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Abstract: 

The purpose of this project is to develop a model of a bat-ball collision to predict the 

outgoing velocity of the ball and how it varies as the point of impact along the bat changes. The 

method we propose is to subtract the kinematic losses due to vibration from the existing rigid 

body model for bat ball collisions. Our model accounts for the mechanism by which kinetic 

energy is imparted to the ball (as if the bat were rigid) and the mechanism by which vibrational 

energy is imparted to the bat because naturally it deforms after impact. The problem is 

complicated by the fact that the impulsive force applied by the ball to the bat depends on the 

outgoing velocity of the ball, which in turn needs to be determined as part of the simultaneous 

solution procedure. We were able to determine that a “sweet spot” of a bat is the location 

where outgoing ball velocity is at a maximum due to minimal kinetic losses due to vibration. By 

combining the rigid body and vibrational models we were able to find the “sweet spot” of the 

bat taking into account energy losses due to vibration.  This sweet spot is different than 

predicted by the rigid body model alone, but is not located at any of the nodes of the 

vibrational modes.   
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 Executive Summary: 

From the point of view of a baseball player the “sweet spot” of the bat is the point along 

the barrel that causes the player to feel no vibration in his hands when striking a ball there. In 

scientific terms the “sweet spot” causes the ball to leave the bat with a higher exit velocity then 

it would if it had been struck at any other point. Although the “sweet spot” has a true scientific 

definition in terms of what it means for the baseballs exit velocity there have not been any 

conclusive answers for the reason for its location along the barrel. Some studies have identified 

it as the location of the bat’s center of percussion, and other theories have said that it has to do 

with the bat’s nodes of vibration. The reasoning for these theories is because of the fact that 

the batter feels virtually no vibration in his hands when a ball is hit on the “sweet spot”. Our 

study looks into the theory of the sweet spot having to do with the bat’s modes of vibration. By 

simultaneously examining the kinetic energy imparted from the bat into the ball as well as the 

vibrational energy imparted to the bat from the ball’s impact we were able to create a model 

for outgoing velocity which takes into account energy lost due to vibration. 

Examining the vibrational characteristics of a constant profile dowel allowed us through 

the manipulating of equations the separation of variables to produce the modes shapes for the 

dowel. By examining these mode shapes after a simulated impact we were able to determine 

convergence after ten terms, meaning that after the first ten modes the displacement of the 

bat was identical to the tenth mode. We then could calculate velocity of the ten mode 

summation and use that to determine the total energy. 
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Upon comparison with the previous group’s rigid body model of bat performance we 

noticed a twenty percent drop in energy transfer when vibration was factored in. Also there 

was a shift in the “sweet spot” from that of the rigid body model by about eleven percent closer 

to the end of the bat. This shift moved the “sweet spot” in between the nodes for the first and 

second modes of vibration of the bat showing that the location of the “sweet spot” was not 

directly on a node but rather in between the two. 
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Chapter 1: Introduction 

Anyone that has ever played baseball knows what you mean when you refer to the 

sweet spot of the bat. The sweet spot is the part of the bat that causes the ball to exit the 

barrel at the fastest velocity after striking it. Most people would say hitting a ball on the sweet 

spot of the bat is almost indescribable. Others have claimed that when hitting a ball on the 

sweet spot you don’t feel anything you just here the crack of the bat and you know that you hit 

the ball well. Although many people have experienced hitting a ball on the sweet spot, if you 

asked one hundred of them to explain to you in a scientific manner what is the sweet spot 

actually is you would get one hundred different answers none of which would have significant 

scientific merit. 

Most people who describe the sweet spot of a bat will use the term vibration in their 

description. This is due to the fact that when a ball does not hit the sweet spot of a bat it 

imparts a tremendous amount of vibrations to the batters hands. So when hitting a ball on the 

sweet spot the first thing someone will notice is how little (if any) vibration that they feel in 

their hands. Many studies have been conducted to find out where this sweet spot is on a bat to 

give batters a better visual picture of the target that they want the ball to hit on the barrel. 

However the goal of this project is not to find out where the sweet spot is on a bat it is rather to 

identify what the sweet spot of a baseball bat actually is in terms of the nodes of vibration 

imparted onto the bat by the ball. 
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1.1 Background Research 

A player identifies the “sweet spot” of a baseball bat as the point on the bat which they 

feel virtually no force when the ball is hit. It has been determined that there are two main 

reasons for this phenomenon. The first reason is that this point on the bat is a node of one of 

the main modes of vibration so that when it strikes the ball the mode of vibration is not excited 

and the player feels no vibration in his hands. The second explanation for the sweet spot it that 

it is the center of percussion on the bat meaning that when a player strikes the ball at this point 

no force is translated to the players hands. [7] 

A study performed at the University of Sydney in 2006 theorizes that the “sweet spot” is 

not a single point on the bat but rather a small range which encompasses forces from the balls 

relation to the vibrational nodes as well as the center of percussion.  However the center of 

percussion (COP) is not a single point on the barrel of the bat. When a bat is pivoted about an 

axis of rotation through the conjugate point and a ball strikes the COP there will in turn be no 

resulting force at the pivot point. The study theorizes that there is a range of COP on the bat 

which place the conjugate point under the players hands which is why they feel no resultant 

force when the ball is struck. [3] 

The experiment was conducted using a Louisville Slugger model R161 wood bat with a 

length of 33 inches and a mass of 31 ounces. To obtain the experimental data piezo discs were 

taped to several locations along the bat and hooked up to an oscilloscope. The vibrations on the 

bat would result in a proportional voltage output from the discs which could be seen on the 

oscilloscope. The experimental procedure was conducted by dropping a ball suspended by a 
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one meter length of string onto the horizontal bat which was gripped firmly in a right handers 

grip. The string allowed the bat to be accurately struck with the same force at each 

predetermined point.  

From the data gathered during the experiment a procedure it was determined that 

striking a bat in close proximity to the first and second fundamental nodes of vibration 

minimizes the force felt in the player’s hands due to the significant damping force associated 

with holding a bat. The vibration amplitude cause by a ball striking outside of the approximately 

3 cm long zone on the barrel would be enough to cause significant pain in the players hands 

and dramatically decrease the outgoing velocity of the ball. 

A separate study conducted at Kettering University in Michigan looked into the 

vibrational characteristics of a 30 inch wooden little league bat. In this study it was determined 

that the “sweet spot” is not simply a single point on the bat but a range between the first and 

second nodes of vibration. In their experiments the researchers at Kettering used a bat 

suspended by rubber bands at each end to represent a “free/free” vibrational environment. It 

was noted that a players hands gripping the bat has a significant effect in dampening the overall 

vibrations of the bat but virtually no effect on the frequency or overall mode shapes of the 

vibrations which is what really matters in this study. [6] 

In order to excite each of the modes of vibration for the bat it was struck with a force 

hammer along 30 separate points on the bat. The vibrational data was obtained using an 

accelerometer which recorded a frequency response function for the impact at each of the 30 
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locations. Then modal analysis software was used to curve fit the frequency response functions 

as well as determine mode shapes and frequencies.  

The data obtained showed that striking the bat somewhere along the barrel between 

the nodes of the first and second modes of vibration also placed nodes at approximately where 

the player’s hands would be when gripping the bat. This means that the player would feel little 

to no vibration in his hands. Also in terms of energy transfer striking the ball in this zone would 

generate the most speed and distance off of the bat because more energy is imparted directly 

into the ball rather than lost to the excitation of those  modes of vibration. 

