
/teA/112000
0e C046c1401. oi.SC

Ittere Was a problem It

he
re is a copy of this

visited.Viould you hitt
ttiat copy instead?

Address requested-. Pttpl

0l l7° /171

Trust and Component-Based Software Engineering

By Paul W. Calnan, Ill and Anthony J. Andrade, Jr.
Dr. George T. Heineman, Project Advisor

Project Number. GTH - 1011

Tr: •Az.g. 	 --I+ 	 C:rtf+1A:tmret rrtr-irtelf_trinet t 	 .71

An Interactive Qualifying Project Report
submitted to the Faculty

of the
WORCESTER POLYTFnl-frqr INSTM ITE

in partial fulfillment of the requirements for the
nParPP of Bachelor of Science

By

VW.

A 	 .
.ffu 	 iy 	 iui auu, •Ji

March 12, 2001

rtnet-ritid=

Professor George T. Heinernan
ProJect A

CONTENTS

Abstract 	 4
Acknowledgements 	 5
Chapter 1 Introduction 	 6
Chapter 2 Licensing, Certification, and the Software Engineering Profession 	 14

Introduction 	 14
The Concept of a Profession 	 16
Certification 	 18
Licensing 	 20
Issues to Be Considered 	 23

Initial Professional Education 	 24
Accreditation 	 25
Skills Development 	 26
Professional Development 	 26
Code of Ethics 	 27
Professional Society 	 28

Computer Malpractice 	 28
Industry Opinions 	 29
Proposal 	 32

Chapter 3 Product Certification 	 36
Introduction 	 36
Background and Certification Examples 	 37
Component Certification 	 40
Proposal 	 46

Chapter 4 Process Assessment 	 49
Introduction 	 49
ISO 9000 Series 	 51
Software Engineering Institute's Capability Maturity Model (SW-CMM) 	 53
Industry Opinions 	 55
Proposal 	 57
References 	 58

Chapter 5 Conclusion 	 60
References 	 65

3

A BS T R AC T

Software productivity has been a problem since the 1960s. Projects are often delayed, over

budget, or even canceled. Component-based software development, as a means of code reuse,

has been viewed as a way to help improve the state of software engineering, but a marketplace

for software components currently does not exist. It is our assertion that trust is a necessary but

not a sufficient precondition for the development of a software component marketplace. To this

end, we examine a variety of ways that trust can be engendered in components: creating a

profession of software engineering, product certification, and process assessment.

4

ACK NOWLEDGE ME N TS

We would like to thank Professor Heineman for his invaluable help and support throughout the

course of this project, as well as allowing us to use portions of his book, Component-Based

Software Engineering, prior to its publication.

Cover page photographs courtesy of Free Images (http://www.freeimages.co.uk/).

5

CH 	 PIERR 	 1

Introduction

In 1968, the NATO Software Engineering Conference coined the term software crisis in

recognition of the problems that the software industry faced at that time: high cost of

development, low quality products, difficulty in scheduling, and management difficulties

[CoxByte]. Since then, computers have developed into a worldwide mass-market. The cost of

hardware has decreased dramatically while its speed has doubled almost every eighteen months.

Gains in software productivity and reductions in costs have not kept pace. Software development

continues to see problems similar to those discussed at the NATO conference thirty-three years

ago: schedule pressure, a shortage of programmers, ever-increasing project sizes, and persistent

management difficulties [McConnell, p.4]. The software crisis is not over.

Many in the industry complain that there is a lack of skilled personnel to fill the

programming jobs that are available. It was estimated that thirty years ago, there were 50,000

jobs unfilled due to a shortage of labor in the software industry [McConnell, p.4]. Today, industry

officials claim that at least 346,000 high-tech jobs remain unfilled [UTHCT]. This issue has

become politically charged over the past few years as the Clinton administration and the

Congress have disagreed on the issue of H1-B visas that would allow foreign nationals holding

college degrees to work in the United States for up to six years [InternetNews].

Projects continue to be quite large, requiring massive amounts of effort to complete. The

initial Windows NT development required 1,500 staff-years of effort. IBM's OS/360, which was

completed in 1966, required more than three times as much effort [McConnell, p.4].

A study published in Patterns of Software System Failure and Success in 1995 (see

Table 1) shows that almost one-quarter of all software projects are canceled. Other research by

The Standish Group shows that 31.1% of all software projects will be canceled prior to completion

and that 52.7% of projects will cost 189% of their original cost estimates. They estimate that in

6

1995, canceled software projects cost American companies and government agencies $81 billion.

It is estimated that software projects that take longer than originally estimated will cost those

same organizations an additional $59 billion [UQAM].

Size of Project Early On-Time Delayed Canceled Sum
1 function point 14.68% 83.16% 1.92% 0.25% 100.00%

10 function points 11.08% 81.25% 5.67% 2.00% 100.00%
100 function points 6.06% 74.77% 11.83% 7.33% 100.00%

1,000 function points 1.24% 60.76% 17.67% 20.33% 100.00%
10,000 function points 0.14% 28.00% 23.83% 48.00% 100.00%

100,000 function points 0.00% 13.67% 21.33% 65.00% 100.00%
Average 5.53% 56.94% 13.71% 23.82% 100.00%

Table 1: Percentage of Software Projects Early, On-Time, Delayed, Canceled [Jones, Yourdon]

While this is just anecdotal evidence of the productivity problems seen in software

development today, it is clear that something needs to change in order to increase the

productivity, predictability, and manageability of software projects. Much has been written over

the years suggesting changes and improvements to the software development process. In his

1986 paper "No Silver Bullet-Essence and Accident in Software Engineering," Fred Brooks

compares the productivity problems that often surface in software projects to werewolves--

monsters that transform "from the familiar into horrors." He explains that the software industry

has long looked for a "silver bullet" solution that would kill the beast and make software

development more productive. Brooks's thesis is that no single development-no silver bullet-

would bring an order-of-magnitude improvement in productivity, reliability, or simplicity during the

years 1986-1996 [Brooks, p.179]. By all measure, his thesis has been generally accepted.

Brooks begins by dividing the difficulties faced in software development into the essential

and the accidental. Essential difficulties are those that are inherent in software development:

data sets, relationships among data items, algorithms, and function invocations. They are

abstract in that they are conceptually the same under different representations [Brooks, p.182].

Accidental difficulties come up in the production of software but are not inherent in it. They arise

while representing the essential concepts under a particular representation. The central question

raised by Brooks is, "What fraction of total software effort is now associated with the accurate and

7

orderly representation of the conceptual construct, and what fraction is the effort of mentally

crafting the constructs?" [Brooks, p.209] He goes on to argue that the difficulties in software

design come from the specification, design, and testing of the program, not the representing it

and testing the fidelity of the representation [Brooks, p.1821—in other words, the essential not the

accidental. The software industry must attack the essential problems in order to see order-of-

magnitude improvements in productivity, because this is where most of the difficulties lie.

Many looked to object-oriented (00) programming as a means of solving some of the

essential difficulties that faced software development. 	 00 programming offers software

designers the ability to write modular code with well-defined interfaces. 	 It also gives

programmers more powerful design principles to apply to their craft: abstraction, encapsulation,

inheritance, and polymorphism. The modularity and abstraction that comes with 00 makes it

possible for programmers to develop software with conceptually larger pieces, thus removing

some of the fine-grained complexity that is common under other design methods. However,

many would argue that 00 programming has not improved productivity or software quality as

much as originally promised. David Parnas, one of the originators of the object-oriented concept,.

sees the problem as follows:

[00 programming] has been tied to a variety of complex languages. Instead of teaching
people that 00 is a type of design, and giving them design principles, people have taught
that 00 is the use of a particular tool. We can write good or bad programs with any tool.
Unless we teach people how to design, the languages matter very little. The result is that
people do bad designs with these languages and get very little value from them [Brooks,
p.221].

To use Brooks's terminology, 00 has been used in the realm of the accidental rather

than in the realm of the essential. In order to make real improvements in the realm of

productivity, we need to turn our efforts to the realm of the essential difficulties of software

development.

There exists a gap between what software developers would like to create and what they

are able to create. What is needed is a way to decompose a software project, breaking the

complexity of the problem into manageable components. As projects increase in size, this

becomes more apparent. In the past, large projects were written with thousands of lines of

8

code—today, large projects are written with millions of lines of code. If this trend continues, large

projects may eventually be written with billions or trillions of lines of code. However, the

complexity, cost, and time to develop a project that large will be unreasonable, to say the least.

The problem of complexity is not a new one. Modern industry has seen this problem and has

found a solution: standard, interchangeable components.

In his paper "What If There's A Silver Bullet... And the Competition Gets It First," Brad

Cox sums up his view of the essential difficulties of software development in a cartoon caption. A

plumber says to his client, "Don't waste your money on generic, 'reusable' components from the

plumbing supply store. Every component in a proper plumbing system should be custom-

designed right from the ground up" [CoxByte]. Consider for a moment how expensive and difficult

it would be if your plumbing system was designed from the ground up. It is not designed that way

because it would not be feasible. Likewise, electrical engineers do not design every capacitor

and resistor in their systems, nor do mechanical engineers design every nut and bolt in their

projects. Cox goes on to explain that the process consumes the software community: we build

our software from first principles, using very fine-grained building blocks. While all other

engineering disciplines have "defined standard products and allowed diverse processes to be

used in making them, in software we do the reverse, defining standard languages and

methodologies from which standard components are to magically ensue" [CoxPSIR].

All mature engineering disciplines have embraced the concepts of reuse and standard

components. For some reason, software engineering has not. It has long been recognized that

code reuse is a good way to improve programmers' productivity. Programmers often reuse

fragments of their own code, as well as system libraries and GUI toolkits. The industry has not,

however, embraced reuse to the extent that other engineering disciplines have. What better way

to attack the essential difficulties of software development than not to write the software in the

first place? Software components, "binary units of independent production, acquisition, and

deployment that interact to form a functioning system," [Szyperski, p.xiii] would provide an

excellent vehicle for such reuse. The underlying technologies that support component-based

software (e.g. COM, CORBA, EJB) have been available for some time now. It is evident from

9

other industries that components are an essential cornerstone to the design and development of

new products. But, for some reason, there has yet to develop a marketplace for these reusable

components.

Much has already been written extolling the virtues of component-based software

engineering: how it reduces time to market, improves productivity and software quality, etc. It is

not our intent in this paper to discuss component-based software engineering itself, nor is it our

intent to explain why a marketplace for reusable software components does not exist in the

industry today. Rather, we intend to examine some of the issues surrounding the creation and

the development of a component marketplace. In particular, we will examine the issue of trust,

and how it affects the development of a component marketplace. It is our assertion that trust is a

necessary but not a sufficient pre-condition for the development of a component marketplace.

Trust will not form a component marketplace, but a component marketplace will not form without

trust. Bearing that in mind, we will examine ways to engender trust in software components.

Trust is defined by Webster as the "assured resting of the mind on the integrity, veracity,

justice, friendship, or other sound principle, of another person" [Webster]. It is the foundation of

commerce [Keen, et al., p.1], and it plays a major role in all of our economic transactions: we trust

banks to keep our money; we trust that goods paid for will be delivered and will perform as

promised; we trust that the currency exchanged has real value; we trust that the issuer of a check

has the actual funds promised; and so on. Trust is fostered by a variety of measures.

Companies allow for consumers to return goods that are faulty and often provide money-back

guarantees in case the goods provided do not perform as promised. A preexisting relationship or

the personal reputation of the provider of the good can also provide trust. We trust certain brand

names that we are familiar with to be of a certain quality. Often times, our trust is assured in the

knowledge that there are legal repercussions for broken trust. There are contracts and

regulations that provide the consumer with a means of redress when a product is faulty.

Likewise, consumer protection laws provide us with a set of reasonable expectations for a

product.

10

People often have a difficult time trusting software. This is no surprise considering the

poor quality of software often seen in today's marketplace. Some in the software industry would

have consumers believe that "the complexity of software products makes them inherently

imperfect" [Kaner, footnote 64] and that "the idea of perfect software is a goal or aspiration not

presently attainable, at least not without exorbitant costs that would drive many thousands of

small companies out of the business" [Kaner, footnote 66]. Almost anyone who has used a

computer knows from experience that this is true—programs do unpredictable things, computers

often "lock up" or crash, and so on. The Y2K "bug" caused many peopie to panic; in the weeks

and months leading up to January 1, 2000, some people were so convinced that computers the

world over would crash that they hoarded food and water, built bomb shelters, canceled travel

plans, and withdrew extra money from the bank in case disaster struck.

People within the software industry are equally aware of potential problems with software;

they have a first-hand view of the difficulties of development and the damage that defects can

cause. A leap of faith is required for a company to use components developed by a third-party.

Trust in the component producer's product is essential. When a company licenses a component

from a third-party, they receive binary code to incorporate into their product along with

documentation on how to use the component. No source code is provided. The company that

licenses the component can trust the component producer's word that the software performs to

specifications. The company can also engage in black box testing of the component to assure

that it performs acceptably. Either way, a certain level of trust is required on the part of the

licensing company before they can incorporate the component into their product.

