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ABSTRACT

Document series created over time is a prevalent data type in many domains,

from healthcare to social media. A representative example of this type of data is

clinical notes of a patient taken across time throughout the patient’s hospital stay.

These clinical notes correspond to hierarchical sequences of words and documents

accompanied by the time information and other external attributes at each level of

the hierarchy. Here, while the primary source of information is the nested word and

document sequences, relevant meta-data, such as the creation time of documents

or the patient’s age, are also vital for accurately modeling these clinical notes.

In the first half of my dissertation, I design attention-based neural network

models for modeling document series accompanied by time information. More

particularly, I first focus on classifying hierarchical attributed sequences where

categorical information is associated with different levels of the document hierarchy.

To handle this, I propose HAC-RNN, composing of multiple Recurrent Neural

Network (RNN) layers and an attributed hierarchical attention mechanism where

each attention layer is conditioned on the external attributes. In HAC-RNN

architecture, RNNs and attention layers are stacked hierarchically to account for

the order of both words and documents. While the bottom layer of HAC-RNN is

responsible for contextual summarization of the document content, the top layer

considers the entire timeline and learns to concentrate on only the most relevant

documents.

Second, with the observation that not just the sequential order, but the exact

time-stamps at which documents are generated contains critical predictive power, I

design a time-informed dual attention mechanism, TEND-LSTM. When classifying

document series, TEND-LSTM learns how much attention to put on each document

based on the content and time of creation independently. Then it learns to combine

these two to generate final attention scores.

While these attention-based architectures are successful in classifying documents,

it is not trivial to show that these models also achieve interpretability. Frequently,



iv

to incorporate interpretability and account for long-term dependencies, attention-

based neural architectures (e.g., attention paired with Recurrent Neural Networks,

Transformer-based Networks) are used for modeling textual data. Despite extensive

use, “correctness” and “interpretability” of the implicitly-learned attention weights

have only been assessed qualitatively by visualizing a few hand-selected examples.

Yet, designing interpretable models is of utmost importance in many domains.

With this motivation, in the second half of my dissertation, I focus on dissecting

and increasing the interpretability of attention-based neural networks.

To this end, I first investigate whether the common claim that attention mecha-

nism increases model interpretability is correct by assessing how human-like are

the explanations generated by a variety of attention mechanisms. I design a user

study to collect “human attention maps” through crowd-sourcing for the publicly

available Yelp Restaurant Review dataset. These human-attention maps are then

utilized to quantitatively measure the similarity of human and machine-generated

attention via novel similarity metrics specifically designed for this task.

Finally, extending the conclusions made from attention-similarity and using the

collected human attention maps, I design a human-guided attention mechanism. The

proposed human-guided attention mechanism learns to combine machine-inferred

attention with human intuition to achieve improved classification performance and

offer human-like reasonings for model predictions concurrently.
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Chapter 1

Introduction

1.1 Deep Learning for Text Classification

With the advent of deep learning, the ways we process and utilize textual

data for machine learning tasks has changed immensely. Especially with the

developments in Recurrent Neural Networks (RNN) [29], a family of neural networks

for processing sequential data, and word embedding tools [67, 73], these algorithms

have been firmly established as state-of-the-art for problems spanning natural

language processing, language modeling, machine translation, image captioning,

handwriting recognition any many more [4, 47, 59, 101, 106]. RNNs capture

nonlinear dynamics by learning a lossy summary of a future state using the past

states. Some sequence models, such as Markov models, conditional random fields,

and Kalman filters, deal with sequential data but are ill-equipped to learn long-range

dependencies [33]. Other models require domain knowledge or feature engineering,

offering less chance for serendipitous discovery. In contrast, neural networks learn

representations and can discover unforeseen structure.

Despite their success, RNNs struggle when the input sequence is long [72]. Even

Long Short term Memory (LSTM) Networks, a variant of RNN specifically designed

for handling long sequences, are known not to work well when the input sequence

becomes long [36].

Neural Attention models are proposed to solve some of the plights which RNNs

struggle to handle [5]. Computational models of attention map a query and a set

of key-value pairs to an output, where the query, keys, values, and output are all
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vectors. The output is then computed as a weighted sum of the values, where the

weight assigned to each value is generated by a compatibility function of the query

with the corresponding key.

Attention mechanisms have become an integral part of compelling sequence

modeling for two main reasons:

1) They exhibit better handling of long sequences by allowing modeling of

dependencies without regard to their distance in the input or output sequences

[81, 105].

2) They provide a weighted sum of model inputs; thus, they are believed to add

transparency into black-box deep learning models [16, 93, 114].

However, there are two significant problems with these models being used for

real-life applications.

1.2 Problem One: Real Data is More Complex

Than Just a “Sequence of Words”

Most work for employing RNNs enhanced with attention is centered around

classifying short text and a single document [62, 68, 94, 102, 107, 114]. However,

many of the real-life text resources bear more complex characteristics and contain

more abundant information.

For example, document series created over time is a prevalent data type in many

domains. Longitudinal clinical notes of a patient, tweets/social media posts by a

single user created over time, or conversations with a chat-bot can be regarded as

an example of this data type. Document series naturally have a nested sequential

structure. Namely, they are a sequence of documents created over time, and each

document itself consists of a sequence of words.

Further, documents or document series are frequently accompanied by non-

sequential meta-information at multiple levels. For example, the creation time of a

document is valuable information at the document level. On the other hand, the

demographic profile of the author of the document is user-level information which

does not change at the document level. While the primary source of information is

the nested word and document sequences, these external attributes are also vital

for accurate modeling of this complex data type.
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When used off-the-shelf, attention-based deep learning models cannot capture

complex dependencies in document series.

1.2.1 Motivating Example: Clinical Notes of a Patient

Medical facilities across the United States have universally adopted Electronic

Health Records (EHR) systems as a result of the Health Information Technology

for Economic and Clinical Health (HITECH) Act1 and the Centers for Medicare

and Medicaid EHR Incentive Programs2. The widespread digitalization of health

records presents a unique opportunity for health care innovation by using these

sources of information with machine learning models [42, 83]. It is evident that

there are signals embedded in these complex patient data that could indicate many

medically important conditions.

EHR data is often multi-modal and heterogeneous, and consists of both struc-

tured (e.g., numerical sensor data) and unstructured (e.g., text) information. The

structured part of EHR is straightforward in that meaningful information can be

easily extracted from it. However, unstructured data in the form of free-hand notes

recorded by clinicians make up a large portion of EHR databases and are more

challenging to mine. Such text data, being a popular form of data entry for medical

staff, often includes the intuition behind actions of experts, shown in general to be

potentially rich with information [31, 89].

An example of a clinical note for a critical care patient is presented in Figure

1.1. This example is taken from the publicly available MIMIC EHR dataset [46].

Typically, a clinical note contains all medical events and facts about the patient,

such as demographics (age:77), diagnosis (abdominal pain), procedures applied

(chest AP portable single view). In addition, a clinical note may contain expert

insight and intuition about the patient that cannot be found elsewhere in the EHR

(e.g., “Mild cardiac enlargement is probably present”). Owing to this information-

density, there is a great potential for developing deep learning models utilizing

clinical notes for building clinical decision support systems to help to transform

1https://www.healthit.gov/topic/laws-regulation-and-policy/health-it-

legislation
2https://www.cms.gov/Regulations-and-Guidance/Legislation/

EHRIncentivePrograms/index.html?redirect=/EhrIncentivePrograms/

https://www.healthit.gov/topic/laws-regulation-and-policy/health-it-legislation
https://www.healthit.gov/topic/laws-regulation-and-policy/health-it-legislation
https://www.cms.gov/Regulations-and-Guidance/Legislation/EHRIncentivePrograms/index.html?redirect=/EhrIncentivePrograms/
https://www.cms.gov/Regulations-and-Guidance/Legislation/EHRIncentivePrograms/index.html?redirect=/EhrIncentivePrograms/
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Figure 1.1: Example of a clinical note for a critical care patient. This example is
taken from the publicly available MIMIC EHR dataset [46] and private information
is deducted. Typically, a clinical note contains all medical events and facts about
the patient such as demographics, medications given, procedures applied, etc.
In addition, it contains expert insights about the patient that cannot be found
elsewhere in the EHR (e.g., “Mild cardiac enlargement is probably present”)

the Healthcare industry.

1.3 Problem Two: Can We Call Attention Inter-

pretable?

The most significant limitation of the deep learning models is their lack of

explainability. As neural networks become more and more complex, they also

become more black-box [68, 88]. Yet in contrast, the interpretability of a machine

learning model gains immense importance when it is used for real-life applications.
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Interpretability is an indispensable feature in many domains including healthcare,

self-driving cars, and criminal applications, where there is potential effect on human

life.

An attention function essentially computes a probability distribution over the

input space. This probability distribution, thus, can be interpreted as the “feature

importances”. Since the learned attention scores inform us about which part of the

input is weighted more heavily when making a classification decision, researchers

tend to think that these scores add transparency into black-box deep learning

models.

But, what does it mean if a model puts a higher weight into some parts of the

input? Can we claim that a reason for a model reaching a classification decision

would be similar to human justification? Can we claim that attention adds any

interpretability?

The definition of interpretability is crucial in answering these questions. Even

though there is no consensus on a single definition of interpretability, we can

intuitively conclude that an ordinary person should understand why a machine

learning model produces any classification decision. For example, if an ML system

is being used to detect likely-criminals, the machine learning model must explain

why it predicts a particular individual potential-guilty. Only this way, humans can

judge if they can trust auto-generated decisions.

Whether attention can serve this purpose cannot be understood only through

qualitative analysis of the machine-learned attention scores, as usually done in the lit-

erature. The claim that the attention weights correspond to human-understandable

rationales for model predictions requires further work and analysis.

1.4 State-of-the-Art

1.4.1 Clinical Note Classification

Clinical notes of a patient typically make up a series of documents created

over time. An important task is to use these document series to make predictions

about the patient’s future state. A large body of literature employs non-neural

network based architectures to tackle this problem. Many researchers utilize bag-
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of-words representations followed by linear classification methods such as SVM to

classify clinical notes [10, 44, 76]. In [31] and [32], authors examine latent variable

models, namely LDA, to decompose free-text notes into features for mortality

prediction. They divide the hospital stay of a patient into time windows and then

extract features from aggregated notes within each time window. LDA and topic

modeling techniques are used in other studies including for intervention prediction

[100] and for readmission prediction [89]. In [11], noun-based, term-based, and

topic-based features are extracted from clinical notes for named-entities through

medical dictionaries such as SNOMED [95]. More recently, [27] embraces two

deep learning approaches for learning representations from clinical notes. The first

approach uses GloVe [73] to learn low-dimensional dense embeddings of clinical

terms. Patient-level representations are derived by aggregating the embeddings.

The second approach uses an RNN with bag-of-words representations of a sequence

of notes. Clinical notes of a patient exhibit a nested sequential data structure: the

order of words corresponds to the semantic axis, while the order of documents

represents the time axis. Aforementioned state-of-the-art methods for patient-level

classification of clinical notes ignore information from one or even both of these

two axes.

1.4.2 Time-aware Models

A key characteristic of the clinical note series is that they include the time

information at which they were created. This time information may be of equal

importance to the content of the note when estimating a patient’s future state. Time-

aware recurrent networks or attention mechanisms concentrate on incorporating

time information into the model decisions while classifying inputs. With this aim,

a line of research proposes ways of modifying the RNN cell to account for time. For

example, [118] uses a time decay term in the update gate in GRU to find a trade-off

between the previous hidden state and the candidate hidden state. [74] extends

the forget gate of the standard LSTM unit to a logarithmic or cubic decay function

of time intervals between two time stamps. [12] applies a time decay function

to the previous hidden state in Gated Recurrent Unit (GRU) before calculating

the new hidden state. [9] first decomposes memory cell in LSTM into long-term

memory and short-term memory then applies time decay to discount the short
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term memory and finally calculates the new memory by combining the long-term

memory and a discounted short-term memory. The main goal in these papers is

to handle missing values in time series data; hence, they attempt to discount the

effect of an observation if more time passed, which is not always true. In addition,

modifying RNN units limits the interpretability of the resulting models, since RNN

units are usually treated as black boxes.

Recently, simple time-attention mechanisms have been proposed within the

spoken language understanding domain [14, 96, 97]. In these works, either a hand-

picked fixed function of time [14] or a parameterized time-decay function [96] serve

as the attention weights. [6] uses a disease progression function to control how

much information flows into RNN at each time step. The input to these time

functions corresponds to a scalar representation of time, namely the time difference

between instances. It is overlooked that other representations of time have the

potential to be even more informative for certain tasks and domains – which would

not be known prior to learning a model.

1.4.3 Interpretability of Neural Attention Models

Despite their success, deep-learning models suffer from an explainability problem.

However, in many domains including health-care, explainable models are of vital

importance. Various methods have been proposed to make neural network models

more interpretable. “Rationale-based” methods are an example of this effort [7, 57].

Here, the goal is to train a classification model and at the same time produce

binary “rationales” to serve as human-like explanations to model predictions. As

an alternative approach, a large body of work uses attention mechanism to bring

interpretability to model predictions; however, they only assess the quality of

produced attention maps qualitatively, by visualizations of a few hand-selected

instances [15, 60, 119]

In [21], authors conduct the first qualitative assessment of computational at-

tention mechanisms for Visual Question answering (VQA) task. In this work, the

authors collect and publish VQA-HAT human attention dataset and using this

dataset they measure the similarity of human and machine attention within the

context of VQA. VQA-HAT dataset has provided researches with the opportunity

of supervising the attention mechanism. A similar dataset and a quantitative eval-
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uation is necessary but still missing for the Natural Language Processing domain.

Existence of such datasets allows both quantitative assessments of computational

attention mechanisms and training supervised attention mechanism as seen in [60].

1.4.4 Supervised Attention

Current state-of-the-art attention mechanisms learn to produce attention scores

for the input space in an unsupervised manner. However, models without attention

supervision may generate inaccurate attention maps. Inaccurate attention maps

degrade the interpretability of model, as well as may result in incorrect predictions.

Recently, researchers have started searching for ways of supervising the attention

mechanism. For example, Chen et al. [13] propose using an auxiliary learning task

to generate weak supervision for the attention mechanism for action localization

in video frames. Liu et al. [60] encourage the model to “attend to” the regions of

the image that humans pay more attention using the previously published human

attention datasets for image captioning task.

Supervising the attention is a relatively new direction in NLP domain. Even

though some works exist, most of them base their methods on pre-defined word

lists deemed more important or relevant than the others to guide the attention

mechanism. In [63], they use a strategy where “argument words” should acquire

more attention than other words. For this, they define a list of words to receive

“gold attention” in a binary form, then employ them as supervision to train the

attention mechanism. Similar approaches in a hierarchical manner are proposed

in [70, 117]. In [61] guidance from conventional alignment models are used to

supervise the attention mechanism for Neural Machine Translation Task (NMT).

However, a context-dependant “human-supervision” has not been proposed thus

far possibly due to the lack of such human-attention datasets.

1.5 Research Challenges

Patient-level Classification on Clinical Note Sequences. Utilizing clini-

cal note sequences to produce a patient level classification requires the following

challenges to be addressed:
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• Nested Sequential Structure: Patient records contain time series of notes,

each of which consists of a sequence of words. Hence they cannot be directly

fed into an RNN without losing crucial sequential information inherent to at

least one layer. Moreover, sequential information is accompanied by external

attributes at multiple layers. For example, every document is composed of

not only a sequence of words but also a creation time, which is static across

the sequence.

• Long Term Dependencies : Every note is typically a long document, composed

of many hundreds of words. Further, every patient has a fairly high number

of clinical notes taken over time. In practice, state-of-the-art text mining

models continue to struggle to capture long-term dependencies. Even methods

designed for this challenge are empirically difficult to optimize.

• Unknown Temporal Importance: The exact time when a clinical note is created

may be of equal importance to the content of the note when estimating a

patient’s future state. For example, if a patient develops fever 2 hours later

than having a belly pain, this may indicate a certain infection. On the other

hand, if these two events happen days apart from each other, then these

medical events do not necessarily indicate to an infection risk. The true

function relating when notes are recorded and clinical outcomes is naturally

unsupervised. Additionally, this relationship may change per task, so defining

one fixed temporal importance function is too rigid. Previous works input

a single time representation to their model (time difference between two

consecutive time steps) to represent temporal importance; while other time

functions may much better match the underlying relationship between the

time occurrence of instances and how much attention they should receive.

• Balancing Multiple Sources of Attention: As described above, there are

multiple factors to pay attention when making patient-level predictions on

sequences of clinical notes. Thus, the goal is not only to decide how much

attention to put on each document based on their content but also based on

the time at which they were created. Instead of rigid combinations of these

two attention sources, a balance among them must be learned as the correct

balance is task-dependent.
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Interpretability of Neural Attention Models. In the clinical domain,

using a model that matches the complexity of the data providing an optimized

performance is not sufficient for an ideal clinical decision support system. Such a

system must also tackle the following challenges.

• Required Interpretability : Neural network-based text classification tends to be

“black-box” in the sense that the models are challenging to interpret. However,

in the clinical setting, interpretability is paramount to provide clinicians

insights into how models choose particular predictions.

• Unknown Behaviour of Attention Mechanism. In addition to achieving signifi-

cant performance gains, attention models are attractive as they are often used

as a proxy for human-interpretable rationales for model decisions [7, 114].

The implicit assumption is that machine-generated attention mimics hu-

man behavior. However, machine-generated attention thus far has not been

evaluated quantitatively to measure its similarity to human attention. Col-

lecting and studying human-attention maps is imperative for a systematic

quantitative assessment of machine-generated attention.

• Quantifying the Similarity Between Human and Machine: Numerical repre-

sentations of human and machine attentions don’t just denote which tokens

are given higher importance, but also carry information about the underlying

grammatical structure and linguistic construction. For example, if words

deemed high-importance by human or neural network models tend to be

adjectives, this information is embedded into the attention vectors. There-

fore we must design a similarity metric capable of incorporating this diverse

information, rather than just comparing two numerical vectors. In addition,

we must address that human attention is a subjective concept. That is, no

one human’s attention can be regarded as the ground-truth for attention.

• Lack of Supervision for Attention Mechanism: Models without attention

supervision may generate inaccurate attention maps, which in turn impairs

the interpretability of model. This is due to true attention distribution is not

known prior to model training. Collection of human-attention maps enable

training of human-guided attention mechanisms.
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1.6 List of Tasks Covered in this Dissertation

In this dissertation, I study four tasks involving novel attention-based archi-

tectures for modeling documents and specifically time series of documents with

an emphasis on clinical notes. Each of these four tasks concentrates on a different

problem and proposes a method addressing it.

The tasks are summarized as follows:

1. Attributed Hierarchical Attention. First, I focus on classifying sequences

of clinical notes which correspond to hierarchical attributed sequences (HAS).

HAS data type typically includes sequential information that is hierarchically

organized, and categorical information is associated with different levels of

the hierarchy. I propose the HAC-RNN deep neural architecture, composed

of multiple RNN layers and an attributed hierarchical attention mechanism

where each attention layer is conditioned on the external attributes. In HAC-

RNN architecture, RNNs and attention layers are stacked hierarchically to

account for the order of both words and documents. While the bottom layer

of HAC-RNN is responsible for contextual summarization of the document

content, the top layer considers the entire timeline and learns to concentrate

on only the most relevant documents.

2. Time-aware Dual Attention. Second, with the observation that not just

the sequential order, but the exact time-stamps at which documents are

generated contains critical predictive power, I design a time-aware attention

model. This novel attention mechanism composed of dual-attention blocks

based on a rich diversity of time representations. I then pair this mechanism

with an LSTM, resulting in our proposed time aware recurrent network TEND-

LSTM. TEND-LSTM learns an integrated set of attention weights, with the

first attention based on the content of the clinical notes and the second

based on when the notes were taken. Together, they are combined using a

deep-attention network layer. The proposed dual attention mechanism not

only learns a function of time incorporating different aspects of the temporal

nature of note instances but also automatically finds a balance between how

much attention to put on content versus time.
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3. Human vs Machine Attention. Third, I further focus on the interpretabil-

ity of attention and analyze whether machine-learned attention is similar

to human attention. For this, I conduct the first quantitative assessment of

human versus computational attention mechanisms for the text classification

task. To achieve this, I design and conduct a large-scale crowd-sourcing study

to collect human attention maps that encode the parts of a text that humans

focus on when conducting text classification. Based on this new resource of

human attention dataset for text classification, YELP-HAT, collected on the

publicly available YELP dataset, I perform a quantitative comparative analy-

sis of machine attention maps created by deep learning models and human

attention maps. Our analysis offers insights into the relationships between

human versus machine attention maps along three dimensions: overlap in

word selections, distribution over lexical categories, and context-dependency

of sentiment polarity.

4. Human-Guided Attention. Finally, extending the conclusions made from

attention-similarity and using the collected human attention maps, I propose

a novel explainable attention mechanism, called Human-Guided attention,

HUG, and a complementary learning scheme that facilitates human guidance

on attention training. The HUG attention mechanism can be paired with

any sequential deep learning architecture such as RNN or BERT. The HUG

learning scheme integrates multiple objectives at different granularities of

words and documents to learn a human-guided attention distribution over

words, while also achieving a document-level classification task. Unlike in

traditional attention mechanisms that learn the attention scores unsupervised,

our model employs a direct learning paradigm that penalizes the model as its

attention scores differ from human attention.

1.7 Dissertation Organization

This dissertation is organized as follows. I first describe some background

material that will be frequently used throughout the chapters in Section 2. I

introduce the Attributed Hierarchical Attention model in Section 3 and Time-

Enhanced Dual Attention model in Section 4. Section 5 describes our data collection
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study for human attention maps, and our analysis for comparing human attention

to machine-generated attention. In Section 6, I propose a human guided attention

model that improves the classification task accuracy and model interpretability

concurrently. I describe related work in Section 7. Finally, the conclusion and

future work are presented in Sections 8 and 9.
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Chapter 2

Background: Neural Methods for

Mining Textual Data

2.1 Recurrent Neural Networks

Recurrent Neural Network (RNN) and its variations has been extensively used

in diverse tasks on sequential data, such as handwriting recognition [35], speech

recognition [34] and document classification [114]. Similar to other neural networks,

RNN utilizes the backpropagation algorithm to calculate gradients that could be

used to fit the model parameters.

Unlike other neural networks where each item in the input sequence is processed

independently, RNN assumes that there are temporal dependencies across time

steps in each sequence [28]. To model these sequential dependencies, RNN shares

model parameters across time steps when processing each input. That is, RNN

not only takes the input at the current time step into account but also all other

time steps processed previously. The computational graph of RNN is illustrated in

Figure 2.1.

A recurrent network maps an input sequence of x to a corresponding sequence

of output values o. A loss of L measures how far each o is from the corresponding

training target y. When using softmax outputs, we assume o is the unnormalized

log probabilities. The loss L internally computes ŷ = softmax(o) and compares

this to the target y. The RNN has input to hidden connections parameterized by

a weight matrix U , hidden-to-hidden recurrent connections parameterized by a
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Figure 2.1: Schematic representation of an RNN [33].
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weight matrix W , and hidden-to-output connections parameterized by a weight

matrix V .

