of LS, CN and RWGH 

algorithms for two different values of node densities, and over the three channel 

scenarios previously considered. We simulate the different node densities by fixing the 

number of RPs at four, and then changing the size of the area from 15m x 15m to 30m x 

30m. Dividing the number of RPs by the size of the area gives a measure of the node 
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density. The two node density values are 0.0177 RPs / m2 (for the 15m x 15m area)   and 

0.004 RPs / m2 (for the 30m x 30m area). 

 

(a) (b) 

 

      (c) 

Figure 3.6 QoE comparison of the CN, LS and RWGH algorithms for two different node densities: 
(a) LOS channel, (b) OLOS channel, (c) mixed LOS/OLOS channel 

 

A close examination of Figure 3.6 reveals that the QoE of all three algorithms 

degrades to a certain extent when the node density is decreased. What is also interesting 

is that the degradation seems to happen uniformly, regardless of bandwidth or the 
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channel scenario. On the basis of these results an average degradation factor, Kav, has 

been calculated for all the three algorithms within each channel scenario. These values 

are tabulated in Table 3-1, and are calculated as follows. For a given algorithm, and 

channel scenario, the ratio of Eav values at 30m x 30m to the values for 15m x 15m are 

calculated for each measurement bandwidth value.  Kav is then calculated as the average 

of all the ratio values. Essentially, Kav allows an insight into the amount of performance 

degradation (i.e. reduction in estimation accuracy indicated by the increase in Eav) that 

can be expected as the size of the area is increased. The exact amount of performance 

degradation will, of course, vary as a function of the system bandwidth; nevertheless, 

Kav will be helpful in giving a rough idea. 

Table 3-1 Average Degradation in Estimation Accuracy 
 

Algorithm Channel Scenario Kav 

LOS 2.011 

OLOS 2.048 LS 

MIXED LOS/OLOS 2.052 

LOS 2.024 

OLOS 1.920 RWGH 

MIXED LOS/OLOS 1.897 

LOS 2.002 

OLOS 1.991 CN 

MIXED LOS/OLOS 1.991 
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3.3 Discussion 
Based on the results presented in the previous section we can draw a number of 

conclusions. First, regardless of the particular type of channel scenario, the CN algorithm 

has the worst performance of the three algorithms considered. This is expected, since the 

algorithm provides an estimate that is only as accurate as the location of the RP that is 

closest to the user. 

The difference in performance between the LS and RWGH algorithms rapidly 

diminishes beyond a measurement bandwidth of 100 MHz, for the LOS case. In other 

words, as long as the system bandwidth is above 100 MHz, RWGH provides no 

additional advantage from a performance perspective in the LOS case. For the OLOS 

and mixed LOS/OLOS cases, however, the performance of RWGH is significantly better 

than that of LS algorithm. This is because the RWGH algorithm is designed to work in 

unbalanced (OLOS) channel environments. 

Based on the distance error model parameters considered in this paper, it can be 

said that increasing the size of the area over which a user is to be located (while keeping 

the number and location of RPs fixed) makes the resulting location estimates less 

accurate. This point makes intuitive sense in that as the area gets larger, the LOS paths 

from the RP to the user will suffer more path loss, and the OLOS paths will suffer more 

delay (due to multipath). These factors will affect the TOA measurements, and therefore, 

the distance measurements that a given RP will make. From the results given in Table 

3-1, it can be seen that a four-fold increase in the size of the area translates to an 
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approximately two-fold increase in estimation error, regardless of the algorithm, and the 

particular channel scenario. 
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Chapter 4 Performance of New Algorithms 
 
In the previous chapter, we focused on the performance of existing algorithms for 

infrastructure-based indoor geolocation. We saw that the CN algorithm had a very poor 

performance compared with LS and RWGH algorithms, predominantly because of the 

crude way the location estimate is obtained. In this chapter, we present the Closest 

Neighbor with TOA Grid (CN-TOAG) algorithm ([Kan04b], [Kan04c]) and compare its 

performance to existing techniques. We describe the algorithm in section 4.1. In section 

4.2, we evaluate its performance. In section 4.3, we present an extension to the CN-

TOAG algorithm, known as the Coverage Map Search (CMS) [Kan07] and present 

some results on its performance in section 4.4. 

4.1 Closest-Neighbor with TOA Grid (CN-TOAG) Algorithm 
 

The CN-TOAG algorithm, as its name implies, is related to the CN algorithm 

which was discussed in section 3.1.1. Consider the regular grid scenario of RPs which 

was shown previously in Figure 3.1. In such a scenario, we know the exact number of 

the TOA-based distance measurement, assuming that the locations of the RPs are known 

more or less precisely with respect to a global coordinate system. Specifically, with the 

CN-TOAG algorithm, the whole area covered by the array of RPs is divided into a grid 

of points, with each point being equidistant from each of its adjacent neighbors, as 

shown in Figure 4.1. As can be seen, this is equivalent to subdividing the area covered 

by the array of RPs into equal-sized squares of size h meters. There is a set of distance 
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measurements (also known as range measurements) associated with each point on the 

grid, one from each base station. In our current example, since there are four RPs 

involved, each point, (xi, yj), on the grid has a vector of four range measurements 

associated with it. We denote such a vector of range measurements associated with a 

particular point on the grid by rij, and call it the range signature associated with the point 

(xi, yj). Conceptually speaking, having a range signature associated with each point on 

the grid is almost equivalent to performing TOA-based range measurements to each 

point on the grid, and we call the overall construct a TOA grid.  

 

Figure 4.1 An indoor geolocation system showing the TOA grid for the CN-TOAG 
algorithm 

 

Since the range values forming the range signature for a given point are based on 

straightforward geometric calculations (assuming the locations of the RPs are known 

accurately), the range signature is exact. Therefore, the user location can be estimated by 

comparing the vector of range measurements to the range signature at each point, and 
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noting the degree of similarity between them. Specifically, for each point on the TOA 

grid, (xi, yj), an error figure, eij, is calculated as: 

 || ||ij ije = −D r  (4.1) 
 

The estimated location, Rest, is that point, (xi, yj), on the grid which corresponds to the 

minimum value of eij. Based on the description above, it is clear that CN-TOAG is an 

example of a pattern recognition algorithm; however, it does not require fingerprinting 

for its operation, since the TOA grid can be determined in a purely geometric fashion if 

the size of the area and the location of the RPs are known. 

Another way to look at the CN-TOAG algorithm is to rewrite (4.1) as an 

objective function to be minimized as follows: 

 ( )2
2 2

1
e( , ) ( ) ( )

N

k k k
k

x y d x X y Y
=

= − − + −∑  (4.2) 

 

where ( ),k kX Y are the coordinates of the k-th RP, and kd is the distance measurement 

obtained from the k-th RP. The point ( ),x y that minimizes (4.2) can then be found by the 

gradient relationship: 

 ( , )e x y∇ = 0  (4.3) 
 

Due to the complexity of the objective function in (4.2), (4.3) is difficult to solve 

analytically. However, it can be solved numerically, and CN-TOAG algorithm can be 

viewed as such a numerical method. As may be expected, the granularity of the TOA 

grid, as given by h, is a big determinant of the estimation accuracy for this algorithm. 
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4.2 Performance Evaluation of CN-TOAG 
 

In this section, the performance of CN-TOAG is compared with the LS and 

RWGH algorithms under the RT-based DME model discussed in section 2.4.1. The 

regular grid arrangement of four RPs over an area of size 20m by 20m is assumed, as 

shown in Fig 3.1. A number of random sensor locations are simulated. For the purposes 

of this discussion, only the OLOS channel scenario is considered. System bandwidths in 

the range of 50 – 1000 MHz are considered for the range error models, as given in 

[Ala03]. The choice of these bandwidth figures for this study is purely arbitrary; these 

bandwidth values are sufficient to present a good representative sample of the results. 

There are two performance metrics depicted in the results presented below. The first is 

the root-mean-square positioning error (RMSEpos), defined as: 

 { }2(| |)pos est actRMSE E= −R R  (4.4) 

 
where Ract, and Rest are the actual and estimated locations of a user. The other 

performance metric is the root-mean-square ranging error (RMSEran), defined as: 

 { }2(| |)ranRMSE E= − actd d  (4.5) 

 
where dact is the vector of actual (uncorrupted) distance measurements, and d is the 

vector of distance measurements that the BSs would report in practice (i.e. the distance 

measurements corrupted by OLOS channel conditions).  

The results are presented in Figure 4.2 through Figure 4.5. In Figure 4.2 through 

Figure 4.4, the performance of the CN-TOAG algorithm is compared against the LS and 

RWGH algorithms for three system bandwidth values: 50 MHz, 500 MHz, and 1000 
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MHz. In each of these figures, the RMSE for ranging, as well as the RMSE for 

positioning is depicted for each algorithm (the RMSE for ranging and positioning are 

referred to in the plots as RMSE ‘before’ and ‘after’ positioning respectively). 

 

Figure 4.2 Comparison of CN-TOAG performance vs. LS and RWGH algorithms (system 
bandwidth = 50 MHz) Dashed lines indicate ranging errors. 

 

Figure 4.3 Comparison of CN-TOAG performance vs. LS and RWGH algorithms (system 
bandwidth = 500 MHz). Dashed lines indicate ranging errors. 
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Figure 4.4 Comparison of CN-TOAG performance vs. LS and RWGH algorithms (system 
bandwidth = 1000 MHz). Dashed lines indicate ranging errors. 

 

From the results of Figure 4.2 through Figure 4.4, we can observe that  CN-

TOAG can achieve exactly the same level of performance as the LS and RWGH 

algorithms in the indoor OLOS environment, provided that the TOA grid is granular 

enough (i.e. h is small enough). However, the performance does not appear to improve 

appreciably beyond a certain value of h. For the system scenario considered for this 

evaluation, this value of h is about 1.25 m. We also observe that, regardless of the 

system bandwidth used to make the range measurements, CN-TOAG can achieve 

exactly the same performance as LS using h = 8.5 m. In the case of RWGH, the grid has 

to be only slightly more granular for CN-TOAG to achieve the same performance, with 

h in the 6 – 6.5 m range. If h is below this value, then CN-TOAG can actually 

outperform both LS and RWGH by about 38% and 12% respectively.  

 



 45

In the next set of results (Figure 4.5), we study the performance of the CN-

TOAG algorithm in the presence of the RT-based DME model to see how its 

performance varies as a function of the system bandwidth.  

 
Figure 4.5 CN-TOAG performance at the various bandwidth values 

 
From the results, we note that the CN-TOAG performance essentially stays the 

same between system bandwidth values of 500 and 1000 MHz. As the bandwidth of the 

system is increased, the range measurements themselves would be more accurate, which 

is normally expected to translate to a more accurate location estimate. However, for the 

CN-TOAG algorithm, the results suggest that beyond a certain point, increasing the 

system bandwidth any further will not necessarily result in greater accuracy in the 

location estimates. This issue has been investigated and found to be a consequence of 

the RT-based DME model in the OLOS case. Specifically, the overall variance of the 

OLOS-based DME can be calculated using equation (2.8) as: 
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=  (4.6) 
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This relationship is plotted as a function of the bandwidth, w in the 50 – 1000 MHz 

range using the values of the parameters of the distributions given in [Ala03], as shown 

in Figure 4.6 below. In essence, since the overall variance stays about the same for 

bandwidth values greater than 100 MHz, the performance of CN-TOAG stays 

unchanged as well.  

 

Figure 4.6 Overall variance of the RT-based DME model (OLOS case) 
 

4.2.1 Complexity Analysis for CN-TOAG versus LS and RWGH 
 

In this section, we present an analysis of the computational complexity of CN-

TOAG versus LS and RWGH algorithms. We employ the term “computational 

complexity” to refer to the number of iterations required by each algorithm in order to 

reach a location estimate. We begin with the Davidon LS algorithm. As described in 

section 3.1.2., this algorithm requires an evaluation of the objective function and its 
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gradient. For an N-dimensional quadratic objective function given by (3.1), where N is 

the number of RPs, a total of Q= N+2 iterations (i.e. evaluations of the gradient) are 

required to reach convergence and obtain the LS estimate [Dav68]. Therefore, the total 

number of iterations required for a LS estimate is 

 2LSQ N= +  (4.7) 
 

The RWGH algorithm, as described in section 3.1.3, requires that the number of 

distance measurements be greater than three, i.e. N > 3, in order to successfully combat 

the effects of OLOS conditions [Che99]. This algorithm requires that a total of 

3
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P
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= ⎜ ⎟

⎝ ⎠
∑ intermediate LS estimates be computed, one for each combination of 

distance measurements. Since we use the Davidon LS algorithm for this dissertation to 

obtain these intermediate LS estimates, the total number of iterations required to obtain 

an RWGH estimate is 
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The CN-TOAG algorithm, on the other hand, is an example of a pattern 

recognition algorithm that relies on the TOA grid. We assume that we have a TOA grid 

of size M K L= × points, as shown in Figure 4.1, where K is the number of rows and L 

is the number of columns. CN-TOAG requires that we first evaluate the value of the 

error norm function given by (4.1) at each point on the TOA grid. This will require a 

total of M evaluations of the error norm function. After this step, CN-TOAG conducts a 

search on the two-dimensional grid to find the point with the minimum error norm. This 

is done in a two-step manner. First, the minimum value along each row is found, which 
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would require a total of M = KL iterations. The result of this step would be an 1L×  

vector of minimum values. As a second step, the algorithm would perform a search on 

this  1L×  vector to find the point with the minimum error norm, which would require L 

iterations. Therefore, the total number of iterations to obtain a location estimate from 

the CN-TOAG algorithm is 

 ( ) 2CNTOAGQ M M L M L= + + = +  (4.9) 
 

We are now in a position to perform a computational complexity comparison 

among the three algorithms. As can be seen from (4.7)-(4.9), a three-way comparison of 

these algorithms is made challenging by the fact that there is no common parameter that 

determines the required number of iterations for all three of them. This is not surprising, 

as CN-TOAG belongs in a different class of algorithms than LS and RWGH. LS and 

RWGH exploit the geometric relationship between the user location and the RP 

locations, embodied in the objective function of (3.1), in order to compute the location 

estimate. CN-TOAG, on the other hand, computes a location estimate using pattern 

recognition techniques. However, a limited comparison is made possible by examining 

the results of Figure 4.4. In this figure, we see that CN-TOAG can achieve the same 

performance as LS, assuming that the TOA grid spacing, h = 8.5 m, assuming a 20m x 

20m room, with four RPs. For this case, the required size of the TOA grid can be found 

as 

 20 3
8.5

K L ⎡ ⎤= = =⎢ ⎥⎢ ⎥
 (4.10) 

where ⋅⎡ ⎤⎢ ⎥ represents the ceiling operator. 
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Since we assume four RPs in this scenario, i.e. N = 4, we can readily see from (4.7) that 

the number of iterations required to produce the LS estimate is 

 
 2 6LSQ N= + =  (4.11) 

     
while the number of iterations required to compute the CN-TOAG estimate can be 

found using (4.9) and (4.10) to be 

 2 21CNTOAGQ M L= + =  (4.12) 
  
In a similar fashion, we can compare the computational complexity of CN-TOAG 

versus the RWGH algorithm. Referring to Figure 4.4, we see that CN-TOAG can 

achieve the same performance as RWGH, assuming that the TOA grid point spacing is 

such that h = 6.5 m. In a similar fashion, we see that the required TOA grid size is 

 20 4
6.5

K L ⎡ ⎤= = =⎢ ⎥⎢ ⎥
 (4.13) 

 
The required number of iterations to obtain the RWGH estimate can be found using 

(4.8) as 

 30RWGHQ =  (4.14) 
 
Similarly, we can see that the number of iterations required to obtain the CN-TOAG 

estimate is found from (4.9) as 

 36CNTOAGQ =  (4.15) 
 

From the results and the analysis presented above, it is clear that CN-TOAG can 

achieve better performance than LS and RWGH algorithms; however, this improvement 

comes at the expense of additional computational complexity.  We also note from these 

results that channel conditions do not really affect the computational complexity, since 
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these three algorithms are not “channel aware”, i.e. they do not take any special action 

based on the channel conditions.  

