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Abstract

The last fifteen years have seen much success in the analysis of quasi-static evolution for Griffith
fracture, which is the mathematically natural starting point for studying fracture. At the same
time, attempts have been made to show existence for similar models based on cohesive fracture
rather than Griffith. These models are generally viewed as physically more realistic than Griffith,
in that they are better models for crack nucleation. These attempts at existence proofs have been
unsuccessful without very strong additional assumptions, for example, specifying the crack path a
priori.

The main purpose of this thesis is to characterize as well as possible the mathematical difficulties
in cohesive fracture, and to make progress toward an existence result without the prescribed crack
path assumption. So far, the most powerful method for existence proofs is to build a sequence of
approximate solutions, based on time discretization, and take the limit as the time steps go to zero.
We show that there are mainly two complications on the cracks of these approximate solutions that
we need to rule out in order to show existence. The first one is due to the potential oscillation of
the crack path. The second is due to the potential splitting of a crack into two or more nearby
cracks, with the same total jump in displacement.

We begin by first constructing an example illustrating how oscillations described above can
affect the minimality of the limit. Then we prove that the splitting described above can be ruled
out for any sequence of unilateral minimizers. With this result, we show how exactly oscillation
affect the minimality on the limit of the sequence. We then move to the evolution problem and
show the convergence of energy for almost every t. Based on this result we develop a method that
allows us to analyze the problem using only a finite set of times. An application of this method is
a proof of absolute continuity. Future work will be aimed at using the tools we developed to rule
out oscillation and finally to prove existence results under more general assumptions.
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Introduction

In 1920, Griffith laid the foundation for brittle fracture in [17]. He considered materials’ toughness,
denoted by Gc, and energy release rate, denoted by G, and regarded the propagation of fracture as
the competition between G and Gc. G can be defined, in a two dimensional setting, as

G := −dW
dl

where W is the bulk energy and l is the length of a crack. Propagation can take place if G = Gc
and can not if G < Gc.

This idea is widely used to study crack propagation (e.g. [19]). However there are limitations
on the model. It requires a pre-existing crack and it prescribes the crack path on the material. In
1998, Francfort A. G. and Marigo J.-J. addressed those issues by introducing a variational model of
quasi-static growth for brittle cracks in [16]. They considered the formation and growth of a crack
as the consequence of minimizing the sum of bulk energy and surface energy (fracture energy).
Therefore the crack set is not prescribed, instead, the growth (direction and location) of cracks
is determined by the minimization of the energy sum. To better illustrate the variational model
introduced in [16], consider the quasi-static evolution dealt by Francfort G. A. and Larsen C. J. in
[15], the first result for the Francfort-Marigo model without artificial restrictions on the crack set.

Let Ω be an open and bounded subset from RN (N ≥ 2) with Lipschitz boundary. Then
consider the case of generalized antiplanar shear by assuming that the reference configuration is
an infinite cylinder Ω × R and the displacement has the special form (0, ..., 0, u(x1, ..., xN )) where
u : Ω→ R. The natural setting for u is to let u ∈ SBV (Ω) where SBV denotes the space of special
functions of bounded variation. The space of SBV functions was introduced by De Giorgi E. and
Ambrosio L. [11] and the definition of SBV functions is as follows

Definition 1. u ∈ BV (Ω) if u ∈ L1(Ω) and the distributional derivative Du is a finite Radon
measure. u ∈ SBV (Ω) if u ∈ BV (Ω) and Du can be split into two parts

Du = ∇udx+ [u]νHN−1bSu

Here ∇udx equals the part of the distributional derivative Du that is absolutely continuous
with respect to Lebesgue measure. For SBV functions, the singular part of Du only contains the
jump part [u]νHN−1bSu. Su denotes the jump set of u and [u] denotes the size of the jump on Su.
It can be shown that Su is countably N − 1 rectifiable (see [14]). HN−1 is the N − 1 dimensional
Hausdorff measure and b is the restriction of measures on sets. The vector ν is the unit normal to
Su. See [2], [13], [14] and [20] for more details on SBV functions.
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Then consider the total energy ∫
Ω\Γ
|∇u|2dx+GcHN−1(Γ)

where Γ is the crack set (which can be empty). For simplicity the bulk energy consists only of
elastic energy

∫
Ω\Γ |∇u|

2dx. The fracture energy here is the toughness Gc times the HN−1 measure
or the size of crack set. Here can set Gc to be 1 as there’s no difference in terms of proof. This
kind of fracture energy is in general regarded as Griffith energy. Let g ∈W 1,∞(Ω) be the Dirichlet
boundary condition and Γ be the pre-existing crack set, the displacement u will minimize the total
energy in the following sense∫

Ω
|∇u|2dx+HN−1(Γ ∪ Su) ≤

∫
Ω
|∇v|2dx+HN−1(Γ ∪ Sv) (1)

for all v = g on ∂Ω.
The existence of a minimizer u can be shown using SBV compactness which is due to Ambrosio

L. [1], also see [12] for more details. Before we give the theorem of SBV compactness, let’s give
the definition of SBV convergence.

Definition 2. A sequence un ∈ SBV (Ω) converges in the sense of SBV to u ∈ SBV (Ω) if un → u
in L1(Ω) and

∇undx
∗
⇀ ∇udx

[un]νnHN−1bSun
∗
⇀ [u]νHN−1bSu

where
∗
⇀ denotes the weak* convergence in measure.

Let θ : [0,∞) → [0,∞], ϕ : (0,∞) → (0,∞] be lower semi-continuous increasing functions and
assume that

lim
t→∞

θ(t)

t
=∞, lim

t→0

ϕ(t)

t
=∞.

Theorem 1. (SBV compactness) Let {un}∞n=1 ⊂ SBV (Ω) such that

sup
n

{∫
Ω
θ(|∇un|)dx+

∫
Sun

ϕ([un])dHN−1

}
<∞ (2)

and ‖un‖L∞ is uniformly bounded in n, then there exists a subsequence {unk}∞k=1 and an SBV
function u such that

unk
SBV
⇀ u

To include the pre-existing crack set in the energy reflects one of the most important features a
fracture problem have—irreversibility. It says the crack set can only grow bigger or stay the same,
it can not be reversed. Then consider the continuous-time evolution where change of boundary
condition is slow such that at each time t the material is able to reach an equilibrium. The detailed
definition of quasi-static evolution with Griffith energy, borrowed from [15], is as follows
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Definition 3. (Quasi-static Evolution with Griffith Energy) Let g ∈ L∞([0, 1], L∞(RN )) ∩
W 1,1([0, 1], H1(RN )) be the Dirichlet boundary condition, a pair (u(t),Γ(t)), where u(t) ∈ SBV (Ω)
for each t and Γ(t) := ∪τ≤tSu(τ), is said to be a quasi-static evolution if

1. Global stability. ∫
Ω

|∇u(t)|2dx ≤
∫

Ω

|∇v|2dx+HN−1(Sv\Γ(t)).

for all t and all v ∈ SBV (Ω) s.t. v = g(t) on ∂Ω

2. Irreversibility. Γ(t1) ⊂ Γ(t2) for all 0 ≤ t1 ≤ t2 ≤ 1.

3. Energy balance. Define E(t) :=
∫

Ω |∇u(t)|2dx+HN−1(Su(t) ∪ Γ(t)), then

E(t) = E(0) + 2

∫ t

0

∫
Ω
∇u(s) · ∇ġ(s)dxds.

u represents the evolution of the displacement of the material. Γ represents the evolution of
cracks. Notice here irreversibility is automatically satisfied due to the definition of Γ(t). Global
stability means the displacement of the material u(t) at each time t is always globally stable in the
sense that u(t) minimizes the total energy with Γ(t) as pre-existing crack. It reflects the quasi-static
property that says at each time the material is in equilibrium. Energy is balanced in the sense that
the energy at each time equals the energy at the beginning plus the work done up to time t.

Numerical implementations have been studied in [4], [5] and [6]. They were based on a finite time
step approach. Meanwhile the continuous-time mathematical existence results were being studied.
In [9] Dal Maso G. and Toader R. gave the first precise mathematical formulation of the model using
a two-dimensional setting. They proved an existence result using the time discretization method
introduced in [16] under the assumption that the bound on the number of connected components
of cracks is set a priori. Later Chambolle A. [8] solved the planar elasticity setting under the same
assumption on the number of connected components of crack sets. Time discretization, since its
introduction, is widely used to approach quasi-static evolution problems. It provides an efficient
way to approximate the continuous-time problem using discrete time solutions. One considers a
sequence of minimizers as the discrete time step goes to 0. Then the problem becomes to show
that the limit is also a minimizer.

A big success in showing the existence result for the continuous-time quasi-static evolution for
Griffith energy is due to Francfort G. A. and Larsen C. J. in [15]. They showed the existence result
with no other assumptions on the crack set than N − 1 rectifiability. As mentioned above, the key
step is to show the sequence of approximating solutions converges to a limit that is also a solution
in some sense. First they consider a sequence that satisfies the following minimality for its own
jump set ∫

Ω
|∇un|2dx ≤

∫
Ω
|∇v|2dx+HN−1(Sv\Sun)

for all v = un on ∂Ω and for all n. Then they show that the limit is also a minimizer for its
own jump set. Use the same technique (jump transfer) they show that the discrete time solutions
converge to a global minimizer and thus show the global stability. Once the global stability is
shown, the rest follows easily. Another contribution of [15] is the jump transfer technique that
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provides a method to alter crack set. This idea is widely used and extended in this thesis and in
some of the proofs.

Meanwhile a cohesive model (see [3]) has been used to study crack propagation. For cohesive
model the fracture energy also depends on the opening size of the crack. The fracture energy can
be precisely written as ∫

Γ
ϕ([u])dHN−1

where ϕ : [0,+∞) → [0,+∞) is a nondecreasing, bounded and concave function with ϕ(0) = 0.
Here ϕ([u]) is the energy density spent to create a crack with opening [u] and ϕ′([u]) is the force
density acting between the lips of crack. Typically the force decrease with distance and hence ϕ is
concave. By letting ϕ ≡ Gc one obtains Griffith energy. The total energy for a cohesive model can
be written

E(u) :=

∫
Ω
|∇u|2dx+

∫
Γ
ϕ([u])dHN−1.

Dal Maso G. and Zanini C. [10] and Cagnetti F. and Toader R. [7] showed existence results
for quasi-static evolution with cohesive energy, for the case of prescribed crack path. When the
crack path is fixed and crack set is regular enough, SBV functions are no longer needed to describe
the displacement. One can define Sobolev functions on domain Ω\Γ and study the behaviors of
traces on two sides of the crack set. One of the biggest differences between [10] and [9] is the way
they treat loading (increase) and unloading (decrease) of a crack. In [10], the unloading is constant
and the problem is solved by using a special form of convergence. In [9], the unloading follows a
convex function ϕ(·, z)z>0 where z is the size to which the crack has been opened up previously.
The solution is based on the use of Young measures.

In this thesis we consider a model that is very similar to the one in [15] where the crack path is
free. But instead of considering the Griffith energy we consider a cohesive energy for the fracture
part. We use the same time discretization method to approach continuous-time evolution. We
show that the method used to prove a existence result for Griffith energy does not apply to the
cohesive energy. Then we consider a sequence of unilateral minimizers and show that the limit is a
minimizer that picks up the oscillation on the sequence. Later we move to the evolution problem
and first show the convergence of energy. Based on this result we develop a so called little o method
that allows us to analyze the problem using only finite set of times.

Now we are in a position to give the details of the problem we are considering. As mentioned
before for cohesive model the fracture energy depends on both the length and depth of a crack.
The relation is described using a cohesive energy function ϕ : [0,∞)→ [0,∞). For us, we consider
a cohesive energy function that has the following properties.

1. ϕ(0) = 0.

2. ϕ is differentiable, ϕ′ > 0 and ϕ′(0) =∞.

3. ϕ is concave.

4. limn→∞ ϕ(x) = M <∞.

5. ϕ′(x)x
ϕ(x) → C > 0 as x→ 0.

4



x

y

M

Figure 1: Cohesive energy function.

Here x represents the opening of a crack and ϕ(x) represents the fracture energy density due to that
opening. It is increasing because the bigger opening on the crack the more energy loss due to that
opening. The reason why ϕ is concave has been mentioned before. ϕ′ > 0 means all the fracture

strictly stay in the cohesive zone. The properties of ϕ′(0) =∞ and ϕ′(x)x
ϕ(x) → C are mathematically

convenient. The first one allows us to use SBV compactness and the second one allows us to bound
some functional of fracture defined on some small sets.

The energy form for cohesive model without pre-existing fracture is

E(u) =

∫
Ω
|∇u|2dx+

∫
Su

ϕ([u])dHN−1.

A typical cohesive energy function may look like the graph in Figure 1. Next let’s consider the
energy when there’s a pre-existing crack. For Griffith model we can measure the size of the union
of current crack and pre-existing cracks by considering HN−1(Su ∪ Γ). But for cohesive model it
is more complicated. First let’s give the cohesive energy function with history. Let z > 0, define
cohesive energy function with history as follows

ϕ̃(x, z) =

{
ϕ(z)− ϕ′(z)(z − x) 0 ≤ x ≤ z
ϕ(x) z < x

(3)

where z represents the opening size of pre-existing crack. In other words, the same crack may
have different fracture energy if there was another crack at the same location before. Define
ϕ̃(x, 0) = ϕ(x) when z = 0. The graph of the function may look like Figure 2.

This extra definition covers the case when the crack closes up. If a crack is always increasing
in the evolution, it will follow ϕ(x) straight. But if it starts to close up after the size reaches z it
follows ϕ̃(x, z). For an example and all the important properties of ϕ please refer to Appendix A.

Let Γ ⊂ Ω be HN−1σ-finite and let γ ∈ L1(Γ,HN−1) denote the pre-existing cracks, our energy
form will be

E(u, γ) :=

∫
Ω
|∇u|2dx+

∫
Su∪Γ

ϕ̃([u], γ)dHN−1.

Figure 3 shows another example of cohesive energy function others consider.
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Figure 2: Graph of ϕ̃(x, z).

z
x

ϕ(x)

ϕ̃(x, z)
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Figure 3: Another example.
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It says you won’t gain any energy back if you close up a crack, so the crack energy is fully
irreversible. Another case is when you gain everything back, in which it follow ϕ entirely. From
now on we will only consider ϕ as defined in (3).

Next let’s have a look at the way we deal with boundary condition. Let Ω′ be open, bounded
and with Lipschitz boundary such that Ω b Ω′. Let g ∈ W 1,∞(Ω′), we say an SBV function
u satisfies the boundary condition g on ∂Ω or u = g on ∂Ω if u = g on Ω′\Ω. By treating the
boundary condition this way we allow the jump occur on the boundary ∂Ω.

We describe the boundary condition, let g(t) : [0, 1]→W 1,∞(Ω′;R) s.t.

1. supt ‖g(t)‖W 1,∞ <∞.

2. ∇ġ(t) exists and ∇ġ(t) ∈ L2(Ω) ∀t, and supt ‖∇ġ(t)‖L2 <∞.

3. ∇ġ(t) is continuous on [0, 1].

Definition 4. (Quasi-static Evolution with Cohesive Energy) We say a pair (u(t), γ(t)) : [0, 1] →
SBV (Ω) × L1(Γ(t),HN−1), where u(t) ∈ SBV (Ω) for each t and γ(t) := supτ≤t[u(t)] defined on
Γ(t), is a quasi-static evolution that satisfies the boundary condition g(t) if

1. ∀t ∈ [0, 1]∫
Ω
|∇u(t)|2dx+

∫
Su(t)∪Γ(t)

ϕ̃([u(t)], γ(t))dHN−1 ≤
∫

Ω
|∇v|2dx+

∫
Sv∪Γ(t)

ϕ̃([v], γ(t))dHN−1

∀v ∈ SBV (Ω) s.t. v = g(t) on ∂Ω.

2. Γ(t1) ⊂ Γ(t2) and γ(t1) ≤ γ(t2) for all 0 ≤ t1 ≤ t2 ≤ 1.

3.

E(u(t), γ(t)) = E(u(0), γ(0)) + 2

∫ t

0

∫
Ω
∇u(s) · ∇ġ(s)dxds

The existence of above evolution has been open for many years. The difficulty is to show that as
the discrete time minimizers converge to a limit u(t) in SBV , u(t) also minimizes the energy. The
way the cohesive energy is defined makes it sensitive to some of the complications in the fracture
part of the sequence. We will illustrate exactly what those complications are in Chapter 1.

The following is the outline of the thesis.

Chapter 1
In Chapter 1, we first describes the procedure of time discretization. As the discrete time step goes
to 0, we encounter a sequence of minimizers coupled with a sequence of pre-existing cracks and
their limits. We then ask if the limit is also a minimizer. For Griffith model the answer is yes, in
fact showing the limit is also a unilateral minimizer is the key part in showing the existence result
for Griffith model. We show that for cohesive models the answer is no, by providing a counter
example. We see that there are two potential complications on the fracture part of the sequence
that will cause the limit not being a minimizer. One of them is the oscillation on the crack path,
the other one is the splitting of one crack into two or more nearby cracks. We call the second one
a “staircase”. Then we construct a sequence of unilateral minimizers who have oscillations of the
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crack path. We show that the limit is not a unilateral minimizer. More interestingly, we show that
the limit does have a minimality, but it is a minimality that encodes the oscillations.

Chapter 2
In Chapter 2, we continue our discussion by reconsidering the counter example from Chapter 1.
We notice that the limit in the example picks up the oscillation of the sequence. We wonder if it
is true for any other cases. We then consider a more general sequence and show that the limit will
always pick up the oscillation, if there is oscillation of the sequence. To show this first we show the
sequence does not have the second complication, the staircase situation, mentioned in Chapter 1.
After excluding the staircase complication we show the oscillation will show up in the minimality
of the limit. For the counter example we did not have this extra step of excluding staircase be-
cause we constructed the sequence to only have oscillation. Even though the limit of a sequence
of a unilateral minimizers is not necessarily a unilateral minimizer, at least we show the staircase
complication can be ruled out. This leaves only the oscillation to be the complication we need to
rule out next. Further study indicates that it’s impossible to exclude oscillation by only looking at
a sequence of unilateral minimizers. So we move to the evolution problem to seek other ways to
exclude oscillation.

Chapter 3
In Chapter 3, we consider the evolution problem. First we use time discretization to approximate
the evolution. Then we formulate the energy and show the energy convergences for almost every
t. Showing the convergence of energy is almost always the first step in showing anything else. We
address the importance of convergence of energy by showing two applications of the result. First we
show that in terms of energy the whole evolution in discrete time can be approximated by finitely
many chosen times. It allows us to do analysis on finitely many minimizers. Using this idea we
then show the absolute continuity result for the fracture energy of the sequence of minimizers at
discrete time. As we can see in Chapter 2, the advantage of absolute continuity is to allow us apply
advanced techniques like covering theorem.

8



Chapter 1

The Difficulties

1.1 Time discretization

As mentioned before, let g(t) : [0, 1]→W 1,∞(Ω;R) be the boundary condition s.t.

1. supt ‖g(t)‖W 1,∞ <∞.

2. ∇ġ(t) exists and ∇ġ(t) ∈ L2(Ω) ∀t, and supt ‖∇ġ(t)‖L2 <∞.

3. ∇ġ(t) is continuous on [0, 1].

Then split the time line [0, 1] into 2n pieces, denote tin = 1
2n i. When i = 0, let u0

n be the solution
to the following minimizing problem

u0
n = min

v∈SBV (Ω)
v=g(t0n) on ∂Ω

{∫
Ω
|∇v|2dx+

∫
Sv

ϕ([v])dHN−1
}

When 0 ≤ i < 2n, let

ui+1
n = min

v∈SBV (Ω)

v=g(ti+1
n ) on ∂Ω

{∫
Ω
|∇v|2dx+

∫
Sv∪Γin

ϕ̃([v], γin)dHN−1
}

Where

Γin := ∪ij=0Sujn

γin :=
∨

0≤j≤i
[ujn]

We see γin is defined on Γin, and the existence of minimizers in each step can be derived from
SBV compactness. Then define un(t) = uin for tin ≤ t < ti+1

n and for ∀0 ≤ i < 2n. We see un(t) is
well defined on [0, 1] for ∀n > 0.

Define

En(t) :=

∫
Ω
|∇un(t)|2dx+

∫
Sun(t)∪Γn(t)

ϕ̃([un(t)], γn(t))dHN−1

9



Figure 1.1: Two difficulties illustrated by pictures.

As approximation steps become more and more, one encounters a sequence of minimizers un(t),
a limit of the sequence u(t), a sequence of pre-existing fracture or history γn(t) and a limit of the
history γ(t) such that∫

Ω
|∇un(t)|2dx+

∫
Sun(t)∪Γn(t)

ϕ̃([un(t)], γn(t))dHN−1 ≤
∫

Ω
|∇v|2dx+

∫
Sv∪Γn(t)

ϕ̃([v], γn(t))dHN−1

for each n and each v = un(t) on Ω′\Ω. The question is that is the limit a minimizer with γ(t) as
history? If we can show it then the global stability can be shown and the rest follows easily.