For each sequence input, the sequential information is preserved in RNN’s

hidden state, which is continuously updated as long as the RNN cascades forward

to process future time steps. For this reason, the hidden state is often referred to

as the “memory” of the RNN in the literature [39]. Given the input xt at time step

t, the respective RNN’s hidden state is often defined as:

ht = σ(Wxt + Uht−1) (2.1)

where the respective weight matrices for “input-to-hidden” and “hidden-to-

hidden” are denoted as W and U . The activation function could be either a logistic

sigmoid function or a hyperbolic tangent function, selection of which depending on

specific tasks. The hidden state ht can be exploited for various tasks, such as next

word prediction and sequence classification.

In this dissertation, many proposed machine learning models are based on RNNs

and its variations, LSTM and GRU. Next, I describe these cell structures.

2.1.1 Long Short-Term Memory (LSTM)

Vanilla RNN suffers from the problem of exploding and vanishing gradient

during the training, where the gradient value becomes too large or small. This

may result in the network becomes untrainable. Initially proposed for addressing

this issue, LSTM [39] is one variation and expansion of the vanilla recurrent neural

network. Similar to a Vanilla RNN with a chain of repeating cells, LSTM cells are

also chained together to handle sequential inputs.

In addition to the gradient issues, Vanilla RNN also suffers from handling

long sequences, where the past information degrades over time, even though being

designed to take into account all prior information. Through a more sophisticated

design by using a memory cell and three gates (i.e., input gate, output gate, and

forget gate), LSTM is capable of remembering values over long time intervals.

The term “long short-term memory” refers to the fact that LSTM is capable of

preserving short-term memory for a long time. Specifically, compared to the simple

design of Vanilla RNN, where only one sigmoidal function is used, there are five
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functions used in an LSTM cell.

Using input x at step t and previous state ht−1, gates are computed as

it = σ(Wi · [ht−1, xt] + bi) (2.2)

ft = σ(Wf · [ht−1, xt] + bf ) (2.3)

ot = σ(Wo · [ht−1, xt] + bo) (2.4)

where Wi,Wf ,Wo and bi, bf , bo are parameters shared across time and σ is the

sigmoid function.

Then a cell state is computed as

ct = ft � ct−1 + it � tanh(Wc · [ht−1, xt] + bc) (2.5)

where Wc and bc are parameters shared across time.

Finally, the hidden state ht is

ht = ot � tanh(ct) (2.6)

LSTM has been used in many real-world applications involving sequential inputs.

For example, Google and Amazon uses LSTM for speech recognition [49, 110].

LSTM has also achieved state-of-he-art performance in machine translation [101],

image captioning [47], hand writing recognition [35] and question answering [103].

2.1.2 GRU

GRU was initially proposed for machine translation task in [18]. Both GRU

and LSTM have the goal of tracking long-term dependencies while mitigating the

problem of exploding and vanishing gradient. Different from LSTM, where there

are three gates and two internal states are used, GRU only have two gates (namely,

the reset and update gates) and one internal state. A GRU is defined as:
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zt = σ(Wzxt + Uzht−1 + bz) (2.7)

rt = σ(Wrxt + Urht−1 + br) (2.8)

ht = (1− zt)� ht−1 + zt � tanh(whxt + Uh(rt � ht−1) + bh) (2.9)

where zt and rt denote the update gate and reset gate, respectively. Wz, Wr,

Wh, Uz, Ur, Uh, bz, br, bh are trainable model parameters. ht is the internal state

and it is also served as the output of a GRU cell.

There are two main differences between GRU and LSTM. First, the exposure

of the memory in LSTM is controlled through the output gate, which is missing in

the GRU model. That is, only part of the memory is exposed in LSTM compared

to full memory exposure in GRU. Second, LSTM controls the amount of new

information flowing into the model by using two gates, namely the input gate

and the forget gate. The control of the information flow is through the forget

gate, independently. Meanwhile, GRU controls the information from the previous

activation when computing the new activation from the new input at the same

time.

2.2 Attention Mechanism

Inspired by human attention, a recent trend in deep learning is to build compu-

tational models of attention [5]. An attention function can be described as mapping

a query and a set of key-value pairs to an output, where each of the query, keys,

values, and output are all vectors [105]. Through a compatibility function of the

query with the corresponding key, weights are generated for each value. The output

of the attention function is the weighted sum of the values. Attention mechanisms

are now an integral component of many sequence modeling tasks. They enhance

models with the ability to deal with long sequences.
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2.2.1 Additive Attention for Sequence to Sequence Classi-

fication

This type of attention is introduced by [5] for machine translation task. Neural

machine translation is a sequence to sequence classification task. The mail model

is an encoder-decoder RNN, and the goal is to learn an alignment model between

inputs and outputs through an attention function.

Assume that si is the hidden state of the decoder for time i and it is computed

as:

si = f(si−1, yi−1, ci) (2.10)

The context vector ci is a function of the sequence of annotations (h1, . . . , hTx)

to which an encoder maps the input sentence. Each annotation hi represents the

whole input sequence, while also focusing on the other parts surrounding the i-th

word of the input sequence. The context vector ci corresponds to weighted sum of

the annotations hi:

ci =
Tx∑
j=1

αijhj (2.11)

The weight αij of each annotation hj is computed by:

αij =
exp(eij)∑
k exp(eik)

(2.12)

where eij = a(si−1, hj) is an alignment model. This alignment model represents

how well the inputs around position j and the output at position i match. Attention

function is modeled as a feedforward neural network, and it is jointly trained with

all the other components of the model.

The probability αij, which is the attention score, shows the importance of the

annotation hj with respect to the previous hidden state si−1 in deciding the next

state si and generating yi. Intuitively, this corresponds to a mechanism of attention

in the decoder.
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2.2.2 Additive Attention for Sequence Classification

This type of attention is a variant of the original attention mechanism proposed

by [5], where it is adapted for the sequence classification task, such as document

classification [114].

Additive attention for sequence classification often paired with a recurrent

model. Assuming that Γ is a recurrence function and xi is the embedded i-th token

of T tokens in a sequence, additive attention is modeled as:

hi = Γ(xi, hi−1), i ∈ [1, T ] (2.13)

ui = tanh(Whi + b) (2.14)

αi =
exp(u>i u)∑
t exp(u>i u)

(2.15)

Here hi, i ∈ [1, T ] are hidden representations, W , b, and u are trainable parame-

ters, and αi, i ∈ [1, T ] are the attention scores for each input token xi. A context

vector c corresponds to the weighted average of the hidden representations of inputs

with attention weights, denoted by:

c =
∑
j

αjhj (2.16)

Through a softmax function, context vector ci is then used for further classifying

the input sequence.

Many models in this dissertation uses additive attention mechanism for the

sequence classification task.

Attention mechanism can help for classification tasks when the input sequence is

very long. For example, given a sequence of documents related to a patient, neither

all terms in a document nor each document are equally relevant for predicting a

task and determining the relevant sections involves modeling the interactions of the

words, not just their presence or absence. Figure 2.2 shows an RNN architecture,

both with and without attention. An RNN, while expected to create a summary

of input space with one vector at the end of the sequence, can fail to achieve this.

On the contrary, added attention mechanism helps adjusting focus on parts of

the input, relieving the burden of remembering essential information across the
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sequence.

2.3 Word Embeddings and Word2Vec

Word embeddings are prevalently used to transform words into numeric vectors.

These vectors preserve relationships between words by considering the context in

which each word appears. Learning word embeddings is time-consuming, especially

when the source text is large. For this reason, many pre-trained word embeddings

are published to help researchers bypass the learning process and commonly used

as the baselines for text classification. However, vector representations can differ

dramatically between embedding sources depending on both the size and content of

the training corpora. Thus, locally-learned embedding is another appealing choice

to use for clinical machine learning.

Unless stated otherwise, locally-learned word embeddings are used for the tasks

in this dissertation proposal.

We learn word embeddings prior to end-to-end model training disjointly, using

the skip-gram model of the “word2vec” algorithm [67].

Skip-Gram assumes that words appear in similar context are likely to have

similar meanings. Thus, pairs of context-target words are created from an input

corpus. The model predicts context words from a given target word, i.e., for a

target word wt and a given number of contextual-window-size c, Skip-Gram will

predict the probability of c words before and c words after wt. xwt , a one-hot

encoding of wt, is fed into a 2-layer neural network. The final weight matrix of the

1st layer is the desired word embedding.

Let w = {w1, w2, ..., wT} be the T training words and d be the number of

hidden units. The size of weight matrices of 1st layer (W) and 2nd layer (W′) are

T × d and d× T respectively. The tth row of W, which is the d-dimensional vector

representation vwt of wt, is copied to the hidden layer.

ht = xT
wt

W and u = WThT
t (1)

where uj ∈ u is the predicted score of word wj being the context word. A

softmax activation function is lastly applied to obtain the probability distribution
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Figure 2.2: Architectural comparison of LSTM, with and without the attention
mechanism.
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in the output layer:

p(wj|wt) = ŷj =
exp(uj)∑T

j′=1 exp(uj′)
(2)

where ŷj is the probability of wj being the context word.

Model is trained using the objective function:

max
1

T

T∑
t=1

t+c∑
j=t−c
j 6=t

log p(wj|wt) (3)

2.4 Transformer-Based Architectures

2.4.1 Transformer Architecture

Before the introduction of the transformer mechanism, Recurrent Neural Net-

works, in particular, long short-term memory [39] and gated recurrent [18] neural

networks, have been established as state-of-the-art approaches in sequence mod-

eling problems such as language modeling and machine translation. Attention

mechanisms have become a fundamental part of sequence modeling as they often

improve the overall performance of the model and allow for modeling dependencies

without regard to their distance in the input or output sequences. Such atten-

tion mechanisms are almost always used in conjunction with a recurrent network

[5, 20, 54, 98, 114].

Transformer [105] is a model architecture based only on attention mechanisms,

as opposed to having recurrence functions. Transformer architecture is proposed

for the machine translation task, and it is composed of encoder and decoder layers,

both of which contain attention heads and fully-connected layers.

2.4.1.1 Encoder-Decoder Model

Transformers use an encoder-decoder architecture. The encoder first maps an

input sequence of symbol representations (x1, . . . , xn to a sequence of continuous

representations z = (z1, . . . , zn. Given z, the decoder generates an output sequence

(y1, . . . , yn of symbols one element at a time. At each step, the model is auto-

regressive, consuming the previously generated symbols as additional input when

generating the next.
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Figure 2.3: Encoder and decoder architecture of the Transformer model [105].
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Figure 2.4: Left figure shows the details of scaled dot-product attention. Right
figure depicts how multiple dot-product attention layers run in parallel [105].

The encoder subnet consists of N identical layers. Each encoder layer includes

two sub-layers. The first sub-layer is a multi-head self-attention mechanism. The

second sub-layer is a fully connected feed-forward neural network.

The decoder subnet has a similar stack of layers. In addition to the two sublayers

used in the encoder, the decoder also includes a third sub-layer. This third layer is

another attention layer between the output of the encoder layer and the decoder.

The self-attention sub-layer in the decoder is modified to prevent positions from

attending to subsequent positions. This is done to ensure that the predictions for

position i can depend only on the known outputs at positions less than i.

The transformer architecture is depicted in Figure 2.3.

2.4.1.2 Scaled Dot Product Attention

Transformer architecture introduces a novel attention mechanism, referred to

as Scaled Dot-Product Attention (Figure 2.4). In the scaled dot product attention,

the inputs are keys and queries of size dk and values of size dv. The compute this

attention, we first calculate the dot product between the query with all keys, and

we divide it by
√
dk. We then apply a softmax function to obtain the weights on

the values. In practice, this process is vectorized, and the attention function is
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computed on a set of queries simultaneously via the query matrix Q. The same

operation is conducted on the key and values to build the matrices K and V . We

compute the matrix of outputs as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.17)

2.4.1.3 Comparison with RNN-based Architectures

Transformer and RNN-based architectures enhanced with attention mechanisms

have a number of differences.

First, transformer architecture only uses self-attention and fully-connected layers.

It does not use recurrent or convolutional layers at all, even though its input is

sequential text data.

Second, as opposed to RNN-based architectures, Transformer allows for par-

allelization. This is one of the reasons why the Transformer is much faster. For

translation tasks, the Transformer can be trained significantly faster than architec-

tures based on recurrent or convolutional layers.

Third, the Transformer is uni-directional, whereas RNNs can be bidirectional.

However, this shortcoming is addressed on the successive architectures starting

from BERT [23].

Lastly, [55] compares the performance of the Transformer and RNN-based

architectures for various neural machine translation (NMT) tasks. Based on experi-

mental results, the Transformer approach delivers the best performing multilingual

models, with more significant gains over corresponding bilingual models than ob-

served with RNNs. Even though transformers only focused on NMT task, later

transformer-based architectures show superior performance over RNN-based mod-

els (e.g., BERT-large [23] in named entity recognition, RoBERTa [64] in natural

language inference)

Transformers drew immediate attention from the NLP community and had a

huge impact on the NLP domain. They show superior performance on the GLUE

Benchmark dataset and stayed on top of the charts in the Glue Leaderboard 1. Many

researchers then followed the lead of [105] and proposed alternative architectures

that improve the performance. These architectures include BERT [23], XLNet

1https://gluebenchmark.com/leaderboard

https://gluebenchmark.com/leaderboard
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[113], RoBERTa [64], ERNIE [99], and OpenAI GPT [80].

2.4.2 BERT: Pre-training of Deep Bidirectional Transform-

ers for Language Understanding

GPT introduces minimal task-specific parameters and is trained on the down-

stream tasks by simply fine-tuning all pre-trained parameters. However, it uses a

uni-directional language model (left-to-right ), where every token can only attend

to previous tokens in the self-attention layers of the Transformer, to learn general

language representations. This restricts the power of pre-trained representations

and limits the choice of architectures that can be used during pre-training. Such

restrictions are sub-optimal for sentence-level tasks and could be harmful when

fine-tuning on token-level tasks such as question answering, where it is crucial to

incorporate context from both directions.

BERT: Bidirectional Encoder Representations from Transformers [23] addresses

this problem, advancing the state-of-the-art for many NLP tasks. The key to

BERT’s success is a learning paradigm referred to as Masked language modeling

(MLM). The masked language modeling task requires randomly masking some of

the input tokens and then predicting the vocabulary id of the masked word based

only on its context. As opposed to the left-to-right language model pre-training, as

has done in previous architectures, the MLM objective enables the representation

to combine the left and the right context. As a result, this allows us to pre-train

a deep bidirectional Transformer. Another novelty BERT introduces is a second

pre-training task, which is called “next sentence prediction”.

Pre-training of BERT. We use two tasks for pre-training BERT as described

below.

Task 1: Masked Language Modeling. Masked language modeling is one of the

two tasks used for pre-training a BERT model. This task requires masking some

percentage of the input tokens randomly. Then the model learns to predict those

masked tokens. The final hidden vectors corresponding to the mask tokens are

fed into a softmax function over the words in the vocabulary, similar to standard

language modeling tasks. In BERT architecture, 15% of input tokens in each

sequence selected randomly are masked.
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Figure 2.5: Pre-training and fine-tuning phases of BERT. Only the output layers
are different in two architectures. Pre-trained model parameters can be used for
any downstream task [23].

Task 2: Next Sentence Prediction. BERT architecture uses a second task for

pre-training. This is motivated by the fact that some downstream tasks such as

natural language inference or question answering are based on understanding the

relationship between two sentences, which is not directly captured by language

modeling. To make sure that the model learns sentence relationships as well, BERT

is pre-trained for a binarized next sentence prediction (NSP) task. NSP is also an

unsupervised task that can be trivially generated from any corpus without human

annotations. For this task, 50% of the time, the second sentence actually follows

the first (labeled as IsNext), and 50% of the time sentences are randomly selected

from the corpus (labeled as NotNext).

Fine-tuning BERT. For fine-tuning BERT, we plug in the task-specific inputs

and outputs and fine-tune all the parameters end-to-end. At the input, sentence A

and sentence B from pre-training are analogous to (1) sentence pairs in paraphrasing,

(2) hypothesis-premise pairs in entailment, (3) question-passage pairs in question

answering, and (4) a degenerate text pair in text classification or sequence tagging.

At the output, the token representations are fed into an output layer for token-level

tasks, such as sequence tagging or question answering. A special token [CLS] is

fed into an output layer for classification, such as entailment or sentiment analysis.

Pre-training and fine-tuning phases of BERT are shown in Figure 2.5.
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Chapter 3

Attributed Hierarchical Attention

3.1 Motivation

Patient-level classification is the task of predicting a clinical outcome of a patient

(e.g.diagnosis, mortality risk, re-admission risk) based on the patient’s Electronic

Health Records (EHR). Clinical notes, a rich source of patient information found

in EHR data, can be utilized for patient-level classification tasks as depicted in

Figure 3.1.EHR notes are written by health-care professionals and often contain

crucial details regarding patient care along with expert insights not found elsewhere

in EHRs. Clinical notes have a nested sequential structure, namely they are a

sequence of documents created over time and each document itself consists of a

sequence of words. They are also accompanied by non-sequential meta-information

at multiple layers. For example, the time at which a particular note is created or

the category of the note (e.g.nursing, ECG) correspond to external attributes on

the note level. Similarly, the demographic profile of the patient is patient-level

information that does not change on the note level. Despite their value, usage of

clinical notes in patient-level classification remains limited due to their complex

multi-modal structure.

Standard text representation methods, such as bag-of-words or topic modeling,

have been used to model clinical notes for patient-level classification [10, 31, 32,

44, 76, 89]. However, they are not able to capture the vast amount of information

contained in notes, such as temporality of notes or semantic structure of words.

More recently, aggregated vector representations of words have been explored to
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represent notes and are then fed into linear models [27]. Vector representations

of words leverage contextual information by encoding similar words into similar

vectors [67, 73]. Despite incorporating contextual information, this method neglects

the sequential nature at both the word and document levels (Figure 3.3-b). Bag-

of-words representations of notes are fed into RNN models, capturing temporal

dependencies between notes [27] . This approach makes use of the order of notes

by using a sequential model (RNN) but does not consider the timing of documents

or order of words (Figure 3.3-c).

A tremendous opportunity remains to design deep network models that capture

the complex sequential dependencies at multiple layers, particularly within and

among documents. An effective model for clinical notes must maintain long-

term dependencies across multiple documents while at the same time accounting

for a nested sequential structure and handling hierarchical external attributes.

Recurrent Neural Networks (RNN) have recently shown great promise for document

classification [62, 102, 114]. However, RNNs cannot be directly used on clinical

notes. Instead, a custom-tailored architecture is required due to the following

challenges:

• Nested Sequential Structure: Patient records contain time series of notes, each

of which consists of a sequence of words. Hence they cannot be directly fed

into an RNN without losing crucial sequential information inherent to at least

one layer.

• Long Term Dependencies : Every note is typically a long document, composed

of many hundreds of words. In practice, state-of-the-art text mining models

still struggle to capture long-term dependencies. Even methods designed for

this challenge are empirically difficult to optimize.

• Multilayer Hybrid Data: Sequential information is accompanied by external

attributes at multiple layers. For example, every document is composed of

not only a sequence of words but also a creation time, which is static across

the sequence.

• Required Interpretability : Neural network-based text classification tends to be

“black-box” in the sense that the models are challenging to interpret. However,
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Figure 3.1: Patient-level diagnosis prediction using sequences of clinical notes. The
task is to predict whether or not a patient will

in the clinical setting, interpretability is paramount to provide clinicians

insights into how models choose particular predictions.

In this work, we design a hierarchical network to account for nested sequential

document structures with external attributes at multiple levels for patient-level

classification of clinical notes. In this proposed architecture, called HAC-RNN,

sequences of words and series of documents are fed into different RNNs stacked

hierarchically to account for the contextual information at the bottom layer and

temporal information at the top layer without sacrificing representational power.

Contextual and temporal attention mechanisms are incorporated to resolve three

problems. First, they help to maintain long-term dependencies by selectively

remembering early words in both long documents and documents created earlier in

a patient’s stay, while also achieving interpretability. Second, attention mechanisms

control the information flow by deciding how much information to propagate
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between layers. Finally, they integrate sequential and non-sequential data through

conditioning on extrinsic attributes (e.g.the timing of a document at the note-level,

a patient’s age on the patient-level). Figure 3.3 illustrates a schematic of HAC-RNN

compares it to state-of-the-art methods.

Our contributions are summarized as follows:

• We propose a hierarchical RNN with hierarchical attention conditioned on

the external attributes for classification of nested sequential document series,

with the first sequence being words and the second sequence being notes

taken over time.

• With hierarchical attention, our model (1) learns nuanced levels of attention

for individual words as well as for complete notes when constructing patient

representations, (2) brings interpretability and provides insights by pointing

to words, word phrases and notes that contribute to the classification decision,

and (3) handles long sequences of both words and notes.

• With extensive experimental evaluation working on an in-hospital setting with

real-world medical prediction tasks extracted from publicly available MIMIC

dataset from Beth Israel ICU units, we validate that word order, document

order, and external attributes improve the classification performance for

patient-level classification. Our model achieves significant improvement over

state-of-the-art models.

3.2 HAC-RNN Framework

Our proposed method, HAC-RNN, is composed of seven layers. An overview of

HAC-RNN and each of its layers is presented in Figure 3.2. This section describes

the details of the model.

3.2.1 Notation and Problem Definition

Clinical notes for each patient are represented as a sequence of text documents.

The n-th patient of N total patients is represented by a sequence of L(n) documents

and a vector γ(n) that contains patient-level attributes, such as age. γ is not
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(a) Patient-level Feature Vector [31, 44, 76,
89]

...

(b) Note-level Feature Vectors with Sequen-
tial Models [27]

(c) Patient-level Contextual Representation
[27]

...

(d) Hierarchical Representation (this pa-
per)

Word

Clinical note

Hidden representation
Sequential information

leveraged
Merged information from

multiple notes

Note level attribute Patient level attribute

Figure 3.3: Comparison of state-of-the-art methods to our model. (a) LDA or
BOW are used to create a single feature vector for the patient. No encoding of
sequential information on word or note level. (b) LDA or BOW are used to create a
feature vector per note, with a sequential model. Captures the sequential ordering
of notes. (c) Vector representations of words, aggregated into a patient level feature
vector. Encodes the contextual information of words, neglects the order of notes.
(d) HAC-RNN utilizes the sequential information on both word and note levels, as
well as hierarchical external attributes.

extracted from a clinical note, but instead it is external meta information within

the data source. A note is a tuple (d
(n)
i , ψ

(n)
i ) where i = 1, · · · , L(n), with d

(n)
i

denoting the i-th document of the sequence and ψ
(n)
i denoting the meta-vector. Each

document d
(n)
i ∈ RK

(n)
i contains K

(n)
i words w

(n)
ij , j = 1, . . . , K

(n)
i , i = 1, · · · , L(n),

and the meta vector ψ
(n)
i carries external note-level attributes, such as creation

time or category of the note.

The goal is to learn a model that predicts the label ŷ(z) ∈ {0, 1} for a new patient,

given the setD = {D(1), · · · ,D(n)}, whereD(n) = {〈(d(n)
1 , ψ

(n)
1 )), . . . , (d

(n)

L(n) , ψ
(n)

L(n))〉, γ(n)}
and true labels y(n) ∈ {0, 1} (e.g.1 indicates an infection, 0 not-infection). For

simplicity and readability, we henceforth describe our method for a single patient

and thus drop the superscript (n) whenever it is unambiguous.