1.2 Previous Work 

To further help us with our understanding of baseball bat dynamics we first 

examined the previous project by Seth Chapman, Mark Dignum, and Lyle Miller. In their 

project titled “Calculating Wooden Baseball Bat Efficiency” they calculated the optimum 

point of contact on a bat based on outgoing ball velocity versus point of impact along the 

barrel. Their calculations were based on a rigid body dynamic model of a bat in which they 

kept the handle diameter constant at 1 inch and varied the profile of each bat resulting in a 

change in the moment of inertia. The change in the mass moment of inertia along the length 

of the bat resulted in drastically different bat performance. The purpose of finding the 

outgoing velocity in relation to the point of contact on the bat is that the point on the bat 

corresponding to the maximum outgoing velocity represents the sweet spot on the bat. 

This means that that a ball struck on this point of the bat will travel further than a ball 

struck at any other point, given the same swing plane and exit angles. [2] 
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To obtain their equation for maximum velocity the previous group first defined the 

velocity of the bat at a point just prior to impact with the equation given by 

             (1-1) 

vc in the above equation represents the velocity of the bat’s center of mass 

        ̅      (1-2) 

After applying the conservation of linear and angular momentum to this equation you 

obtain: 

                                                        (1-3) 

Where Ic represents the bats moment of inertia about its center of gravity. Next the bat-ball 

coefficient of restitution (bbcor) is defined by:  

 
  

    
    

  

       
 (1-4) 

From this equation they were able to derive an equation for the exit velocities of the bat 

and ball and in this case. This leaves us with the equation for outgoing ball velocity in terms of 

the angular velocity of the bat, the distance along the bat from the center of mass and the 

velocity of the center of mass after impact.  

   
    

         (1-5) 

In this equation the velocity of the center of mass of the bat can simply be treated as 

the angular velocity of the bat times the distance from center of mass of the bat to the center 

of rotation: 
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       ̅       (1-6) 

And by combining these two equations we obtain and rearranging the terms to make an 

equation in terms of the incoming velocity plus a value dependent on the bbcor,  mass ratio m, 

velocity of the center of mass of the bat, distance along the bat, and mass of the bat. 

 
  
     

                

     (
  
  
)    

 (1-7) 

 
This is the equation for calculating the outgoing ball velocity versus its point of contact on 

the bat and from this equation they were able to produce a graph of outgoing velocity versus 

position of impact along the barrel. Our group was able to replicate their results using these 

equations to obtain:

 

Figure 1 - Rigid Body Outgoing Velocity 

Notice this assumes a uniform cross sectional area.  
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Chapter 2: Homogenous Vibrational Analysis 

In this section we analyzed the vibration characteristics of a bat to determine its modes 

of vibration. First we started by looking into the vibrational characteristics of a beam with a 

given initial shape. From this model we could move on to a dowel with a given initial shape 

which gave us the model we used to represent our bat. The initial shape of the dowel 

represents its displacement immediately after the impact of a ball (which is the force that 

causes vibration).0 

Figures one and two show a free body diagram of a bent beam where f(x,t) is the 

external forces, M(x,t) is the bending moment within the beam, and V(x,t) is the shear forces 

within the beam. 

 

Figure 2 – Longitudinal Free Body Diagram 
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Figure 3 - Side View of Free Body Diagram 

Summing the forces on the beam element in the z- direction results in the following 

equation: 

 
                          

        

   
 (2-1) 

where         
        

   
    is the inertia force acting on the element beam,   is the mass 

density, and A(x) is the variable cross-sectional area of the beam. Summing the moments of 

force about the left most point on the centroid gives: 

 
                        

  

 
     (2-2) 

Rewriting     
  

  
      and       

  

  
     and eliminating any terms involving a dx2 

(for the sake of our calculation dx2≈0) equations (2-1) and (2-2) can be rewritten as: 

 
 
       

  
             

        

   
 (2-3) 
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(2-4) 

Using the relation of V(x,t) to M(x,t) in the previous equation to equation (2-3), the 

combination becomes: 

 
 
        

   
             

        

   
 (2-5) 

The moment with respect to the z-axis from the Euler-Bernoulli beam theory is 

 
               

        

   
 (2-6) 

While the shear force defined by the derivative of the moment with respect to x 

(relation of equation (2-6)) 

 
        

 

  
[       

        

   
] (2-7) 

where E is the Young’s Modulus of the beams material and Izz(x)  is the moment of 

inertia of the beams cross section about the y-axis.  Using the assumed Free- free boundary 

conditions: 

           (2-8) 

           (2-9) 

The overall equation from Newton second law of motion (F=ma). 

   

   
[       

        

   
]       

   

   
        (2-10) 
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A system assuming a uniform area, density, and Young’s modulus was used to simplify 

equation (2-10). In later upcoming projects, the cross sectional area can be varied along the x-

direction as a real world baseball bat does. By making these simple assumptions as well as 

assuming unforced vibrations (f(x,t)=0) the following partial differential equation was found: 

 
  
   

   
 
   

   
   (2-11) 

Where    
    

  
. 

Separation of variables for the partial differential equation for the deflection s in the y 

direction: 

                 (2-12) 

With the separated solution the fourth derivative with respect to x and the second 

derivative with respect to t are taken. The following equation show the result of this procedure. 

 
  
   

   
   

   

   
   (2-13) 

Then the variables are separated so only a function of x is on the left hand side and only 

a function of t is on the right hand side. Because these functions are equal to one another they 

must also be equal to the same constant. This provides the following equality: 

   

 

   

   
  

   

   
 

 
    (2-14) 
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The left hand side and the right hand side give separate ordinary differential equations 

(equations 15 and 16) that can be solved using simpler methods that would have previously 

been impossible with the partial differential equation.  

    

   
       (2-15) 

    

   
 
  

  
    (2-16) 

The solution to equation 15 is  

                      (2-17) 

Where w is known as the frequency of vibration.  Allowing b4 to equal 
  

  
, the 

frequency is equal to  

 

       √
    
    

 (2-18) 

where L is the length of the baseball bat. The initial shape (w0) and velocity (v0) of the bat are 

defined by the following equations: 

              (2-19) 

   

  
            (2-20) 

Where u0(x)=aosinπX  (a sin function was used to mimic an initial shape) because of the 

nature of the bat where ao is the displacement at the midpoint of the beam. The initial velocity 

is defined by v0(x)=0 because the initial velocity of the bat will only affect the rigid body mode 
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of the bat (e.g. initial velocity will not affect the vibrations of the bat; it will only rotate and 

translate it). 

The solution to equation 16 is  

                                        (2-21) 

The baseball bat is modeled as a free-free system because the force imparted by the 

baseball is far greater than the impact force of the ball. From the definition of a free-free 

system shown in equations (2-3) and (2-4) the following boundary conditions are realized: 

 
   

   
]
   

      and   
   

   
]
   

   
(2-22) 

(2-23) 

 
   

   
]
   

       and     
   

   
]
   

   
(2-24) 

(2-25) 

Using boundary conditions for x=0 into equation (2-21), the constants were able to be 

related. Equations (2-26) and (2-27) gives the relations 

 

 
       and        

(2-26) 

(2-27) 

Equations (2-23) and (2-25) gives two relations for the constant a defined as 
 

 
: 

 
  

             

            
 
             

            
  (2-28) 

Simplifying equation (2-28) gives the expression  
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               (2-29) 

which is impossible to solve for bL explicitly, but implicit solutions can be found 

graphically or by using a solver. 