4.3 Coverage Map Search (CMS) Algorithm 

The CMS algorithm is conceptually based on the Closest Neighbor with TOA 

Grid (CN-TOAG) algorithm [Kan07]. Like CN-TOAG, the CMS algorithm is dependent 

on a mathematical construct known as a TOA Grid, which was discussed in the previous 

chapter.  The general system scenario is as shown in Figure 4.7 below, where a regular 

arrangement of reference points (RPs) is assumed. Each RP performs a TOA-based 

range measurement to a user to be located. 

 

Figure 4.7 General system scenario used to develop the CMS algorithm 
 

 In a realistic indoor environment, there will be deficiencies in coverage (termed 

as coverage holes) throughout the area covered by the RPs, as depicted in Figure 4.8 

below. This means that a valid range measurement from every RP cannot be guaranteed 

at every point. For example, with the scenario depicted in Figure 4.8, there will be areas 
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where only three or fewer range measurements are available. This essentially rules out 

the applicability of more conventional algorithms, such as least-squares techniques, 

which require a minimum of three range measurements in order to function properly. It 

should be emphasized at this juncture that this scenario assumes averages for the 

coverage radii for the four RPs (allowing for factors such as shadow fading).  

 

Figure 4.8 Illustration of partial coverage for the CMS algorithm 
 

It should be noted that the deficiencies in the range measurements follow a 

specified pattern. For example, in the area marked ‘Area 1’ in Figure 4.8, a user would 

only be able to communicate with RP-1. Therefore, as a refinement on the CN-TOAG 

algorithm, we define a so-called coverage signature, C, which is an array of all RPs that 

can communicate with the user at a specific point. For example, at any point within area 

marked ‘Area 1’, C = [1, -1, -1, -1]T, where –1 indicates that the user cannot 

communicate with a particular RP and the superscript T denotes the transpose operation. 

In the current example, this implies that the user can only communicate with, and obtain 
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a range measurement from RP-1. Similarly, for all points in the area marked ‘Area 2’ in 

Figure 4.8, C = [1, 2, 3, 4]T, indicating that the user can communicate with all four RPs 

in that  area. It is possible to characterize an entire area with a two-dimensional array of 

C vectors which, for the purposes of this discussion, we call a coverage map. 

It is clear that observations of C can provide valuable information in locating a 

user, and this is the idea behind the CMS algorithm. In essence, the algorithm exploits 

the knowledge about missing range measurements to narrow down the user’s location to 

a specific area, and finally estimate it. In other words, the CMS algorithm operates on the 

premise that the lack of information is, in itself, information that can be exploited. 

Specifically, the algorithm works as follows. 

For a given vector of range measurements, a pattern is derived. For example, 

suppose a sensor is located at point X, as shown in Figure 4.8. At this point, the sensor 

can only communicate with RPs 1, 2, and 4. Therefore, the range measurement vector, D 

= [d1, d2, -1, d4]T, where –1 refers to a missing range measurement from RP-3 due to 

coverage limitations. For the current example, the CMS algorithm would translate this to 

an equivalent representation in the C vector space as 

 [ ]T= 1,2,-1,4mC  (4.16) 
 

The algorithm then searches the coverage map for a region, Qc, which is a subset, 

Q, of all points within the area, A, where the coverage signatures match Cm. In other 

words: 

 { : } c mQ Q A= ⊂ = ∀C C C  (4.17) 
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In our current example, the Qc region is as shown in Figure 4.8. 

Based on the coordinates of the different points within Qc, and the coordinates of 

the APs, a range signature, Z(x,y),  can be computed for each point (x,y) based on purely 

geometrical considerations, just as in the CN-TOAG algorithm. The range measurement 

vector, D, is then compared with all the range signatures to find the point, ( )ˆ ˆ ˆ, Tx y=r , 

where Z most closely approximates D. In essence, this is equivalent to minimizing an 

objective function with the additional condition that the search for the minimum is 

confined to the region cQ . In other words: 

 
( )ˆ arg min  ,

      c

e x y
Q

=

∀ ∈

r
r

 (4.18) 

where ( ),e x y  is the objective function defined for CN-TOAG in (4.2). 

The primary advantage of the CMS algorithm is that it can be used with any 

number of range measurements, whereas other algorithms such as least-squares (LS) 

require a minimum of three range measurements. The main characteristic of the 

algorithm is that it requires a central computing entity in the network to generate the 

coverage map, and perform the search for the minimum. Although the algorithm has 

been presented in terms of the simplified coverage scenario of Figure 4.8, it is readily 

applicable to more realistic coverage scenarios if the coverage map is generated using 

any accurate indoor radio propagation model [Pah05]. 
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4.4 Performance Evaluation for the CMS Algorithm 

The performance of the CMS algorithm has been evaluated through simulations. 

The regular grid arrangement of four base stations over an area of size D m by D m is 

assumed, as shown in Figure 4.7. For the purposes of this study, D values of 20 m and 

40 m were considered to simulate two different node densities. A number of random 

user locations are simulated. Each of the RPs performs a distance measurement to the 

user, to which we add DME in accordance with the RT-based DME model [Ala03]. For 

the purposes of this paper, only the OLOS channel scenario is considered. System 

bandwidths in the range of 50 – 1000 MHz are considered for the range error models. In 

order to come up with a realistic coverage map, the following path loss model was used 

for the maximum allowable path loss, pL [Pah05]: 

 1010 .log ( )p oL L dα η= + +  (4.19) 
where: 

Lo: 1-meter intercept 

α: A slope factor that depends on the building 

d: distance from the transmitter to the receiver location 

η: Lognormal shadowing component  

For the path loss model, the following typical values were considered: 

Lo = -42 dBm 

α = 3 

Lp,max = 110 dB 
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The shadowing component in the model was simulated with a zero-mean 

lognormal random variable with σ = 8 dB. For the grid granularity parameter, h, a value 

of 0.625 m was used, since it was noted in previous work ([Kan04b]) that increasing h 

beyond this value did not noticeably increase the estimation accuracy. 

 The performance metric used is the root-mean-square positioning error 

(RMSEpos), defined as: 

 { }2(| |)pos est actRMSE E= −R R  (4.20) 

 
where Ract, and Rest are the actual and estimated locations of a user respectively. 

For the first set of results (Figure 4.9 and Figure 4.10) we explore the 

relationship between coverage radius, R, of the RPs, and the performance of the 

algorithm. Figure 4.9 displays the results for a 20m x 20m area, and Figure 4.10 

displays the results for 40m x 40m area.  Results are presented for values of the system 

bandwidth (referred to as w in the figures) in the range 50 – 1000 MHz. A number of 

observations can be made with regard to these results. 

1. The performance of the CMS algorithm does not seem to change a lot as the 

bandwidth is increased. This is actually a consequence of the RT-based DME 

model, which was used for this evaluation. For this model, the overall variance of 

the DME for this model does not change a lot beyond 50 MHz (see Figure 4.6). 

2. For a given system bandwidth, there appears to be a value of the RP coverage 

radius, R, for which the RMSE is lowest. Depending on the size of the area, this 

value can range from 17.5 m to 35 m, which is almost of the order of the size of the 

area, i.e. R D≈ , which implies 1α ≈ .This observation can be explained in the 
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following way. For these values of R, the size of the area where only a single RP 

can be observed is actually very small, and the size of the area of no coverage (i.e. 

where the user would not be able to observe any RPs) is zero. Therefore, even under 

the worst-case scenario where the user was only able to contact a single RP, the size 

of the area over which the algorithm has to search for a solution is very small, which 

prevents large fluctuations in the final location estimate. 

 

 

Figure 4.9 CMS Performance comparison as a function of R for system bandwidth, w, in the range 
50-1000 MHz                  

 

 

Figure 4.10 CMS performance as a function of R over a larger area for system bandwidth, w, in the 
range 50-1000 MHz                  
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In Figure 4.11, we show the CMS performance when used with a coverage map 

that is generated with a path loss model, the parameters of which were presented earlier. 

RT-based DME model is again used for this case, and the node density is varied by 

changing the size of the area from 20m x 20m to 40m x 40m size. These results clearly 

indicate that regardless of the bandwidth, the performance generally degrades by a 

factor of two, when the size of the area is increased by a factor of four (which also 

decreases the node density by the same amount). This is consistent with the findings of 

chapter 3, which were also obtained with the RT-based DME model. 

 

 

Figure 4.11 CMS performance in the presence of realistic path loss models (20 x 20 m2 vs. 40 x 40 
m2 area) 
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Chapter 5 Partial Coverage Analysis 
 
As we have noted in section 4.4 on the CMS algorithm, QoE in partial coverage 

conditions varies with the size of the coverage radius, R in relation to the dimensions of 

the area, D, i.e the factorα . This makes intuitive sense, because as α increases, more 

and more RPs can be contacted by the user to make distance measurements, and 

therefore, a more accurate location estimate becomes possible.  Therefore, the logical 

question is: what is the number of RPs that can be observed by a user at any point in the 

area, and how does that number vary as a function ofα ? Before we attempt to answer 

this question, however, we will pose another one: why is it important to answer this 

question and what does it have to do with the theme of this dissertation? The basic 

reason is that the concept of partial coverage (as described by the parameterα ) and that 

of node density (as described by the parameter ρ ) are related as we have noted in 

chapter 2. Therefore, if we know how the number of RPs observable by the user varies 

as a function of α , we can use this to set up an analytical framework for the analysis of 

node density effects on infrastructure-based indoor geolocation systems.  In this 

chapter, we present a statistical analysis that answers this question. The results of this 

analysis will be used in some of the derivations of the QoE bounds which are discussed 

in chapter 7. 

5.1 Statistical Behavior of the QoE Under Partial Coverage 
 

In this system scenario, we show four RPs, all of which have the same average 

coverage radius, R. Even though R is a function of the transmitter power, as well as the 
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shadow fading characteristics (among other factors) this is certainly a reasonable 

assumption in practice, since a grid-based deployment of RPs generally would use 

transceivers with very similar characteristics. 

First, we define the coverage probabilities ( )iP α  as the probability of the user 

seeing i RPs (where { }0,1, 2,3, 4i∈ ) as a function of α . Referring to Figure 5.1, we see 

that as the value of α  changes, the amount of overlap between the coverage areas of the 

respective RPs will also change, and that affects the values of the probabilities ( )iP α . 

Therefore, a reasonable approach to the analysis of these probabilities involves the 

calculation of the size of the areas where a given number of RPs can be observed, and 

then normalizing that area by the total size of the area covered, which is 2D , since Pi(α) 

≤ 1.0 by definition. For example, in order to calculate ( )2P α , we would calculate the 

total area where only two RPs can be observed as a function of α , and then normalize 

that area by 2D . The end results of this calculation are presented for the following 

intervals forα . 

 
Figure 5.1 System scenario for the statistical analysis of the QoE in partial coverage. The numbers 

in the various areas represent the number of RPs that are likely to be observed 
throughout that area. 
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5.2 Coverage Probabilities 
 

Using the approach that has been outlined in the previous section, it is possible 

to calculate the coverage probabilities through area calculations. The results are given 

for the following intervals of values for α   and the derivation of the results can be 

found in Appendix 5.A at the end of this chapter. 

Interval I:  0.0 ≤ α ≤ 0.5 
 
For these values of α , no more than one RP can be seen at any point in the area. 