The mechanisms that provide legal redress for broken trust mentioned above do not

necessarily apply to the realm of software. A close examination of any license agreement that

comes with a piece of software shows how careful companies are to limit their liabilities for

defects. For example:

Note on Java support. The software product contains support for programs written in
Java. Java technology is not fault tolerant and is not designed, manufactured, or intended
for use or resale as on-line control equipment in hazardous environments requiring fail-
safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines, or weapons

11

systems, in which the failure of Java technology could lead directly to death, personal
injury, or severe physical or environmental damage.

No other warranties. To the maximum extent permitted by applicable law, Microsoft and
its suppliers disclaim all other warranties, either express or implied, including, but not
limited to, implied warranties of merchantability and fitness for a particular purpose, with
regard to the software product, and any accompanying hardware.

Customer remedies. Microsoft's and its suppliers' entire liability and your exclusive
remedy shall be, at Microsoft's option, either (a) return of the price paid, or (b) repair or
replacement of the software product or hardware that does not meet Microsoft's Limited
Warranty and which is returned to Microsoft with a copy of your receipt. This Limited
Warranty is void if failure of the software product or hardware has resulted from accident,
abuse, or misapplication.

No liability for consequential damages. To the maximum extent permitted by
applicable law, in no event shall Microsoft or its suppliers be liable for any special,
incidental, indirect, or consequential damages whatsoever (including, without limitation,
damages for loss of business profits, business interruption, loss of business information,
or any other pecuniary loss) arising out of the use of or inability to use the software
product, even if Microsoft has been advised of the possibility of such damages.

[Taken from the Microsoft Windows NT Workstation End-User License Agreement]

A new law called the Uniform Computer Information Transaction Act (UCITA) has been

proposed by the National Conference of Commissioners on Uniform State Laws that would

further limit the legal remedies for broken trust in a software product. It would extend producers'

ability to disclaim all warranties and liability for consequential damages that may arise from using

their software. By allowing software producers to avoid facing any legal consequences for

defective software, this new law would take away most means for legal redress for broken trust.

Trust is important for component-based software development and trusting software is

very difficult, especially considering the state of software today and the legal outs that license

agreements and UCITA provide. Therefore, in order for component-based software development

to blossom and for a component marketplace to develop, the industry must focus on ways to

engender trust in software. We will examine three mechanisms that the software industry can

use to engender trust in their products: the formation of a profession of software engineering,

product certification, and process assessment. Each will be examined in turn, their benefits and

drawbacks will be discussed, and a proposal for implementing each will be put forth.

References

12

Brooks, Frederick P., Jr. The Mythical Man-Month (Anniversary Edition).
Reading, MA: Addison-Wesley, 1995.
Cox, Brad. "What If There's a Silver Bullet... And the Competition Gets It First?"
<http://www.virtualschool.edu/cox/CoxByte.html >.
Cox, Brad. "Planning the Software Industrial Revolution."
<http://www.virtualschool.edu/cox/CoxPSIR.html >.
Mark, Roy. "Clinton Proposes New Version of H1-B Bill." dc.internet.com 12 May
2000. <http://dc.internet.com/news/article/0,1934,2101 360741 ,00.html>.
Jones, Capers. Patterns of Software Failure and Success. Referenced by
[Yourdon].
Kaner, Cem. "Software Engineering and UCITA."
<http://www.badsoftware.com/enqr2000.htm >.
Keen, Peter, et al. Electronic Commerce Relationships. Upper Saddle River, New
Jersey: Prentice Hall PTR, 2000.
McConnell, Steve. After the Gold Rush: Creating a True Profession of Software
Engineering. Redmond, Washington: Microsoft Press, 1999.
Szyperski, Clemens. Component Software: Beyond Object-Oriented
Programming. New York: ACM Press, 1999.
Black, Shaun. "4 Articles on U.S. Senate Vote to Expand H1-B Visa Program." 19
May 1998. Online posting.
<http://psyche.uthaedu/nes/wwwboard/messaqes/144.html >.
Netscape Component Developer's Kit.
<http://www.er.uqam.ca/nobel/m202230/reference.html >.
Webster's Revised Unabridged Dictionary, 1996, 1998.
<http://www.dictionary.com >.
Ed Yourdon's Y2K Chronicles, Chapter 11: "Y2K Projects: déjà vu all over again."
<hrtb://www.yourdon.com/books/y2k2020/11.dejavu.html >.

[Brooks]

[CoxByte]

[CoxPSIR]

[InternetNews]

[Jones]

[Kaner]

[Keen, et al.]

[McConnell]

[Szyperski]

[UTHCT]

[UQAM]

[Webster]

[You rdon]

13

CH A PTER 	 2

Licensing, Certification, and the Software Engineering Profession

Introduction

As we enter the 21 st century, the modern world has come to rely upon software.

Personal computers and the Internet continue to affect people in ever growing numbers.

Computers and software systems are part of our national power grid, air traffic control, and even

the anti-lock braking systems in automobiles. Our increased dependence on software was best

illustrated by the recent Year 2000 (Y2K) crisis. The idea that computers the world over could

stop functioning when the date changed from 1999 to 2000 caused many people to panic. The

possibility that financial institutions, food distribution, water supplies, electrical power, air traffic

control systems, missile control systems, and other computer systems could fail provided a sense

of how dependent we are on software and computers. Y2K also showed us how important good

software engineering is—and how something as simple as storing the date using two digits

instead of four could have such a colossal effect.

High-profile software failures frequently make national headlines. The Melissa Virus,

caused by a vulnerability in the scripting capabilities of Microsoft Outlook, cost companies billions

of dollars in lost productivity due to e-mail outages [Busch]. Problems with the Denver

International Airport baggage system software delayed the opening of the new airport, eventually

costing the airport's planners $1.1 million a day in interest and operating costs while BAE

Automated Systems struggled to debug their system [CoxNSBR].

Software delays and failures continue to cost us untold billions each year. A Government

Accounting Office (GAO) report on major software challenges stated, "We have repeatedly

reported on cost rising by millions of dollars, schedule delays of not months but years, and multi-

billion-dollar systems that don't perform as envisioned" [SEI-CMM]. Tables 1 and 2 illustrate the

situation:

14

Size of Project Early On Time Delayed Cancelled
1 function point 14.68% 83.16% 1.92% 0.25%

10 function points 11.08% 81.25% 5.67% 2.00%
100 function points 6.06% 74.77% 11.83% 7.33%

1,000 function points 1.24% 60.76% 17.67% 20.33%
10,000 function points 0.14% 28.00% 23.83% 48.00%

100,000 function points 0.00% 13.67% 21.33% 65.00%
Average 5.53% 56.94% 13.71% 23.82%

Table 1: Percentage of software projects early, on time, late, canceled [Jones]

Project Size
(function
points)

Minimum
Duration
(months)

Actual
Duration
(months)

Maximum
Duration
(months)

Estimate
(months)

Variance
from

Estimate

Percent

1 0.06 0.16 0.40 0.15 0.01 6.25%
10 0.35 1.07 2.36 1.00 0.07 6.54%

100 3.60 10.00 19.00 9.00 1.00 10.00%
1,000 12.24 27.20 43.52 22.00 5.20 19.12%

10,000 24.90 49.80 84.66 36.00 13.80 27.71%
100,000 44.28 73.80 132.84 48.00 25.80 34.96%
Average 14.24 27.01 47.13 19.36 7.65 17.43%

Table 2: Extent of project delays [Jones]

23.8% of all software projects are canceled and 13.7% are delayed by more than half a year on

average. It is obvious that something must be done to fix this problem.

Researchers and practitioners in industry and academia have long pondered the problem

of productivity and predictability. Some have proposed technical solutions such as high-level

languages, object-oriented programming, artificial intelligence, expert systems, graphical

programming, and a variety of CASE tools [NSB]. Others have proposed process-based

improvements such as code reuse, rapid prototyping, incremental development [NSB], the

Software Engineering Institute's Capability Maturity Model [SEI-CMM], and the ISO 9000 series of

standards [ISO 9000-3]. These potential solutions have each had varying degrees of success,

yet the productivity problem persists. This chapter will address a different solution to the problem:

the only way to ensure software projects are completed within schedule and budget is to improve

the skills of the people who develop the software and their managers. Rather than focusing on

improving the way software is developed, we focus on raising the level of practice in the field by

forming a software engineering profession.

15

The Concept of a Profession

The concept of a profession and a professional is carefully defined and explained in the

law:

The term "professional" is not restricted to the traditional professions of law, medicine,
and theology. It includes those professions which have a recognized status and which
are based on the acquirement of professional knowledge through prolonged study
Code of Federal Regulations, Title 29, Subpart B, Section 541.300

The first element in the requirement is that the knowledge be of an advanced type. Thus,
generally speaking, it must be knowledge which cannot be attained at the high school
level. Second, it must be knowledge in a field of science or learning. This serves to
distinguish the professions from the mechanical arts where in some instances the
knowledge is of a fairly advanced type, but not in a field of science or learning. The
requisite knowledge, in the third place, must be customarily acquired by a prolonged
course of specialized intellectual instruction and study.

The typical symbol of the professional training and the best prima facie evidence of its
possession is, of course, the appropriate academic degree, and in these professions an
advanced academic degree is a standard (if not universal) [sic] prequisite.
Code of Federal Regulations, Title 29, Subpart B, Section 541.301

Legal precedence provides five hallmarks of a profession [Kane*

• The requirement of extensive learning and training.
• A code of ethics imposing standards ahove those normally tolerated in the marketplace.
• A disciplinary system for members who breach the code.
• A primary emphasis on social responsibility over strictly individual gain, and the

corresponding duty of its members to behave as members of a disciplined and honorable
profession.

• The prerequisite of a license prior to admission to practice.

According to those definitions, software engineering is not a profession. The Code of Federal

Regulations explains this further, stating that there are too many variations in the academic

requirements and the standards for employment for software engineering to be considered a

formal profession [CFR, 29-541.302h]. We believe that there would be many benefits if software

engineering were a profession. Engineering professions help non-expert members of the public

determine which engineers are qualified to build technical products [McConnell, p.40]. By making

software engineering a profession, standards for employment would be raised by requiring all

software engineers to have a college degree in computer science or software engineering. A

code of ethics, similar to those in medicine and law, would be in effect for all practitioners to

follow. Furthermore, breaches in the code of ethics could carry severe consequences, including

16

the revocation of the license to practice. This would be similar again to medicine and law where

unethical conduct can result in loss of license or disbarment. Also, requiring a license prior to

entering the profession raises the minimum level of knowledge in the field. Typically, a license is

given to an individual who passes a standardized examination, such as the bar exam in the legal

profession. Over time, this would eliminate the least skilled software engineers from the

employment pool.

Becoming a professional engineer would have benefits for the individual as well. First,

professional engineers would show a commitment to their future by making a large investment in

their level of education. Many employers see this as a desirable trait. Also, many employers in

other engineering fields require a license to be promoted into senior engineering positions. In

other engineering fields, only professional engineers can consult in private practice and to serve

as expert witnesses in court. Finally, as laws become stricter in their requirements for entry into a

field, having a license may improve job security. [IEEE-PE]

Organizations such as the IEEE Computer Society and the ACM have been actively

promoting software engineering as a profession since 1993 [SWEBOK]. However, there are

opponents to making a profession out of software engineering. Many feel that software

engineering is too immature a field, with a body of knowledge that is not well defined [ACM].

Others are concerned that licensing would put the licensing bodies in a position to unfairly

exclude otherwise qualified developers from employment [DeMarco]. These issues, and many

others, must be addressed before there will be widespread support for making software

engineering.

There are two ways in which software engineering can take a major step towards

becoming a formal profession: certification and licensing. Each can be mapped to the software

engineering profession, and each has issues surrounding them. We begin by looking at

certification.

17

Certification

Certification is a voluntary process that is administered by a profession [SEI-MPSE] to

ensure the public will be served by professionals qualified to perform certain kinds of work

[McConnell, p. 102]. The accounting profession has the most widely known form of professional

certification, where practitioners are known as Certified Public Accountants (CPAs) [SEI-MPSE].

Anyone can refer to themselves as accountants and can maintain financial records for companies

or prepare tax forms. Only those accountants who meet certain educational and experience

requirements can refer to themselves as CPAs. Additionally, only CPAs can perform the

mandatory Securities and Exchange Commission (SEC) audits of publicly traded companies in

the United States [AICPA].

The SEC was established in 1934 and is appointed by the Congress. It has the authority,

among other things, to establish financial accounting and reporting standards. Traditionally, they

have relied on the private sector for aid iri this area through the help of the Financial Accounting

Standards Board (FASB), a private sector organization that makes and authorizes standard

accounting rules and practices [FASB]. The American Institute of Certified Public Accountants

(AICPA) also provides technical support, standards, and guidelines in conjunction with FASB.

Among these standards is the set of Generally Accepted Accounting Principles (GAAP). GAAP-

developed by FASB, AICPA, and the Governmental Accounting Standards Board (GASB)—

specifies uniform standards and guidelines for financial accounting and reporting [AICPA]. State

legislatures appoint state accounting boards and grant them the authority to certify CPAs. To

become a CPA, most states require an accounting degree from a college or university. Some

states also require a certain amount of professional work experience before becoming a CPA.

From there, candidates must pass the Uniform CPA Examination, written and graded by AICPA.

[AICPA] The accounting rules and practices, like GAAP, are among the knowledge required of

CPA candidates to become certified.