 

Figure 4 - Solving for BetanL 

Figure 4 shows the cosine function plotted with the inverse of the hyperbolic cosine. 

The intersection of the two graphs gives the values for bL . The first few values for bL are 

solved by using the matlab solver, but for higher values of n the solution mimics the zeros of 

the cosine function. This gives an infinite amount of solutions for bL so it will be further 

denoted by bnL. With bnL found the frequency    is known. The x variables in equation (2-21) 

were normalized to make   
 

 
. This allows bnL =Bn to be used seamlessly in (2-21). By 

rearranging the constants from equations (2-26) and (2-28) equation (2-30) becomes the 
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                                               (2-30) 

This also yields an infinite number of solutions for the function T(t) in equation (2-17) 

generating equation (2-31): 

                           (2-31) 

Figure 5 shows the first nine mode shapes (equation (2-30) as a function of X. 

 

Figure 5 - Mode Shapes 
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       ∑           

 

   

 (2-32) 

Where An and Bn from equation (2-31) are still unknown, but can be found by using the 

initial conditions stated in equations (2-19) and (2-20). Using these initial conditions the 

following equations were derived: 

 
             ∑       

 

   

 (2-33) 

 
              ∑         

 

   

 
(2-34) 

Multiplying both sides of both equations by Wn(x) and integrating over the length of the 

beam induces the ortoganality of the of the mode shapes, Wn(x). The following integration of 

each of the Wn(x)’s multiplied together. Notice the following relation: 

 
∫               

          
           

 

 

 (2-35) 
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   Orthogonality Matrix    

 W1 W2 W3 W4 W5 W6 W7 W8 W9 

W1 1.035942 3.71E-14 1.06E-05 -6.32E-12 1.49E-05 1.41E-10 1.91E-05 -1.30E-08 2.02E-05 

W2 0 0.998458 3.31E-13 1.47E-05 -1.27E-10 1.88E-05 3.20E-08 2.30E-05 2.87E-06 

W3 0 0 1.000082 -2.83E-12 1.89E-05 -1.65E-10 2.30E-05 1.39E-08 2.46E-05 

W4 0 0 0 1.000016 -7.59E-11 2.30E-05 2.22E-08 2.72E-05 2.37E-06 

W5 0 0 0 0 1.000023 -8.63E-10 2.72E-05 3.49E-08 2.93E-05 

W6 0 0 0 0 0 1.000027 1.58E-08 3.14E-05 1.94E-06 

W7 0 0 0 0 0 0 1.000031 6.00E-08 3.38E-05 

W8 0 0 0 0 0 0 0 1.000035 1.63E-06 

W9 0 0 0 0 0 0 0 0 1.000037 

Figure 6 - Orthogonality Matrix 

Bn=0 because vo=0. Solving for the An’s gives the following solution: 

 
   

 

   
∫          
 

 

 (2-36) 

The graph below shows an initial shape given to the homogenous solution. This shape is 

modeled by the equation           (
 

  
). This shape is similar to the first mode shape so the 

summation of the graph follows the shape of the first mode closely shown in figure 7. 
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Figure 7 - Initial Shape of Homogeneous Solution 
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Figure 8 - Deflection Convergence 
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This convergence is also shown by the A values found numerically: 

Numerical Values for An/L 

A1/L 0.030225263 

A2/L -1.29E-15 

A3/L 0.000854218 

A4/L 1.03E-13 

A5/L 0.000139396 

A6/L -7.36E-12 

A7/L 4.04E-05 

A8/L 7.07E-10 

A9/L 1.58E-05 

Figure 9 - Values for An/L 

 

Because the value for all even values of A (A2/L; A4/l etc.) are so close to zero, the final 

homogeneous solution to describe the behavior of the beam can be simplified to the three 

term summation shown in equation (2-37): 

 

       ∑            

     

 (2-37) 
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Figure 10 - Convergence over Time 

Figure 10 shows the first and third term summation over a time period (the first 

frequency, 2π/ω1, divided into eighths) 
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Chapter 3: Impact Vibrational Analysis 

After we examined the vibration characteristics of a free/free beam given an initial 

shape we could then move on to the impact aspect of the problem. Once the vibrational modes 

of the beam were determined through our previous calculations we then had to examine how 

each mode reacted after an impact on the bat to simulate what would happen during a bat/ball 

collision. The general model for any force impact onto a beam is given by the Dirac delta 

function. This function represents a point impact at a specific point and a specific time on the 

beam. The graph of this function is represented by a line equal to zero over the entire integral 

except for an infinite spike at the point of impact. Another special characteristic is the value of 

the integral over the entire length is equal to one. This infinite spike at a specific point is what 

excites the vibration of the beam by modeling the impact and, depending on the location of the 

point impact, will cause different reactions from specific modes of vibration of the beam. How 

the delta function is defined in time is another interesting characteristic. Just before impact (at 

t=0- the shape of the bat is not affected. The bat’s shape is then changed and at any time after 

there are no forces. 

To examine the forces of vibration that take place on a bat being struck by a ball, we 

first examined the unit impulse on string fixed at both ends. The methods used to solve for a 

unit impulse on a string will then be applied and adjusted for the case of a baseball bat.  

The impulse is applied at     where   is the length of the string and the initial conditions 

are set to zero. This leaves us with the following equation: 
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                                     (3-1) 

In equation (3-1)        is taken to be             The function in this form 

represents where and what time the impact force is applied on the string. In the case study for 

equation (3-1) the impact, a, is equal to one quarter the distance from the end of the string or 

l/4. 

Dirac Delta function for string at impact point of l/4:  

 
        (  

 

 
)      (3-2) 

The Eigen functions (mode shapes) of the un-damped, unforced clamped-clamped string are 

given in the form: 

 
            

   

 
  (3-3) 

The Xn represents the given vibrational mode shape for the string, each separate mode 

will have a different initial shape with different nodes which in turn will force the string to 

vibrate at a different frequency and amplitude.  

The governing equation for the string will be equal to the following: 

                     (3-4) 

Once again, in the governing equation, Xn represents the mode shape equation for the 

string. Equation (3-4) for the string can be plugged into equation (3-1). Once the governing 

equation is substituted into equation (3-1) we then multiply by      , integrate over the length 

of the string and solve for      . 
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This procedure results in equation (3-5): 

 
   ̈             [  

  

 
  ]           

   

 
   (  

 

 
)      (3-5) 

 

Next, we multiply equation (3-5)     
   

 
  and integrate which results in the following: 

 
   ̈              (

  

 
)
 

      
 

 
      ∫  (  

 

 
)    

   

 

 

 

           (
  

 
)  (3-6) 

The response of an under-damped single degree of freedom system to an impulse can 

be modeled by the following equation: 

   ̈    ̇      ̂     (3-7) 

where      is a unit impulse  

 
     (

 ̂ 

     
)                (3-8) 

where: 

   √
 

 
 

  
 

 
   

Therefore      √    
 
  and 0<   <1   must be valid. 
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Our Equation for modeling the motion of a bat is similar to the one shown above except 

for our equation does not include a damping term. Another difference between the two 

equations is in the example of the string we are only required to take the second derivative of 

the mode shape. However, due to the complex structure of the bat in comparison with that of a 

string we are required to take the 4th derivative in order to retain the same mode shapes of 

vibration for the bat.  