As we will see, in the next section, that the limit might not be a minimizer if there’s oscillation
on the sequence of history. In fact, there are two complications on the sequence that we need to
rule out if we want to show the limit is also a minimizer. The first one is due to the potential
oscillation of the crack path. The second is due to the potential of splitting a crack into two or
more nearby cracks, with the same total jump in displacement. (see Figure 1.1)
In the next section we construct an example to show how oscillation affects the minimality of

the limit. In the next chapter we show how to prove the second complication won’t happen in a
sequence of unilateral minimizers.

1.2 A Counter Example

1.2.1 1-D domain

In this section we construct a sequence of minimizers whose limit is not a minimizer. Though the
sequence will be constructed in 2-D domain, we begin with examples in 1-D domain. Consider
domain I := [0, 1] and Dirichlet boundary condition g(x) = x on [0, 1]. Let α ≥ 1 and ϕ be a
cohesive energy function, let u ∈ SBV (I) and define the energy

Eα(u) :=

∫ 1

0
|u′|2dx+

∫
Su

αϕ([u])dH0

Notice here H0 is the counting measure and
∫
Su
αϕ([u])dH0 = α

∑
xi∈Su ϕ([u](xi)). The existence

of a minimizer of energy Eα can be shown using SBV compactness. Let uα be a minimizer of
the energy satisfying the Dirichlet condition g, i.e. g(0) = 0 and g(1) = 1. We can conclude the
following

1. If uα has a jump, it can only have one jump.

2. u′α is constant on [0, 1].

3. 2u′α = αϕ′([uα]) if [uα] > 0.

10



0
1

1

h

1
2

Figure 1.2: Graph of v.

If uα has at least two jumps, we can move one jump to the other without changing the continuous
part. By doing this we get a new SBV with smaller energy due to the strict concavity of ϕ. Since
uα has only one jump, let hα denote the height of the jump. Notice that the uniqueness of the
minimizer can not be guaranteed in the following sense. First of all, even though there is only one
jump, the location of the jump can be anywhere on [0, 1]. Second, even if the location is fixed, the
height might not be unique. Here the location is not important since we can always translate the
location of the jump to one fixed point, say 1

2 .

Lemma 1. There exists ϕ and α0 such that for any 1 ≤ α ≤ α0, any minimizer of the energy
Eα(v) satisfying v = g on the boundary has a positive jump.

Proof. First pick any cohesive energy function φ. Let v be a SBV function that satisfies the
following conditions

1. v has only one jump at point {1
2}.

2. v′ is constant on [0, 1]

3. v(0) = 0 and v(1) = 1.

Let h denote the height of the jump of v, the graph of v looks like Figure 1.2. Let β ≥ 0 and
due to the nature of v the energy

∫ 1
0 |v

′|2dx+
∫
Sv
βφ([v])dH0 can also be written in terms of h as

follows
fβ(h) = (h− 1)2 + βφ(h).

We see fβ is continuous and fβ(0) = 1. Choose β0 > 0 and β1 > 0 such that

1. β0 < β1

2. fβ(1
2) < 1

2 for all β such that β0 ≤ β ≤ β1

11



Next define α0 := β0

β1
> 1. We can see for any α such that 1 ≤ α ≤ α0, we have β1 ≤ αβ1 ≤ β0, it

follows

fαβ1(
1

2
) <

1

2

Due to the definition of fβ, there exists some SBV function v that satisfies the Dirichlet
condition g and ∫ 1

0
|v′|2dx+

∫
Sv

αβ1φ([v])dH0 <
1

2
(1.1)

Let ϕ = β1φ, we have

Eα(v) <
1

2

This shows each minimizer of the energy has positive jump, since if there’s no jump the lowest
energy it can get is 1.

The following lemma can be seen as concavity of ϕ with α and history h.

Lemma 2. ∀ ϕ and 0 < h ≤ 1, ∃α1 > 1 s.t. for any 1 < α < α1 we have

αϕ̃(a+ b, h) < αϕ̃(b, h) + ϕ(a) (1.2)

∀0 ≤ b ≤ 1 and ∀0 < a ≤ 1.

Proof. First observe that the inequality (1.2) becomes equality when a = 0. Next we see

0 < ϕ̃(a+ b, h)− ϕ̃(b, h) ≤ ϕ̃(a, h)− ϕ̃(0, h)

It follows
ϕ(a)

ϕ̃(a+ b, h)− ϕ̃(b, h)
≥ ϕ(a)

ϕ̃(a, h)− ϕ̃(0, h)

We see ϕ(a)
ϕ̃(a,h)−ϕ̃(0,h) →∞ as a→ 0 and ϕ(a)

ϕ̃(a,h)−ϕ̃(0,h) > 1 for all 0 < a ≤ 1. Thus there exists δ > 1

s.t. ϕ(a)
ϕ̃(a,h)−ϕ̃(0,h) > δ > 1. Choose α1 = δ and let 1 < α < α1, we have ϕ(a)

ϕ̃(a+b,h)−ϕ̃(b,h) > α and thus

(1.2) is proved.

Let ϕ and α0 be chosen the same as in lemma 1. Since ϕ′(x)→∞ as x→ 0, choose 0 < h < 1
small such that ϕ′(h) > 3. According to lemma 2, there exists α1 s.t. for any 1 < α < α1, (1.2) is
satisfied. Then fix an α such that 1 < α < min{α0, α1}. Let u1 and uα be minimizers of energy Eα
that satisfies the boundary condition g, define h1 := [u1] and hα := [uα]. First we see 2u′α = αϕ′(hα)
and 2u′1 = ϕ′(h1). Since u′1 ≤ 1 and u′α ≤ 1, we have ϕ′(hα) ≤ 2 and ϕ′(h1) ≤ 2. It follows h ≤ hα
and h ≤ h1 due to monotonicity of function ϕ′. We further conclude the following properties

h1 > 0 and hα > 0

αϕ̃(a+ b, hα) < αϕ̃(b, hα) + ϕ(a)
(1.3)

We see hα < 1 and h1 < 1. The second estimate is due to the fact

αϕ̃(a+ b, hα)− αϕ̃(b, hα) ≤ αϕ̃(a+ b, h)− αϕ̃(b, h)

12
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Figure 1.3: The 2-D domain.

for h < hα. From now on let’s fix u1 and uα by fixing the location of the jumps at middle point 1
2 .

1.2.2 2-D domain

At this point we’ve specifically picked α, ϕ, u1, uα, h1 and hα. Next consider the 2-D square
[0, 1] × [0, 1]. Denote L1 = [0, 1] × {1}, L2 = [0, 1] × {0}, L3 = {0} × [0, 1] and L4 = {1} × [0, 1]
as four boundaries of the square. Let Γ denote the set [0, 1] × {1

2}. Define γ : Γ → R such that
γ = hα on Γ. For each n create a zigzag around Γ with amplitude equal to 1

n . Adjust the angle of
zigzag such that the total length equals α. Let Γn denote the zigzag. See Figure 1.3 for the graph.
Define γn = hα on Γn such that γn = hα and let ũn minimizes the following∫

Ω
|∇ũn|2dx+

∫
Sũn∪Γn

ϕ̃([ũn], γn)dH1 ≤
∫

Ω
|∇v|2dx+

∫
Sv∪Γn

ϕ̃([v], γn)dH1

over all v such that v = 1 on [0, 1]×{1}, v = 0 on [0, 1]×{0} and ∂v
∂n = 0 on the other two sides. So

ũn is a minimizer with history γn for each n. We see there exists a subsequence ũn(not relabeled)

and a SBV limit ũ∞ s.t. ũn
SBV
⇀ ũ∞.

Lemma 3.

α

∫
Γ
ϕ̃([ũ∞], hα)dH1 +

∫
Sũ∞\Γ

ϕ̃([ũ∞])dH1 ≤ lim inf
n→∞

∫
Sũn∪Γn

ϕ̃([ũn], hα)dH1 (1.4)

Proof. Fix ε > 0, first choose a small rectangular region Rε containing Γ s.t.∫
Sũ∞\Γ∩Rε

ϕ([ũ∞])dH1 ≤ ε∫
Ω\Rε

ϕ([ũ∞])dH1 ≤ lim inf
n→∞

∫
Ω\Rε

ϕ([ũn])dH1.

(1.5)

13
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Figure 1.4: Rε on the 2-D domain.

Next we see

LHS of (1.4) = α

∫
Γ
ϕ̃([ũ∞], hα)dH1 +

∫
Sũ∞\Γ∩Rε

ϕ([ũ∞])dH1 +

∫
Ω\Rε

ϕ([ũ∞])dH1

RHS of (1.4) =

∫
Γn

ϕ̃([ũn], hα)dH1 +

∫
Sũn\Γn∩Rε

ϕ([ũn])dH1 +

∫
Ω\Rε

ϕ([ũn])dH1
(1.6)

We constrain our domain on Rε and consider slices ũln, ũl∞ for 0 < l < 1 along y axis(i.e. constrains
of ũn and ũ∞ on the set {l}× [0, 1] ). Let xi ∈ {l}× [0, 1]∩Rε be the locations where ũln has jumps.
Let Γl and Γln denote the intersection of Γ and Γn with {l} × [0, 1]. We see for L1 a.e. l

[ũl∞(Γl)] ≤ lim inf
n→∞

∑
i

[ũln(xi)] (1.7)

Combine with result from (1.3), we have

αϕ̃([ũl∞(Γl)], hα) ≤ lim inf
n→∞

αϕ̃(
∑
i

[ũln(xi)], hα)

≤ lim inf
n→∞

αϕ̃(
∑
xi∈Γln

[ũln(xi)], hα) + ϕ(
∑
xi /∈Γln

[ũln(xi)])


≤ lim inf

n→∞

[
α

∫
Rε∩Γln

ϕ̃([ũln], hα)dH0 +

∫
Rε∩(S

ũln
\Γln)

ϕ([uln])dH0

]

14
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Figure 1.5: Rn on the 2-D domain.

According to Fatou’s lemma, we have

α

∫ 1

0
ϕ̃([ũl∞(Γl)], hα)dl ≤ lim inf

n→∞

[
α

∫ 1

0

∫
Rε∩Γln

ϕ̃([ũln], hα)dH0dl +

∫ 1

0

∫
Rε∩(S

ũln
\Γln)

ϕ([uln])dH0dl

]

≤ lim inf
n→∞

[∫
Rε∩Γn

ϕ̃([ũn], hα)dH1 +

∫
Rε∩(Sũn\Γn)

ϕ([un])dH1

]

And α
∫ 1

0 ϕ̃([ũl∞(Γl)], hα)dl = α
∫

Γ ϕ̃([ũ∞], hα)dH1, next combine results from (1.5) and (1.6) we
conclude the proof.

Lemma 4.

lim sup
n→∞

[∫
Ω
|∇ũn|2dx+

∫
Sũn∪Γn

ϕ̃([ũn], hα)dH1

]
≤
∫

Ω
|∇ūα|dx+ α

∫
Γ
ϕ([ūα])dH1 (1.8)

where ūα denotes the extension of uα into 2-D domain, i.e. each slice of ūα equals uα.

Proof. For each n define a small region Rn that closely contain set Γn, as shown in Figure 1.5.
Let u+

α denote the right limit of uα(x) at 1
2 and u−α the left limit. Let R+

n denote the horizontal
boundary of Rn that is close to the set [0, 1]× {1} and R−n the other horizontal boundary (see the
above graph). Then define an SBV function wn on Ω that satisfies the following conditions

1. wn = 1 on [0, 1]× {1} and wn = 0 on [0, 1]× {0}.

2. wn = u+
α on R+

n and linear between R+
n and [0, 1]× {1}.

3. wn = u−α on R−n and linear between R−n and [0, 1]× {0}.

4. For the values of wn on Rn, define one side of Γn to be equal to u+
α and the other equal to

u−α such that wn only has jumps on Γn.

15



We can see that∫
Ω
|∇wn|2dx+

∫
Swn

ϕ̃([wn], hα)dH1 →
∫

Ω
|∇ūα|2dx+ α

∫
Γ
ϕ([ūα])dH1.

Since ∫
Ω
|∇ũn|2dx+

∫
Sũn∪Γn

ϕ̃([ũn], hα)dH1 ≤
∫

Ω
|∇wn|2dx+

∫
Swn

ϕ̃([wn], hα)dH1

for each n, we conclude the proof.

Let γ̃ : Ω→ R s.t. Γ̃ := supp(γ̃) is H1 measurable and
∫

Γ̃ ϕ(γ̃)dH1 <∞.

Lemma 5. The limit ũ∞ has the following properties

1. ∂ũ∞
∂x = 0.

2. ũl∞ is a minimizer of the energy Eα.

3. ∃w̄ : Ω→ R that satisfies the boundary condition and∫
Ω
|∇w̄|2dx+

∫
Sw̄∪Γ̃

ϕ̃([w̄], γ̃)dH1 <

∫
Ω
|∇ũ∞|2dx+

∫
Sũ∞∪Γ̃

ϕ̃([ũ∞], γ̃)dH1

for any γ̃.

Proof. Combine lemma 3 and lemma 4 we get∫
Ω
|∇ũ∞|2dx+α

∫
Γ
ϕ̃([ũ∞], hα)dH1 +

∫
Sũ∞\Γ

ϕ([ũ∞])dH1 ≤
∫

Ω
|∇ūα|2dx+α

∫
Γ
ϕ([ūα])dH1 (1.9)

Let v ∈ SBV ([0, 1]) s.t. v(0) = 0 and v(1) = 1. Based on v let’s construct v̂ by moving all jumps
of v to the point 1

2 and keeping
∫ 1

0 |v
′|2dx =

∫ 1
0 |v̂

′|2dx. Due to (1.3) we have∫ 1

0
|u′α|2dx+ α

∫
{ 1

2
}
ϕ([uα])dH0 ≤

∫ 1

0
|v̂′|2dx+ α

∫
{ 1

2
}
ϕ̃([v̂], hα)dH0

≤
∫ 1

0
|v′|2dx+ α

∫
{ 1

2
}
ϕ̃([v], hα)dH0 +

∫
Sv\{ 1

2
}
ϕ([v])dH0

Next we see ∫
Ω
|∇ũ∞|2dx+ α

∫
Γ
ϕ̃([ũ∞], hα)dH1 +

∫
Sũ∞\Γ

ϕ([ũ∞])dH1 (1.10)

≤
∫ 1

0

∫ 1

0
|∇ũl∞|2dxdl + α

∫ 1

0

∫
{ 1

2
}
ϕ̃([ũl∞], hα)dH0dl +

∫ 1

0

∫
S
ũl∞
\{ 1

2
}
ϕ([ũl∞])dH0dl (1.11)

This shows
∫

Ω |∇ũ∞|
2dx =

∫ 1
0

∫ 1
0 |∇ũ

l
∞|2dxdl and thus ∂ũ∞

∂x = 0.
It follows that each slice ũl∞ is the same. According to (1.9) we have∫ 1

0
|∇ũl∞|2dx+α

∫
{ 1

2
}
ϕ̃([ũl∞], hα)dH0 +

∫
Sũ∞\{

1
2
}
ϕ([ũl∞])dH0 ≤

∫ 1

0
|∇uα|2dx+α

∫
{ 1

2
}
ϕ([uα])dH0

16



0
1

1

h

1
2

Figure 1.6: Graph of ũl∞.

We see
∫
S
ũl∞
\{ 1

2
} ϕ([ũl∞])dH0 = 0 because otherwise we can construct a function that gives smaller

energy than uα. Then we conclude that ũl∞ is also a minimizer to the energy Eα. It follows that
ũl∞ has following properties

1. d
dx ũ

l
∞ is constant.

2. 2 d
dx ũ

l
∞ = αϕ′([ũl∞]).

3. Sũl∞ = {1
2}.

Let h = [ũl∞] and let Figure 1.6 be the graph of ũl∞. We see d
dx ũ

l
∞ = 1 − h and thus 2(1 − h) =

αϕ′(h) and further 2(1 − h) > ϕ′(h) . Let λ > 0 and increase the right limit of d
dx ũ

l
∞ at {1

2}
by λ and decrease the left limit by λ. Let wλ denote the new function. Next define the elastic
energy Ea(wλ) :=

∫ 1
0 |w

′
λ|2dx and fracture energy Es(wλ) := ϕ([wλ]). Further we see Ea(wλ) is

decreased comparing to Ea(ũl∞) and Es(wλ) is increased comparing to Es(ũl∞). Next let ∆Ea(λ) :=
Ea(ũl∞)−Ea(wλ) denote the elastic energy decreased and let ∆Es(λ) := Es(wλ)−Es(ũl∞) denote
the fracture energy increased. Write down the details of ∆Ea(λ) and ∆Es(λ)

∆Ea(λ) = (1− h)2 − (1− h− 2λ)2

∆Es(λ) = ϕ(h+ 2λ)− ϕ(h)

We see both energies are differentiable with respect to λ and

∂

∂λ
∆Ea(0) = 4(1− h)

∂

∂λ
∆Es(0) = 2ϕ′(h)

Since 4(1 − h) > 2ϕ′(h), there exists positive small λ such that ∆Ea(λ) > ∆Es(λ), it follows
E(wλ) < E(ũl∞). Next let w̄ denote the extension of wλ to 2D domain Ω, we see w̄ satisfies the
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boundary conditions on ∂Ω and moreover Sw̄ = Sũ∞ = Γ, [w̄] > [ũ∞] on Γ and∫
Ω
|∇w̄|2dx+

∫
Sw̄

ϕ([w̄])dH1 <

∫
Ω
|∇ũ∞|2dx+

∫
Sũ∞

ϕ([ũ∞])dH1

It follows ∫
Ω
|∇w̄|2dx+

∫
Sw̄∪Γ̃

ϕ̃([w̄], γ̃)dH1 <

∫
Ω
|∇ũ∞|2dx+

∫
Sũ∞∪Γ̃

ϕ̃([ũ∞], γ̃)dH1

for any γ̃. It is due to the fact that ϕ̃(a, h)− ϕ̃(b, h) ≤ ϕ(a)− ϕ(b) if a ≥ b.

Let η : Ω→ R be defined

η =

{
α on Γ

1 elsewhere

It’s not hard to show that the limit ũ∞ has the following minimality∫
Ω
|∇ũ∞|2dx+

∫
Sũ∞

ηϕ([ũ∞])dHN−1 ≤
∫

Ω
|∇v|2dx+

∫
Sv

ηϕ̃([v], [ũ∞])dHN−1 (1.12)

For Griffith model, the oscillation on the sequence won’t affect the minimality of the limit.
But this example shows that, for cohesive model, the oscillation on the sequence will destroy the
minimality of the limit. More interestingly, as shown in this example, the limit seems to pick up
the oscillation according to (1.12). In the next chapter we will discuss a more general case and
show the limit will always pick up the oscillation, if there is one.
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Chapter 2

Limits of Unilateral Minimizers

2.1 Introduction

In Chapter 1, we considered a counter example where a sequence of unilateral minimizers converges
to a limit that is not a unilateral minimizer. Moreover we showed the limit does have a minimality,
that picks up the oscillation, as shown in (1.12). We wonder if it is true for any other cases. In
this chapter, we consider a sequence of unilateral minimizers with itself as history and show that
the limit will always pick up the oscillation, if there is oscillation.

Let Ω′ be an open and bounded subset in RN such that Ω b Ω′. Consider a sequence {gn}∞n=1 ⊂
W 1,∞(Ω′) such that gn → g in W 1,∞.

Let un be a unilateral minimizer that minimizes the following∫
Ω
|∇un|2dx+

∫
Sun

ϕ([un])dHN−1 ≤
∫

Ω
|∇v|2dx+

∫
Sv∪Sun

ϕ̃([v], [un])dHN−1

∀ v = gn on Ω′\Ω. In addition, assume the sequence {un}∞n=1 is bounded from above in terms of
the following energy

E(un) =

∫
Ω
|∇un|2dx+

∫
Sun

ϕ([un])dHN−1.

Due to SBV compactness we can extract a subsequence(not relabeled) and an SBV function u s.t.

un
SBV
⇀ u in SBV . Then the following is true.

Theorem 2. ∃α(x) : Ω′ → R and α ≥ 1 such that∫
Ω
|∇u|2dx+

∫
Su

αϕ([u])dHN−1 ≤
∫

Ω
|∇v|2dx+

∫
Sv∪Su

αϕ̃([v], [u])dHN−1

∀ v = g on Ω′\Ω.

Remark 1. Notice here ∃b s.t. supn ‖gn‖W 1,∞ ≤ b
2 , by truncation argument the size of the jumps

will stay below b, i.e.

sup
n

[un] ≤ b

sup[u] ≤ b.
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Also notice, due to the fact that ϕ′(x) ≥ ϕ′(b) > 0 for x ≤ b, ϕ′([un]) ≥ ϕ′(b) and ϕ′([u]) ≥ ϕ′(b).

Remark 2. The introduce of Ω′ is to deal with the case where jumps of un converge to the boundary
of Ω.