There are currently a variety of certification programs in the computer and software

industry today. Some are run by a professional society, such as the American Society for Quality

Control (ASQC). They offer a program to become certified as a Software Quality Engineer-

18

described as a professional who understands the standards and principles of software quality.

The requirements for this certification include eight years of professional experience, with three

years in a decision making position. A bachelor's degree counts as four years of experience and

a graduate degree counts as five years. The ASQC also requires proof of professionalism: either

membership in a professional society, a professional engineer's license, or statements from two

professional colleagues. Finally, the ASQC requires a written examination and an agreement to

abide by the ASQC's code of ethics [SEI-MPSE].

The Institute for the Certification of Computing Professionals, Inc. (ICCP), a non-profit

organization, offers two certification programs: Associate Computing Professional (ACP) and

Certified Computing Professional (CCP). Requirements for ACP certification include receiving a

score of 50% or higher two exams, one on core topics in computing, and one on the basics of a

chosen programming language. Requirements for CCP certification include 48 months of

experience and a score of 70% or higher on three exams, one on core topics in computing, and

two from the following categories: management, procedural programming, systems development,

business information systems, communications, office information systems, systems security,

software engineering, and systems programming. [SEI-MPSE]

Commercial organizations also offer certification programs, although these are not

usually considered to be professional certification. Novell offers a Certified Network Engineer

certification [http://www.novell.com/education/cne/] . Microsoft offers Microsoft Certified Systems

Engineer certification [http://www.microsoft.com/mcp/certstep/mcse.htm] . Learning Tree

International [http://www.learninqtree.com/us/cert/index.htm] offers certification in the following

areas: PC Service and Support, LANs, WANs, Internetworking, Open Systems, Client/Server

Systems, Oracle7 Database Administration, Oracle7 Application Development, Netware 3.x,

Netware 4.x, UNIX Programming, UNIX Systems, C/C++ Programming, and Software

Development. However, none of these have a broad enough range of knowledge to be

applicable to software engineers. [SEI-MPSE]

Certification can ensure that workers have a minimum level of competency in the field.

However, because certification is a voluntary, industry-based solution, there needs to be some

19

substantial reasons to become certified. Certification can be made a condition of employment,

but this may be difficult to achieve under existing equal employment opportunity laws [SEI-

MPSE]. Also, the high demand for developers in today's market would cause many to oppose

any move to restrict entry of people into the market. Also some have observed that "there seems

to be almost universal opposition to certification among practitioners ... partly because there is

not yet any evidence that certification will solve any existing problem in the software engineering

profession" [SEI-MPSE].

Society's growing dependence on software illustrates the need for some mechanism to

protect the public welfare. If the industry fails to produce such mechanisms, the government

would likely step in and impose such a mechanism. Each time there is a publicized software

failure, especially one that results in loss of life or substantial loss of property, it becomes more

likely that the government will become involved, especially by licensing software engineers [SEI-

MPSE], as we now describe.

Licensing

Licensing is a mandatory process, typically administered by state legislatures [SEI-

MPSE], designed to protect the public health and welfare. Consequently, it is an absolute

requirement for entering into certain fields. In Minnesota, for example, professionals such as

architects, professional engineers, land surveyors, landscape architects, and interior designers

are required to hold a license before entering the field [Minnesota Statue, 326.02-1]. Some

occupations that are generally not considered to be professions also have a licensing

requirement. For instance, in California, barbers, locksmiths, private investigators, embalmers,

automotive lamp and brake adjusters, professional and amateur boxers, custom upholsterers,

and jockeys are among the occupations that are required to hold a license before entering the

field. Each state has different lists of occupations that require a license. The common aspect is

that each occupation listed affects the public. However, no occupation affects the public more

than software development; yet software engineers remain unlicensed [McConnell, p. 103].

20

Public safety issues have motivated professional engineering since its inception. In the

1860s, American bridges were falling at a rate of more than twenty-five per year [McConnell,

pp.56]. The loss of life and property associated with failures brought about more strict

engineering approaches. In Canada, the Quebec City bridge collapse in 1907 had similar effects

for Canadian engineering. To this day, Canadian engineering graduates receive an iron ring,

made from the iron of a bridge that collapsed, to symbolize an engineer's responsibility to society

and public safety [McConnell, pp.56]. In 1937, a boiler exploded in an elementary school in

Texas, killing 300 children. In response to that disaster, Texas began to require the licensing of

professional engineers [McConnell, p. ix].

Today, all state legislatures have laws to safeguard the public health and welfare by

requiring a license to be a professional engineer. The National Council of Examiners in

Engineering and Surveying (NCEES) helps write model laws for the use of the state legislatures.

The state legislature typically creates a licensing board and delegates to them the authority of

implementing the licensing statutes. The board has the authority to make rules and to determine

the qualifications of applicants based on experience and examinations [NCBELS]. NCEES and

the National Society of Professional Engineers (NSPE) provide advice in this process, thus

ensuring some level of uniformity from state-to-state.

Most state boards require candidates to have a bachelor's degree from an Accreditation

Board for Engineering and Technology (ABET) accredited program and pass a Fundamentals of

Engineering examination. At that point, a candidate is considered to be an Engineering Intern or

an Engineer In Training, depending on the state's terminology. The candidate must then

complete at least four years of engineering experience, often under the guidance of another

professional engineer. After the four years, the candidate must then pass the Principles and

Practice of Engineering examination. Once the candidate passes that exam, he or she is

considered to be a professional engineer [IEEE-PE]. The two exams are prepared by NCEES,

again to ensure a degree of uniformity from state-to-state. Professional societies often aid in the

preparation of an accepted body of knowledge or body of practice for use in the examination.

21

If software engineering were to become a licensed profession, processes similar to those

found in other engineering disciplines would be needed. NCEES, with the help of the ACM and

the IEEE Computer Society, would need to formulate examinations to test candidates' knowledge

of the software engineering discipline. This would require a well-defined body of knowledge

(discussed later in this chapter)

Laws differ from state-to-state as to what kind of work can be only be done by

professional engineers. Engineers working for an industrial corporation are exempt from the

licensing requirements in most states [SEI-MPSE]. For example, the State of Washington has

the following provision in their law: [SEI-MPSE]

The work of a person rendering engineering or land surveying services to a corporation,
as an employee of such corporation, when such services are rendered in carrying on the
general business of the corporation and such general business does not consist, either
wholly or in part, of the rendering of engineering services to the general public: Provided,
that such corporation employs at least one person holding a certificate of registration
under this chapter or practicing law-fully under the provisions of this chapter.

Most states have similar exemptions. Consequently, the majority of engineers do not get

licensed. Table 3 illustrates the effect of exemptions on the four main engineering fields.

Discipline Licensed
Civil 44%
Mechanical 23%
Electrical 9%

Chemical 8%
All Engineers 18%

Table 3: Percentage of Licensed Engineering Graduates in the US [SEI-MPSE]

The difference between the various engineering disciplines lies in nature of the engineered

product and how much impact that product has on the public safety. Products that are

reproduced in large numbers can be tested before being manufactured and sold. This is the case

with electrical engineers—their products are manufactured in such large quantities and they have

the ability to be tested before being sold, thus reducing the risk to the public safety. Civil

engineers, on the other hand, often produce unique products—like bridges and roads—that are

safety-critical. These products often directly impact the public safety. These differences in the

nature of their products are reflected in the percentages of licensed engineers in each discipline.

[McConnell, p. 103-4]

22

Software engineers produce a variety of products. Some are safety-critical, like air traffic

control systems and embedded software for medical devices. Others are unique, but not safety

critical, as is the case with custom business software. However, software engineers also create

mass-produced software, like operating systems and word processors [McConnell, p. 104]. Each

type of software has a different level of impact on the public safety. If state legislatures enact

similar exemptions for software engineers, different software fields and products would require a

variety of different percentages of licensed software engineers.

Some would argue that licensing might not apply to software engineers since the majority

of their products do not affect the public welfare. However, the government has in the past

stepped in to regulate industries that present a public nuisance. This was seen, for example, with

the enactment of lemon laws in the automobile industry. As businesses and private citizens

come to rely more on software, the loss in productivity and general nuisance created by software

that is unstable or that does not work as promised becomes an issue. The government is in a

position to step in and require software engineers to become licensed in an effort to protect

consumers.

Issues to Be Considered

As the examples given above for other professional fields would suggest, a certifying

body must formulate a set of necessary knowledge required of software engineering

professionals. As discussed in the introduction, software development knowledge can be divided

into essential and accidental properties. Any effort in development of a body of knowledge

should reflect the essential rather than the accidental knowledge [McConnell, p. 80]. There is no

currently accepted body of knowledge for software engineering. Some have sought to provide

such bodies of knowledge by forming the Software Engineering Body of Knowledge, or SWEBOK

initiative [SWEBOK]. SWEBOK was started with the following goals: to characterize the contents

of and to provide topical access to the Software Engineering Body of Knowledge; to promote a

consistent view of software engineering worldwide; to clarify the place of, and set the boundary

23

of, software engineering with respect to other disciplines such as computer science, project

management, computer engineering, and mathematics; and to provide a foundation for

curriculum development and individual certification and licensing material [SWEBOK]. The effort

has categorized knowledge and core competencies into ten areas [list from McConnell, pp. 86-7]:

software requirements engineering, software design, software construction, software testing,

software evolution and maintenance, software configuration management, software quality

engineering, software engineering management, software engineering infrastructure, and

software engineering process. This body of knowledge can be used as a basis in defining the

core areas of expertise required for certification or licensing.

Also, there are certain infrastructural components that need to be addressed before

software engineering is considered to be a profession. The Software Engineering Institute

discusses these in the publication A Mature Profession of Software Engineering (CMU/SEI-96-

TR-004). The components are: initial professional education, accreditation, skills development,

certification, licensing (both discussed above), professional development, a code of ethics, and a

professional society. We will examine each of these in turn to determine how software

engineering compares to other professions, and what needs to be done in that area before

software engineering is to be considered a profession.

Initial Professional Education

From the definition of a profession in the Code of Federal Regulations, a profession

requires "knowledge of an advanced type in a field of science or learning customarily acquired by

a prolonged course of specialized intellectual instruction and study" [CFR]. This is requirement is

usually met through a college degree. Different levels of degree are required for different

professions. Doctors and lawyers are required to have a graduate level degree in order to enter

the field. Professional engineers, on the other hand, typically enter the field with bachelor's

degrees in their particular area of interest.

Most people entering the field of software development, however, have a degree in

computer science or computer engineering [SEI-MPSE]. As of 1996, no college or university in

24

the United States offered a bachelor's degree in software engineering, and only 20 offered a

master's degree in software engineering [SEI-MPSE]. Essentially, the field is filled with

individuals performing engineering tasks without formal engineering training. Furthermore, many

point out that computer science and software engineering are not equivalent. In most fields, there

is a definite division between science and engineering. Fred Brooks describes the difference as

follows: "A scientist builds in order to learn; an engineer learns in order to build" [McConnellG].

Put another way, a scientist learns how to test hypotheses in order to extend knowledge in the

field while an engineer learns how to apply well-understood knowledge in order to solve practical

problems [McConnell, p. 38-9]. Even the definitions of computer science and software

engineering differ. The ACM/IEEE Computer Society Task Force on the Core of Computer

Science defines computer science as "the systematic study of algorithmic processes that

describe and transform information: their theory, analysis, design, efficiency, implementation, and

application." Software engineering is defined as "the technological and managerial discipline

concerned with systematic production and maintenance of software products that are developed

and modified on time and within cost estimates" [Fairley85 — referenced in SEI-MDSE].

Accreditation

For software engineering degree programs to become widespread, the Accreditation

Board for Engineering and Technology (ABET) must develop accreditation guidelines for

programs in software engineering. Accreditation assures the quality of educational programs. A

variety of accreditation bodies exist in the United States to accredit entire colleges and

universities, as well as to accredit individual programs [SEI-MPSE]. ABET accredits engineering

programs, as well as computer science programs after merging with the Computing Sciences

Accreditation Board (CSAB). ABET has historically turned to professional societies for help in the

development of accreditation and curriculum guidelines [SEI-MPSE]. The ACM and the IEEE

Computer Society, along with the body of knowledge produced by the SWEBOK initiative, can all

be used by ABET in the formation of these guidelines.

25

Skills Development

There are certain skills expected of people entering a profession. These skills are used

in the application of the knowledge learned during the initial professional education. The concept

of skill development is seen in many professions. Apprenticeships have traditionally taught

students the necessary skills to perform in a particular field. In modern times, lab courses,

projects, and internships have been used to develop skills during initial professional education.

Interning doctors, law clerks, and engineer-in-training programs are all examples of skill

development at an early stage in a person's professional career [SEI-MPSE]. The SE! document

mentioned above lists some examples of the skills necessary for software engineers: general

communication skills, specialized communication skills, tool skills, procedural skills, and

programming skills. In order to ensure that all software engineers have the necessary skill level

in each of these areas, a !ist of necessary skills should be agreed upon. From there, the skills

can be developed during undergraduate education and through professional development.

Professional Development

Professional development is intended to improve the skills and the currency of knowledge

that a professional has after entering the profession [SEI-MPSE]. It is important for people in

professions that have a rapidly changing body of knowledge to engage in periodic professional

development. This is seen in medicine, when doctors study to stay abreast of new diseases,

treatments, and procedures [SEI-MPSE]. This is also seen in law, where lawyers need to keep

up to date on new legal precedences and laws In the engineering field, professional

development is typically on a project-by-project basis—learning new skills for a particular project

rather than on long-term career development [SEI-MPSE]. All forms of professional development

represent a corporate investment in their personnel, typically with the goal of improving

productivity and increasing the quality of their products and services [SEI-MPSE].