3.2.2 Embedding Layer

The input to HAC-RNN is a sequence of real-valued vector representations of

words where semantically similar words are mapped close to one another. We learn
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word embeddings prior to end-to-end model training disjointly, using the skip-gram

model of the “word2vec” algorithm [67] as described in Section 2.3. Using the

learned embedding vector θ, words are mapped to vectors xij = θwij.

3.2.3 Contextual Layer

3.2.3.1 Sequential Input

We use a hierarchical approach to create patient level representations of docu-

ment sequences. The bottom level of this hierarchy, referred to as the contextual

layer, is designed to encode the contextual structure of the words within each

individual document.

Given embedding vector xij of the word wij, where i = 1, · · · , L and j =

1, · · · , Ki, we use an LSTM to summarize the information within each document.

The LSTM reads the input word vectors from xi,1 to xi,Ki
from the document i

and calculates a sequence of hidden states.

hij = LSTM(xij), j ∈ [1, Ki] (3.1)

Afterwards, a semantic attention at the word level is applied. The goal of this

word-level attention mechanism is to identify which words contribute most to the

meaning of the document. We first use a fully connected layer to get ui as a hidden

representation of hij.

uij = tanh(Wwhij + bw) (3.2)

Then we define a context vector uw, which can be thought of a high level represen-

tation or summary of the document. uw is randomly initialized and jointly learned.

The importance of each word is measured by the similarity of uij with the word

level context vector uw. We compute normalized importance weights αij through a

softmax function as shown in Equation 3.3:

αij =
exp(u>ijuw)∑
j exp(u>ijuw)

(3.3)

Finally, the document vector representation is the weighted sum of word annotations

and importances:

di =
∑
j

αijhij (3.4)
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3.2.3.2 External Attributes

Besides the content of the note, a set of meta-information about the note itself

is available. First, from the raw timestamp information τi that represents the time

that the note was created, we compute a set of time variables. These variables

include delta time ∆i, hours between two consecutive notes, and ordinal time εi,

hours passed since the patient’s admission to the hospital. Thus multiple time

semantics are represented. The next meta-information is the category of the note,

(e.g.nursing report or ECG). This is encoded as a one-hot vector. We combine these

meta-information sources into one note-level attribute vector ψi. Typically, external

attributes are used for conditioning the LSTM via one of the two approaches [38].

The first is to use conditioning data as input to the hidden state by either addition

hij = LSTM(xij + ψi, hij−1) or stacking hij = LSTM

([
xij

ψi

]
, hij−1

)
. The second

option is to connect the attributes to the output [hij, ψi]
>. Note that addition

requires the vectors to have the same dimensionality. The stacking method can be

quite costly, given that it increases the size of several matrices. When an attention

mechanism is applied on top of the LSTM layer, output method becomes as costly

since the attention mechanism consumes LSTM outputs from all timesteps. For

computational optimization, we use the output method, replacing LSTM output

with attention output [di, ψi]
>. This can be thought of conditioning the attention

instead of LSTM with the note-level attributes. This combination is fed to the next

layer of hierarchy.

3.2.4 Temporal Layer

3.2.4.1 Sequential Input

After computing the document level representations, another recurrent network

learns to represent this sequence of representations. It reads the input document

vectors, each being a dense encoding of content, time, and category, then calculates

a sequence of hidden states.

hi = LSTM(di), i ∈ [1, L] (3.5)

We observe that not all the documents are equally relevant to the prediction
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task. Hence we apply a temporal attention to selectively attend to note instances

that are more relevant as follows:

ui = tanh(Wdhi + bd) (3.6)

αi =
exp(u>i ud)∑
t exp(u>i ud)

(3.7)

Finally, the patient level representation is the weighted average of the hidden

vectors of documents with attention weights.

v =
∑
i

αihi (3.8)

3.2.4.2 External Attributes

Similar to the previous layer, EHR data has patient-level attributes that exhibit

a static structure across each patient’s stay. In our model, we use age of the patient,

γ, as conditioning data. Referring to the same logic with the contextual layer, we

use external attributes as [v, γ]>.

3.2.5 Patient Classification

The resulting vector [v, γ]> can be seen as a dense embedding for the patient.

The final layer takes this as input and assigns a probability to each possible class.

We use the cross-entropy loss function as the objective function where ŷ is the

prediction and y is the ground truth label, shown in Equation 6.7.

L = −(y log(ŷ) + (1− y) log(1− ŷ)) (3.9)

3.3 Experimental Evaluation

3.3.1 Medical Notes Dataset & Prediction Tasks

For our experimental evaluation, we use the publicly-available critical care

database MIMIC III [46]. MIMIC III was collected from the Beth Israel Deaconess

Medical Center Intensive Care Unit (ICU) between 2001 and 2012. It contains

all unstructured notes taken by the caregivers of 45, 000 patients. MIMIC is a

benchmark dataset frequently used in clinical machine learning studies [9, 22, 37,
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84, 90]. We experiment with three prediction problems using relevant cohorts

extracted from the MIMIC dataset.

• Clostridium Difficile Infection Prediction: Clostridium difficile infec-

tion (CDIF) is a common hospital acquired infection (HAI) resulting in

gastrointestinal illness with high morbidity and mortality rates. To identify

CDIF patients in the MIMIC, we use the microbiology test associated with the

organism 80139-Clostridium Difficile found in the Microbiology Events table.

Of 1,079 CDIF-positive patients, 1,035 have note events. These patients form

the CDIF-positive population. We randomly subsample 1,035 patients with

no record of this test, obtaining a balanced dataset.

• MRSA Infection Prediction: Methicillin-resistant Staphylococcus aureus

(MRSA) is a common cause of serious HAIs. We use the microbiology test

associated with the organism 80293-MRSA. Of 1,304 MRSA-positive patients,

1,240 have note events. These patients formed our MRSA-positive population.

We then randomly subsample 1,240 patients who have no record of a test

for organism 80293, obtaining equally-sized groups of positive and negative

examples.

• In-hospital Mortality Prediction: Detecting high-death-risk patients is

a benchmark task in clinical predictive modeling research [45, 75]. We use

hospital expire flag from the Admissions table to extract mortality-positive

patient cohort. 5,854 patients have hospital expire flag = 1, indicating that

they died in the hospital. 5,000 of these patients with note events prior to

their death are used as our mortality-positive cohort. We then randomly

subsample 5,000 patients who have hospital expire flag = 0, forming the

mortality-negative cohort.

We detail statistics for each dataset in Table 3.1. For all three datasets, we only

use data up to a day before diagnosis (CDIF & MRSA) or death to assure no

information regarding confirmation or treatment of the condition is included. For

negative patient sets, half-way of their data is used as usually done in prior work

[90, 109].

Many previous works on clinical note modeling embrace a multiclass classification

setting where they predict ICD10 diagnosis codes [68, 77, 94]. Even though
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automatic extraction of diagnosis codes are very important, these systems cannot

be used to assist clinical decision making in in-hospital settings. For inpatients,

ICD10 codes are assigned to patients at the end of their hospital stay, thus, these

models are inherently trained on the data that contains information not only before

the confirmation of a diagnosis, but also after it (i.e.related to treatment). In

this paper, we adopt an experimental setting that allows us to predict a medical

condition before it happens which enables real-world applications.

3.3.2 Implementation Details

3.3.2.1 Data Preparation

There are notes from 15 categories in MIMIC. These categories are Case

Management, Consult, ECG, Echo, Discharge summary, General Nursing, Nursing/

other, Nutrition, Pharmacy, Physician, Radiology, Rehab Services, Respiratory,

Social Work. We use notes from all categories except for discharge summaries, as

the later are only created at the end of the hospital stay. We only will use EHR

data before the diagnosis of the condition. We also note that the current literature

is heavily based on discharge summaries which are semi-structured, unlike the other

categories.

We transform the clinical notes into lowercase and remove punctuations. As

the MIMIC dataset contains some de-identified data; sensitive information, such

as a doctor or patient name, is deducted and put in square brackets. (e.g., At-

tending:[**First Name3 (LF) 1**] ). We remove these parts from the notes. The

creation-time of each note is used to extract time features. Lastly, attributes are

extracted from other tables, such as the age attribute from the Patients table.

3.3.2.2 Model Training

For all 3 cohorts, we learn local word embeddings using all notes that belong to

patients from the training set. We use the skip-gram architecture of Word2vec [67]

to learn vector representation of words. We set the skip window size to 1, number

of skips to 2, and number of negative examples to sample to 64. Our embedding

size is 32. Based on the mean/median number of notes and words (see Table 3.1),

we use 20 notes per patient and 300 words from each note. We use the Adam
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Table 3.1: Dataset Statistics

Statistics
Dataset

CDIF MRSA Mortality

# Notes / Patient
Mean 32 14 30
Median 14 7 19

# Words / Note
Mean 339 379 273
Median 207 218 189

Total # Notes 66,486 35,332 299,256
Total # Patients 2,070 2,480 10,000

optimizer [50]. Exponential decay learning rate schedule is used with an initial rate

of 0.01. Model performance is measured by accuracy. We implement our model

with Tensorflow [2].

3.3.3 Experimental Design

We conduct a four-pronged experimental evaluation to asses the prediction power

stemming from (1) the sequential information on the word-level, (2) the sequential

information on the note-level, (3) incorporating nested sequential information from

both levels, and (4) multilayer attribute conditioning. We fix the number of words

per note and the number of notes per patient across all experiments to ensure

inputting the same amount of information to all models allowing a fair comparison.

Additionally, we run a set of experiments to compare HAC-RNN’s performance

with state-of-the-art models.

3.3.3.1 Word-level Models

We first build and analyze a set of word-level models that capture the word

order but neglect the sequential order of notes. To this end, for each patient, we

concatenate the final 300 words from each note, forming one large document per

patient. We use final words as opposed to first because the beginning of a note

often includes repeated information from previous notes. In the case that a note
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Table 3.2: Performance comparison of baseline methods and the proposed method.
(Test-set Accuracy)

Method Type Compared Methods
Datasets

CDIF MRSA Mortality

Baselines

Bag of Words + SVM 58.50± 1.37 68.64± 0.91 71.07± 1.79
Bag of n-grams + SVM 59.72± 2.46 69.20± 0.28 68.50± 2.46
LDA + SVM [89] 58.54± 1.66 69.56± 0.95 71.08± 0.69
Average embeddings [27] 58.79± 0.45 70.50± 0.80 74.76± 0.63
Sequential BOW + RNN [27] 61.56± 1.78 71.08± 1.12 77.52± 1.18

Word-level
models with
word embeddings

Fully Connected 51.47± 0.66 49.32± 0.61 50.60± 0.75
RNN 55.61± 0.33 58.26± 1.85 60.69± 1.14
RNN Attention 64.90± 1.19 72.58± 0.40 76.52± 0.66

Note-level models
models with
average embeddings

Fully Connected 58.79± 0.45 70.50± 0.80 74.76± 0.63
RNN 58.78± 1.19 68.2± 1.70 71.85± 1.69
RNN Attention 61.17± 0.10 71.62± 1.43 73.63± 1.28
RNN Attention + time 62.30± 0.71 75.52± 1.19 76.24± 0.33

Hierarchical
models with
word embeddings

H-RNN 57.24± 1.72 71.02± 0.59 63.41± 1.80
HW-RNN (Word Attention) 66.46± 1.47 74.20± 0.38 82.99± 1.09
HA-RNN (Double Attention) 67.68± 1.64 74.77± 0.71 84.25± 0.61
HAC-RNN (Multilayer Conditioning) 65.61± 0.93 77.57± 1.43 85.33± 0.75

does not have 300 words, we pad the beginning of the note with a vector of 0’s to

ensure same-length inputs. We then train both a Fully Connected Network and an

LSTM. We hypothesize that the sequential model (LSTM) will work better as it

captures the semantic structure of words and word phrases.

3.3.3.2 Note-Level Models

We also build a set of note-level models where we create a set of note-level

representations, then use these representations to classify patients. For each patient,

we use the 20 notes leading up to the time-of-prediction (e.g., the laboratory test

confirming MRSA). In the case that a patient has fewer than 20 documents, we

pad their sequences up to 20 with vectors of 0’s. If a patient has more notes, first

notes are discarded to keep only 20. This decision is based on the intuition that

more recent notes should carry more relevant information. For example, CDIF and

MRSA are caused by bacteria with short incubation periods [37, 90] which means

symptoms should appear nearing diagnosis. We calculate the coordinate-wise mean

vector of all words within each note, producing 20 fixed-length vectors, one per

note. These resulting vectors are then fed into a sequential model. This model

takes into account the order of notes while ignoring the order of words. We also
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compute the average vector of all notes, constituting one fixed-length vector per

patient. Unlike the first model, this model ignores the temporal information of

note order.

3.3.3.3 Hierarchical Models

Finally, hierarchical models take into consideration the nested-sequential order

of words and notes. Our hierarchical architecture employs two levels of RNN to

account for contextual and temporal information, called H-RNN. In addition to

H-RNN, we incorporate an attention mechanism, first only at the word-level (HW-

RNN), then at both levels (HA-RNN). A fourth model is learned using multilayer

conditioning on the external attributes (HAC-RNN).

3.3.3.4 Compared Methods

We also implement current state-of-the-art methods in clinical text mining.

• Bag-of-words representations : We combine patient notes into one document.

Using the most-informative 2000 words, a bag-of-words representation is

created. A linear SVM is then trained. Bag-of-words representation with

linear SVM is utilized in many works [10, 44, 76].

• Bag-of-n-grams representations: We use bag of unigrams, bi-grams, and

trigrams with the most informative 2000 phrases. A linear SVM is then

trained.

• LDA topic model : Using Latent Dirichlet Allocations, we represent patient

notes as weighted averages of a set of topics. We keep the number of topics

to be 50 and train a linear kernel SVM. This method is commonly used to

model clinical notes [31, 32, 43, 100].

• Embedding Averaging : Learned word embeddings of each word are averaged,

then the average of these note-level averages is computed and fed into a linear

classifier [27].

• Sequential bag-of-words : Each note is represented as a bag-of-words, resulting

in a sequence of note-level representations. These representations are then

fed into an RNN for final prediction [27].



43

3.3.4 Results

We present test set accuracy of all experiments in Table 3.2.

Word-Level Models For all three tasks, sequential models outperform non-

sequential models demonstrating contextual information is vital for classification.

Moreover, RNN with attention outperforms RNN without attention for all tasks

by large margins (0.09, 0.14, 0.15 for CDIF, MRSA, Mortality respectively). This

confirms that attention mechanism is extremely beneficial when dealing with long

input sequences.

Note-Level Models For CDIF and MRSA tasks, sequential models (with

attention) with note-level input achieved better results compared to patient-level

representation, showing document order is informative for the classification task.

However, for Mortality prediction, non-sequential model achieved a slightly better

result. Another important observation is that for all datasets, RNN with attention

performs better compared to without attention. Even though the difference is small,

RNN models get worse results compared to fully connected models. In these two

experiment sets, embedding vectors are coordinate-wise averaged, which may be

the reason for this result. As for conditioning data, only note-level time information

is used here to observe the effect of the timing of the notes. These experiments

outperform all the others among note-level models, proving the importance of

temporal information.

Hierarchical Models While HAC-RNN achieved the best performance for

MRSA and Mortality tasks, HA-RNN outperforms for CDIF. This proves that both

word and note order is paramount to classification task whereas patient profiles

may not be as vital depending on the condition. All hierarchical attention models

(HW-RNN, HA-RNN, HAC-RNN) outperform all other baselines for CDIF and

Mortality, whereas for MRSA, note-level RNN Attention with time is the second

best performing model. This shows that, depending on the disease characteristics,

temporal information or the exact time of the notes may be more relevant to the

classification task.
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3.3.5 Model Interpretation

HAC-RNN not only accomplishes superior classification performance but pro-

vides an interpretable model. One essential problem with deep learning in the

clinical domain is the black-box nature of deep learning algorithms. Since these

methods are not able to provide explanations or intuition for particular classi-

fication decisions, health-care professionals approach usage of these algorithms

warily in the decision-making process. Thus, interpretable deep learning models

are imperative. We examine the attention weights generated by HA-RNN in the

following subsections.

Note-level attention We first present results from the attention layer at the

note-level. The attention weight associated with a note indicates how much the

algorithm emphasizes it when generating labels. This weight is always between 0

and 1 and the weights across all notes of a patient sum to 1. We rank the attention

weights for the notes of each testing patient from most-attention to least-attention,

20 corresponding to the highest rank (i.e.the most important note). To compute an

importance score, we then average the rankings per note across the whole patient

set and scale values into a 0-1 range. Results are presented in Figure 3.4.

We observe that for the MRSA and CDIF datasets, more recent notes receive

more attention. Both MRSA and CDIF are hospital-acquired infections with short

incubation periods (3-7 days), a fact with which our results are consistent. For

Mortality Prediction, there is an opposite trend in data, where initial notes receive

more attention. This information can be used to direct the clinicians to guide them

on which notes to focus on. For example, for CDIF we recommend reading the last

couple of notes while for Mortality prediction we recommend reading the earlier

notes, (i.e.those closer in time to the admission of the patient).

Word-level attention Figure 3.5 displays the most important words from the

most important notes of a successfully-classified patient from Mortality prediction

cohort who died while in the hospital. The yellow shading indicates the amount of

attention a word receives where darker yellow means more attention. These word

importances can assist clinicians with where to look for additional clues in the

notes. As Figure 3.5 shows, our algorithm assigns high importance to state changes

(‘gtt increased’) and medical conditions (‘resp distress hypotension sepsis’, ‘femoral

introducer’, ‘dialysis’). Our algorithm also learns to pay attention to expert insights
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Figure 3.4: Importances of notes averaged over the patients. For CDIF and MRSA,
the most recent notes tend to be more relevant to the classification result, while for
Mortality prediction earlier notes tend to be more important.

such as ‘watch qtc level’.

3.4 Summary

Clinical notes present a nested sequential structure, namely, for each patient,

there is a series of free-form text documents (notes) over time and each document

itself consists of a sequence of words. These notes are accompanied by external

attributes at each level of granularity. In this paper, we propose an Attributed

Hierarchical Attention network with multiple attention mechanisms conditioned

on external attributes at different layers for predictive modeling of the sequence of

clinical notes. We evaluate our method on three distinct clinical prediction tasks,

namely, Clostridium Difficile Infection prediction, MRSA infection prediction, and

in-hospital mortality prediction. Patient cohorts are extracted from the publicly-
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Admission Patient
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System predicts
mortality

day 1 day 2 day 3 day 4 day 5

Figure 3.5: Example notes for a correctly-predicted test patient with most impor-
tant words/notes highlighted. Background shades within the text represent word
attention. Darker shades correspond to higher attention weights (This figure best
viewed in color).

available Electronic Health Records data from Beth Israel Medical Center (MIMIC-

III database). We extensively evaluate our method’s prediction performance on

these three tasks. We conclude that considering word-order, note-order, and the

combination of the two outperform current state-of-the-art methods for clinical

note classification. Moreover, external attributes are also shown to be beneficial by

utilizing inferred patient profiles for achieving improved prediction. By including

attention mechanisms, our method has been shown to recommend either whole-notes

or specific sentences for clinicians to spend their valuable time reading.

This task is resulted in the following publication:

• C. Sen, T. Hartvigsen, X. Kong, E. Rundensteiner, “Patient-level Classifica-

tion on Clinical Note Sequences Guided by Attributed Hierarchical Attention”,

In 2019 IEEE International Conference on Big Data (Big Data), pp. 930-939.

IEEE, 2019.
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Chapter 4

Time-Aware Dual Attention

4.1 Motivation

Clinical notes, collected as part of Electronic Health Records (EHR), are times-

tamped sequences of documents created by health-care professionals during a

patient’s hospital stay or over the course of several visits. The aim of clinical note

classification is to predict a clinical outcome for a patient, such as a future diagnosis,

in-hospital mortality, etc., using the clinical notes as input to a classification model.

While they contain rich content full of expert insights about patients, these free-

form textual documents are more challenging to mine than structured data types.

Furthermore, they correspond to a timed sequence of documents. Here, we observe

that the time at which a clinical note was created can carry critical importance. For

example, consider two in-patients with clinical notes containing identical content as

illustrated in Figure 4.1. While the first patient is diagnosed with a life-threatening

infection, the second patient is discharged without contracting this infection. A

machine learning model taking into account only the content of the notes would

result in a wrong prediction. In this example, the timing of the clinical notes

provides the discriminative power vital for accurate classification.

Numerous designs incorporating time information into sequential text modeling

networks such as Recurrent Neural Networks (RNN) are possible. For instance, a

modified RNN is proposed to account for time, discounting short term memory

proportional to the amount of time passed from the previous timestep for patient

subtyping task [9]. Since RNN models lack interpretability, pairing them with
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Figure 4.1: Clinical note sequences from two patients with identical content but
distinct time of occurrences. While first patient (top) contracts an infection, the
other (bottom) does not. Here, classification based only on the content of notes
will be wrong; while timing of the notes adds information critical for classification.

attention mechanisms has begun to be studied in the medical domain [15, 16, 65].

Recently, using time in the form of an attention mechanism that allows the model to

pay more or less attention to the input based on associated timestamps is proposed

for spoken language understanding [14, 96]. In [14], the hard-coded function 1/d(t)

is hand-picked, with d(·) being the time difference between two instances, as the

attention weight at each time step. In [96], a parameterized time-decay function

d(t) generates the attention weights. While the latter is more flexible compared to

the former, it still makes a strict assumption about the functional form of the time

attention.

These methods assume that as time passes, old information becomes less relevant.

However, this assumption does not always hold, especially in the clinical domain.

For example, consider clinical notes collected over the hospital-stay for an inpatient.

A note created at the admission time contains patient information such as age

and gender and thus remains relevant to an infection prediction task regardless

of how much time passes. On the other hand, the importance of medical events

(e.g.having a surgery, elevation in heart rate) relative to a prediction task depends

more heavily on the exact occurrence time of events. Furthermore, the relevance of

each medical event to a medical outcome (e.g.infection) changes differently as time

passes. Figure 4.2 presents examples of how temporal importance may change over
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Figure 4.2: Temporal importance is a function of both clinical event and clinical
outcome.

time for different event-outcome pairs. Overall, a “temporal importance function”

for EHR note classification depends on two factors: 1) characteristics of the medical

outcome that is being predicted, and 2) medical events happening to the patient

throughout their hospital stay (i.e.content of the note).

Designing a time-aware attention mechanism that holds the aforementioned

properties remains challenging for the following reasons :

• Unknown temporal importance: The true function relating when notes are

recorded and clinical outcomes is naturally unsupervised. Additionally, this

relationship may change per task, so defining one fixed function is too rigid.

Previous works input a single time representation to their model (time differ-

ence between two consecutive time steps); while other time representations

may much better match the underlying relationship between the time occur-

rence of instances and how much attention they should receive.

• Required Interpretability : “Black-box” models are suspicious to many clin-

icians. Previously proposed hard-coded temporal importance functions or

RNN modifications do not support interpretability since they are pre-set

instead of being learned alongside a classification model.

• Balancing multiple sources of attention: The goal is not only to decide how
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much attention to put on each document based on their content but also

based on the time at which they were created. Instead of rigid combinations

of the two, a balance among them must be learned as the correct balance is

task-dependent.