2.2 Settings and Tools

Measure theory plays an important role here, let’s recall some of notions. For more details refer
to [13] and [2]. Let U ⊂ RN be open. If µ is a real or vector valued measures on U , |µ| denotes
its total variation. Unless otherwise stated, when we say a measure or Radon measure it usually
means positive measure.

Definition 5. Let µ be a positive measure and ν a real or vector valued measure on U . We say
that ν is absolutely continuous with respect to µ and write ν � µ, if for every B ⊂ U such that
µ(B) = 0 we have |ν|(B) = 0.

Definition 6. Let µ and µn(n = 1, 2, ...) be vector Radon measures on U . We say µn converge

weakly* to the measure µ, written µn
∗
⇀ µ, if

lim
n→∞

∫
U
fdµn =

∫
U
fdµ

for all f ∈ Cc(U).

It’s well known that if µn
∗
⇀ µ, the followings are true:

1. |µ|(K) ≥ lim supn→∞ |µn|(K) for all compact set K ⊂ U .

2. |µ|(A) ≤ lim infn→∞ |µn|(A) for all open set A ⊂ U .

3. if |µn|
∗
⇀ λ, λ ≥ |µ| and for all bounded Borel set B with λ(∂B) = 0, we have µ(B) =

limn→∞ µn(B).

The following corollary of Besicovitch’s Theorem is well known, but since it will be used fre-
quently we will list it here. See [13] for the proof of the theorem.

Theorem 3. Let µ be a Borel measure on RN , and F any collection of non-degenerate closed balls.
Let A denote the set of centers of the balls in F . Assume µ(A) <∞ and inf{r : B(a, r) ∈ F} = 0
for each a ∈ A. Then for each open set U ⊂ RN , there exists a countable collection G of disjoint
balls in F such that ⋃

B∈G
B ⊂ U

and

µ

(
(A ∩ U)\

⋃
B∈G

B

)
= 0.

Let u ∈ SBV (Ω) and t ∈ R, define

Et := {x ∈ Ω : u > t}.
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And the reduced boundary of Et is denoted by ∂∗Et. Then we see Et is a set of finite perimeter
for L-a.e. t ∈ R. And the coarea formula for BV gives the following

|Du|(B) =

∫ ∞
−∞
HN−1(∂∗Et ∩B)dt

for any Borel B. It follows

|Dsu|(Ω) =

∫ ∞
−∞
HN−1(∂∗Et ∩ Su)dt

and ∫
Ω
|∇u|dx =

∫ ∞
−∞
HN−1(∂∗Et\Su)dt

Another useful coarea formula∫
Su

ϕ([u])dHN−1 =

∫ ∞
−∞

∫
∂∗Et

ϕ([u])

[u]
dHN−1dt

see [18] Lemma 6.3, pick f(x, v) = |v|ϕ([u])
[u] χSu .

2.3 Minimality with α

We delay the proof by introducing some of the preliminary results first. We split the proof of
theorem 2 into three steps. First prove that the weak* limit of ϕ([un])HN−1bSun is absolutely
continuous with respect to ϕ([u])HN−1bSu. Then due to Radon-Nikodym theorem there exists a
density function α′ between the two measures, which gives us a candidate for α. Next we show that
the cracks will eventually all combine to one reduced boundary, locally. This enables us to pass α
to the limit to show the minimality with density α.

2.3.1 Absolute Continuity

If u ∈ SBV , let {[u] < h} be the set {x ∈ Su : [u](x) < h}. Define µn := ϕ([un])HN−1bSun and
µ := ϕ([u])HN−1bSu. Since µn is bounded, according to weak compactness in measure, there’s a

subsequence µn(not relabeled) and a Radon measure µ∞ on Ω′ such that µn
∗
⇀ µ∞. We see that

in general µ ≤ µ∞ and thus µ � µ∞, but here due to unilateral minimality we are going to show
that the opposite is also true.

Remark 3. Due to definition of µ and µn we see ∀x ∈ Ω′

µ(∂B(x, r)) = 0

µn(∂B(x, r)) = 0,∀ n > 0

for L1-a.e. r > 0. Because µ(∂B(x1, r1)∩∂B(x2, r2)) = 0 for (x1, r1) 6= (x2, r2), set {(x, r) ∈ (Ω′×
R) : µ(∂B(x, r)) > 0} is at most countable. It follows set {x ∈ Ω′ : ∃r such that µ(∂B(x, r)) > 0}
is at most countable. Similarly we can show {x ∈ Ω′ : ∃r and n such that µn(∂B(x, r)) > 0} is at
most countable.
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Immediately, from the first observation, we have ∀x ∈ Ω′

HN−1(Su ∩ ∂B(x, r)) = 0

HN−1(Sun ∩ ∂B(x, r)) = 0, ∀n > 0
(2.1)

for L1-a.e. r > 0. And from the second observation and the fact that N ≥ 2, we have for HN−1-a.e.
x ∈ Su

HN−1(Su ∩ ∂B(x, r)) = 0

HN−1(Sun ∩ ∂B(x, r)) = 0,∀ n > 0
(2.2)

for ∀r > 0. This enables us to ignore the crack energy of u and un on boundary of B(x, r).

Let B(x, r) b Ω′, use T+
u to denote the trace of u inside the open ball. In other words we

are regarding B(x, r) as a domain for u. Similarly T−u denotes the trace of u on ∂B(x, r) with
Ω′\B(x, r) as its domain,

Lemma 6. Fix x ∈ Ω′, let {un}∞n=1 ⊂ BV (Ω′) s.t. un → u in L1(Ω′). Then we can extract a
subsequence {nk}∞n=1 s.t.

lim
n→∞

∫
∂B(x,r)

|T+
unk
− T−u |dHN−1 = 0

lim
n→∞

∫
∂B(x,r)

|T−unk − T
+
u |dHN−1 = 0

for L1-a.e. r > 0.

Proof. Let u ∈ BV , we see ∫
∂B(x,r)

|T+
u − T−u |dHN−1 = 0 (2.3)

for L1-a.e. r > 0.
So ∫

Ω′
udx =

∫ ∞
0

∫
∂B(x,r)

udHN−1dr =

∫ ∞
0

∫
∂B(x,r)

T+
u dHN−1dr

=

∫ ∞
0

∫
∂B(x,r)

T−u dHN−1dr

Let {vn}∞n=1 ⊂ BV s.t. vn → 0 in L1. We see∫
Ω′
|vn|dx =

∫ ∞
0

∫
∂B(x,r)

T+
|vn|dH

N−1dr → 0.

It’s well-known that we can extract a subsequence {nk}∞k=1 s.t.∫
∂B(x,r)

T+
|vnk |

dHN−1 → 0
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for L1-a.e. r > 0. Let vn = un − u we see∫
∂B(x,r)

|T+
unk
− T+

u |dHN−1 =

∫
∂B(x,r)

T+
|unk−u|

dHN−1 → 0.

Since
∫
∂B(x,r) |T

+
u −T−u |dHN−1 = 0 for L1-a.e. r > 0, we see limn→∞

∫
∂B(x,r) |T

+
unk
−T−u |dHN−1 = 0

for L1-a.e. r > 0. The proof of the second half of the lemma is similar.

Let {un}∞n=1 be the sequence mentioned in the beginning of this section. Let Sn ⊂ Sun be HN−1

measurable.

Lemma 7. We have ∀ε > 0, ∃δ > 0 s.t.∫
Sn∩Sun

ϕ([un])dH ≤ ε

whenever
∫
Sn∩Sun

ϕ′([un])[un]dHN−1 ≤ δ.

Proof. Fix ε > 0, as usual let’s assume Sn ⊂ Sun . First we see ϕ′(x)x
ϕ(x) → C as x → 0. So we can

find τ > 0 s.t. ϕ′(x)x
ϕ(x) > C

2 ,∀x ≤ τ . Since ϕ′(x)x is continuous, positive and ϕ′(x)x = 0 if and only

if x = 0 for 0 ≤ x ≤ b. Thus we have m := minτ≤x≤b ϕ
′(x)x > 0.

Then pick δ s.t.

(
2δ

C
+ ϕ(b)

δ

m
) ≤ ε.

Then consider the following

C

2

∫
Sn∩{[un]≤τ}

ϕ([un])dHN−1 ≤
∫
Sn∩{[un]≤τ}

ϕ([un])
ϕ′([un])[un]

ϕ([un])
dHN−1

≤
∫
Sn∩{[un]≤τ}

ϕ′([un])[un]dHN−1

≤ δ.

It follows
∫
Sn∩{[un]≤τ} ϕ([un])dHN−1 ≤ 2δ

C .
Then

mHN−1(Sn ∩ {[un] > τ}) ≤
∫
S∩Q(x,r)∩{[un]>τ}

ϕ′([un])[un]dHN−1 ≤ δ

which gives HN−1(Sn ∩ {[un] > τ}) ≤ δ
m .

Finally∫
Sn

ϕ([un])dHN−1 =

∫
Sn∩{[un]>τ}

ϕ([un])dHN−1 +

∫
Sn∩{[un]≤τ}

ϕ([un])dHN−1

≤ 2δ

C
+ ϕ(b)

δ

m
≤ ε.
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We are in a position to show the following theorem.

Theorem 4. µ∞ � µ

Proof. Fix x ∈ Ω′, let B(x, r) b Ω′ where lemma (6) and remark (3) hold, which is true for L1-a.e.
r > 0.

First, we claim that

lim sup
n→∞

∫
Sun∩B(x,r)

ϕ′([un])[un]dHN−1 ≤
∫
Su∩B(x,r)

ϕ([u])dHN−1. (2.4)

For each n consider the test function vn constructed as follows

vn =

{
u on B(x, r)

un on Ω′\B(x, r).

Due to unilateral minimality∫
Ω′
|∇un|2dx+

∫
Sun

ϕ([un])dHN−1 ≤
∫

Ω′
|∇vn|2dx+

∫
Sun∪Svn

ϕ̃([vn], [un])dHN−1.

Considering the construction of vn, the above inequality can be written as∫
B(x,r)

|∇un|2dx+

∫
B(x,r)

ϕ([un])dHN−1 +

∫
Ω′\B(x,r)

|∇un|2dx

+

∫
Ω′\B(x,r)

ϕ([un])dHN−1 +

∫
∂B(x,r)

ϕ([un])dHN−1

≤
∫
B(x,r)

|∇u|2dx+

∫
B(x,r)

ϕ̃([u], [un])dHN−1 +

∫
Ω′\B(x,r)

|∇un|2dx

+

∫
Ω′\B(x,r)

ϕ([un])dHN−1 +

∫
∂B(x,r)

ϕ̃([vn], [un])dHN−1.

It follows ∫
B(x,r)

|∇un|2dx+

∫
B(x,r)

ϕ([un])dHN−1 +

∫
∂B(x,r)

ϕ([un])dHN−1

≤
∫
B(x,r)

|∇u|2dx+

∫
B(x,r)

ϕ̃([u], [un])dHN−1 +

∫
∂B(x,r)

ϕ̃([vn], [un])dHN−1

≤
∫
B(x,r)

|∇u|2dx+

∫
∂B(x,r)

ϕ̃([vn], [un])dHN−1

+

∫
B(x,r)

ϕ([u])dHN−1 +

∫
B(x,r)

ϕ̃(0, [un])dHN−1.
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The last inequality is due to the fact that ϕ(x, z) ≤ ϕ(x) + ϕ(0, z). It follows∫
B(x,r)

ϕ′([un])[un]dHN−1 ≤
∫
B(x,r)

ϕ([u])dHN−1 +

∫
B(x,r)

|∇u|2dx−
∫
B(x,r)

|∇un|2dx

+

∫
∂B(x,r)

ϕ̃([vn], [un])dHN−1.

Due to the fact
∫
B(x,r) |∇u|

2dx ≤ lim infn→∞
∫
B(x,r) |∇un|

2dx and lemma(6) we conclude the
first claim.

For the sake of contradiction assume there exists a Borel set A ⊂ Ω′ s.t. µ(A) = 0 but
µ∞(A) = δ > 0. According to lemma (3) we can find δ̄ > 0 s.t.∫

Sn∩Sun
ϕ([un])dHN−1 ≤ δ

2
(2.5)

whenever ∫
Sn∩Sun

ϕ′([un])[un]dHN−1 ≤ δ̄.

Let U be open s.t. A ⊂ U ⊂ Ω′ and µ(U) ≤ 1
2 δ̄. Then consider the collection F of balls B(x, r)

that satisfy the following conditions

x ∈ A

B(x, r) ⊂ U

µ∞(∂B(x, r)) = 0

(2.4) holds .

According to Besicovitch covering theorem we can find a collection of countable disjoint closed
balls {B(xi, ri)}∞i=1 s.t. µ∞(A\

⋃∞
i=1B(xi, ri)) = 0. Since µ∞(∂B(xi, ri)) = 0 ∀i, we have

µ∞(A\
⋃∞
i=1B(xi, ri)) = 0. Then select a finite N ∈ N s.t. µ∞(A\

⋃N
i=1B(xi, ri)) ≤ 1

8δ. We
conclude that

µ(
N⋃
i=1

B(xi, ri)) ≤
1

2
δ̄

µ∞(
N⋃
i=1

B(xi, ri)) ≥
7

8
δ.

Again since µ∞(∂B(xi, ri)) = 0 ∀i, we have

µ∞(

N⋃
i=1

B(xi, ri)) = lim
n→∞

∫
⋃N
i=1B(xi,ri)

ϕ([un]) ≥ 7

8
δ. (2.6)
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Then consider (2.4) to get

lim inf
n→∞

∫
⋃N
i=1B(xi,ri)

ϕ′([un])[un]dHN−1

≤ lim sup
n→∞

∫
⋃N
i=1 B(xi,ri)

ϕ′([un])[un]dHN−1

≤
∫
⋃N
i=1 B(xi,ri)

ϕ([u])dHN−1

= µ(

N⋃
i=1

B(xi, ri))

≤ 1

2
δ̄.

Apply (2.5) to get

lim
n→∞

∫
⋃N
i=1B(xi,ri)

ϕ([un])dHN−1 ≤ δ

2

which contradicts to (2.6). Thus the theorem has been proved.

From the above theorem we see that µ∞ also concentrates on Su and µ∞ � HN−1bSu since
µ� HN−1bSu. It follows that Dµµ∞ exists and 0 < Dµµ∞ ≤ ∞ for HN−1-a.e. x ∈ Su and 0 else
where. Also, regarding remark (3), we see for HN−1-a.e. x ∈ Su

Dµµ∞(x) = lim
r→0

µ∞(B(x, r))

µ(B(x, r))
= lim

r→0

limn→∞
∫
Sun∩B(x,r) ϕ([un])∫

Su∩B(x,r) ϕ([u])
. (2.7)

2.3.2 No-staircase Lemma

In this section both un and u will be the same as mentioned in the beginning of this section. We are
going to show the most important theorem of this section. We show that the jumps of the sequence
will eventually be combined to one reduced boundary of some set, basically it is due to unilateral
minimality and concavity of the cohesive function ϕ(x). The way we show it is something we call
arguing from local. Fix x ∈ Su we shrink the cube Q(x, r) to get nice results we want. Then we
cover Su with those carefully chosen cubes and sum over the errors to get global niceness.

We are switching from balls to cubes, technically there’s no difference in terms of proof. First
let’s introduce some notations and show some results. Let x ∈ Su, let Q(x, r) be the cube with side
length 2r and normal the same as ν(x), then define

Q−(x, r) := {y ∈ Q(x, r) : (y − x) · ν(x) < 0}
Q+(x, r) := {y ∈ Q(x, r) : (y − x) · ν(x) > 0}
H(x, r, s) := {y ∈ Q(x, r) : (y − x) · ν(x) = s}

Rba(x, r) := {y ∈ Q(x, r) : a < (y − x) · ν(x) < b}.

The geometric meaning can be illustrated using Figure 2.1. Next we see HN−1(H(x, r, s)) =
(2r)N−1 for −r ≤ s ≤ r and there exists C(N, δ) that does not depend on r s.t. C(N, δ) → 0 as

26



x

Rδr−δr(x, r)

Q(x, r)

ν(x)

Q−(x, r) Q+(x, r)

Figure 2.1: Illustration of Q(x, r).

δ → 0 and

HN−1(∂Rδr−δr(x, r)\(H(x, r,−δr) ∪H(x, r, δr))) ≤ C(N, δ)rN−1 ∀ r. (2.8)

Then we have ∫
Su

ϕ([u])dHN−1 ≤ ϕ(b)
√
εrN−1 + ϕ(

√
ε)HN−1(Su) (2.9)

whenever
∫
Su

[u]dHN−1 ≤ εrN−1. Indeed, first consider

HN−1({[u > δ]})δ ≤
∫
{[u]>δ}

[u]dHN−1 ≤ εrN−1.

It follows HN−1({[u > δ]}) ≤ ε
δ r
N−1. Thus∫

Su

ϕ([u])dHN−1 =

∫
{[u]>δ}

ϕ([u])dHN−1 +

∫
{[u]≤δ}

ϕ([u])dHN−1

≤ ϕ(b)
ε

δ
rN−1 + ϕ(δ)HN−1(Su).

Pick δ =
√
ε to conclude (2.9).

Let t ∈ R, define

Et := {x ∈ Ω : u > t}
Ent := {x ∈ Ω : un > t}.

We see Et and Ent are sets with finite perimeter for L1-a.e. t and ∀ n. If a set E has finite perimeter,
we use ∂∗E and νE(x) to denote the reduced boundary of E and the generalized inner normal at
x ∈ ∂∗E.

Lemma 8. Let β(x) be a HN−1 measurable function on Su s.t. β(x) > 0 and
∫
Su
β(x)dHN−1 <∞,
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then we have for all δ < 1

lim
r→0

∫
Su∩Q(x,r) β(y)dHN−1

(2r)N−1
= β(x) (2.10a)

lim
r→0

∫
Su∩Rδr−δr(x,r)

β(y)dHN−1

(2r)N−1
= β(x) (2.10b)

for HN−1-a.e. x ∈ Su. As usual Q(x, r) and Rδr−δr(x, r) will be oriented by ν(x).

Proof. First let’s write Su =
⋃∞
i=1Ai where Ai is HN−1 rectifiable and

HN−1(Ai) < ∞ for ∀i. It suffices to show (2.10a) and (2.10b) are true in each Ai. Define Radon
measure µ := βHN−1bSu and fix Ai we see for µ a.e. x ∈ Ai (or HN−1-a.e. since β(y) > 0)

limr→0
µ(Ai∩Q(x,r))
µ(Q(x,r)) = 1. That is

lim
r→0

∫
Ai∩Q(x,r) β(y)dHN−1∫
Su∩Q(x,r) β(y)dHN−1

= 1.

Since HN−1bAi is Radon, we have for HN−1bAi-a.e. x ∈ Ai, β(x) is a Lebesgue point, i.e.

lim
r→0

∫
Ai∩Q(x,r) β(y)dHN−1

HN−1(Ai ∩Q(x, r))
= β(x)

for HN−1bAi-a.e. x ∈ Ai. Then Besicovitch-Marstrand-Mattila theorem [2](page 83 theorem
2.63)says

lim
r→0

HN−1(Ai ∩Q(x, r))

(2r)N−1
= 1

for HN−1 a.e. x ∈ Ai since Ai is HN−1 rectifiable and HN−1(Ai) <∞. Thus we conclude

lim
r→0

∫
Su∩Q(x,r) β(y)dHN−1

(2r)N−1
= β(x)

for HN−1 a.e. x ∈ Ai. And (2.10a) is proved.
Next consider (2.10b), the ” ≤ ” part is obvious. So let’s show the ” ≥ ” part. Let D be a

countable dense set in R s.t.
Ai =

⋃
t∈D

(Ai ∩ ∂∗Et)

and HN−1(∂∗Et) < ∞ for ∀t. We see for all t ∈ D, HN−1 a.e. x ∈ Ai ∩ ∂∗Et is a Lebesgue point
of χAi∩∂∗Et with Radon measure HN−1b∂∗Et i.e.

lim
r→0

HN−1(Ai ∩ ∂∗Et ∩Q(x, r))

HN−1(∂∗Et ∩Q(x, r))
= 1

for HN−1 a.e. x ∈ Ai ∩ ∂∗Et.
It is known that

lim
r→0

HN−1(∂∗Et ∩Q(x, r))

(2r)N−1
= 1,

28



thus

lim
r→0

HN−1(Ai ∩ ∂∗Et ∩Q(x, r))

(2r)N−1
= 1.