Therefore, we have: 

 
 2 3 4 0P P P= = =  (5.1) 

 
 2

0 1P πα= −  (5.2) 
  

 2
1P πα=  (5.3) 

 
Interval II: 05 2 2. ( / )≤ ≤α  
 
For this interval, the overlap between coverage areas will be such that two RPs can be 

observed at some points in the area, but there will be no points where three or more RPs 

can be observed. Therefore, we have: 

 
 3 4 0P P= =  (5.4) 

 

 ( )2 2 1 2 2
0 1 4 tan 4 1 4 1P πα α α α−= − + − − −  (5.5) 

 

 ( )2 2 1 2 2
1 8 tan 4 1 2 4 1P πα α α α−= − − + −  (5.6) 

 

 ( )2 1 2 2
2 4 tan 4 1 4 1P α α α−= − − −  (5.7) 
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Interval III: ( 2 / ) .2 10≤ ≤α  
 
For this interval, the overlap between coverage areas is such that three RPs can be seen, 

and the area of no coverage is reduced to zero. Therefore, we have: 

 0 0P =  (5.8) 
 
  

 

( ) ( ) ( ) ( )

2
2

1

2 2 2
2 2 2 2 2

3

2

1 2 3 4

1 11 8
2 4 4

       2 4 4 2 2
4 4 4

       12 2
2

xP

b a bb a a b

α θ α

α θ α α θ α

α θ β α β α β α β α

⎡ ⎤
= − − −⎢ ⎥

⎣ ⎦
⎡ ⎤

+ − + − − − + −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

+ −⎢ ⎥
⎣ ⎦

 (5.9) 

 

 

( ) ( ) ( ) ( )

2
2

2

2 2 2
2 2 2 2 2

3

2
1 2 3 4

1 18
2 4 4

      4 8 8 4 4
4 4 4

      8 32

xP

b a bb a a b

α θ α

α θ α α θ α

α θ β α β α β α β α

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
⎡ ⎤

− − + − − − + −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤− −⎣ ⎦

 (5.10) 

 
 
 

 

22 2
2 23

3

2 2
2

4 2
2 4 2 2 4

      4
2 2 4

b b a aP a

b b

α θ α

α θ α

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥= − + − −⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦
⎡ ⎤

− − −⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.11) 

 
 

 ( ) ( ) ( ) ( )
2

4 1 2 3 44 2
2

P α θ β α β α β α β α
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

 (5.12) 
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where: 

 1

2

12 tan
2 12

4

πθ
α

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= −
⎜ ⎟

−⎜ ⎟
⎝ ⎠

 (5.13) 

 
 

 
( )

2
1 1 2

3 1/ 22 2

1 2 1 1tan tan 2
2 42 2 2 1

π αθ α
α α

− −

⎡ ⎤⎛ ⎞
⎛ ⎞⎢ ⎥− −⎜ ⎟= − + −⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟⎢ ⎥+ −⎝ ⎠⎣ ⎦

 (5.14) 

 

 ( ) 2
1

1 1 2 1
2 2 4 4
αβ α α
⎛ ⎞ ⎛ ⎞−

= + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5.15) 

 

 ( ) 2
2

1 1 2 1
2 2 4 4
αβ α α

⎛ ⎞ ⎛ ⎞−
= − + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5.16) 

 

 ( ) 2
3

1 1 2 1
2 2 4 4
αβ α α
⎛ ⎞ ⎛ ⎞+

= − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5.17) 

 

 ( ) 2
4

1 1 2 1
2 2 4 4
αβ α α
⎛ ⎞ ⎛ ⎞+

= + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5.18) 

 

 32 sin
2

a θα ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (5.19) 

 

 2 sin
2

b θα ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (5.20) 

 

 1

2

1tan
12
4

xθ
α

−

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟

−⎜ ⎟
⎝ ⎠

 (5.21) 

 

Interval IV: 10 5
2

. ≤ ≤α  
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Over this interval, the overlap between coverage areas will be such that: 
 

 0 1 0P P= =  (5.22) 
 
 
and P4  will follow the same expression as given in (5.12) . Therefore, all we need to do 

is derive expressions for P2 and P3 . 

From area calculations, we find that: 

 
( )

( )

2 2 2 1 2
2

2 1 2 2

4 4 1 2 4 tan 4 1

1      4 tan 1 2
4

P α πα α α

α α α

−

−

= − − − + −

+ − − −
 (5.23) 

 
 

( ) ( )
( ) ( ) ( ) ( )

2 2 2 1 2 2 1 2 2
3

2
1 2 3 4

11 4 4 1 2 4 tan 4 1 4 tan 1 2
4

         2 8

P α πα α α α α α

α θ β α β α β α β α

− −⎡ ⎤
= − − − − + − + − − −⎢ ⎥

⎣ ⎦
⎡ ⎤− −⎣ ⎦

(5.24) 

 
 
and θ  is given by equation (5.13). The functions β α1b g through β α4b g are defined by 

equations (5.15) through (5.18) respectively. 

Interval V: 5
2

≤ ≤α 2  

 
For these values of α , the overlap between neighboring RPs is such that three or more 

references can be seen throughout the entire area. Therefore: 

 0 1 2 0P P P= = =  (5.25) 
 
 
 
and 
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 2 2
3 4 4 1 2P α α γ= − − −  (5.26) 

 
 2 2

4 3 4 1 2P α α γ= − + − +  (5.27) 
 
where γ is defined as: 
 

 ( )1 2= 2 tan 1
2
πγ α−− −  (5.28) 

 
Interval VI: α ≥ 2  
 
For such values of α , all 4 RPs can be seen at all points throughout the area. Therefore, 

we conclude that 

 0 1 2 3 0P P P P= = = =  (5.29) 
 

 4 1P =  (5.30) 
 
Figure 5.2 below shows the above results for all six intervals plotted as a function ofα . 

 

Figure 5.2 Coverage probabilities plotted as a function ofα  
 
. 
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Appendix 5.A Coverage Probability Analysis 
 
In this appendix, we present derivations of the coverage probabilities, ( )iP α (0 ≤ i ≤ 4) 

for the different intervals ofα . 

 
Interval I:  0.0 ≤ α ≤ 0.5 
 
This situation is depicted in Figure A.1 below, where we assume four RPs placed at the 

at the four corners of a square room. With no loss of generality, we can assume that the 

dimension of the room is D = 1. In this case, from the definition of α , we can say that 

R α= . In this as well as all other intervals discussed below, the RPs are assumed to be 

at four corners with coordinates [0,0], [0,1], [1,0] and [1,1].  

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

0

1 1

11

 
Figure A.1 Showing the coverage probabilities for interval 1 

 
For this case, it is clear from the above figure that: 
 

 2 3 4 0P P P= = =  (A.1) 
 
since there is no possible way the user can see more than one RP under such coverage 

conditions. We can calculate 0P  and 1P  by appropriate area calculations as follows. For 
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each probability, we calculate the total area where the user can see the appropriate 

number of RPs, and then normalize that area by the total area (which is 2D ), since 

probabilities, by definition have to be between zero and one. This same methodology 

will be used for the rest of the probabilities in other intervals as well. 

 
Since R α= , we can write: 
 

 
2

2
1 4

4
P πα πα

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 (A.2) 

 
And since 0 1 1P P+ =  
 

 2
0 11 1P P πα= − = −  (A.3) 

 
Interval II: 05 2 2. ( / )≤ ≤α  
 
This case is shown in Figure A.2 below. The overlap in coverage is now at a point 

where two RPs can be seen in some areas. The area of no coverage is seen to shrink and 

will be zero when 2 / 2α = . 
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Figure A.2 Showing the coverage scenario for interval II 
 
 
In order to calculate 2P , we will use the point marked 1L  and the angle 1θ  which that 

point makes with the RP at point [0,0]. Specifically, we are concerned with calculating 

the overlap area, oA ,  as shown in Figure A.2 above. Under the idealized coverage 

scenario we are considering, it is clear that:  

 2 / 4oA P=  (A.4) 
 
 
From the geometry shown in Figure A.2, we observe that: 
 

 2( )o tA A Aθ= −  (A.5) 
Where Aθ is the area of the circular sector of angle 1θ  and tA  is the area of the 

triangle 1 2OL L . In order to calculate these areas, we first need to determine the 
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coordinates of the point 1L , where the two circles intersect. Using the standard 

equations of the circles, we can show that the coordinates ( )1 1,x y of the point 1L  are: 

 1
1
2

x =  (A.6) 

 2
1

1
4

y α= −  (A.7) 

assuming D = 1, which implies that R α= . From this, we can write: 
 

 ( )1 2 1 2
1

1tan 2 tan 4 1
4

θ α α− −⎛ ⎞
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠
 (A.8) 

which leads to: 
 

 ( )2 2 1 2
1

1 1 tan 4 1
2 2

Aθ α θ α α−= = −  (A.9) 

 
From standard geometrical formulas, we can also calculate the area of the triangle as: 
 

 21 1
4 4tA α= −  (A.10) 

Using (A.4) and (A.5), we can then write 
 

 2 4 8( )o tP A A Aθ= = −  (A.11) 

Substituting (A.9) and (A.10) into (A.11) and performing some further algebraic 

manipulations, we get: 

 ( )2 1 2 2
2 4 tan 4 1 4 1P α α α−= − − −  (A.12) 

 
To calculate 1P , we refer to Figure A.2, and note that: 
 

 
2

1 2

4 2 4
P P πα
+ =  (A.13) 

 
Rearranging the above equation, we have: 
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 ( )
2

1 2

2 2 1 2 2

2

  8 tan 4 1 2 4 1

P Pπα

πα α α α−

= −

= − − + −
 (A.14) 

By axioms of probability: 
 

 ( )0 1 21P P P= − +  (A.15) 
 
Substituting (A.12) and (A.14) into (A.15), we get 
 

 ( )2 2 1 2 2
0 1 4 tan 4 1 4 1P πα α α α−= − + − − −  (A.16) 

 
Interval III: ( 2 / 2) 1.0α≤ ≤  
 
This coverage situation is as shown in Figure A.3 below, where we see clearly that for 

this interval: 

 
 0 0P =  (A.17) 

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

1 1

11

2

2

2

2

3 3

33

4

 
Figure A.3 Coverage scenario pertaining to Interval III 
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We shall start by deriving the coverage probability 4P , i.e. the normalized size of the 

overlap area, labeled ‘4’ in Figure A.3, where the sensor would be able to see all four 

RPs. The geometry relating to this calculation is shown in Figure A.4, where we will 

specifically calculate the normalized size of the area 4A in terms of the triangular areas 

1A  and 2A as well as the area of the circular sector, Aθ , created by angle θ . We can 

immediately observe that: 

 4 44P A=  (A.18) 

 ( )4 1 2A A A Aθ= − +  (A.19) 

 
Figure A.4 Illustration of the geometry to calculate P4 

  
To start, we need to first determine the coordinates of the points 2L , and 3L . These are 

seen to be intersection points for the respective circles each of radius R α= . The 
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location of the x and y coordinates of these points can be derived using the 

straightforward equations for a circle and can be shown to be as follows. For 2L : 

 

 2
1
2

x =  (A.20) 

 2
2

1
4

y α= −  (A.21) 

For 3L : 
 

 2
3

11
4

x α= − −  (A.22) 

 3
1
2

y =  (A.23) 

 
4L , by definition, is the midpoint of the area; therefore, its coordinates are: 

 

 4 4
1
2

x y= =  (A.24) 

 

Now we can find the lengths of the sides of the two triangles in Figure A.4. 

Specifically, 

 

 2
1 4 3

1 1
2 4

v x x α= − = − + −  (A.25) 

 2
2 2 4

1 1
4 2

v y y α= − = − −  (A.26) 

 ( )2 2
3 4 4

11
2

v x y= − + =  (A.27) 

 
We note that 1 2v v= . This means that the two triangles depicted in Figure A.4, are 

identical and will therefore have the same area, A. This area can be calculated through 

the use of Heron’s formula: 
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 ( )( )( )1 1 1 2 1 3A s s s v s vα= − − −  (A.28) 

where 
 

 2 3
1 2

v vs α + +
=  (A.29) 

 
Substituting (A.26) and (A.27) into (A.29), we have: 

 ( )2
1 1

1 1 2 1
2 2 4 4

s α α β α
⎛ ⎞ ⎛ ⎞−

= + − + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (A.30) 

Similarly, using (A.30) we can write: 
 

 ( )2
1 2

1 1 2 1
2 2 4 4

s αα α β α
⎛ ⎞ ⎛ ⎞−

− = − + − + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (A.31) 

 
Now, we substitute (A.26) into (A.30) to get: 
 

 ( )2
1 2 3

1 1 2 1
2 2 4 4

s v α α β α
⎛ ⎞ ⎛ ⎞+

− = − − + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (A.32) 

 
 
And substituting (A.27) into (A.30) we have: 

 ( )2
1 3 4

1 1 2 1
2 2 4 4

s v α α β α
⎛ ⎞ ⎛ ⎞+

− = + − − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (A.33) 

 
Therefore, in reference to Figure A.4, we can write: 
 

 ( ) ( ) ( ) ( )1 2 1 2 3 4A A A β α β α β α β α= = =  (A.34) 
 
with ( )1β α  through ( )4β α  defined by equations (A.30) through (A.33). 
 