To address these challenges, we propose a novel attention mechanism, henceforth

called TEND for Time ENhanced Dual attention, that leverages both the content

and the timing of clinical notes. We pair TEND with an LSTM, a powerful sequence-

modeling neural network, resulting in TEND-LSTM, which classifies sequences of

clinical notes. To account for both factors of temporal importance, TEND-LSTM

computes a multilayer attention mechanism. On the first layer, it focuses on the

content of a single note which is represented as an abstract summarization of

clinical events. Then on the second layer, using a number of time representations,

it learns a task-dependant time attention integrated with content attention. An

MLP layer is used to combine content and time attention. Our contributions can

be summarized as follows:

• We propose a flexible end-to-end model for patient outcome prediction using

clinical note sequences called TEND-LSTM. To our best knowledge, this is

the first work proposing a time-informed attention mechanism for sequential

document classification.

• Our attention mechanism, TEND, does not make any assumptions about the

functional form of the time attention, instead inferring it from examples.

• TEND automatically learns to balance the content and timing of notes when

learning attention weights, offering additional flexibility.

• TEND brings a broader level of interpretability by offering explanations about

the decision of the model from both the time and content perspectives.

• We demonstrate TEND-LSTM outperforming existing methods on six real-

world medical prediction tasks using real-world EHR datasets by large margins.
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4.2 TEND-LSTM Framework

In this work, we design a novel time-augmented dual attention mechanism

addressing the problems with the existing work for classifying document sequences.

The overall architecture of TEND-LSTM is presented in Figure 4.3. This section

introduces the details of each layers of TEND-LSTM.

4.2.1 Notation and Problem Definition

Clinical notes for each patient are represented as a sequence of text documents

collected up to an index event. In our use case, the index event may be the diagnosis

of the infection for the patients. The n-th patient of N total patients is represented

by a sequence of L(n) time-document tuples (d
(n)
i , t

(n)
i ), with d

(n)
i denoting the i-th

document of the sequence and t
(n)
i denoting the timestamp at which this document

was created where i = 1, · · · , L(n). The document d
(n)
i ∈ RK

(n)
i contains K

(n)
i words

w
(n)
ij , j = 1, . . . , K

(n)
i .

From the raw timestamp information t
(n)
i , we compute a set of time variables

and store them in a time vector ψ
(n)
i . Thus we represent time information with

respect to different time semantics such as admission time or the time of the

index event and in different granularities such as hours or days. The goal is to

learn a model to predict the label for a new patient ŷ(z) ∈ {0, 1}, given the set

of D = {D(1), · · · ,D(n)}, D(n) = 〈(d(n)
1 , ψ

(n)
1 )), . . . , (d

(n)

L(n) , ψ
(n)

L(n))〉 and true labels

y(n) ∈ {0, 1} (e.g., 1 indicates an infection, 0 not-infection). To simplify readability,

we henceforth describe our method for a single patient and thus drop the superscript

(n) whenever it is unambiguous.

4.2.2 Document Representations

We compute a sequence of real-valued vector representations for each patient,

one vector per document as follows.

Mean word embedding for content summarization Word embeddings

are continuous vector representations of words where semantically similar words

are mapped close to one another in a new low-dimensional space. We learn word

embeddings prior to end-to-end model training disjointly, using the skip-gram model



52

Table 4.1: Basic Notation

Notation Explanation

N Total number of patients
L(n) Total number of document-time tu-

ples for patient n

d
(n)
i i-th document of patient n

t
(n)
i Timestamp associated with the i-

th document of patient n

ψ
(n)
i Computed time vector associated

with the i-th document of patient
n

K
(n)
i Total number of words in the i-th

document of patient n.

w
(n)
ij j-th word in the i-th document of

patient n

x
(n)
ij Vector representation of word w

(n)
ij

e
(n)
i Document level representation of

d
(n)
i

τ
(n)
i Time-enhanced document vector

where i = 1, . . . , L(n) and j =
1, . . . , K

(n)
i .
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of the “word2vec” algorithm [67] as described in Section 2.3. Using the learned

embedding vector θ, words are then mapped to vectors using xij = θwij, xij ∈ Rω.

Embedding size ω is a parameter to be optimized during training.

After computing the xij mapping for each word wij, a document is now a

sequence of vectors di = [xi1, . . . ,xiK
(n)
i

],xij ∈ Rω. We take the coordinate-wise

average and compute a single vector for each document ei ∈ Rω as follows:

ei =

[(
1

K
(n)
i

∑
j∈K(n)

i

xij [1]

)
, · · · ,

(
1

K
(n)
i

∑
j∈K(n)

i

xij [ω]

)]
(4.1)

Time enhanced document vector When generating a time representation,

appropriate granularity depends on the data source. While a medical sensor may

produce data every second to minute, clinical notes are recorded much less frequently,

in the range of once an hour to a day (or a few days). Consider the case where

a patient has two notes taken on the second and the fourth hours of their stay.

Representing time as (2, 4) (second and fourth hours) or (1, 1) (both are taken on

the first day) may be both meaningful from a medical perspective depending on

the note content while leading to different prediction results.

Time representation can be absolute or relative to a reference point. For example,

an admission time note, containing a patient’s profile, might always be important

regardless how much time has passed. On the other hand, having a high fever is a

symptom of a condition only for a short period of time. If that condition is not

observed in this period, this medical event is not a symptom anymore. In some

cases such as infections, only medical events that happen during the incubation

period are indicative of infection.

Considering all these cases, we compute a rich set of time variables ψi from the

raw timestamp ti in the following ways.

• Delta time (δ): This represents the time difference between documents di

and di−1 and computed as ti − ti−1.

• Ordinal time (γ): This represents the time passed since the admission of the

patient and for di, computed as ti − t0,

• Time to index event (ξ): This represents the remaining time to the index
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Figure 4.3: Proposed TEND-LSTM model and its components.

event. For a disease prediction problem, index event refers to the diagnosis

of the disease or termination of the hospital stay. For di, it is computed as

tL(n) − ti.

All time functions are computed both in days and in hours, creating six time

variables for each document in total.

ψi =
[
δhi , δ

d
i , γ

h
i , γ

d
i , ξ

h
i , ξ

d
i

]
(4.2)

We then concatenate this time vector ψi with the mean word embedding vector

ei to create the time enhanced document vector:

τi = [ei, ψi] (4.3)

4.2.3 Long Short-Term Memory Recurrent Neural Network

After building the time-enhanced document level representations, τi, i = 1, · · · , L,

we train an LSTM network as described in section 2.1.1 by inputting these vectors.

The LSTM reads the input document vectors, then calculates a sequence of hidden

states:

hi = LSTM(τi), i ∈ [1, L] (4.4)
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4.2.4 TEND: Time Enhanced Dual Attention

Our proposed TEND mechanism is composed of two hierarchical layers of

attention, the first layer is called the content attention and the second layer is

called the time-enhanced attention (see Figure 4.3).

Content attention In this layer, a set of attention weights is computed based

on the content of the documents. To compute these weights, the output of the

LSTM from Equation 4.4 is fed into a multilayer perceptron as follows:

ui = tanh(Wchi + bc) (4.5)

αi =
exp(u>i uc)∑
t exp(u>i uc)

(4.6)

Here, we compute ui as a hidden representation of hi. We also define a context

vector uc, which is randomly initialized and jointly learned. The importance of

each document is measured by the similarity of ui with the context vector uc. We

compute normalized importance weights αi through a softmax function as shown

in Equation 4.6.

Time-enhanced attention In the time-enhanced attention layer, we compute

a second set of attention weights. To this end, we concatenate the output of the

content attention layer with the time vector. Using a similar logic with the previous

layer, time-informed dual attention weights β are computed.

ci = [αi, ψi] (4.7)

vi = tanh(Wdci + bd) (4.8)

βi =
exp(v>i vd)∑
t exp(v>i vd)

(4.9)

The patient level representation is modeled by weighted averages of the hidden

vectors of documents with these new attention weights.

h̃ =
∑
i

βihi (4.10)

The purpose of the dual attention layer is to integrate time and content attention.

The Integration function is task-specifically learned through examples.
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Table 4.2: Dataset Statistics

Statistics
Dataset

CDIF MRSA E. Coli Enterococcus K. Pneumoniae Mortality

# Notes / Patient
Mean 32 14 22 28 34 30
Median 14 7 9 13 13 19

# Words / Note
Mean 339 379 284 267 276 273
Median 207 218 187 185 183 189

Total # Notes 66,486 35,332 82,098 129,926 71,530 299,256
Total # Patients 2,070 2,480 3,626 4,568 2,077 10,000

4.2.5 Patient Classification

The resulting patient vector h̃ can be seen as a dense embedding for the patient.

The prediction layer takes the patient vector h̃ and outputs a binary label. We use

cross-entropy as the objective function where ŷ is the prediction and y is the true

label.

L = −
(
y log(ŷ) + (1− y) log(1− ŷ)

)
(4.11)

4.3 Experimental Evaluation

4.3.1 Datasets

MIMIC III Dataset For our experimental evaluation, we use the MIMIC III

Database [46], a publicly available critical care data set collected from the Beth

Israel Deaconess Medical Center Intensive Care Unit (ICU) between 2001 and 2012.

The database consists of all unstructured notes taken by the caregivers including

nursing progress notes, discharge summaries, etc. among other information for

45, 000 patients. MIMIC is a benchmark dataset frequently used in clinical machine

learning studies [9, 22, 37, 84, 90]. We extract patient cohorts from MIMIC for six

classification tasks.

Cohort extraction from MIMIC Five of the tasks are Health-care Associated

Infections (HAIs) often caused by antibiotic-resistant bacteria. To identify cohorts

in the MIMIC III dataset, we use the microbiology test associated with the related
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bacteria found in the Microbiology Events table. We use the microbiology test as

opposed to the ICD9 code to extract the time of diagnosis. Of the resulting patient

set, we use all who have note events. These patients form the positive population.

We randomly sample an equal number of negative patients to create a balanced

dataset. The sixth prediction task is in-hospital mortality prediction which is widely

studied by clinical machine learning researchers. Health-care professionals must

assess the mortality risk of an in-patient as they make care decisions.

We only use data up to a day before diagnosis for infections and a day before

patient’s death for mortality prediction to assure no information regarding confir-

mation or treatment of the condition is included. For negative patient sets, half-way

of their data is used as usually done in prior work [90, 109]. Below, we provide

details regarding each prediction task.

• Clostridium Difficile Infection: Clostridium difficile infection (CDIF) is

a common HAI resulting in gastrointestinal illness with high morbidity and

mortality rates. To identify CDIF patients, we use the microbiology test

associated with the organism 80139-Clostridium Difficile.

• MRSA Infection: Methicillin-resistant Staphylococcus aureus (MRSA),

an antibiotic-resistant bacteria, is a common cause of serious HAIs. MRSA

infections may result in serious complications including sepsis and death.

We use the microbiology test associated with the organism 80293-MRSA to

extract MRSA cohort.

• Escherichia Coli: E. Coli are a diverse group of bacteria that can cause

diarrhea, urinary tract infections, respiratory illness, and pneumonia. To

identify E. coli patients, we use the microbiology test associated with the

organism 80002-Escherichia Coli.

• Enterococcus Sp: Enterococcus Sp is the leading cause of nosocomial

bacteremia, surgical wound infection, and urinary tract infection. To identify

Enterococcus Sp patients, we use the microbiology test associated with the

organism 80053-Enterococcus Sp.

• Klebsiella Pneumoniae: Klebsiella is a bacteria that can cause different

HAIs, including pneumonia. To identify K. Pneumoniae patients, we use the
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microbiology test associated with the organism 80004-Klebsiella Pneumoniae.

• In-hospital Mortality Prediction: Detecting high-death-risk patients is

a benchmark task in clinical predictive modeling research [45, 75]. We use

hospital expire flag from the Admissions table to extract mortality-positive

patient cohort.

We detail statistics for each dataset in Table 4.2.

4.3.2 Implementation Details

Data Preparation There are notes from 15 categories in MIMIC. These

categories are Case Management, Consult, ECG, Echo, Discharge summary, General

Nursing, Nursing/other, Nutrition, Pharmacy, Physician, Radiology, Rehab Services,

Respiratory, Social Work. We use notes from all categories except for discharge

summaries, as they are created at the end of the hospital stay and we only use EHR

data before the diagnosis of the condition. We also note that the current literature

is heavily based on discharge summaries which are semi-structured, unlike the other

categories.

We lowercase and remove punctuation from the clinical notes. MIMIC dataset

contains de-identified data so sensitive information, such as doctor or patient name,

is deducted and put in square brackets. (e.g., Attending:[**First Name3 (LF) 1**]

). We also remove these parts from the notes. The creation-time of each note is

used to extract time features. Lastly, age is extracted from the ’patients’ table.

Model Training For all 6 datasets, we learn local word embeddings using all

notes that belong to patients from the training set of the relevant cohort. We

use the skip-gram architecture of Word2vec [67] to learn vector representation of

words. We set skip window size to 1, number of skips to 2, and number of negative

examples to sample to 64. Our embedding size is 32. We implement our model

with Tensorflow. Based on the mean/median number of notes, we used 20 notes

per patient. In the case that a patient has fewer than 20 documents, we pad their

sequences up to 20 with vectors of 0’s. If a patient has more notes, earlier notes

are discarded to keep only last 20. We use the Adam optimizer. Exponential decay

learning rate schedule is used with an initial rate of 0.01. Model performance is

measured by accuracy.
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Table 4.3: Performance comparison of baseline methods and the proposed method

Method
Dataset

CDIF MRSA E. Coli Enterococcus K. Pneumoniae Mortality

LSTM 56.20± 0.71 65.88± 1.34 62.98± 1.06 59.49± 2.72 60.14± 1.34 65.94± 2.98
Time features 57.18± 1.44 71.66± 1.04 66.80± 0.95 62.46± 0.81 62.00± 0.94 70.42± 0.98
Content att. 60.67± 1.00 70.53± 0.67 65.24± 1.17 64.31± 0.58 64.35± 0.79 72.73± 0.64
Time att. 61.33± 0.76 70.33± 0.67 66.24± 0.79 64.86± 0.41 64.62± 0.87 72.26± 0.66

Reciprocal time att. [14] 60.04± 1.46 70.93± 0.59 66.21± 0.32 65.22± 0.75 64.78± 0.47 72.24± 0.42
Time-decay att. [96] 61.16± 0.63 70.74± 0.46 66.05± 0.22 65.09± 0.91 64.53± 0.99 72.10± 0.20
Time+Content att. [14] 60.85± 0.43 70.68± 0.42 67.06± 0.42 65.28± 0.84 65.03± 0.26 72.81± 0.36

T-LSTM [9] 59.9± 1.77 72.84± 1.50 68.67± 0.63 65.08± 1.36 63.84± 0.85 75.78± 0.63

TEND-LSTM 62.30± 0.71 76.52± 1.19 69.87± 0.59 68.35± 0.48 65.72± 0.28 76.24± 0.33

Table 4.4: Effect of individual time variables

Method
Dataset

CDIF MRSA E. Coli Enterococcus K. Pneumoniae Mortality

No time 56.20± 0.71 65.88± 1.34 62.98± 1.06 59.49± 2.72 60.14± 1.34 65.94± 2.98

Ordinal hour 57.11± 0.93 64.63± 2.60 64.46± 2.34 60.64± 3.84 59.71± 1.36 68.26± 0.87
Delta hour 55.84± 0.92 62.43± 3.35 63.81± 1.28 58.63± 3.46 60.00± 4.42 68.63± 1.00
Hours to index 57.25± 0.88 66.10± 1.53 64.70± 1.35 58.98± 2.13 60.74± 1.28 69.50± 1.28

Ordinal day 59.11± 2.42 70.25± 1.20 63.85± 1.14 61.51± 0.99 60.70± 0.59 69.75± 1.52
Delta day 59.76± 1.07 69.72± 0.72 65.34± 0.73 62.34± 0.98 62.35± 0.6 68.87± 1.24
Days to index 59.66± 1.07 70.17± 0.87 63.42± 0.50 58.61± 1.10 59.81± 1.62 67.84± 0.81

All variables 57.18± 1.44 71.66± 1.04 66.80± 0.95 62.46± 0.81 62.00± 0.94 70.42± 0.98

4.3.3 Performance of TEND-LSTM Model

To evaluate our TEND-LSTM model, we design four baseline methods.

• LSTM: We use only the sequential note level representations to feed into an

LSTM model. No time information is used in this model.

• LSTM w/Content attention: We add only the content attention on top

of the previous model. No time information is used.

• LSTM w/Time features: We first fuse document level summary with

time-based features into one. Combined representation is then fed into an

LSTM model. No attention mechanism is used.
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• LSTM w/Time attention: This model uses the time information in the

form of an attention mechanism on top of LSTM. Computed input time vector

is fed through a fully connected layer to learn the time attention weights.

We also compare TEND-LSTM with state-of-the-art time-aware models. In

all the methods described below, the time input to the model is a scalar (time

difference between instances) instead of a vector. Therefore, in these models, we

experiment with delta day and delta hour and report the accuracy for whichever is

higher.

• Reciprocal time attention: This method is proposed by [14]. Reciprocal

of the time difference between instances serves as the time attention weight.

• Time-decay attention: Convex, concave, and linear time functions are

combined as proposed in [96] and resulting weights are used for attention.

• Time + Content attention: We first compute content attention. Then

for each note, the content attention weight is multiplied by the time variable.

This method is proposed by [14].

• T-LSTM Time aware LSTM is proposed in [9]. This model first decomposes

memory cell in LSTM into long-term memory and short-term memory, then

applies time decay factor to discount the short term memory, and finally

calculates the new memory by combining the long-term memory and a

discounted short-term memory.

The results are presented in Table 4.3. TEND-LSTM outperforms all eight

alternate methods for all six classification tasks as highlighted in bold. We observe

that using time information, regardless of the method and the dataset, improves

classification performance. Lowest accuracy belongs to vanilla LSTM model for

all prediction tasks. Using time in the form of attention performs better than

using it as simple features (Significantly better for 4 out 5 tasks ). For all infection

prediction tasks, Time attention performs better than Content attention, proving

that timing of the notes may be more indicative of a condition then it’s content.

For mortality prediction, however, the opposite is true.
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4.3.4 Effectiveness of Individual Time Variables as Fea-

tures

We also analyze the performance improvements stemming from including each

time variable. To this end, we compare the LSTM model where no time information

is used with including every time variable one at a time and all time variables

added at once. Table 4.4 presents the results of these experiments. For four

out of six tasks, using all time variables together outperforms all individual time

variables. Among the time variables, delta day (δd) and ordinal day (γd) achieve

the best performance. This proves that different time reference points are more

representative depending on the medical condition that is being predicted. For four

out of six tasks, day-based variables (ordinal day, delta day, and days to index)

perform better than hour-based variables (ordinal hour, delta hour, and hours to

index).

We would like to note that, time to index feature cannot be used in a real-life

setting as this information would be unknown. However, as it is used in the

literature [16], we wanted to explore this feature and asses its predictive power.

We observe that, this time feature does not achieve significantly better results

compared to other representations.

4.3.5 Effect of Individual Time Variables in the Attention

Layer: Case Study on CDIF

We experiment with every time variable and their effectiveness when used for

the time attention. For this, using the document level representations, we run

two different experiments: 1) An LSTM with content attention, 2) An LSTM

with time attention where individual time variables are used as the time attention.

Results for CDIF are presented in Table 4.5. These results shed some light on

the characteristics of this specific infection. Clostridium difficile infection is an

acute bacterial infection with a short incubation period (3-7 days, [90]). Previous

works intuitively show that, EHR data closer to the index event (diagnosis of the

infection) is more predictive than the data from earlier time spans [90]. Using

ordinal variables at the time attention level puts more emphasis on the notes closer

to the diagnosis of the infection (See Figure 4.4). In other words, the closer a



62

0 5 10 15 20 25
Notes

0

10

20
de

lta
 h

ou
r

0 5 10 15 20 25
Notes

1.2

1.6

2.0

de
lta

 d
ay

0 5 10 15 20 25
Notes

0

80

160

or
di

na
l h

ou
r

0 5 10 15 20 25
Notes

3

6

9

or
di

na
l d

ay

0 5 10 15 20 25
Notes

0

60

120

ho
ur

s t
o 

in
de

x

0 5 10 15 20 25
Notes

2.5

5.0

7.5

da
ys

 to
 in

de
x

Figure 4.4: Average distribution of the time variables across all patients. Ordinal
time variables follow an increasing trend while time-to-index variables behave the
opposite way. Delta variables are a mixture of both.

note to the diagnosis, the more attention it gets. Using delta variables puts on

average equal attention to all notes, if there is not a big time difference between

two consecutive notes. Time to index event variables work the opposite of ordinal

variables, that is, earlier notes get higher attention from the model. For CDIF,

using only ordinal variables at the time attention layer gets better results compared

to the content attention and other variables. Similarly, time-to-index variables

achieve worse results compared to content attention. These results are consistent

with and validated by the characteristics of the infection.
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Table 4.5: Effect of individual time variables in the attention layer for CDIF

Model Accuracy

Content attention
Content att. 60.67± 1.00

Time attention
Ordinal hour 61.14± 0.80
Ordinal day 60.94± 0.82

Delta hour 60.91± 0.36
Delta day 59.56± 1.18

Hours to index 60.40± 1.52
Days to index 60.03± 0.45

4.4 Summary

For this task, we design a novel attention mechanism, TEND: Time Enhanced

Dual Attention, and an end-to-end deep network architecture utilizing this attention

mechanism, TEND-LSTM. Our TEND-LSTM model is effective for sequential doc-

ument classification tasks where the input documents have associated timestamps.

The TEND deep network is comprised of two attention layers, the first layer is to

learn content based attention for the document sequence and the second layer is to

learn a task-specific combination of content and time. We evaluate the performance

of the TEND-LSTM model using six real-world clinical note datasets. Empirical

results show that TEND-LSTM outperforms strong baselines and state-of-the-art

methods.

This task is resulted in the following publication:

• C. Sen, T. Hartvigsen, X. Kong, E. Rundensteiner, “Learning Temporal Rele-

vance in Longitudinal Medical Notes”, In 2019 IEEE International Conference

on Big Data (Big Data), pp. 2474-2483. IEEE, 2019.
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Chapter 5

Human vs Machine Attention

5.1 Defining Interpretability

The machine learning field has seen unprecedented progress in recent years due

to the success of many models, and especially the deep learning models. Many

applications fueled by machine learning and deep learning have paved their way into

everyday life, such as recommendations by Netflix, speech recognition by Amazon

Alexa or Apple Siri, and neural machine translation by Google. Despite their

success, especially deep learning suffers from some limitations. The most prominent

drawback of these deep learning models is the lack of transparency in their actions.

This leaves end-users with little understanding of how these models make particular

decisions.

As machine learning models being used in critical areas such as medicine,

the criminal justice system, and financial markets, the inability of humans to

understand these models is problematic. Explainable or interpretable models can

solve this problem. However, few articulate precisely what interpretability means,

leaving the term “interpretability” ill-defined. Hence, the claims regarding the

interpretability of various models may exhibit a quasi-scientific character [58]. In

the following sections, I summarize the recent research efforts to define the concept

of interpretability.
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5.1.1 Properties of Interpretability

One of the first efforts for defining interpretability is by Lipton [58]. According

to Lipton, the properties of interpretable models are two-fold.

The first one is transparency. Transparency is informally defined as the oppo-

site of opacity or blackboxness. It indicates some understanding of the mechanism

that the model works. Transparency can be considered at three levels.