Next we see

lim
r→0

HN−1(Ai ∩Q(x, r))

(2r)N−1
= 1,

and therefore

lim
r→0

HN−1((Ai\∂∗Et) ∩Q(x, r))

(2r)N−1
= 0. (2.11)

From [20](page 241 theorem 5.6.5) we see for ∀δ < 1

HN−1(∂∗Et ∩ (Q(x, r)\Rδr−δr(x, r)))
(2r)N−1

= 0 (2.12)

for HN−1 a.e. x ∈ ∂∗Et. Then we get

lim
r→0

HN−1(Ai ∩ (Q(x, r)\Rδr−δr(x, r)))
(2r)N−1

≤ lim
r→0

(
HN−1(Ai\∂∗Et ∩ (Q(x, r)\Rδr−δr(x, r)))

(2r)N−1
+
HN−1(∂∗Et ∩ (Q(x, r)\Rδr−δr(x, r)))

(2r)N−1

)

≤ lim
r→0

(
HN−1(Ai\∂∗Et ∩Q(x, r))

(2r)N−1
+
HN−1(∂∗Et ∩ (Q(x, r)\Rδr−δr(x, r)))

(2r)N−1

)
= 0

due to result (2.11) and (2.12). It follows

lim
r→0

HN−1(Ai ∩Rδr−δr(x, r))
HN−1(Ai ∩Q(x, r))

= 1

for HN−1 a.e. x ∈ Ai ∩ ∂∗Et, and therefore for HN−1 a.e. x ∈ Ai.
Next consider

lim
r→0

∫
Ai∩Q(x,r) |β(x)− β|dHN−1

HN−1(Ai ∩Q(x, r))
= 0

for HN−1 a.e. x ∈ Ai. Consider∣∣∣∣∣∣
∫
Ai∩Rδr−δr(x,r)

βdHN−1

HN−1(Ai ∩Rδr−δr(x, r))
− β(x)

∣∣∣∣∣∣ ≤
∫
Ai∩Rδr−δr(x,r)

|β(x)− β|dHN−1

HN−1(Ai ∩Rδr−δr(x, r))

=

∫
Ai∩Rδr−δr(x,r)

|β(x)− β|dHN−1

HN−1(Ai ∩Q(x, r))

HN−1(Ai ∩Q(x, r))

HN−1(Ai ∩Rδr−δr(x, r))
.

So

lim
r→0

∫
Ai∩Rδr−δr(x,r)

β(y)dHN−1

HN−1(Ai ∩Q(x, r))
= β(x),
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and thus

lim
r→0

∫
Ai∩Rδr−δr(x,r)

β(y)dHN−1

(2r)N−1
= β(x).

Then

lim
r→0

∫
Su∩Rδr−δr(x,r)

β(y)dHN−1

(2r)N−1
≥ lim

r→0

∫
Ai∩Rδr−δr(x,r)

β(y)dHN−1

(2r)N−1
= β(x).

We conclude

lim
r→0

∫
Su∩Rδr−δr(x,r)

β(y)dHN−1

(2r)N−1
= β(x)

for HN−1 a.e. x ∈ Ai. Therefore (2.10b) is proved.

Remark 4. The above lemma uses the fact that the fracture energy on Su is mostly concentrated
on some reduced boundary ∂∗Et locally in the sense of measure. That’s why no matter how small
δ is, the measure of ∂∗Et will stay mostly within Rδr−δr(x, r) as we shrink the cube Q(x, r).

During the following define

E(v, u) =

∫
Ω
|∇v|2dx+

∫
Su∪Sv

ϕ̃([v], [u])dHN−1

Lemma 9. Let un and u be from section §2.1. Then we have for HN−1-a.e. x ∈ Su

lim
r→0

limn→∞
∫
Q(x,r) |∇un|dx
rN−1

= 0.

Proof. From (2.2) in remark (3), we can choose r s.t. HN−1(∂Q(x, r) ∩ Sun) = 0, ∀n. Then define
u′n by

u′n =


un Ω\Q(x, r)

u+(x) Q−(x, r)

u−(x) Q+(x, r)

.
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So

E(u′n, un)

=

∫
Ω\Q(x,r)

|∇un|2dx+

∫
Sun∪Su′n

ϕ̃([u′n], [un])

=

∫
Ω\Q(x,r)

|∇un|2dx+

∫
Sun\Q(x,r)

ϕ([un])

+

∫
∂Q(x,r)

ϕ̃([u′n], [un]) +

∫
Q(x,r)∩(H(x,r,0)∪Sun )

ϕ̃([u′n], [un])

≤
∫

Ω\Q(x,r)
|∇un|2dx+

∫
Sun\Q(x,r)

ϕ([un]) +HN−1(∂Q(x, r))ϕ(b)

+HN−1(H(x, r, 0))ϕ(b) +

∫
Q(x,r)∩Sun

ϕ([un])

≤
∫

Ω\Q(x,r)
|∇un|2dx+

∫
Sun\Q(x,r)

ϕ([un]) +

∫
Q(x,r)∩Sun

ϕ([un]) + CrN−1

for some constant C <∞. It follows

E(un, un)− E(u′n, un)

≥
∫

Ω\Q(x,r)
|∇un|2dx+

∫
Q(x,r)

|∇un|2dx+

∫
Sun\Q(x,r)

ϕ([un]) +

∫
Sun∩Q(x,r)

ϕ([un])

−
∫

Ω\Q(x,r)
|∇un|2dx−

∫
Sun\Q(x,r)

ϕ([un])−
∫
Q(x,r)∩Sun

ϕ([un])− CrN−1

≥
∫
Q(x,r)

|∇un|2dx− CrN−1.

Due to unilateral minimality, we have E(un, un)− E(u′n, un) ≤ 0. So∫
Q(x,r)

|∇un|2dx ≤ CrN−1.

Then consider Cauchy-Schwartz inequality

∫
Q(x,r)

|∇un|dx ≤ |Q(x, r)|
1
2

(∫
Q(x,r)

|∇un|2dx

) 1
2

≤
√

2C2
N
2 rN−

1
2 .

So ∫
Q(x,r) |∇un|dx

rN−1
≤
√

2C2
N
2 r

1
2 .

Take the limit as r → 0 we have proved the lemma.

During the following, let {Sn}∞n=1 be a sequence of HN−1 measurable sets.

Lemma 10. Let un and u be from section §2.1. Let 0 < h ≤ b and let g(y) := ϕ′(y)(h − y) −
(ϕ(h) − ϕ(y)). For HN−1-a.e. x ∈ Su and ∀ε > 0, exists δ > 0 and R s.t. ∀r < R there exists
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N(r) ∈ N s.t.

sup
n>N(r)

∫
Sn∩Sun∩Q(x,r)

|ϕ(h)− ϕ([un])|dHN−1 < εrN−1

for any sequence of HN−1 measurable set {Sn}∞n=1 s.t.∫
Sn∩Sun∩Q(x,r)

g([un])dHN−1 < δrN−1.

Proof. First we can assume Sn ⊂ Sun always. We see g(y) ≥ 0 and g(y) = 0 iff y = h. g(y) → ∞
as y → 0. And for HN−1 a.e. x ∈ Su,

limr→0

∫
Su∩Q(x,r) ϕ([u])

(2r)N−1
= ϕ([u](x))

Dµµ∞(x) = limr→0

limn→∞
∫
Sun∩Q(x,r) ϕ([un])∫

Su∩Q(x,r) ϕ([u])
<∞.

Fix ε > 0, let δ0 < h s.t.

max{ϕ(h+ δ0)− ϕ(h), ϕ(h)− ϕ(h− δ0)}5Dµµ∞(x)ϕ(b)2N−1

ϕ(h− δ0)
≤ ε

2
.

Then there exists δ > 0 s.t.

2ϕ(b)
δ

min{g(h− δ0), g(h+ δ0)}
≤ ε

2
.

Then there exists R > 0 s.t.

lim
n→∞

∫
Sun∩Q(x,r)

ϕ([un]) ≤ 2Dµµ∞(x)

∫
Su∩Q(x,r)

ϕ([u])∫
Su∩Q(x,r)

ϕ([u]) ≤ 2ϕ([u](x))(2r)N−1

for ∀r < R. It follows

lim
n→∞

∫
Sun∩Q(x,r)

ϕ([un]) ≤ 4Dµµ∞(x)ϕ([u])rN−1 ≤ 4Dµµ∞(x)ϕ(b)2N−1(2r)N−1

for all ∀r < R.
Then ∀r < R, we can find a corresponding N(r) ∈ N s.t.∫

Sun∩Q(x,r)
ϕ([un]) ≤ 5Dµµ∞(x)ϕ(b)2N−1rN−1 (2.13)

for all n > N(r).
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Next let’s consider ∫
Sn∩Q(x,r)

|ϕ(h)− ϕ([un])|dHN−1

=

∫
Sn∩Q(x,r)∩{|[un]−h|>δ0}

|ϕ(h)− ϕ([un])|dHN−1

+

∫
Sn∩Q(x,r)∩{|[un]−h|≤δ0}

|ϕ(h)− ϕ([un])|dHN−1,

we see ∫
Sn∩Q(x,r)∩{|[un]−h|≤δ0} |ϕ(h)− ϕ([un])|dHN−1

≤ max{ϕ(h+ δ0)− ϕ(h), ϕ(h)− ϕ(h− δ0)}HN−1({Sn ∩Q(x, r) ∩ {|[un]− h| ≤ δ0}).

Next consider

ϕ(h− δ0)HN−1(Sn ∩Q(x, r) ∩ {|[un]− h| ≤ δ0})

≤
∫
Sn∩Q(x,r)∩{|[un]−h|≤δ0}

ϕ([un])dHN−1

≤ C0r
N−1

where C0 = 5Dµµ∞(x)ϕ(b)2N−1. Therefore HN−1(Sn ∩Q(x, r)∩{|[un]− h| ≤ δ0}) ≤ C0
ϕ(h−δ0)r

N−1.
It follows ∫

Sn∩Q(x,r)∩{|[un]−h|≤δ0}
|ϕ(h)− ϕ([un])|dHN−1

≤ max{ϕ(h+ δ0)− ϕ(h), ϕ(h)− ϕ(h− δ0)} C0

ϕ(h− δ0)
rN−1.

Next due to the choice of Sn we have∫
Sn∩Q(x,r)∩{|[un]−h|>δ0}

g([un])dHN−1 +

∫
Sn∩Q(x,r)∩{|[un]−h|≤δ0}

g([un])dHN−1

≤ δrN−1.

It follows

min{g(h− δ0), g(h+ δ0)}HN−1(Sn ∩ {|[un]− h| > δ0})

≤
∫
Sn∩{|[un]−h|>δ0}

g([un])dHN−1 ≤ δrN−1.
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So we have HN−1(Sn ∩Q(x, r) ∩ {|[un]− h| > δ0}) < δ
min{g(h−δ0),g(h+δ0)}r

N−1. Finally we have∫
Sn∩Q(x,r)

|ϕ(h)− ϕ([un])|dHN−1

≤
[
2ϕ(b)

δ

min{g(h− δ0), g(h+ δ0)}

+ max{ϕ(h+ δ0)− ϕ(h), ϕ(h)− ϕ(h− δ0)} C0

ϕ(h− δ0)

]
rN−1

≤ εrN−1.

Take the sup to conclude the lemma.

Using the same technique, we can also show the following lemma.

Lemma 11. Let un and u be from section §2.1. Let 0 < h ≤ b. Then we have for HN−1-a.e.
x ∈ Su and ∀ε > 0, exists δ > 0 and R s.t. ∀r < R there exists N(r) ∈ N s.t.

sup
n>N(r)

∫
Sn∩Sun∩{[un]≥h}∩Q(x,r)

(
ϕ′(h)− ϕ′([un])

)
dHN−1 < εrN−1

for any sequence of HN−1 measurable set {Sn}∞n=1 s.t.∫
Sn∩Sun∩{[un]≥h}∩Q(x,r)

(ϕ([un])− ϕ(h)) dHN−1 < δrN−1.

The following lemma can be proved using the exact technique in (7).

Lemma 12. For ∀ε > 0, ∃δ > 0 s.t.∫
Sn∩Sun

ϕ([un])dHN−1 ≤ εrN−1

whenever
∫
Sn∩Sun

ϕ′([un])[un]dHN−1 ≤ δrN−1.

Remark 5. The point of the above two results is to show that if we have value of one functional
of [un] can be as small as we want, then we can infer some other functional of [un] can be as small
as we want.

Notice that those results are based on the fact that un and u are from §2.1. They do not apply
to general sequences of SBV functions.

The following theorem says, no matter how relatively small the region Rδr−δr(x, r) is, we can
always shrink Q(x, r) to some degree such that the fracture energy of un mostly concentrates on
Rδr−δr(x, r). And the reason why we consider a small region Rδr−δr(x, r) rather than the whole cube

Q(x, r) is that later we are going to alter the values of un within the region Rδr−δr(x, r). Once

we change the value of un on the region Rδr−δr(x, r), there could be new jumps created along the

boundary ∂Rδr−δr(x, r). But we want the new jump created on the short side of ∂Rδr−δr(x, r) to be
insignificant by reducing the ’length’ of the short side.

Again, during the following we assume un and u are from section §2.1.
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x

Rδr−δr

Q(x, r)

Sun

Figure 2.2: Illustration of no staircase.

Theorem 5. For HN−1 a.e. x ∈ Su, for ∀ε > 0, ∃δ > 0 and R > 0 s.t. ∀r < R there ∃{tn}∞n=1 ⊂
(u−, u+) and {sn}∞n=1 ⊂ (δr, 2δr) s.t.

lim
n→∞

∫
Sun∩R

sn
−sn (x,r)∩∂∗Entn

|ϕ([un])− ϕ([u](x))|dHN−1 < εrN−1. (2.14)

Moreover

lim
n→∞

∫
(Sun\∂∗Entn )∩Rsn−sn (x,r)

ϕ([un])dHN−1 < εrN−1 (2.15)

lim
n→∞

HN−1((∂∗Entn\Sun) ∩Rsn−sn(x, r)) < εrN−1 (2.16)

lim
n→∞

HN−1(∂Rsn−sn(x, r)\(H(x, r,−sn) ∪H(x, r, sn)) ≤ εrN−1 (2.17)

lim
n→∞

∣∣∣∣∣
∫
Sun∩R

sn
−sn (x,r)

ϕ([un])dHN−1 −HN−1(∂∗Entn ∩R
sn
−sn(x, r))ϕ([u](x))

∣∣∣∣∣ (2.18)

< εrN−1.
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Proof. For HN−1-a.e. x ∈ Su we have

lim
r→0

∫
Q−(x,r)

|u+(x)− u(y)|dy = 0

lim
r→0

∫
Q+(x,r)

|u−(x)− u(y)|dy = 0

lim
r→0

∫
Su∩Q(x,r) ϕ([u])

(2r)N−1
= ϕ([u](x))

lim
r→0

limn→∞
∫
Q(x,r) |∇un|dx
rN−1

= 0

HN−1(∂Q(x, r) ∩ Su) = 0 and HN−1(∂Q(x, r) ∩ Sun) = 0

(2.19)

and

Dµµ∞(x) = lim
r→0

limn→∞
∫
Sun∩Q(x,r) ϕ([un])∫

Su∩Q(x,r) ϕ([u])
<∞.

Denote h := u+(x)− u−(x). Fix ε > 0, regarding lemma (12), ∃δ1 ≤ ε s.t.∫
Sn∩Sun

ϕ([un]) ≤ εrN−1 (2.20)

whenever
∫
Sn∩Sun

ϕ′([un])[un] ≤ 3δ1r
N−1.

And for δ1, regarding lemma (10), ∃δ2 ≤ δ1, R2 and N2(r) s.t. ∀r < R2

sup
n>N2(r)

∫
Sn∩Sun∩Q(x,r)

|ϕ(h)− ϕ([un])|dHN−1 < δ1r
N−1 (2.21)

for any {Sn}∞n=1 s.t.
∫
Sn∩Sun∩Q(x,r)

∫
g([un])dHN−1 < δ2r

N−1.
Then pick δ > 0 and δ0 > 0 s.t.

δ0 ≤δ2

C(N, δ)ϕ(b) ≤δ2

4

ϕ(b)δ0 ≤
δ2

4
.

(2.22)

Then pick ε0 > 0 s.t.

ϕ(b)

√
3
ε0
δ

+ 2Nϕ(

√
3
ε0
δ

) ≤ δ2

4

C0
ε0

δ0h− ε0
≤ δ2

4

δ0h− ε0 > 0

(2.23)

where C0 = 5Dµµ∞(x)ϕ(b)2N−1.
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Considering (2.19), we have for the chosen ε0, ∃R1 s.t.∫
Q−(x,r)

|u+(x)− u(y)|dy ≤ ε0rN∫
Q+(x,r)

|u−(x)− u(y)|dy ≤ ε0rN∫
Su∩Q(x,r)

ϕ([u]) ≤ 2ϕ([u](x))(2r)N−1

lim
n→∞

∫
Q(x,r)

|∇un|dx ≤ ε0rN−1

lim
n→∞

∫
Sun∩Q(x,r)

ϕ([un]) ≤ 2Dµµ∞(x)

∫
Su∩Q(x,r)

ϕ([u])

(2.24)

for all r ≤ R1.
Let R = min{R1, R2}, we see ∀r < R, (2.20), (2.21) and (2.24) all hold. In particular ∀r < R,

we can find N1(r) > N2(r) s.t.∫
Sun∩Q(x,r)

ϕ([un]) ≤ (5Dµµ∞(x)ϕ(b)2N−1)rN−1 ∀n > N1(r). (2.25)

Since we are fixing x and r during the rest of the proof, let Rab denote Rab (x, r) and H(s) denote
H(x, r, s). Because of L1 convergence, we have∫

R−δr−2δr∪R
2δr
δr

|u(y)− un(y)|dy → 0

as n→∞. Then consider ∫
R−δr−2δr

|u+(x)− un(y)|dy +

∫
R2δr
δr

|u−(x)− un(y)|dy

≤
∫
R−δr−2δr

|u+(x)− u(y)|dy +

∫
R−δr−2δr

|u(y)− un(y)|dy

+

∫
R2δr
δr

|u−(x)− u(y)|dy +

∫
R2δr
δr

|u(y)− un(y)|dy

≤
∫
R−δr−2δr

|u+(x)− u(y)|dy +

∫
R2δr
δr

|u−(x)− u(y)|dy

+

∫
R−δr−2δr∪R

2δr
δr

|u(y)− un(y)|dy.

It follows that we can find N(r) > N1(r) s.t.∫
R−δr−2δr

|u+(x)− un(y)|dy +

∫
R2δr
δr

|u−(x)− un(y)|dy ≤ 3ε0r
N ∀n > N(r).
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But ∫
R−δr−2δr

|u+(x)− un(y)|dy +

∫
R2δr
δr

|u−(x)− un(y)|dy

=

∫ 2δr

δr

[∫
H(s)
|T−un − u

−(x)|dHN−1 +

∫
H(−s)

|T−un − u
+(x)|dHN−1

]
ds.

(2.26)

Pick sn ∈ (δr, 2δr) s.t. HN−1(H(sn) ∩ Sun) +HN−1(H(−sn) ∩ Sun) = 0 and∫
H(sn)

|T−un − u
−(x)|dHN−1 +

∫
H(−sn)

|T−un − u
+(x)|dHN−1 ≤ 3ε0r

N

δr
= 3

ε0
δ
rN−1.

Let t ∈ (u−(x), u+(x)), define the following unt by

unt =


un Ω\Rsn−sn
u+(x) Rsn−sn ∩ E

n
t

u−(x) Rsn−sn\E
n
t

. (2.27)

We see unt is defined everywhere on Ω and unt ∈ SBV (Ω), moreover we have∫
Sun∪Sunt

ϕ̃([unt ], [un]) =

∫
Ω\Rsn−sn

ϕ([un]) +

∫
∂Rsn−sn

ϕ([unt ]) +

∫
Rsn−sn

ϕ̃([unt ], [un]).

Then we see the new crack energy on the boundary of Rsn−sn looks like following∫
∂Rsn−sn

ϕ([unt ])dHN−1

=

∫
H(sn)

ϕ(|T−un − u
−(x)|)dHN−1 +

∫
H(−sn)

ϕ(|T−un − u
+(x)|)dHN−1

+

∫
∂Rsn−sn\(H(sn)∪H(−sn))

ϕ([unt ])dHN−1

≤
[
ϕ(b)

√
3
ε0
δ
rN−1 + ϕ(

√
3
ε0
δ

)HN−1(H(sn) ∪H(−sn)) + C(N, δ)ϕ(b)

]
rN−1

≤
[
ϕ(b)

√
3
ε0
δ
rN−1 + 2Nϕ(

√
3
ε0
δ

) + C(N, δ)ϕ(b)

]
rN−1

≤1

2
δ2.

(2.28)

The inequalities come from (2.8), (2.9), (2.22) and (2.23).
Next we see Rsn−sn ∩ Sunt = ∂Ent ∩ R

sn
−sn except for a HN−1 measure 0 set and [unt ] = u+(x) −
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u−(x) = h on ∂Ent ∩R
sn
−sn , so∫

Rsn−sn∩(Sun∪∂∗Ent )
ϕ̃([unt ], [un])dHN−1

=

∫
Rsn−sn∩(Sun\∂∗Ent )

ϕ̃(0, [un])dHN−1 +

∫
Rsn−sn∩(∂∗Ent \Sun )

ϕ(h)dHN−1

+

∫
Rsn−sn∩(Sun∩∂∗Ent )

ϕ̃(h, [un])dHN−1.