Next, we need to find the area of the circular sector created by the angle θ  in Figure 

A.4. For this, we need to find the angles 1φ  and 2φ . From the symmetry of the problem 
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(i.e. the room is square and all the RPs have the same coverage radius, R), we note that 

1φ = 2φ =φ . Therefore 

 2
2
πθ φ= −  (A.35) 

We can find φ  as: 
 

 1 13

23

1tan tan
1 12

4

y
x

φ
α

− −

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟= =⎜ ⎟− ⎜ ⎟⎝ ⎠ −⎜ ⎟
⎝ ⎠

 (A.36) 

Therefore 
 

 1

2

12 tan
2 12

4

πθ
α

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= −
⎜ ⎟

−⎜ ⎟
⎝ ⎠

 (A.37) 

Using (A.37), we can now write the expression for area of the sector, Aθ , as: 
 

 
2

2
Aθ

α θ
=  (A.38) 

 
Substituting (A.34) and (A.38) into (A.19) and then into(A.18), we obtain: 
 

 ( ) ( ) ( ) ( )
2

4 1 2 3 44 2
2

P α θ β α β α β α β α
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

 (A.39) 

 
 
To derive an expression for 3P , we refer to the geometry as shown in the diagram below. 
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Figure A.5 Illustration of the geometry for the calculation of P3 

 

In terms of the normalized areas, we note that: 

 ( )3 1 24 2TP A S S= + −  (A.40) 
 
In order to find these areas, we first find the coordinates of the point L1 using standard 

geometrical formulas for the intersection of two circles to get: 

 ( )2
1

1 1 2 1
2

x α= − −  (A.41) 

 ( )
2 1/ 22

1
1 2 1

2 2
y α α= + −  (A.42) 

 
Therefore: 

 
( )

2
1

1 1/ 22 2

1 2 1tan
2 2 2 1

αθ
α α

−

⎛ ⎞
− −⎜ ⎟= ⎜ ⎟

⎜ ⎟+ −⎝ ⎠

 (A.43) 
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Now, we find the coordinates of the points L2 similarly using the standard formulas for 

circles and finding the intersection points of them. The results are: 

 2
1
2

x =  (A.44) 

 2
2

1
4

y α= −  (A.45) 

 
Therefore 

 1 1 22
2

2

1tan tan 2
4

y
x

θ α− − ⎛ ⎞⎛ ⎞
= = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (A.46) 

Therefore we have 
 

 

( )

( )

3 1 2

2
1 1 2

1/ 22 2

2

1 2 1 1   tan tan 2
2 42 2 2 1

πθ θ θ

π α α
α α

− −

= − +

⎛ ⎞⎛ ⎞
⎛ ⎞⎜ ⎟− −⎜ ⎟= − + −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟⎜ ⎟+ −⎝ ⎠⎝ ⎠

 (A.47) 

 
Next, we need to find the angle θ . First note that 1 2φ φ φ= =  due to the symmetry of the 

problem. In order to find φ , we need to find the coordinates of the point L3. These 

coordinates are: 

 2
3

11
4

x α= − −  (A.48) 

 
 3 1/ 2y =  (A.49) 

 
Therefore, we can write: 
 

 1 13

23

1tan tan
1 12

4

y
x

φ
α

− −

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟= =⎜ ⎟− ⎜ ⎟⎝ ⎠ −⎜ ⎟
⎝ ⎠

 (A.50) 
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and 

 1

2

12 2 tan
2 2 12

4

π πθ φ
α

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= − = −
⎜ ⎟

−⎜ ⎟
⎝ ⎠

 (A.51) 

 
Next we note that: 

 32 sin
2

a θα ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (A.52) 

And that 
 

 
( )

( )( )( )

1 1 1 2 1 1 2

2
3

1 1 1 1

area of circular sector (area of )

   
2

S O L L O L L

s s s s aα θ α α

= −

⎡ ⎤ ⎡ ⎤= − − − −⎢ ⎥ ⎣ ⎦⎣ ⎦

 (A.53) 

 
Where 

 1
2

2
as α +

=  (A.54) 

Therefore, 
 

 
2 2

23
1 2 2 4

a aS α θ α
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

 (A.55) 

 
In a similar vein, we have: 
 
 

 
2 2

2
2 2 2 4

b bS α θ α
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

 (A.56) 

 
 

 2 sin
2

b θα ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (A.57) 

 
As for the area of the triangle, we have using Heron’s formula: 
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( )( )( )

1 2 3

3 3 3 3

 area of 

    
TA L L L

s s a s a s b

=

= − − −
 (A.58) 

where 
 

 3
2

2
a bs +

=  (A.59) 

 
Therefore, 
 

 
2

2

2 4T
b bA a= −  (A.60) 

 
Substituting (A.60), (A.55) and (A.56) into (A.40) we get: 
 

 

22 2
2 23

3

2 2
2

4 2
2 4 2 2 4

      4
2 2 4

b b a aP a

a a

α θ α

α θ α

⎡ ⎤⎧ ⎫⎡ ⎤⎪ ⎪⎢ ⎥= − + − −⎨ ⎬⎢ ⎥
⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭⎣ ⎦
⎡ ⎤

− − −⎢ ⎥
⎢ ⎥⎣ ⎦

 (A.61) 

 
where θ  and 3θ  are defined in (A.51) and (A.47) respectively. 
 
In order to find 2P  and 1P , we refer to both Figure A.3 above as well as Figure A.6 

below to understand the geometry. Specifically we note that: 

 4 3 2
1 12
2 4

A P P P= + +  (A.62) 

where A is the overlap area shown in Figure A.6. 
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Figure A.6 Illustration of the geometry for the calculation of P2 for interval III 

 
To find the overlap area A, we first find the area covered by the circular sector of 

angle xθ : 

 
2

Area of 
2

x
SOPQ A α θ

= =  (A.63) 

 
Now we find the area of the triangle 1OPP . To do this, we need to know the 

coordinates of point P. This has been previously determined to be 

 1
2px =  (A.64) 

 2 1
4py α= −  (A.65) 

Therefore 
 



 79

 1

2

1tan
12
4

xθ
α

−

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟

−⎜ ⎟
⎝ ⎠

 (A.66) 

 
Therefore, the area of the triangle 1OPP , TA is 
 

 21 1
4 4TA α= −  (A.67) 

 
So we have 
 

 
2

21 1
2 4 4

x
S TA A A α θ α= − = − −  (A.68) 

 
Substituting (A.68), (A.66), (A.61) and (A.39) into (A.62) and solving for 2P , we get: 
 

 

( ) ( ) ( ) ( )

2
2

2

2 2 2
2 2 2 2 2

3

2
1 2 3 4

1 18
2 4 4

      4 8 8 4 4
4 4 4

      8 32

xP

b a bb a a b

α θ α

α θ α α θ α

α θ β α β α β α β α

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
⎡ ⎤

− − + − − − + −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤− −⎣ ⎦

 (A.69) 

 
Finally, to obtain 1P , we use the axioms of probability: 
 

 1 2 3 41 ( )P P P P= − + +  (A.70) 
 
Substituting (A.69), (A.61) and (A.39)  into the above equation yields  
 

 

( ) ( ) ( ) ( )

2
2

1

2 2 2
2 2 2 2 2

3

2

1 2 3 4

1 11 8
2 4 4

       2 4 4 2 2
4 4 4

       12 2
2

xP

b a bb a a b

α θ α

α θ α α θ α

α θ β α β α β α β α

⎡ ⎤
= − − −⎢ ⎥

⎣ ⎦
⎡ ⎤

+ − + − − − + −⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

+ −⎢ ⎥
⎣ ⎦

(A.71) 
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Interval IV: 10 5
2

. ≤ ≤α  

 
Figure A.7 below depicts the coverage scenario for this interval. For these values of α , 

we can see that 1 0P = . We also note that the geometrical shape of the area where all 

four RPs are seen is unchanged, and therefore, the expression for 4P will be the same as 

the one presented above for interval III, i.e. equation (A.39). Therefore, we will focus 

on deriving expressions for 2P  and 3P . 
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  Figure A.7 Illustration of the coverage scenario for interval IV 
 
We start by finding 2P . Figure A.8 shows the required geometry for this task. We first 

need to find the x and y coordinates of the points 1L  and 2L . The coordinates of points 

3L  and 4L are known to be (0,0) and (0.5,1) respectively.  
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  Figure A.8 Illustration of the geometry required for calculating P2 in interval IV 
 
Through the use of appropriate formulas for circles, we can find the coordinates of 1L  
as: 
 

 2
1 1x α= −  (A.72) 

 1 0y =  (A.73) 
Similarly, we can find the coordinates of 2L  as: 
 

 2
1
2

x =  (A.74) 

 2
2

11
4

y α= − −  (A.75) 

From this, we can write: 
 

 ( )1 1 24 2
1

4

tan tan 4 1y y
x

θ α− −⎛ ⎞−
= = −⎜ ⎟

⎝ ⎠
 (A.76) 

 ( )1 1 21 3
2 tan tan 1

1
x xθ α− −−⎛ ⎞= = −⎜ ⎟

⎝ ⎠
 (A.77) 

 
Therefore, referring to Figure A.8, we can write: 
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( )

( ) ( )( )
1 2

1 2 1 2

2

 tan 4 1 tan 1
2

πθ θ θ

π α α− −

= − +

= − − + −
 (A.78) 

 
Now, we can write the following for the different area values: 
 

 ( ) 2
1 4 2

1 1 1 1
2 2 4 4

A y y α⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 (A.79) 

 ( ) 2
2 1 3

1 1(1) 1
2 2

A x x α= − = −  (A.80) 

 
2

2
Aθ

α θ
=  (A.81) 

 
Since we are dealing with normalized areas for the purposes of these derivations (i.e. D 

= 1 with no loss of generality), it is clear that  

 
 2 2PA P=  (A.82) 

 
Therefore, we can write: 
 

 ( )2
2 1

1
2 2
P A A Aθ= − + +  (A.83) 

 
Rearranging the above equation and substituting the results from (A.79), (A.80) and 

(A.81), we obtain: 

  
 

( ) ( )2 2 2 1 2 2 1 2 2
2

14 4 1 2 4 tan 4 1 4 tan 1 2
4

P α πα α α α α α− −= − − − + − + − − −  (A.84) 

 
To obtain 3P , we will use the fact that: 
 

 ( )3 2 41P P P= − +  (A.85) 
 
Substituting the results of (A.84) and (A.39) into (A.85)  yields 
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( ) ( )
( ) ( ) ( ) ( )

2 2 2 1 2 2 1 2 2
3

2
1 2 3 4

11 4 4 1 2 4 tan 4 1 4 tan 1 2
4

         2 8

P α πα α α α α α

α θ β α β α β α β α

− −⎡ ⎤
= − − − − + − + − − −⎢ ⎥

⎣ ⎦
⎡ ⎤− −⎣ ⎦

(A.86) 

 
 

Interval V: 5
2

≤ ≤α 2  

   
 The overall situation for this case is shown in Figure A.9 below. In essence, the overlap 

between RP coverage areas is such that three or more RPs can be seen at all points 

throughout the area. Therefore, we see that: 

 0 1 2 0P P P= = =  (A.87) 

 
Figure A.9 Illustration of RP coverage areas for Interval V 

 
 
This being the case we will only need to focus on calculating 3P  and 4P . In order to do 

this, we will first depict the geometry and the variables we use in Figure A.10 below. 
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  Figure A.10 Illustrating the geometry that will be used in the calculation of the coverage 
probabilities for interval V. 

 
We first find the x-y coordinates of the point P1. Given that the arc 1 2OPP  is from the 

circle centered at (1,1), the coordinates are found to be: 

 1 0y =  (A.88) 

 2
1 1 1x α= − −  (A.89) 

 
Therefore 

 ( )1 1 23 1
6 tan tan 1

1
x xθ α− −−⎛ ⎞= = −⎜ ⎟

⎝ ⎠
 (A.90) 

 
We also observe that 6 7θ θ=  since the area is a square. Therefore, we have 

  

 ( )1 2
62 2 tan 1

2 2
π πγ θ α−= − = − −  (A.91) 

 
 
Now, we find the area of the circular sector bounded by the angle γ  as: 
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2

1 2Area of 
2

OPP Aγ
α γ

= =  (A.92) 

Since 6 7θ θ= , we can write 

 2
1 3 2 4

1Area of Area of 1
2TOPP OP P A α= = = −  (A.93) 

Referring to Figure A.9 and A.10, we can write 
 

 ( )3 1 2
4 T
P A Aγ= − +  (A.94) 

Substituting (A.92) and (A.93) into (A.94) and rearranging, we obtain: 
 

 2 2
3 4 4 1 2P α α γ= − − −  (A.95) 

and since 4 31P P= −  in this case, we have 
 

 2 2
4 3 4 1 2P α α γ= − + − +  (A.96) 

with γ given by (A.91). 

 



 86

Chapter 6 Effects of Node Density on QoE: 
Full Coverage 

 
In chapter 2, we presented the main concepts of node density and illustrated the 

relationship between node density, ρ , and the coverage factor, α . In chapter 3, we 

presented an evaluation of the QoE of LS, RWGH and CN algorithms for indoor 

geolocation purposes using the RT-based DME model and different node densities. We 

saw that CN algorithm had a very poor performance compared with the other 

algorithms, and we proposed a new algorithm, known as CN-TOAG, in chapter 4. We 

demonstrated that it can outperform LS and RWGH algorithms. We also proposed an 

extension to CN-TOAG, known as CMS, for the partial coverage scenario. The 

previous chapter presented a more analytical treatment of the partial coverage case. In 

this chapter, we present an analysis for the full coverage case, specifically focusing on 

both the effects of node density on QoE ([Kan06a]) as well as the relationship between 

the QoE and the Quality of Link (QoL) ([Kan06b], [Kan08a]).  

6.1 Full Coverage 
 

In this section, we assume that 2α ≥ , i.e. R is such that all the RPs can be 

observed at all points in the area and that ( )4 1P α = . In this case, there are two issues to 

be considered with respect to the QoE: 

1. Bipolar channel behavior: the indoor radio channel can suddenly switch from the 

DDP (i.e. pure multipath) state to the UDP state in a probabilistic manner, thereby 

introducing a lot of errors. This means that the Quality of Link (QoL) can change 
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dramatically. The statistical behavior of the QoE under such channel conditions 

needs to be characterized. 

2. Effects of Node Density ( ρ ): we need to characterize the effects of node density 

on the QoE given this bipolar channel behavior. 

The two remaining sections below are devoted to a discussion of these issues. 

6.2   QoE as a function of Reference Point (RP) Density  
 

We have previously noted in chapter 3 that given a fixed number of RPs, the 

performance of certain positioning algorithms tends to degrade as the size of the area to 

be covered is increased (i.e the RP density, ρ  as defined by (2.3) is decreased) 

[Kan04a]. This observation makes intuitive sense given that the DME depends on the 

actual distance (since the DP will be attenuated more as the distance between the RP 

and the user is increased). This will give rise to more distance measurement error 

(DME) which, in turn, will lead to degraded location estimation performance. 

Although the effects of RP density on QoE has been known, the exact functional 

relationship between these two quantities has not, to the best of our knowledge, been 

formulated to date. This raises a valid question: why is it important to characterize this 

relationship? The answer fundamentally lies in the fact that different indoor positioning 

applications have different QoE requirements. This implies that the RP densities 

required for the various application domains would be different. Knowledge of the 

functional relationship between RP density and QoE enables a system designer to figure 

out how many RPs are required to meet a given QoE target, thereby resulting in a cost-

effective network deployment ([Kan06a]). 
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The manner in which RP density affects positioning accuracy depends 

principally on two factors: the particular algorithm used for the location estimation, and 

the DME model. Our goal now is to explore these kinds of relationships for different 

geolocation algorithms, both to get an insight into their performance, and also to 

provide a useful tool for designers of indoor positioning networks. We use the LS and 

CN-TOAG algorithms for this study. In addition, we leverage the DME model based on 

UWB measurements [Ala05] in order to account for the existence of UDP conditions. 