Professional development is already found in wide use throughout the software industry.

However, these activities are typically engaged in on an ad hoc basis—only when employers see

26

a need and are willing to pay the costs [SEI-MPSE]. Also, since there is no generally accepted

body of knowledge for software engineers, the materials covered in professional development are

not well defined. As the body of knowledge is formed, especially in conjunction with certification

or licensing, guidelines for professional development will be refined.

Code of Ethics

A code of ethics is adopted by a profession to ensure that its members behave in a

responsible manner. Members of the profession are bound to follow the code of ethics; those

who breach the code may face disciplinary measures or loss of license. The gravity and

importance of the code reflects the profession's responsibility to the public. Other professions,

notably those of medicine and law, have well-established codes of ethics. The medical

profession has the Oath of Hippocrates, which dates back to 400 B.C. [SEI-MPSE].

The ACM and the IEEE Computer Society Joint Task Force on Software Engineering

Ethics and Professional Practices have approved a software engineering code of ethics [Ethics].

The code reflects the responsibility that all formal professions have to the public:

Software engineers shall commit themselves to making the analysis, specification.
design, development, testing, and maintenance of software a beneficial and respected
profession. In accordance with their commitment to the health, safety, and welfare of the
public, software engineers shall adhere to the following eight principles:

1. Public. Software engineers shall act consistently with the public interest.
2. Client and employer. Software engineers shall act in a manner that is in the best
interests of their client and employer, consistent with the public interest.
3. Product. Software engineers shall ensure that their products and related modifications
meet the highest professional standards possible.
4. Judgment. Software engineers shall maintain integrity and independence in their
professional judgment.
5. Management. Software engineering managers and leaders shall subscribe to and
promote an ethical approach to the management of software development and
maintenance.
6. Profession. Software engineers shall advance the integrity and reputation of the
profession consistent with the public interest.
7. Colleagues. Software engineers shall be fair to and supportive of their colleagues.
8. Self. Software engineers shall participate in lifelong learning regarding the practice of
their profession and shall promote an ethical approach to the practice of the profession.
Software Engineering Code of Ethics and Professional Practice
[http://computer.orq/computer/Code-of-Ethics.pdfl

This represents yet another step in establishing software engineering as a formal profession.

27

Professional Society

Professional associations are often found in mature professions. They typically work to

exchange knowledge to support the profession. They are also usually involved in educational

activities and aid in the defining of certification criteria. The American Medical Association and

the American Bar Association are the professional societies for the medical and legal professions,

respectively. The computing field has two professional societies, the Association for Computing

Machinery (ACM), and the Institute of Electrical and Electronics Engineers (IEEE) Computing

Society. These two societies represent the computing field at large—there is no professional

society specifically for software engineers However, the two computing professional societies

provide services for software engineers, so it is unlikely that another professional society

dedicated solely to software engineers is necessary [SEI-MPSE].

Computer Malpractice

There are other issues surrounding the creation of a software engineering profession

beyond the infrastructural issues mentioned above. Perhaps the most important of these issues

is the concept of computer malpractice. Malpractice is the professional form of negligence.

Negligence is defined as "the omission of the care usual under the circumstances. A specialist is

bound to higher skill and diligence in his specialty than one who is not a specialist, and liability for

negligence varies accordingly" [Webster]. Anyone can be sued for ordinary negligence. In such

a situation, your actions are compared to those of any reasonable person under the given

circumstances. Only a professional can be sued for malpractice. If you are sued for malpractice,

your actions are compared to those of any reasonable member of your profession under the

given circumstances. Malpractice suits are more serious than suits for ordinary negligence or for

breach of contract. While a non-professional service provider's contract may limit the damages

that must be paid to the customer in the case of negligence, such limits are rejected in

28

malpractice suits because they are deemed to violate public policy. Consequently, malpractice

plaintiffs are more likely to collect punitive damages when cases are ruled in their favor. [Kaner]

Courts in the past have been unwilling to allow computer malpractice lawsuits because

software engineering is still not viewed as a formal profession [Kaner]. Forming a software

engineering profession would change this. Software engineers that are liable for malpractice

would require some form of malpractice insurance, typically on the part of the employing

company [McConnell, p.107]. In order for this to happen, the insurance company would need

some way of limiting its risks. Essentially, the insurance company must trust the software

engineer seeking insurance, as well as the software product being produced.

Industry Opinions

The actions that developers choose to take will ultimately decide the direction that

software engineering will go. Therefore, it is important to understand the positions of industry

experts. Influential forces in the software industry have been divided in their endeavors to raise

the quality of software. Some believe, often vehemently, that allowing the true professionals of

the field to step forward and distinguish themselves from ordinary computer programmers will

raise the standards for quality in software. The evolution of software engineering into a

profession will ultimately happen, aided by or in spite of our efforts. There are also those who

argue that defining a profession will only serve to inhibit access to the vast knowledge and varied

areas that make up the current spectrum of computer science.

The majority of those in favor of improving the status of software engineering, either by

licensing or certification, are committed to the concept that a process that separates out the most

able software developers will improve the level of quality of software being developed. They

agree that licensing or certification will help to achieve a higher level of competency in the field,

thus protecting the public from bad developers, while contributing to a standardization of

practices, creating more dependable software, and improving the education and skills of software

developers through revisions and standardizations of college curricula [Hawthorne]. The major

29

concerns of proponents, such as John Speed, involve creating an environment that will foster the

growth of software engineering into a mature engineering profession [Speed]. They are trying to

solve what is commonly referred to as a minimax problem [Brooks]. The main focus is on

obtaining the maximum amount of quality in software and integrity in its designers, while having a

minimal amount of negative effects on the software industry. Questions such as "What areas of

the software industry require licensing?" "What percent of developers should be licensed?" and

"What criteria does a software engineer have to meet?" are the problems that these people now

face. Looking for a starting point, many argue that a logical plan of attack would be to start small

and then gradually increase the domain of the professional software engineer. The design of

software for safety critical systems has provided a potential starting point for professional

software engineers. The situation is optimal because the software being developed will have a

large impact on public safety. Industry experts such as Barry Boehm argue that success will

provide a foundation for further growth, and failure will point out our mistakes, but taking no action

may force us into use a poorly conceived "quick-fix" [Boehm]. But even this optimal situation has

its drawbacks. The ACM disapproves of licensing at this time because "the SWEBOK effort ...

will have little relevance for safety-critical systems, and it dangerously excludes the most

important knowledge required to build these systems." [ACM]. No situation in software

engineering is perfect, so licensing and certification proponents must find a pragmatic solution.

Some opponents of licensing and certification are not so willing to accept the idea that

defining a profession will improve the quality of software engineering or even computing as a

whole. Other opponents believe that the licensing and certification will bring improvement to the

quality of software, but the effort that these steps entail far outweigh the benefits. W. A. Wulf

argues that defining an engineering profession will only put limits on us as computer scientists,

saying:

Defining ourselves by what we are not is common in CS and it has, in my opinion,
damaged us. It has made us inhospitable to pragmatically and intellectually fertile areas
that should be part of our discipline. Indeed, beyond being inhospitable, we have expelled
whole areas - numerical methods, libraries, and MIS, for example. If we continue this
expulsion of the practical we will leave the field a barren husk. [Wulf]

30

He also explains that being a software engineer means that we will be engineers in all respects,

including our curriculum [Wulf]. He points out that important computer science courses, such as

discrete mathematics, may not be as important to engineers and may be pushed back in

computer science curricula to make way for fundamental engineering courses [Wulf]. Ken

Kennedy, a faculty member of Rice University, questions whether schools will be able to be

innovative if required to follow a standard engineering curriculum [Kennedy]. Illustrating these

effects from first hand experience he says:

At Rice, a secondary byproduct of accreditation has been increasing pressure to require
more hours in engineering, and consequently fewer hours in disciplines outside science
and engineering. As a result, all too many of our engineering graduates have difficulty
communicating their ideas and are almost completely out of touch with the intellectual,
social, political, and ethical issues that define our society. [Kennedy]

The effects of creating a profession of software engineering discussed above have not

only shown how a profession limits computer science, but also begs the question "Is it worth it?".

Even for those who do not agree that these actions will have such a detrimental effect on

computer science as a whole, there are those who think that licensure or certification will simply

not be worth the effort. Fred Brooks, Jim Gray, and Ken Kennedy were among those who wrote

position papers on this subject and were not particularly impressed by the current results of the

licensing movement in Texas [Brooks, Gray, Kennedy]. Some of those in line with this opinion

feel that licensure or certification does not effectively address the issues relating to software

quality [Gray]. Tom DeMarco explains that he "wants instead to see the community 'switch gears'

and focus on the 'essential' problems of software engineering", as opposed to the 'accidental'

ones [Easterbrook]. Or as Ken Kennedy said, "Rather than focusing on licensing, we should

instead be focusing on understanding and promulgating good curricula in computer science.

Once we have achieved that, we should reconsider licensing." [Kennedy]. Some feel that the

computer science is not ready for licensing or certification; others feel it never will be. Regardless

of their differences, opponents of licensure and certification have valid logical reasons not to

support this route toward a profession of software engineering at this time.

31

Proposal

It is our opinion that licensing offers greater promise than certification for improving the

state of the software industry. It is unlikely that the industry will begin voluntary certification,

especially considering the high demand for software developers in today's market. It is more

likely that the government will intervene, as it has with other engineering disciplines, and establish

professional software engineering licensure. In 1998, the Texas Board of Professional Engineers

began the process of making software engineering a licensable engineering discipline. This is

important because Texas has a history of introducing changes before nationwide acceptance

[McConnell, p.104-5]. We will examine what is going on in Texas as an example of how to begin

the licensing process.

The Texas Board of Professional Engineers is working with the ACM and the IEEE

Computing Society to produce a Principles of Practice Examination for Software Engineering.

The examination has not yet been written and no date has been set for the first exam. The three

bodies are also considering drafting a Fundamentals of Engineering Examination geared towards

software engineers. Until the exam has been written, it is possible to request an exam waiver.

The requirements for an exam waiver are:

• an engineering degree from a college or university accredited by ABET and twelve

years of engineering experience, or

• a non-accredited degree and sixteen years of engineering experience, or

• a Ph.D. in engineering from a college or university with an undergraduate or master's

program that is accredited by ABET, and to have taught in an ABET accredited

program for at least six years, or to have at least six years of combined experience in

the industry and teaching in an ABET accredited program

Also, all engineers applying for exam waivers are required to have a total of nine references, with

five of them coming from licensed engineers [TBPE].

As is the case with other engineering disciplines, the state legislatures would give

authority to the current licensing boards to begin licensing software engineers. As the Texas

situation indicated, the ACM and IEEE Computer Society are still doing work to create the

32

necessary examinations for software engineering licensure. Until those exams are available,

states can follow a similar course of action to those in Texas—allowing an exam waiver that is

sufficiently exclusive as to not lessen the value of being a licensed software engineer. A state-

based movement to make software engineering a profession would be supported by curriculum

development in public colleges and universities that operate under state mandate. The ACM, the

IEEE Computer Society, and the Software Engineering Institute would support this by supplying

curricular recommendations and sample undergraduate programs.

Licensing has been applied to many other engineering disciplines. It has been a success

across the board—there are no engineering fields that began licensure and then stopped it

because it did not work. That alone is sufficient cause to consider the licensure of software

engineering. The benefits listed at length above would only serve to improve the current state of

the software industry. However, licensure is not without its faults. Licensed software engineers

are not necessarily good developers—they just meet the requirements for practice set out by the

licensing board. Licensing acts as a filter, generally improving the labor pool by excluding the

worst in the industry [McConnell, p.110]. It is an imperfect mechanism; some good engineers

may be excluded from the labor pool, just as some bad engineers may be included. However,

without licensing, the public is at the mercy of all software engineers, both good and bad.

Licensing eliminates the worst of the group and limits the choice to the better engineers.

Forming a software engineering profession helps to improve trust in software products. A

software company that hires professional software engineers can say that they are hiring the

people with the best credentials [McConnell, p. 106]. The company can then argue that their

software is more trustworthy than software developed by a company that does not hire

professional engineers. Also, licensed engineers in a company will have a greater say in

products that they might be held liable for [McConnell, p. 107]. The potential repercussions for

poorly designed or implemented software raise the stakes for the engineers involved. A

professional software engineer is less likely to sign off on a poor design or on a product that is not

yet ready for the market.

33

Having professional software engineers on staff can help in other aspects of corporate

operations. For instance, when seeking venture capital, the number of professional engineers on

a company's staff can act as a discriminant, making that company more attractive to potential

investors. In the next chapter we will examine product certification. We feel that professional

software engineers are very important for a credible product certifying process. These two topics

together are essential in developing trust in software components. If software is not shared

between companies, there is no need for one company to know that much about another

company's software. However, when software is exchanged and shared between companies—

when a supply chain is formed between software companies—it becomes essential that there are

standards for the design, development, and testing of the software produced. To that end,

software components need to be certified, and the best people to perform such certification would

be professional software engineers.