But we see ∫
Rsn−sn∩(Sun∩∂∗Ent )

ϕ̃(h, [un])dHN−1

=

∫
Rsn−sn∩(Sun∩∂∗Ent )∩{[un]>h}

ϕ(h, [un])dHN−1

+

∫
Rsn−sn∩(Sun∩∂∗Ent )∩{[un]≤h}

ϕ(h, [un])dHN−1

=

∫
Rsn−sn∩(Sun∩∂∗Ent )∩{[un]>h}

[
ϕ([un])− ϕ′([un])([un]− h)

]
dHN−1

+

∫
Rsn−sn∩(Sun∩∂∗Ent )∩{[un]≤h}

ϕ(h)dHN−1.

For cleanness let’s drop domain Rsn−sn ,∫
Rsn−sn∩(Sun∪∂∗Ent )

ϕ̃([unt ], [un])dHN−1

=

∫
Sun\∂∗Ent

ϕ([un])dHN−1 −
∫
Sun\∂∗Ent

ϕ′([un])[un]dHN−1

+

∫
∂∗Ent \Sun

ϕ(h)dHN−1 +

∫
Sun∩∂∗Ent ∩{[un]>h}

ϕ([un])dHN−1

−
∫
Sun∩∂∗Ent ∩{[un]>h}

ϕ′([un])([un]− h)dHN−1

+

∫
Sun∩∂∗Ent ∩{[un]≤h}

ϕ(h)dHN−1.
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Let −∆ :=
∫
Rsn−sn

ϕ([un])−
∫
Rsn−sn

ϕ̃([unt ], [un]), we have

−∆

=

∫
Sun∩∂∗Ent

ϕ([un]) +

∫
Sun\∂∗Ent

ϕ([un])−
∫
Sun\∂∗Ent

ϕ([un]) +

∫
Sun\∂∗Ent

ϕ′([un])[un]

−
∫
∂∗Ent \Sun

ϕ(h)−
∫
Sun∩∂∗Ent ∩{[un]>h}

ϕ([un]) +

∫
Sun∩∂∗Ent ∩{[un]>h}

ϕ′([un])([un]− h)

−
∫
Sun∩∂∗Ent ∩{[un]≤h}

ϕ(h) +

∫
Sun∩∂∗Ent ∩{[un]≤h}

ϕ′([un])(h− [un])

−
∫
Sun∩∂∗Ent ∩{[un]≤h}

ϕ′([un])(h− [un])

=

∫
Sun

ϕ′([un])[un]−
∫
Sun∩∂∗Ent

ϕ′([un])h−
∫
∂∗Ent \Sun

ϕ(h)

+

∫
Sun∩∂∗Ent ∩{[un]≤h}

[
ϕ′([un])(h− [un])− (ϕ(h)− ϕ([un]))

]
.

Let’s fix t∗ ∈ (u−(x), u+(x)), put back the integral domain Rsn−sn and split −∆ to two pieces,
−∆ = A+B where

A :=∫
Rsn−sn∩Sun∩∂

∗En
t∗∩{[un]≤h}

[
ϕ′([un])(h− [un])− (ϕ(h)− ϕ([un]))

]
dHN−1 (2.29)

and

B :=

∫
Rsn−sn∩Sun

ϕ′([un])[un]dHN−1 −
∫
Rsn−sn∩Sun∩∂

∗En
t∗

ϕ′([un])hdHN−1

−
∫
Rsn−sn∩(∂∗En

t∗\Sun )
ϕ(h)dHN−1.

Considering the co-area formula, B has the following form

B =

∫ +∞

−∞

∫
Rsn−sn∩Sun∩∂

∗Ent

ϕ′([un])dHN−1dt

−
∫ u+

u−

∫
Rsn−sn∩Sun∩∂

∗En
t∗

ϕ′([un])dHN−1dt−
∫
Rsn−sn∩(∂∗En

t∗\Sun )
ϕ(h)dHN−1.

Notice that A ≥ 0 since ϕ′([un])(h− [un])− (ϕ(h)− ϕ([un])) ≥ 0 for all [un] ≤ h.
Then define

T+
δ0

:= {u− < t < u+ : HN−1(Rsn−sn ∩ (∂∗Ent \Sun)) ≥ δ0r
N−1}

T−δ0 := {u− < t < u+ : HN−1(Rsn−sn ∩ (∂∗Ent \Sun)) < δ0r
N−1}.

Notice T+
δ0

is defined differently when δ0 is a scaler. Since
∫
Rsn−sn

|∇un|dx ≤ ε0rN−1, after applying
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co-area formula again we get∫
T+
δ0

HN−1(Rsn−sn ∩ (∂∗Ent \Sun))dt+

∫
T−δ0

HN−1(Rsn−sn ∩ (∂∗Ent \Sun))dt

=

∫ u+

u−
HN−1(Rsn−sn ∩ (∂∗Ent \Sun))dt

< ε0r
N−1.

It follows |T+
δ0
| ≤ ε0

δ0
, |T−δ0 | > h− ε0

δ0
. And since h− ε0

δ0
> 0, we have

|T+
δ0
|

|T−δ0 |
≤ ε0

δ0h−ε0 .

For fixed δ0 and n we always let t∗(δ0, n) ∈ T−δ0 be specifically chosen s.t.

∫
T−δ0

[∫
Rsn−sn∩Sun∩∂

∗Ent

ϕ′([un])dHN−1 −
∫
Rsn−sn∩Sun∩∂

∗En
t∗

ϕ′([un])dHN−1

]
dt ≥ 0.

We see that it’s possible. From now on let t∗ always be chosen that way.
Because of that, we have∫

T−δ0

∫
Rsn−sn∩Sun∩∂

∗Ent

ϕ′([un])dHN−1dt ≥ |T−δ0 |
∫
Rsn−sn∩Sun∩∂

∗En
t∗

ϕ′([un])dHN−1

and thus ∫
T−δ0

∫
Rsn−sn∩Sun∩∂

∗Ent
ϕ′([un])dHN−1dt

|T−δ0 |
≥
∫
Rsn−sn∩Sun∩∂

∗En
t∗

ϕ′([un])dHN−1.

It follows

|T+
δ0
|
∫
Rsn−sn∩Sun∩∂

∗En
t∗

ϕ′([un])dHN−1

≤
|T+
δ0
|

|T−δ0 |

∫
T−δ0

∫
Rsn−sn∩Sun∩∂

∗Ent

ϕ′([un])dHN−1dt

≤
|T+
δ0
|

|T−δ0 |

∫ u+

u−

∫
Rsn−sn∩Sun∩∂

∗Ent

ϕ′([un])dHN−1dt

≤
|T+
δ0
|

|T−δ0 |

∫
Rsn−sn∩Sun

ϕ′([un])[un]dHN−1

≤
|T+
δ0
|

|T−δ0 |

∫
Rsn−sn∩Sun

ϕ([un])dHN−1

≤ ε0
δ0h− ε0

∫
Sun∩Q(x,r)

ϕ([un])

≤ C0
ε0

δ0h− ε0
rN−1 (2.30)
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where C0 = 5Dµµ∞(x)ϕ(b)2N−1 > 0, regarding (2.25). Next consider

B

≥
∫ u+

u−

∫
Rsn−sn∩Sun∩∂

∗Ent

ϕ′([un])dHN−1dt−
∫ u+

u−

∫
Rsn−sn∩Sun∩∂

∗En
t∗

ϕ′([un])dHN−1dt

−
∫
Rsn−sn∩(∂∗En

t∗\Sun )
ϕ(h)dHN−1

≥
∫
T+
δ0

[∫
Rsn−sn∩Sun∩∂

∗Ent

ϕ′([un])dHN−1 −
∫
Rsn−sn∩Sun∩∂

∗En
t∗

ϕ′([un])dHN−1

]
dt

+

∫
T−δ0

[∫
Rsn−sn∩Sun∩∂

∗Ent

ϕ′([un])dHN−1 −
∫
Rsn−sn∩Sun∩∂

∗En
t∗

ϕ′([un])dHN−1

]
dt

−
∫
Rsn−sn∩(∂∗En

t∗\Sun )
ϕ(h)dHN−1

≥
∫
T+
δ0

[∫
Rsn−sn∩Sun∩∂

∗Ent

ϕ′([un])dHN−1 −
∫
Rsn−sn∩Sun∩∂

∗En
t∗

ϕ′([un])dHN−1

]
dt

−
∫
Rsn−sn∩(∂∗En

t∗\Sun )
ϕ(h)dHN−1

≥ −
∫
T+
δ0

[∫
Rsn−sn∩Sun∩∂

∗En
t∗

ϕ′([un])dHN−1

]
dt−

∫
Rsn−sn∩(∂∗En

t∗\Sun )
ϕ(h)dHN−1.

According to (2.30) and the fact that t∗ is always chosen in T−δ0 , we have

B ≥ −C0
ε0

δ0h− ε0
rN−1 − ϕ(h)δ0r

N−1 ≥ (−C0
ε0

δ0h− ε0
− ϕ(b)δ0)rN−1 (2.31)

≥ −δ2

2
rN−1.

Then consider the energy drop E(un, un)− E(unt∗ , un) where

E(un, un) =

∫
Ω
|∇un|2dx+

∫
Sun

ϕ([un])dHN−1

and

E(unt∗ , un)

=

∫
Ω
|∇unt∗ |2dx+

∫
Sun∪Sun

t∗

ϕ̃([unt∗ ], [un])dHN−1

=

∫
Ω\Rsn−sn

|∇un|2dx+

∫
Ω\Rsn−sn

ϕ([un]) +

∫
∂Rsn−sn

ϕ([un]) +

∫
Rsn−sn

ϕ̃([unt∗ ], [un])

≤
∫

Ω\Rsn−sn
|∇un|2dx+

∫
Ω\Rsn−sn

ϕ([un]) +

∫
Rsn−sn

ϕ̃([unt∗ ], [un]) +
1

2
δ2r

N−1.
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Thus we have
E(un, un)− E(unt∗ , un)

≥
∫
Rsn−sn

ϕ([un])−
∫
Rsn−sn

ϕ̃([unt ], [un])− 1

2
δ2r

N−1

=−∆− 1

2
δ2r

N−1

=A+B − 1

2
δ2r

N−1

(2.32)

considering the definition −∆. Then, according to unilateral minimality, we see E(un, un) −
E(unt∗ , un) ≤ 0, and thus

A ≤ −B +
1

2
δ2r

N−1 ≤ δ2r
N−1

considering (2.31). That is∫
Rsn−sn∩Sun∩∂

∗En
t∗∩{[un]≤h}

[
ϕ′([un])(h− [un])− (ϕ(h)− ϕ([un]))

]
dHN−1 ≤ δ2r

N−1.

Due to (2.20) we have∫
Rsn−sn∩Sun∩∂

∗En
t∗∩{[un]≤h}

(ϕ(h)− ϕ([un]))dHN−1 ≤ δ1r
N−1 ≤ εrN−1.

Therefore one direction has been proved.

Considering (2.32) and the fact that A ≥ 0, we have

B ≤ 1

2
δ2r

N−1.

For clearness let’s again drop the integral domain Rsn−sn for now. Consider the following

B =

∫
Sun

ϕ′([un])[un]−
∫
Sun∩∂∗Ent∗

ϕ′([un])h−
∫
∂∗En

t∗\Sun
ϕ(h)

=

∫
Sun∩∂∗Ent∗

ϕ′([un])[un] +

∫
Sun\∂∗Ent∗

ϕ′([un])[un]−
∫
Sun∩∂∗Ent∗

ϕ′([un])h

−
∫
∂∗En

t∗\Sun
ϕ(h)

=

∫
Sun∩∂∗Ent∗∩{[un]>h}

ϕ′([un])([un]− h) +

∫
Sun∩∂∗Ent∗∩{[un]≤h}

ϕ′([un])([un]− h)

+

∫
Sun\∂∗Ent∗

ϕ′([un])[un]−
∫
∂∗En

t∗\Sun
ϕ(h)

≥
∫
Sun∩∂∗Ent∗∩{[un]≤h}

ϕ′([un])([un]− h) +

∫
Sun\∂∗Ent∗

ϕ′([un])[un]−
∫
∂∗En

t∗\Sun
ϕ(h).
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First we see
∫
∂∗En

t∗\Sun
ϕ(h) ≤ ϕ(b)δ0r

N−1 ≤ δ2
4 r

N−1. With a bit of manipulation we get∫
Sun\∂∗Ent∗

ϕ′([un])[un]dHN−1

≤
∫
Sun∩∂∗Ent∗∩{[un]≤h}

ϕ′([un])(h− [un]) +
3

4
δ2r

N−1

≤
∫
Sun∩∂∗Ent∗∩{[un]≤h}

[
ϕ′([un])(h− [un])− (ϕ(h)− ϕ([un]))

]
+

∫
Sun∩∂∗Ent∗∩{[un]≤h}

[ϕ(h)− ϕ([un])] +
3

4
δ2r

N−1

≤ 3δ1r
N−1.

(2.20) implies ∫
Sun\∂∗Ent∗

ϕ([un]) ≤ εrN−1.

Thus (2.15) has been proved. Next consider

−∆

=

∫
Sun∩∂∗Ent∗

ϕ([un]) +

∫
Sun\∂∗Ent∗

ϕ([un])−
∫
Sun\∂∗Ent∗

ϕ([un]) +

∫
Sun\∂∗Ent∗

ϕ′([un])[un]

−
∫
∂∗En

t∗\Sun
ϕ(h)−

∫
Sun∩∂∗Ent∗∩{[un]>h}

ϕ([un]) +

∫
Sun∩∂∗Ent∗∩{[un]>h}

ϕ′([un])([un]− h)

−
∫
Sun∩∂∗Ent∗∩{[un]≤h}

ϕ(h)

=

∫
Sun∩∂∗Ent∗∩{[un]>h}

ϕ([un]) +

∫
Sun∩∂∗Ent∗∩{[un]≤h}

ϕ([un]) +

∫
Sun\∂∗Ent∗

ϕ′([un])[un]

−
∫
∂∗Ent \Sun

ϕ(h)−
∫
Sun∩∂∗Ent∗∩{[un]>h}

ϕ([un]) +

∫
Sun∩∂∗Ent∗∩{[un]>h}

ϕ′([un])([un]− h)

−
∫
Sun∩∂∗Ent∗∩{[un]≤h}

ϕ(h)

=

∫
Sun∩∂∗Ent∗∩{[un]≤h}

ϕ([un]) +

∫
Sun\∂∗Ent∗

ϕ′([un])[un]−
∫
∂∗En

t∗\Sun
ϕ(h)

+

∫
Sun∩∂∗Ent∗∩{[un]>h}

ϕ′([un])([un]− h)−
∫
Sun∩∂∗Ent∗∩{[un]≤h}

ϕ(h)

=

∫
Sun\∂∗Ent∗

ϕ′([un])[un] +

∫
Sun∩∂∗Ent∗∩{[un]>h}

ϕ′([un])([un]− h)

−
∫
Sun∩∂∗Ent∗∩{[un]≤h}

[ϕ(h)− ϕ([un])]−
∫
∂∗En

t∗\Sun
ϕ(h).
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Again consider

0 ≥ E(un, un)− E(unt∗ , un) ≥ −∆− 1

2
δ2r

N−1

we have ∫
Sun∩∂∗Ent ∩{[un]>h}

ϕ′([un])([un]− h)

≤
∫
Sun∩∂∗Ent ∩{[un]≤h}

[ϕ(h)− ϕ([un])] +

∫
∂∗Ent \Sun

ϕ(h) +
1

2
δ2r

N−1

≤ 7

4
δ1r

N−1. (2.33)

Next consider ∫
Sun∩∂∗Ent∗∩{[un]>h}

(ϕ([un])− ϕ(h))

≤
∫
Sun∩∂∗Ent∗∩{[un]>h}

(
ϕ([un])

[un]
[un]− ϕ(h))

≤
∫
Sun∩∂∗Ent∗∩{[un]>h}

(
ϕ(h)

h
[un]− ϕ(h))

≤ ϕ(h)

h

∫
Sun∩∂∗Ent∗∩{[un]>h}

([un]− h)

≤ ϕ(h)

ϕ′(M)h

∫
Sun∩∂∗Ent∗∩{[un]>h}

ϕ′(b)([un]− h)

≤ ϕ(h)

ϕ′(b)h

∫
Sun∩∂∗Ent∗∩{[un]>h}

ϕ′([un])([un]− h)

≤ ϕ(h)

ϕ′(b)h

7

4
δ1r

N−1

≤ ϕ(h)

ϕ′(b)h

7

4
εrN−1.

The last estimate comes from (2.33). Thus the other direction has been proved. (2.15), (2.16),
(2.17) and (2.18) should follow directly.

2.3.3 Proof of Minimality with α

Define

α(x) =

{
Dµµ∞(x) x ∈ Su
1 elsewhere

.

Lemma 13. Let v ∈ SBV (Ω′). For HN−1-a.e. x ∈ Su and ∀ε > 0, ∃δ and R s.t. ∀r < R,
∃{vn}∞n=1 ⊂ SBV (Ω′) and {sn}∞n=1 ⊂ (δr, 2δr) s.t.

lim
n→∞

∫
(Svn∪Sun )Rsn−sn (x,r)

ϕ̃([vn], [un]) ≤
∫

(Su∪Sv)∩R2δr
−2δr(x,r)

αϕ̃([v], [u]) + εrN−1. (2.34)
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Moreover

∇vu = 0 on Rsn−sn(x, r) (2.35)

vn = v on Ω′\Rsn−sn(x, r) (2.36)

lim
n→∞

∫
∂Rsn−sn (x,r)

ϕ([vn])dHN−1 ≤ εrN−1. (2.37)

Proof. For HN−1-a.e. x ∈ Su

α(x) = lim
r→0

∫
Q(x,r) αϕ([u])∫
Q(x,r) ϕ([u])

= lim
r→0

∫
Q(x,r) αϕ([u])

ϕ([u](x))(2r)N−1
= lim

r→0

∫
Rδr−δr(x,r)

αϕ([u])

ϕ([u](x))(2r)N−1

= lim
r→0

limn→∞
∫
Rδr−δr(x,r)

ϕ([un])

ϕ([u](x))(2r)N−1

α(x) = lim
r→0

limn→∞
∫
R2δr
−2δr(x,r)

ϕ([un])

ϕ([u](x))(2r)N−1

(2.38)

and

α(x)ϕ̃([v](x), [u](x)) = lim
r→0

∫
Rδr−δr(x,r)

αϕ̃([v], [u])dHN−1

(2r)N−1
(2.39)

for ∀δ < 1
2 .

Thus ∀δ < 1
2 and ∀ε > 0, ∃R s.t. ∣∣∣∣∣α(x)−

limn→∞
∫
Rδr−δr(x,r)

ϕ([un])

ϕ([u](x))(2r)N−1

∣∣∣∣∣ ≤ ε∣∣∣∣∣α(x)−
limn→∞

∫
R2δr
−2δr(x,r)

ϕ([un])

ϕ([u](x))(2r)N−1

∣∣∣∣∣ ≤ ε∣∣∣∣∣∣α(x)ϕ̃([v](x), [u](x))−

∫
Rδr−δr(x,r)

αϕ̃([v], [u])dHN−1

(2r)N−1

∣∣∣∣∣∣ ≤ ε∣∣∣∣∣∣α(x)ϕ̃([v](x), [u](x))−

∫
R2δr
−2δr(x,r)

αϕ̃([v], [u])dHN−1

(2r)N−1

∣∣∣∣∣∣ ≤ ε

(2.40)

for all r < R.
Then consider lemma (5), ∀ε > 0 ∃δ > 0 and R > 0 s.t. ∀r < R there exists {tn}∞n=1 ⊂ (u−, u+)
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and {sn}∞n=1 ⊂ (δr, 2δr) s.t.

lim
n→∞

∫
Sun∩R

sn
−sn (x,r)∩∂∗Entn

|ϕ([un])− ϕ([u](x))|dHN−1 ≤ εrN−1 (2.41)

lim
n→∞

∫
(Sun\∂∗Entn )∩Rsn−sn (x,r)

ϕ([un])dHN−1 ≤ εrN−1 (2.42)

lim
n→∞

HN−1((∂∗Entn\Sun) ∩Rsn−sn(x, r)) ≤ εrN−1 (2.43)

lim
n→∞

HN−1(∂Rsn−sn(x, r)\(H(x, r,−sn) ∪H(x, r, sn)) ≤ εrN−1 (2.44)

lim
n→∞

∣∣∣∣∣
∫
Sun∩R

sn
−sn (x,r)

ϕ([un])dHN−1 −HN−1(∂∗Entn ∩R
sn
−sn(x, r))ϕ([u](x))

∣∣∣∣∣ (2.45)

≤ εrN−1

lim
n→∞

∫
H(x,r,−sn)

ϕ(|T−v − v+(x)|) +

∫
H(x,r,sn)

ϕ(|T−v − v−(x)|) ≤ εrN−1. (2.46)

We see (2.46) can be shown using the same argument we used in (2.26). Regarding lemma (11) we
also have

lim
n→∞

∫
Sun∩{[un]≥[u](x)}∩Rsn−sn (x,r)∩∂∗Entn

(
ϕ′([u](x))− ϕ′([un])

)
≤ εrN−1. (2.47)

Next consider

HN−1(∂∗Entn ∩R
sn
−sn(x, r))

(2r)N−1
− α(x)

=
HN−1(∂∗Entn ∩R

sn
−sn(x, r))

(2r)N−1
−

∫
R2δr
−2δr(x,r)

ϕ([un])

ϕ([u](x))(2r)N−1

+

∫
R2δr
−2δr(x,r)

ϕ([un])

ϕ([u](x))(2r)N−1
− α(x)

≤
HN−1(∂∗Entn ∩R

sn
−sn(x, r))

(2r)N−1
−

∫
Rsn−sn (x,r) ϕ([un])

ϕ([u](x))(2r)N−1

+

∫
R2δr
−2δr(x,r)

ϕ([un])

ϕ([u](x))(2r)N−1
− α(x)

≤ 1

ϕ([u](x))2N−1
ε+ ε. (2.48)

The last inequality comes respectively from (2.45) and (2.40).
Next construct SBV function vn as follows

vn =


v on Ω\Rsn−sn(x, r)

v+(x) on Rsn−sn(x, r) ∩ Entn
v−(x) on Rsn−sn(x, r)\Entn

.
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First we see, according to (2.46) and (2.44), that∫
∂Rsn−sn (x,r)

ϕ([vn]) ≤ (εϕ(b) + ε)rN−1,

which proves (2.37).
Second we see ∫

(Svn∪Sun )∩Rsn−sn (x,r)
ϕ̃([vn], [un])

=

∫
(∂∗Entn∪Sun )∩Rsn−sn (x,r)

ϕ(|v+(x)− v−(x)|, [un])

=

∫
(∂∗Entn∪Sun )∩Rsn−sn (x,r)

ϕ̃([v](x), [un])

=

∫
(∂∗Entn\Sun )∩Rsn−sn (x,r)

ϕ([v](x)) +

∫
(Sun\∂∗Entn )∩Rsn−sn (x,r)

ϕ̃(0, [un])

+

∫
(∂∗Entn∩Sun )∩Rsn−sn (x,r)

ϕ̃([v](x), [un])

≤ (ϕ(b)ε+ ε)rN−1 +

∫
(∂∗Entn∩Sun )∩Rsn−sn (x,r)

ϕ̃([v](x), [un]).