 
The relationship between RP density and positioning accuracy has been studied, 

mainly for ad-hoc sensor networks. Savarese, Rabaey and Beutel have studied 

positioning in distributed ad-hoc sensor networks through cooperative ranging [Sav01]. 

The paper by Chintalapudi et al. studied the effects of density of RPs on ad-hoc 

positioning algorithms employing both distance and bearing measurements [Chi02]. In 

addition Patwari [Pat05] and Savvides [Sav05] have presented performance bounds as a 

function of node density, once again for sensor networks. 

While these works have identified the relationship between positioning accuracy 

and RP density, they have not explicitly presented that relationship mathematically. 

Also, the DME models used in these studies are generally very simple. In the study that 

follows, we seek to explore the functional dependency of the QoE (as expressed by the 

mean square error, or MSE) on RP density in the presence of DME models based on 

empirical measurements within actual indoor environments. 

As in the other performance evaluations, the general system scenario is as 

shown in Figure 3.2 . The important parameter that determines performance is not the 
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absolute number of RPs, but the ratio of the number of RPs to the area, as given by the 

parameter ρ , defined by (2.3). 

Here, we consider varying sizes of the room size, D, for each algorithm. By 

varying the room size while keeping the number of RPs fixed at each of the four 

corners, we evaluate the performance of positioning algorithms as a function of RP 

density in the scenario and also show the effect of system bandwidth on overall 

performance. We vary room size from 20m x 20m to 40m x 40m in two-meter 

increments in each dimension. Synchronization mismatch between the transmitter and 

receiver is assumed to be small, i.e. the indoor channel is the dominant source of errors 

in the distance measurements. For each algorithm, a total of 5000 uniformly distributed 

random user locations are simulated for different bandwidth values and for varying 

room dimensions. 

Once a user is placed randomly within the area, DME is added to the actual 

distance measurements from each RP in accordance with the UWB measurement-based 

DME model [Ala05]. The corrupted distance measurements are then fed into the 

positioning algorithm to get the position estimate. As noted in [Kan04b], the 

performance of the CN-TOAG algorithm is dependent on the size of the TOA grid, as 

determined by the the bin size, h, which for the purposes of this study, was fixed at 

0.3125 m. 

 
The results are shown in Figure 6.1 and Figure 6.2. From these figures, we can 

immediately see that as the node density is increased, the MSE decreases. This is an 

expected result, since a finer installation of the RPs will reduce the probability of the 
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occurrence of UDP conditions and hence will result in better positioning accuracy. 

Another key observation is that as the bandwidth of the system is increased, the 

estimation accuracy is also increased with the exception of 3 GHz. Increasing the 

system bandwidth provides a better time resolution, thereby ensuring accurate 

estimation of the TOA of the DP. However, increasing the bandwidth beyond a certain 

point (2000 MHz in this case) also gives rise to increased probability of UDP 

conditions; this is because the higher time resolution also means that the powers in the 

individual paths will be resolved, but that their individual powers will be less than their 

combined power [Ala05].  

3 4 5 6 7 8 9 10

x 10
−3

1

1.5

2

2.5

3

3.5

4

RP density (ρ)

M
S

E
 (

m
2 )

LS performance as a function of RP density at different bandwidths

500 MHz
1000 MHz
2000 MHz
3000 MHz

 

Figure 6.1 LS performance as a function of RP density 
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Figure 6.2 CN-TOAG Performance as a function of RP density 
 

In Figure 6.3, we compare the performance of LS and CNTOAG as a function of 

RP density using a system bandwidth of 2000 MHz. This bandwidth was arbitrarily 

selected, since it appears to be the bandwidth where both algorithms perform best. The 

results clearly indicate that CN-TOAG has better performance, particularly for higher 

values of ρ . Since CN-TOAG is based on the concept of a TOA grid, increasing ρ  (i.e. 

decreasing the area) for a fixed bin size h results in a smaller grid. This, in turn, places a 

much tighter bound on the positioning error for CN-TOAG. Particularly for values 

of 36 10ρ −≥ × , we can see that CN-TOAG provides an MSE that is about 5.6% lower, 

although this improvement factor will also depend on the bandwidth used. 
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Figure 6.3 Comparison of LS and CN-TOAG as a function of RP density 
 

By examining the results of the simulation, we can derive a mathematical 

relationship between RP density and MSE by applying a third order polynomial fit to 

the results. Our choice of the third order polynomial was simply influenced by the fact 

such a fit showed better agreement with simulation results than, say, a second-order fit. 

We have chosen to derive these relationships on the basis of Monte-Carlo simulations, 

rather than analytically, in order to be able to compare and contrast the performance of 

the LS and CN-TOAG algorithms. It is certainly possible to derive these relationships 

analytically for the LS algorithm, but not necessarily for CN-TOAG due to the 

complexity of the objective function. These relationships can be a valuable tool in 

determining the RP density for a required positioning accuracy. The third order 

polynomial is given as: 

 ( ) 3 2
3 2 1 0MSE a a a aρ ρ ρ ρ= + + +  (6.1) 
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where ia  ( { }0,1, 2,3i∈ ) denote the polynomial coefficients. Table 6-1 and Table 6-2 

show the coefficient values for the two algorithms. These values are dependent on the 

DME model used; however, we note that the DME model parameters are still 

representative of typical indoor environments. 

Table 6-1 Coefficients of the third degree polynomial for the LS algorithm 
 

Bandwidth, w 

       (MHz) 
3a  2a  1a  0a  

500 -1.20E+07 2.69E+05 -1.98E+03 7.7776 

1000 -4.53E+06 1.00E+05 -749.52 3.2647 

2000 -4.36E+06 93645 -662.95 2.4484 

3000 -1.72E+07 3.60E+05 -2427.4 7.8446 

 
 
 
Table 6-2 Coefficients of the third degree polynomial for the CN-TOAG algorithm 
 

Bandwidth, w 

       (MHz) 
3a  2a  1a  0a  

500 -1.15E+07 2.42E+05 -1771 7.0203 

1000 -4.61E+06 97736 -725.22 3.1171 

2000 -3.51E+06 76142 -557.93 2.2317 

3000 -1.04E+07 2.34E+05 -1728.7 6.4152 

 

A simple numerical example illustrates how these relationships could be used. 

Suppose we have a 900 m2 indoor area where we would like to implement an 

infrastructure-based indoor geolocation system using CN-TOAG at a bandwidth of 1 

GHz, and we would like the MSE to be no more than 1.5 m2. Referring to Figure 6.2, 
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we see that the corresponding value of ρ  should be no less than 0.004. Using our 

knowledge of the size of the area, the value of ρ  needed, and the definition of ρ  given 

in chapter 2, we see that we need to have a minimum of 4 RPs in order to ensure 

satisfactory performance. 

Since CN-TOAG appears to have better performance than LS, we have found it 

informative to characterize its performance in greater detail. Specifically, we see from 

Table 6-1 and Table 6-2 that the polynomial coefficients in equation (6.1) are dependent 

on the bandwidth; therefore, we have done another polynomial fit on these to derive 

relationships for the polynomial coefficients in terms of bandwidth. These relationships 

are presented below. 

 

3 2 4 7
3

5 3 2 2 5
2

7 3 2 3
1

10 3 6 2
0

( ) 0.0018 15 (3.3 10 ) (2.4 10 )

( ) ( 3.5 10 ) 0.3 (6.8 10 ) (5.1 10 )

( ) (2.5 10 ) 0.0021 4.9 (3.7 10 )

( ) ( 8.3 10 ) (7.5 10 ) 0.018 14

a w w w w

a w w w w

a w w w w

a w w w w

−

−

− −

= − + × − ×

= − × + − × + ×

= × − + − ×

= − × + × − +

 (6.2) 

 
 
The usage of these relationships allows us to determine the appropriate coefficients for 

the third degree polynomial in terms of the operating bandwidth. Thus we are able to 

determine a unique expression for the performance of the CN-TOAG as a function of 

the RP density, ρ , for that specific bandwidth.  

Another interesting observation from Figure 6.1 and Figure 6.2 is that as the RP 

density is increased by a factor of four (as we go from the origin to the maximum value 

on the x-axis), the MSE does not seem to improve by a factor of two, as might be 

expected, but on average by a factor of 1.54 for the LS algorithm, and about 1.77 for 
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CN-TOAG. It should be remembered at this point that we have used the DME model 

based on UWB measurements, which allows us to incorporate the UDP conditions into 

our evaluation. This fact could help explain our observation in the following way. At a 

fixed bandwidth, as the RP density is increased, the finer installation of RPs could help 

reduce the likelihood of UDP conditions, since the occurrence of UDP conditions 

depends on the actual distance; however, UDP conditions always exist at any distance 

with a nonzero probability of occurrence. As a result, even if the node density is 

increased, the occurrence of UDP conditions may introduce additional errors into the 

distance measurements, and thus prevent the QoE from improving by a factor of two 

when the RP density is increased by a factor of four.  This is an important observation 

in that the statistical behavior of the channel should also be considered when examining 

the effects of node density on the QoE for infrastructure-based indoor geolocation. All 

this now motivates us to more carefully examine the QoE as a function of the statistical 

behavior of the channel.  This is the subject of the following section.  

6.3 Statistical behavior of the QoE under Bipolar 
Channel Behavior: MSE Profile 

 

Due to the site-specific nature of indoor radio propagation, the very occurrence 

of UDP conditions is random and is best described statistically [Ala05]. That being the 

case, the QoE (i.e. location estimation accuracy) will also need to be characterized in 

the same manner. Different location-based applications will have different requirements 

for QoE. In a military or public-safety application (such as keeping track of the 

locations of fire-fighters or soldiers inside a building), high QoE is desired. In contrast, 
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lower QoE might be acceptable for a commercial application (such as inventory control 

in a warehouse). In such cases, it is essential to be able to answer questions like: “what 

is the probability of being able to obtain an MSE of 1 m2 from an algorithm x over 

different building environments that give rise to different amounts of UDP?” or “what 

algorithm should be used to obtain an MSE of 0.1 cm2 over different building 

environments?” Answers to such questions will heavily influence the design, operation 

and performance of indoor geolocation systems [Kan06b]. 

Given the variability of the indoor propagation conditions, it is possible that the 

distance measurements performed by some of the RPs will be subject to DDP errors, 

while some will be subject to UDP-based errors. The DDP/UDP errors can be observed 

in various combinations. To illustrate, consider the system scenario shown in Figure 

3.2. For example, the distance measurements performed by RP-1 may be subject to 

UDP-based DME, while the measurements performed by the other RPs may be subject 

to DDP-based DME; we can denote this combination as UDDD. Other combinations 

can be considered in a similar manner. 

Since the occurrence of UDP conditions is random, the performance metric used 

for the location estimate (such as the MSE) will also vary stochastically and depends on 

the particular combination observed. For the four-RP case shown in Figure 3.2, it is 

clear that we will have the following distinct combinations: UUUU, UUUD, UUDD, 

UDDD, and DDDD. Each of these combinations can be used to characterize a different 

Quality of Link (QoL) class. The occurrence of each of these combinations will give 

rise to a certain MSE value in the location estimate. This MSE value will also depend 
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on the specific algorithm used. There may be more than one way to obtain each 

DDP/UDP combination. If UDP conditions occur with probability udpP , then the overall 

probability of occurrence of the i-th combination, iP  (not to be confused with the 

coverage probability, which is generally shown as ( )iP α ), can be generally expressed 

as: 

 ( ) ,,

,
1 udp iudp i

N NN
i udp udp

udp i

N
P P P

N
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (6.3) 

 
where N is the total number of RPs (in this case four), and ,udp iN   is the number of RPs 

where UDP-based DME is observed. Combining the probabilities, iP , with the 

associated MSE values for each QoL class we can obtain a discrete CDF of the MSE. 

We call this discrete CDF the MSE Profile. We will now illustrate the use of the MSE 

Profile with examples, focusing on LS and CN-TOAG algorithms. 

We consider the system scenario in Figure 3.2 with D = 20 m for each 

algorithm. A total of 1000 uniformly distributed random user locations are simulated for 

different bandwidth values. In line with the FCC’s formal definition of UWB signal 

bandwidth as being equal to or more than 500 MHz [FCC02], we will present our 

results for bandwidths of 500, 1000, 2000, and 3000 MHz. For each bandwidth value 

we also simulate different QoL classes, specifically UUUU, UUUD, UUDD, UDDD, 

DDDD. Once a user is randomly placed in the simulation area, each RP calculates 

TOA-based distances to it. The calculated distances are then corrupted with UDP and 

DDP-based DMEs in accordance with the DME model based on UWB measurements as 

given in [Ala05]. The positioning algorithm is then applied to estimate the user location. 
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Based on 1000 random trials, the MSE is calculated for each bandwidth value and the 

corresponding combinations of UDP and DDP-based DMEs. The probability of each 

combination is also calculated in accordance with (6.3). 

 The results are shown in Figure 6.4 and Figure 6.5. These show the MSE 

Profiles for the LS and CN-TOAG algorithms respectively. From these plots, we 

observe that as the bandwidth increases from 500 MHz to 2000 MHz, the range of MSE 

Profile values gets smaller. This correlates with the findings of [Ala05], where it has 

been observed that the overall DME goes down over this specific range of bandwidths. 

Above 2000 MHz, however, the MSE Profile becomes wider as a result of increased 

probability of UDP conditions, which increases the overall DME. This, in turn, 

translates into an increase in the position estimation error for both algorithms. 
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Figure 6.4 MSE Profile for the LS algorithm. The system bandwidth is a parameter 
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Figure 6.5 MSE Profile for the CN-TOAG algorithm 
 

In order to gain further insight into the variation of the QoE across the different 

QoL classes, again considering bandwidth as a parameter, we have also plotted just the 

MSE, as shown in Figure 6.6. 