   

   
[       

        

   
]       

   

   
             

(3-9) 

                             (3-10) 

After closer examination the two above equations are equal for a uniform cross 

sectional area. In both equation (3-1) and (3-9) the Dirac delta function is defined by the 

following: 

                     (3-11) 

The function in this form represents where and what time the impact force is applied on 

the bat. In the case study for equation (3-1) the impact, a, is equal to one quarter the distance 

from the end of the string. In the case of the uniform bat (equation (3-9)) the force is solved for 

any possible impact points along the bat defined as the variable (a). 

 The reasoning for representing the impact point with the symbol (a) is because this will 

allows us to evaluate the impulse on the bat for varying impact locations. In the case of the 

string, the impact point is taken to be a single location of l/4, but evaluating at a single impact 

point is not sufficient for our example because we wanted to be able to vary of impact point 
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over the length of the bat.  This change can be seen by comparing Dirac delta function from (3-

2) and (3-11).  Equation (3-2) represents the Dirac delta function for the string with a single 

impact point of l/4 and equation (3-11) represents the Dirac delta function for the baseball bat 

with a varying impact point of (a). 

The Xn in the string case represents the given vibrational mode shape for the string, each 

separate mode will have a different initial shape with different nodes which in turn will force 

the bat to vibrate at a different frequency and amplitude. In our derivation of this equation we 

use the term Wn to represent Xn in the following equation. Wn represents the vibration made 

shape for the baseball bat. The equation for Wn(x) is obtained by using the method of 

separation of variables. 

                                               (3-12) 

Where     is equal to: 

 
   

               

              
 (3-13) 

And       . 

In the case of the string, the governing equation is equal to wn(x,t)= Tn(t)Xn(x), but in the 

case of the baseball bat the governing equation will take the form of wn(x,t)= Tn(t)Wn(x). This 

change in the governing equation is simple due to the change in the variables used to define 

the mode shape equation. In the case of the string, the mode shape equation is represented by 

Xn and therefore the governing equation for the string will be wn(x,t)= Tn(t)Xn(x). In the case of 
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the baseball bat, the mode shape equation is represented by Wn and therefore the governing 

equation for the string will be  

                     (3-14) 

The governing equation for the bat can be plugged into equation (3-9). In the case of the 

bat we must take the 4th derivative of the modes of vibration for the baseball bat because 

equation (3-9) requires us to do so.  

This procedure results equation (3-15) for the case of the bat: 

 [    (  
 )    ]          ̈             (3-15) 

By taking the fourth derivative of equation (3-15) we are left with the same basic 

equation with an extra term of   
4 because taking the 4th derivative of a sine or cosine term 

leaves you with the original sine or cosine value. In the second portion of the equation the 

derivative is taken in terms of time (t), so the       value which depend up x, is left alone 

while the Tn(t) value is taken to the second derivative.  

In the case of the bat we multiplied equation (3-15) by Wn(x) and integrated over length 

of the bat which leaves us with the following equation: 

 

      (  
 )          ̈    ∫   

   
 

 

 ∫              
 

 

 (3-16) 

Our next step was to rewrite equation (3-16) in the form of a single degree of freedom 

oscillator. This resulted in the following equation:  
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     ̈    [    (  

  )    ]                 
(3-17) 

In order to solve for the impulse, the next step was to model the response an under 

damped single degree of freedom system’s response to an impulse. The following equation 

allows us to model such a response:  

   ̈    ̇      ̂      (3-18) 

where      is a unit impulse. 

 
     (

 ̂ 

     
)                (3-19) 

where: 

      

Therefore      √    
 
  and 0<   <1   must be valid. 

The continuous system can be converted to take the form of a single degree of freedom 

system.  This is done by taking the coefficients m, c and k of equation (3-16) and matching them 

up with the coefficients that result from taking the second derivative with respect to time.  

In our case damping forces are not being considered because it does not need to be 

included when trying to find the energy loss in a system and therefore the damping coefficient 

c will be taken to be equal to 0.  

Using equation (3-16) and relating it equation (3-18) it can be found that equation (3-16) 

takes the following form in our example: 
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            (3-20) 

      

         
      (3-21) 

 

   √
 

 
 √

    (  
 )

  
 (3-22) 

The solution to the differential equation for (3-18) is the following: 

 
      

       

         

       (3-23) 

Now that we have solved for Tn(t) we have a solution for w(x,t)=             which 

takes the form  

 

        {
 

√      
∑

     

         
   [√

    
    

     
   ]

 

   

     } 
(

(3-24) 
 

 

 

 

3.1 Convergence of Infinite Solution 

Because the     takes the form of 
       

 
 the infinite series takes the form of  

    ∑(
 

       
)
  

   

 

(3-19) 
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Where D is on the same order of magnitude for each of the terms in the series so it can 

be treated as a constant outside of the series. This simplified series has a comparison series of  

∑
 

  

 

   

 

By using Theorem 9.13 from Calculus with Analytic Geometry the simplified series 

converges because the comparison series also converges.[5] 

 

Figure 11 - Mode Shape Convergence 
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object has an infinite number of mode shapes which describe the shape in which the object will 
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number of modes which the series converges. By plotting the summation of 1, 2, 5, 10, and 100 

modes we were able to see that the shape of the 10th and 100th modes was virtually identical 

which told us that the series converged after 10 terms. This meant that any summation of over 

10 modes would give us the same result as the 10 term solution. 

 

 

Figure 12 - Converged Series Displacement 

 

Figure 12 above represents the general displacement shape of the bat over time. A 
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Figure 13 - One Term Sum of Endpoint Displacement 

 

 

Figure 14 - Two Term Sum of Endpoint Displacement 
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Figure 15 - Ten Term Sum of Endpoint Displacement 

 

Figures 13, 14 and 15 above show the displacement of a single point on the bat over 
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first mode of vibration which is why the graph has a smooth oscillating shape. The next figure 
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choppy because of the contributions from each mode. The last figure shows the endpoint 
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Chapter 4: Vibration Energy Losses 

After solving for the displacement and proving the solution to be convergent, a factor of 

the impulse, J, remained in the solution. This factor is to be solved simultaneously by using both 

the energy of the rigid model and the energy taken from this system by the bat vibrations. This 

allowed us to produce graphs of the outgoing velocity with vibrations taken into consideration. 

The following equations lead to the solving of the impulse and finding the outgoing velocity 

depending on where on the ball contacted the bat. 

By the definition of an impulse (mass time velocity) the following is true: 

     
         (4-1) 

Where m1 is the mass of the ball, v1’ is the outgoing velocity of the ball, v1 is the 

incoming velocity (pitch speed) of the ball, and J is the total (combination of rigid and vibration) 

impulse of the bat-ball collision. Rearrangement of the equation gives: 

   
     

 

  
 (4-2) 

To find the change in kinetic energy (in the form of    
 

 
              ) the 

outgoing velocity of the ball needs to be squared. This gives the following: 

   
     

     
 

  
 (

 

  
)
 

 (4-3) 

This is used to find the total change in energy of the ball which is simplified to: 

    
 

 
  (  

     
 )      

  

   
 (4-4) 
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A rearrangement of equation (4-4) gives the following: 

 
  

   
          (4-5) 

This total change in energy is also defined as the change in the energy from the rigid 

body solution minus the energy from the velocity of the bat due to the vibrations. 

                (4-6) 

The change in energy for the rigid body is defined by 

       
 

 
  (   

   
 
   

 ) (4-7) 

And can be found using the outgoing velocity found in the previous MQP’s (chapter 1). 

This outgoing velocity is defined by equation (1-7). Figure 16 shows the shapes of the change in 

energy found for the rigid body model. 