ACM: Position of the Licensing of Software Engineers.
<http://www.acm.orq/servinq/se policy/papers.htmi>.
The American Institute of Certified Public Accountants Website.
<http://www.aicpa.orq/>.
ACM: Position of the Licensing of Software Engineers.
<http://www.acm.org/servinq/se policy/papers.html#boehm>.
ACM: Position of the Licensing of Software Engineers.
<http://www.acm.orq/servinq/se policy/papers.html#brooks>.
Busch Consulting, Inc. Virus Protection.
<http://www.buschconsultinq.com/virus.html >
Code of Federal Regulations. < http://www.access.gpo.qov/nara/cfr/cfr-table-
search.html >.
Cox, Brad. "No Silver Bullet Reconsidered."
<http://www.virtualschool.edu/cox/AmProTTEF.html >.
DeMarco, Tom. "DeMarco on the Certification and Licensing of Software
Engineers." <http://www.systemsquild.com/GuildSiterTDM/certification.html >.

 Easterbrook, Steve. "DeMarco: Process Considered Harmful?"
<http://www.cis.cs.tu-berlin.de/-icsewow/v2n2/v2n2-2.html >.
Software Engineering Code of Ethics.
<http://computer.org/computer/connection/CSNews 2.htm>.
Federal Accounting Standards Board Website. <http://www.fasb.org/>.
ACM: Position of the Licensing of Software Engineers.
<http://www.acm.org/serving/se policy/papers.html#qray>.
ACM: Position of the Licensing of Software Engineers.
<http://www.acm.orq/servind/se policy/papers.html#hawthorne>.
"Become a Professional Engineer." IEEE Website.
<http://www.ieee.orq/orqanizations/eab/pelicens.html >.

References

[ACM]

[AICPA]

[Boehm]

[Brooks]

[Busch]

[CFR]

[CoxNSBR]

[DeMarco]

[Easterbrook]

[Ethics]

[FASB]
[Gray]

[Hawthorne]

[IEEE-PE]

34

Kehoe, Raymond, et al. ISO 9000-3: A Tool for Software Product and Process
Improvement. New York: Springer, 1996.
Jones, Capers. Patterns of Software Failure and Success. Referenced by
[Yourdon] (See Chapter 1 References).
Kaner, Cem. "Computer Malpractice."
<http://www.badsoftware.com/malprac.htm >.
ACM: Position of the Licensing of Software Engineers.
<http://www.acm.orq/serving/se policy/papers.html#kennedy>.
McConnell, Steve. After the Gold Rush: Creating a True Profession of Software
Engineering. Redmond, Washington: Microsoft Press, 1999.
McConnell, Steve. "Software Engineering Is Not Computer Science."
<http://www.qamasutra.com/features/19991216/mcconnell pfv.htm>.
North Carolina Board of Engineers and Surveyors Website.
<http://www.ncbels.org/>.
Brooks, Frederick P., Jr. "No Silver Bullet." The Mythical Man-Month (Anniversary
Edition). Reading, MA: Addison-Wesley, 1995.
Paulk, Mark C., et al. The Capability Maturity Model: Guidelines for Improving the
Software Process. Reading, Massachusetts: Addison-Wesley, 1994.
Ford, Gary, et al. "A Mature Profession of Software Engineering." CMU/SEI-96-
TR-004.
<http://www.sei.cmu.edu/publications/documents/96.reports/96.tr.004.html >.
Heineman, George T., et al. Component-Based Software Engineering. Addison
Wesley, 2001.
The Software Engineering Body of Knowledge (SWEBOK) Website.
<http://www.swebok.orq/>.
"Board Establishes Software Engineering Discipline." Texas Board of
Professional Engineers Website. <http://www.tbpe.state.tx.us/sofupdt.htm >.
Webster's Revised Unabridged Dictionary, 1996, 1998.
<http://www.dictionary.com/>.
ACM: Position of the Licensing of Software Engineers.
<http://www.acm.orq/servinq/se policy/papers.htm!#wulf>.

[ISO 9000-3]

[Jones]

[Kaner]

[Kennedy]

[McConnell]

[McConnellG]

[NCBELS]

[NSB]

[SEI-CMM]

[SEI-MPSE]

[Speed]

[SWEBOK]

[TBPE]

[Webster]

[Wulf]

35

CH APTER 	 3

Product Certification

Introduction

When software developers intend to use components in their product, it is necessary that

they trust the components that they are going to use. They need high quality components and

they need to trust that those components will perform as specified. This chapter will examine

product certification as a way of improving that trust. The IEEE Standard Glossary of Software

Engineering Terminology defines certification as a written guarantee, a formal demonstration, or

the process of confirming "that a system or component complies with its specified requirements

and is acceptable for operational use" [CBSE-UL]. The fact that certified components

demonstrably meet pre-determined and well-established criteria reduces the risk of system failure

and increases the likelihood that the system will comply with specified design standards [CBSE-

UL]. Some would argue that this is not technically feasible. It is difficult to prove that a

component is acceptable for operational use. Similarly, verifying that a component meets pre-

determined and well-established criteria raises some issues—namely, defining the criteria and

performing the verification. Bearing this in mind, for the purposes of this discussion, we will

assume that certification is a feasible goal.

Electrical devices have been certified for more than a century by Underwriters

Laboratories (UL) [CBSE-UL]. Examine almost any electrical device and you will find a UL

marking on it, signifying that the device has been certified as safe to use. UL's history can be

traced back to the 1893 Chicago World's Fair. A large exhibit on the virtues of electrical power

was set up. However, in setting up the exhibit, complicated and untested wiring was placed near

flammable materials. Since the wiring was untested and seemed unsafe, the fire insurance

underwriters were not willing to risk insuring the exhibit. This almost stopped the exhibition

36

entirely. However, the underwriters contacted noted Boston electrician W. H. Merrill and hired

him to come to Chicago and examine the wiring. Merrill reviewed the wiring, noted the

safeguards present, and the underwriters extended fire insurance to the exhibit. Merrill's work at

the World's Fair exposed him to many electrical producers who later contacted him to verify the

safety of their products. With their backing, as well as support from fire insurance underwriters,

Merrill started Underwriters Laboratories in 1894 [NFPA]. It is doubtful that this kind of action

would take place today with software—for example, the organizers of COMDEX are not likely to

threaten to cancel an exhibition due to uncertified software. However, the need for insurance is a

powerful motivating force. As seen in the last chapter, a move to make software engineering a

formal profession would bring about the need for malpractice insurance. That would mean that

insurance companies would need some way of mitigating their risk in insuring software.

Certification of components would be a reasonable way of accomplishing this.

Background and Certification Examples

Certification has two distinct facets: technical claims are made about a product and an

unbiased authority stands behind those claims [SEI-TCCBSE]. This illustrates the two purposes

of component certification. First, the producer establishes facts about the component. Second,

the authority establishes trust in the facts by standing behind them [SEI-TCCBSE]. Obviously,

the more trusted and impartial the certifying authority is, the more trusted their judgment about

the component would be.

As stated earlier, electrical components have been certified for over a century by UL.

This provides objective evidence from an impartial third-party that a product meets safety

standards specified through industry consensus, regulation, or law. The National Electrical Code

[CSSInfo] contains safety requirements for electrical components to be used in buildings and

requires third party certification. If the electrical component in question contains software, that

software must meet the electrical code as well. When the component is certified it receives a UL

37

marking, providing confidence that the component has met the code's safety standards [CBSE-

UL].

Software certification has been around for quite some time as well. The Department of

Defense developed a set of standards for operating systems called the Trusted Computer System

Evaluation Criteria (TCSEC) [TCSEC]. TCSEC is a set of criteria with the following purpose:

• To provide a standard to manufacturers as to what security features to build into their
new and planned commercial products in order to provide widely available systems that
satisfy trust requirements (with particular emphasis on preventing the disclosure of data)
for sensitive applications.

• To provide DoD components with a metric with which to evaluate the degree of trust that
can be placed in computer systems for the secure processing of classified and other
sensitive information.

• To provide a basis for specifying security requirements in acquisition specifications.
[TCSEC]

Evaluated systems are ranked according to their security capabilities. There are four security

classes: D, C, B, and A (in increasing order). Each class has four major criteria sets: Security

Policy, Accountability, Assurance, and Documentation [TCSEC]. The details of the evaluation

procedure and of the different security classes are unimportant for this discussion, but there are

some important issues to notice. First, note the purpose of the TCSEC—it provides

manufacturers a standard to design to and it provides the DoD a standard to evaluate new

products with, as well as to specify requirements for new purchases. Second, note that the

criteria is not limited to functionality; documentation is required as well,

Both of these examples show some important aspects of certification. The need for

standards is illustrated: the producer needs standards to design to and the certifying body needs

to use those standards to ensure that the product being certified is acceptable. Also, the

certification provides a manner of evaluating a product's fitness for a given task. For example, an

electrical component may only be certified for indoor use, or the operating system certified by

TCSEC may not be secure enough for certain high-security operations. Finally, the certification

provides a way for specifying requirements when a consumer is making a purchasing decision.

Note also that certification is not merely testing a product. TCSEC requires adequate

documentation in the form of user guides, manuals, and test and design documentation [TCSEC].

38

The ANSI/UL 1998 Standard for Software in Programmable Components addresses the entire

life-cycle of a product, emphasizing risk-based analysis and design, consideration of provisions

for hardware malfunctions, test planning and coverage, usability considerations, comprehensive

documentation, processes for handling software changes, qualifications for off-the-shelf software,

labeling that uniquely identifies the specifics of the product interface, the intended hardware

platform, and the intended software configuration [CBSE-UL].

Some industry programs and proposals are called certification, but go no further than

testing. For example, Microsoft has started the Certified for Windows Program [MSCert1]

Microsoft, its customers, and third party developers created guidelines for developing

manageable and reliable applications. There are two versions of the specification: a core

specification for desktop applications and a comprehensive specification for distributed

applications. Software that complies with either version is eligible for the "Certified for Windows

Logo," Microsoft provides test plans, test frameworks, and test tools for a variety of platforms, as

well as general functionality and stability test procedures [MsCert2]. The software producer

evaluates how well the application meets the specifications and then submits the software, along

with a fee, to VeriTest, an independent testing lab located in Santa Monica, Paris, and Tokyo

[MSCert3]. VeriTest verifies that the application meets the application specification mentioned

above. They perform over 700 pages of tests, including 32-bit capability, core application

stability, long filename support, proper install and uninstall procedures, and user interface

fundamentals [MSCert4]. This is really a form of platform testing rather than certification. An

application is submitted with the claim that it runs under Windows 2000 and VeriTest certifies that

this is true. Unfortunately, this does not map well to components. Typically, it is not known

ahead of time what a component will be used for. Also, it is not usually known what type of

platform or configuration the component will be run on—this is especially an issue with Java

components that could run on any of a number of hardware platforms. While the testing used in

the Certified for Windows Program is valuable, it fails to cover many certification issues

necessary for components.

39

Another form of certification, proposed by Jeffrey Voas, is a usage-based certification

process [Voas00]. A stable version of the product is supplied to a Software Certification

Laboratory (SCL). Linked to the software are "residual testing capabilities" which collects data

and reports back to the SCL any failures that occur. The software is then released to a small

group of users who use the software normally. The testing capabilities linked in gather

information and occasionally report back to the SCL about any failures that occur. "When testing

collects enough data from the field to affirm that a component works properly in a particular

market sector, the SCL will provide software warranties specific to that sector. For example, an

SCL warranty might read as 'Software product X is warranted to perform with a reliability of 99.9

in the Windows NT environment- [Voas00]. As was the case with the Microsoft Certified for

Windows Program, this is really another form of testing. The usage-based certification program

resembles a beta-testing environment. It provides a convenient way for discovering otherwise

unknown defects, but it does not really certify the component. Again, this proposal fails to cover

many of the process and documentation aspects necessary for the certification of software

components.

Component Certification

Most of the discussion to this point focused on software in general. We now turn our

attention to software components. Specifically, we examine second party testing for a company's

use of a component and third party certification for the general use of a component. Central to all

forms of component certification is the concept of compositional reasoning [SEI-TCCBSE]. The

idea behind compositional reasoning is that there is a causal link between the properties of a

component and the properties of a complete system that uses that component. Those properties

that have the greatest effect on the end system are the properties that need to be certified in the

component. The economic value of component certification comes from the strength of the

compositional reasoning in predicting end-system properties [SEI-TCCBSE]. Furthermore,

strong compositional reasoning tells us which properties of components are necessary to certify.

40

We begin by looking at second party testing. In this situation, the purchaser must

determine that a component is sufficient for the task at hand. Essentially, the purchaser is

certifying that a component is acceptable for use in his or her end product. Consequently, a

number of issues must be examined: that the component meets the needs of the end system,

that the component is of sufficient quality and reliability, the impact that the component will have

on the end system, and whether the end system will tolerate the component [Voas98]. To

accomplish this, the purchaser must first identify which properties of the component are important

to certify—memory usage, latency, performance, stability, and so on. From there, the purchaser

must test the component to see how it meets with his or her requirements. There are a number

of testing methods that the purchaser can perform to verify the component's fitness [test list and

issues taken from Voas98]. First, black box testing can be performed, determining whether the

component is of high enough quality. This requires documentation on how the component is to

be used and what functions are available as well as a driver program to generate input and test

output. Since the component is not certified, the purchaser cannot determine how mucn testing

was done before it was released. So, by performing his or her own range of tests, the purchaser

is able to gauge how well the component meets its documentation and specifications. Bearing

that in mind, it is difficult to thoroughly test a component, especially one of any significant size.