Denote An = (∂∗Entn ∩ Sun) ∩Rsn−sn(x, r), let’s consider

∆ :=

∫
An

ϕ̃([v](x), [un])−
∫
An

ϕ̃([v](x), [u](x))

≤
∫
An∩{[un]>[u](x)}

ϕ̃([v](x), [un])−
∫
An∩{[un]>[u](x)}

ϕ̃([v](x), [u](x)).

If [v](x) ≤ [u](x)

∆ ≤
∫
An∩{[un]>[u](x)}

(
ϕ([un])− ϕ′([un])([un]− [v](x))− ϕ([u](x)) + ϕ′([u](x))([u](x)− [v](x))

)
≤

∫
An∩{[un]>[u](x)}

(ϕ([un])− ϕ([u](x))) + ([u](x)− [v](x))

∫
An∩{[un]>[u](x)}

[
ϕ′([u](x))− ϕ′([un])

]
≤ (ε+ bε)rN−1,

the last inequality is due to (2.47).
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If [v](x) > [u](x),

∆ ≤
∫
An∩{[un]>[u](x)}

ϕ̃([v](x), [un])−
∫
An∩{[un]>[u](x)}

ϕ([v](x))

≤
∫
An∩{[un]>[v](x)}

(ϕ̃([v](x), [un])− ϕ([v](x)))

≤
∫
An∩{[un]>[v](x)}

(ϕ([un])− ϕ([v](x)))

≤
∫
An∩{[un]>[v](x)}

(ϕ([un])− ϕ([u](x)))

≤ εrN−1.

It follows ∫
(Svn∪Sun )∩Rsn−sn (x,r)

ϕ̃([vn], [un])

−
∫

(∂∗Entn∩Sun )∩Rsn−sn (x,r)
ϕ̃([v](x), [u](x))

≤
∫

(∂∗Entn∩Sun )∩Rsn−sn (x,r)
ϕ̃([vn], [un])

−
∫

(∂∗Entn∩Sun )∩Rsn−sn (x,r)
ϕ̃([v](x), [u](x))

+ (ϕ(b)ε+ ε)rN−1

≤(2ε+ bε+ ϕ(b)ε+ ε)rN−1

=(3ε+ bε+ ϕ(b)ε)rN−1.

(2.49)

It follows ∫
(Svn∪Sun )∩Rsn−sn (x,r)

ϕ̃([vn], [un])−
∫

(Su∪Sv)∩Rsn−sn (x,r)
αϕ̃([v], [u])

=

∫
(Svn∪Sun )∩Rsn−sn (x,r)

ϕ̃([vn], [un])−HN−1(∂∗Entn ∩R
sn
−sn(x, r))ϕ̃([v](x), [u](x))

+HN−1(∂∗Entn ∩R
sn
−sn(x, r))ϕ̃([v](x), [u](x))− α(x)ϕ̃([v](x), [u](x))(2r)N−1

+α(x)ϕ̃([v](x), [u](x))(2r)N−1 −
∫

(Su∪Sv)∩Rsn−sn (x,r)
αϕ̃([v], [u])

≤ (3ε+ bε+ ϕ(b)ε)rN−1 +

[
ϕ̃([v](x), [u](x))

ϕ([u](x))
ε+ εϕ̃([v](x), [u](x))2N−1

]
rN−1

+2N−1εrN−1

≤ O(ε)rN−1

regarding (2.49), (2.48) and (2.40). Thus we have proved the main result. (2.35) and (2.36) are
due to construction of vn.
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Once lemma (13) has been proved, it is straight forward to show the following result using
Besicovitch’s covering theorem.

Theorem 6.∫
Ω′
|∇u|2dx+

∫
Su

αϕ([u])dHN−1 ≤
∫

Ω′
|∇v|2dx+

∫
Su∪Sv

αϕ̃([v], [u])dHN−1

for all v ∈ SBV (Ω) with v = u on Ω′\Ω.

Proof. Recall that µn := ϕ([un])HN−1bSun
∗
⇀ µ∞, the weak limit is absolutely continuous with

respect to HN−1bSu. Let µ∞ = ξHN−1bSu where ξ is HN−1 measurable on Su. Then define Radon
measure

w := αϕ̃([v], [u])HN−1bSu + ξHN−1bSu.

Fix ε > 0, let U be open s.t. Su ⊂ U and |U | << ε. Then consider the collection of closed
cubes F : {Q(x, r) : Q(x, r) satisfies the following }

1. x ∈ Su.

2. Q(x, r) is oriented by ν(x).

3. Q(x, r) ⊂ U .

4.
∫
Q(x,r)\Rδr−δr(x,r)

ϕ([v]) ≤ εϕ([u](x))rN−1.

5.
∫
Q(x,r)\Rδr−δr(x,r)

ξ ≤ εϕ([u](x))rN−1.

and

lim
n→∞

∫
(Svn∪Sun )Rsn−sn (x,r)

ϕ̃([vn], [un])

≤
∫

(Su∪Sv)∩R2δr
−2δr(x,r)

αϕ̃([v], [u]) + εϕ([u](x))rN−1.

(2.50)

Here vn, sn and δ are the same as in lemma (13). Then according to Bescovitch covering theorem, we
can find a countable family of disjoint closed cubes

⋃∞
i=1Q(xi, ri) ⊂ F s.t. w(Su\

⋃∞
i=1Q(xi, ri)) =

0. Pick an integer J s.t.

w(Su\
J⋃
i=1

Q(xi, ri)) < ε. (2.51)

Since Q(xi, ri) are disjoint, let’s define

ṽn =

{
vin on each Q(xi, ri)

v on Ω′\
⋃J
i=1Q(xi, ri)

.
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During the following we let n be big enough. It follows∫
Ω′
|∇ṽn|2dx+

∫
Sṽn∪Sun

ϕ̃([ṽn], [un])−
∫

Ω′
|∇v|2dx−

∫
Sv∪Su

αϕ̃([v], [u])

≤
∫
Sṽn∪Sun

ϕ̃([ṽn], [un])−
∫
Sv∪Su

αϕ̃([v], [u])

≤
∫
Sṽn∪Sun∩(Ω′\

⋃
iQ(xi,ri))

ϕ̃([v], [un])−
∫
Sv∪Su∩(Ω′\

⋃
iQ(xi,ri))

αϕ̃([v], [u])

+

∫
Sṽn∪Sun∩

⋃
iQ(xi,ri)

ϕ̃([ṽn], [un])−
∫
Sv∪Su∩

⋃
iQ(xi,ri)

αϕ̃([v], [u]).

We see ∫
Sv∪Sun∩(Ω′\

⋃
iQ(xi,ri))

ϕ̃([v], [un])−
∫
Sv∪Su∩(Ω′\

⋃
iQ(xi,ri))

αϕ̃([v], [u])

≤
∫
Sv∩(Ω′\

⋃
iQ(xi,ri))

ϕ([v]) +

∫
Sun∩(Ω′\

⋃
iQ(xi,ri))

ϕ([un])

−
∫
Sv∪Su∩(Ω′\

⋃
iQ(xi,ri))

αϕ̃([v], [u])

≤
∫
Sun∩(Ω′\

⋃
iQ(xi,ri))

ϕ([un]).

Due to (2.51), limn→∞
∫
Sun∩(Ω′\

⋃
iQ(xi,ri))

ϕ([un]) ≤ ε.
Then we see ∫

Sṽn∪Sun∩
⋃
iQ(xi,ri)

ϕ̃([ṽn], [un])−
∫
Sv∪Su∩

⋃
iQ(xi,ri)

αϕ̃([v], [u])

=

∫
⋃
iQ(xi,ri)\

⋃
R
sin
−sin

ϕ̃([v], [un])−
∫
⋃
iQ(xi,ri)\

⋃
R

2δri
−2δri

αϕ̃([v], [u])

+

∫
⋃
R
sin
−sin

ϕ̃([ṽn], [un])−
∫
⋃
R

2δri
−2δri

αϕ̃([v], [u]).

It follows ∫
⋃
R
sin
−sin

ϕ̃([ṽn], [un])−
∫
⋃
R

2δri
−2δri

αϕ̃([v], [u])

=

J∑
i=1

∫
R
sin
−sin

ϕ̃([vin], [un])−
J∑
i=1

∫
R

2δri
−2δri

αϕ̃([v], [u])

≤ ε
J∑
i=1

ϕ([u](xi))r
N−1
i .
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The inequality is due to (2.50). And∫
⋃
iQ(xi,ri)\

⋃
R
sin
−sin

ϕ̃([v], [un])−
∫
⋃
iQ(xi,ri)\

⋃
R

2δri
−2δri

αϕ̃([v], [u])

≤
∫
⋃
iQ(xi,ri)\

⋃
R
sin
−sin

ϕ̃([v], [un])

≤
∫
⋃
iQ(xi,ri)\

⋃
R
sin
−sin

ϕ([v]) +

∫
⋃
iQ(xi,ri)\

⋃
R
sin
−sin

ϕ([un])

≤
∫
⋃
iQ(xi,ri)\

⋃
R
sin
−sin

ϕ([v]) +

∫
⋃
iQ(xi,ri)\

⋃
R
sin
−sin

ϕ([un])

≤
∫
⋃
iQ(xi,ri)\

⋃
R
δri
−δri

ϕ([v]) +

∫
⋃
iQ(xi,ri)\

⋃
R
δri
−δri

ϕ([un])

≤
J∑
i=1

∫
Q(xi,ri)\

⋃
R
δri
−δri

ϕ([v]) +
J∑
i=1

∫
Q(xi,ri)\

⋃
R
δri
−δri

ϕ([un])

≤ ε

J∑
i=1

ϕ([u](xi))r
N−1
i + ε

J∑
i=1

ϕ([u](xi))r
N−1
i .

The last inequality is due to condition (4) and (5) of the chosen cubes.
To sum up all the estimates, we see∫

Ω′
|∇ṽn|2dx+

∫
Sṽn∪Sun

ϕ̃([ṽn], [un])−
∫

Ω′
|∇v|2dx−

∫
Sv∪Su

αϕ̃([v], [u])

≤ ε+ 3ε
J∑
i=1

ϕ([u](xi))r
N−1
i

≤ O(ε).

We see
∑J

i=1 ϕ([u](xi))r
N−1
i →

∫
Su
ϕ([u])dHN−1 as we choose finer cover of Su.

According to lower-semi-continuity and unilateral minimality∫
Ω′
|∇u|2dx+

∫
Su

αϕ([u])dHN−1

≤ lim inf
n→∞

[∫
Ω′
|∇un|2dx+

∫
Sun

ϕ([un])dHN−1

]

≤ lim inf
n→∞

[∫
Ω′
|∇ṽn|2dx+

∫
Sṽn∪Sun

ϕ([ṽn][un])dHN−1

]

≤
∫

Ω′
|∇v|2dx+

∫
Su∪Sv

αϕ̃([v], [u])dHN−1 +O(ε).
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This concludes our main result of the section. We show that the crack energy of un concentrates
on reduced boundary of some level sets. And due to this condition, the density function α only
depends on the oscillation, if there’s any. Moreover we can show that the density α can be passed
to the minimality independent of the choose of test function v.
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Chapter 3

The Evolution Problem

3.1 Convergence of the Energy

Just by looking at a sequence of unilateral minimizers is not enough to exclude the oscillation
complication. We then move on to the evolution problem because the history after all is union
of all cracks from the previous minimizers at the discrete time. The problem is as approximating
steps becomes more and more the minimizers become hard to control. So we hope to find finitely
many minimizers that could represent the whole evolution to make our analysis easier.

Follow the time discretization procedure described in section §1.1, we see γin is defined on Γin,
and the existence of minimizers in each step can be derived from SBV compactness. Then define
un(t) = uin for tin ≤ t < ti+1

n and for ∀0 ≤ i < 2n. We see un(t) is well defined on [0, 1] for ∀n > 0.
Define

En(t) :=

∫
Ω
|∇un(t)|2dx+

∫
Sun(t)∪Γn(t)

ϕ̃([un(t)], γn(t))dHN−1

At time ti+1
n , pick v = un(tin) + g(ti+1

n )− g(tin) as a test function, we get

En(ti+1
n ) ≤

∫
Ω
|∇un(tin) +∇g(ti+1

n )−∇g(tin)|2dx+

∫
S
un(tin)

∪Γn(tin)
ϕ̃([un(tin)], γn(tin))dHN−1

≤En(tin) +

∫
Ω
|∇g(ti+1

n )−∇g(tin)|2dx+ 2

∫
Ω
∇un(tin) · (∇g(ti+1

n )−∇g(tin))dx

≤En(tin) +

∫
Ω

∣∣ ∫ ti+1
n

tin

∇ġ(s)ds
∣∣2dx+ 2

∫
Ω
∇un(tin) · (

∫ ti+1
n

tin

∇ġ(s)ds)dx

≤En(tin) +

∫
Ω

( ∫ ti+1
n

tin

∣∣∇ġ(s)
∣∣ds)2dx+ 2

∫ ti+1
n

tin

∫
Ω
∇un(tin) · ∇ġ(s)dxds

≤En(tin) +

∫
Ω

[( ∫ ti+1
n

tin

∣∣∇ġ(s)
∣∣2ds) 1

2
(
∆tn

) 1
2

]2
dx+ 2

∫ ti+1
n

tin

∫
Ω
∇un(s) · ∇ġ(s)dxds

≤En(tin) + ∆tn

∫ ti+1
n

tin

∫
Ω

∣∣∇ġ(s)
∣∣2dxds+ 2

∫ ti+1
n

tin

∫
Ω
∇un(s) · ∇ġ(s)dxds
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Then sum from i to j where j > i we get

En(tjn) ≤En(tin) + ∆tn

∫ tjn

tin

∫
Ω

∣∣∇ġ(s)
∣∣2dxds+ 2

∫ tjn

tin

∫
Ω
∇un(s) · ∇ġ(s)dxds

On the other hand for t = tin, take v = ui+1
n + g(tin)− g(ti+1

n ) as test function to get

En(tin) ≤En(ti+1
n ) +

∫
Ω
|∇g(tin)−∇g(ti+1

n )|2dx+ 2

∫
Ω
∇un(ti+1

n ) · (∇g(tin)−∇g(ti+1
n ))dx

≤En(ti+1
n ) + ∆tn

∫ ti+1
n

tin

∫
Ω

∣∣∇ġ(s)
∣∣2dxds− 2

∫ ti+1
n

tin

∫
Ω
∇un(s+ ∆tn) · ∇ġ(s)dxds

So sum from i to j to get

En(tin) ≤En(tjn) + ∆tn

∫ tjn

tin

∫
Ω

∣∣∇ġ(s)
∣∣2dxds− 2

∫ tjn

tin

∫
Ω
∇un(s+ ∆tn) · ∇ġ(s)dxds

It follows

En(tin)−∆tn

∫ tjn

tin

∫
Ω

∣∣∇ġ(s)
∣∣2dxds+ 2

∫ tjn

tin

∫
Ω
∇un(s+ ∆tn) · ∇ġ(s)dxds

≤ En(tjn) ≤

En(tin) + ∆tn

∫ tjn

tin

∫
Ω

∣∣∇ġ(s)
∣∣2dxds+ 2

∫ tjn

tin

∫
Ω
∇un(s) · ∇ġ(s)dxds

Set i = 0 and let t ∈ I∞, we see for sufficiently large n, t = tjn for some n and j. Then we have

E(0)−∆tn

∫ t

0

∫
Ω

∣∣∇ġ(s)
∣∣2dxds+ 2

∫ t

0

∫
Ω
∇un(s+ ∆tn) · ∇ġ(s)dxds

≤ En(t) ≤ (3.1)

E(0) + ∆tn

∫ t

0

∫
Ω

∣∣∇ġ(s)
∣∣2dxds+ 2

∫ t

0

∫
Ω
∇un(s) · ∇ġ(s)dxds

Now we have bounds for the sequence En(t), next is to show the bounds converge. The following
results are pretty straight forward.

Lemma 14.

sup
t,n

∫
Ω
|∇un(t)|2dx <∞

sup
t,n

En(t) <∞

sup
t,n

∫
Γn(t)

ϕ̃(0, γn(t))dHN−1 <∞
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Proof. At each time t, pick g(t) as test function to get∫
Ω
|∇un(t)|2dx+

∫
Sun(t)∪Γn(t)

ϕ̃([un(t)], γn(t))dHN−1

≤
∫

Ω
|∇g(t)|2dx+

∫
Sun(t)∪Γn(t)

ϕ̃(0, γn(t))dHN−1

Since ∫
Sun(t)∪Γn(t)

ϕ̃([un(t)], γn(t))dHN−1 ≥
∫
Sun(t)∪Γn(t)

ϕ̃(0, γn(t))dHN−1

we get
∫

Ω |∇un(t)|2dx ≤
∫

Ω |∇g(t)|2dx, due to definition of g(t) the first result is shown.
Considering (3.1),

En(t) ≤ E(0) + ∆tn

∫ t

0

∫
Ω

∣∣∇ġ(s)
∣∣2dxds+ 2

∫ t

0

∫
Ω
∇un(s) · ∇ġ(s)dxds

Due to Cauchy-Schwartz inequality and uniform boundedness of ‖∇ġ(t)‖L2 , the second result is
proved.

The third result is straight forward.

Let In :=
⋃2n

i=0 t
i
n and I∞ :=

⋃∞
n=1 In, we see I∞ is a dense and countable subset of [0, 1].

For a1 ∈ I∞ we have supnEn(a1) < ∞, by SBV compactness we can extract a subsequence

{un(a1)}∞n=1(not relabeled) and u(a1) ∈ SBV (Ω) s.t. un(a1)
SBV
⇀ u(a1). Then apply the diagonal

argument we can extract a subsequence {un(t)}∞n=1(not relabeled) s.t.

un(t)
SBV
⇀ u(t) ∀ t ∈ I∞

We see u(t) is well defined on the dense and countable subset I∞.
Define γn(t) :=

∨
τ<t[un(τ)] and Γn(t) := ∪τ<tSun(τ). We have at each n the global minimality∫

Ω
|∇un(t)|2dx+

∫
Sun(t)∪Γn(t)

ϕ̃([un(t)], γn(t))dHN−1 (3.2)

≤
∫

Ω
|∇v|2dx+

∫
Sv∪Γn(t)

ϕ̃([v], γn(t))dHN−1 (3.3)

for ∀v = g(t) on ∂Ω, for all t = tin(0 ≤ i ≤ 2n). Define γ(t) :=
∨
τ<t[u(τ)] and Γ(t) :=

⋃
τ<t Su(τ).