1. Simulatability - at the level of the entire model: We can call a model trans-

parent if a person can “contemplate” the entire model at once. According to

this definition, an interpretable model is a simple model. This corresponds to

the common claim that sparse linear models (e.g., lasso regression) are more

interpretable than dense linear models.

2. Decomposability - at the level of individual components (e.g., parameters):

Another way of defining transparency might be that each part of the model

(e.g., input, parameter) reveals an intuitive explanation. For example, each

node in a decision tree might correspond to a description.

3. Algorithmic transparency - at the level of the training algorithm: Deep

learning models lack algorithmic transparency. Even though being empirically

powerful, we don’t understand how deep networks work, and cannot guarantee

beforehand that they will work on new problems.

The second property is referred to as post-hoc interpretability. This concept

refers to extracting information from learned models. This type of interpretability

is not informative about how a model works. However, it can still provide useful

information for end-users of machine learning. Post-hoc interpretability can be

achieved in three ways.

1. Natural language explanations: Humans justify decisions verbally. So the

idea here is to train a model to generate predictions and a separate model to

generate explanations.

2. Visualizations of learned representations or models: Another approach is to

create visualizations for a qualitative measure of interpretability. For example,
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one traditional approach is to visualize high-dimensional representations with

dimensionality reduction methods such as t-SNE.

3. Explanations by example: Similar examples classified by the models can be

used as a means of interpretability (e.g., this tumor is classified as malignant,

because it looks a lot like these other tumors).

5.1.2 Evaluating Interpretability

Another prominent research paper on interpretability is by Doshi-Velez et al.

[25]. Their main goal is to define interpretability, and more importantly, laying out

a methodology for evaluating it.

According to this paper, “interpret” means to explain or to present in under-

standable terms. In the context of machine learning, interpretability is defined as

the ability to explain or to present in understandable terms to a human.

In this work, the authors categorize ways of evaluating interpretability into two.

1. By using real humans and real tasks or simplified tasks: This approach aims

to evaluate interpretability with respect to an application. ”Application-

grounded evaluation” requires conducting human experiments using the

application-at-hand. For example, if the application-at-hand is diagnosing

patients with a particular disease, this way of evaluation requires doctors to

perform the diagnoses.

2. By using proxy tasks instead of humans: This approach is termed as “Functionally-

grounded evaluation”, and it does not require human experiments. Instead, it

uses a formal definition of interpretability as a proxy for explanation quality.

In this approach, a researcher should first claim that some model class, e.g.,

sparse linear models, are interpretable and then present algorithms to optimize

within that class. Such experiments are appealing because human-subject

experiments require time and costs.

5.1.3 Achieving Interpretability in Deep Learning

In their recent paper, [26] defines interpretability and puts forth a systematic

classification of methods for achieving interpretability in machine learning.
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According to [26], interpretability is the ability of models to explain or to present

their behaviors in understandable terms to humans. A good explanation should

be meaningful to users and avoid being influenced by artifacts. According to this

definition, interpretable machine/deep learning is a multidisciplinary concept, and

it requires efforts from many fields such as computer science, social science, and

human-computer interaction. Only this way, real user-oriented and human-friendly

explanations can be designed.

[26] suggest a categorization of interpretable methods based on the time when

the interpretability is obtained: intrinsic interpretability and post-hoc inter-

pretability.

Intrinsic interpretability refers to building self-explanatory models where inter-

pretability is directly incorporated into the model structure. Examples of these

types of models include rule-based models, decision trees, linear models, and atten-

tion models. These models could provide accurate explanations but may sacrifice

prediction performance.

On the other hand, post-hoc interpretability involves building a secondary model

specifically for providing explanations for the main model. The primary difference

between these two types comes from the trade-off between model accuracy and

explanation fidelity. These models are limited in their approximate nature while

keeping the underlying model accuracy intact.

5.2 Motivation

When humans perform a cognitive task, they pay varying amounts of attention

to different parts of the task. For example, when reading a text, they pay more

attention to specific words while skipping others [48]. Inspired by this observation,

a recent trend in deep learning is to build computational models of attention [5].

Such neural attention mechanisms allow neural network models to adjust their

focus to specific parts of the input data, improving model performance and adding

interpretability.

Attention-based models have become the architectures of choice for a vast

number of NLP tasks including, but not limited to, language modeling [20], machine

translation [5], document classification [114], and question answering [54, 98]. While
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attention mechanisms have been said to add interpretability since their introduction

[5], the investigation of whether this claim is correct has only just recently become

a topic of high-interest [68, 92, 104]. If attention mechanisms indeed offer a more

in-depth understanding of a model’s inner-workings, application areas from model

debugging to architecture selection would benefit greatly from profound insights

into the internals of attention-based neural models.

Recently, [41], [108], and [92] proposed three distinct approaches for evaluating

the explainability of attention. [41] base their work on the premise that explainable

attention scores should be unique for a given prediction as well as consistent with

other feature-importance measures. This prompts their conclusion that attention is

not explanation. Based on similar experiments on alternative attention scores, [92]

conclude that attention does not necessarily correspond to the importance of inputs.

In contrast, [108] find that attention learns a meaningful relationship between

input tokens and model predictions, which cannot be easily ‘hacked’ adversarially.

While these works ask valuable questions, they embrace model-driven approaches

for manipulating the attention weights and thereafter evaluate the post-hoc ex-

plainability of the generated machine attention. In other words, they overlook the

human factor in the evaluation process – which should be integral in assessing the

plausibility of the generated explanations [85].

In this work, we adopt a novel approach to attention explainability from a

human-centered perspective and, in particular, investigate to what degree machine

attention mimics human behavior. More precisely, we are interested in the following

research question: Do neural networks with attention mechanisms attend to the

same parts of the text as humans? To this end, we first collect a large dataset of

human-attention maps and then compare the validated human attention with a

variety of machine attention mechanisms for text classification.

Figure 6.1 displays examples of human and machine-generated attention for

classifying a restaurant review’s overall rating. Our goal is to quantify the similarity

between human attention and machine-generated attention scores. Measuring

this similarity is non-trivial and is not appropriately captured by an existing

similarity metric (e.g., Euclidean) between two vectors for the following reasons.

A binary human attention vector does not solely denote which tokens are given

higher importance but also implies information about the underlying grammatical



69

structure and linguistic construction. For example, whether or not adjectives tend

to be high-importance is encoded in the attention weights as well. Further, it is

well known that human attention is itself subjective: given the same text and task,

human annotators may not always agree on which words are important. That is,

one single human’s attention should rarely be regarded as the ground-truth for

attention.

Given this objective, we use crowd-sourcing to collect a large set of human

attention maps. We first provide a detailed account of the iterative design process

for our data collection study. We design new metrics that quantify the similarity be-

tween machine and human attention from three perspectives: Behavioral similarity

measures the number of common words selected by human and machine discerning

if neural networks with attention mechanisms attend to the same parts of the

text as humans. Humans associate certain lexical categories (e.g., adjectives) with

a sentiment more heavily. Lexical (grammatical) similarity identifies if machine

attention favors similar lexical categories with humans. A high lexical similarity

shows that the attention mechanism learns similar language patterns with humans.

Context-dependency quanitifies sentiment polarity of word selections.

We then employ these metrics to compare attention maps from a variety of

attention-based Recurrent Neural Networks (RNN). We find that bi-Directional

RNNs with additive attention demonstrate strong similarities to human attention

for all three metrics. In contrast, uni-directional RNNs with attention differ from

human attention significantly. Finally, as the text length increases, and with it,

the prediction task becomes more difficult, both the accuracy of the models and

similarity between human and machine decrease.

Our contributions are as follows:

• We conduct a large-scale collection of 15,000 human attention maps as a

companion to the publicly-available Yelp Review dataset. Our collected

Yelp-HAT (Human ATtention) dataset is publicly available as a valuable

resource to the NLP community.

• We develop rich metrics for comparing human and machine attention maps

for text. Our new metrics cover three complementary perspectives: behavioral

similarity, lexical similarity, and context-dependency.
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Figure 5.1: Examples of binary human attention (top two figures) and continuous
machine attention (bottom figure).

• We conduct the first in-depth assessment comparing human versus machine

attention maps, with the latter generated by a variety of state-of-the-art soft

and hard attention.

• We show that when used with bidirectional architectures, attention can be

interpreted as human-like explanations for model predictions. However, as

text length increases, machine attention resembles human attention less.

5.3 Preliminaries and Definitions

In this section, we define the concepts of Human Attention Map and Machine

Attention Map.

Definition 5.3.1. Attention Map. An Attention Map (AM) is a vector where

each entry in sequence is associated with a word in the corresponding position

of the associated text. The value of the entry indicates the level of attention the

corresponding word receives with respect to a classification task.

Definition 5.3.2. Human Attention Map. A Human Attention Map (HAM)

is a binary attention map produced by a human, where each entry with a set-bit

indicates that the corresponding word receives high attention.

Definition 5.3.3. Machine Attention Map. A Machine Attention Map (MAM)

is an attention map generated by a neural network model. If computed through

soft-attention, a MAM corresponds to an AM of continuous values, that capture
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a probability distribution over the words. If computed through hard-attention, a

MAM is a binary AM.

We now introduce the application of aggregation operators to coalesce HAMs

by multiple annotators into aggregated HAMs.

Definition 5.3.4. Consensus Attention Map. If multiple HAMs exist for the

same text, a Consensus Attention Map (CAM) is computed through a bitwise AND

operation of the HAMs.

Definition 5.3.5. Super Attention Map. If multiple HAMs exist for the same

text, a Super Attention Map (SAM) is computed by a bitwise OR operation of the

HAMs.

5.4 HAM Collection by Crowd-sourcing

We collect human attention maps for the Yelp dataset1 on the classification task

of rating a review as positive or negative on Amazon Mechanical Turk. Participants

are asked to complete two tasks: 1) Identify the sentiment of the review as positive,

negative, or neither, and 2) Highlight the words that are indicative of the chosen

sentiment. Our interface used for data collection is in Figure 5.2.

5.4.1 Preliminary investigation of the quality of human an-

notations.

First, we conduct a series of data collection studies on two subsets of the Yelp

dataset. Both subsets consist of 50 randomly-selected reviews from the Restaurant

category. The first subset contains reviews with exactly 50 words, while the second

contains reviews with exactly 100 words. For each review, human annotation is

collected from two unique users.

We explore the quality of data we can collect on Mechanical Turk, as it en-

courages users to complete their tasks as quickly as possible since the number of

completed tasks determines their income. This may lower the quality of collected

1https://www.yelp.com/dataset/challenge

https://www.yelp.com/dataset/challenge
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Figure 5.2: User interface we used for data collection on Amazon Mechanical Turk.

data since users may not select all relevant words, instead opting for the few most

obvious ones, or they may choose words randomly.

Based on our preliminary investigations, we observe that both the average time

users spend on the task (44 vs. 70 seconds) and the average number of words

selected per review (9 vs. 13 words) increase as the number of words in the review

increases from 50 to 100. This suggests that users do not choose words randomly;

instead, they make an informed decision. We also visually examine the collected

human attention maps and confirm that subjects make meaningful selections.

5.4.2 Pilot study assessing two design choices for data col-

lection.

Next, we design another pilot study to understand how humans perform the

cognitive task of classifying a text and selecting the particular words that led to

this decision. In this study, we ask eight participants to perform the same task
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while adhering to one of two strategies. The first strategy, the read-first design,

involves reading the review first, deciding on the sentiment, then rereading the

review, this time to highlight the relevant words. The second strategy, the free-style

design, gives participants the freedom to choose the relevant words as they read

the review to determine the sentiment. Each participant is asked to complete two

tasks to experience both strategies. Half of the participants first work with the

read-first design followed by the free-style design while the other half work in the

reverse order. After completing the tasks, we ask the participants which strategy

they find more natural in a post-task questionnaire.

5.4.3 Findings from the pilot study.

Out of eight participants, half of them find it more useful reading the review

first then deciding on the words whereas the other half indicated the opposite. We

then evaluate the collected data from three perspectives to decide which design is

most suitable for our purposes.

We first examine the agreement between participants adhering to a particular

strategy. This involves calculating the percentage of participants that mutually

select the same phrase. We find that participant agreement is higher (73%) when

the participants are forced to read the review before making any selections compared

to using the free-style design (69%). Next, we investigate how similar the results are

to the ground truth we defined for each review. The read-first design achieves better

performance (3.30) compared to the free-style design (3.10). Our final criterion

involves examining the amount of noise in the data (i.e., selections which deviate

from the chosen sentiment). Only one review exhibits this situation where the

review is clearly positive; however, it also contains a negative-opinion sentence.

We observe that the read-first design reduces this cross-sentiment noise (1 vs. 0.5

scores).

5.4.4 Data collection protocol for the main study.

Based on conclusions from the pilot studies, the read-first design is adopted to

conduct the main data collection for 5, 000 reviews on Amazon Mechanical Turk.

For this study, three different subjects annotated each review, resulting in a total
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of 15, 000 human attention maps. The resulting Yelp Human Attention Dataset

(YELP-HAT) is publicly available 2.

5.4.5 Analysis and Insights About HAMs

5.4.5.1 Factors that affect human accuracy.

Some reviews contain a mixture of opinions, even though the reviewer felt

strongly positive or negative about the restaurant. For example, consider the

following review: “Nothing to write home about, the chicken seems microwaved and

the appetizers are meh. ... If your [sic] looking for a quick oriental fix I’d say go

for it.. otherwise look elsewhere.” This review is labeled as negative, positive, and

neither. The annotator who assigned it to the positive class selected the words

“go for it” while the annotator who assigned it to the negative class selected the

words “otherwise look elsewhere”. This type of “mixed review” is the principal

reason for discrepancies in classifications by the human annotators. The nature

of crowd-sourcing also causes such inconsistencies as not all annotators provide

reviews of equal quality.

5.4.5.2 Ambiguity in human attention.

Intuitively, human attention is highly subjective. Some common patterns across

annotators lead to differences in human annotations. A common behavior is to

select keywords that indicate a sentiment. Another typical action is to select entire

sentences if the sentence expresses an opinion.

Some reviews include subjective phrases that people interpret differently with

regard to sentiment-polarity. For instance, “I come here often” can be construed

as a favorable opinion. However, some people find it neutral. In some cases, an

overwhelmingly-positive review incorporates a negative remark (or vice versa). In

these cases, some people select all pieces of evidence of any sentiment, whereas

others only choose words that indicate the prevailing sentiment.

2http://davis.wpi.edu/dsrg/PROJECTS/YELPHAT/index.html

http://davis.wpi.edu/dsrg/PROJECTS/YELPHAT/index.html
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5.5 Attention Map Similarity Framework

We quantify the similarity between HAMs and MAMs through our similarity

framework that contains three new metrics as described in this section.

5.5.1 Overlap in Word Selections

For two attention mechanisms to be similar, they must put attention on the

same parts of the text. Thus, we first define a metric for quantifying the overlap in

the words selected by human annotators and by deep learning models.

Definition 5.5.1. Behavioral Similarity. Given a collection of attention maps

HAMD and MAMD for a text dataset D, behavioral similarity between human

(H) and machine (M) corresponds to the average pair-wise similarity between each

(HAMi,MAMi) vector pair ∀i ∈ D as defined below:

PairwiseSimi = AUC(HAMi,MAMi)

BehavioralSim(M,H) =
1

|D|
∑
i

(PairwiseSimi)

where |D| is the number of reviews in the dataset D. Word Similarity metric

first computes an AUC score between a human attention vector and a machine

attention vector for each pair. Average of these pairwise similarities over all map

pairs corresponds to the overall similarity between human and machine. Intuitively,

this corresponds to adopting the human attention vector as binary ground truth.

That is, it measures how similar the machine-generated continuous vector is to this

ground truth. AUC is between 0 and 1 with .5 representing no similarity, and 1

the perfect similarity.

5.5.2 Distribution over Lexical Categories

Previous work has found that lexical indicators of sentiment are commonly

associated with syntactic categories such as adjective, adverb, noun, and verb [66].

We define the following lexical similarity metric to test if human and machine adopt

similar behaviors in terms favoring certain lexical categories.
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Definition 5.5.2. Lexical Similarity. Given a collection of attention maps

HAMD and MAMD for a text dataset D, Lexical Similarity (LS) between human

(H) and machine (M) over D is computed:

LS(M,H) = corr(dist(wordsH), dist(wordsM))

where wordsH is a list of all selected words in all reviews of D by human, wordsM

is a list of all selected words in all reviews of D by machine, dist() is a function

that computes the distribution of a word list over a tagset (e.g., nouns, verbs,

etc.). The complete tagset list we used can be found online 3. After computing

two distributions, the corr() function computes the correlation between them. In

our experiments, we adopt Pearson Correlation. If MAM is continuous, selected

words by M corresponds to k words with the highest attention scores, where k is

the number of words selected by human for that text.

Using a random attention R as a baseline where the most important k words

are selected randomly, we then compute an Adjusted Lexical Similarity which is

between 0 and 1 as follows.

AdjustedLS =
LS(M,H)− LS(R,H)

1− LS(R,H)

5.5.3 Context-dependency of Sentimental Polarity

When deciding the sentiment of a review, human subjects may consider positive

sentiment words in a negative review and vice versa. We define context-dependency

as the selection frequency of an opposite-sentiment word (e.g., “good” selected in a

negative review). To assess how context-dependant human and machine attentions

are, we compute cross-sentiment selections rates.

Definition 5.5.3. Cross-sentiment selection rate (CSSR). Assume we have

a collection of attention maps AMD for a dataset D, ground truth for overall

sentiment Y for each review in D ( yi ∈ {0, 1} ), and a list of positive words P
3https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
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and negative words N in the English language. CSSR denotes the ratio of selected

words from the opposite sentiment.

p words = get words(HAMD, Y = 1)

n words = get words(HAMD, Y = 0)

CSSRp =
|p words ∩N|
|p words ∩ P|

CSSRn =
|n words ∩ P|
|n words ∩N|

get words() function returns a list of attention-receiving words where HAMij =

1,∀i, j for the entire set of HAMD, for positive-sentiment reviews (Y = 1) and

negative-sentiment reviews (Y = 0) separately. A list of words with positive and

negative connotations, P and N , are obtained from [40]. CSSRp (positive) and

CSSRn (negative) is then computed as the ratio of the number of cross-sentiment

words over the number of same-sentiment words. A high CSSR means many words

from the opposite sentiment are selected. This metric provides insights about how

similar human and machine attentions are with regard to their context-dependant

behaviour. With the help of these pre-defined word lists, negative and positive

word counts are calculated for negative and positive reviews. Contrastive word

selections indicate how context-dependent is the attention mechanism.

5.6 Is Machine Attention Similar to Human At-

tention?

5.6.1 Generating Machine Attention Maps

The Yelp dataset contains reviews and their rating scores between 0 and 5

(stars). This rating score corresponds to the ground truth for the review’s overall

sentiment. We create a binary classification task by assigning 1 and 2-star reviews

to the negative class and 4 and 5-star reviews to the positive class. We omit 3-star

reviews as they may not exhibit a clear sentiment. For training neural network

models, we extract balanced subsets and split them into 80% training set, 10%
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validation set and 10% test sets. We then generate MAMs using the following

machine learning models.

5.6.1.1 RNN with soft attention

Recurrent Neural Networks (RNN) enhanced with attention mechanisms have

emerged as the state-of-the-art for NLP tasks [5, 20, 54, 114]. We implement the

additive attention for many-to-one classification task as it is commonly used in the

literature [5, 114] and paired it with both uni- and bi-directional RNN. In our

implementation, we use LSTM memory cells.

Assuming that Γ is the recurrence function of LSTM and xi is the embedded

i-th word of T words in a review, we model our method as:

hi = Γ(xi, hi−1), i ∈ [1, T ] (5.1)

ui = tanh(Whi + b) (5.2)

αi =
exp(u>i u)∑
t exp(u>i u)

(5.3)

Here hi, i ∈ [1, T ] are hidden representations, W , b, and u are trainable parame-

ters, and αi, i ∈ [1, T ] are the attention scores for each word xi. A context vector

ci corresponds to the weighted average of the hidden representations of words with

attention weights, denoted by:

ci =
∑
j

αjhj (5.4)

Through a softmax layer, context vector ci is then used for further classifying the

input sequence.

5.6.1.2 Rationale mechanism

An alternative approach, referred to as “rationale mechanism”, can be seen as a

type of hard attention [7, 57]. This model consists of two main parts that are jointly

learned: a generator and an encoder. The generator specifies a distribution over the

input text to select candidate rationales. The encoder is used to make predictions

based on the rationales. The two components are integrated and regularized in the

cost function with two hyper-parameters, selection lambda, and continuity lambda,
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Accuracy

Yelp-50 Yelp-100 Yelp-200

Human 0.96 0.94 0.94
RNN 0.91 ± 0.006 0.90 ± 0.013 0.88 ± 0.01
biRNN 0.93 ± 0.008 0.91 ± 0.005 0.88 ± 0.02
Rationales 0.90 ± 0.004 0.85 ± 0.035 0.77 ± 0.015

Table 5.1: Test accuracy from three subsets of Yelp data.

for optimizing the representative selections. The selection lambda penalizes the

number of words selected, while the continuity lambda encourages the continuity

via minimizing the distances of the words chosen. Thus, a higher selection lambda

tends to select fewer words as rationales, while a higher continuity lambda tends to

promote phrases as meaningful rationales.

5.6.1.3 Implementation Details

For the Rationale Neural Prediction Framework, we use the Pytorch implemen-

tation4 suggested by [57]. In this framework, the encoder is built as Convolutional

Neural Network (CNN) and the generator is built as Gumbel Softmax with inde-

pendent selectors. The following hyper-parameters of CNN are used as pointed out

by [57]: 200 hidden dimensions, 0.1 dropout rate, 2 hidden layers, 128 batch size,

64 epochs, 0.0003 initial learning rate.

We conducted an extensive parameter search to find the optimum values for the

two key hyper-parameters of the rationale model, selection-lambda, and continuity-

lambda, which regularize the number and the continuity of words selected during

the optimization process. For the selection lambda, we experimented with values 1,

1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9, and 0. For the continuity lambda,

we experimented with values 0 and two times of selection lambda. We observe

that the performance of the rationale-based model is extremely sensitive to its

hyper-parameters.

One conflicting interest with the rationale-based models is that the more words

the model selects, the accuracy becomes higher. As our goal is to compare human

4https://github.com/yala/text_nn

https://github.com/yala/text_nn
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Yelp-50 HAM1, k = 10 HAM2, k = 12 HAM3, k = 12 CAM, k = 5 SAM, k = 22

HAM2 0.73 - - - -
HAM3 0.74 0.75 - - -
RNN Attention 0.59± 0.021 0.59± 0.002 0.57± 0.012 0.59± 0.024 0.58± 0.021
Bi-RNN Attention 0.69± 0.004 0.70± 0.008 0.69± 0.007 0.79± 0.003 0.64± 0.008
Rationales 0.62± 0.014 0.62± 0.012 0.63± 0.015 0.68± 0.020 0.58± 0.010

Yelp-100 HAM1, k = 15 HAM2, k = 16 HAM3, k = 16 CAM, k = 6 SAM, k = 30

HAM2 0.71 - - - -
HAM3 0.73 0.74 - - -
RNN Attention 0.57 ± 0.009 0.58 ± 0.011 0.59 ± 0.012 0.57 ± 0.010 0.58 ± 0.008
Bi-RNN Attention 0.65 ± 0.011 0.65 ± 0.021 0.66 ± 0.021 0.73 ± 0.031 0.62 ± 0.012
Rationales 0.55 ± 0.015 0.55 ± 0.005 0.55 ± 0.010 0.59 ± 0.015 0.54 ± 0.005

Yelp-200 HAM1, k = 26 HAM2, k = 27 HAM3, k = 25 CAM, k = 11 SAM, k = 45

HAM2 0.70 - - - -
HAM3 0.69 0.71 - - -
RNN Attention 0.60 ± 0.011 0.60 ± 0.013 0.60 ± 0.014 0.60 ± 0.017 0.60 ± 0.011
Bi-RNN Attention 0.61 ± 0.015 0.61 ± 0.008 0.61 ± 0.018 0.63± 0.009 0.60 ± 0.008
Rationales 0.51± 0.013 0.52 ± 0.021 0.51 ± 0.018 0.52± 0.025 0.49± 0.019

Table 5.2: Behavioral similarity of human attention to machine on varying review
length. k indicates the average number of words selected. (0.5:no similarity,
1.0:perfect similarity)

attention with machine-generated attention for model interpretability, we optimize

the model not only for accuracy but also for the number of selected rationales.