 

Figure 16 - Rigid Body Energy Depending on Contact Point 
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The energy absorbed by the vibrations is found in the form of    
 

 
     

         as well. One half is multiplied by the integral of r times A over the length of the bat 

(mass) which is multiplied by the square of the velocity. 

       
 

 
∫              
 

 

 (4-8) 

The velocity of the bat is found by taking the time derivative of the displacement found 

using the vibrations equation from chapter 3 shown below:  

         {
 

√      
∑

     

        
 
   [√

    
    

     
   ]

 

   

     } (4-9) 

This series has been proven to be convergent using simply calculus theorems. However, 

when the time derivative of this equation is taken analytically or numerically (to find the 

velocity of the bat) the solution gives an infinite series that sums to infinity. Although this is 

true the derivative analysis gives the solution gives the form of: 

         
 

  
         (4-10) 

thus the energy takes the following form: 

           (4-11) 

Combining equations (4-11) with (4-6) and inserting the result into equation (4-5) gives: 

 (
 

   
   )                (4-12) 
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Using the quadratic formula where   (
 

   
   ),     , and         the 

solution for J is the following: 

   
    √  

   (
 

   
   )      

 (
 

   
   )

 (4-13) 

Rearranging the variables in the solution for J and determining whether to use the plus 

or the minus sign1 of the solution gives: 

   
  

 
{    √  

   (
 

 
      )

     
  

}
 

 (
 
       )

 (4-14) 

Where          . 

Based on equations (4-9) and (4-10)       takes the form of: 

        ∑
     

       

 

   

 (4-15) 

Where   is a magnitude of the vibrations, and p defines the speed of convergence. 

Determination of these values were found by relating the incoming velocity to the outgoing 

velocity in a real world situation. 

This can then be used to find the outgoing velocity of the baseball by the rearrangement 

(equation (4-17)) of the definition of the impulse (4-16) in a baseball bat shown in equations. 

                                                      
1
 Note the correct sign can be determined by making T (the contribution to impulse of vibrational energy) 

equal to zero in equation (4-13). The resulting solution when simplified and rearranged, it gives equation (4-2) for 
the rigid system only. 
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      (4-16) 

   
     

 

  
 (4-17) 

Figure 17 shows the Rigid body model plotted along with the 1, 2, and 10 mode 

summations for outgoing ball velocity using this energy method. The figure demonstrates the 

osculating properties of the mode shapes because each mode shape will match the velocity of 

the pervious shape at its nodes of vibration. This is why the first mode touches the rigid body 

model at 2 points and the second mode touches the first at its 3 nodes of vibration. The 10 

mode summation is considerable lower than the first and second because it takes into account 

all of the energy lost through the first 10 modes and gives us an accurate representation of the 

outgoing velocity. 

 

Figure 17 - Outgoing Velocity of Different Mode Sums 
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Figure 18 shows the 10 modes summations plotted against the rigid body model for 3 

different swing speeds. The overlaid graphs show how the energy loss due to vibration affects 

the outgoing ball velocity along the barrel as well as a shift in the location of maximum 

outgoing or “sweet spot” to a location between the nodes of the first and second mode of 

vibration. 

 

Figure 18 - Outgoing Velocity of 10 Mode Sums vs. Rigid Body 
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Conclusion 

Our studies have shown that in terms of vibrational analysis the “sweet spot” of a bat 

lies somewhere between the nodes of the first and second modes of vibration, this means a ball 

struck at this point will exit the bat with the highest outgoing velocity. The reason for the peak 

in outgoing velocity is because when a ball is struck on the “sweet spot” of a bat the majority of 

energy is transferred from the bat to the ball. When a ball strikes outside of the “sweet spot” 

more energy will be lost during the collision due to the excitement of the modes of vibration 

within the bat, this phenomena is the reason a player sometimes feels a stinging vibration in his 

hands after hitting a ball. The vibration is caused by the excitement of the bats modes of 

vibration and the energy that goes into exciting these modes takes away from the energy 

transferred into the ball resulting in a lower outgoing velocity.  

By comparing our findings to the “rigid body” model of a bat ball collision we were able 

to see the amount of energy lost due to vibration versus the energy transfer of an ideal elastic 

collision. On average for 3 different swing speeds we found that there was an energy drop of 

about 20 percent when vibration was factored into the collision. This was true for all points of 

impact along the bat even our newfound “sweet spot”. This is because even when the player 

strikes the sweet zone and does not excite the first and second modes of vibration upon impact 

there are still an infinite number of modes which are excited and although they are not large 

enough to feel in the players hands they still take away from the total energy transfer into the 

ball.  
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The models presented within our report are those representing the vibration of a 

constant profile wooden dowel. Our work would benefit from future analysis of how changing 

the profile of a bat will affect the location of the nodes of vibration and alter the size of the 

sweet spot.  
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Appendix B: Matlab Script 

%% Mode Shapes, Homogeneous Solution, Initial Shape, and Rigid Energy 
% MQP 
% Baseball Bat Vibration Analysis 

  
%% Modes with Initial Shape 
close all; clear all; clc; 
%Non dimentinalized bat 
x = 0:.033:33; 
L = 33; 
X = x/L; 

  

  
%Values from properties of maple wood 

  
E = 2.02e6;                     %psi 
rhomass = 0.0257;               %lbm/in^3 
rhom = rhomass*32.2;            %slug/in^3 
radius = .83885;                %radius of a bat based on density and 

length 
A = (pi*radius^2);              %Area 
Izz = pi*(radius^4)/4;          %moment area of inertia 
omegabat = 50;                  %rad/sec 
d = 2.5;                        %center of rotation from the bat handle 
D = d/L;                        %normalizedd d 
ao = 0.1;                       %intial diplacement height (10% of the 

length) 
n = 9;                         %number of terms 

  
P = omegabat*L^2*sqrt(rhom*A/(E*Izz)); 
%Solving for the frequency equation (solving for BetanL) 
f = inline('(cos(Beta).*cosh(Beta))-1', 'Beta'); 
BetanL=zeros(1,n); 
for i = 7:n 
    BetanL(i) = ((2*i)+1)*(pi/2); 
end 
BetanL(1) = fzero(f,4.73); 
BetanL(2) = fzero(f,7.85); 
BetanL(3) = fzero(f,10.995); 
BetanL(4) = fzero(f,14.137); 
BetanL(5) = fzero(f,17.27); 
BetanL(6) = fzero(f,20.42); 

  
%Preallocation 
alpha = zeros(length(BetanL),1); Wn = zeros(length(BetanL),length(X)); 
Inn = zeros(length(BetanL),1); FunBn = zeros(length(BetanL),length(X)); 
IntBn = zeros(length(BetanL),1); BnoverL = zeros(length(BetanL),1); 
omegan = zeros(length(BetanL),1); Funtest = 

zeros(length(BetanL),length(X)); 
inttest = zeros(length(BetanL),length(length(BetanL))); 
wn = zeros(length(BetanL),length(X)); w = 

zeros(length(BetanL),length(X)); 
error = zeros(length(BetanL-1),1); FunAn = 

zeros(length(BetanL),length(X)); 
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IntAn = zeros(length(BetanL),1); AnoverL = zeros(length(BetanL),1); 

  
w_naught = ao*sin(pi*X); 