Our first question is if it’s true ∀t ∈ I∞∫
Ω
|∇u(t)|2dx+

∫
Su(t)∪Γ(t)

ϕ̃([u(t)], γ(t))dHN−1 (3.4)

≤
∫

Ω
|∇v|2dx+

∫
Sv∪Γ(t)

ϕ̃([v], γ(t))dHN−1 (3.5)

∀v ∈ SBV (Ω) s.t. v = g(t) on ∂Ω. If the above minimality could be proved, the next step would
be to extend the minimality to the whole time interval [0, 1] and to show the global stability in
quasi-static evolution. However, due to possible complications in the sequence of minimizers, it is
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almost impossible to obtain the minimality without excluding those complications mentioned in
Chapter 1.

In this section we show that there exists a subsequence En(t) (not relabeled) s.t. it converges
for all t ∈ [0, 1]. Before introducing the next lemma let’s define the non-negative function,

mn(t) :=

∫
Γn(t)

ϕ̃(0, γn(t))dHN−1

Since supnmn(1) <∞, we have, according to lemma (24), there exists an non-decreasing function
m∞(t) and a subsequence {mn(t)}∞n=1(not relabeled) s.t. mn(t) → m∞(t) ∀t ∈ [0, 1]. Moreover
m∞(t) is a non-decreasing and bounded function defined on [0, 1], and thus continuous everywhere
except for a countable subset. Denote D := {x ∈ [0, 1] : m∞(x) is not continuous}. We see D is at
most countable.

Lemma 15. If t ∈ [0, 1]\D, we have ∀ε > 0, there ∃∆t > 0 and N ∈ N s.t.

‖∇un(t1)−∇un(t2)‖2 < ε

∀t1, t2 s.t. t−∆t < t1, t2 < t+ ∆t and ∀n > N .

Proof. Let ε > 0, first we see ∃∆t > 0 s.t. m∞(t+ ∆t)−m∞(t−∆t) < ε. Then let N ∈ N be big
s.t.

|m∞(t+ ∆t)−mn(t+ ∆t)| < ε

|m∞(t−∆t)−mn(t−∆t)| < ε

∀n > N .
Let t1, t2 be s.t. t−∆t < t1 < t2 < t+∆t, we have |mn(t2)−mn(t1)| < 3ε, ∀n > N , or equivalently∫

ϕ̃(0, γn(t2))dHN−1 −
∫
ϕ̃(0, γn(t1))dHN−1 < 3ε

Next consider test function

u =
1

2
un(t1) +

1

2
un(t2)− 1

2
g(t1)− 1

2
g(t2) + g(t1)

We see u = g(t1) on ∂Ω and according to minimality in discrete time we have∫
Ω
|∇un(t1)|2dx+

∫
ϕ̃([un(t1)], γn(t1))dHN−1

≤
∫

Ω
|∇u|2dx+

∫
ϕ̃([u], γn(t1))dHN−1

≤
∫

Ω
|∇u|2dx+

∫
ϕ̃([u], γn(t2))dHN−1

≤
∫

Ω
|1
2
∇un(t1) +

1

2
∇un(t2)|2dx+

1

2

∫
ϕ̃([un(t1)], γn(t2))dHN−1

+
1

2

∫
ϕ̃([un(t2)], γn(t2))dHN−1 +O(|t2 − t1|)

57



Similarly we can deduce∫
Ω
|∇un(t2)|2dx+

∫
ϕ̃([un(t2)], γn(t2))dHN−1

≤
∫

Ω
|1
2
∇un(t1) +

1

2
∇un(t2)|2dx+

1

2

∫
ϕ̃([un(t1)], γn(t2))dHN−1

+
1

2

∫
ϕ̃([un(t2)], γn(t2))dHN−1 +O(|t2 − t1|)

Summing the above two inequalities we get∫
Ω
|∇un(t1)|2dx+

∫
Ω
|∇un(t2)|2dx+

∫
ϕ̃([un(t1)], γn(t1))dHN−1

+

∫
ϕ̃([un(t2)], γn(t2))dHN−1

<2

∫
Ω
|1
2
∇un(t1) +

1

2
∇un(t2)|2dx

+

∫
ϕ̃([un(t1)], γn(t2))dHN−1 +

∫
ϕ̃([un(t2)], γn(t2))dHN−1 +O(|t2 − t1|)

It follows

1

2

∫
Ω
|∇un(t2)−∇un(t1)|2dx

=

∫
Ω
|∇un(t1)|2dx+

∫
Ω
|∇un(t2)|2dx− 2

∫
Ω
|1
2
∇un(t1) +

1

2
∇un(t2)|2dx

≤
∫
ϕ̃([un(t1)], γn(t2))dHN−1 −

∫
ϕ̃([un(t1)], γn(t1))dHN−1 +O(|t2 − t1|)

≤
∫
ϕ̃(0, γn(t2))dHN−1 −

∫
ϕ̃(0, γn(t1))dHN−1 +O(|t2 − t1|)

≤3ε+O(|t2 − t1|)

This concludes the proof.

For t ∈ [0, 1], let’s define

θn(t) =

∫
Ω
∇un(t) · ∇ġ(t)dx

and the first obvious result we can see is

sup
n,t

θn(t) <∞.

According to weak convergence in L2, θn(t)→
∫

Ω∇u(t) · ∇ġ(t)dx for ∀t ∈ I∞. Then we show the
sequence θn(t) is Cauchy a.e. on [0, 1].

Lemma 16. For ∀t ∈ [0, 1]\D, {θn(t)}∞n=1 is Cauchy.
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Proof. Let ε > 0, according to lemma (15) we have there exists ∆t > 0 and N s.t.

‖∇un(t1)−∇un(t2)‖2 < ε

for ∀t1, t2 ∈ [t−∆t, t+ ∆t] and ∀n > N . Let τ ∈ [t−∆t, t+ ∆t] ∩ I∞, we can find N1 > N s.t.

|θk(τ)− θl(τ)| < ε

for ∀k, l > N1. According to the definition of ∇un(t) on [0, 1], ∇un(t) = ∇un(t
i(n,t)
n ) where i(n, t),

depending on n and t, is the largest integer s.t. t
i(n,t)
n < t. Then let N2 > N1 be s.t. t

i(n,t)
n > t−∆t

for ∀n > N2. It follows

|θk(t)− θl(t)| =
∣∣∣ ∫

Ω
∇uk(t

i(k,t)
k ) · ∇ġ(t)dx−

∫
Ω
∇ul(t

i(l,t)
l ) · ∇ġ(t)dx

∣∣∣
≤
∣∣∣ ∫

Ω
∇uk(t

i(k,t)
k ) · ∇ġ(t)dx−

∫
Ω
∇uk(t

i(k,t)
k ) · ∇ġ(τ)dx

∣∣∣
+
∣∣∣ ∫

Ω
∇uk(t

i(k,t)
k ) · ∇ġ(τ)dx−

∫
Ω
∇uk(τ) · ∇ġ(τ)dx

∣∣∣
+
∣∣∣ ∫

Ω
∇uk(τ) · ∇ġ(τ)dx−

∫
Ω
∇ul(τ) · ∇ġ(τ)dx

∣∣∣
+
∣∣∣ ∫

Ω
∇ul(τ) · ∇ġ(τ)dx−

∫
Ω
∇ul(t

i(l,t)
l ) · ∇ġ(τ)dx

∣∣∣
+
∣∣∣ ∫

Ω
∇ul(t

i(l,t)
l ) · ∇ġ(τ)dx−

∫
Ω
∇ul(t

i(l,t)
l ) · ∇ġ(t)dx

∣∣∣
≤O(|t− τ |) +O(ε) + ε+O(ε) +O(|τ − t|)

for ∀k, l > N2. This concludes the proof.

Remark 6. We see there exists θ(t) : [0, 1]\D → R s.t. θn(t)→ θ(t) for all t ∈ [0, 1]\D. Since D is
at most countable and apply the compactness in R and diagonal argument we can find a subsequence
(not labeled) and θ(t) s.t. θn(t) → θ(t) for ∀t ∈ [0, 1]. From there we can show the convergence of
En(t).

Lemma 17. Let t ∈ I∞, the following is true∫ t

0

∫
Ω
∇un(s+ ∆tn) · ∇ġ(s)dxds→

∫ t

0
θ(s)ds

Proof. It suffices to show∣∣∣ ∫ t

0

∫
Ω
∇un(s+ ∆tn) · ∇ġ(s)dxds−

∫ t

0

∫
Ω
∇un(s) · ∇ġ(s)dxds

∣∣∣→ 0
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First of all we see∣∣∣ ∫ t

0

∫
Ω
∇un(s+ ∆tn) · ∇ġ(s+ ∆tn)dxds−

∫ t

0

∫
Ω
∇un(s) · ∇ġ(s)dxds

∣∣∣
=
∣∣∣ ∫ t+∆tn

∆tn

∫
Ω
∇un(s) · ∇ġ(s)dxds−

∫ t

0

∫
Ω
∇un(s) · ∇ġ(s)dxds

∣∣∣
≤
∣∣∣ ∫ ∆tn

0
θn(s)ds−

∫ t+∆tn

t
θn(s)ds

∣∣∣
≤
∫ ∆tn

0

∣∣θn(s)
∣∣ds+

∫ t+∆tn

t

∣∣θn(s)
∣∣ds→ 0 as n→∞

The convergence is due to uniform boundedness of θn(t). Then consider∣∣∣ ∫ t

0

∫
Ω
∇un(s+ ∆tn) · ∇ġ(s+ ∆tn)dxds−

∫ t

0

∫
Ω
∇un(s+ ∆tn) · ∇ġ(s)dxds

∣∣∣
≤
∫ t

0

∣∣∣ ∫
Ω
∇un(s+ ∆tn) · (∇ġ(s+ ∆tn)−∇ġ(s))dx

∣∣∣ds
≤
∫ t

0

(∫
Ω
|∇un(s+ ∆tn)|2dx

) 1
2
(∫

Ω
|∇ġ(s+ ∆tn)−∇ġ(s)|2dx

) 1
2
ds

The above estimate goes to 0 as n→∞ because
( ∫

Ω |∇un(s+ ∆tn)|2dx
) 1

2
is bounded over s and( ∫

Ω |∇ġ(s + ∆tn) −∇ġ(s)|2dx
) 1

2
goes to 0 for ∀s, apply again D.C.T. Thus the lemma has been

proved.

Remark 7. Thus we have En(t)→ E(0) + 2
∫ t

0 θ(s)ds, ∀t ∈ [0, 1].

3.2 Little o Method and Its Applications

The idea here is to see if we can find finitely many fixed times that can roughly represent the whole
process. The convergence of energy shows that maybe we have a way.

Fix t, let’s look at the energy at a small time step ∆t further. Let ∆t > ∆tn, we have

En(t+ ∆t) ≤ En(t) + ∆tn

∫ t+∆t

t

∫
Ω

∣∣∇ġ(s)
∣∣2dxds+ 2

∫ t+∆t

t

∫
Ω
∇un(s) · ∇ġ(s)dxds

Then let v(t+ ∆t) be any SBV function s.t. v(t+ ∆t) = g(t+ ∆t) on ∂Ω, we have

En(t) ≤
∫

Ω
|∇v(t+ ∆t)−∇g(t+ ∆t) +∇g(t)|2dx+

∫
ϕ̃([v(t+ ∆t)], γn(t))

≤
∫

Ω
|∇v(t+ ∆t)|2dx+

∫
ϕ̃([v(t+ ∆t)], γn(t)) + ∆t

∫ t+∆t

t

∫
Ω

∣∣∇ġ(s)
∣∣2dxds

− 2

∫ t+∆t

t

∫
Ω

(∇v(t+ ∆t)) · ∇ġ(s)dxds
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Combine the above estimate, we get∫
ϕ̃([un(t+ ∆t)], γn(t+ ∆t))dHN−1 −

∫
ϕ̃([v(t+ ∆t)], γn(t))dHN−1

≤(∆tn + ∆t)

∫ t+∆t

t

∫
Ω

∣∣∇ġ(s)
∣∣2dxds+ 2

∫ t+∆t

t

∫
Ω

(∇un(s)−∇v(t+ ∆t)) · ∇ġ(s)dxds

+

∫
Ω
|∇v(t+ ∆t)|2dx−

∫
Ω
|∇un(t+ ∆t)|2dx

If we let v(t+ ∆t) = un(t+ ∆t), the above estimate gives us∫
ϕ̃([un(t+ ∆t)], γn(t+ ∆t))dHN−1 −

∫
ϕ̃([un(t+ ∆t)], γn(t))dHN−1

≤(∆tn + ∆t)

∫ t+∆t

t

∫
Ω

∣∣∇ġ(s)
∣∣2dxds+ 2

∫ t+∆t

t

∫
Ω

(∇un(s)−∇un(t+ ∆t)) · ∇ġ(s)dxds

3.2.1 Finitely many minimizers

Let p ∈ N, split time interval [0, 1] evenly into 2p pieces and we have 2p + 1 times. To choose
2p because after we fix p those finitely chosen times will be a subset of In as n > p. During the
following we always assume n > p. It follows, from above estimate, that∫

S
un(ti+1

p )
∪Γn(ti+1

p )
ϕ̃([un(ti+1

p )], γn(ti+1
p ))dHN−1 −

∫
S
v(ti+1
p )
∪Γn(tip)

ϕ̃([v(ti+1
p )], γn(tip))dHN−1

≤(∆tn + ∆tp)

∫ ti+1
p

tip

∫
Ω

∣∣∇ġ(s)
∣∣2dxds+ 2

∫ ti+1
p

tip

∫
Ω

(∇un(s)−∇v(ti+1
p )) · ∇ġ(s)dxds

+

∫
Ω
|∇v(ti+1

p )|2dx−
∫

Ω
|∇un(ti+1

p )|2dx

(3.6)
for any SBV function v(ti+1

p ) = g(ti+1
p ) on ∂Ω. We see immediately, by letting v(ti+1

p ) = un(ti+1
p ),

that∫
S
un(ti+1

p )
∪Γn(ti+1

p )
ϕ̃([un(ti+1

p )], γn(ti+1
p ))dHN−1 −

∫
S
un(ti+1

p )
∪Γn(tip)

ϕ̃([un(ti+1
p )], γn(tip))dHN−1

(3.7)

≤(∆tn + ∆tp)

∫ ti+1
p

tip

∫
Ω

∣∣∇ġ(s)
∣∣2dxds+ 2

∫ ti+1
p

tip

∫
Ω

(∇un(s)−∇un(ti+1
p )) · ∇ġ(s)dxds (3.8)
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Let t ∈ I∞, we are going to sum the above estimate over all tip s.t. tip ≤ t.

ti+1
p ≤t∑
i=0

[ ∫
ϕ̃([un(ti+1

p )], γn(ti+1
p ))dHN−1 −

∫
ϕ̃([v(ti+1

p )], γn(tip))dHN−1
]

≤ (∆tn + ∆tp)

∫ t

0

∫
Ω
|∇ġ(s)|2dxds+ 2

ti+1
p ≤t∑
i=0

∫ ti+1
p

tip

∫
Ω

(∇un(s)−∇vn(ti+1
p )) · ∇ġ(s)dxds

+

ti+1
p ≤t∑
i=0

∫
Ω
|∇vn(ti+1

p )|2dx−
∫

Ω
|∇un(ti+1

p )|2dx

≤ (∆tn + ∆tp)

∫ t

0

∫
Ω
|∇ġ(s)|2dxds+ 2

ti+1
p ≤t∑
i=0

∫ ti+1
p

tip

∫
Ω

(∇un(s)−∇un(ti+1
p )) · ∇ġ(s)dxds

+2

ti+1
p ≤t∑
i=0

∫ ti+1
p

tip

∫
Ω

(∇un(ti+1
p )−∇vn(ti+1

p )) · ∇ġ(s)dxds

+

ti+1
p ≤t∑
i=0

∫
Ω
|∇vn(ti+1

p )|2dx−
∫

Ω
|∇un(ti+1

p )|2dx

Next define

Gpn(t) = (∆tn + ∆tp)

∫ t

0

∫
Ω
|∇ġ(s)|2dxds+ 2

ti+1
p ≤t∑
i=0

∫ ti+1
p

tip

∫
Ω

(∇un(s)−∇un(ti+1
p )) · ∇ġ(s)dxds

Before introducing the next lemma let f : [0, 1] → R s.t. sup0≤x≤1 |f(x)| < ∞. Define it’s step
function with 2n equi-length partitions as follows

f (n)(x) =

{
f(0) x = 0

f( i+1
2n ) i

2n < x ≤ i+1
2n , 0 ≤ i ≤ 2n − 1

Lemma 18. Let t ∈ I∞, we have

lim
p→∞

lim
n→∞

∫ t

0

∫
Ω

(∇un(s)−∇u(p)
n (s)) · ∇ġ(s)dxds = 0

Proof. First we see θn(s) =
∫

Ω∇un(s) · ∇ġ(s)dx→ θ(s) for ∀0 < s < 1 and
∫ t

0 |θn(s)− θ(s)|ds→ 0
∀t ∈ I∞. Then show θ(s) is continuous except for a at most countable subset in [0, 1]. Let s ∈ {τ ∈
[0, 1] : m∞(τ) is continuous}. From previous work, we see {τ ∈ [0, 1] : m∞(τ) is continuous}c is at
most countable and ∀ε > 0, ∃∆s > 0 s.t.

‖∇un(s1)−∇un(s2)‖L2 < ε,∀s1, s2 ∈ (s−∆s, s+ ∆s)
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Let y, z ∈ (s−∆s, s+ ∆s), we see

|θ(y)− θ(z)| ≤ |θ(y)− θn(y)|+ |θn(y)− θn(z)|+ |θn(z)− θ(z)|
≤ O(ε)

Thus we have shown that θ(s) is continuous except for a countable subset on [0, 1]. Let ε > 0,
according to lemma 23 we see ∫ t

0
|θ(s)− θ(p)(s)|ds→ 0

as p→∞. Then∣∣∣ ∫ t

0

∫
Ω
∇un(s) · ∇ġ(s)dxds−

∫ t

0

∫
Ω
∇u(p)

n (s) · ∇ġ(s)dxds
∣∣∣

≤
∣∣∣ ∫ t

0

∫
Ω
∇un(s) · ∇ġ(s)dxds−

∫ t

0
θ(s)ds

∣∣∣+
∣∣∣ ∫ t

0
θ(s)ds−

∫ t

0
θ(p)(s)ds

∣∣∣
+
∣∣∣ ∫ t

0
θ(p)(s)ds−

∫ t

0

∫
Ω
∇u(p)

n (s) · ∇ġ(p)(s)dxds
∣∣∣

+
∣∣∣ ∫ t

0

∫
Ω
∇u(p)

n (s) · ∇ġ(p)(s)dxds−
∫ t

0

∫
Ω
∇u(p)

n (s) · ∇ġ(s)dxds
∣∣∣

We see∣∣∣ ∫ t

0

∫
Ω
∇un(s) · ∇ġ(s)dxds−

∫ t

0
θ(s)ds

∣∣∣+
∣∣∣ ∫ t

0
θ(p)(s)ds−

∫ t

0

∫
Ω
∇u(p)

n (s) · ∇ġ(p)(s)dxds
∣∣∣→ 0

as n→∞. And ∣∣∣ ∫ t

0

∫
Ω
∇u(p)

n (s) · ∇ġ(p)(s)dxds−
∫ t

0

∫
Ω
∇u(p)

n (s) · ∇ġ(s)dxds
∣∣∣

≤
∫ t

0
‖∇u(p)

n (s)‖L2‖∇ġ(p)(s)−∇ġ(s)‖L2ds

≤ sup
s
‖∇u(p)

n (s)‖L2

∫ t

0
‖∇ġ(p)(s)−∇ġ(s)‖L2ds

We see sups ‖∇u
(p)
n (s)‖L2 <∞ and ‖∇ġ(p)(s)−∇ġ(s)‖L2 → 0 for ∀s as p→∞. Apply D.C.T. to

conclude the lemma.

Then it’s not hard to see that

lim
p→∞

lim
n→∞

Gpn(t) = 0 ∀t ∈ I∞ (3.9)

Next we show two applications based on above result.
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3.2.2 Application of little o analysis: approximation with finite minimizers

Define the following

γpn(t) =

tip≤t∨
i=0

[un(tip)]

Γpn(t) =

tip≤t⋃
i=0

Sun(tip)

We see γpn(t) is defined on Γpn(t).

Lemma 19.

lim
p→∞

lim
n→∞

( ∫
Γn(t)

ϕ̃(γpn(t), γn(t))dHN−1 −
∫

Γpn(t)
ϕ(γpn(t))dHN−1

)
= 0

Proof. Due to (3.7), we have

ti+1
p ≤t∑
i=0

(∫
S
un(ti+1

p )
∩Γn(ti+1

p )
ϕ̃([un(ti+1

p )], γn(ti+1
p ))dHN−1

−
∫
S
un(ti+1

p )
∩Γn(tip)

ϕ̃([un(ti+1
p )], γn(tip))dHN−1

)
≤ Gpn(t)

Let y > z, we see in general the value of ϕ̃(x, y)− ϕ̃(x, z) decreases as x increases. So

ti+1
p ≤t∑
i=0

(∫
Γn(ti+1

p )
ϕ̃(γpn(t), γn(ti+1

p ))dHN−1 −
∫

Γn(tip)
ϕ̃(γpn(t), γn(tip))dHN−1

)

≤
ti+1
p ≤t∑
i=0

(∫
S
un(ti+1

p )
∩Γn(ti+1

p )
ϕ̃([un(ti+1

p )], γn(ti+1
p ))dHN−1

−
∫
S
un(ti+1

p )
∩Γn(tip)

ϕ̃([un(ti+1
p )], γn(tip))dHN−1

)
≤Gpn(t)

But we see the l.h.s of above inequality can be simplified to∫
Γn(t)

ϕ̃(γpn(t), γn(t))dHN−1 −
∫

Γpn(t)
ϕ(γpn(t))dHN−1

Thus we prove the lemma.