 

Figure 6.6 QoE variation across different QoL classses 
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Using the MSE Profile, we can gain insight into the MSE behavior of a given 

algorithm under varying amounts of UDP (i.e. different QoL classes) by calculating the 

mean and the variance of the MSE for a given bandwidth value. The results of these 

calculations are shown as a function of bandwidth in Figure 6.7 and Figure 6.8. These 

results clearly indicate that CN-TOAG can outperform LS as long as h is about· 0.3125 

m. In addition, there appears to be an optimal bandwidth for both algorithms where the 

average MSE is minimized. Our results indicate that this bandwidth value is 1000 MHz. 
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Figure 6.7 Average MSE comparison: LS vs. CN-TOAG 
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Figure 6.8 Variance comparison: LS vs. CN-TOAG 
 

Based on the results presented above, we find that the QoE behavior exhibited 

by both algorithms is in line with previously reported observations on DME behavior. 

Specifically, we see that the QoE increases from 500 MHz to 2000 MHz and then 

decreases as the bandwidth is increased to 3000 MHz. The reason for this is that at such 

high bandwidths, the multipath resolution capability of the receiver gets better; however 

the amplitude of the various paths goes down to the point where they are below the 

receiver sensitivity threshold. This might lead to the direct path not being detected 

properly, thereby giving rise to UDP conditions. This physical behavior manifests itself 

as a reduction in the mean and variance of the UDP-based DME up until 2000 MHz, 

and then an increase afterward. For the scenario and system bandwidths considered, we 

can see that CN-TOAG can outperform LS as long as the number of points in the grid 
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(as determined by the parameter h) is large enough. Specifically, we note that h needs to 

be about 0.3125 m for the case of a 20m x 20m area in order for CN-TOAG to 

outperform LS. We also observe that bandwidth of operation of both algorithms needs 

to be about 1000 MHz in order to guarantee optimal performance across different 

building configurations. 
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Chapter 7 Analysis of Performance Bounds 
 
In the previous chapters, we evaluated the performance of existing and new algorithms 

with different node densities, different types of coverage conditions (full vs. partial) in 

the presence of models to describe the channel behavior. In this chapter, our goal is to 

bring these concepts together under a common analytical framework for performance 

analysis. This framework is provided by the Cramer-Rao Lower Bound (CRLB). The 

CRLB is derived in the presence of the empirically derived UWB DME model that was 

briefly discussed in chapter 2. We present the preliminaries in section 7.1, and the 

bound derivation in section 7.2. In section 7.3, we compare the performance of the CN-

TOAG algorithm with the CRLB under various conditions. Following this, we present 

the CRLB as a function of node density for the full coverage case in section 7.4 and the 

partial coverage case in section 7.5.  

7.1 Cramer-Rao Lower Bound (CRLB): The Preliminaries 
 

The Cramer-Rao Lower Bound (CRLB) is a fundamental bound on the 

performance of an unbiased estimator [Van68]. It has been well-studied for the 

geolocation problem by a number of researchers, using the main geolocation metrics 

(AOA, TOA, RSS) as well as their combinations. It has been used in performance 

analyses for geolocation in other infrastructure-based wireless networks (such as 

cellular networks) as well as wireless ad-hoc sensor networks. A general overview of 

CRLB and its application to the geolocation problem are given by Gustafsson and 
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Gunnarsson [Gus05] and the references therein. A CRLB analysis for a cellular 

geolocation system using Received Signal Strength (RSS) as a location metric is 

presented in [Wei03], and a similar analysis for the TOA and Time Difference of 

Arrival (TDOA) case is given in [Spi01]. A comparison of the CRLB performance of 

the RT-TOA technique (a variant of TOA that does not require accurate synchronization 

between the transmitter and receiver) to the TOA and TDOA techniques is presented in 

[Mai07]. Other studies relating the CRLB to system parameters for cellular geolocation 

using TOA and TDOA metrics can be found in [Bot04a] and [Bot04b]. A comparative 

average performance analysis of TOA and TDOA techniques is presented in [Urr06]. 

For the case of ad-hoc wireless sensor networks, a CRLB analysis is presented in 

[Pat03] assuming the use of TOA and RSS as location metrics. A CRLB analysis 

specifically focusing on indoor wireless and ad-hoc sensor networks appears in [Als08].  

Another analysis for sensor networks that employ hybrid location estimation schemes 

such as TOA/RSS and TDOA/RSS is presented in [Cat04]. 

In the context of TOA-based indoor geolocation, we have a number of TOA 

measurements from each of the reference points (RPs), which are corrupted by noise as 

well as additive bias associated with the existence of multipath and UDP conditions. 

Recall that a TOA measurement,τ , is related to a distance measurement, d, through the 

relationship d c τ= × , where c is the speed of light. This observation model for the 

general case of N RPs covering an indoor area can be expressed as: 

 τ̂ = τ + n  (7.1) 
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where ( )1 2ˆ ˆ ˆ ˆ T
Nτ τ τ=τ is the vector of TOA measurements observed at the output 

of a matched filter receiver at the respective RPs, and ( )1 2
T

Nn n n=n  is a vector 

of independent zero-mean Gaussian noise samples  with variance 2
iσ (i=1,…, N), with 

([Qi06]) 

 2
2 2

1
8i

iR
σ

π β
=  (7.2) 

 
where iR is the signal-to-noise ratio at the receiver and β is the effective bandwidth of 

the system defined as 

 
( )

( )

22

2

2

f S f df

S f df
β

+∞

−∞
+∞

−∞

=
∫

∫
 (7.3) 

 
and ( )S f is the Fourier transform of the transmitted pulse used for the TOA estimation. 

Equation (7.3) can be simplified in certain circumstances [Qi03]. Specifically, we 

assume that the power spectrum is two-sided and approximately constant over a 

bandwidth [-W, W], i.e. 

 ( ) ( )2 2
0          S f S W f W≅ − ≤ ≤  (7.4) 

and that the power spectrum is normalized, i.e. 

 ( ) ( )2 2
1S f df s t dt

+∞ +∞

−∞ −∞

= =∫ ∫  (7.5) 

 
 which leads to 

 
3

Wβ ≅  (7.6) 
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The TOA measurements, ( )1 2
T

Nτ τ τ=τ , are subjected to various amounts of 

bias due to multipath and UDP conditions as expressed by 

 

 ( ) ( ) ( )2 21 1
i i i i i id x x y y

c c
τ ε ε⎛ ⎞= + = − + − +⎜ ⎟

⎝ ⎠
 (7.7) 

where ( ), T
i ix y represents the coordinates of the i-th RP and iε represents the bias value, 

which is assumed to be statistically independent for different values of i.  

7.2 CRLB Derivation for the DME Model based on UWB 
Measurements 

 
For the case of the empirical UWB measurement-based DME model in section 

2.4.2 ([Ala05]), the bias in the distance measurements is given by 

 , ,( , ) ( , )i i w w i UDP w UDP wK G m G mε σ ζ σ= ⋅ + ⋅  (7.8) 
with  
 

 ( )log 1i iK d= +  (7.9) 

We can therefore write the joint PDF of the bias values, ( )1 2
T

Nε ε ε=ε … as 

 ( ) ( )
1

i

N

i
i

p pε ε
=

=∏ε ε  (7.10) 

 
In equation (7.8), the first term represents the additive bias due to DDP and the second 

term represents the bias due to UDP.  In general, one has to estimate the unknown (but 

nonrandom) coordinates ( ), Tx y=r  as well as the set of unknown bias values, 

( )1 2
T

Nε ε ε=ε … . Therefore, the overall parameter vector, denoted by θ becomes 

 ( )1 2
T

Nx y ε ε ε
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

r
θ

ε
…  (7.11) 
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Note that since the statistics of ( )1 2
T

Nε ε ε=ε … are known through (7.10), the 

overall joint PDF of θ is also known and is given by 

 ( ) ( )p p=θ εθ ε  (7.12) 
 

In general, the CRLB for an unbiased estimator, θ̂ , of a parameter θ  is defined 

as: 

 ( )( ){ }ˆ ˆ T
E −≥ 1θ -θ θ -θ J  (7.13) 

 
where J is the Fisher information matrix (FIM). The FIM can be defined in two ways, 

depending on whether the a-priori PDF of the parameter vector, θ , ( )pθ θ , is known or 

unknown [Van68]. For the current analysis, the focus will be on the case where ( )pθ θ is 

known. In this case, the FIM is given by 

 D= + PJ J J  (7.14) 
where DJ  and PJ are the components of the Fisher matrix that correspond to the 

observations, and the a-priori parameter distribution respectively. They are specifically 

defined as 

 ( ) ( )ˆ ˆln ln
T

D E p p
⎡ ⎤∂ ∂⎛ ⎞⎛ ⎞= ⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

J τ θ τ θ
θ θ

 (7.15) 

 
where ( )ˆp τ θ  is the likelihood function of the measurements conditioned on the 

parameter vector and  

 ( ) ( )ln ln
T

P E p p
⎡ ⎤∂ ∂⎛ ⎞⎛ ⎞= ⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

θ θJ θ θ
θ θ

 (7.16) 
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As can be inferred from equation (7.8), there will be a certain amount of bias 

introduced to the TOA  measurements regardless of whether the channel profile is DDP 

or UDP. The reason for this is that in the indoor environment there is generally a very 

low probability of obtaining a direct LOS path between a transmitter and receiver for 

geolocation purposes [Pah02]. For this all-NLOS case, it has been shown that ([Qi03]) 

 2
1 T

Tc
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

D
HΛH HΛ

J
ΛH Λ

 (7.17) 

 
where H represents the geometric relationship between the actual user location and the 

RPs and is given by 

 [ ]2 N= 1H h h h…  (7.18) 

 

i

i
i

i

i

x x
d

y y
d

−⎡ ⎤
⎢ ⎥
⎢ ⎥=

−⎢ ⎥
⎢ ⎥
⎣ ⎦

h  (7.19) 

 and Λ represents the noise effects and is given by 

 ( )2 2 2
1 2 ... Ndiag σ σ σ− − −=Λ  (7.20) 

with noise variances 2
iσ defined in (7.2). 

 
Next, an expression for ( )pε ε is derived. First, note that the distribution of iε will be 

Gaussian in both DDP and UDP cases, with mean and variance given by 

 1 ,

2 , ,

if DDP
if UDPi

i M w i

i M w i U w

K
Kε

μ μ
μ

μ μ μ
=⎧

= ⎨ = +⎩
 (7.21) 

 

 
2 2 2
1 ,2

2 2 2 2
2 , ,

if DDP
if UDPi

i M w i

i M w i U w

K
Kε

σ σ
σ

σ σ σ
⎧ =⎪= ⎨ = +⎪⎩

 (7.22) 
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An important observation from (7.21) and (7.22) is that both 
iε

μ and 2
iε

σ are nonlinear 

functions of the actual distance, id , because of the iK  parameter defined in (7.9). Using 

(7.21), (7.22), (7.8), and (7.10) we can write 

 ( ) ( ) ( )2 2
1 2

2 2
1 1 21 2

1
exp exp

2 22 2

N
udp udpi i i i

i i ii i

P P
p

ε μ ε μ
σ σπσ πσ=

⎡ ⎤⎛ ⎞ ⎛ ⎞− − −
⎢ ⎥⎜ ⎟ ⎜ ⎟= − + −

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∏ε ε (7.23) 

 
Because of the structure of ( )pε ε , direct calculation of PJ is analytically intractable for 

the case of the DME model given by (7.8). Therefore, an alternative method of 

calculating PJ , and thus the CRLB is discussed next. 

First, we note that for each of the two “states” of the channel (DDP or UDP), 

iε has a Gaussian distribution, albeit with a different mean and variance for each case. 

For the set of N RPs, different QoL combinations can be observed at a given point. 

Referring again to the familiar four-RP scenario (reproduced for easy reference in 

Figure 7.1), we see that at a given point in the area, a total of 16 QoL combinations can 

be observed, which can be denoted as the set { }QoLS DDDD DDDU UUUU= . 

Each of these combinations refers to specific channel conditions that will give rise to 

various amounts of DME; for example, the combination DDUD refers to the case where 

we observe DDP-based error on the distance measurements from RPs 1, 2 and 4, but 

UDP-based error on the distance measurement from RP-3. It is clear that the total 

number of combinations is 2NM = , where N is the number of RPs. 
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Figure 7.1 Example scenario for infrastructure-based indoor geolocation 
 

Proceeding along these lines, we can see that for every combination in QoLS , 

( )pε ε  becomes a product of simple Gaussian PDFs, for which the PJ  matrix can be 

calculated. As an example, for the combination DDUU, we have 

 

( ) ( )

( )
1

2

2
1

1          = exp
22

i

N

i
i

N
i i

i ii

p pε ε

ε μ
σπσ

=

=

=

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟−

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∏

∏

ε ε

 (7.24) 

where 1i iμ μ= , 2 2
1i iσ σ=  for i=1,2 and 2i iμ μ= , 2 2

2i iσ σ= for i=3,4, where 1iμ , 2iμ , 2
1iσ , 

2
2iσ are as defined in equations (7.21) and (7.22). For the case of independent bias 

values with Gaussian distribution, it has been shown that PJ is of the form [Qi06]: 

 
⎡ ⎤

= ⎢ ⎥Ω⎣ ⎦
P

0 0
J

0
 (7.25) 

where 
 

 2 2 2
1 2

1 1 1
N

diag σ σ σ
⎛ ⎞Ω = ⎜ ⎟
⎝ ⎠

 (7.26) 
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It is clear that each combination in QoLS will changeΩ , thereby giving rise to a different 

PJ  matrix at a given point. This will also be the case for DJ  matrix as well for the 

following reason. Since UDP conditions typically occur at the edges of the coverage 

area, or in areas where coverage from a given RP is uncertain, it is also conceivable that 

the SNR of the received signal under UDP conditions will be a lot lower than in the 

case of DDP conditions. Since noise variance values on the Λmatrix in equation (7.20)  

depend on the SNR, it is clear that the different combinations in QoLS will change the Λ  

matrix, and therefore give rise to a different DJ  matrix at a given point for each 

combination in QoLS . The net result of all this is that there will be a different value of 

the CRLB for each QoL combination. Specifically, the value that is of practical interest 

is the so-called Root Mean Square Error (RMSE), which is simply the square root of the 

trace of the first 2x2 diagonal sub-matrix within the inverse of the FIM, i.e. 