We aim to generate roughly an equal number of words selected by both human

annotators and machine-generated rationales.

We aim to get roughly equal number of words with human annotators as opposed

to optimizing for the accuracy. The goal was to observe 2 optimal experiments

with less words selected and higher accuracy in the test set of every Yelp review

dataset. And we would continue to tune selection lambda if no optimal results

found, e.g. rationales are 1 with poor accuracy in all experiments under a dataset.

For training Attention-based models, we used the following hyper-parameters

to RNN-based models. 100 hidden dimensions, 100 attention size, 0.2 dropout rate,

128 batch size, 64 epochs, 0.0001 initial learning rate.
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5.6.2 Behavioral Similarity Analysis

We conduct a set of controlled experiments with the length of the review

changing across experiments. First, we generate MAMs for three subsets of the

Yelp dataset: reviews containing 50 words (Yelp-50), 100 words (Yelp-100) and 200

words (Yelp-200). Neural network models with attention mechanisms are trained

on each of these subsets. The corresponding test set accuracies for sentiment

classification of human versus machine are shown in Table 5.1. Next, we acquire the

HAMs collected for each test set. Since each review is annotated by three people,

we have three sets of HAMs: HAM1, HAM2, and HAM3. Consensus among the

three, CAM and SAM, are computed as per Defs. 2.4 and 2.5. Then we measure

the Behavioral Similarity between human and machine. The amount of overlap in

the selected words are presented in Table 5.2.

We observe that accuracy and similarity both decrease as the review-length

increases and the classification task becomes more difficult for both humans and

machine learning models. We identify two reasons for this: First, when a review is

long, the prevailing opinion is usually not obvious at first glance and may require

more intensive reading and contemplating. Second, the reviewers are more likely to

state conflicting facts and opinion in long reviews. This, in turn, creates distracting

and hard-to-read text. Compared to unidirectional model, bidirectional RNN with

attention consistently rates closer to human attention. This is most striking for

the Yelp-50 subset. This can be explained with the fact that bidirectional RNNs

possess information from both directions of the text similar to humans.

For all three subsets, Yelp-50, Yelp-100, and Yelp-200, behavioral similarity for

Consensus Attention Map is higher than all three HAMs. This is an important

result because it indicates that the words all annotators agreed to be important

are selected by machine attention too, whereas more subjective selections do not

always get high attention from machine, indicated by lower SAM similarity.

Finally, we compare similarity of these three sets of HAMs. Even though

human-to-human similarity is usually higher than human-to-machine similarity (as

expected), the numbers still far from being close to 1. This confirms the subjectivity

of human attention. Also, note that human-to-human similarity decreases as the

review length increases.

We observe that the performance of the rationale-based models degrades more
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sharply as the review-length increases. One conflicting interest with the rationale-

based models is that the more words the model selects, the accuracy becomes higher.

As our goal is to compare human attention with machine-generated attention for

model interpretability, we optimize the model not only for accuracy but also for

the number of selected rationales. We aim to generate roughly an equal number of

words selected by both human annotators and machine-generated rationales. Hence,

we force the rationale-models to pick fewer words by tuning the selection lambda

accordingly. This gives a comparative advantage to attention-based models against

rationale-based models, as the rationale model is a hard-attention mechanism. In

addition, rationales are better suited for sentence-level tasks as they encourage

consecutive selection as opposed to the behavior of attention.

5.6.3 Lexical Similarity Analysis

Next, we analyze if humans and neural networks pay more attention to words

from particular lexical categories using Adjusted Lexical Similarity score.

Lexical Similarity results, presented in Table 5.3, are consistent with Behavioral

Similarity in that bidirectional model with attention is most similar to human

(0.91 for Yelp-50 and 0.84 for Yelp-100). Rationales model follows bidirectional

RNN, and unidirectional RNN is the least similar model to human. Overall, lexical

similarity to human decreases for all models, as the reviews become longer.

Next, we inspect which lexical categories are selected more heavily by human

and machine. For this, we provide relative frequency of lexical categories for

human-selected words, machine-selected words (bi-RNN), and overall relative

frequency of this tag within the dataset. Adjectives (Human:0.24 bi-RNN:0.23

Overall:0.02), comparative adjectives (Human:0.002 bi-RNN:0.001 Overall:0.0001),

and nouns (Human:0.38 bi-RNN:0.37 Overall:0.09) are among the lexical categories

that humans and bi-RNN models favor heavily. Similarly, personal pronouns are

rarely selected by neither humans nor bi-RNN models (Human:0.005 bi-RNN:0.005

Overall:0.01).
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Yelp-50 Yelp-100 Yelp-200

Lexical Sim. Adjusted LS Lexical Sim. Adjusted LS Lexical Sim. Adjusted LS

Random Attention 0.85 ± 0.006 - 0.84 ± 0.013 - 0.90 ± 0.010 -
RNN Attention 0.93 ± 0.015 0.54 0.91 ± 0.007 0.44 0.93 ± 0.005 0.37
Bi-RNN Attention 0.99 ± 0.005 0.91 0.98 ± 0.013 0.84 0.93 ± 0.003 0.36
Rationales 0.95 ± 0.012 0.66 0.93 ± 0.027 0.53 0.90 ± 0.002 0.05

Table 5.3: Lexical Similarity and Adjusted Lexical Similarity of human attention to
machine on varying review length. (Adjusted LS 0:no similarity, 1:perfect similarity)

CSSRp CSSRn

Human 0.06 0.20
RNN Attention 0.06 2.28
Bi-RNN Attention 0.04 0.19
Rationales 0.08 0.44

Table 5.4: Cross-sentiment Selection Rates for positive and negative reviews for
Yelp-50 dataset.

5.6.4 Cross-sentiment Selection Rate Analysis

Finally, we compute CSSR scores, presented in Table 5.4, to evaluate the

context-dependency of sentimental polarity for human and machine attentions.

Our observations for Yelp-50 dataset are as follows. By human annotators, almost

exclusively positive words are selected if the overall review sentiment is positive.

For negative reviews, higher number of positive words are selected than negative

words (CSSRp = 0.06,CSSRn = 0.20). Among the neural network models, the

bidirectional RNN once more behaves most similar to human annotators with

CSSRp = 0.04 and CSSRn = 0.19. RNN model’s approach differs from that of

human’s and bi-RNN’s. Even though the behaviour is similar for positive polarity

(CSSRp = 0.06), the opposite is true for negative polarity. In fact, positive words

selected 2.28 times more than negative words in negative reviews, which is counter-

intuitive. For the Rationales model, CSSRp is 0.08 and CSSRn is 0.44. This

indicates that Rationales model is more similar to human attention than RNN

model with attention. We observe similar trends for the Yelp-100 and Yelp-200

datasets.
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Figure 5.3: Human attention is highly subjective. Some annotators tend to select
only a few words, whereas others choose entire sentences.

5.6.5 Additional Analysis Results

An example visualization of the attention maps annotated by human annotators

and machine learning models is provided in Figure 5.4. The agreement between

human annotators and all machine learning models can be considered high in this

example, as there are many mutual selections.

Another example is provided in Figure 5.3, demonstrating the attention maps

provided by two different annotators for the same review. This is an extreme

example of the subjectivity of human attention. The first annotator only highlights

individual words with the strongest cues of sentiment, whereas the second annotator

sometimes selects entire sentences when they indicate a sentiment.

Table 5.5 shows the distribution of selected words over lexical categories for

Human (CAM), Machine (bi-RNN), and the entire corpus for the Yelp-50 subset.

Any divergence in the Human and Machine columns from the Corpus column

indicates a tendency of selection for a lexical category. For example, adjectives are

selected very heavily by both Human and Machine, even though they only make

0.02 of all words in the dataset.
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Lexical Category Human Machine(bi-RNN) Corpus

Coordinating conjunction 0.0000 0.0098 0.0147
Cardinal number 0.0098 0.0077 0.0043
Determiner 0.0112 0.0168 0.0312
Existential there 0.0000 0.0000 0.0000
Foreign word 0.0000 0.0000 0.0000
Preposition or subordinating conjunction 0.0266 0.0084 0.0298
Adjective 0.2374 0.2269 0.0201
Adjective, comparative 0.0021 0.0014 0.0002
Adjective, superlative 0.0252 0.0287 0.0016
List item marker 0.0000 0.0000 0.0000
Modal 0.0035 0.0000 0.0030
Noun, singular or mass 0.3838 0.3711 0.0950
Noun, plural 0.0000 0.0000 0.0000
Proper noun, singular 0.0000 0.0000 0.0000
Proper noun, plural 0.0413 0.0665 0.0154
Predeterminer 0.0000 0.0000 0.0000
Possessive ending 0.0000 0.0000 0.0000
Personal pronoun 0.0056 0.0049 0.0141
Possessive pronoun 0.0035 0.0028 0.0067
Adverb 0.1296 0.0931 0.0277
Adverb, comparative 0.0070 0.0000 0.0014
Adverb, superlative 0.0000 0.0000 0.0000
Particle 0.0000 0.0000 0.0000
Symbol 0.0000 0.0000 0.0000
to 0.0035 0.0007 0.0077
Interjection 0.0000 0.0000 0.0000
Verb, base form 0.0196 0.0028 0.0098
Verb, past tense 0.0070 0.0609 0.0148
Verb, gerund or present participle 0.0357 0.0462 0.0053
Verb, past participle 0.0455 0.0455 0.0083
Verb, non-3rd person singular present 0.0000 0.0028 0.0023
Verb, 3rd person singular present 0.0007 0.0021 0.0065
Wh-determiner 0.0000 0.0000 0.0005
Wh-pronoun 0.0007 0.0000 0.0005
Possessive wh-pronoun 0.0000 0.0000 0.0000
Wh-adverb 0.0007 0.0007 0.0012

Table 5.5: Distribution over lexical categories for human-selected words, machine-
selected words, and the entire corpus.
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Figure 5.4: Visualizations of attention maps by human annotators and machine
learning models. From top to bottom: first human annotator, second human
annotator, RNN, bi-RNN, Rationales.

5.7 Discussion

Recent papers, including our work, take strides at answering the question if

attention is interpretable. This is complicated by the fact that “interpretability”

remains a not well-defined concept.

Attention adds transparency. [58] defines transparency as overall human-

understanding of a model, i.e., why a model makes its decisions. Under this

definition, attention scores can be seen as partial transparency. That is, they

provide a look into the inner workings of a model, in that they produce an easily-

understandable weighting of hidden states [108].

Attention is not faithful. [87] defines explainability as a plausible, but

not necessarily faithful, reconstruction of the decision-making process. Whether

adversarial attention scores exist that result in the same predictions as the original

attention scores helps us understand if attention is faithful. With their empirical

analyses, [92] and [41] show that attention is not faithful.

Rationale models for human-like explanations. [85] argues that explana-

tions are post-hoc descriptions of how a system came to a given conclusion. This

raises the question of what makes a good explanation of the behavior of a machine

learning system. One line of research offers these explanations in the form of binary

rationales, namely, explanations that plausibly justify a model’s actions [7, 57].
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Our approach at attention as human-like explanations. In claiming

attention is explanation, it is seen to mimic humans in rationalizing past actions.

In our work, we approach interpretability from this human-centric perspective.

We develop a systematic approach to either support or refute the hypothesis that

attention corresponds to human-like explanations for model behavior. Based on our

comparative analyses, we provide initial answers to this important question by find-

ing insights into the similarities and dissimilarities of attention-based architectures

to human attention.

Towards additional tasks beyond text classification. Confidently con-

cluding whether attention mimics human requires tremendous efforts from many

researchers with human data to be collected via a well-designed data collection

methodology, both labor-intensive and costly task. In this work, we thus focus on

one task, namely, sentiment classification, and collect HAM for this task and on

a single dataset. We invite other researchers to continue this line of research by

exploring other tasks (e.g., question answering).

5.8 Summary

For this task, we collect human attention maps for text classification through

crowd-sourcing on the Yelp Dataset. This new resource will be made available

to the research community. We use our collected human attention dataset for

quantifying the similarities between human and attention-based neural network

models. We take into account different linguistic properties while designing the

similarity metrics. Results indicate significant similarities between bidirectional

RNNs with human attention with regard to overlap in the word selections, selecting

words from the same lexical categories and, selecting contrastive words to the chosen

sentiment. Our findings open promising future research opportunities ranging from

supervised attention to the design of human-centric attention-based explanations.

This task is resulted in the following publication:

• C. Sen, T. Hartvigsen, B. Yin, X. Kong, E. Rundensteiner, “Human Attention

Maps for Text Classification: Do Humans and Neural Networks Focus on the

Same Words?”, n Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics (ACL), pp. 4596-4608. 2020.
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Chapter 6

Human-guided Attention

6.1 Motivation

Attention mechanisms, combined with deep sequence models, are the archi-

tecture of choice for a vast array of text classification tasks [91, 114]. Typically,

attention mechanisms are incorporated as auxiliary unsupervised sub-problems of

classification. For example, when classifying documents, the attention functions

generate one attention score per word in the document. However, the attention

scores themselves are only predicted with respect to the overall class predictions –

instead of being explicitly guided at the granularity of individual attention values.

This approach thus only serves to improve the ultimate classification accuracy, while

disregarding the prevalent requirement in many domains of providing explainability

of the model decisions.

Interpretable methods for text classification are essential in many settings. For

example, doctors must know which words an algorithm for clinical note-driven

diagnosis utilizes in order to trust the prediction. However, the prevalent assumption

that unsupervised attention mechanisms inherently create explainable models has

recently been debunked [41, 92]. Researchers have begun to demonstrate that,

instead, attention maps that look like they were generated by humans are actually

interpretable [7, 91]. Thus, we must aim to supervise attention mechanisms to

encourage such human-likeness to achieve the important explainability requirement.

Recent works have begun explicitly learning attention functions by supervising

the attention mechanism itself [13, 63, 70, 117]. These methods rely on hand-picked
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input text

learned attention distribution
predicted
sentiment

attention
scores

Sushi   is   my  favorite  food  but   theirs  no   good
 0.11  0.09  0.1   0.14     0.1    0.1   0.11   0.11  0.14

actual
sentiment

+ incorrect
prediction

(a) Standard Attention-based Model

guided attention
scores

Sushi   is   my  favorite  food   but   theirs  no   good
0.03  0.02  0.04   0.11    0.05  0.21   0.1   0.24   0.2

human  
attention

map

correct
prediction

attention guidance

but no good

(b) HUG-Based Model

Figure 6.1: In the traditional attention-based model (top), attention learning is
unguided. Our proposed human-guided attention model HUG (bottom) learns
attention scores based on explicit attention-granularity human feedback. The
guided model is more interpretable as it is capable of picking up words that humans
find more important wrt end-task. It is also more accurate.

lists of target words that should receive the most attention. These “interest words”

are selected using domain knowledge [60]. Thereafter, the learning methods penalize

attention that deviates from these lists [70, 117]. This strategy only guides the

attention indirectly, since the same list of interest words are applied to all text.

Thus, this approach is rigid and does not lead to the ’human-like’ explanations that

are necessary to render classifiers interpretable [7]. Attention mechanisms should

instead be data-driven and vary their attention depending on the input.

Next we introduce the notion of human-guided attention. Given a corpus

of training text, ground truth class label for the classification of each text, and

token-level labels for human attention, the goal is to learn a model that solves

the primary text classification task accurately while also optimizing the attention

function to become similar to human attention. During inference, the trained model

must then assign an attention weight to each word of the input text with respect

to classification target without human guidance. As such, the learned attention

scores serve as explanation regarding what words are critical for reaching the final

classification decision.

Figure 6.1 depicts the human-guided attention model and contrasts it to a

standard attention architecture. We postulate that classification and human-like

attention on the same task should be complementary. Thus, in addition to bringing
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human-like reasoning into sequential deep network models, we study the hypothesis

that human-guided attention, jointly learned with a classification task, improves

the performance of the primary classification task as well.

Designing human-guided attention is challenging for the following reasons.

• Limited availability of token-level labels. Token-level human attention labels

are required to guide attention mechanisms. Since collecting such data can

be costly and time-consuming, a solution must be effective even when given

only a small amount of guidance.

• Trade-off between model accuracy and explainability. While interpretable mod-

els may provide accurate and authentic explanations, the question of when/if

this comes at the cost of sacrificing prediction performance remains open [26].

Thus, designing a methodology that makes attention more interpretable while

continuing to train for effective prediction accuracy is vital.

• Model interpretability is not well-defined. Devising interpretable deep models

is vital for many domains, healthcare being one eminent example [16, 93].

However, achieving and measuring the interpretability can be complex, since

interpretability itself is not well-defined. Thus, it is essential that we establish

metrics capable of quantifying the interpretability of a model.

We propose a Human-Guided attention mechanism, or HUG, that learns to

combine machine-inferred attention with human guidance to achieve improved

classification accuracy while also offering human-like explanations for the model’s

behavior. The HUG mechanism can be paired with any sequence-representation

learning architecture (e.g.RNN, LSTM, GRU, BERT) to model text with respect

to a classification task. HUG-augmented deep models incentivize the learned

attention function to remain similar to human attention annotations, resulting in

more human-like attention outcomes. We jointly optimize the dual supervision

objectives at both the word and document granularity to learn better the overall

language representations and the corresponding attention functions. To quantify

the interpretability of HUG-based models, we define a human-likeness metric. We

then evaluate the model performance based not only on the text classification

accuracy but also on the degree to which the explanations made by the model are
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human-like. We evaluate our HUG architecture by pairing it with core sequential

deep learning models, including LSTM, GRU, and BERT.

Our experiments using existing human attention map datasets [1, 91] confirm

that adding human-like attention supervision is a win-win in that it not only yields

more human-like attention (i.e.inferred attention more accurately matching that

of humans) but also boosts classification performance. This points to a promising

direction for future research in this new area of human-like attention mechanisms.

Our contributions are as follows:

• We propose the first data-driven human-guided attention mechanism, HUG,

and a deep learning architecture that learns important words for a given

classification decision, as declared by humans, to serve as explanations for

model decisions.

• We demonstrate that explanations provided by HUG-based models are up to

28% more human-like, with the added benefit that the classifications are up

to 5.8% more accurate than state-of-the-art unguided attention models.

• We show that attention supervision can be used to regularize attention

functions. Using our approach, a small training dataset can achieve equal

accuracy to unguided models trained using over 40% more data.

6.2 HUG Framework

In this section, we first formally define the attention-guidance problem, followed

by describing our proposed method HUG framework.

6.2.1 Notation and Problem Definition

Given a set of N documents D = {D1, . . . ,DN}, each document consisting

of T words Di = [wi1, . . . , wiT ] and a set of class labels for the document set

y = {y1, . . . , yN} where yi ∈ {0, 1} indicating the correct document class, the

sequence classification task is to parameterize a function f(θ) that maps Di → yi

for instances on which it was not trained.
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Figure 6.2: Overall architecture of the HUG Framework
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An attention mechanism computes a probability distribution to serve as “im-

portance weights” for each word in a document. These weights are then used

to compute a weighted average of a vector representation of each word. When

the input is a document, an Attention Map AM = [α1, . . . , αT ], computed by an

attention function, is a vector of length T with each entry αt being associated

with a word in the corresponding position of the associated text. The value of αt

indicates the amount of attention the corresponding word wt receives with respect

to a classification task.

A Human Attention Map HAM = [α1, . . . , αT ] is a binary attention map pro-

duced by a human, where each entry with a set-bit αt = 1 indicates that the

corresponding word receives high attention (while 0 means no or low attention). A

Machine Attention Map MAM = [α̂1, . . . , α̂T ] is an attention map predicted by a

neural network model. If computed through soft-attention, a MAM corresponds to

an AM of continuous values that capture a probability distribution over the words.

In our problem setting, we assume f(θ) includes an attention mechanism and

we add constraints during estimation of f(θ) to encourage the learned attention

map to become similar to human attention. In this new setting, in conjunction

with a document set D, for each document Di, we are given a label tuple Yi =

(yi,HAMi), where yi ∈ {0, 1} corresponds to the class label of the document Di

and HAMi = [αi1, . . . , αiT ] to the human attention map of this document Di where

αit ∈ {0, 1}, with 1 indicates that the corresponding word received high attention.

Let us assume that a parameterized function f(θ) that learns how to map

Di to a class label yi while also concurrently learning a set of attention scores

MAMi = [α̂i1, . . . , α̂iT ]. Our task then is to jointly learn the function f(θ) while

minimizing the difference between HAMi and MAMi for all documents Di where

i = 1, . . . , N . For readability, we henceforth describe our method for a single

document and thus drop the subscript i whenever it is unambiguous. Table 6.1

summarizes the notation used throughout the paper.

6.2.2 Overview of the Proposed HUG Framework

Our proposed HUG (Human-Guided) attention framework consists of three

subnetworks, as shown in Figure 6.2. The bottommost is the Core Sequence Model.

This block can be realized with any sequential deep learning architecture such as
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Table 6.1: Basic Notation

Notation Explanation

N Total number of documents
T Total number of words in a document
Di i-th document
wit word t in document i
xit vector representation of word t in document i
eit transformed vector of word t in document i
Yi Label tuple for Di

yi Class label for Di

ŷi Predicted class for Di

HAMi Human attention labels for all words in Di

MAMi Machine-generated attention scores for all words in Di

αit True attention score for word t in document i
α̂it Predicted attention score for word t in document i

where i = {1, . . . , N} and T = {1, . . . , T}.
Subscript i is dropped throughout the paper for simplicity.
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an RNN or a Transformer. The purpose of this layer is to encode input sequences

into learned representations. This layer is followed by an attention mechanism to

generate a Machine Attention Map (MAM) for each input token. The resulting

MAM structure is utilized by the following two subnetworks: The Classification

Subnet and the Attention Guidance Subnet. The Classification Subnet employs

the MAM to compute a context vector that will be further used to generate the

probability of the document D belonging to class c. Using the correct class label y,

this subnet then computes the sequence classification loss. The Attention Guidance

subnet models the distance between the MAM and the corresponding HAM. This

distance is then minimized jointly with the sequence classification objective. Each

of these steps is described in the following sections.

6.2.3 Core Sequence Model

We implement the following algorithms as the core sequence model.