The cost of testing may be significant, especially considering that the purchaser must generate

test cases, an input generator, and an program to test the output. However, some would argue

that the cost of testing is minor compared to the cost and time savings of using the component

rather than writing new code [Voas98]. From there, system-level fault injection can be used to

determine how well the system would tolerate a failing component. Input and output would be

perturbed to generate errors and see how the underlying system handles those errors. Finally,

operational system testing would take place, testing how well the system tolerates a functioning

component. This ensures that the system tolerates the component and that it is a good fit. After

performing the three types of testing outlined above, the purchaser would then decide whether or

not to certify the component for use in the end system. The purchaser would only certify a

component that fits the requirements of and has a positive impact on the end system. However,

41

he or she can choose to certify a component that is not of high enough quality if the failures are

infrequent or can be handled [Voas98].

Perhaps the use of the term certification in this scenario is a misnomer. What is actually

taking place is integration testing. The producer checks how well the component fits into the end

system and then checks how well the system behaves with the new component. It is not as wide

reaching as, for example, the ANSI/UL 1998 certification mentioned above. But, for the purposes

of a developer creating a component-based application, it may be sufficient. The value for the

overall component marketplace is limited. While it may be possible to state that component X

has been certified for use by company Y, the component is still not certified for use in all systems.

Technical claims about the component can be supported by this scenario, but they are supported

by the customer, not by an impartial third party, as is the case with UL-type certification

mentioned above. The additional costs to the component purchaser may be discouraging—test

scenarios and fault-injection means more time and money spent. Similarly, testing is never

exhaustive—some problems can always slip by. The true value of this form of second party

testing would come when many consumers certify a component fc! - use in their systems. If a

sufficiently large number of component consumers certify a given component, it may not be

necessary for another consumer to engage in such an in-depth evaluation of the component.

Similarly, if a sufficiently large group of component consumers feel the need for some form of

certification, it would likely be more cost effective to join forces and form an independent body to

perform third party certification on the candidate components.

Third party certification fits the UL-type model discussed above. 	 A laboratory,

independent of the producer, supplier, seller, buyer, or government would provide objective

evidence as to which components have been produced according to specifications, standards,

and any other criteria deemed necessary [CBSE-UL]. As stated above, certification requires

standards for the producer to design to and for the certifying body to certify against. Certification

also requires extensive specifications and documentation about the component. This aids in the

certification process by defining intended use, expected behavior, interface information, and so

on. Additionally, the specification and documentation helps in identifying the important properties

42

for compositional reasoning, thus providing the component consumers the ability to predict the

properties of their end system.

Component producers would pay a fee to the certifying body to examine their component.

The component would be submitted, along with all necessary specifications and documentation,

and the certifying body would verify that it complies with the appropriate standards. Testing may

be performed, following a regimen similar to the one discussed for second party testing.

However, certification is not limited to testing the component. As we saw above, the ANSI/UL

1998 Standard for Software in Programmable Components contains provisions that address the

entire product life-cycle [CBSE-UL]. Similar provisions would be necessary for a successful

certification scheme.

We saw earlier examples of third party certification of software systems: the DoD TCSEC

stendard and the Microsoft Certified for Windows. As a means of example, we will examine the

component certification program offered by the Compuware Corporation on behalf of the

Component Vendcr Consortium (CVC). The CVC Certification requirements [CVC-CERT] state

what is necessary for certification. However it is mostly limited to memory issues. Compuware

is responsible for ensuring that components have no unexplained memory corruption errors, no

memory leaks, and no unhandled errors or exceptions. The vendor links in libraries that monitor

resource usage and source code line coverage. From there, the vendor performs multiple runs

on the component until 80% coverage is reached. The resulting log files, and a $160 fee, are

submitted to Compuware for analysis and review. If there are no "unexplained" memory

corruption errors, no memory leaks in the component or its dependencies, and 80% of the source

code was covered, the component will be certified [CVC-CERT]. The real value of such

certification is questionable. Obviously memory corruption and leaks account for some portion of

component failures. However, there is so much overlooked by this scheme that it is doubtful to

be of much use. Furthermore, Compuware admits that there are things missing from the final

certification. They do not attempt to enforce versioning—vendors may attempt to mislead the

certifying body by submitting another version of their component. There is no checking for logic

errors. The component is not tested under multiple environments. Also, there is no way to

43

ensure that all errors are handled or that all control paths are tested [CVC-CERT]. Certainly a

more thorough scheme is necessary for certification to become a viable course of action.

Legal Issues

Software has often been treated as a special case because of its unique production

process. This special status severely limits certification and is an issue that must be resolved in

order for certification to succeed. Software is treated as an "inherently buggy" product [UCITA],

which has traditionally allowed software companies to avoid responsibility for any problems with

their code. Software components will not be trusted if its producer sees no difference between a

fully and partially functional product. This begs the question, "Why bother testing and certifying a

piece of software, if the defects may not be fixed?" Liability regarding software creation and

certification is another issue that must be addressed before trustable code can be produced

through certification. Software components can be trusted only after software developers take

responsibility for faults in their product.

Software is often a complex product. Engineers are trained to reduce ccmplexity by

dividing a complicated system into more manageable components. More complex products can

then be built by relying on generic off-the-shelf components. Cui rently, software developers

cannot do this. They are also well trained in modularizing complex systems, but they cannot

necessarily trust off-the-shelf components.

To trust a component, without thoroughly testing it, the consumer needs some form of

approval from a trusted authority in that field. Currently, there is no such body in the field of

software. The developer must rely on the claims of the component producer. Standards can give

some amount of trust to a component by ensuring it does or does not do certain things.

Defining boundaries that software is expected to adhere to is a necessary first step

towards producing trustable code, but it also entails added liability for software developers. Since

certification is not mandatory, software companies must voluntarily accept the chance of being

sued for a defective product. In return for this, a software company would produce a better

product and gain the trust of its consumers. Theoretically, the overall quality of software would

44

improve by weeding out developers who sell faulty products. However, this is not guaranteed.

Good software developers sometimes make mistakes or a problem with the software may arise

out of environments that did not exist when it was released. Even software leaders, like

Microsoft, who have devoted extensive resources to software development of and with

components, make software that contains defects. Current legal movements, like UCITA,

indicate mixed progress in software liability. With the intent of making developers responsible for

their product and improving the quality of software, members of the industry are proposing

UCITA. However, this act has many opponents because of the large loopholes that it leaves for

software developers to completely avoid responsibility. Another liability problem is deciding who

is at fault when a defect is found in certified software. The certifying body is responsible to test

the product, but at what point are defects considered to be outside of the certifier's responsibility?

Accepting product liability entails potentially large risks and adds new problems for software

companies. However, this is needed to ensure trust in software components. Finding the best

way of accomplishing this will be a benefit to the software industry.

There is legal precedent to hold a certifying body liable for a faulty product If a claim is

made that the public should trust a product because a certain body tested it, every assurance

should be made that that claim is true. Otherwise the certifying body may be sued [Kaner]. In the

case of Hanberry v. Hearst Corporation, a consumer sued Good Housekeeping for negligent

endorsement of a shoe that was defectively designed [Kaner]. The court ruled that when an

association endorses a product for economic gain and encourages the public to buy it, the

association could be held liable if a consumer buys the product based on the endorsement and is

then injured because it is defective [HKLaw]. In the case of Hempstead v. General Fire

Extinguisher Corporation, a worker that was injured by a fire extinguisher that exploded sued

Underwriters Laboratories for negligence in its testing and approving of the product [Kaner]. The

court held that liability for a faulty product did not rest just with the manufacturers and sellers of

the product. It ruled that UL knew, or should have known, of safety precautions necessary to

avoid such accidents [DKSLaw].

45

Proposal

As more software companies use components in their products, the need for some form

of certification will grow. It should be expected that companies using components would engage

in second party testing to certify that a component is acceptable for use. In time, some

duplication of effort would be found—many companies would be evaluating the same component

to similar yet independently developed standards. At some point, a critical mass will be reached,

and it will be more cost effective for an independent third party component certification laboratory

to be formed.

The formation of an independent third party certifying body would require standards

agreed upon by the industry. These would be used for developers to design to and for the

certifying body to certify against. These standards need to be sufficiently wide reaching to make

certification worthwhile. This may include standard interfaces for a given type of component. The

issue of standard interfaces is seen in the electrical engineering field. For example, all resistors

have an agreed upon color-coding scheme for easy identification. The Socket 7 processor socket

designed by Intel has a well-defined interface allowing other chip producers like AMD or Cyrix to

design processors that work on those motherboards. Other properties of components that will be

certified will likely come from research in the area of compositional reasoning. Component

properties that most affect the properties of the end product need to be identified. Other issues

need to be taken into consideration as well. We saw in the ANSI/UL 1998 Standard for

Programmable Components consideration given to the entire product life-cycle: proper emphasis

on risk-based analysis and design, consideration of provisions for hardware malfunctions, test

planning and coverage, usability considerations, comprehensive documentation, processes for

handling software changes, qualifications for off-the-shelf software, labeling that uniquely

identifies the specifics of the product interface, the intended hardware platform, and the intended

software configuration [CBSE-UL]. Similar issues not based solely on the performance of the

component must be taken in to account when forming the standards for certification.

Third party certification would have many benefits. A certified component will have met

rigorous standards agreed upon by the industry. A certain level of stability testing will be

46

necessary; this will help ensure the safety and reliability of the component. As certification

becomes more widespread, name recognition of the certifying body may provide a competitive

advantage for certified components over non-certified components. Also, the presence of

documentation and specifications that the component was certified against will reduce the

performance uncertainty—the proper use guidelines and performance specifications will allow

component consumers to make educated decisions based on standard information.

Certification has drawbacks. For example, thoroughly testing a component is very

difficult. It is quite possible that components will be certified even though they still have defects in

them. However, if issues similar to the ones mentioned above for ANSI/UL 1998 certification are

used, the presence of these defects may be diminished. Also, certification is not instantaneous.

It requires time for the certifying body to examine the component and make a decision as to

whether to certify or not. This translates into a longer time to market that in a marketplace without

certification. Similarly, in new markets it may not be beneficial for components to be certified.

For instance, the lag time to perform certification on a component produced by a company trying

to enter the market may give other companies time to generate competitive components. Also,

as is often seen in today's software industry, companies creating new software are often bought

out and their products are integrated into a larger product. There are also legal issues to be

taken into consideration, as seen above. Finally, there are technical issues. For instance, it is

unclear whether patches to existing software components need to be certified.

Certification also highlights the need for professional software engineers. In the case of

second party testing, professional software engineers are best suited to determine the fitness of a

component. In the case of third party certification, there would be a need for qualified individuals

to formulate the standards for certification as well as to certify the components.

A complimentary approach to product certification is to certify the processes used to

produce the artifacts [SEI-TCCBSE]. Conway's law states, "The organization of the software and

the organization of the software team will be congruent" [Jargon File]. Again, we refer back to the

ANSI/UL 1998 standard—many of the issues discussed in the standard apply solely to the

47

process of developing the software. The next chapter will discuss the issues surrounding process

certification.

References

[CBSE-UL] 	 Heineman, George T., et al. Component-Based Software Engineering. Addison-
Wesley, 2001.

[CSSInfo] 	 Website for the 1999 National Electric Code.
<http://www.cssinfo.com/1999NEC.html >.

[CVC-CERT] Compuware NuMega, Developer Support Group. "CVC Certification
Requirements." <http://www.components.orq/cvccert.doc >.

[DKSLaw] 	 MacDonnell, Janet L. "Guilt by Association: Product Liability for Non-
Manufacturers." <http://www.dkslaw.com/papers/toxicpapers/quiltim.html >.

[HKLaw] 	 Product Liability Newsletter, June 1999, Volume 1, Issue 2.
<http://www.hklaw.com/newsletters.asp?1D=55 >.

[Jargon File] 	 The Jargon File. <http://www.tuxedo.orq/-esr/jargon/htmliThe-Jargon-Lexicon-
framed.html>.

[Kaner] 	 Kaner, Cem. "Software Negligence and Testing Coverage."
<http://www.kaner.com/coveraqe.htm >.

[MSCert1] 	 Microsoft Corporation Website.
<http://msdn.microsoft.com/certification/default.asp >.

[MSCert2] 	 Microsoft Corporation Website.
<http://msdn.microsoft.com/certification/download.asp >

[MSCert3] 	 Microsoft Corporation Website.
<http://msdn.microsoft.com/certification/TE.stasp >.

[MSCert4]

	

	 Microsoft Corporation Website.
<http://www.microsoft.com/windows2000/upqrade/compat/certified.asp >.

[NFPA] 	 Grant, Casey Cavanaugh, "The Birth of NFPA."
<http://www.nfpa.org/About NFPA/An Overview of NFPA/The Birth of NFPA/t
he birth of nfpa.html>.

[SEI-TCCBSE] Bachman, Felix, et al. "Technical Concepts of Component-Based Software
Engineering." CMU/SEI-2000-TR008.
<http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr008.pdf >.