  
%Using each BetanL to find the mode shapes  
for i = 1:length (BetanL) 
    alpha(i) = (sin(BetanL(i))-sinh(BetanL(i)))./(cosh(BetanL(i))-

cos(BetanL(i))); 
    Wn(i,:) = 

(sinh(BetanL(i)*X)+(alpha(i)*cosh(BetanL(i)*X))+(sin(BetanL(i)*X)+(alpha(i)*c

os(BetanL(i)*X)))); 
    FInn = Wn(i,:).*Wn(i,:); 
    Inn(i) = trapz(X,FInn);   
    %BC's (initial velocity) 
    FunBn(i,:) = Wn(i,:).*(X+D); 
    IntBn(i) = trapz(X,FunBn(i,:)); 
    BnoverL(i) = (P/(BetanL(i)*Inn(i)))*IntBn(i); 
    %BC intial shape 
    FunAn(i,:) = w_naught.*Wn(i,:); 
    IntAn(i) = trapz(X,FunAn(i,:)); 
    AnoverL(i) = IntAn(i)./Inn(i); 
    omegan(i) = (BetanL(i))^2*sqrt((E*Izz)/(rhom*A*L^4)); 
end 

  
%Orthoganality Matrix 
for i = 1:length (BetanL) 
    for j = 1:length (BetanL) 
        if i <= j 
            Funtest (i,:) = Wn(i,:).*Wn(j,:); 
            inttest (i,j) = trapz(X,Funtest(i,:)); 
        end 
    end 
end 

  
%Plotting Mode shapes 
figure(1) 
for i = 1:length(BetanL) 
    subplot(ceil((length(BetanL)/3)),3,i) 
    plot(X,Wn(i,:)); 
    ylabel(['Mode ', num2str(i)]) 
    xlabel('Normalized length') 
    axis([0 1 -3 3]); 
end 

  
%Plotting the Initial Shape 
figure(2) 
    plot(X,w_naught,'red') 
    title('Initial Shape') 
    xlabel('Normalized length') 
    ylabel('u<naught>(x,t)') 

  
%Plotting term by term sumation of the vibration solution @ a fixed 

time 
t = (pi/(4*omegan(1))); 
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for i = 1:length(BetanL) 
    wn(i,:) = Wn(i,:)*AnoverL(i)*cos(omegan(i)*t); 
end 

  
%Summing Term by Term to Show Convergence 
for i = 1:length(BetanL) 
    j = i-1; 
    if j < 1 
        w(i,:) = wn(i,:); 
    else 
        w(i,:) = w(j,:)+wn(i,:); 
    end 
end 

  
%Convergence Test 
for i = 1:length(BetanL)-1 
    error(i+1) = max(max(abs(w(i,:)-w(i+1,:)))); 
end 

  
%Figure Showing Convergence of the Summation 
figure (3) 
    title('Graph of the Convergence of the Solution for Deflections at 

a Fixed Time') 
    xlabel('Normalized length') 
    ylabel('u(x,t)') 
    grid on 
    hold on 
cc=hsv(length(BetanL));  
for i = 1:length(BetanL) 
    plot(X,w(i,:),'color',cc(i,:)); 
end 

  
%Figure Plotting the Previous Summation Over a Timespan 
figure (4) 
title('Graph of the Convergence of the Solution for Deflections Over 

Time') 
xlabel('Normalized length') 
ylabel('u(x,t)') 
hold on 
t = 0:(pi/(4*omegan(1))):(2*pi/omegan(1)); 

    
for i = 1:length(t) 
    w2(i,:) = 

Wn(1,:)*AnoverL(1)*cos(omegan(1)*t(i))+Wn(2,:)*AnoverL(2)*cos(omegan(2)*t(i))

+Wn(3,:)*AnoverL(3)*cos(omegan(3)*t(i))+Wn(4,:)*AnoverL(4)*cos(omegan(4)*t(i)

)+Wn(5,:)*AnoverL(5)*cos(omegan(5)*t(i))+Wn(6,:)*AnoverL(6)*cos(omegan(6)*t(i

))+Wn(7,:)*AnoverL(7)*cos(omegan(7)*t(i));%+Wn(8,:)*AnoverL(8)*cos(omegan(8)*

t(i))+Wn(9,:)*AnoverL(9)*cos(omegan(9)*t(i)); 
    plot(X,w2(i,:)) 
    pause 
end 

  
%% Impact 
F = 1;                %Impulse (force-time)   12.91 N-s 
a = X; 
t = (pi/2*(omegan(1))); 
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period = (2*pi)/omegan(1); 

  
for k = 1:length(a) 
    for i = 1:length(BetanL); 

         
        Wna(i,:) = 

(sinh(BetanL(i)*a(k))+sin(BetanL(i)*a(k)))+alpha(i).*(cosh(BetanL(i)*a(k))+co

s((BetanL(i)*a(k)))); 
        wpn(i,:) = 

(F/(sqrt(rhom*A*E*Izz)))*((Wna(i,:))/(Inn(i)*BetanL(i)^2))*sin(omegan(i)*t).*

Wn(i,:); 

         
    end 

     
    for i = 1:length(BetanL) 
        j = i-1; 
        if j < 1 

             
            wp(i,:) = wpn(i,:); 
        else 
            wp(i,:) = wp(j,:)+wpn(i,:); 
        end 
    end 

     
    w0 = 0; 
    dt = .5; 

     
    for i = 1:length(BetanL); 

         
        Wna(i,:) = 

(sinh(BetanL(i)*a(k))+sin(BetanL(i)*a(k)))+alpha(i).*(cosh(BetanL(i)*a(k))+co

s((BetanL(i)*a(k)))); 
        wpn(i,:) = 

(F/(sqrt(rhom*A*E*Izz)))*((Wna(i,:))/(Inn(i)*BetanL(i)^2))*sin(omegan(i)*dt).

*Wn(i,:); 

         
    end 

     
    for i = 1:length(BetanL) 
        j = i-1; 
        if j < 1 

             
            wt1(i,:) = wpn(i,:); 
        else 
            wt1(i,:) = wt1(j,:)+wpn(i,:); 
        end 
    end 

     
    for i = 1:length (BetanL) 
        v(i,:) = (wt1(i,:)-w0)/dt; 
%         figure (20) 
%         plot(X,v(i,:)); 
        FunV(i,:) = v(i,:).*v(i,:); 
        IntV(i) = trapz(X,FunV(i,:)); 
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        Ttimesm(i,k) = rhom*A*.5*IntV(i); 
    end 
        %T(i,j)--->i is # of terms;j is location of impact 
end 
figure (5) 
for i = 1:length(BetanL) 
    plot(X,wp(i,:)) 
    hold on 
    pause 
end 

  
%% Rigid Body 

  
omegabat = 50; 

  
d = 2.5; 
m1 = 0.00971279693*6; 
m2 = 0.00971279693; 
m = m1/m2; 
xbar = L/2; 
y = x-xbar; 
Ic = (m1*(L^2))/12; 

  
e = 0.5; 
v2 = -1584; 
vc = omegabat*(xbar+d); 

  
v2primerid = v2+((m.*(1+e)*(vc-

v2+(omegabat.*y)))./(1+m+((m1*y.^2/Ic)))); 
V2prime = -v2primerid/v2; 
figure (6) 
plot(X,V2prime) 

  
DeltaTr = m2*((v2primerid.^2)-(v2^2))/2; 
figure (7) 
plot(a,DeltaTr) 
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%% Three Values for different bat speeds (Rigid and Combination) 
% MQP 
% Baseball Bat Vibration Analysis 

  
%% Modes with Initial Shape 
close all; clear all; clc; 
%Non dimentinalized bat 
x = 0:.0033:33; 
L = 33; 
X = x/L; 
a = X; 