HUG-RNN. One common and powerful architecture for document classification is

an RNN combined with an attention mechanism [5, 114]. Following this architecture,

the HUG-RNN model first utilizes an encoding layer to map words into real-valued

vector representations where semantically-similar words are mapped close to one

another. We use a pre-trained word embedding set φ for this mapping: xit = φwit.

HUG-RNN then employs a recurrent layer to embed vector representations of words

into hidden states, processing words one at a time. In our experiments, we use

both LSTM and GRU memory cells.

Assuming that Γ is the recurrence function (e.g.LSTM or GRU) and xt is the

embedded t-th word from the document D, HUG-RNN is modeled as:

et = Γ(xt, et−1) (6.1)

ut = Φ(Wet + b) (6.2)

α̂t =
exp(u>t u)∑
t exp(u>t u)

(6.3)

where W , b, and u are trainable parameters, Φ is the hyperbolic tangent function,

and α̂t are the attention scores for each word, computed through a softmax function

as shown in Equation 6.3. MAM = [α̂1, . . . , α̂T ] is then utilized by the further

layers of HUG-RNN.
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HUG-BERT. HUG-BERT first employs a transformer-encoder architecture[105]

to encode words, initialized with a pre-trained BERT model[23]. This layer is fol-

lowed by an attention mechanism to output a Machine Attention Map (MAM) for

each document. Following the standard practice in BERT-based architectures, the

first token of the input is the special token ‘[CLS]’. ’[SEP]’ token is added to the

end of the input sequence to denote the end. ‘[PAD]’ token is used to pad the

sequence in case the input sequence is shorter than the maximum input length

supported by the BERT model. HUG-BERT generates two outputs. First is a

sequence of learned word representations [e1, ...eT ] for each input token. Second is

a vector representation r for the whole input document. This vector r corresponds

to the output of the ’[CLS]’ token further processed by a linear layer and a tanh

activation function.

[e1, ...eT ], r = BERT([w1, ...wT ]) (6.4)

Then the attention score of each token is defined as the similarity of et with the

vector representation r. We compute the normalized attention scores α̂t through a

Softmax function as follows:

α̂t =
exp (e>t r)∑
t exp (e>t r)

(6.5)

MAM = [α̂1, . . . , α̂T ] is then utilized by the further layers of the HUG framework.

6.2.4 Classification Subnet

Using the Machine Attention Map (MAM) and the learned representations of

words e generated by the core sequential model, the Classification Subnet first

computes a context vector c as follows:

c =
∑
t

α̂tet (6.6)

The context vector c models a dense embedding for the document. The Classifi-

cation Subnet uses c and assigns a probability to each possible class. We use the

cross-entropy loss as the sequence classification objective function where ŷ is the

prediction and y is the ground truth label, as shown in Equation 6.7.

Jc(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ)) (6.7)
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6.2.5 Attention Guidance Subnet

The main goal of the Attention Guidance Subnet is to optimize the learned

attention scores to be as close as possible to human attention. This way, attention

scores can be interpreted as human-like reasonings for the final classification decision,

adding HUG-based models explainability.

To this end, we take the squared error as the general loss of the attention at

the word level to supervise the learning process.

Ja(HAM,MAM) =
T∑
t=1

(α̂t − αt)
2. (6.8)

This objective optimizes the model to assign correct importance scores to every

word. By providing word-level supervision to the document classification model,

we are able to teach it to focus on the most relevant areas selected by humans

and thereby improve the quality of document representations along with overall

performance.

It is worth noting that, special tokens, such as ‘[CLS]’, ‘[SEP]’, and ‘[PAD]’

are invisible to human annotators (if core sequence model is BERT). Thus, their

corresponding human attention weights are always zero. Also, the tokenizer used

by the BERT model is WordPiece[110], which sometimes split a word into several

tokens. These generated tokens are assigned with the same human attention score

as the original word.

6.2.6 Joint Training of the HUG framework

In the HUG framework, Classification Subnet and Attention Guidance Subnet

are jointly trained. Thus, we define a joint loss function in the training process

upon the losses specified for different subnets as follows:

J(θ) =
∑

(Jc(ŷ, y) + λJa(HAM,MAM)) (6.9)

where θ denotes, as a whole, the parameters used in our model, and λ is

the hyper-parameter for striking a balance among the sequence classification and

attention guidance. By integrating these two objectives similar to the multi-task

setting, we let the two tasks aid each other’s training.
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While the sequence classification is the primary task in HUG architecture, in

some domains such as healthcare, explainable models are equally important. The

hyper-parameter λ is a tunable parameter, and it can be optimized to put more em-

phasis either on the primary task accuracy or model explainability. Recent research

has shown that any errors encoded in the attention function may propagate to

classification decisions [3], thus impairing model performance. Hence, we speculate

that forcing attention to become more similar to human attention should benefit

the primary task accuracy as well.

During the training, the HUG framework requires HAMs to learn a human-like

attention function. However, in the inference time, it does not require attention

labels.

6.2.7 Attention Supervision as a Regularizer

Obtaining HAMs for the entire training corpus can be costly. The HUG

framework does not necessarily require the whole dataset to be accompanied by

HAMs. Instead, a small portion of the data where HAMs exist and a large part of

the data with no accompanying HAMs can be used together to train the model as

follows.

At every epoch, we sample a batch of training examples either from the set

where HAMs are available or from the set where only documents exist with no

human annotations as determined by a coin flip, the bias of which is determined

by the data availability. If the batch is sampled from the former set, the sequence

classification loss is computed using Equation 6.7. Otherwise, the joint loss is

computed through Equation 6.9. We provide the pseudo-code for this learning

paradigm in Algorithm 1.

6.3 Experiments

To evaluate our proposed framework, we use publicly available text datasets

containing human annotations at the word level.
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Algorithm 1: How to use HUG framework for regularizing the attention
function if limited HAM availability.

datasetd ← Document set with HAMs;
datasetl ← Document set without human annotations;
batchd ← generate batch pool from datasetd;
batchl ← generate batch pool from datasetl;
batch pool ← batchd ∪ batchl;
for each epoch in max epoch do

for each batch in batch pool do
if batch ∈ batchd then

Compute Loss using Equation 6.7;
else

Compute Loss using Equation 6.9;
end
Optimize Loss;

end

end

6.3.1 Sentiment Classification Task on YELP-HAT Dataset

Yelp Human Attention Dataset. YELP-HAT provides human attention maps

for a subset of reviews from the Yelp dataset [91]. These human attention maps in

YELP-HAT are collected for the classification task of rating a review as positive

or negative on Amazon Mechanical Turk. Participants are asked to highlight the

words that are indicative of the review’s overall sentiment. For each review in the

YELP-HAT dataset, three annotations are collected from different subjects.

Sentiment Classification Task. YELP-HAT dataset also contains a binary

sentiment label for each review. Using these as class labels, we focus on predicting

the sentiment as either positive or negative. The dataset is pre-processed to remove

punctuation and lowercased. To encode words into vectors, we use pre-trained

Glove embeddings with 100-dimensions [73]. The dataset contains 1000 reviews,

with the length varying between 50-75 words. 30% of this dataset is used for

reporting all evaluation metrics. Class distribution is balanced.

Extracting Human Attention Maps. Human attention is highly subjective.

Each person can have a unique approach to which words are indicative of a

sentiment. For obtaining a reliable representation of human attention, we use the
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following operations proposed by [91] to coalesce HAMs by multiple annotators into

aggregated HAMs. Consensus Attention Map (CAM) is computed through a

bitwise AND operation of the HAMs. It contains words that all three annotators

agreed on being important. Super Attention Map (SAM) is computed by a

bitwise OR operation of the HAMs. It includes every word highlighted by at least

each annotator. We postulate that CAMs are a more reliable source of human

reasoning for attention guidance as they contain high-confidence words. We also

experiment with SAMs because even if a single annotator considers a word relevant

to the sentiment decision, that word is likely to rank higher in the importance than

the words that none of the annotators selected. On the other hand, SAMs may

introduce noise into the attention signals as not all annotators provide reviews of

equal quality.

6.3.2 Heart Disease Prediction Task on N2C2 Dataset

N2C2 Dataset. N2C2 NLP Research Data Sets contain unstructured notes from

the Research Patient Data Repository at Partners Healthcare1. From this clinical

note repository, we use the 2014 challenge data, consisting of a set of medical

documents that track the progression of heart disease in diabetic patients. Each

clinical note in this dataset is annotated by expert annotators to indicate the

presence and progression of a disease (diabetes or heart disease), associated risk

factors, and the time they were present in the patient’s medical history. Annotations

are from a single annotator per note.

Hearth Disease Prediction Task. We focus on predicting heart disease. For each

patient in the dataset, if there is a clinical note with a heart disease annotation

(indicated by the CAD tag in the dataset), we assign all notes belonging to this

patient to the positive class. Patients with no heart disease mention are assigned to

the negative class. Then we train a model that inputs every individual clinical note

and predicts whether this note belongs to a heart-disease patient. For mapping

words into vectors, we use BioMed embeddings [78]. N2C2 dataset contains 520

clinical notes in its training split and 511 clinical notes for testing, assigning notes

from the same patient into either the training or test set. This test set is used for

1https://n2c2.dbmi.hms.harvard.edu

https://n2c2.dbmi.hms.harvard.edu
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reporting all evaluation metrics. Class distribution is balanced.

Extracting Human Attention Maps. We use all heart disease-related annotations

to create human attention maps. These annotations include remarks of patients

having heart disease (e.g., ”coronary artery disease”) or indirect mentions (e.g.,

“unstable angina,” “PLAVIX” - a blood thinner used to prevent heart attack).

6.3.3 Compared Methods

We compare the following model performances:

• Vanilla model. This model refers to the architecture with no attention

guidance. We experiment with three core sequence models: LSTM, GRU, and

BERT. Vanilla models for LSTM and GRU correspond to each network paired

with an unguided attention mechanism. Vanilla BERT model corresponds to

a standard BERT architecture as it is used in the literature with only native

BERT attention [23].

• Pre-fixed guidance. A common approach for supervising the attention

mechanism is to use a hand-picked list of words to receive high attention[63,

70, 117]. For each dataset, using the domain knowledge we have, we construct

a list of words, and we use these as attention guidance signals.

• HUG-X. This model represents the proposed architecture HUG paired with

one of the core sequence models X. For example, HUG-BERT represents our

HUG mechanism paired with the BERT model.

6.3.4 Metrics

We use two metrics to compare model performances.

Accuracy. We use accuracy for measuring the sequence classification perfor-

mance. All datasets we use are balanced. Thus the lower bound is 50%.

Human-Likeness Score. For evaluating the attention guidance performance

and interpretability of models, we design a metric, called human-likeness score.

For two attention mechanisms (i.e.human and machine-learned attention) to be
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Table 6.2: Performance comparison of baseline methods and the proposed method
for sentiment classification task.

Core Sequence Model Compared Methods
Metrics

Accuracy Human-likeness Combined Performance

LSTM Models

Unguided Attention 83.6± 0.61 49± 1.5 66.55
Prefixed Guidance 86.1± 0.58 60± 2.1 73.05
HUG-LSTMSAM 88.5± 0.41 69± 1.8 78.75
HUG-LSTMCAM 89.4± 0.69 76± 0.9 82.70

GRU Models

Unguided Attention 86.3± 0.43 52± 2.1 69.15
Prefixed Guidance 88.2± 0.51 62± 2.3 75.10
HUG-GRUSAM 89.3± 0.43 69± 1.8 79.15
HUG-GRUCAM 90.1± 0.67 78± 1.5 84.05

BERT Models

Unguided Attention 95.0± 0.33 − −
Prefixed Guidance 93.4± 0.38 61± 7.1 77.20
HUG-BERTSAM 95.3± 0.41 84± 5.7 89.65
HUG-BERTCAM 95.6± 0.36 89± 1.5 92.30

similar, they must put attention on the same parts of the text. Thus, we quantify

the overlap in words selected by human annotators and by the deep learning model.

Given a collection of attention maps HAM and MAM for a text dataset D, the

human-likeness score of the learned machine attention corresponds to the average

pair-wise similarity between each (HAMi,MAMi) vector pair ∀i ∈ D as defined

below:

PairwiseSimi = AUC(HAMi,MAMi)

Human-likeness(M,H) =
1

|D|
∑
i

(PairwiseSimi)

where |D| is the number of documents in the dataset D. Intuitively, this

corresponds to adopting the human attention vector as binary ground truth. That

is, it measures how similar the machine-generated continuous vector is to this

ground truth. AUC is between 0 and 1 with .5 representing no similarity, and 1

the perfect similarity.
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Table 6.3: Performance comparison of baseline methods and the proposed method
for Heart Disease Prediction Task

Core Sequence Model Compared Methods
Metrics

Accuracy Human-likeness Combined Performance

LSTM Models

Unguided Attention 73.90± 1.21 41± 7.8 62.45
Prefixed Guidance 72.27± 1.15 61± 0.5 66.64
HUG-LSTM 76.05± 0.37 80± 1.6 78.02

GRU Models

Unguided Attention 72.73± 0.23 56± 3.1 63.39
Prefixed Guidance 74.05± 0.69 69± 3.4 71.53
HUG-GRU 75.34± 0.15 84± 0.9 79.66

BERT Models

Unguided Attention 78.16± 1.4 − −
Prefixed Guidance 78.08± 0.6 73± 7.5 75.54
HUG-BERT 78.47± 1.5 85± 4.1 81.74

6.3.5 Experimental Results

6.3.5.1 Performance of HUG-based models

We first evaluate HUG-based models for a setting where word-level human

annotation exists for the entire dataset, including the training and test sets. Even

though the HUG architecture does not require HAMs during inference, with the

availability of HAMs for both the training and test sets, we can quantify our

model’s interpretability. For the YELP-HAT dataset, we train two versions of the

model: HUG-XCAM utilizes Consensus Attention Maps as the ground truth for

human guidance, whereas HUG-XSAM utilizes Super Attention Maps. For the N2C2

dataset, only one HAM exists for each data instance. Accuracy and human-likeness

score for these experiments are presented in Tables 6.2 and 6.3. These results show

that all human-guided models achieve improved sequence classification accuracy

and human-likeness compared to the baseline models.

For the sentiment classification task, HUG-LSTMCAM achieves the most substan-

tial improvement in accuracy by 5.8%. While the proposed HUG-based models show

improvement in the classification accuracy for all three core sequence algorithms,

HUG-BERTCAM achieves the least increase. This is likely because the HUG-BERT

model is pre-trained on large text corpus, whereas HUG-LSTM and HUG-GRU

models are being trained from scratch on a small dataset. This causes the baseline

BERT model to achieve an already high accuracy, which is challenging to improve

on. As per human-likeness, all HUG-based models achieve significant gains (up to



104

28%) compared to the baseline models.

Using SAM vs. CAM for attention guidance leads to varying amounts of

performance gain. While still accomplishing improved performance compared to

baseline models, HUGSAM models perform worse than HUGCAM models. We observe

this same trend for all three core sequence algorithms. This may be because SAMs

include a high percentage of words selected as important in every document. As a

result, they contain too little information for the model to learn which words indeed

matter. CAMs, on the other hand, only include the words all three annotators

agreed to be important. This filtered more confident human-intuition leads to the

best results when used for attention guidance.

For the heart disease prediction task, we observe similar trends as for the

sentiment classification task. We observe more significant gains in the classification

accuracy for HUG-LSTM and HUG-GRU models compared to the HUG-BERT

over the baseline methods. Improvement in human-likeness is extensive for all core

algorithms.

6.3.5.2 Hyper-parameters Analysis

HUG model has one hyper-parameter, λ, which determines how much weight

to put on the sequence classification versus the attention guidance. Next, we

investigate how changing λ affects classification performance and human-likeness

score.

Figure 6.3 shows experimental results for varying values of λ for HUG-LSTM

and HUG-BERT models on the YELP-HAT dataset. We observe that if we keep

putting more weight on the attention correctness, both accuracy and human-likeness

steadily improve up to a point. Then, the human-likeness score keeps improving

at the cost of accuracy. Optimum λ can be selected from the [100, 200] range for

HUG-LSTM and [30 − 90] range for HUG-BERT as shown in Figure 6.3, since

those λ values optimize both accuracy and human-likeness score.

The optimal value of λ can be decided depending on one’s objective. One can

prefer putting more importance on the accuracy or human-likeness score depending

on the objective. For some domains, such as healthcare, even sacrificing some of

the predictive power to gain more interpretability may be preferable. In such cases,

λ can be tuned to highlight human-likeness even more heavily.
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Figure 6.3: Effect of λ on accuracy and human-likeness. Values from the [100,200]
range for HUG-LSTM and [30-90] range for HUG-BERT maximize both accuracy
and human-likeness. However, λ can be optimized to emphasize either accuracy or
human-likeness much more heavily depending on the domain and objective.



106
Table 6.4: We assign a fixed budget for data collection and split this budget for
collecting classification labels (cost=x) and word-level attention labels (cost=y).
These two types of labels are assumed to have equal cost and the budget function
is x+ y = 1.

Training Reviews Accompanying HAM
Metrics

(x) (y) Accuracy Human-likeness Combined Performance

Baseline 100% 0% 0.834± 0.006 0.497± 0.004 0.665

Budget function:
x+y=1

90% 10% 0.824± 0.002 0.512± 0.002 0.667
80% 20% 0.834± 0.006 0.526± 0.012 0.680
70% 30% 0.831± 0.004 0.58± 0.020 0.705

6.3.5.3 Attention Regularization

In Section 6.2.7, we describe how to use the HUG framework to regularize the

attention function with human-guidance, when there is only limited data available

for attention guidance. In this section, we investigate the performance of HUG

models as an attention regularizer.

In these experiments, we focus on the sentiment classification task and HUG-

LSTM model as there is a more significant gap between the baseline models and

HUG-LSTM performance concerning classification accuracy. We use the same

training set as in the previous experiments. However, we do not employ HAMs for

the entire dataset. Instead, we change the percentage of instances with HAMs to

be 10% to 90% of the total training data. Then, following the training procedure

described in Algorithm 1, we train models and measure the performance of HUG-

LSTM. We use CAMs for human guidance.

Results are presented in Figure 6.4. A significant conclusion is that having as

little as 20% of the training data accompanied by HAMs leads to a 6% improvement

in human-likeness. This number steadily increases up 26% as we add more and

more attention guidance. While adding attention-guidance never degrades the

sequence classification performance, we need HAMs for at least half of the training

data to see a significant improvement in accuracy.

6.3.5.4 HUG-LSTM performance with a Limited Budget

Based on our experimental evaluation, the HUG model shows great potential as

it can maintain the accuracy of the primary task no matter how much guidance is
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Figure 6.4: Varying amount of data used for attention regularization. We use 100%
of the reviews for classification and a varying percentage of HAMs (x axis) for
attention guidance. For the baseline experiment, the amount of data is fixed (no
guidance).
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Table 6.5: We assign a fixed budget for data collection and we split this budget for
collecting primary task labels (cost=x) and word-level attention labels (cost=y).
Collecting an attention label costs half of collecting a primary task label and the
budget function is x+ y/2 = 1.

Training Reviews(%) Accompanying HAM(%)
Metrics

(x) (y) Accuracy Human-likeness Combined Performance

Baseline 100 0 0.834± 0.006 0.497± 0.004 0.665

Budget function:
x+y/2=1

90 20 0.835± 0.009 0.543± 0.004 0.687
80 40 0.842± 0.002 0.685± 0.022 0.761
70 60 0.845± 0.013 0.731± 0.006 0.787
60 80 0.845± 0.012 0.742± 0.005 0.793

used while being significantly more interpretable compared to traditional attention.

Further, if enough data is used, it improves both classification and human guidance

performances. However, these win-win results require a HAM data collection, which

can be costly. Next, we evaluate the relative benefit of spending more time on

collecting primary task labels versus word-level attention labels.

To this end, we run a set of experiments where we assign a fixed budget for

collecting labeled data. The first experiment assigns the same cost for collecting

the primary task label (e.g., the sentiment of the review) and attention annotations

for a single review. We fix the sum of the cost to 1 and spend varying amounts

of the budget for collecting sentiment labels (x) and collecting attention labels

(y). Hence, the budget function is x + y = 1. The baseline model uses 100% of

its budget on collecting document-level sentiment labels as it does not use any

attention guidance. Table 6.4 presents the results of these experiments. Results

show that spending some of the budget on collecting HAMs instead of collecting

more sentiment labels to make the training data larger result in: 1) As accurate

models as the baseline even though less data is used for the sequence classification

task, 2) Better human-likeness, and 3) Better overall performance. We believe

that this is a highly preferable case in many domains, such as healthcare and

autonomous vehicles, where interpretability is vital.

We argue that, in practice, collecting word-level annotations is even less costly

than the budget function we experiment with. Because deciding on word-level

importance is a sub-task of determining a document-level sentiment label. That is,

the user has to complete the inner task first to complete the outer task.

Thus, we conduct a second experiment that specifies another budget function
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Figure 6.5: Two test examples from the YELP-HAT dataset. MAMs generated by
unguided attention (top) vs. HUG-LSTM (bottom)

x + y/2 = 1, where collecting an attention label (y) costs half of collecting a

sentiment label (x). The baseline model uses 100% of its budget on collecting

document-level sentiment labels as it does not use any attention guidance. Table 6.5

presents the results of this experiment. With this budget function, attention-guided

models win over baseline in all three metrics.

6.3.6 Case Study: How do attention weights change with

human guidance

We conduct a case study where we qualitatively evaluate how the attention

weights change with human guidance. Figure 6.5 showcase two different reviews

from the test set of the YELP-HAT dataset. Machine attention maps are generated

by unguided attention in the top two reviews in Figure 6.5, and by HUG-LSTM

for the bottom two reviews. These MAMs depict that, unguided attention is far

from being “explanation” about why the model classifies these reviews as positive

or negative. On the other hand, MAMs generated by HUG model provide clues

about the reasoning of the classification decision from the first glance. For example,

the first review is classified as positive because the food is great at this restaurant.
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The second review is classified as positive since the atmosphere there is nice and

relaxing.

Improved interpretability can be even more important in a medical setting. For

example, physicians would be able to tell why a particular patient is being classified

as a heart disease patient by looking at the guided attention weights.

6.3.7 Summary

In this work, we propose a novel explainable deep learning framework. This

framework contains a human-guided attention mechanism, HUG, and a complemen-

tary learning scheme that allows guiding attention weights with human intuition

while also optimizing for a primary classification task. Instead of learning the

attention scores unsupervised as in traditional attention mechanisms, it employs

a learning paradigm where the model is penalized as its attention scores differ

from human attention. Thus, attention scores correspond to human-like reasonings

for the classification decision. Our proposed HUG framework is general and is

capable of being paired with many different deep sequential models, such as RNN

or BERT. It is also scalable, in that it can either conduct attention guidance for

the whole training dataset or also regularization of the attention function if only

partial attention guidance data is available. Through an extensive experimental

evaluation, we demonstrate that attention supervision with human attention data

makes the model more accurate and more interpretable concurrently. We further

show that even small amounts of human guidance data are effective for driving the

attention scores closer to human attention and improving accuracy.

This task has resulted in following manuscript:

• C. Sen, T. Hartvigsen, D. Zhang, J. Thadajarassiri, X. Kong, E. Runden-

steiner, “Explainable Document Classification with Human-guided Attention”,

In Submission to ICDM 2020.
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Chapter 7

Related Work

7.1 Classifying Documents and Document Series

7.1.1 Clinical Note Classification

Text is one of the most prevalent data types in Electronic Health Records,

with some examples including nursing progress reports, discharge summaries, and

results of medical procedures. Previous works utilize this unstructured text to

build patient-level predictive models. A large body of work uses bag-of-words

representations followed by linear classification methods such as SVM [10, 44, 76].