[TCSEC] 	 Department of Defense Trusted Computer System Evaluation Criteria, DOD
5200.28-STD. <http://www.radium.ncsc.mil/tpep/library/rainbow/5200.28-
STD.html>.

[UCITA] 	 Uniform Computer Information Transactions Act.
<http://www.law.upenn.edu/bll/ulc/ucita/ucitanc.htm >.

[Voas00]

	

	 Voas, Jeffrey M. "Developing a Usage-Based Software Certification Process."
Computer, August 2000, Volume 33, Number 8.

[Voas98] 	 Voas, Jeffrey M. "Certifying Off-the-Shelf Software Components."
<http://www.cnsoftware.org/studies/trustworthy/Voas-98-CertCOTS.pdf >.

48

CH APTER 	 4

Process Assessment

Introduction

As we saw in the previous chapter, the certification of a product relies on more than

simply testing and evaluating a piece of software. Effective certification examines the processes

used to develop software as well. Reports of software management problems are ubiquitous in

today's industry. Typically, software producers would prefer to deliver software with defects than

to delay release [CMM, p.4]. The General Accounting Office (GAO) released a report in 1993

outlining some of the problems that the government has faced in procuring software. The report

states "we have repeatedly reported on cost i ising by millions of dollars, schedule delays of not

months but years, and multi-billion-dollar systems that don't perform as envisioned" [GAO-93-13,

CMM p. 4]. The report attributes these problems to the fact that knowledge of the software

development process is not keeping pace with the ever-increasing size and complexity of

software products [GMM, p.4].

There exists a gap between the best practice and the average current practice in

software development in the industry. A Department of Defense task force set up to investigate

the "software crisis" went so far as to say that "few fields have so large a gap between best

current practice and average current practice" [CMM, p.4]. Studies show that about 75% of

software project teams begin their projects by coding rather than planning and designing

[McConnell, p.11]. This is important because 40 to 80% of development projects' budgets are

dedicated to fixing defects introduced earlier on in the development process [McConnell, p.11].

Studies have also shown that projects focusing on short schedules are more likely to have budget

and schedule overruns. Projects focusing on low defect counts had the best schedule and

productivity [Jones, McConnell p.16]. It is common practice in the industry to try to trade quality

49

for time and cost. Considering that projects that remove 95% of defects before release are the

most productive [Jones, McConnell p.16], this tradeoff might not exist.

All of the issues mentioned above are process-based. Unlike the previous two chapters,

the process used to develop software probably has the least direct effect on the consumer. So,

why bother to discuss process assessment? Software processes can have a direct affect on the

time to develop, the budget needed, and the quality of the end product. A typical software

organization with an immature process is described in the Software Engineering Institute's

Capability Maturity Model (SW-CMM) as follows: there is no objective basis for judging product

quality or for solving product or process problems, there is little understanding of how the steps of

the software process affect quality, the quality of the end product is difficult to predict, reviews

and testing are often cut short or are eliminated when projects fall behind schedule, and the

customer has little insight into the product until delivery [CMM, p.7]. Compare that to the SEI-

CMM description of a software organization with a mature process: there exists an organization-

wide ability for managing software development and maintenance processes; the processes are

documented, usable, and consistent with the way work gets done in the organization; managers

monitor the quality of software products and the process that produces them; there is an

objective, quantitative basis for judging product quality and analyzing problems with the product

and process; schedules and budgets are based on past performance and are realistic; and cost,

schedule, functionality, and quality are usually as good as expected [CMM, p.7]. Conway's law

states that "the organization of the software and the organization of the software team will be

congruent" [Jargon File]. Improving the organization of and the process followed by the software

producer can only help to improve the software that they produce.

Schedule and budget considerations have little effect on the end consumer. Product

quality, on the other hand, has a direct effect on the consumer. From quality comes trust—

consumers are more likely to trust a high-quality product than a low-quality product. There are

many avenues to trust in software components. It is our hypothesis that improving the process

used to develop software can help improve the quality of the end product. This is a difficult theory

to test—a company would not set up two development teams to produce the same piece of

50

software, having one team produce software using a process and having the other produce

software without a process, and then try to compare the quality of the two products. The purpose

of this chapter is to examine the current mechanisms for process assessment and to see how

these mechanisms can improve trust in the end product.

ISO 9000 Series

The International Standards Organization (ISO) developed the 9000 series of standards

in order to provide a common standard for quality management and assurance [ISO 9000-3, p.3].

The standards, which can be applied to a company of any size or complexity, provide guidelines

for an independent audit process [ISO 9000-3, p.3]. Quality-auditors check to see that a

company follows commonly accepted procedures and practices when manufacturing or

developing a product or providing a service [ISO 9000-3, p.3]. The ISO 9000 series of standards

do not guarantee quality products. Rather, they are based on the notion that "organizations that

follow accepted practices and procedures are more likely to create reliable products in a

consistent manner that meets the customer's needs than those organizations that do not follow

accepted practices and procedures" [ISO 9000-3, p.3].

The ISO 9000 series of standards are comprised of a set of standards, listed below [from

ISO 9000-3, pp.3-4]:

• ISO 9000 — Quality management and quality assurance standards: guideline for

selection and use

• ISO 9000-1 — Revision of ISO 9000

• ISO 9000-3 — Guideline for the application of ISO 9001 to the development,

supply, and maintenance of software

• ISO 9001 — Quality Systems: Model for quality assurance in design and

development, production, installation and servicing

• ISO 9002 — Quality Systems: Model for quality assurance in production,

installation, and servicing

51

• ISO 9003 — Quality Systems: Model for quality assurance in final inspection and

test

• ISO 9004 — Quality management and quality system elements

• ISO 9004-2 — Quality management and quality system elements (Part 2)

ISO 9000-3 expands the ISO 9000-1 standard, providing guidelines for applying ISO 9001 to the

specification, development, production, installation, and support of software [ISO 9000-3, p.4].

This is intended to provide guidance where a contract requires that a supplier demonstrate its

capabilities to develop, supply, and maintain software products [ISO 9000-3, p.26].

The theory behind these standards is that "well-managed organizations with defined

engineering processes are more likely to produce products that consistently meet the purchaser's

requirements, within schedule and budget, than poorly managed organizations that lack an

engineering process" [ISO 9000-3, p.19]. To that end, the standard focuses on a number of

areas. The supplier has the responsibility to create an organization that has an engineering

process and policy guidelines to ensure quality products. [ISO 9000-3, p.20]. The purchaser has

the responsibility to explicitly state all requirements for the product, to properly authorize changes

to those requirements, and to be prepared to assume the ownership of the product after testing it

to see that it is acceptable [ISO 9000-3, p.20]. The engineering process followed by the supplier

must have the following phases: purchaser requirement analysis, design, implementation, test,

and maintenance [ISO 9000-3, p.20]. The supplier must also provide the following supporting

activities: configuration management, document control, product and process quality

measurement, and training [ISO 9000-3, p.20]. A supplier must apply for ISO 9000 registration.

In doing so, it selects an independent certification body to perform the necessary audits. The

auditors check for the presence of a layered, documented engineering process and for evidence

that it is being used [ISO 9000-3, p.157-8].

52

Software Engineering Institute's Capability Maturity Model (SW-CMM)

The Capability Maturity Model (SW-CMM) began as research between the Software

Engineering Institute (SEI) and the MITRE Corporation to "develop a process maturity framework

that would help organizations improve their software process" [CMM, p.5]. The framework, which

is publicly available, is based on actual practices and reflects the best state of the practice [CMM,

p.5].

The SW-CMM provides a model for improving the capability of software organizations. It

categorizes processes into five maturity levels with the following characteristics [list taken from

CMM, pp.15-20]:

• Level 1: Initial

o The software process is characterized as ad hoc, and occasionally even

chaotic. Few processes are defined, and success depends on individual

effort and heroics.

o The organization typically does not provide a stable environment for

developing and maintaining software.

o Over-commitment leads to staff shortages which lead to dropping

planned procedures and going back to code-ard-test development.

o Can produce products that work, although often over budget and late.

• Level 2: Repeatable

o Basic project management processes are established to track cost,

schedule, and functionality. The necessary process discipline is in place

to repeat earlier successes on projects with similar applications.

o Policies for managing a software project and procedures to implement

those policies exist.

o Success in planning and managing new projects is based on experience

from similar projects.

o Projects implement effective control of a project management system,

following realistic plans based on the performance of previous projects.

53

• Level 3: Defined

o The software process for both management and engineering activities is

documented, standardized, and integrated into a standard software

process for the organization. All projects use an approved, tailored

version of the organization's standard software process for developing

and maintaining software.

o The organization has a standard process for developing and maintaining

software that includes both software engineering and management

processes and integrates them into a coherent whole.

o Projects tailor the organization's standard software process to develop

their own software process.

o Capability is standard and consistent because both software engineering

and management activities are stable and repeatable.

• Level 4: Managed

o Detailed measures of the software process and product quality are

collected. Both the software process and products are quantitatively

understood and controlled.

o The organization sets quantitative quality goals for both software

products and processes.

o Productivity and quality are measured for important software process

activities across all projects as part of an organizational measurement

program.

o The risks involved in entering a new application domain are known and

carefully managed.

o Capability is quantifiable and predictable because the process is

measured and operates within quantitative limits.

• Level 5: Optimizing

54

o Continuous process improvement is enabled by quantitative feedback

from the process and from piloting innovative ideas and technologies.

o Capability is continuously improving due to fine-tuning of the process.

Industry Opinions

It is logical to think that improving any one aspect of a product will have a positive impact

on the overall quality of that product. This line of reasoning would suggest that improving the

software development process would lead to a higher-quality, more trustable program. Improving

the process leads to fewer bugs in the final product and reduces development time and costs.

The major issue in accepting software process improvement is the impact it will have relative to

the effort it requires. The reduction in development time and resources must not be

overshadowed by the costs of improving the process. However, some benefits are not easy to

assess quantitatively. Also, an improved process may limit a company—the organization may

focus on specific projects that are well suited its existing processes and avoid newer and

potentially more profitable projects.

Alan Koch, a 23-year veteran of the software development industry, argues that

companies cannot afford not to improve software process [Koch]. He points out that many of the

problems that an improved process addresses are visible only to the people directly involved in

the development. The further a person is from the actual implementation of the project, the

impact of problems and related improvements fades [Koch]. A senior manager may not see a

large benefit when a process has been improved, but a project manager may notice the absence

of many of the usual problems. Koch says that software engineers may even overlook the

problems by assuming that they are just part of the job.

According to Koch, one of the most vital obstacles in improving the software process is

productivity. He says that time is the most important resource that a company has, and many

managers assume that the more time you spend implementing the project, the better the time is

used. Consequently, managers view taking time and people away from projects to work on

55

process as a waste. Koch argues that this is not a waste at all, because the people working on

the projects are spending time working through recurring problems related to the software

process.

There are also more specific problems whose effects are difficult to measure exactly, but

can be fixed through process improvement. Problems defining and communicating the

customer's requirements between different departments can be a cause of major problems in the

project. Koch argues:

A fine-tuned requirements management process will assure that the requirements
specification says everything it needs to, and that all parties have the same
understanding of what it says. A few additional hours of attention to the requirements
process can avoid days or weeks of rework later in the project [Koch].

Consequently some design problems are avoided. Koch points out "surprises" that a project

team can encounter during the course of a project, including things not working as expected, or

difficulties combining code from different team members. He says, "Well thought-out architecture.

design, and review processes coupled with judicious use of prototyping, spiral development and

other non-traditional methods will assure that the only surprise we encounter is that the whole

thing came together so easily." Project management issues, including dividing the workload

efficiently throughout the entire software development cycle, and configuration management

problems, ensuring a smooth integration of everyone's code, are problems that upper

management may not see, but their solutions can be largely beneficial to the company. The final

category of problems addressed by process improvement is testing. Koch argues that this a long

process because programmers spend a large amount of time fixing bugs that could have been

addressed or even prevented in previous steps. He says that ideally, testing should be a quick

check through the program to be sure the implementation went correctly.

Some members of the software development community, like Koch, feel that it is

extremely important to refine the software creation process. Others do not directly oppose the

idea of software process improvement, but simply feel that the benefits achieved by software

process improvement do not justify its costs. Some, like Tom DeMarco, feel that software

process improvement may actually be harmful.

56

Improving the process would not have an adverse effect on the quality of the end

product, but may be bad for the company developing the software. Demarco points out four

paradoxes that show how process improvement can hurt a company [Easterbrook]. The first

paradox states "the result of process improvement is that developing software gets harder." As

Steve Easterbrook wrote in an interview with DeMarco,

In the event, his theme was not so much that process technology is bad, but rather that it
does not address the really difficult problems of software engineering. In Fred Brooks'
terms, process improvement only addresses the 'accidental' problems of developing
software; the harder, 'essential' probiems remain [Easterbrook].