The result is pretty straight forward once we have (3.9). It shows that we can approximate the
whole history evolution by choosing finitely many minimizers.
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3.2.3 Application of little o analysis: absolute continuity

As we see in Chapter 2, absolute continuity is very important in that it allows us to use advance
tools like covering theorem. But it is very hard to show the result if we take into account the
history. As n → ∞, the number of minimizers in the history goes to infinity and it is hard to
predict what the they will behave as a whole. But little method allows us to fix finitely many times
and do analysis on those finitely many chosen times. This gives us a way to prove the absolute
continuity for the evolution problem. First let h(x) : Γ(t)→ (0,∞) and h(x) ∈ L1(Γ(t);HN−1).

Lemma 20. Let t ∈ I∞, define µn := ϕ̃([un(t)], γn(t))HN−1bSun(t) ∪ Γn(t). We see there exists a
Radon measure µ∞ and a subsequence s.t.

µn
∗
⇀ µ∞

Let µ := hHN−1bΓ(t). We have µ∞ � µ.

Proof. The way we prove the lemma is very similar to the one we use to prove absolutely continuity
in section Chapter 2. Except here we combine the little o method. Assume it is not true, we can
find a set A ⊂ Ω s.t. µ(A) = 0 but µ∞(A) = δ > 0.
First we see, according to (3.9)

lim
p→∞

lim
n→∞

Gpn(t) = 0

where

Gpn(t) = (∆tn + ∆tp)

∫ t

0

∫
Ω
|∇ġ(s)|2dxds+ 2

∫ t

0

∫
Ω

(∇un(s)−∇u(p)
n (s)) · ∇ġ(s)dxds

Fix p to be big s.t. limn→∞G(n, p) ≤ 1
8δ and let P be s.t. tPp = t.

Since µ(A) = 0, we have |A| = 0 too. Let U be open and A ⊂ U ⊂ Ω s.t.

sup
s
‖∇ġ(s)‖L∞ lim sup

n→∞

∫
U
|∇un(tip)|dx ≤

1

8

δ

P
∀1 ≤ i ≤ P (3.10)

sup
s
‖∇ġ(s)‖L∞

∫
U
|∇u(tip)|dx ≤

1

8

δ

P
∀1 ≤ i ≤ P (3.11)∫

U
ϕ([u(tip)])dHN−1 ≤ 1

8

δ

P
∀1 ≤ i ≤ P (3.12)

The last inequality comes from the fact that µ(A) = 0 implies
∫
A ϕ([u(tip)]) = 0 ∀i.

Then finely cover A with each ball chosen s.t.

x ∈ A
B(x, r) ⊂ U

µn(∂B(x, r)) = 0 for ∀ n > 0

µ∞(∂B(x, r)) = 0

According to Besicovitch covering theorem we can find a countable disjoint family of closed balls

65



{B(xj , rj)}∞j=1 s.t.

µ∞(A\
∞⋃
j

B(xj , rj)) = 0 (3.13)

Since µ∞(∂B(x, r)) = 0 we can let all balls be open. Then select a finite N ∈ N s.t.
µ∞(A\

⋃N
i=1B(xi, ri)) <

1
8δ. We see

µ(

N⋃
i=1

B(xi, ri)) < ε

µ∞(

N⋃
i=1

B(xi, ri)) ≥
7

8
δ

Denote B :=
⋃N
i=1B(xi, ri) and consider the following test functions

vn(tip) =

{
u(tip) B

un(tip) Ω\B

Previously we showed that

P−1∑
i=0

∫
ϕ̃([un(ti+1

p )], γn(ti+1
p ))dHN−1 −

∫
ϕ̃([vn(ti+1

p )], γn(tip))dHN−1

≤(∆tn + ∆tp)

∫ t

0

∫
Ω
|∇ġ(s)|2dxds+ 2

P−1∑
i=0

∫ ti+1
p

tip

∫
Ω

(∇un(s)−∇vn(ti+1
p )) · ∇ġ(s)dxds

+

P−1∑
i=0

∫
Ω
|∇vn(ti+1

p )|2dx−
∫

Ω
|∇un(ti+1

p )|2dx

≤(∆tn + ∆tp)

∫ t

0

∫
Ω
|∇ġ(s)|2dxds+ 2

P−1∑
i=0

∫ ti+1
p

tip

∫
Ω

(∇un(s)−∇un(ti+1
p )) · ∇ġ(s)dxds

+ 2
P−1∑
i=0

∫ ti+1
p

tip

∫
Ω

(∇un(ti+1
p )−∇vn(ti+1

p )) · ∇ġ(s)dxds+
P−1∑
i=0

∫
Ω
|∇vn(ti+1

p )|2dx−
∫

Ω
|∇un(ti+1

p )|2dx

≤G(n, p) + 2

P−1∑
i=0

∫ ti+1
p

tip

∫
Ω

(∇un(ti+1
p )−∇vn(ti+1

p )) · ∇ġ(s)dxds

+
P−1∑
i=0

∫
Ω
|∇vn(ti+1

p )|2dx−
∫

Ω
|∇un(ti+1

p )|2dx
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According to the definition of vn(tip), we have

2
P−1∑
i=0

∫ ti+1
p

tip

∫
Ω

(∇un(ti+1
p )−∇vn(ti+1

p )) · ∇ġ(s)dxds

=2
P−1∑
i=0

∫ ti+1
p

tip

∫
B

(∇un(ti+1
p )−∇u(ti+1

p )) · ∇ġ(s)dxds

≤2

P−1∑
i=0

∆tp sup
s
‖∇ġ(s)‖L∞

∫
B
|∇un(ti+1

p )−∇u(ti+1
p )|dx

≤2∆tp sup
s
‖∇ġ(s)‖L∞

P−1∑
i=0

[ ∫
B
|∇un(ti+1

p )|dx+

∫
B
|∇u(ti+1

p )|dx
]

Again according to the definition of vn(tip)

P−1∑
i=0

∫
Ω
|∇vn(ti+1

p )|2dx−
∫

Ω
|∇un(ti+1

p )|2dx =

P−1∑
i=0

∫
B
|∇u(ti+1

p )|2dx−
∫
B
|∇un(ti+1

p )|2dx

According to lower-semi-continuity we have∫
B
|∇u(ti+1

p )|2dx ≤ lim inf
n→∞

∫
B
|∇un(ti+1

p )|2dx

Combine to estimates from above we can get

lim
n→∞

P−1∑
i=0

∫
ϕ̃([un(ti+1

p )], γn(ti+1
p ))dHN−1 −

∫
ϕ̃([vn(ti+1

p )], γn(tip))dHN−1

≤1

8
δ + 2∆tp

2

8
δ ≤ 5

8
δ

Again in light of the definition of vn(tip) we have

P−1∑
i=0

∫
ϕ̃([un(ti+1

p )], γn(ti+1
p ))dHN−1 −

∫
ϕ̃([vn(ti+1

p )], γn(tip))dHN−1

=
P−1∑
i=0

∫
Ω\B

ϕ̃([un(ti+1
p )], γn(ti+1

p ))dHN−1 −
∫

Ω\B
ϕ̃([un(ti+1

p )], γn(tip))dHN−1

+
P−1∑
i=0

∫
∂B
ϕ̃([un(ti+1

p )], γn(ti+1
p ))dHN−1 −

∫
∂B
ϕ̃([vn(ti+1

p )], γn(tip))dHN−1

+

P−1∑
i=0

∫
B
ϕ̃([un(ti+1

p )], γn(ti+1
p ))dHN−1 −

∫
B
ϕ̃([u(ti+1

p )], γn(tip))dHN−1
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It is clear that

P−1∑
i=0

∫
Ω\B

ϕ̃([un(ti+1
p )], γn(ti+1

p ))dHN−1 −
∫

Ω\B
ϕ̃([un(ti+1

p )], γn(tip))dHN−1 ≥ 0

And according to Lemma (6)

lim
n→∞

∫
∂B
ϕ̃([vn(ti+1

p )], γn(tip))dHN−1 = lim
n→∞

∫
∂B
ϕ̃(0, γn(tip))dHN−1

So

lim
n→∞

P−1∑
i=0

∫
∂B
ϕ̃([un(ti+1

p )], γn(ti+1
p ))dHN−1 −

∫
∂B
ϕ̃([vn(ti+1

p )], γn(tip))dHN−1 ≥ 0

This shows

lim
n→∞

P−1∑
i=0

∫
B
ϕ̃([un(ti+1

p )], γn(ti+1
p ))dHN−1 −

∫
B
ϕ̃([u(ti+1

p )], γn(tip))dHN−1 ≤ 5

8
δ

Then we see

P−1∑
i=0

∫
B
ϕ̃([un(ti+1

p )], γn(ti+1
p ))dHN−1 −

∫
B
ϕ̃([u(ti+1

p )], γn(tip))dHN−1

=

∫
B
ϕ̃([un(tPp )], γn(tPp ))dHN−1 +

P−1∑
i=1

[ ∫
B
ϕ̃([un(tip)], γn(tip))dHN−1

−
∫
B
ϕ̃([u(ti+1

p )], γn(tip))dHN−1
]
−
∫
B
ϕ([u(t1p)])dHN−1

Moreover

P−1∑
i=1

[ ∫
B
ϕ̃([un(tip)], γn(tip))dHN−1 −

∫
B
ϕ̃([u(ti+1

p )], γn(tip))dHN−1
]

≥
P−1∑
i=1

[ ∫
B
ϕ̃([un(tip)], γn(tip))dHN−1 −

∫
B
ϕ̃(0, γn(tip))dHN−1 −

∫
B
ϕ([u(ti+1

p )])dHN−1
]

≥
P−1∑
i=1

−
∫
B
ϕ([u(ti+1

p )])dHN−1
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Thus we have ∫
B
ϕ̃([un(tPp )], γn(tPp ))dHN−1 −

P−1∑
i=0

∫
B
ϕ([u(ti+1

p )])dHN−1

≤
P−1∑
i=0

∫
B
ϕ̃([un(ti+1

p )], γn(ti+1
p ))dHN−1 −

∫
B
ϕ̃([u(ti+1

p )], γn(tip))dHN−1

It follows

lim
n→∞

∫
B
ϕ̃([un(t)], γn(t))dHN−1 ≤ 5

8
δ +

1

8
δ =

6

8
δ

It contradicts to the fact that µ∞(
⋃N
i=1B(xi, ri)) ≥ 7

8δ.
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Appendix

A. Properties of cohesive energy function ϕ

An example of ϕ that fits the description in Chapter 1. Let

ϕ(x) = x+ x log(
1

x
)

We see ϕ′(x) = log( 1
x) and ϕ′′(x) = − 1

x . So ϕ′(0) =∞ and

ϕ′(x)x

ϕ(x)
=

log( 1
x)x

x+ x log( 1
x)
→ 1 as x→ 0

Some properties of ϕ:

1. Let x, λ > 0, we have

ϕ(λx) < λϕ(x) ifλ > 1

ϕ(λx) > λϕ(x) ifλ < 1

2. Subadditivity

ϕ

(
n∑
i=1

xi

)
<

n∑
i=1

ϕ(xi) where xi > 0 for all i

3. ϕ(x)
x > ϕ′(x) for x > 0.

4. Subadditivity of ϕ̃(·, λ) for λ > 0. i.e.

ϕ̃(x+ y, λ) ≤ ϕ̃(x, λ) + ϕ̃(y, λ) ∀ x, y ≥ 0

moreover

ϕ̃(x+ y, λ) ≤ ˜̃ϕ(x, λ) + ϕ(y)

or

ϕ̃(x+ y, λ) ≤ ϕ(x) + ϕ̃(y, λ)

5.
ϕ̃(x, h)− ϕ̃(y, h) ≤ ϕ(x)− ϕ(y)
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for all h ≥ 0 and x ≥ y.

6.
ϕ̃(a+ b, h)− ϕ̃(b, h) ≤ ϕ̃(a, h)− ϕ̃(0, h)

for all a ≥ 0, b ≥ 0 and h ≥ 0.

B. Useful lemmas

Lemma 21. Let f ∈ L1(Ω, µ) where Ω is open. Let {An}∞n=1 be a sequence of sets s.t. An ⊂ Ω for
∀n. If µ(An)→ 0, then we have ∫

An

fdx→ 0

Proof. It suffices to show
∫

Ω |f |χAndµ→ 0. Let’s argue by contradiction and assume
limn→∞

∫
Ω |f |χAndµ 6= 0. Then we can find a subsequence {Ank} and δ > 0 s.t.

∫
Ω |f |χAnkdµ > δ

for all k = 1, 2, .... First we see
∫

Ω |χAnk − 0|dµ =
∫

Ω χAnkdµ = µ(Ank) → 0. So χAnk → 0

in L1(Ω, µ). Thus we can extract a subsequence {nki}∞i=1 s.t. χAnki
(x) → 0 µ-a.e. x ∈ Ω. It

follows |f |χAnki → 0 µ a.e. Then we see |f |χAnki ≤ |f | ∈ L
1(Ω, µ) for ∀i, and due to D.C.T. we

have
∫

Ω |f |χAnki dµ → 0, which contradicts to the fact that
∫

Ω |f |χAnkdµ > δ for all k = 1, 2, ....

Therefore the lemma has been shown.

Lemma 22. Let f ∈ L1(0, 1), then

max
0≤i<n

∫ i+1
n

i
n

fdx→ 0 as n→∞

Proof. Assume it’s not true, we can find a subsequence {nk}∞k=1 and for each k an index i(nk) that
depends on k and δ > 0 s.t. ∫ i(nk)+1

nk

i(nk)

nk

fdx > δ ∀ k

We see
∣∣( i(nk)

nk
, i(nk)+1

nk
)
∣∣ = 1

nk
→ 0, and according to lemma (21) we see

∫ i(nk)+1

nk
i(nk)

nk

fdx → 0. A

contradiction.

Lemma 23. Let f ∈ L∞([0, 1]) s.t. f is continuous a.e. Let fn(x) := f( in) when i−1
n ≤ x ≤ i

n ,

for ∀ 1 ≤ i ≤ n. Then
∫ 1

0 |f − fn|dx→ 0.

Proof. Let E = {x ∈ [0, 1] : f(x) is not continuous}. Let ε > 0 and UE ⊂ (0, 1) be open s.t.
E ⊂ UE and |UE | ≤ ε

4‖f‖L∞
.

First we claim ∃N ∈ N s.t. ∀n ≥ N

if
∣∣∣ sup
i−1
n
≤x≤ i

n

f(x)− inf
i−1
n
≤x≤ i

n

f(x)
∣∣∣ > ε

2
, then [

i− 1

n
,
i

n
] ⊂ UE
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We argue by contradiction, assume the claim is not true, we can find a subsequence {nj}∞j=1 s.t.
for each nj , we can find an index i(nj) that depends on nj s.t.∣∣∣ sup

i(nj)−1

nj
≤x≤

i(nj)

nj

f(x)− inf
i(nj)−1

nj
≤x≤

i(nj)

nj

f(x)
∣∣∣ > ε

2

and [
i(nj)−1
nj

,
i(nj)
nj

] ∩ U cE 6= ∅. Meanwhile we can find xnj , ynj , znj ∈ [
i(nj)−1
nj

,
i(nj)
nj

] s.t. |f(xnj ) −
f(ynj )| > ε

4 and znj ∈ U cE . We see there’s a further subsequence and x ∈ [0, 1] s.t. x = limj→∞ xnj =
limj→∞ ynj = limj→∞ znj . It follows that f is not continuous at x since |f(xnj ) − f(ynj )| > ε

4 for
∀j, so x ∈ UE . But since U cE is closed we also deduce x ∈ UE , a contradiction. Thus the claim has
been shown.
Next we see∫ 1

0
|f − fn|dx =

∑
| sup f(x)−inf f(x)|≤ ε

2

∫ i
n

i−1
n

|f − fn|dx+
∑

| sup f(x)−inf f(x)|> ε
2

∫ i
n

i−1
n

|f − fn|dx

≤
∑

| sup f(x)−inf f(x)|≤ε

1

n

ε

2
+

ε

4‖f‖L∞
2‖f‖L∞

≤ ε
2

+
ε

2
= ε

Lemma 24. Let fn : [0, 1]→ R be a sequence of non-decreasing functions defined on [0, 1]. Assume
supn,x |fn(x)| <∞, then there’s a subsequence {nj}∞j=1 and a non-decreasing bounded f defined on
[0, 1] s.t.

fnj (x)→ f(x) for ∀x ∈ [0, 1]

Proof. Let D ⊂ [0, 1] be dense and countable. Then by compactness in R and diagonal argument
we can extract a subsequence {nj}∞j=1 and f defined on D s.t. fnj (x)→ f(x) for ∀x ∈ D. We see
f(x) is non-decreasing and bounded on D, i.e. f(x) ≤ f(y) whenever x, y ∈ D and x ≤ y. Next let
x ∈ [0, 1]\D, define

f+(x) = inf
y>x,y∈D

f(y) f−(x) = sup
y<x,y∈D

f(y)

We see f−(x) ≤ f+(x) and define f(x) = f+(x)−f−(x)
2 for x ∈ [0, 1]\D. We see f(x) is non-

decreasing and bounded on [0, 1]. Then we see f(x) is continuous except on a set E that is at most
countable.
Next let x ∈ [0, 1]\E, let ε > 0 we can find ∆x > 0 s.t. |f(y) − f(x)| < ε whenever |x − y| < ∆x.
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Now restrict y, z ∈ D, s.t. x−∆x < y < x < z < x+ ∆x. Then we have

|fnj (x)− f(x)| ≤|fnj (x)− fnj (y)|+ |fnj (y)− f(y)|+ |f(y)− f(x)|
≤|fnj (z)− fnj (y)|+ |fnj (y)− f(y)|+ |f(y)− f(x)|
≤|fnj (z)− f(z)|+ |f(z)− f(y)|+ |f(y)− fnj (y)|+ |fnj (y)− f(y)|+ |f(y)− f(x)|
≤O(ε)

Thus we see fnj (x) → f(x) for x ∈ [0, 1]\E. But since E is at most countable, we can use com-
pactness and diagonal argument to extract a further subsequence s.t. fnj (not relabeled) converges
to f(x) on [0, 1]. And it’s not hard to show f is non-decreasing.

Let Ω ⊂ Rn be open. Let µ be Radon on Ω and {fn}∞n=1 ⊂ L1(Ω;µ) s.t. fn
L1

→ 0. Then

Lemma 25. ∃ a subsequence {nj}∞j=1 s.t.

lim
j→∞

lim
r→0

∫
B(x,r) fnjdµ

µ(B(x, r))
= 0

for µ-a.e. x ∈ Ω.

Proof. First we see ∃ a subsequence s.t. fnj → 0 for µ-a.e. Let D0 ⊂ Ω be the set s.t. fnj → 0 for
∀x ∈ D0. We see µ(Ω\D0) = 0.
Then for each j, according to Lebesgue-Besicovitch differentiation theorem,

lim
r→0

∫
B(x,r) fnjdµ

µ(B(x, r))
= fnj (x)

for µ − a.e.x ∈ Ω. Let Dj ⊂ Ω be the set s.t. the above is true for x ∈ Dj . Then consider the set
D := ∩∞j=0Dj . We see

lim
j→∞

lim
r→0

∫
B(x,r) fnjdµ

µ(B(x, r))
= lim

j→∞
fnj (x) = 0

for all x ∈ D. And µ(Ω\D) ≤
∑∞

j=0 µ(Ω\Dj) = 0. Thus the lemma has been proved.
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Notation

a ∨ b, a ∧ b maximum and minimum of a and b

B(x, r) open ball centered at x with radius r

Q(x, r) open cube centered at x with side r

χE indicator function of set E

E closure of set E

∂E topological boundary of set E

V b U V is compactly contained in U

LN Lebesgue measure on RN

HN−1 N − 1 dimensional Hausdorff measure

µbA µ restricted to the set A

Dνµ derivative of µ with respect to ν

µ� ν µ is absolutely continuous with respect to ν

BV functions of bounded variation

SBV special functions of bounded variation

Su jump set of u

[u] size of the jump on Su

ν unit normal to the jump set

Du distributional derivative of u

Dau absolutely continuous part of Du with respect to LN

∂∗E reduced boundary of E

Et {x ∈ Ω : u > t}

un
SBV
⇀ u un converges to u in the sense of SBV

µn
∗
⇀ µ µn converges weak* to µ
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