 { }1 2 2
,min ,min2 2 x yRMSE tr σ σ−

×
⎡ ⎤= = +⎣ ⎦J  (7.27) 

 
In the second stage of the analysis, the statistics of UDP occurrence are 

incorporated by using them to calculate the probability of each combination, iP , in the 

set QoLS . This is done under the assumption that the links between each RP and the user 

are statistically independent, i.e. the probability of UDP occurrence on the link between, 

say, RP i and the user does not alter the probability of UDP occurrence on, for example, 

the link between RP j and the user. This is a reasonable assumption, since radio 

transceivers in most indoor wireless networks are typically placed far enough apart to 

minimize interference.  Here, one has to be cognizant of the fact that at a given point, 
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,udp wP  will not necessarily be the same across all RPs. The reason for this is that ,udp wP  at 

a given point is dependent on the actual distance as detailed in [Ala05]. 

Combining the probabilities, iP ,  of each combination together with the CRLB 

value, denoted by iRMSE , for each combination, it is possible to construct the discrete 

PDF of the CRLB at a given point. Once this distribution is obtained, it is possible to 

calculate, for example, the average value of the RMSE at a given point over all the 

combinations as 

 
1

( )
M

av i i
i

RMSE P RMSE
=

=∑  (7.28) 

 
Intuitively, the average RMSE value calculated in (7.28) will give an idea of what the 

average theoretically optimal estimation performance is likely to be at a given point 

over all possible QoL combinations. Figure 7.7 shows a sample discrete PDF of the 

CRLB at a point (12,12) within a 20m x 20m area at a bandwidth of 1000 MHz, as well 

as the calculated values of avRMSE at that same point as a function of bandwidth. These 

results clearly indicate the general trends on the estimation errors as a function of 

bandwidth. We note the increase in avRMSE as the system bandwidth is increased from 

2000 to 3000 MHz; this is due to increased likelihood of UDP conditions.   
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                          (a)     (b) 
 

Figure 7.2 (a) Discrete PDF of the CRLB at a given point, (b) Average RMSE as a function of 
bandwidth 

 
Some sample results of the CRLB for different bandwidths and QoL 

combinations over a 20m x 20m area are shown in Figure 7.3 and Figure 7.4. We can 

make two observations. First, increasing the bandwidth may reduce the CRLB by a 

factor that depends on the geometry between the user location and the RP locations. 

This is not to say, however, that increasing the bandwidth indefinitely will translate to 

better performance, since the UWB measurements have also revealed that increasing the 

bandwidth beyond 2000 MHz will result in increased likelihood of UDP conditions, and 

may actually degrade performance [Ala05] at a given point. This behavior can also be 

seen from the average RMSE results of Figure 7.2b. Second, having only one 

measurement with UDP conditions can degrade performance quite noticeably, 

sometimes by as much as 20% on average across the whole area, depending on 

geometry. This implies that two factors are absolutely critical for accurate 

infrastructure-based indoor geolocation: 

1. Accurately identifying UDP-based distance measurements, 
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2. Excluding them from the geolocation process or correcting these measurements 

through preprocessing before use. 

 

(a) (b) 

Figure 7.3 CRLB Calculations over a 20m x 20m area with 4 RPs at a bandwidth of 500 MHz: (a)    
                   All-DDP (DDDD) case, (b) 3-DDP, one-UDP (DDDU) case 

 

   (a)      (b) 
Figure 7.4 CRLB results over a 20m x 20m area with 4 RPs at a bandwidth of 1000 MHz: (a)    
                   All-DDP (DDDD) case, (b) 3-DDP, one-UDP (DDDU) case 

7.3 Comparison of CN-TOAG Performance with the CRLB 
 

With the above analytical infrastructure in place, it is now possible to undertake 

a performance comparison of the CN-TOAG algorithm first proposed in chapter 4 with 

the CRLB. In the existing literature, the traditional method of doing this for the two-

dimensional case is via the concentration ellipse ([Tor84], [Van68]), also referred to as 
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the uncertainty ellipse by some authors ([Wil05], [Mos03]). Under the assumption that 

estimation errors are jointly Gaussian, the concentration ellipse basically gives an idea 

about the spread of estimation errors with respect to the true value of the parameter 

being estimated. If the estimation errors, [ ]1 2
T

Ne e e=e , are jointly Gaussian, 

then their joint PDF is given by: 

  

 ( )
( )

1
/ 2 1/ 2
1 1exp

22
T

Np
π

−⎛ ⎞= −⎜ ⎟
⎝ ⎠

e e
e

e e R e
R

 (7.29) 

where eR  is the covariance matrix of e. The equal-probability contours are then 

described by ([Van68]) 

 1T κ− =ee R e  (7.30) 
which is actually the equation of an ellipse when N = 2, and is known as the 

concentration ellipse. An interesting property of these ellipses is that the probability, Pe , 

that e lies inside any one of them is only a function of κ , i.e. 

 1 exp
2

P κ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

e  (7.31) 

 
A proof this property can be found in [Van68]. 

Equation(7.31), then, allows the concentration ellipse to be calculated for any desired 

probability, Pe , by solving for the corresponding value of κ , i.e.  

 ( )2ln 1 ePκ = − −  (7.32) 
  
These ideas are now used to compare the performance of the CN-TOAG algorithm with 

the CRLB. The first step is to calculate the eigenvalues of the following 2 x 2 sub-
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matrix within the inverse of the FIM that include the minimum error variances in the x 

and y directions [Tor84]: 

 
2
,min ,min

2
,min ,min

x xy
CRLB

xy y

σ σ
σ σ
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

P  (7.33) 

 
and since CRLBP  is a covariance matrix, it is nonnegative-definite and thus will have two 

real, non-negative eigenvalues ([Str88]), which are denoted by 1λ  and 2λ . The two 

eigenvalues are: 

 ( ) ( )22 2 2 2 2
1 ,min ,min ,min ,min ,min

1 4
2 x y x y xyλ σ σ σ σ σ⎡ ⎤= + + − +⎢ ⎥⎣ ⎦

 (7.34) 

 

 ( ) ( )22 2 2 2 2
2 ,min ,min ,min ,min ,min

1 4
2 x y x y xyλ σ σ σ σ σ⎡ ⎤= + − − +⎢ ⎥⎣ ⎦

 (7.35) 

 
 These eigenvalues help determine the semi-major and semi-minor axis of an ellipse in 

2-dimensional space given by 1κλ and 2κλ respectively, with κ being defined as in 

(7.32) [Tor84]. The same procedure could also be used to derive the concentration 

ellipse for CN-TOAG, with the slight modification that the covariance matrix, CN TOAG−P , 

needs to be derived empirically from the results of Monte-Carlo simulations. Since the 

CN-TOAG estimator is actually a numerical technique for minimizing an objective 

function (see chapter 4 for details), it is not possible to derive a closed-form analytical 

expression for its covariance matrix. 

With all this said, it is now possible to provide objective answers to the 

following questions.  How does the CN-TOAG performance compare against the 
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theoretically optimal performance as expressed by the CRLB for different QoL 

conditions? And how do parameters like bandwidth influence the performance? 

 To begin to answer these questions, scatter plots are shown Figure 7.5  for the 

case of 500 and 1000 MHz bandwidth in a 20m x 20m room, and for the case of four 

RPs, with the RPs deployed in a grid configuration as shown in Figure 7.1. The actual 

user location is assumed to be (18,18), and the QoL in all links is assumed to DDP. The 

dots represent CN-TOAG estimates that are obtained from 1000 Monte-Carlo trials and 

the red ellipse represents the concentration ellipse based on 90%e =P , i.e. the region in 

which 90% of the estimates will lie. The CN-TOAG results are based on a TOA grid of 

bin size, h = 0.1 m.  

 

(a) (b) 
 

Figure 7.5 Scatter plots of CN-TOAG performance vs. CRLB for the all-DDP case: (a) 500 MHz, 
(b) 1000 MHz  

 

Our initial observation from these results is that as the bandwidth increases, the 

CN-TOAG estimates have less spread with respect to the concentration ellipse. This is 
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due to the fact that all the links are assumed to be DDP in this case, so that the overall 

DME will decrease as the bandwidth is increased.  Another set of results for the case 

with a single measurement with UDP-based DME is shown in Figure 7.6 below. Here, 

we clearly see that the size of the bound concentration ellipse because the variance of 

the DME increases. As a result of this increase in the DME variance, CN-TOAG 

estimates also show more spread with respect to the concentration ellipse for the same 

bandwidth. 

 

   (a)             (b) 

Figure 7.6 Scatter plots of CN-TOAG performance vs. CRLB for the case of UDP-based DME in 
the measurement set: (a) 500 MHz, (b) 1000 MHz  

 
In order to quantify more precisely how the performance of CN-TOAG 

compares against the CRLB, 90% concentration ellipses are shown in Figure 7.7(a) for 

the case of 500 MHz in a 20m x 20m room being covered by four RPs. The user is 

again assumed to be at (18,18) so the bound calculations are performed on that 

particular one point. The QoL on all four links is assumed to be DDP and the SNR on 

the DDP links, ddpR , is arbitrarily assumed to be 10 dBddpR = . The orientation of the 
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ellipses (i.e. the angle the major axis makes with the x axis) for the algorithm and the 

bound are slightly different owing to the different amounts of cross-correlation values in 

the covariance matrices for the two cases. However, it can be clearly seen that the area 

covered by the 90% concentration ellipse for CN-TOAG exceeds that of the bound 

ellipse. To see this more clearly, the ellipses are redrawn in Figure 7.7(b) such that the 

major axis of the bound ellipse and the ellipse for the algorithm are oriented the same 

way. In this manner, we can see that the area of the concentration ellipse exceeds that of 

the bound ellipse. This is an example of the general property of the concentration 

ellipses in that any unbiased estimator of a parameter will produce a concentration 

ellipse that lies either outside or on the bound ellipse [Van68].  

 

 

  (a)      (b) 

Figure 7.7 Comparison of the 90% concentration ellipses on the CRLB vs. the CN-TOAG 
algorithm: (a) the ellipses. (b) ellipse for the algorithm reoriented with respect to the 
bound ellipse.  

 

The larger concentration ellipse for the algorithm means that 90% of the 

estimates obtained are likely to be spread out over a larger area than an efficient 
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estimate (i.e. an estimate which satisfies the CRLB with equality, also known as a 

maximum-likelihood estimate), thereby implying larger variance in the estimation error. 

This is intuitively satisfying, since the goal behind the CRLB analysis is to understand 

what the theoretically optimum estimation performance is for a given observation 

model.  

In order to explore how the CN-TOAG performance at a given point varies with 

respect to the CRLB and bandwidth, some further results are shown in Figure 7.8 and 

Figure 7.9, with the user again assumed to be located at point (18,18) in a 20m x 20m 

room. The axis of the ellipse for the algorithm is again rotated with respect to the bound 

ellipse, simply to highlight the fact that the ellipse for the bound is smaller in size than 

the ellipse for the algorithm. An important observation from the results of Figure 7.8 is 

that for the all-DDP case, the concentration ellipse for CN-TOAG approaches the bound 

ellipse as the bandwidth increases. This trend can also be observed in the case of 2000 

and 3000 MHz, as can be observed from Figure 7.9. All this implies that for the all-

DDP case, CN-TOAG can become an asymptotically efficient estimate as the 

bandwidth increases, although the degree of efficiency will also depend on the 

geometric relationship between the user location and the RP locations as well.  
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(a)                                                                       (b) 
Figure 7.8 Comparison of the CN-TOAG vs. CRLB (all-DDP case) in a 20m x 20m area: (a) W = 

500 MHz (b) W = 1000 MHz 

 
   (a)     (b) 
Figure 7.9 Comparison of the CN-TOAG vs. CRLB (all-DDP case) in a 20m x 20m area: (a) W = 

2000 MHz (b) W = 3000 MHz 
 

In order to get a more objective idea of how well CN-TOAG performs relative to 

the CRLB, we define the following measure of relative efficiency, Eβ , as: 

 
lg

CRLB
E

a

A
A

β =  (7.36) 

where lgaA  is the area of the concentration ellipse for the algorithm under consideration 

(in this case, CN-TOAG) at a given point and CRLBA  is the area of the concentration 

ellipse corresponding to the CRLB at that same point. Obviously, for an efficient 

estimate (i.e. one that satisfies the CRLB with equality), 1Eβ = , and as the algorithm 

produces estimates that are less efficient, Eβ starts to take on values that are less than 
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one. On the basis of the results presented in Figure 7.8 and Figure 7.9, the values of  

Eβ have been calculated and are plotted as a function of bandwidth as shown in Figure 

7.10 below. On the basis of Figure 7.10, we can make some quantitative observations 

concerning the effects of bandwidth on relative efficiency. For example, we can see that 

as the bandwidth is increased from 500 to 1000 MHz, Eβ values increase by about 25%, 

thereby implying that CN-TOAG performance approaches that of the most efficient 

estimate by about 25% when the bandwidth is doubled. The flat part of the curve in the 

region between 2000 and 3000 MHz is due to the fact that for these bandwidths, the 

DDP error takes on very small values [Ala05]. Therefore, increasing the bandwidth 

beyond 2000 MHz will not necessarily provide a performance advantage for the CN-

TOAG algorithm for the all-DDP case. 

 

Figure 7.10 Relative efficiency of CN-TOAG as a function of bandwidth (all-DDP case) 
 

Next, the effects of bias due to UDP conditions on CN-TOAG performance and 

specifically the relative efficiency are examined. As identified in [Ala06a], UDP 

conditions introduce major errors into the TOA-based distance measurements. In 

addition, the likelihood of occurrence of UDP conditions increases as the bandwidth 
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increases. In order to put matters in perspective, the next set of results will focus on the 

same scenario as before, but this time with only one out of the four RPs subjected to 

UDP-based DME. Figure 7.11 and Figure 7.12 show the algorithm and bound ellipses 

for the case of a user located at (18,18) in a 20m x 20m room, at bandwidths of 500, 

1000, 2000, and 3000 MHz. For this set of results, the SNR for the DDP links is again 

assumed to be 10 dB. We also take the SNR for the UDP link as 10 dBudpR = − ; this is 

a reasonable assumption, since UDP conditions generally occur in cases where there is    

signal blockage due to objects and thick walls [Ala06b].  