DeMarco feels that process improvement refines the "easy" parts software engineering but does

not address the more difficult problems. The second paradox DeMarco presented was that

companies that do invest in process improvements often become averse to taking on riskier

projects. A company that has a well-developed process may avoid change and potentially more

profitable projects. Easterbrook points to a company experimenting with a new technology, such

as Java, and having to discard its old prccess as an example of this paradox. The idea that

humans are able to react quickly to rapid change, but tend to ignore slow change is DeMarco's

third paradox [Easterbrook]. He states that "we may be getting better and better at doing the

things that are less and less worth doing." Process refinement may make a company avoid

getting out of a declining industry trend. DeMarco's final paradox is that we do not feel we are

reaping the benefits of the effort put into reuse, when in fact we are. DeMarco points to examples

of this in software such as PowerBuilder and Visual Basic, which allow us to reuse past

experience [Easterbrook]. DeMarco also says that "this is, in part, because reuse is only possible

if you invest heavily in the thing you want to reuse." DeMarco points out how software process

improvement may improve quality of the software product, but harm the software company. The

real problems, in DeMarco's opinion, are risk management and conflict resolution.

Proposal

The process plays a key role in determining the overall quality of the end product. Other

engineering fields have used process refinement as an effective quality control device that

57

benefits both producers and consumers. Process refinement is also helpful in producing better

software. Refining processes gives software a faster development time, a lower cost, and higher

quality. Certification brings trust into the equation. By allowing an independent third party to test

and verify a company's development process, the software industry is providing a reference point

to evaluate the quality of the process, and indirectly the quality of the product.

Current standards such as the ISO-9000 series and the SW-CMM both promote the idea

of process refinement in software development. The main focus of the ISO-9000 series is to

ensure that a company has an open and well-defined process that is followed during production.

The SW-CMM goes a step further by actually rating the process. SW-CMM has a set scale that

can be used to rank different producers according to the maturity of their processes. However,

both of these process assessment methods do not set or test standards for the quality of the

product; rather, they assume that a better process will lead to a better product. The main goal of

this project is to find a way to engender trust in software in order to form a component

marketplace. If the quality of a product is sufficient, it may not be trusted. While process

refinement improves the overall quality of the product, the current process assessment methods

are not sufficient to ensure an acceptable level of trust between a producer and consumer.

Clearly, process improvement would have a positive impact on the quality of software,

but the nature of the relationship between the process and the product make it difficult to define

the effects of process improvement in quantitative manner. This applies to the positive effects

that Koch points out as well as the paradoxes illustrated by DeMarco. Measuring the affect that

process assessment will have on trust is difficult. While process improvement would be beneficial

to software quality, there are more direct and more effective methods to engender trust in

software. It is our belief that process assessment can improve trust. However, considering the

cost of implementing such a scheme compared to the perceived benefits, the other methods

proposed above would likely be more beneficial in the formation of a component marketplace.

References

[CMM] 	 Paulk, Mark C., et al. The Capability Maturity Model: Guidelines for Improving the
Software Process. Reading, Massachusetts: Addison-Wesley, 1994.

58

[Easterbrook]

[ISO 9000-3]

[Jones]
[Jargon File]

[Koch]

[McConnell]

Easterbrook, Steve. "DeMarco: Process Considered Harmful?"
<http://www.cis.cs.tu-berlin.de/-icsewow/v2n2/v2n2-2.html >.
Kehoe, Raymond, et al. ISO 9000-3: A Tool for Software Product and Process
Improvement. New York: Springer, 1996.
Referenced in [McConnell], p.16
The Jargon File. <http://www.tuxedo.ord/-esr/jarcion/html/The-Jargon-Lexicon-
framed.html >.
Koch, Alan S. "Can We Afford Software Process?"
<http://www.askprocess.com/WhitePapers/AffordProcess.html >.
McConnell, Steve. After the Gold Rush: Creating a True Profession of Software
Engineering. Redmond, Washington: Microsoft Press, 1999.

59

C H AP TER 	 5

Conclusion

We believe that trust is a necessary but not a sufficient pre-condition for the development

of a component marketplace. In other words, trust will not form a component marketplace, but a

component marketplace will not form without trust. Therefore, in order to form a component

marketplace, we need to examine ways in which the software industry can engender trust in its

software components. This paper has focused on three main ways in which trust in components,

and software in general, can be improved: forming a software engineering profession, certifying

software components, and assessing the process used to develop software components. To

conclude, we will compare each of the three mechanisms for improving trust that we discussed

previously, and suggest a possible policy that can be enacted by the software industry and the

government.

Bear in mind that none of the suggested courses of action previously discussed are easy

or without cost. However, as discussed in the introduction, something needs to be done in order

to improve the software industry's relationship with its customers. We live in a time when the

government is not willing to steer a course that will potentially slow down the economy.

Computers and software are a cornerstone of today's economy. Given the recent economic

slowdown and the accompanying "dot-corn crash," the government will not likely adopt a policy

that will further slow the software based portions of the economy. However, while the costs of our

proposal may be high, the long-term benefits will far outweigh the initial difficulties.

Our first proposed method of improving trust in software components was to form a

profession of software engineering by licensing software engineers. Recall that licensing is a

mandatory process administered at the state-level. Certification, on the other hand, is a voluntary

process. It is our opinion that the industry is not likely to begin a voluntary certification regimen,

especially considering the high demand for developers in today's market. Licensing has been

60

successful in other engineering disciplines. As stated before, licensing acts as a filter, albeit an

imperfect one. Essentially, the worst software engineers would be excluded from licensing, while

the best software engineers would become licensed. The process does not guarantee that all of

the bad software engineers will be excluded and all of the good software engineers will be

included. However, the worst of the lot will likely be excluded, thus improving the labor pool as a

whole.

Licensing will improve the state of the industry by providing a metric that potential

software engineers can be compared to. This will in turn improve trust. A software producer that

hires licensed software engineers can say that it hires people with the best credentials

[McConnell, p.106]. Consequently, the producer can then argue that their software is more

trustworthy than software developed by a company that does not hire professional software

engineers. Licensed engineers will have a greater say in products that they might be held liable

for [McConnell, p.107]. Furthermore, a licensed engineer is less likely to sign off on a poor

design or product, especially considering that a poor product or design may result in a

malpractice suit.

Forming a profession of software engineering would require the formation of a new tort of

computer malpractice. Professionals are held to much higher standards than non-professionals.

Professional software engineers and the companies that employ them would require malpractice

insurance. For that to happen, the insurer would need to have some level of trust in the product

being produced. We expect that a software engineering profession would have the greatest

positive impact on trust. However, considering the costs of agreeing upon a body of knowledge,

licensing the potential software engineers, potentially higher salaries for professional software

engineers, and malpractice insurance, we believe that formal licensure is too costly to implement

at this time.

Our second proposed method to improve trust is product certification. 	 Electrical

components have been certified for more than a century by Underwriters Laboratories (UL) to

ensure compliance with safety and performance standards [CBSE-UL]. We believe that a similar

scheme would be beneficial in the formation of a component marketplace. Implementing a

61

product certification regimen would require standards that are agreed upon by the industry. Such

standards must be sufficiently wide reaching to make certification a worthwhile endeavor. Issues

such as standard interfaces for different component types and component performance and

stability should be agreed upon by the industry. However, effective product certification should

address issues beyond the actual performance of the component. As seen with the ANSI/UL

1998 Standard for Programmable Components, consideration must be given to the entire product

life-cycle, including the process used to develop the component [CBSE-UL].

Component certification will improve trust by ensuring that the component in question has

met rigorous, industry-based standards. Claims made about a component are verified and

supported by an independent third-party. Requirements for documentation and specifications will

help to reduce performance uncertainty and help component consumers in the selection and

evaluation of components prior to purchase. Also, as seen with UL certification of electrical

components, name recognition may provide a competitive advantage for certified components

over non-certified components. The presence of professional software engineers will benefit the

certification process—any third-party certification laboratory would require highly qualified

individuals to formulate the standards for certification, as well as to certify the actual components.

Certification has some drawbacks. Like licensing software engineers, it is an imperfect

mechanism. It is quite difficult, if not impossible, to thoroughly test a product to determine that it

will run without faults on any hardware configuration. Also, certifying a component will add to the

cost of production in the form of fees to the certifying body and ensuring that the component is

ready to be certified. Certification is not an instantaneous process—it takes time for the certifying

body to check the component and determine whether to certify it. This means a longer time to

market. In new markets, it may not be beneficial for components to be certified. The time it takes

to certify a component that is produced by a company trying to enter the market may give other

companies time to create competitive components. Also, companies creating new software are

often bought out and their products are eventually integrated into another larger product.

However, even with these drawbacks, it is our opinion that product certification will have a

positive impact on trust. Further, considering the costs of starting a product certification regimen

62

in the industry, as compared to the costs of the other mechanisms discussed, we believe that this

is the best way to engender trust in components.

As mentioned earlier, an effective product certification scheme would include issues

beyond the testing and evaluating of a software component. The process used to develop

software is important as well. This brings us to our third and final mechanism for improving trust:

process assessment. The process used to develop a piece of software has very little direct effect

on the consumer. However, product quality has a direct effect on the consumer. Consumers are

more likely to trust a high-quality component than a low-quality component. Process

improvements are expensive for a company to implement, and the perceived benefits for the

company and for the consumer are difficult to measure. Therefore, we believe that process

assessment should only be used in support of product certification. The time, money, and effort

that would be required for an effective process assessment regimen would be better spent in

other means of improving trust.

Bearing all of this in mind, we present our policy proposal. Since product certification has

the highest benefits relative to costs, it is the foundation for _ur proposal. Second party testing is

already present in the industry today. We believe that as more companies begin to assess

components for their own use, eventually a critical mass will be reached, and it will be more cost

effective to form an independent third party component certification laboratory. This laboratory

would best follow a model similar to that of Underwriters Laboratories. This would require

widespread voluntary support from the industry to fund the formation of such an entity, as well as

industry-wide agreement on standards for the components that will be certified. Such standards

may include standard interfaces for components. This is already seen in other engineering fields.

For instance, almost all computer hardware components have a standard interface, such as IDE

hard drives; PCMCIA cards; PCI and ISA cards; standard 30-, 72-, and 168-pin RAM chips;

Socket 7 processors; and power supplies providing a well-specified voltage and current on

specific leads. We mentioned the ANSI/UL 1998 Standard for Programmable Components

previously as a model for other standards for software components. Such a standard would take

63

into consideration all phases of a component's life-cycle, including risk-based analysis and

design, consideration of provisions for hardware malfunctions, test planning and coverage,

usability considerations, comprehensive documentation, processes for handling software

changes, qualifications for off-the-shelf software, labeling that uniquely identifies the specifics of

the product interface, the intended hardware platform, and the intended software configuration

[CBSE-UL]. Note again that any standards for evaluating components must go beyond simply

testing that a component is stable and does not have any memory leaks. Sufficient emphasis

must be placed on the process used to develop the software.

We stated above that process improvements and assessments are expensive for a

company to implement, and that the time and effort spent improving a company's process is

better spent on other means of improving trust. However, we still believe that the process used to

create a piece of software affects the quality of the software, and thus indirectly affects trust.

Therefore, some form of process assessment, similar to that specified in the ANSI/UL 1998

standard described above, is necessary for a worthwhiie product certification framework.

In the long run, however, we believe that creating a profession of software engineering

will have the greatest positive impact on trust. Whether we like it or not, software engineering will

eventually be considered a formal profession. As a society, our dependence on software grows

continuously. As that dependency grows, the impact of software on the public welfare grows as

well. Each time there is a highly publicized software failure, it becomes more likely that the

government will become involved and require that software engineers be licensed [SEI-MPSE].

As we become more dependent on software, it becomes more likely that a software failure will

result in loss of life or property. Historically, when a form of engineering puts the public at risk,

the government has stepped in and required licensure.

However, government-regulated licensure is not the only way to form a profession.

Efforts are currently under way to define a software engineering body of knowledge (SWEBOK).

The ACM and the IEEE Computer Society have approved a software engineering code of ethics.

Many of the other hallmarks of a profession, discussed in chapter 2, are already in place or are

64

being developed. So, whether the government steps in or not, efforts are being made to create a

profession out of software engineering.

In the end, trust in software depends upon the people who write the software, the

software products produced, and the processes used to create the software. All three areas must

be addressed in order for consumers to trust software. All three areas are also intertwined. For

instance, to effectively certify the product, the process used to create the product must be

examined. To effectively create a good product, highly skilled individuals are needed, and a well-

designed process must be in place for them to follow.

The business case for these actions may not be very strong. The industry may not be

willing to form a profession of software engineers, to certify products, or to improve their

development processes. However, some investments do not require a strong business case for

them to be useful in the long run. There is no business case for immunizing children, but we do it

anyway because it is in the prevailing national interest for people not to get sick. Our national

interstate highway system and ARPANET, which wound eventually grow to become what we know

now as the Internet, were not created with a prevailing business case in mind. Rather, they were

created as a means of infrastructural investment. The returns that those large investments have

provided are far beyond what anyone could have expected at the time the investments were

made. So, while there may not be a prevailing business case for improving the software industry,

increasing trust in software, or forming a component marketplace, we can still reap the benefits of

those actions, and work on closing the gap between what we would like to accomplish and what

we can accomplish as software engineers.

References

[McConnell]

[CBSE-UL]

[SEI-MPSE]

McConnell, Steve. After the Gold Rush: Creating a True Profession of Software
Engineering. Redmond, Washington: Microsoft Press, 1999.
Heineman, George T., et al. Component-Based Software Engineering. Addison-
Wesley, 2001.
Ford, Gary, et al. "A Mature Profession of Software Engineering." CMU/SEI-96-
TR-004.
<http://www.sei.cmu.edu/publications/documents/96.reports/96.tr.004.html >.

65

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65