  
%Values from properties of maple wood 

  
E = 2.02e6;                     %psi 
rhomass = 0.0257;               %lbm/in^3 
rhom = rhomass*32.2;            %slug/in^3 
radius = .83885;                %radius of a bat based on density and 

length 
A = (pi*radius^2);              %Area 
Izz = pi*(radius^4)/4;          %moment area of inertia 
omegabat1 = 40;                  %rad/sec 
omegabat2 = 50; 
omegabat3 = 60; 
d = 2.5;                        %center of rotation from the bat handle 
D = d/L;                        %normalizedd d 
ao = 0.1;                       %intial diplacement height (10% of the 

length) 
n = 10;                         %number of terms 

  
P = omegabat1*L^2*sqrt(rhom*A/(E*Izz)); 
%Solving for the frequency equation (solving for BetanL) 
f = inline('(cos(Beta).*cosh(Beta))-1', 'Beta'); 
BetanL=zeros(1,n); 
for i = 7:n 
    BetanL(i) = ((2*i)+1)*(pi/2); 
end 
BetanL(1) = fzero(f,4.73); 
BetanL(2) = fzero(f,7.85); 
BetanL(3) = fzero(f,10.995); 
BetanL(4) = fzero(f,14.137); 
BetanL(5) = fzero(f,17.27); 
BetanL(6) = fzero(f,20.42); 

  
%Preallocation 
alpha = zeros(length(BetanL),1); Wn = zeros(length(BetanL),length(X)); 
Inn = zeros(length(BetanL),1); FunBn = zeros(length(BetanL),length(X)); 
IntBn = zeros(length(BetanL),1); BnoverL = zeros(length(BetanL),1); 
omegan = zeros(length(BetanL),1); Funtest = 

zeros(length(BetanL),length(X)); 
inttest = zeros(length(BetanL),length(length(BetanL))); 
wn = zeros(length(BetanL),length(X)); w = 

zeros(length(BetanL),length(X)); 
error = zeros(length(BetanL-1),1); FunAn = 

zeros(length(BetanL),length(X)); 
IntAn = zeros(length(BetanL),1); AnoverL = zeros(length(BetanL),1); 



48 
 

  
w_naught = ao*sin(pi*X); 

  
%Using each BetanL to find the mode shapes  
for i = 1:length (BetanL) 
    alpha(i) = (sin(BetanL(i))-sinh(BetanL(i)))./(cosh(BetanL(i))-

cos(BetanL(i))); 
    %Wn(i,:) = 

(sinh(BetanL(i)*X)+sin(BetanL(i)*X))+alpha(i).*(cosh(BetanL(i)*X)+cos((BetanL

(i)*X))); 

   
    Wn(i,:) = 

(sinh(BetanL(i)*X)+(alpha(i)*cosh(BetanL(i)*X))+(sin(BetanL(i)*X)+(alpha(i)*c

os(BetanL(i)*X)))); 
    FInn = Wn(i,:).*Wn(i,:); 
    Inn(i) = trapz(X,FInn);   
    %BC's (initial velocity) 
    FunBn(i,:) = Wn(i,:).*(X+D); 
    IntBn(i) = trapz(X,FunBn(i,:)); 
    BnoverL(i) = (P/(BetanL(i)*Inn(i)))*IntBn(i); 
    %BC intial shape 
    FunAn(i,:) = w_naught.*Wn(i,:); 
    IntAn(i) = trapz(X,FunAn(i,:)); 
    AnoverL(i) = IntAn(i)./Inn(i); 
    omegan(i) = (BetanL(i))^2*sqrt((E*Izz)/(rhom*A*L^4)); 
end 

  
for i = 1:length(BetanL) 
    Wna(i,:) = 

(sinh(BetanL(i)*a)+(alpha(i)*cosh(BetanL(i)*a))+(sin(BetanL(i)*a)+(alpha(i)*c

os(BetanL(i)*a)))); 
end 

  
%% Rigid Body 

  

  

  
d = 2.5; 
m1 = 0.00971279693*6; 
m2 = 0.00971279693; 
m = m1/m2; 
xbar = L/2; 
y = x-xbar; 
Ic = (m1*(L^2))/12; 

  
e = 0.5; 
v2 = -1584; 
vc1 = omegabat1*(xbar+d); 
vc2 = omegabat2*(xbar+d); 
vc3 = omegabat3*(xbar+d); 

  
v2primerid1 = v2+((m.*(1+e)*(vc1-

v2+(omegabat1.*y)))./(1+m+((m1*y.^2/Ic)))); 
v2primerid2 = v2+((m.*(1+e)*(vc2-

v2+(omegabat2.*y)))./(1+m+((m1*y.^2/Ic)))); 
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v2primerid3 = v2+((m.*(1+e)*(vc3-

v2+(omegabat3.*y)))./(1+m+((m1*y.^2/Ic)))); 
%V2prime = -v2primerid/v2; 

  
DeltaTr1 = m2*((v2primerid1.^2)-(v2^2))/2; 
DeltaTr2 = m2*((v2primerid2.^2)-(v2^2))/2; 
DeltaTr3 = m2*((v2primerid3.^2)-(v2^2))/2; 

  
T=0; 

  
% Tm2=.1; 

  
m = 2; 
gamma = .2; 

  
% Tm2 = 0; 
for i = 1:length(BetanL) 
    Tm2n(i,:) = gamma*(((Wna(i,:)).^2)/((2*i)+1)^m); 
end 

  
for i = 1:length(BetanL) 
    j = i-1; 
    if j < 1 

         
        Tm2(i,:) = Tm2n(i,:); 
    else 
        Tm2(i,:) = Tm2(j,:)+Tm2n(i,:); 
    end 
end 
J1  =(m2/2).*(-

v2+sqrt((v2^2)+4.*((1/2)+Tm2(10,:)).*(DeltaTr1/(m2)))).*(1./((1/2)+Tm2(10,:))

); 
J2  =(m2/2).*(-

v2+sqrt((v2^2)+4.*((1/2)+Tm2(10,:)).*(DeltaTr2/(m2)))).*(1./((1/2)+Tm2(10,:))

); 
J3 =(m2/2).*(-

v2+sqrt((v2^2)+4.*((1/2)+Tm2(10,:)).*(DeltaTr3/(m2)))).*(1./((1/2)+Tm2(10,:))

); 
v2primevib1 = -(v2+(J1/m2))/v2; 
v2primevib2 = -(v2+(J2/m2))/v2; 
v2primevib3 = -(v2+(J3/m2))/v2; 

  
v2primevib1(1:1350) = 0; 
v2primevib2(1:1350) = 0; 
v2primevib3(1:1350) = 0; 

  
figure(9) 
%turn these on for the superimposed graph 
% plot(a,v2primevib1) 
 hold on 
% plot(a,v2primevib2) 
% plot(a,v2primevib3) 
plot(a,-v2primerid1/v2) 
plot(a,-v2primerid2/v2) 
plot(a,-v2primerid3/v2) 
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%% Brandon Boucher 
% MQP 
% Baseball Bat Vibration Analysis 

  
%% Modes with Initial Shape 
close all; clear all; clc; 
%Non dimentinalized bat 
x = 0:.0033:33; 
L = 33; 
X = x/L; 

  