 

(a) (b) 

Figure 7.11 Comparison of CN-TOAG vs. CRLB for the 3-DDP, 1-UDP case in a 20m x 20m area: 
(a) w=500 MHz, (b) w=1000 MHz 
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 (a)    (b) 

Figure 7.12 Comparison of CN-TOAG vs. CRLB for the 3-DDP, 1-UDP case in a 20m x 20m area: 
(a) w=2000 MHz, (b) w=3000 MHz 

 
Similar to the analysis for the all-DDP case, we now calculate and plot the 

values of Eβ as a function of bandwidth, as shown in Figure 7.13. An important finding 

from these results is that CN-TOAG does not become more efficient as the bandwidth is 

increased if there are distance measurements in the set that are corrupted by UDP-based 

error. This is due to the fact that variance of the UDP-based DME actually increases as 

the bandwidth is increased, especially for bandwidth values greater than 1000 MHz 

[Ala05]. 

 

Figure 7.13 Relative efficiency of CN-TOAG vs. CRLB (3-DDP, 1-UDP case) 
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7.4 Effects of Node Density on the CRLB: Full Coverage Case 
 

It is a well-known fact that geolocation performance is impacted by the number 

of distance measurements available. This is especially critical in the indoor 

environment, where the probability of obtaining a direct line of sight (DLOS) path to an 

RP is much lower than in the outdoor case, depending on the particulars of the building 

material, furniture, people and so on. In such a NLOS environment, it has already been 

shown that having more distance measurements will provide higher geolocation 

accuracy for a given standard deviation of DME [Qi03]. Therefore, it is critical to study 

the effects of node density, and more specifically RP Density on the performance of 

infrastructure-based indoor geolocation systems.  

As given in [Kan06a], RP density, ρ , is defined as the number of RPs (N) per unit 

area (A): 

 N
A

ρ =  (7.37) 

The focus will now be on calculating the CRLB as a function of ρ . The definition of 

ρ implies that it is necessary to come up with one value of the CRLB that would 

characterize an entire indoor area for a given value of ρ . Since the value of the CRLB 

at a given point is also dependent on the geometric relationship between the RPs and the 

user, one needs to “average out” the effects of geometry. The way this is done is as 

follows. First a large number, L, of random user locations are simulated through Monte-

Carlo methods. The user locations are uniformly distributed over the indoor area. At 

each of these points, the CRLB for each possible QoL combination is calculated. 
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Focusing on the first diagonal 2x2 CRLB sub-matrix, an average of the variances in the 

x and y direction at each point is calculated as 

 2 2
, , ,

1

M

x av k j x jk
j

Pσ σ
=

=∑  (7.38) 

 2 2
, , ,

1

M

y av k j y jk
j

Pσ σ
=

=∑  (7.39) 

 
where 2

,x jkσ  and 2
,y jkσ  are the computed variances in the x and y directions for the j-th 

combination at the k-th point (k=1,..L) respectively and M is the number of QoL 

combinations. Finally, in a similar fashion to [Sav05], an average root mean square 

error (RMSE) value for the whole area (averaged over the geometry and the particular 

QoL combinations) is calculated as: 

 ( )2 2
, , , ,

1

1 L

area x av k y av k
k

RMSE
L

σ σ
=

= +∑  (7.40) 

The results of this calculation are as shown in Figure 7.14. Based on these results, two 

important observations can be made. First, regardless of the bandwidth, increasing the 

RP density beyond a certain point will not necessarily translate to better performance. A 

similar observation was made within the context of ad-hoc sensor networks in [Sav05]. 

The second observation is that increasing the bandwidth beyond a certain value (2000 

MHz in this case) actually results in a worsening of performance (as indicated by the 

increase in CRLB values). We also note that these results are somewhat 

counterintuitive, considering some of the previously published results in [Gez05], which 

indicated that the CRLB values decrease with increasing system bandwidth. The main 

reason for this discrepancy is channel behavior, specifically the increased likelihood of 

UDP conditions at the higher bandwidths, which are not accounted for in [Gez05]. This 
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result highlights why the relationship between the node density and QoE is not a simple 

one, as the physical behavior of the channel (particularly as related to the effect of 

bandwidth) also has a part to play in the determination of the QoE, and therefore needs 

to be considered. 

 

Figure 7.14 CRLB as a function of the RP density: full coverage case 
 

7.5 Effects of Node Density on the CRLB: Partial Coverage 
Case 

 
As previously stated in chapter 5, fading in the indoor radio channel will 

sometimes cause radio coverage issues. As a result, it may not be possible for a user to 

contact some or all of the RPs at a given point. From a geolocation perspective, this 

means that the number of RPs that can contact the user and perform distance 

measurements will not always stay the same at a given point. This, in turn, implies that 

geolocation accuracy at a given point is also a function of the probability, KP , of being 

able to obtain distance measurements from a certain number, K, of RPs where  K ≤ N. In 

a TOA-based geolocation scenario, the minimum value of K needs to be three in order 
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to locate the user uniquely. The objective now is to gain some basic intuition as to how 

this probability would affect the CRLB. This will be done in terms of the coverage 

probabilities, ( )KP α , that were first discussed in section 5.2. 

Since three distance measurements from three RPs are needed in order to locate a 

user uniquely, we focus on those values of α that will result in three RPs or more being 

observed at a given indoor area. As can be seen from Figure 5.2, the appropriate 

intervals of α are 5
2

≤ ≤α 2 (interval V in section 5.2) andα ≥ 2 (interval VI in 

section 5.2), since 0 1 2 0P P P= = = . We can therefore show that for 5
2

≤ ≤α 2 (see 

Appendix 5.A at the end of chapter 5 for details): 

 ( ) 2 2
3 4 4 1 2P α α α γ= − − −  (7.41) 

 ( ) 2 2
4 3 4 1 2P α α α γ= − + − +  (7.42) 

where 

 ( )1 22 tan 1
2
πγ α−= − −  (7.43) 

 

Figure 7.15 Illustrating the coverage issues for indoor geolocation 
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The relationship betweenα and the CRLB is evaluated in the following manner. 

Similar to the methodology of the previous section, a number of random user locations 

is simulated to “average out” the effects of geometry on the bound values. Then 

the areaRMSE for the whole area is calculated, in the same manner as the previous 

section, for the case of three and four RPs. Then an average RMSE is calculated for the 

whole area as a function of α using the relation: 

 ( ) ( ) ( )3, 3 4, 4w wRMSE RMSE P RMSE Pα α α= +  (7.44) 
where 3,wRMSE and 4,wRMSE represent RMSE values over the whole area 

corresponding to three and four RPs respectively, with the subscript w denoting 

bandwidth dependence, since the RMSE depends on the DME, which in turn depends 

on the system bandwidth. 

The results of this calculation are as shown in Figure 7.16. An important trend 

that can be observed from this plot is that for a given value ofα , the value of the CRLB 

goes down until about 2000 MHz and then comes back up at 3000 MHz, indicating a 

worsening of performance. This is consistent with the observations of [Ala06a], where 

it is noted that increasing the bandwidth beyond 2000 MHz results in an increased 

likelihood of UDP conditions. The CRLB results clearly indicate that the amount of 

UDP-based DME is so much that even introducing additional RPs and distance 

measurements (by increasing the value of α ) does not help remedy the situation, since 

the CRLB results remain above those for the 500 MHz value.  
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Figure 7.16 CRLB as a function of RP density: partial coverage case
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Chapter 8 Conclusions & Future Work 
 

In this chapter, we summarize the main findings of this dissertation and outline 

some directions for future work. The findings of the dissertation are summarized in 

section 8.1 and directions for future work are given in section 8.2. 

8.1 Conclusions 

In this dissertation, we investigated the effects of node density on the quality of 

estimation for infrastructure-based indoor geolocation using TOA. Specifically, we 

have developed a framework for evaluation of the performance of infrastructure-based 

indoor geolocation using different algorithms, different node densities and fundamental 

bounds on performance. We have done this in the presence of distance measurement 

error (DME) models recently proposed in the literature [Ala06a], and which are based 

on ray-tracing (RT) as well as empirical measurements in the UWB regime. The main 

objective of the research effort was to explore the interrelationship between node 

density, algorithms, channel behavior, and quality of estimation (QoE) statistics. 

We began this investigation by defining the system scenario and the node 

density and coverage factor in chapter 2. In chapter 3, we examined the QoE for 

existing geolocation algorithms (LS, RWGH and CN) in the presence of the RT-based 

DME model. Our main findings were as follows. Regardless of the bandwidth used, the 

CN algorithm exhibited estimation errors that were 2.5-8 times higher than LS or 

RWGH algorithms, depending on the system bandwidth. This was due to the crude 
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manner in which the CN algorithm obtained the location estimate. We also observed 

that regardless of the bandwidth, channel scenario or the algorithm under consideration, 

the QoE was degraded by an approximate factor of two when the node density was 

decreased by a factor of four. 

Based on these results, we proposed a new geolocation algorithm based on 

pattern-recognition principles, known as CN-TOAG in chapter 4. This algorithm, unlike 

many pattern-recognition algorithms did not require extensive measurement databases 

or other types of training. We also proposed an extension to this algorithm to cover the 

partial coverage scenario, known as CMS.  We evaluated its performance in the 

presence of the RT-based DME model. We found that CN-TOAG performance is 

determined by the spacing between the TOA grid points. Closer spacing of the grid 

points will put a tighter bound on the positioning error. We found, however, that 

decreasing the spacing between the grid points (i.e. increasing the size of the grid) 

beyond a certain value did not necessarily enhance the QoE. For the system scenarios 

we considered, this value was about 1.25 m. We also observed that CN-TOAG can 

outperform the LS and RWGH algorithms. While the exact amount of performance 

difference will differ depending on the bandwidth used, we saw that CN-TOAG can 

outperform LS and RWGH by as much as 38% and 12% respectively. For the partial 

coverage case, we found that the CMS algorithm had the best performance when the 

radius of coverage was roughly of the order of the size of the area, i.e. when the 

coverage factor 1α ≈ .   
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Next, we presented an in-depth analysis of the partial coverage effects in chapter 

5. We then did a more in-depth analysis of the effects of node density on QoE in chapter 

6 for the full coverage case. We came up with explicit mathematical relationships to 

quantify the QoE as a function of different node densities in the presence of the DME 

model based on UWB measurements. We also characterized the statistical variation of 

the QoE as a function of quality of link (QoL) conditions with this same DME model. 

We found that CN-TOAG can have a higher QoE than the LS algorithm for a given 

node density depending on the size of the TOA grid.  Specifically, we observed that 

depending on the system bandwidth used, CN-TOAG provides an MSE that is roughly 

5.6% lower for values of 36 10ρ −≥ × . 

Finally, in chapter 7, we presented an analysis of the fundamental bounds 

associated with QoE. We did this within the framework of the CRLB. We presented 

derivations of the CRLB considering the DME model based on UWB measurements. 

We then used our results to gauge the performance of the CN-TOAG algorithm. We 

also presented results on the variation of the CRLB as a function of node density. We 

observed that, depending on the geometric relationship between the reference points 

(RPs) and a given user location, the CRLB could increase by almost 20% across an 

entire area because of a single occurrence of UDP conditions in the measurement set. 

This finding indicates that even a single occurrence of a distance measurement with 

UDP-based error can cause major performance degradation. It also allows us to 

conclude that indoor geolocation algorithms must have the capability to (1) detect the 

existence of UDP conditions in the measurement set, and (2) to either correct them or 
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exclude them from the location estimation process.  For the case where no UDP 

conditions are present, we saw that CN-TOAG can become a relatively more efficient 

estimator as the bandwidth is increased, although the degree of relative efficiency will 

also depend on the geometric relationship between the user location and the RP 

locations. However, CN-TOAG can fail to be relatively more efficient with increasing 

bandwidth if UDP conditions are present, due to the significant amount of additional 

error introduced by UDP conditions. Regardless of the bandwidth, we observed that 

increasing the node density, ρ , beyond a certain point did not result in lower values of 

the CRLB. For the system scenarios we considered, this value of ρ  was found to be 

approximately 36 10−× .  This implies that there is a fundamental limit to the 

performance improvement that can be obtained by merely increasing the RP density. 

8.2 Future Work 

There are several directions in which this work could be extended. We outline 

some suggestions below: 

• Performance analysis of the CMS algorithm in chapter 4 could be further enhanced 

by looking at the estimation error for each value of α and breaking it down to see 

how much of the error is attributable to distance measurements from a single RP, 

two RPs and so on. 

• The complexity of the CN-TOAG algorithm could be reduced if the search for the 

minimum on the TOA grid can be done more intelligently. This could, for example, 
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be done by also using RSS information to narrow down the set of possible locations 

to a smaller area on the grid before launching the CN-TOAG algorithm. 

• The general formulation of the likelihood function for the DME model based on 

UWB measurements will have a bimodal distribution composed of two Gaussian 

distributions. Estimating the parameters of this distribution, possibly through a 

technique such as expectation-maximization (EM), could result in new classes of 

algorithms for infrastructure-based indoor geolocation. 

• The CRLB analysis in chapter 7 has indicated that even a single distance 

measurement affected by UDP can cause substantial degradation in performance. 

Therefore, it is absolutely critical that any indoor geolocation algorithm incorporate 

the capability to identify the presence of UDP conditions in the measurements and 

either correct them or exclude them from the location estimation process. Correction 

of distance measurements affected by UDP conditions prior to use is an interesting 

area of study and could vastly improve the performance of existing as well as new 

algorithms; some research on this initiative has been reported [Ven04]. It would be 

worthwhile to apply such concepts to realistic indoor channel models. An 

investigation of the existing algorithms as well as CN-TOAG with UDP 

identification capability is needed. 
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