In [31] and [32], authors examine latent variable models, namely LDA, to decompose

free-text notes into features for mortality prediction. They divide the hospital

stay of a patient into time windows and then extract features from aggregated

notes within each time window. LDA and topic modeling techniques are used

in other studies including for intervention prediction [100] and for readmission

prediction [89]. [32] uses multi-task Gaussian Processes for multivariate time

series modeling, incorporating both physiological signals and clinical notes. They

transform a variety of irregularly-sampled clinical data into a new latent space

using the hyper-parameters of multi-task Gaussian Processes models. In [11], noun-

based, term-based, and topic-based features are extracted from clinical notes for

named-entities through medical dictionaries such as SNOMED [95].

More recently, [27] embraces two deep learning approaches for learning rep-

resentations from clinical notes. The first approach uses GloVe [73] to learn
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low-dimensional dense embeddings of clinical terms. Patient-level representations

are derived by aggregating the embeddings. The second approach uses an RNN

with bag-of-words representations of a sequence of notes. Clinical notes of a patient

bear a nested sequential data structure: the order of words is the semantic axis and

the order of documents is the time axis. State-of-the-art patient-level classification

ignores information from at least one of these two axes.

Another problem setting in clinical note classification is automatic ICD10

(diagnosis) coding of discharge summaries, which are a type of semi-structured

clinical note [68, 77, 94]. ICD10 codes are used for billing purposes and they are

manually assigned by experts. In this problem setting, the task is to assign a set

of codes to a single document. In [68], authors explore attentional convolutional

networks. They aim to bring interpretibility to why their model predicted each code

with the help of per-label attention. Character-aware LSTM’s with attention are

utilized to generate sentence representations from specific subsections of discharge

summaries [94]. In [77], memory networks draw from discharge summaries as well

as Wikipedia documents to predict top ICD10 codes. These works aim to optimize

an error-prone code-assigning process rather than assisting physicians in clinical

decision support. They focus on classifying a single document, instead of document

series.

More recently, BERT model [23] has achieved significant success in many NLP

tasks by pre-training a deep bidirectional representation on unlabeled text, jointly

conditioned on both left and right contexts. BERT architecture takes the context

and the order of words into account. Owing to this success, variants of the BERT

model has been proposed for the clinical domain. In particular, ClinicalBERT [? ],

an application of the BERT model to the clinical domain, is pre-trained on clinical

notes from the MIMIC dataset [? ]. Since trasformer-based models impose a length

constraint on the input text, ClinicalBERT splits clinical notes into equal-length

chunks and makes a prediction for each chunk. The prediction for the patient

is then an aggregation of predicted values from each chunk. This approach does

not consider the creation time of each clinical note. Further, it also ignores the

multi-level sequential information in the sequence of clinical notes. These more

recent architectures should be explored for the problems solved in this dissertation.
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7.1.2 Attention-based Networks for Classifying Note Se-

ries

Attention in the natural language processing domain was originally introduced

for neural translation task [5]. Since then, Recurrent Neural Networks with attention

mechanisms have become state-of-the-art for diverse tasks including document

classification [114, 119] and temporal EHR mining [15, 16, 65]. In medicine,

accuracy and interpretability are the two most prominent factors while designing

predictive models. RETAIN [16] first proposed using attention with RNN to bring

interpretability to complex neural networks without sacrificing any prediction

power for EHR modeling. GRAM [15] is a graph-based attention model for clinical

representation learning which uses medical ontologies to learn representations and

an RNN to model patient visits. Dipole [65] experiments with three types of

attention mechanisms: (i) location-based, (ii) general, and (iii) concatenation-

based, to compute the attention weights. In all these works, attention weights are

computed based only on the EHR data, that is, the attention mechanism is not

time-informed.

Hierarchical attention networks (HAN), another common architecture for text

data, were first introduced in [114], motivated by the structure of a single docu-

ment. In this work, authors showed that first focusing on the word and sentence

levels individually while making a document-level classification leads to significant

performance gains. Since then, HAN-based models have been applied to many

problems, from question answering [17] to recommendation systems [115], and a

number of variations have been proposed [30, 71, 93, 111].

HAN models attracted attention in the medical informatics domain as well. In

[30], authors use hierarchical recurrent neural networks to detect cancer status given

a pathology report. They utilize word and line level attention where documents

are composed of lines. In [93], using visit-level medical codes (ICD, CPT) on

longitudinal data, attention weights are learned for medical codes and patient visits.

In other words, they use code-level and visit-level as their hierarchy. However, this

model ignores the temporality across different visits of a patient.

Clinical note sequences of a patient present a similar hierarchical structure to a

single document but have some significant differences. A single document consists of
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words and sentences, which are written in order. Hence they are doubly-sequential.

On the other hand, clinical note sequences are irregularly spaced timed series of

documents, which adds a temporal dimension to the hierarchy. In addition, they

have external attributes at each level of the hierarchy that need to be incorporated

into the model.

7.1.3 Time-aware Deep Learning Models

Sequential deep learning algorithms assume regular sampling of their input

data. However, irregular sampling is commonly observed across many domains.

Exploiting the occurrence time of observations is approached as a solution to this

problem and a number of models have been proposed.

In [16], authors use RNN with attention applied at the variable and visit level

to predict heart failure. In this work, they propose using the time interval as an

additional input feature. Some work modifies the RNN cell to account for time. For

example, [118] uses a time decay term in the update gate in GRU to find a tradeoff

between the previous hidden state and the candidate hidden state. [74] extends

the forget gate of the standard LSTM unit to a logarithmic or cubic decay function

of time intervals between two time stamps. [12] applies a time decay function

to the previous hidden state in Gated Recurrent Unit (GRU) before calculating

the new hidden state. [9] first decomposes memory cell in LSTM into long-term

memory and short-term memory, then applies time decay to discount the short

term memory, and finally calculates the new memory by combining the long-term

memory and a discounted short-term memory. Main goal in these papers is to

handle missing values in time series data, hence, they attempt to discount the effect

of an observation if more time passed, which is not always true in our problem. In

addition, modifying RNN units limits the interpretability of the resulting models,

since RNN units are usually treated as black boxes.

Recently, simple time-attention mechanisms have been proposed within the

spoken language understanding domain [14, 96, 97]. In these works, either a hand-

picked fixed function of time [14] or a parameterized time-decay function [96] serve

as the attention weights. [6] uses a disease progression function to control how

much information flows into RNN at each timestemp. The input to these time

functions corresponds to a scalar representation of time, namely the time difference
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between instances. It is overlooked that other representations of time have the

potential to be even more informative for certain tasks and/or domains – which

would not be known prior to learning a model.

7.2 Interpretability of Attention-based Models

7.2.1 Interpretable Deep Learning Models

There are many efforts to design interpretable deep learning models. One way

of achieving interpretability in deep learning models is to introduce interpretability

constraints. Interpretability can directly be incorporated into the model structures

to make models self-explanatory. The most common way of achieving this is to

impose interpretability constraints on the model while being trained from data as

usual. An example of this is interpretable convolutional neural networks (CNN)

[116]. This model incorporates a regularization loss to higher convolutional layers

of CNN to learn disentangled representations. As a result, filters can detect

semantically-meaningful natural objects. One disadvantage of this design paradigm

that it may create a trade-off between prediction accuracy and interpretability.

Rationale-based models [7, 57] are another type of interpretable model family,

and they are used in the NLP domain. These models are trained to generate

rationales and predictions from input text simultaneously. Rationales are defined

as “human-like reasonings” for the model’s prediction decision. Rationales are

directly extracted from the input itself. They can be considered as a type of

hard attention. This model consists of two main parts that are jointly learned: a

generator and an encoder. The generator specifies a distribution over the input

text to select candidate rationales. The encoder is used to make predictions based

on the rationales. The two components are integrated and regularized in the cost

function with two hyper-parameters, selection lambda, and continuity lambda,

for optimizing the representative selections. The selection lambda penalizes the

number of words selected, while the continuity lambda encourages the continuity

via minimizing the distances of the words chosen. Thus, a higher selection lambda

tends to select fewer words as rationales, while a higher continuity lambda tends to

promote phrases as meaningful rationales.
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7.2.2 Explainability of Attention

Attention-based models have become the architectures of choice for a vast

number of NLP tasks including, but not limited to, language modeling [20], machine

translation [5], document classification [114], and question answering [54, 98]. A

large body of work has been using attention mechanisms to attempt to bring

“interpretability” to model predictions [16, 93, 114]. While attention mechanisms

have been said to add interpretability since their introduction [5], the investigation

of whether this claim is correct has only just recently become a topic of high-interest

[68, 92, 104]. If attention mechanisms indeed offer a more in-depth understanding

of a model’s inner-workings, application areas from model debugging to architecture

selection would benefit significantly from profound insights into the internals of

attention-based neural models.

Recently, [41], [108], and [92] proposed three distinct approaches for evaluating

the explainability of attention. [41] base their work on the premise that explainable

attention scores should be unique for a given prediction as well as consistent with

other feature-importance measures. This leads them to conclude that attention is

not explanation. Based on similar experiments on alternative attention scores, [92]

conclude that attention does not necessarily correspond to the importance of inputs.

In contrast, [108] find that attention learns a meaningful relationship between input

tokens and model predictions which cannot be easily ‘hacked’ adversarially.

Whether attention equals interpretability or not depends on the definition of

interpretability. Let us first assume that we define interpretability as transparency

(as in [58]) as overall human-understanding of a model, i.e., why a model makes

its decisions. Under this definition, attention scores can be seen as a vehicle of

partial transparency. That is, they provide a look into the inner workings of a

model, in that they produce an easily-understandable weighting of hidden states.

On the other hand, whether adversarial attention scores exist that result in the

same predictions as the original attention scores helps us to understand if attention

is faithful. With their empirical analyses, [92] and [41] show that attention is not

faithful. Many definitions of interpretability include human-like explanations for

model behaviors. Evaluating the interpretability of attention from this perspective

requires the collection of human attention data and an evaluation strategy for

comparing machine attention to that of humans.
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[21] conducted the first quantitative assessment of computational attention

mechanisms for the visual question answering (VQA) task. They collect a human

attention dataset, then measure the similarity of human and machine attention

within the context of VQA. This VQA-HAT dataset now provides a fertile research

vehicle for researchers in computer vision for studying the supervision of the

attention mechanism [60]. The development of a similar dataset and an in-depth

quantitative evaluation for text to advance NLP research is sorely lacking. In a

concurrent and independent work, [24] collects the ERASER dataset for human

annotations of rationales. While ERASER includes multiple datasets for a number

of NLP tasks with relatively small amounts of data for each, we focus on text

classification and collect a large amount of data on a different corpus.

7.2.3 Improving Interpretability: Supervised Attention Mod-

els

Unsupervised attention models tend to generate attention maps that do not

reflect the human’s intuition. This risks degrading the model’s interpretability and

may result in incorrect predictions [79]. Recently, researchers have searched for ways

of supervising the attention mechanism to learn more accurate attention functions.

Most of these works base their supervision mechanisms on manually-defined, fixed

word lists of relevant words that are deemed important based on domain knowledge

[63, 70, 117].

Attention supervision is also used for machine translation [52, 61]. In these works,

guidance from conventional alignment models is used to supervise the attention

mechanism. Some works generate weak supervision from external datasets where

there is a large amount of sometimes imprecisely-labeled data [8, 13]. For example,

[13] aims to generate weak supervision from secondary data sources. They focus

on sports video analysis, where videos contain scenes of multiple people. Weak

supervision gathered from sports websites is then used in the form of an action

taking place in a video clip, without the specification of the person performing the

action.

While these works show supervised attention can improve accuracy, guiding the

attention with human data collected specifically for the primary task has not been



118

proposed thus far. This may, in part, be due to the lack of such human-attention

map datasets in the NLP area, a challenge that is rapidly dwindling this past year

[24, 91] - opening the opportunity to explore this open research question.
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Chapter 8

Conclusion

In this dissertation, I study four problems.

I first propose the Attributed Hierarchical Attention model in Section 3. Clinical

notes present a nested sequential structure, namely, for each patient, there is a series

of free-form text documents (notes) over time and each document itself consists of

a sequence of words. These notes are accompanied by external attributes at each

level of granularity. State-of-the-art predictive modeling of clinical notes neglects

information from at least one of these sequential axes. In this task, I propose an

Attributed Hierarchical Attention network with multiple attention mechanisms

conditioned on external attributes at different layers for predictive modeling of

the sequence of clinical notes. I evaluate our method on three distinct clinical

prediction tasks, namely, Clostridium Difficile Infection prediction, MRSA infection

prediction, and in-hospital mortality prediction. Patient cohorts are extracted from

the publicly-available Electronic Health Records data from Beth Israel Medical

Center (MIMIC-III database). I extensively evaluate our method’s prediction

performance on these three tasks. I conclude that considering word-order, note-

order, and the combination of the two outperform current state-of-the-art methods

for clinical note classification. Moreover, external attributes are also shown to be

beneficial by utilizing inferred patient profiles for achieving improved prediction.

By including attention mechanisms, our method has been shown to recommend

either whole-notes or specific sentences for clinicians to spend their valuable time

reading.

I describe the Time-Enhanced Dual Attention model in Section 4. In this chapter,
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I design a novel attention mechanism, TEND: Time Enhanced Dual Attention, and

an end-to-end deep network architecture utilizing this attention mechanism, TEND-

LSTM. Our TEND-LSTM model is effective for sequential document classification

tasks where the input documents have associated timestamps. The TEND deep

network is comprised of two attention layers, the first layer is to learn content based

attention for the document sequence and the second layer is to learn a task-specific

combination of content and time.I evaluate the performance of the TEND-LSTM

model using six real-world clinical note datasets. Empirical results show that

TEND-LSTM outperforms strong baselines and state-of-the-art methods.

After designing these attention-based classification algorithms, I turn my focus

into model interpretability. Section 5 describes our data collection study for human

attention maps, and our analysis for comparing human attention to machine-

generated attention. To gain a deeper understanding of the relationships between

human and attention-based neural network models, I conduct a large crowd-sourcing

study to collect human attention maps for text classification. This human attention

dataset represents a valuable community resource that I then leverage for quantifying

similarities between human and attention-based neural network models using novel

attention-map similarity metrics. Our research not only results in insights into

significant similarities between bidirectional RNNs and human attention, but also

opens the avenue for promising future research directions.

In Section 6, I propose a novel explainable deep learning framework. This

framework contains a human-guided attention mechanism, HUG, and a complemen-

tary learning scheme that allows guiding attention weights with human intuition

while also optimizing for a primary classification task. Instead of learning the

attention scores unsupervised as in traditional attention mechanisms, it employs

a learning paradigm where the model is penalized as its attention scores differ

from human attention. Thus, attention scores correspond to human-like reasonings

for the classification decision. Our proposed HUG framework is general and is

capable of being paired with many different deep sequential models, such as RNN

or BERT. It is also scalable, in that it can either conduct attention guidance for

the whole training dataset or also regularization of the attention function if only

partial attention guidance data is available. Through an extensive experimental

evaluation,I demonstrate that attention supervision with human attention data
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makes the model more accurate and more interpretable concurrently. I further

show that even small amounts of human guidance data are effective for driving the

attention scores closer to human attention and improving accuracy.

Next, I discuss many interesting avenues for further discovery in this area.
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Chapter 9

Future Directions

9.1 Classifying Hierarchical Text Data with Time

Element

In this dissertation, we mainly explore recurrent models with external attention

mechanisms for classifying document series. However, transformer-based architec-

tures [105] have recently gained an edge over recurrent architectures for many NLP

tasks [23, 56, 80, 105, 113].

One promising direction is to use transformer-based architectures and BERT in a

hierarchical setting similar to HAC-RNN to model clinical notes. These algorithms

have been used for text and document classification. However, using them for

classifying document series and timed document series requires custom-tailored

design owing to the same challenges we explained in Chapters 3 and 4.

Below, I provide a brief description of the potential model design. Since BERT-

based models enforce a length constraint on the input text, this model should split

notes into equal length subsequences (“chunks”). The model design should take

the interrelations among chunks and notes into account, and it should leverage

both the time and multi-level sequential information inherent in clinical notes.

A bottom-up architecture would have four basic layers corresponding to the

main tasks of the hierarchy. The bottommost layer encodes the text of each

chunk into a content embedding utilizing a transformer-encoder layer. The next

layer merges each content embedding and sequential information of both the note
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Figure 9.1: A BERT-based hierarchical model similar to HAC-RNN proposed in
Chapter 3, also incorporating a time-aware layer similar to TEND-LSTM proposed
in Chapter 4.

and its contained chunk into a single representation. This layer is followed by

a time-aware layer to incorporate temporal information for generating heuristic

patient representations. Finally, the topmost is a classification layer generating a

patient-level prediction using this learned patient representation. This architectures

is presented in Figure 9.1.

9.2 Towards More Interpretable Deep Learning

9.2.1 Learning from Multiple Annotators

In our YELPHAT dataset, we collect human attention maps from multiple

annotators for each review. Further, many different annotators participated in the
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data collection study. Some of these annotators may provide higher quality data,

whereas some are less careful and less reliable. One promising future direction can

be focusing on learning confidence weights for each annotator [86, 112].

This can be achieved by assigning weights to each annotator proportional to

their accuracies in labeling the ground truth. We can then estimate the ground

truth human attention map based on the provided data and these annotator-level

confidence scores. A potential challenge may be the dependence of the annotator

accuracies on the input instances (i.e., the same annotator providing varying quality

of data based on the easiness of the particular data input).

9.2.2 Human Attention for Transformers

In Chapter 6, we explore BERT as one of the core sequence models in our HUG

Framework. In our design, we pair BERT with an external attention layer to make

it more consistent with other architectures we experiment with. However, this is a

slightly artificial approach, as the BERT model already incorporates many intrinsic

attention layers. Human supervision can be explored for these intrinsic attention

layers.

In [19], authors explore the distribution of attention weights depending on a

given input for BERT’s scaled dot product self-attention. They analyze if certain

attention layers are responsible for specific language understanding tasks. Based on

the conclusions they reach, human supervision can be utilized to guide appropriate

attention layers.

With standard attention mechanisms, the attention scores are used to compute

a weighted sum of token representations.

c =
∑

αi ∗ hi (9.1)

However, as attention scores are multiplied by the learned token representations,

tokens with high attention weights do not necessarily contribute much to the output

[51]. An alternative approach can be learning the attention weights directly on the

input text or training a model to identify spans of the input text which support

its prediction [53, 69, 82]. One can build a model that can identify relevant words

and let these words make the highest contribution to solving the prediction task

accurately.
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9.2.3 Weak Supervision from Human Attention Maps

In this dissertation, we explore ways to fully supervising the attention mechanism.

However, another approach can be weak supervision. Weak supervision could be

preferred if full supervision causes a deterioration in models predictive performance

or if the human attention map dataset is not large enough for full supervision.

Existing literature has explored learning to generate “human-like attention” to

utilize this synthetic data for attention supervision for visual question answering

task [79]. Similar strategies can be used for generating human attention maps using

our YELP-HAT dataset. This enhanced dataset (i.e., a combination of the real

data collected from human annotators and the synthetic data) can be used for

attention supervision.

One potential limitation of the YELP-HAT dataset is that, as it is collected

via crowd-sourcing, not every collected annotation is of equal quality. Some data

instances, thus, may create noise in the label set. Machine learning methods

designed for dealing with learning from noisy labels could be another promising

direction for better attention supervision.

Finally, instead of Human-gudied attention, one can explore Human-inspired

attention. By analyzing collected human attention maps from different perspectives,

we design constraints on the attention scores to make machine-learned attention

more human-like in indirect ways. For example, if human annotators tend to

pick consecutive words, a continuity parameter for high attention words can be

incorporated. One observation we made during our analysis in Chapter 5 was that

human annotators select adjectives more frequently when deciding a sentiment.

Similarly, machine attention can be forced to assign higher attention scores on

adjectives.



126

Bibliography

[1] National nlp clinical challenges (n2c2).

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale

machine learning. In OSDI, volume 16, pages 265–283, 2016.

[3] T. Alkhouli, G. Bretschner, J.-T. Peter, M. Hethnawi, A. Guta, and H. Ney.

Alignment-based neural machine translation. In Proceedings of the First

Conference on Machine Translation: Volume 1, Research Papers, pages 54–65,

2016.

[4] M. Auli, M. Galley, C. Quirk, and G. Zweig. Joint language and translation

modeling with recurrent neural networks. In Proceedings of the 2013 Confer-

ence on Empirical Methods in Natural Language Processing, pages 1044–1054,

2013.

[5] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. ICLR, 2015.

[6] T. Bai, S. Zhang, B. L. Egleston, and S. Vucetic. Interpretable representation

learning for healthcare via capturing disease progression through time. In Pro-

ceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 43–51. ACM, 2018.

[7] Y. Bao, S. Chang, M. Yu, and R. Barzilay. Deriving machine attention

from human rationales. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, pages 1903–1913, 2018.



127

[8] M. Barrett, J. Bingel, N. Hollenstein, M. Rei, and A. Søgaard. Sequence

classification with human attention. In Proceedings of the 22nd Conference

on Computational Natural Language Learning, pages 302–312, 2018.

[9] I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou. Patient

subtyping via time-aware lstm networks. In Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 65–74. ACM, 2017.

[10] R. J. Byrd, S. R. Steinhubl, J. Sun, S. Ebadollahi, and W. F. Stewart.

Automatic identification of heart failure diagnostic criteria, using text analysis

of clinical notes from electronic health records. International Journal of

Medical Informatics, 83(12):983–992, 2014.

[11] K. L. Caballero Barajas and R. Akella. Dynamically modeling patient’s health

state from electronic medical records: A time series approach. In Proceedings

of the 21th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 69–78. ACM, 2015.

[12] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu. Recurrent neural

networks for multivariate time series with missing values. Scientific reports,

8(1):6085, 2018.

[13] L. Chen, M. Zhai, and G. Mori. Attending to distinctive moments: Weakly-

supervised attention models for action localization in video. In Proceedings

of the IEEE International Conference on Computer Vision, pages 328–336,

2017.

[14] P.-C. Chen, T.-C. Chi, S.-Y. Su, and Y.-N. Chen. Dynamic time-aware

attention to speaker roles and contexts for spoken language understanding.

In IEEE Automatic Speech Recognition and Understanding Workshop, pages

554–560, 2017.

[15] E. Choi, M. T. Bahadori, L. Song, W. F. Stewart, and J. Sun. Gram: graph-

based attention model for healthcare representation learning. In Proceedings

of the 23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 787–795. ACM, 2017.



128

[16] E. Choi, M. T. Bahadori, J. Sun, J. Kulas, A. Schuetz, and W. Stewart.

Retain: An interpretable predictive model for healthcare using reverse time

attention mechanism. In Advances in Neural Information Processing Systems,

pages 3504–3512, 2016.

[17] E. Choi, D. Hewlett, A. Lacoste, I. Polosukhin, J. Uszkoreit, and J. Be-

rant. Hierarchical question answering for long documents. arXiv preprint

arXiv:1611.01839, 2016.

[18] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of

gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

[19] K. Clark, U. Khandelwal, O. Levy, and C. D. Manning. What does bert look

at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.
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