  
%Values from properties of maple wood 

  
E = 2.02e6;                     %psi 
rhomass = 0.0257;               %lbm/in^3 
rhom = rhomass*32.2;            %slug/in^3 
radius = .83885;                %radius of a bat based on density and length 
A = (pi*radius^2);              %Area 
Izz = pi*(radius^4)/4;          %moment area of inertia 
omegabat = 50;                  %rad/sec 
d = 2.5;                        %center of rotation from the bat handle 
D = d/L;                        %normalizedd d 
ao = 0.1;                       %intial diplacement height (10% of the 

length) 
n = 100;                         %number of terms 

  
P = omegabat*L^2*sqrt(rhom*A/(E*Izz)); 
%Solving for the frequency equation (solving for BetanL) 
f = inline('(cos(Beta).*cosh(Beta))-1', 'Beta'); 
BetanL=zeros(1,n); 
for i = 7:n 
    BetanL(i) = ((2*i)+1)*(pi/2); 
end 
BetanL(1) = fzero(f,4.73); 
BetanL(2) = fzero(f,7.85); 
BetanL(3) = fzero(f,10.995); 
BetanL(4) = fzero(f,14.137); 
BetanL(5) = fzero(f,17.27); 
BetanL(6) = fzero(f,20.42); 

  
%Preallocation 
alpha = zeros(length(BetanL),1); Wn = zeros(length(BetanL),length(X)); 
Inn = zeros(length(BetanL),1); FunBn = zeros(length(BetanL),length(X)); 
IntBn = zeros(length(BetanL),1); BnoverL = zeros(length(BetanL),1); 
omegan = zeros(length(BetanL),1); Funtest = zeros(length(BetanL),length(X)); 
inttest = zeros(length(BetanL),length(length(BetanL))); 
wn = zeros(length(BetanL),length(X)); w = zeros(length(BetanL),length(X)); 
error = zeros(length(BetanL-1),1); FunAn = zeros(length(BetanL),length(X)); 
IntAn = zeros(length(BetanL),1); AnoverL = zeros(length(BetanL),1); 

  
w_naught = ao*sin(pi*X); 

  
%Using each BetanL to find the mode shapes 
for i = 1:length (BetanL) 
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    alpha(i) = (sin(BetanL(i))-sinh(BetanL(i)))./(cosh(BetanL(i))-

cos(BetanL(i))); 
    %Wn(i,:) = 

(sinh(BetanL(i)*X)+sin(BetanL(i)*X))+alpha(i).*(cosh(BetanL(i)*X)+cos((BetanL

(i)*X))); 

     
    Wn(i,:) = 

(sinh(BetanL(i)*X)+(alpha(i)*cosh(BetanL(i)*X))+(sin(BetanL(i)*X)+(alpha(i)*c

os(BetanL(i)*X)))); 
    FInn = Wn(i,:).*Wn(i,:); 
    Inn(i) = trapz(X,FInn); 
    %BC's (initial velocity) 
    FunBn(i,:) = Wn(i,:).*(X+D); 
    IntBn(i) = trapz(X,FunBn(i,:)); 
    BnoverL(i) = (P/(BetanL(i)*Inn(i)))*IntBn(i); 
    %BC intial shape 
    FunAn(i,:) = w_naught.*Wn(i,:); 
    IntAn(i) = trapz(X,FunAn(i,:)); 
    AnoverL(i) = IntAn(i)./Inn(i); 
    omegan(i) = (BetanL(i))^2*sqrt((E*Izz)/(rhom*A*L^4)); 
end 
for i = 1:length (BetanL) 
    Wnapp(i,:) = sin(BetanL(i)*X)-cos(BetanL(i)*X); 
    FInnapp = Wnapp(i,:).*Wnapp(i,:); 
    Innapp(i) = trapz(X,FInnapp); 
end 
%Orthoganality Matrix 
for i = 1:length (BetanL) 
    for j = 1:length (BetanL) 
        if i <= j 
            Funtest (i,:) = Wn(i,:).*Wn(j,:); 
            inttest (i,j) = trapz(X,Funtest(i,:)); 
        end 
    end 
end 

  
t = (pi/(4*omegan(1))); 

  
for i = 1:length(BetanL) 
    wn(i,:) = Wn(i,:)*AnoverL(i)*cos(omegan(i)*t); 
end 

  
%Summing Term by Term to Show Convergence 
for i = 1:length(BetanL) 
    j = i-1; 
    if j < 1 
        w(i,:) = wn(i,:); 
    else 
        w(i,:) = w(j,:)+wn(i,:); 
    end 
end 

  
%Convergence Test 
for i = 1:length(BetanL)-1 
    error(i+1) = max(max(abs(w(i,:)-w(i+1,:)))); 
end 
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%% Impact 
F = 1;                %Impulse (force-time)   12.91 N-s 
a = 0.7; 
t = 0:(pi/(500*(omegan(1)))):(20*pi/((omegan(1)))); 
for k = 1:length(t) 
for i = 1:length(BetanL); 

     
    Wna(i,:) = 

(sinh(BetanL(i)*a)+(alpha(i)*cosh(BetanL(i)*a))+(sin(BetanL(i)*a)+(alpha(i)*c

os(BetanL(i)*a)))); 
    S(i,:) = ((Wna(i,:))/(Inn(i)*BetanL(i)^2))*sin(omegan(i)*t).*Wn(i,:); 

     
end 

  
for i = 1:length(BetanL) 
    j = i-1; 
    if j < 1 

         
        Sp(i,:) = S(i,:); 
    else 
        Sp(i,:) = Sp(j,:)+S(i,:); 
    end 
end 

  
dt = 0.001; 
dx = 0.0011; 
vstar = Sp(length(BetanL),:)/dt; 
vstarsq = (vstar.^2)*dx; 
intvstarsq = sum(vstarsq); 
m2 = 0.00971279693; 

  
m1T = 12*((m2*(L^3))/(2*E*Izz))*intvstarsq; 
%  
figure (5) 
% for i = 1:length(BetanL) 
    plot(X,Sp(10,:)) 
    hold on 
    pause 
end 

  

  
%% Rigid Body 
a = X; 
omegabat = 50; 

  
d = 2.5; 
m1 = 0.00971279693*6; 
m2 = 0.00971279693; 
m = m1/m2; 
xbar = L/2; 
y = x-xbar; 
Ic = (m1*(L^2))/12; 

  
e = 0.5; 
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v2 = -1584; 
vc = omegabat*(xbar+d); 

  
v2primerid = v2+((m.*(1+e)*(vc-v2+(omegabat.*y)))./(1+m+((m1*y.^2/Ic)))); 
V2prime = -v2primerid/v2; 
figure (7) 
plot(X,V2prime) 
hold on 

  
DeltaTrdm2 = ((v2primerid.^2)-(v2^2))/2; 
figure (100) 
plot(a,DeltaTrdm2) 

  
m2T = 0.1; 

  
gamma = .2; 
for i = 1:length(BetanL) 
    m2T(i) = gamma*(((Wna(i))^2)/((2*i)+1)^2); 
end 

  
% for i = length(BetanL) 
%     for k = length(a) 
%         Jm2(i,k) = (-

v2+sqrt((v2^2)+4*(m2*T(i,k)+(1/(2))).*(DeltaTr(k)/(m2))))./(2*(m2*T(i,k)+(1/(

2)))); 
%     end 
% end 
J = (m2/2)*(-v2+sqrt(((v2^2)+4*((.5+m2T)))*(DeltaTrdm2)))*(1/(.5+m2T)); 

  
v2prime = (v2+(J/m2))/v2; 
figure (7) 
plot (X,v2prime) 

 

 


